WO2015154315A1 - 一种无卤无磷阻燃树脂组合物 - Google Patents

一种无卤无磷阻燃树脂组合物 Download PDF

Info

Publication number
WO2015154315A1
WO2015154315A1 PCT/CN2014/076015 CN2014076015W WO2015154315A1 WO 2015154315 A1 WO2015154315 A1 WO 2015154315A1 CN 2014076015 W CN2014076015 W CN 2014076015W WO 2015154315 A1 WO2015154315 A1 WO 2015154315A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
parts
free
composition
halogen
Prior art date
Application number
PCT/CN2014/076015
Other languages
English (en)
French (fr)
Inventor
周应先
何岳山
苏世国
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2015154315A1 publication Critical patent/WO2015154315A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/092Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/04Layered products comprising a layer of synthetic resin as impregnant, bonding, or embedding substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors

Definitions

  • Halogen-free and phosphorus-free flame retardant resin composition
  • the present invention relates to a resin composition, and more particularly to a halogen-free and phosphorus-free flame retardant resin composition and an adhesive sheet and a copper-clad laminate produced therefrom.
  • halogen-free flame-retardant CCL has developed rapidly.
  • most manufacturers have introduced halogen-free flame retardant products and maintained high growth.
  • the mainstream route for achieving halogen-free flame retardant of copper clad laminates is to use a phosphorus-based flame retardant, and a phosphorus-containing epoxy resin is often used as a main resin, and then a dicyandiamide or a phenolic resin curing agent is used.
  • Phosphorus-based flame retardants can make the products have a good flame retardant effect, and generally meet the UL-V0 standard.
  • phosphorus-based flame retardants has the following problems: 1.
  • the product has problems such as poor heat resistance, low moisture resistance, and unsatisfactory interlayer adhesion; 2 production of phosphorus-based flame retardants and toxicity in the flame retardant process
  • Phosphorus-based flame retardants produce toxic substances such as methylphosphine and triphenylphosphine during combustion, posing potential hazards to aquatic organisms in the environment.
  • Halogen-free and phosphorus-free flame retardant technology is achieved by using a structurally flame-retardant resin such as a polyfunctional biphenyl type or cresol novolac epoxy resin and a novel benzoxazine with an inorganic oxide. Burning effect.
  • a structurally flame-retardant resin such as a polyfunctional biphenyl type or cresol novolac epoxy resin and a novel benzoxazine with an inorganic oxide. Burning effect.
  • CN102079875A discloses a high heat-resistant halogen-free and phosphorus-free thermosetting resin composition, which is prepared by using a biphenyl type epoxy resin together with an inorganic filler such as aluminum hydroxide and magnesium hydroxide to obtain a good flame retardant effect. And it has a series of excellent properties such as high heat resistance.
  • the high content of the biphenyl type epoxy resin used in this method is likely to cause the board to be too brittle, thereby adversely affecting the drilling performance of the product; in addition, the method also uses an aromatic amine as a curing agent, in the production process union Inflicts damage on the human body.
  • CN 1654504A discloses the use of a polymer material having an aromatic group as an aromatic amine to react with a cresol novolac epoxy resin to form a semi-cured mixture, and then using the mixture to cure the epoxy resin, and adding an appropriate amount of inorganic filler to achieve halogen-free
  • the purpose of phosphorus flame retardant The product obtained by the method has the effects of high Tg and low CTE and UL-V0 flame retardancy, but has high water absorption rate and poor mechanical properties; and the semi-cured mixture for curing needs to be first prepared in the preparation process, which increases the cost, is not conducive to Industrial production.
  • CN 101381506A discloses a halogen-free and phosphorus-free epoxy resin composition, which uses a biphenyl epoxy resin acting main agent, a benzoxazine, a nitrogen-containing phenolic aldehyde and a diaminodiphenyl sulfone compounding flame retardant curing agent, and then It is supplemented with inorganic fillers such as aluminum hydroxide to achieve the UL-V0 flame retardant standard.
  • the method uses a nitrogen-containing phenolic resin to cure the epoxy, increases the crosslinking density of the epoxy resin, and improves the heat resistance of the material, but the bonding property and the punching processability of the resin composition are too high due to the high crosslinking density. The adverse effect is caused. With the increase of the amount of nitrogen-containing phenolic resin, the flame retardant performance is improved, but the electrical properties are significantly reduced; and the dosage of the nitrogen-containing phenolic resin is difficult to control, which increases the difficulty of implementation.
  • One of the objects of the present invention is to provide a halogen-free and phosphorus-free flame retardant resin composition which does not contain a halogen element and a phosphorus element, and which is added with a nitrile-based resin and is supplemented with a halogen-free epoxy resin and a cyanate ester.
  • the resin adjusts the toughness and mechanical properties of the nitrile-based resin in the resin composition, improves the water absorbability, and thereby obtains a UL-V0 grade green halogen-free and phosphorus-free flame retardant resin composition excellent in toughness, machinability, and water absorbability. .
  • Another object of the present invention is to provide an adhesive sheet made of a halogen-free and phosphorus-free flame retardant resin composition according to one of the objects of use, which has high heat resistance, high reliability, and high glass. Transition temperature, Flame retardancy, low water absorption, low dielectric loss and low coefficient of thermal expansion.
  • One of the objects of the present invention is to provide a metal laminate made of a halogen-free and phosphorus-free flame retardant resin composition according to one of the objects of use, which has high heat resistance, high reliability, and high glass transition. Temperature, flame retardancy, low water absorption, low dielectric loss, low coefficient of thermal expansion, and good processability.
  • the present invention has been achieved by the following technical solutions.
  • a non-phosphorus-free flame retardant resin composition comprising a composition and a solvent; and the composition comprises the following components in parts by weight:
  • Halogen-free epoxy resin 50 ⁇ 80 parts
  • Nitrile-based resin 10 to 30 parts
  • Curing agent 15 ⁇ 40 parts
  • the composition is dissolved in a solvent, and the weight percentage thereof is between 65% and 75% by weight.
  • the nitrile-based resin has a low softening point, a low viscosity, and good fluidity, and has excellent flame retardancy, high temperature resistance, and dielectric properties.
  • the present invention employs a nitrile-based resin to improve the flame retardancy of the halogen-free and phosphorus-free flame retardant resin composition.
  • the nitrile-based resin has insufficient toughness and poor mechanical processing, and the nitrile-based resin exhibits a strong water-repellent property and is inferior in compatibility with other components.
  • the present invention uses an epoxy resin and a cyanate resin in combination with a nitrile-based resin to improve the toughness, machinability and water absorption of the halogen-free and phosphorus-free flame retardant resin composition.
  • the nitrile group of the nitrile resin is subjected to preliminary polymerization to form a triazine ring, which is copolymerized with the epoxy group in the epoxy resin to form an evil.
  • the oxazolidinone structure has good heat resistance and toughness and further improves the thermal stability of the resin composition.
  • using epoxy resin and cyanate resin for good water repellency nitrile The base resin is coated to isolate the hydrophilic nitrile-based resin from water, thereby improving the water absorption performance of the halogen-free and phosphorus-free flame retardant resin composition.
  • the present cyanate resin and the nitrile-based resin are blended in a reasonable manner to obtain a UL-V0 grade halogen-free and pitiful flame retardant resin composition which is excellent in toughness, machinability, and water absorbability.
  • the epoxy resin is added in an amount of 50 to 80 parts, for example, 52 parts by weight, 56 parts by weight, 58 parts by weight, 62 parts by weight, 66. Parts by weight
  • the epoxy resin of the present invention is preferably the epoxy resin of the present invention
  • Ar is selected from any one of the following structures:
  • the halogen-free epoxy resin has an epoxy equivalent of 200 to 2000, such as 250, 280, 306- 385, 420, 495, 552, 568, 590, 630, 687, 785, 842, 888, 963, 1085, 1257, 1586, 1768, 1890, 1950, and the like. If the epoxy equivalent of the halogen-free epoxy resin is too large, the viscosity of the composition will increase, and if it is too small, the crosslinking density will be too large.
  • the nitrile-based resin is added in an amount of 10 to 30 parts, for example, 12 parts by weight, 16 parts by weight, 18 parts by weight, 22 parts by weight, and 26 parts by weight. , 28 parts by weight, and the like. If the amount of the nitrile-based resin is too large, the water absorption of the composition is increased, and if it is too small, the heat resistance of the material is lowered.
  • the nitrile-based resin of the present invention is a polymer containing a plurality of nitrile groups, and the structural formula is:
  • the nitrile-based resin of the present invention can be referred to the nitrile-based resin monomer described in CN102976972 (ie, containing benzoic acid).
  • the method of the oxazide ring tetraphthalonitrile resin monomer) is prepared or commercially available.
  • the amount of the cyanate resin added in the composition is the amount of the cyanate resin added in the composition.
  • the cyanate resin is selected from the group consisting of bisphenol A type cyanate resin, bisphenol F type cyanate resin, dicyclopentadiene type cyanate resin, phenolic type cyanate resin, tetramethyl double Any one or a combination of at least two of a phenol F-type cyanate resin, a bisphenol M-type cyanate resin, a bisphenol E-type cyanate resin, and the cyanate resin prepolymer.
  • the combination of the cyanate resin typically, but not exclusively, includes a combination of a bisphenol A type cyanate resin and a phenolic type cyanate resin, a tetramethyl bisphenol F type cyanate resin and a bisphenol E type cyanide.
  • Combination of acid ester resin, combination of bisphenol M type cyanate resin prepolymer and bisphenol A type cyanate resin, dicyclopentadiene type cyanate resin and bisphenol E type cyanate resin prepolymer Combination of a combination of a bisphenol M type cyanate resin and a bisphenol E type cyanate resin prepolymer, a bisphenol A type cyanate resin, a bisphenol F type cyanate resin, and a novolac type cyanate resin A combination of a tetramethyl bisphenol F type cyanate resin prepolymer, a bisphenol M type cyanate resin, and a bisphenol A type cyanate resin prepolymer.
  • the addition of the cyanate resin can improve the dielectric properties and thermal expansion coefficient of the halogen-free and phosphorus-free flame retardant resin composition.
  • the curing agent of the present invention is capable of chemically reacting with a resin in a halogen-free and phosphorus-free resin composition to form a network-like solid polymer, which causes the linear resin to become a tough bulk solid.
  • the curing agent is added in an amount of 15 to 40 parts, for example, 16 parts by weight, 18 parts by weight, 22 parts by weight, 25 parts by weight, or 27 parts by weight. 32 parts by weight, 35 parts by weight, 37 parts by weight, and the like.
  • the amount of the curing agent added is too large, and if it exceeds 40 parts by weight, the heat resistance of the cured resin may be deteriorated. When the amount is less than 15 parts by weight, the resin composition is insufficiently cured and the glass transition temperature is lowered.
  • the curing agent of the present invention is selected from any one or a combination of at least two of dicyandiamide, aromatic amine, acid anhydride, phenolic curing agent, isocyanurate or novolac.
  • the combination typically includes, but is not limited to, a combination of dicyandiamide and an aromatic amine, a combination of a phenolic curing agent and an acid anhydride, a combination of a trialluryl uric acid and a linear phenolic aldehyde, an aromatic amine, an acid anhydride, and a phenolic curing agent. Combination, etc.
  • the filler is added in an amount of 10 to 100 parts, for example, 12 parts by weight, 15 parts by weight, 18 parts by weight, 22 parts by weight, 27 parts by weight, and 35 parts by weight. Parts by weight, 39 parts by weight, 47 parts by weight, 56 parts by weight, 75 parts by weight, 84 parts by weight, 88 parts by weight, 94 parts by weight, 98 parts by weight or the like.
  • the filler of the present invention is selected from any one or a combination of at least two of aluminum hydroxide, silica, magnesium hydroxide, kaolin, and hydrotalcite.
  • the combination typically, but not exclusively, includes a combination of aluminum hydroxide and magnesium hydroxide, a combination of silica and kaolin, a combination of silica, magnesium hydroxide and aluminum hydroxide, kaolin, hydrotalcite and silica. The combination and so on.
  • the halogen-free and phosphorus-free flame retardant resin composition of the present invention is composed of a composition and a solvent, and the composition accounts for 65 to 75 wt% of the total weight of the composition, for example, 66%, 69%, 70%, 73%, 74%. Wait.
  • the solvent of the present invention is selected from any one or a combination of at least two of a ketone solvent, a hydrocarbon solvent, an alcohol solvent, an ether solvent, an ester solvent or an aprotic solvent;
  • the ketone solvent Preferably, it is preferably one or a combination of at least two of acetone, methyl ethyl ketone or methyl isobutyl ketone;
  • the hydrocarbon solvent is preferably toluene and/or xylene;
  • the alcohol solvent is preferably methanol, Any one or a combination of at least two of ethanol or n-propanol;
  • the ether solvent is preferably ethylene glycol monomethyl ether and/or propylene glycol monomethyl ether; and
  • the ester solvent is preferably propylene glycol methyl ether acetate and / or ethyl acetate;
  • the aprotic solvent is preferably hydrazine, hydrazine-dimethylformamide
  • the combination of solvents typically, but not exclusively, includes a combination of acetone and methyl isobutyl ketone, ethanol a combination with methanol, a combination of ethylene glycol monomethyl ether and methanol, a combination of ethyl acetate and hydrazine, hydrazine-dimethylformamide, a combination of propylene glycol methyl ether acetate, ethyl acetate and methyl ethyl ketone, A combination of methanol, ethanol, and propylene glycol methyl ether acetate.
  • the composition of the present invention further comprises 0.01 to 1.0 part by weight of a curing accelerator.
  • the content of the curing accelerator in the composition may be 0.02 parts by weight, 0.06 parts by weight, 0.2 parts by weight, 0.5 parts by weight, 0.7 parts by weight, 0.9 parts by weight, 0.92 parts by weight, 0.97 parts by weight or the like.
  • the curing accelerator of the present invention is selected from any one or a combination of at least two of a tertiary amine, a tertiary phosphorus, a quaternary ammonium salt, a quaternary phosphonium salt or an imidazole compound.
  • the combination typically, but not exclusively, includes a combination of a tertiary phosphorus and a tertiary amine, a combination of a quaternary ammonium salt and a quaternary phosphonium salt, a combination of an imidazole compound and a tertiary amine, a quaternary ammonium salt, a quaternary phosphonium salt, and an imidazole compound. Combination, etc.
  • the resin composition of the present invention is composed of a composition and a solvent; and the composition includes the following components in parts by weight:
  • Halogen-free epoxy resin 50 ⁇ 80 parts
  • Nitrile-based resin 10 to 30 parts
  • Curing agent 15 ⁇ 40 parts
  • Curing accelerator 0.01 ⁇ 1.0 parts
  • the composition is dissolved in a solvent, and the weight percentage of the composition in the total weight is between 65% and 75%.
  • a known additive such as a coloring pigment, an antifoaming agent, a surfactant, a flame retardant, an ultraviolet absorber, an antioxidant, a flow regulator, etc., as needed, the type and amount of the additive.
  • those skilled in the art can make a selection based on the expertise acquired.
  • a method for preparing a phosphorus-free flame retardant resin composition according to the present invention can be With reference to the preparation method of the conventional resin composition, it is selected in accordance with actual conditions, and the present invention is not particularly limited.
  • the preparation method of the typical but non-limiting halogen-free phosphorus-free flame retardant resin composition comprises the following steps: adding a formula amount of an epoxy resin, a nitrile resin, a cyanate resin, a curing agent, a filler, and a curing accelerator to the reaction container Or in the reaction kettle, add the formula amount of solvent, stir evenly to obtain the solid content.
  • the bonding sheet according to the second aspect of the present invention comprises a reinforcing material and a base material impregnated on the reinforcing material, wherein the base material is a halogen-free and phosphorus-free flame retardant resin composition according to any one of the objectives.
  • the bonding sheet is obtained by immersing a binder in a resin composition to form a combination of a resin and a binder, and is an intermediate material for producing a composite material.
  • the binder of the present invention is an inorganic or organic material.
  • the inorganic material is selected from the group consisting of glass fibers, carbon fibers, boron fibers, and metal woven fabric nonwoven fabrics.
  • the glass fiber cloth or nonwoven fabric is selected from any one of E-glass, Q-type cloth, NE cloth, D-type cloth, S-type cloth, and high-silicone cloth; and the glass fiber cloth is preferably E-glass.
  • the organic material is selected from the group consisting of polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, or syndiotactic polystyrene woven or nonwoven or nonwoven paper.
  • the typical but non-limiting method for preparing the bonding sheet includes The following steps:
  • the baking temperature is based on the boiling of the solvent used in the halogen-free and phosphorus-free resin composition glue
  • the choice is generally 20 to 80 ° C, preferably 80 to 250 ° C, which is greater than the boiling point of the solvent, and the baking time is -30 min.
  • the adhesive sheet provided by the invention has high heat resistance, high reliability, high glass transition temperature, flame retardancy, low water absorption, low dielectric loss and low thermal expansion coefficient.
  • the metal laminate according to the third aspect of the present invention comprising a laminate and a metal foil which is laminated on one side or both sides of the laminate, the laminate comprising a plurality of bonded sheets for the purpose of bonding
  • the adhesive sheet is composed of a reinforcing material and a base material impregnated on the reinforcing material, and the base material is a halogen-free and phosphorus-free flame retardant resin composition according to one of the objectives.
  • a laminate is a type of laminate which is a composite of two or more layers of resin-impregnated fibers or fabrics (i.e., prepregs) which are laminated and heat-pressed.
  • the copper clad laminate is obtained on a single or double coated copper foil of a conventional laminate.
  • the preparation method of the pressure plate comprises the following steps:
  • the metal foil of the present invention is a copper foil
  • the prepared metal foil laminate is a copper-clad layer
  • the hot press forming is performed in a laminating apparatus, and the hot press forming is preferably a stepwise pressing method (ie, stepwise heating) And boosting method) to suppress.
  • the specific operating conditions of the stepwise pressing method are preferably:
  • the temperature gradient was raised from room temperature to 150 ° C in 1 15 min for 30 min; 2 rose to within 5 min. Maintained at 180 ° C for 2 h; 3 cooled to room temperature within 30 min;
  • the pressure gradient is from 1 to 10 MPa, and the pressure is maintained for 30 minutes. 2 lmin is increased to 1.0 MPa, and the pressure is maintained for 2.5 hours .
  • the post-treatment conditions are maintained at 200 to 245 ° C for 1 to 5 hours.
  • the copper-clad laminate provided by the present invention has high heat resistance, high reliability, high glass transition temperature, flame retardancy, low water absorption, low dielectric loss, low thermal expansion coefficient, and good processability. Compared with the prior art, the present invention has the following beneficial effects:
  • the present invention achieves the object of improving flame retardancy, high temperature resistance and dielectric properties of a resin by adding a nitrile-based resin to a phosphorus-free flame retardant resin composition; by supplementing a halogen-free epoxy resin and cyanide
  • the acid ester resin overcomes the disadvantages of insufficient toughness and poor machinability of the nitrile-based resin, and improves the water absorption of the resin; UL-V0 grade green halogen-free and phosphorus-free which is excellent in toughness, machinability and water absorption.
  • Flame retardant resin composition ;
  • the bonding sheet and the copper-clad laminate provided by the present invention have high heat resistance, high reliability, high glass transition temperature, low water absorption, low dielectric loss and low thermal expansion coefficient, and are flame-retardant to UL-V0 level.
  • Diphenyl sulfone nitrogenous phenol 35 20 aldehyde aluminum hydroxide 10 10 10 10 10 10 10 30 5 silica 10 10 10 10 10 10 10 30 5 magnesium hydroxide 10 10 10 10 10 10 10 40 0
  • Table 2 The formulation of the resin composition provided in Comparative Examples 1 to 7 is shown in Table 2.
  • butanone moderate amount, moderate amount, moderate amount, moderate amount, proper amount, proper amount of propylene glycol methyl ether, proper amount, proper amount, appropriate amount, appropriate amount, appropriate amount, solid content, 65%, 65%, 65%, 65%, 65%, 65%, 65%, 65%.
  • bisphenol A is bisphenol A. Epoxy resin, Haussman Huntsman's 8093, epoxy equivalent 480g / mol;
  • DCPD is dicyclopentadiene epoxy resin, Japan DIC HP-7200H, epoxy equivalent 890; biphenyl type is biphenyl type epoxy resin, SHIN-A SE-5000, epoxy equivalent 256 g/mol;
  • Bisphenol F is bisphenol F epoxy resin, Shanghai Kyphobic KF21, epoxy equivalent 542 g / mol;
  • the nitrile-based resin is prepared by the method of the nitrile-based resin monomer (i.e., the tetra-phthalonitrile resin monomer containing a benzoxazine ring) described in CN102976972, and the specific structure is as follows:
  • the cyanate resin is bisphenol A cyanate resin, Shanghai Huifeng model HF-10;
  • Dicyandiamide purchased from Ningxia Darong;
  • Linear novolac, 2812 purchased from Korea MOMENTIVE, hydroxyl equivalent 105GEQ;
  • Diaminodiphenyl sulfone purchased from Taiwan Liuhe Chemical Co., Ltd.;
  • the nitrogen-containing phenolic aldehyde is A-125 purchased from Jinyi Chemical Co., with a hydroxyl equivalent of 125 g/mol ;
  • Aluminum hydroxide the average material diameter is 1 ⁇ 5 ⁇ , and the purity is more than 99%;
  • Silica the average material diameter is 1 ⁇ 3 ⁇ , and the purity is 99% or more;
  • Magnesium hydroxide the average material diameter is 1 ⁇ 3 ⁇ , and the purity is more than 99%;
  • Methoxysilane coupling agent ⁇ -6040, purchased from Dow Corning;
  • UV absorber UV-531, purchased from Fuyang City, translated into fine chemicals
  • the resin compositions provided in Examples 1 to 5 and Comparative Examples 1 to 7 were prepared in the following manner, and the prepared bonded sheets were subjected to performance tests.
  • the preparation method of the bonding sheet comprises:
  • the glue of the halogen-free and phosphorus-free flame retardant resin composition is impregnated with a glass fiber cloth, and superposed to obtain a laminated glass fiber cloth impregnated with the glue, and then heated and pressurized at 250 ° C for 3 hours to obtain a halogen-free and phosphorus-free film.
  • Flame retardant Resin composition composite The performance test items and specific methods are:
  • the peel strength of the metal cap layer was tested in accordance with the experimental conditions of "thermal stress" in the method specified in 2.4.8 of IPC-TM-650.
  • TMA Thermal expansion coefficient Z-axis CTE
  • the measurement was carried out in accordance with the method specified in 2.4.24 of IPC-TM-650.
  • the measurement was carried out in accordance with the method specified in 2.4.26 of IPC-TM-650.
  • the dielectric loss tangent at 1 GHz is measured in accordance with the method specified in 2.5.5.9 of IPC-TM-650.
  • the measurement was carried out in accordance with the method of 2.3.41 of IPC-TM-650.
  • the present invention improves the flame retardancy, high temperature resistance and dielectric properties of the resin by adding a nitrile-based resin to the halogen-free and phosphorus-free flame retardant resin composition.
  • OBJECTIVE To overcome the disadvantages of insufficient toughness and poor machinability of nitrile-based resin by using halogen-free epoxy resin and cyanate resin, and to improve the water absorption of the resin; excellent toughness, machinability and water absorption are obtained.
  • the UL-V0 grade environmentally friendly non-phosphorus-free flame retardant resin composition in addition, the resin composition of the present invention does not contain elemental and phosphorus elements, and has flame retardancy of UL94-V0 grade; prepreg and coating obtained therefrom Copper foil laminate with high heat resistance, high reliability, high glass transition temperature (Tg), flame retardancy, low water absorption, low dielectric loss and low expansion coefficient, and good processing properties.
  • Tg glass transition temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明涉及一种无卤无磷阻燃树脂组合物,所述树脂组合物由组成物和溶剂组成;所述组成物按重量份数包括如下组分:无卤环氧树脂:50~80份;腈基树脂:10~30份;氰酸酯树脂:5~20份;固化剂:15~40份;填料:10~100份;其中,组成物溶于溶剂,并且组成物占总重的重量百分比为65~75wt%之间。本发明通过在无卤无磷阻燃树脂组合物中添加腈基树脂,实现了提高树脂阻燃性、耐高温性和介电性能的目的;通过辅以无卤环氧树脂和氰酸酯树脂克服了腈基树脂韧性不足、机械加工性差的缺点,并改善了树脂的吸水性;获得了韧性、机械加工性和吸水性均表现优异的UL-V0级的绿色环保无卤无磷阻燃树脂组合物。

Description

一种无卤无磷阻燃树脂组合物 技术领域
本发明涉及一种树脂组合物, 具体涉及一种无卤无磷阻燃树脂组合物及用 其制成的粘结片和覆铜箔层压板。
背景技术
随着 2006年欧盟正式实施的 WEEE和 RoHS两份指令、市场竞争的推动以 及人类环保意识的提高, 无卤阻燃型覆铜板发展迅猛。 目前绝大多数厂商都推 出了无卤阻燃的产品, 并且保持高增长态势。 当前, 实现覆铜箔层压板无卤阻 燃的主流路线是使用磷系阻燃剂, 并且多使用含磷环氧树脂为主体树脂, 然后 采用双氰胺或酚醛树脂固化剂。 磷系阻燃剂能够使产品具有较好的阻燃效果, 一般情况下都能达到满足 UL-V0级别的标准。 但是, 磷系阻燃剂的使用却存在 如下问题: ①产品存在耐热性差、 耐湿性低、 层间粘接性不理想等问题; ②磷 系阻燃剂的生产及阻燃作用过程存在毒性, 磷系阻燃剂在燃烧的过程中会产生 如甲膦和三苯基膦等的有毒物质, 对环境中水生生物造成潜在危害。
因此开发对环境更友好的覆铜板是一个急待解决的重要问题。 无卤无磷阻 燃技术是通过采用如多官能团的联苯型或甲酚酚醛环氧树脂的结构阻燃型树脂 以及新型的苯并恶嗪, 配以无机氧化物, 通过协同作用来达到阻燃效果。
CN102079875A公开了一种高耐热的无卤无磷热固性树脂组合物,采用联苯 型环氧树脂与氢氧化铝和氢氧化镁等无机填料配合, 使其板材达到了较好的阻 燃效果, 并且具有高耐热等一系列优异的性能。 但是, 此方法采用的联苯型环 氧树脂含量较高, 容易造成板材过脆, 从而对产品的钻孔加工性能造成不利影 响; 此外, 该方法还采用芳香胺作为固化剂, 在生产过程工会对人体造成伤害。 CN 1654504A公开了采用一种端基为芳香胺的高分子材料与甲酚酚醛环氧 树脂反应生成一种半固化混合物, 再使用此混合物固化环氧树脂, 并加入适量 的无机填料实现无卤无磷阻燃的目的。 该方法得到的产品具有高 Tg及低 CTE 和 UL-V0阻燃的效果, 但吸水率高, 力学性能差; 且制备过程中需要首先制得 固化用的半固化混合物, 增加了成本, 不利于工业生产。
CN 101381506A公开了一种无卤无磷环氧树脂组合物, 使用联苯环氧树脂 作用主剂, 苯并恶嗪、 含氮酚醛和二氨基二苯砜复配作用阻燃用固化剂, 再辅 助以氢氧化铝等无机填料, 使材料达到了 UL-V0阻燃标准。 该方法采用含氮酚 醛树脂固化环氧, 增加了环氧树脂的交联密度, 提高了材料的耐热性, 但由于 交联密度过高, 对树脂组合物的粘接性能和冲剪加工性造成不利影响; 随着含 氮酚醛树脂用量的增加, 其阻燃性能随得到改善, 但电性能却明显下降; 且含 氮酚醛树脂的用量较难控制, 增加了实施难度。
因此, 本领域亟待开发一种无卤无磷阻燃树脂组合物, 所述组合物需要在 保证高玻璃化转变温度 (Tg)、 高耐热性、 低介电损耗因素、 低吸水性以及低 C.T.E, UL-V0级阻燃等性能的同时, 保持良好的韧性和机械加工性能。
发明内容
本发明的目的之一在于提供一种无卤无磷阻燃树脂组合物, 所述组合物不 含卤素元素和磷元素, 通过添加腈基树脂, 并辅以无卤环氧树脂和氰酸酯树脂 调节树脂组合物中腈基树脂的韧性和机械性能, 改善其吸水性, 从而获得韧性、 机械加工性和吸水性均表现优异的 UL-V0级的绿色环保无卤无磷阻燃树脂组合 物。
本发明的目的之二在于提供一种使用目的之一所述的无卤无磷阻燃树脂组 合物制成的粘结片, 所述粘结片具有高耐热性, 高可靠性, 高玻璃转变温度, 难燃性, 低吸水率, 低电介质损耗和低热膨胀系数等特性。
本发明的目的之一在于提供一种使用目的之一所述的无卤无磷阻燃树脂组 合物制成的金属层压板, 所述层压板具有高耐热性, 高可靠性, 高玻璃转变温 度, 难燃性, 低吸水率, 低电介质损耗, 低热膨胀系数, 以及良好的加工性能。
本发明是通过如下技术方案实现的。
一种无 ^无磷阻燃树脂组合物, 由组成物和溶剂组成; 所述组成物按重量 份数包括如下组分:
无卤环氧树脂: 50〜80份;
腈基树脂: 10〜30份;
氰酸酯树脂: 5〜20份;
固化剂: 15〜40份;
填料: 10〜100份;
其中, 组成物溶于溶剂, 并且其占总重的重量百分比为 65%〜75%之间。 腈基树脂具有较低的软化点、 较低的粘度和较好的流动性, 且具有优异的 阻燃性、 耐高温性和介电性能。 本发明选用腈基树脂来提高无卤无磷阻燃树脂 组合物的阻燃性能。 但是单纯的腈基树脂的韧性不足, 机械加工方面表现欠佳, 且腈基树脂表现出很强的斥水性质, 在与其他组分的配伍性不好。 为了解决腈 基树脂存在的问题, 本发明选用环氧树脂和氰酸酯树脂与腈基树脂配合使用, 改善无卤无磷阻燃树脂组合物的韧性、 机械加工性和吸水性。
本发明提供的无^无磷阻燃树脂组合物发生聚合的过程中, 腈基树脂的腈 基经过初步聚合形成的三嗪环, 与环氧树脂中的环氧基团发生共聚反应, 生成 恶唑烷酮结构, 该结构具有良好的耐热性能和韧性, 且进一步提高了树脂组合 物的热稳定性。 另一方面, 利用环氧树脂和氰酸酯树脂良好的斥水作用, 对腈 基树脂实现包覆, 将亲水性的腈基树脂与水隔离, 从而改善无卤无磷阻燃树脂 组合物的吸水性能。
由此, 本发 氰酸酯树脂、 腈基树脂, 并进行合 理的配合, 得到了韧性、 机械加工性和吸水性均表现优异的 UL-V0级的无卤无 憐阻燃树脂组合物。
本发明所述的无^无磷阻燃树脂组合物, 组成物中无^环氧树脂的添加量 为 50〜80份, 例如 52重量份、 56重量份、 58重量份、 62重量份、 66重量份
68重量份、 72重量份、 76重量份、 78重量份等。 无^环氧树脂的添加量过 会增大材料的脆性, 过少, 会导致 1剥离强度降低 (
优选地, 本发明所述无^环氧树脂的
0
Ar 4- O-CH -HC / \ CH
2
其中, Ar选自如下结构中的任意 1种:
Figure imgf000005_0001
优选地, 所述无卤环氧树脂的环氧当量为 200〜2000, 例如 250、 280、 306- 385、 420、 495、 552、 568、 590、 630、 687、 785、 842、 888、 963、 1085、 1257、 1586、 1768、 1890、 1950等。 无卤环氧树脂的环氧当量过大, 会导致组合物粘 度增大, 过小, 会造成交联密度过大。
本发明所述的无^无磷阻燃树脂组合物, 组成物中腈基树脂的添加量为 10〜30份, 例如 12重量份、 16重量份、 18重量份、 22重量份、 26重量份、 28 重量份等。 腈基树脂的添加量过多, 会增大组合物吸水率, 过少, 会降低材料 的耐热性能。
优选地, 本发明所述腈基树脂为含有多个腈基的高分子体, 其结构式为:
/—、、
., 、, Q™™;、 >: 其中, Ar选自如下结构中的任意 1种:
Figure imgf000006_0001
1种(
本发明所述腈基树脂可以参照 CN102976972所述腈基树脂单体 (即含苯并 噁嗪环的四邻苯二甲腈树脂单体) 的方法制备得到, 或者通过商购获得。
本发明所述的无卤无磷阻燃树脂组合物, 组成物中氰酸酯树脂的添加量为
5-20份, 例如 6重量份、 8重量份、 12重量份、 15重量份、 17重量份、 19重 量份等。 氰酸酯树脂的添加量过多, 会影响组合物的韧性, 过少, 会对材料的 热稳定性能产生不利影响。
优选地,所述氰酸酯树脂选自双酚 A型氰酸酯树脂、双酚 F型氰酸酯树脂、 双环戊二烯型氰酸酯树脂、 酚醛型氰酸酯树脂、 四甲基双酚 F型氰酸酯树脂、 双酚 M型氰酸酯树脂、 双酚 E型氰酸酯树脂、 及所述氰酸酯树脂预聚体中的任 意 1种或至少 2种的组合。
所述氰酸酯树脂的组合典型但非限制性的包括双酚 A型氰酸酯树脂和酚醛 型氰酸酯树脂的组合, 四甲基双酚 F型氰酸酯树脂和双酚 E型氰酸酯树脂的组 合, 双酚 M型氰酸酯树脂预聚体和双酚 A型氰酸酯树脂的组合, 双环戊二烯型 氰酸酯树脂和双酚 E型氰酸酯树脂预聚体的组合, 双酚 M型氰酸酯树脂和双酚 E型氰酸酯树脂预聚体的组合, 双酚 A型氰酸酯树脂、 双酚 F型氰酸酯树脂和 酚醛型氰酸酯树脂的组合, 四甲基双酚 F型氰酸酯树脂预聚体、 双酚 M型氰酸 酯树脂和双酚 A型氰酸酯树脂预聚体的组合等。
氰酸酯树脂的加入能够改善无卤无磷阻燃树脂组合物的介电性能和热膨胀 系数。
本发明所述固化剂能够与无卤无磷树脂组合物中的树脂发生化学反应, 形 成网状立体聚合物, 使线型树脂变成坚韧的体型固体。 本发明所述的无卤无磷 阻燃树脂组合物中, 组成物中固化剂的添加量为 15〜40份, 例如 16重量份、 18 重量份、 22重量份、 25重量份、 27重量份、 32重量份、 35重量份、 37重量份 等。 固化剂的添加量过多, 超过 40重量份, 会引起树脂固化物耐热性变差, 过 少, 低于 15重量份, 会引起树脂组合物固化不足, 玻璃化转变温度降低。
优选地, 本发明所述固化剂选自双氰胺、 芳香胺、 酸酐、 酚类固化剂、 异 氰尿酸三烯酯或线性酚醛中的任意 1种或至少 2种的组合。 所述组合典型但非 限制性的包括双氰胺和芳香胺的组合, 酚类固化剂和酸酐的组合, 异氰尿酸三 烯酯和线性酚醛的组合, 芳香胺、 酸酐和酚类固化剂的组合等。
本发明所述的无卤无磷阻燃树脂组合物, 组成物中填料的添加量为 10〜100 份, 例如 12重量份、 15重量份、 18重量份、 22重量份、 27重量份、 35重量份、 39重量份、 47重量份、 56重量份、 75重量份、 84重量份、 88重量份、 94重量 份、 98重量份等。
优选地, 本发明所述填料选自氢氧化铝、 二氧化硅、 氢氧化镁、 高岭土、 水滑石中的任意 1种或至少 2种的组合。 所述组合典型但非限制性的包括氢氧 化铝和氢氧化镁的组合, 二氧化硅和高岭土的组合, 二氧化硅、 氢氧化镁和氢 氧化铝的组合, 高岭土、 水滑石和二氧化硅的组合等。
本发明所述的无卤无磷阻燃树脂组合物由组成物和溶剂组成, 且组成物占 组合物总重量的 65〜75wt%, 例如 66%、 69%、 70%、 73%、 74%等。
优选地, 本发明所述溶剂选自酮类溶剂、 烃类溶剂、 醇类溶剂、 醚类溶剂、 酯类溶剂或非质子溶剂中的任意 1种或至少 2种的组合; 所述酮类溶剂优选自 丙酮、 甲基乙基酮或甲基异丁基酮中的任意 1种或至少 2种的组合; 所述烃类 溶剂优选甲苯和 /或二甲苯; 所述醇类溶剂优选自甲醇、 乙醇、 或正丙醇中的任 意 1种或至少 2种的组合;所述醚类溶剂优选乙二醇单甲醚和 /或丙二醇单甲醚; 所述酯类溶剂优选丙二醇甲醚醋酸酯和 /或乙酸乙酯; 所述非质子溶剂优选 Ν,Ν- 二甲基甲酰胺和 /或 Ν,Ν-二乙基甲酰胺。
所述溶剂的组合典型但非限制性的包括丙酮和甲基异丁基酮的组合, 乙醇 和甲醇的组合, 乙二醇单甲醚和甲醇的组合, 乙酸乙酯和 Ν,Ν-二甲基甲酰胺的 组合, 丙二醇甲醚醋酸酯、 乙酸乙酯和的甲基乙基酮组合, 甲醇、 乙醇和丙二 醇甲醚醋酸酯的组合等。
作为优选, 本发明所述组合物还包括 0.01〜1.0重量份的固化促进剂。 所述 组合物中固化促进剂的含量可以是 0.02重量份、 0.06重量份、 0.2重量份、 0.5 重量份、 0.7重量份、 0.9重量份、 0.92重量份、 0.97重量份等。
优选地, 本发明所述固化促进剂选自三级胺、 三级磷、 季胺盐、 季磷盐或 咪唑化合物中的任意 1种或至少 2种的组合。 所述组合典型但非限制性的包括 三级磷和三级胺的组合, 季胺盐和季磷盐的组合, 咪唑化合物和三级胺的组合, 季胺盐、 季磷盐和咪唑化合物的组合等。
作为优选技术方案, 本发明所述树脂组合物由组成物和溶剂组成; 所述组 成物按重量份数包括如下组分:
无卤环氧树脂: 50〜80份;
腈基树脂: 10〜30份;
氰酸酯树脂: 5〜20份;
固化剂: 15〜40份;
填料: 10〜100份;
固化促进剂: 0.01〜1.0份;
其中,组成物溶于溶剂,并且组成物占总重的重量百分比为 65%〜75%之间。 当然, 本发明还可根据需要添加着色颜料、 消泡剂、 表面活性剂、 阻燃剂、 紫外吸收剂、 抗氧剂、 流动调整剂等公知的添加剂, 所述添加剂的种类和添加 量本发明不做具体限定, 本领域技术人员可以根据掌握的专业知识进行选择。
本发明所述的无^无磷阻燃树脂组合物的制备方法, 本领域技术人员可以 参考现有的树脂组合物的制备方法, 结合实际情况进行选择, 本发明不做特殊 限定。 典型但非限制性的无卤无磷阻燃树脂组合物的制备方法包括如下步骤: 取配方量的环氧树脂、 腈基树脂、 氰酸酯树脂、 固化剂、 填料、 固化促进 剂加入反应容器或反应釜中, 加入配方量的溶剂, 搅拌均匀得到固含量在
65-75 %的胶液, 即为无卤无磷阻燃树脂组合物的胶液。 本发明目的之二所述的粘结片, 由增强材料及浸润于增强材料上的基体材 料组成, 所述基体材料为目的之一所述的无卤无磷阻燃树脂组合物。
粘结片是将基料浸渍在树脂组合物中, 制成树脂与基料的组合体, 是制造 复合材料的中间材料。
本发明所述的基料为无机或有机材料。
所述无机材料选自玻璃纤维、 碳纤维、 硼纤维、 金属的机织织物的无纺布。 所述玻璃纤维布或无纺布选自 E-glass、 Q型布、 NE布、 D型布、 S型布、 高硅 氧布中的任意 1种; 所述玻璃纤维布优选 E-glass。
所述有机材料选自聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 或间规聚苯乙烯制造的织布或无纺布或无纺纸。
本发明所述粘结片的的制备方法, 本领域技术人员可以参考现有的粘结片 的制备方法, 本发明不做具体限定, 典型但非限制性的所述粘结片的制备方法 包括如下步骤:
选取表面平整的基料(如 E-玻纤布), 均匀涂覆无卤无磷阻燃树脂组合物的 胶液, 然后进行烘制, 使其中的无卤无磷的树脂组合物处于半固化阶段 (B-stage) , 即得粘结片。
其中, 所述烘制的温度依据无卤无磷的树脂组合物胶液所采用的溶剂的沸 点来选择, 一般为大于溶剂沸点的 20〜80°C, 优选 80〜250°C, 所述烘制的时间 为 〜 30min。
本发明提供的粘结片具有高耐热性, 高可靠性, 高玻璃转变温度, 难燃性, 低吸水率, 低电介质损耗和低热膨胀系数等特性。 本发明目的之三所述的金属层压板, 包括层压板及压覆于层压板的一侧或 两侧的金属箔, 所述层压板包括数片相贴合的目的之二所述的粘结片, 所述粘 粘片由增强材料及浸润于增强材料上的基体材料组成, 所述基体材料为目的之 一所述的无卤无磷阻燃树脂组合物。
层压板是层压制品的一种, 是由两层或多层浸有树脂的纤维或织物 (即预 浸料), 经叠合、 热压结合成的整体。 覆铜箔层压板是在普通层压板的单面或双 面的覆铜箔得到的。
本发明所述覆铜箔层压板的制备方法, 本领域技术人员可以参考现有的覆 铜箔层压板的制备方法, 本发明不做具体限定, 典型但非限制性的所述覆铜箔 层压板的制备方法包括如下步骤:
裁切粘结片至相应尺寸, 并将数张裁切后的粘结片整齐叠加; 然后在相叠 合的粘结片的上侧和 /或下侧叠合一张铜箔; 最后将叠合好的覆铜箔的粘结片进 行热压成型压制, 制得覆铜箔层压板。
优选地, 本发明所述金属箔为铜箔, 制备得到的金属箔层压板为覆铜箔层 其中热压成型在层压设备中进行, 热压成型优选采用阶梯式压制法 (即分 步升温及升压法) 进行压制。 所述阶梯式压制法的具体操作条件优选为:
温度梯度为① 15min内从室温升至 150°C, 保持 30min; ②在 5min内升至 180°C保持 2h; ③ 30min内降温至室温;
压力梯度为① lmin从零升至 0.6MPa, 保压 30min; ② lmin升至 l.OMPa, 保压 2.5h;
后处理条件为 200〜245°C保持 1〜5小时。
本发明提供的覆铜箔层压板具有高耐热性, 高可靠性, 高玻璃转变温度, 难燃性, 低吸水率, 低电介质损耗, 低热膨胀系数, 以及良好的加工性能。 与现有技术相比, 本发明具有如下有益效果:
( 1 ) 本发明通过在无^无磷阻燃树脂组合物中添加腈基树脂, 实现了提高 树脂阻燃性、 耐高温性和介电性能的目的; 通过辅以无卤环氧树脂和氰酸酯树 脂克服了腈基树脂韧性不足、 机械加工性差的缺点, 并改善了树脂的吸水性; 获得了韧性、 机械加工性和吸水性均表现优异的 UL-V0级的绿色环保无卤无磷 阻燃树脂组合物;
(2) 本发明提供的粘结片、 覆铜箔层压板具有高耐热性、 高可靠性、 高玻 璃转变温度、 低吸水率、 低电介质损耗和低热膨胀系数, 难燃达到 UL-V0级的 阻燃效果, 并具有良好的加工性能。
具体实施方式
为更好地说明本发明, 便于理解本发明的技术方案, 本发明的典型但非限 制性的实施例如下:
在所述实施例和对比例中, 如无特别说明, 其份代表重量份, 其%代表"重 量%"。
实施例 1〜10提供的树脂组合物的配方见表 1。
表 1 实施例 1〜10提供的树脂组合物的配方 组分 实施例
1 2 3 4 5 6 7 8 9 10 双酚 A 60 一 一 80 60 60 60 60 50 一 无 卤
DCPD 一 60
环 氧
联苯型 80 树脂
双酚 F 一 一 60 一 一 一 一 一 一 一 腈基树脂 25 30 15 30 20 25 25 25 30 10 苯 并 双酚 F 亚睦 双酚 A 氰酸酯树脂 10 15 20 20 5 10 10 10 20 5 双氰胺 5 一 一 2 5 5 5 一 一 一 线 性 酚 10 8 12 50 醛
固 化
二氨 基 8 8 8 10 剂
二苯砜 含氮 酚 35 20 醛 氢氧化铝 10 10 10 10 10 10 10 10 30 5 二氧化硅 10 10 10 10 10 10 10 10 30 5 氢氧化镁 10 10 10 10 10 10 10 10 40 0
2-甲基咪唑 0.10 0.15 0.15 0.15 0.20 0.20 一 0.10 0.10 0.10 甲氧基硅烷偶联 一 一 一 一 一 0.50 一 一 0.50 0.50 剂
紫外线吸收剂 0.2 0.2 0.2 丁酮 适 适 适 适 适 适 适 适 适 适 里 里 里 里 里 里 里 里 里 里 丙二醇甲醚 适 适 适 适 适 适 适 适 适 适 里 里 里 里 里 里 里 里 里 里 固含量 65% 65% 65% 65% 65% 65% 65% 65% 75% 65% 对比例 1〜7提供的树脂组合物的配方见表 2
表 2 对比例 1〜7提供的树脂组合物的配方
Figure imgf000014_0001
含氮酚醛 一 10
氢氧化铝 10 10 10 10 10 10 10 二氧化硅 10 10 10 10 10 10 10 氢氧化镁 10 10 10 10 10 10 10
2-甲基咪唑 0.20 0.20 0.15 0.15 0.15 0.15 0.15 甲氧基硅烷偶联剂
紫外线吸收剂
丁酮 适量 适量 适量 适量 适量 适量 适量 丙二醇甲醚 适量 适量 适量 适量 适量 适量 适量 固含量 65% 65% 65% 65% 65% 65% 65% 在表 1和表 2中,双酚 A为双酚 A型环氧树脂, 豪斯麦 Huntsman的 8093, 环氧当量 480g/mol;
DCPD为双环戊二烯环氧树脂, 日本 DIC的 HP-7200H, 环氧当量 890; 联苯型为联苯型环氧树脂, SHIN-A的 SE-5000, 环氧当量 256 g/mol;
双酚 F为双酚 F环氧树脂, 上海势越的 KF21 , 环氧当量 542 g/mol;
腈基树脂参照 CN102976972所述腈基树脂单体 (即含苯并恶嗪环的四邻苯 二甲腈树脂单体) 的方法制备得到, 具体结构为:
Figure imgf000015_0001
氰酸酯树脂为双酚 A氰酸酯树脂, 上海慧峰的型号 HF-10;
双氰胺, 购自宁夏大荣;
线性酚醛, 为购自韩国 MOMENTIVE的 2812, 羟基当量 105GEQ;
二氨基二苯砜, 购自台湾六和化工股份;
含氮酚醛为购自晋一化工的 A-125, 羟基当量为 125g/mol;
氢氧化铝, 平均料径为 1〜5μηι, 纯度 99%以上;
二氧化硅, 平均料径为 1〜3μηι, 纯度 99%以上;
氢氧化镁, 平均料径为 1〜3μηι, 纯度 99%以上;
2-甲基咪唑, 购自巴斯夫;
甲氧基硅烷偶联剂, Ζ-6040, 购自道康宁;
紫外线吸收剂, UV-531 , 购自襄阳市精译成精细化工;
丁酮, 化学纯;
丙二醇甲醚, 化学纯。
实施例 1〜5和对比例 1、 2提供的树脂组合物的制备方法为:
将配方量的各组分混合加入反应釜中, 并用丁酮稀释至指定固含量, 搅拌 均匀得到无^无磷阻燃树脂组合物的胶液。 性能测试:
将实施例 1〜5和对比例 1〜7提供的树脂组合物, 按照如下方法制备层压板, 并对制备得到的粘结片进行性能测试。
所述粘结片的制备方法包括:
将无卤无磷阻燃树脂组合物的胶液含浸玻璃纤维布, 并进行叠加获得叠层 的含浸胶液的玻璃纤维布, 之后于 250°C下加热、 加压 3h, 得到无卤无磷阻燃 树脂组合物复合材料。 性能测试的项目及具体方法为:
( 1 ) 玻璃化转变温度 (Tg):
根据差示扫描量热法, 按照 IPC-TM-650中 2.4.25所规定的 DSC方法进行
(2) 剥离强度:
按照 IPC-TM-650中 2.4.8所规定的方法中 "热应力" 的实验条件, 测试金 属盖层的剥离强度。
(3 ) 燃烧性:
依据 UL94法垂直燃烧法测定。
(4) 热分层时间 T-288:
按照 IPC-TM-650中 2.4.24.1所规定的方法进行测定。
(5 ) 热膨胀系数 Z轴 CTE (TMA):
按照 IPC-TM-650中 2.4.24所规定的方法进行测定。
(6) 热分解温度 Td:
按照 IPC-TM-650中 2.4.26规定的方法进行测定。
(7) 吸水性:
按照 IPC-TM-650中的 2.6.2.1所规定的方法进行测定。
(8 ) 介质损耗角正切:
根据使用条状线的共振法, 按照 IPC-TM-650 中 2.5.5.9 规定的方法测定 1GHz下的介质损耗角正切。
(9) 冲孔性 将 1.6mm厚的基材放于冲模器上进行冲孔, 以肉眼观察孔边情况: (1^ )孔 边无白圈, 用符号〇表示; (h2) 空边有白圈, 用符号 Δ表示; (h3) 孔边开裂, 用符号 X表示。
( 10) 卤素含量
按照 IPC-TM-650中 2.3.41的方法进行测定。
由实施例 1〜10提供的树脂组合物制备的层压板的性能测试结果如表 3 所 表 3 实施例 1〜10提供的树脂组合物制备的层压板的性能测试结果
Figure imgf000018_0001
Td (TGA, °C )
吸水性 (%) 0.1 0.1 0.11 0.1 0.13 0.1 0.1 0.1 0.1 0.1 介质损耗角正 0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 切 (1GHz) 07 6 8 7 9 7 7 7 8 7 冲孔性 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 卤素含 C1 0.0 0.03 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 里 4
Br 0 0 0 0 0 0 0 0 0 0 由对比例 1〜7提供的树脂组合物制备的层压板的性能测试结果如表 4所示: 表 4对比例 1〜7提供的树脂组合物制备的层压板的性能测试结果
Figure imgf000019_0001
卤素含量 CI 0.05 0.05 0.04 0.04 0.04 0.04 0.04
Br 0 0 0 0 0 0 0 从测试结果可以看出, 本发明通过在无卤无磷阻燃树脂组合物中添加腈基 树脂, 实现了提高树脂阻燃性、 耐高温性和介电性能的目的; 通过辅以无卤环 氧树脂和氰酸酯树脂克服了腈基树脂韧性不足、 机械加工性差的缺点, 并改善 了树脂的吸水性; 获得了韧性、 机械加工性和吸水性均表现优异的 UL-V0级的 绿色环保无^无磷阻燃树脂组合物; 另外, 本发明的树脂组合物不含^素和磷 元素, 阻燃性达到 UL94-V0级; 由其得到的半固化片和覆铜箔层压板, 具有高 耐热、 高可靠性、 高玻璃化转变温度 (Tg)、 难燃性、 低吸水率、 低介电损耗及 低膨胀系数, 并具有良好的加工性能。
应该注意到并理解, 在不脱离后附的权利要求所要求的本发明的精神和范 围的情况下, 能够对上述详细描述的本发明做出各种修改和改进。 因此, 要求 保护的技术方案的范围不受所给出的任何特定示范教导的限制。
申请人声明, 本发明通过上述实施例来说明本发明的详细方法, 但本发明 并不局限于上述详细方法, 即不意味着本发明必须依赖上述详细方法才能实施。 所属技术领域的技术人员应该明了, 对本发明的任何改进, 对本发明产品各原 料的等效替换及辅助成分的添加、 具体方式的选择等, 均落在本发明的保护范 围和公开范围之内。

Claims

WO 2015/154315 权 利 要 求 书 PCT/CN2014/076015
1、 一种无卤无磷阻燃树脂组合物, 其特征在于, 所述树脂组合物由组成物 和溶剂组成; 所述组成物按重量份数包括如下组分:
无卤环氧 脂: 50〜80份;
腈基树脂: 10〜30份;
氰酸酯树脂: 5〜20份;
固化剂: 15〜40份;
填料: 10〜100份;
其中,组成物溶于溶剂,并且组成物占总重的重量百分比为 65〜75wt%之间。
2、如权利要求 1所述的组合物,其特征在于,所述无卤环氧树脂的结构为:
O
Ar十。—CH2-HC CH2 )
、 ,
其中, Ar选自如下结构中的任意 1种:
Figure imgf000021_0001
优选地, 所述无卤环氧树脂的环氧当量为 200〜2000。
3、 如权利要求 1或 2所述的组合物, 其特征在于, 所述腈基树脂为含有
Figure imgf000022_0001
Figure imgf000022_0002
4、 如权利要求 1〜3之一所述的组合物, 其特征在于, 所述氰酸酯树脂选自 双酚 Α型氰酸酯树脂、 双酚 F型氰酸酯树脂、 双环戊二烯型氰酸酯树脂、 酚醛 型氰酸酯树脂、 四甲基双酚 F型氰酸酯树脂、 双酚 M型氰酸酯树脂、 双酚 E型 氰酸酯树脂、 及所述氰酸酯树脂预聚体中的任意 1种或至少 2种的组合。
5、 如权利要求 1〜4之一所述的组合物, 其特征在于, 所述固化剂选自双氰 胺、 芳香胺、 酸酐、 酚类固化剂、 异氰尿酸三烯酯或线性酚醛中的任意 1 种或 至少 2种的组合;
优选地, 所述填料选自氢氧化铝、 二氧化硅、 氢氧化镁、 高岭土、 水滑石 中的任意 1种或至少 2种的组合。
6、 如权利要求 1〜5之一所述的组合物, 其特征在于, 所述溶剂选自酮类溶 剂、 烃类溶剂、 醇类溶剂、 醚类溶剂、 酯类溶剂或非质子溶剂中的任意 1 种或 至少 2种的组合; 所述酮类溶剂优选自丙酮、 甲基乙基酮或甲基异丁基酮中的 任意 1种或至少 2种的组合; 所述烃类溶剂优选甲苯和 /或二甲苯; 所述醇类溶 剂优选自甲醇、 乙醇、 或正丙醇中的任意 1种或至少 2种的组合; 所述醚类溶 剂优选乙二醇单甲醚和 /或丙二醇单甲醚; 所述酯类溶剂优选丙二醇甲醚醋酸酯 和 /或乙酸乙酯; 所述非质子溶剂优选 Ν,Ν-二甲基甲酰胺和 /或 Ν,Ν-二乙基甲酰 胺。
7、 如权利要求 1〜6 之一所述的组合物, 其特征在于, 所述组合物还包括 0.01〜1.0重量份的固化促进剂; 优选地, 所述固化促进剂选自三级胺、 三级磷、 季胺盐、 季磷盐或咪唑化合物中的任意 1种或至少 2种的组合。
8、 如权利要求 1〜7之一所述的组合物, 其特征在于, 所述树脂组合物由组 成物和溶剂组成; 所述组成物按重量份数包括如下组分:
无卤环氧树脂: 50〜80份;
腈基树脂: 10〜30份;
氰酸酯树脂: 5〜20份;
固化剂: 15〜40份;
填料: 10〜100份;
固化促进剂: 0.01〜1.0份;
其中, 组成物溶于溶剂, 并且其占总重的重量百分比为 65%〜75%之间。
9、 一种粘结片, 由增强材料及浸润于增强材料上的基体材料组成, 其特征 在于, 所述基体材料为权利要求 1〜8之一所述的无卤无磷阻燃树脂组合物。
10、 一种金属箔层压板, 包括层压板及压覆于层压板的一侧或两侧的金属 箔, 所述层压板包括数片相贴合的粘结片, 其特征在于, 所述粘粘片由增强材 料及浸润于增强材料上的基体材料组成, 所述基体材料为权利要求 1〜8之一所 述的无 ^无磷阻燃树脂组合物;
优选地, 所述金属箔为铜箔。
PCT/CN2014/076015 2014-04-11 2014-04-23 一种无卤无磷阻燃树脂组合物 WO2015154315A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410145375.7 2014-04-11
CN201410145375.7A CN103881309B (zh) 2014-04-11 2014-04-11 一种无卤无磷阻燃树脂组合物

Publications (1)

Publication Number Publication Date
WO2015154315A1 true WO2015154315A1 (zh) 2015-10-15

Family

ID=50950457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076015 WO2015154315A1 (zh) 2014-04-11 2014-04-23 一种无卤无磷阻燃树脂组合物

Country Status (2)

Country Link
CN (1) CN103881309B (zh)
WO (1) WO2015154315A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105111737B (zh) * 2015-09-28 2018-04-03 北京化工大学 高耐热阻燃树脂基体复合材料及其制备方法
KR102053093B1 (ko) * 2015-12-02 2019-12-06 주식회사 엘지화학 프탈로니트릴 화합물
KR101738968B1 (ko) * 2016-09-23 2017-05-23 주식회사 신아티앤씨 에폭시용 경화제 및 이의 제조방법
KR102046576B1 (ko) 2017-05-18 2019-11-21 주식회사 엘지화학 저마찰 중합성 조성물
CN112538278B (zh) * 2020-12-11 2023-02-03 惠州市宁泰林环境科技有限公司 一种树脂玻纤防火阻燃材料及其制备方法
CN116200095B (zh) * 2023-02-23 2024-05-10 海隆石油产品技术服务(上海)有限公司 一种超深油气井用防腐涂层的制备
CN116333491B (zh) * 2023-05-26 2023-08-04 汕头超声覆铜板科技有限公司 一种适用于高速通信的无卤树脂组合物及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276961A (zh) * 2011-07-22 2011-12-14 苏州生益科技有限公司 无卤无磷环氧树脂组合物及使用其制作的半固化片及层压板
CN102976972A (zh) * 2012-12-03 2013-03-20 电子科技大学 一种腈基树脂单体和聚合物及其制备方法
CN103265810A (zh) * 2013-05-29 2013-08-28 苏州生益科技有限公司 一种用于高频高速基板的树脂组合物及使用其制作的半固化片及层压板

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100506908C (zh) * 2004-03-02 2009-07-01 东丽株式会社 纤维增强复合材料用环氧树脂组合物、预浸料坯和纤维增强复合材料

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102276961A (zh) * 2011-07-22 2011-12-14 苏州生益科技有限公司 无卤无磷环氧树脂组合物及使用其制作的半固化片及层压板
CN102976972A (zh) * 2012-12-03 2013-03-20 电子科技大学 一种腈基树脂单体和聚合物及其制备方法
CN103265810A (zh) * 2013-05-29 2013-08-28 苏州生益科技有限公司 一种用于高频高速基板的树脂组合物及使用其制作的半固化片及层压板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319406B2 (en) * 2017-11-14 2022-05-03 Eneos Corporation Prepreg, fiber-reinforced composite material, and molded article

Also Published As

Publication number Publication date
CN103881309B (zh) 2017-05-24
CN103881309A (zh) 2014-06-25

Similar Documents

Publication Publication Date Title
KR101814322B1 (ko) 무할로겐 난연형 수지 조성물
WO2015154315A1 (zh) 一种无卤无磷阻燃树脂组合物
TWI638001B (zh) Thermosetting resin composition and use thereof
EP3053963B1 (en) Halogen-free resin composition and uses thereof
KR100705269B1 (ko) 비할로겐 난연성 에폭시 수지 조성물, 이를 이용한프리프레그 및 동박 적층판
JP6381802B2 (ja) ノンハロゲン樹脂組成物、及びそれを用いて製造されたプリプレグと積層板
EP2770025B1 (en) Halogen-free low-dielectric resin composition, and prepreg and copper foil laminate made by using same
TWI527855B (zh) A halogen-free resin composition, and a laminate for prepreg and printed circuit board using the same
US20150247015A1 (en) Thermosetting resin composition and its usage
TWI628223B (zh) 一種含有苯並噁嗪的樹脂組合物的製備方法及由其製成的預浸料和層壓板
WO2012083728A1 (zh) 无卤树脂组合物及使用其的无卤覆铜板的制作方法
WO2012083727A1 (zh) 无卤高tg树脂组合物及用其制成的预浸料与层压板
WO2015154314A1 (zh) 一种热固性树脂组合物
WO2015188377A1 (zh) 一种苯氧基环三磷腈活性酯、无卤树脂组合物及其用途
WO2016101539A1 (zh) 一种环氧树脂组合物以及使用它的预浸料和层压板
WO2012083725A1 (zh) 无卤阻燃性树脂组合物及其应用
EP3392286B1 (en) Epoxy resin composition and prepreg, laminated board and printed-circuit board comprising same
WO2015184652A1 (zh) 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
CN109608828B (zh) 一种热固性树脂组合物及使用其的预浸料、层压板和覆金属箔层压板
JP2004175925A (ja) プリプレグ及び積層板
TW201823359A (zh) 一種無鹵阻燃型樹脂組合物及其製成的預浸料和覆銅箔層壓板
US9963590B2 (en) Halogen-free resin composition, and a prepreg and a laminate used for printed circuit using the same
KR20160097278A (ko) 열경화성 에폭시 수지 조성물 및 그 용도
KR101738292B1 (ko) 시아네이트 수지 조성물 및 그 용도
WO2013149386A1 (zh) 环氧树脂组合物及使用其制作的半固化片与覆铜箔层压板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14889130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 14889130

Country of ref document: EP

Kind code of ref document: A1