WO2012083725A1 - 无卤阻燃性树脂组合物及其应用 - Google Patents

无卤阻燃性树脂组合物及其应用 Download PDF

Info

Publication number
WO2012083725A1
WO2012083725A1 PCT/CN2011/079245 CN2011079245W WO2012083725A1 WO 2012083725 A1 WO2012083725 A1 WO 2012083725A1 CN 2011079245 W CN2011079245 W CN 2011079245W WO 2012083725 A1 WO2012083725 A1 WO 2012083725A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
halogen
resin
flame
Prior art date
Application number
PCT/CN2011/079245
Other languages
English (en)
French (fr)
Inventor
陈勇
苏民社
Original Assignee
广东生益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东生益科技股份有限公司 filed Critical 广东生益科技股份有限公司
Publication of WO2012083725A1 publication Critical patent/WO2012083725A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • C08K5/5333Esters of phosphonic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L85/00Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers
    • C08L85/02Compositions of macromolecular compounds obtained by reactions forming a linkage in the main chain of the macromolecule containing atoms other than silicon, sulfur, nitrogen, oxygen and carbon; Compositions of derivatives of such polymers containing phosphorus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/012Flame-retardant; Preventing of inflammation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern
    • H05K3/4655Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern by using a laminate characterized by the insulating layer

Definitions

  • Halogen-free flame retardant resin composition and application thereof
  • the present invention relates to a resin composition, and more particularly to a composition containing no flame retardant resin and use thereof. Background technique
  • Phosphorus is widely used in nature as a non-flame retardant to meet environmentally friendly requirements.
  • a phosphorus-containing epoxy resin is used, and a dicyandiamide or a phenolic resin is used as a curing agent to produce a halogen-free flame-retardant printed circuit board material.
  • a plate made using dicyandiamide as a curing agent is inferior in heat resistance; a cured sheet produced using a phenol resin as a curing agent has a weak surface and a brittle weakness of the sheet.
  • reactive polyphosphonates are of interest. The reactive phosphonate-cured epoxy resin is inserted into the phosphate group P-0-C through an epoxy group to obtain a crosslinked network structure to obtain better heat resistance.
  • World Patent No. WO 2003/029258 describes a flame retardant epoxy resin composition in which an epoxy resin is used in the presence of a methylimidazole curing catalyst and a hydroxyl terminated oligomeric phosphonate can be included as a curing agent and a flame retardant. Cured. However, this application generally states that such a phosphonate content needs to be in the vicinity of about 20-30% by weight of the epoxy resin, or a higher level of acceptable results to achieve a 94V-0 rating. In Example 3 of the present invention, only 5 wt (m-phenylene phosphonate) can be used to achieve 94 V-0. At the same time, the use of fillers is not mentioned in such compositions. In the face of the concept of environmental protection, the increase in lead-free soldering temperature will face the risk of failure.
  • Cyanate esters have been widely studied and studied for their excellent heat resistance for prepregs or printed circuit boards, but with the demand for environmental protection, lead-free solders have become popular, and solder temperatures have been greatly improved. It is necessary to consider improving the heat and humidity resistance of cyanate esters in order to pass the lead-free process The test.
  • Chinese patents CN1684995A, CN1962755A use epoxy resin containing biphenyl structure to modify cyanate ester to obtain heat and moisture resistance improvement, and excellent dielectric properties at high frequency, and dielectric properties become smaller with temperature change, and can exhibit excellent stability.
  • a resin composition for printed wiring
  • a bromine-containing flame retardant such as 1,2-di-A-4-(1,2-dibromoethyl)cyclohexane is used, which is generated by thermal decomposition due to the presence of bromine.
  • the problem of corrosive bromine and hydrogen bromide cannot meet the requirements of halogen-free environmental protection.
  • Chinese Patent No. CN101024715A discloses a resin composition which realizes high-multilayer and high-frequency printed wiring boards having excellent heat and humidity resistance, lead-free reflow, dimensional stability and electrical characteristics.
  • the composition consists of cyanate ester, epoxy resin, and filler, but this system uses bromine-containing bisphenol A type epoxy resin for flame retardation. Corrosive bromine and bromine are generated due to thermal decomposition of bromine.
  • the problem of hydrogen production cannot meet the requirements of halogen-free environmental protection. Summary of the invention
  • An object of the present invention is to provide a flame-retardant resin composition which is environmentally friendly, has heat resistance, wettability, moisture resistance, and moist heat resistance, and can be used for a resin sheet or a resin composite metal foil. , prepregs, laminates, and printed circuit boards.
  • Another object of the present invention is to provide an application of the above-mentioned flame-retardant resin composition, which is applied to a prepreg without a flame-retardant resin composition, which has no environmental protection requirements, and has heat resistance, solder resistance, and moisture resistance. And the characteristics of resistance to heat and humidity.
  • Still another object of the present invention is to provide an application of the above-mentioned flame-retardant resin composition, and a laminate for a printed circuit using the halogen-free flame-retardant resin composition, which meets halogen-free environmental protection requirements and has heat resistance. It is suitable for printed circuit board materials due to its characteristics of solder dipping resistance, moisture resistance and heat and humidity resistance.
  • the present invention provides a flame-retardant resin composition
  • a flame-retardant resin composition comprising, by weight of the total components of the solid component, components and parts by weight thereof as follows: Bifunctional or polyfunctional epoxy-free 20 to 70 weight Parts, reactive polyphosphonate 5 to 40 parts by weight, and cyanate resin 5 to 50 parts by weight.
  • the bifunctional or polyfunctional epoxy resin is bisphenol A epoxy resin, bisphenol F epoxy resin, bisphenol S type, biphenyl type epoxy resin, naphthalene epoxy resin, alicyclic ring Group epoxy resin, phenol-phenolic epoxy, o-cresol-phenolic epoxy, bisphenol A-phenolic epoxy, resorcinol epoxy resin, polyethylene glycol epoxy resin, three Functional group epoxy resin, tetrafunctional epoxy resin, epoxy resin of cyclopentadiene or dicyclodiene and phenol polycondensation resin, isocyanate modified epoxy resin, glycidylamine type epoxy resin, hydantoin epoxy Resin, terpene-modified epoxy resin, 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide modified epoxy resin, 10-(2,5-dihydroxybenzene Base, - 9, 10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide modified epoxy resin, and One or more of 10-(2,
  • the reactive polyphosphonate is poly(m-phenylene phosphonate) and its structural formula is as follows:
  • the cyanate resin comprises a cyanate resin having at least 2 cyanate groups in one molecule, which is 2,2-di(cyanate phenyl)propane, bis(cyanate phenyl) Ethane, bis(cyanate phenyl)methane, bis(4-cyanate-3,5-dimethylphenyl)methane, bis(4-cyanate phenyl) sulfide, One or two or more kinds of phenol novolac type cyanate, cyanate ester of phenol and dicyclopentadiene copolymer, and prepolymers thereof.
  • the filler is: phosphazene flame retardant, triphenyl phosphate, bisphenol A bis(diphenyl phosphate), crystalline silica, molten silica, spherical One or more of silicon dioxide, boric acid, aluminum hydroxide, magnesium hydroxide, and antimony trioxide.
  • the present invention also provides a prepreg using the above non-flame retardant resin composition, which comprises a binder and a flame-retardant resin composition which is adhered to the binder after being impregnated and dried.
  • the present invention provides a laminate for a printed circuit using the above halogen-free flame-retardant resin composition, the laminate for a printed circuit comprising a plurality of laminated prepregs, and a prepreg disposed on the laminate.
  • the prepreg prepared by the flame-retardant resin composition of the present invention is very smooth compared with the prepreg prepared by the phenolic curing phosphorus-containing epoxy resin; 2.
  • the phosphorus-containing epoxy is cured with dicyandiamide
  • the heat resistance of the resin printed circuit board is better than that of the resin; 3.
  • the reactive poly(m-phenylphenylphosphonate) and epoxy resin used in the present invention are cured, the epoxy group is inserted and inserted.
  • Phosphate group P-0-C which forms a crosslinked network structure to obtain excellent heat resistance
  • poly(methylphosphonate m-phenylene ester) has -OH in the terminal group, and the group also reacts with cyanate Forming a network structure, reducing the water absorption of the cyanate ester, forming an interpenetrating network structure; 4.
  • the introduction of the cyanate ester can simultaneously react with the epoxy resin and the poly(m-phenylphenylphosphonate) to enhance the heat resistance of the composition. Sex.
  • the nitrogen in the cyanate ester and the phosphorus in the poly(m-phenylene phosphonate) achieve synergistic resistance
  • the burning effect is beneficial to the improvement of flame retardancy;
  • the cyanate resin itself has excellent dielectric properties and good process performance, heat resistance and heat and humidity resistance, and the introduction of cyanate ester is beneficial to the system to obtain excellent heat resistance.
  • Epoxy resin used in the invention On the one hand, the introduction of phosphorus-containing epoxy resin can appropriately reduce the amount of poly(m-phenylphosphonate), on the other hand, epoxy The addition of the resin facilitates the improvement of the processability of the system and is easily tested by the lead-free soldering process.
  • the prepreg and the printed circuit board laminate produced by using the halogen-free flame-retardant resin composition of the present invention have heat resistance, dipping resistance, moisture resistance, and moist heat resistance, and are suitable for use in a printed circuit.
  • Substrate Material An object of the present invention is to provide a flame-retardant resin composition which is environmentally friendly, has heat resistance, dipping resistance, moisture resistance, and moist heat resistance, and can be used for resin sheets and resin composites. Fabrication of metal foils, prepregs, laminates, and printed wiring boards. detailed description
  • the present invention provides a flame-retardant resin composition
  • a flame-retardant resin composition comprising, by weight of the total components of the solid component, components and parts by weight thereof: 20-70 parts by weight of a bifunctional or polyfunctional halogen-free epoxy resin, reactivity
  • the polyphosphonate is 5 to 40 parts by weight
  • the cyanate resin is 5 to 50 parts by weight.
  • the bifunctional or polyfunctional epoxy-free resin of the present invention may be mentioned as an epoxy-free resin having more than two or more epoxy groups in one molecular resin, such as bisphenol A type.
  • the reactive polyphosphonate of the present invention is poly(m-phenylene phosphonate).
  • Poly(m-phenylphenylphosphonate) is reactive, and when the epoxy resin is cured, the phosphate group P-0-C is inserted through the epoxy group to form a crosslinked network structure to obtain excellent heat resistance.
  • Poly(methylphosphonate m-phenylene) end group contains -OH, which also reacts with cyanate to form a network junction The structure reduces the water absorption of the cyanate ester and forms an interpenetrating network structure.
  • the poly(methylphosphonium m-phenylene carbonate) of the present invention has a terminal hydroxyl group content of 20 to 100%, preferably a terminal hydroxyl group content of 50 to 100%.
  • the cyanate resin in the flame-retardant resin composition of the present invention can obtain more excellent dielectric properties as well as good process properties, heat resistance, and moist heat resistance.
  • the presence of the cyanate resin can simultaneously enhance the heat resistance of the composition by reacting with the epoxy resin and poly(m-phenylene phosphonate).
  • the nitrogen in the cyanate ester and the phosphorus in the poly(m-phenylene phosphonate) achieve a synergistic flame retardant effect, which contributes to an improvement in flame retardancy.
  • the cyanate resin comprises at least one molecule
  • cyanate ester based cyanate resins examples include, for example, 2,2-di(cyanate phenyl)propane, bis(cyanate phenyl)ethane, and di(cyanate group).
  • a cyanate ester or the like of the pentadiene copolymer may be used in combination of one or two or more kinds of monomers and their prepolymers.
  • the amount thereof is 5 to 50 parts by weight, preferably 5 to 40 parts by weight, in consideration of the glass transition temperature, the dipping resistance, the adhesion of the copper foil, and the balance of the dielectric properties.
  • the flame-retardant resin composition of the present invention further comprises a curing catalyst as a cyanate resin curing catalyst, which may be naphthenic acid, manganese naphthenate, cobalt naphthenate, nickel naphthenate, acetoacetic acid.
  • a curing catalyst as a cyanate resin curing catalyst, which may be naphthenic acid, manganese naphthenate, cobalt naphthenate, nickel naphthenate, acetoacetic acid.
  • An organic catalyst such as cobalt or copper acetyl acetate.
  • examples of the curing auxiliary catalyst include monophenol compounds such as phenol, nonylphenol and p-cumylphenol, and polyphenol compounds such as bisphenol A and phenol phenol resin.
  • the curing catalyst naphthenic acid or manganese naphthenate is preferred from the viewpoints of dielectric properties, heat resistance, curing reaction speed and gel stability, and naphthenic acid is further preferred.
  • the curing catalyst is used in an amount of 0.01 to 2.00% by weight based on the cyanate resin.
  • the flame-retardant resin composition of the present invention further comprises a filler comprising: a phosphazene-based flame retardant, a phosphate ester such as triphenyl phosphate and bisphenol A bis(diphenyl phosphate); Inorganic fillers such as silicon, molten silica, spherical silica, boric acid, aluminum hydroxide, magnesium hydroxide and antimony trioxide.
  • the filler may be one or more of the above, and the amount of the filler is 5-25 Parts by weight.
  • the flame retardant resin composition of the present invention may further contain other fillers, and selected fillers may be mentioned as inorganic fillers such as kaolin, hydrotalcite, titanium oxide, calcium silicate, cerium oxide, boron nitride, Glass powder, aluminum nitride compound, silicon nitride, silicon carbide, magnesium oxide, zirconium oxide, mullite, titanium dioxide, potassium titanate, hollow glass microspheres, polytetrafluoroethylene powder, polystyrene powder, etc. Single crystal fibers such as potassium titanate, silicon carbide, silicon nitride, and aluminum oxide, and short glass fibers.
  • the silicon fine powder can be made of spherical silica, fused silica, or crystalline silica.
  • the addition of the filler may be one or a combination of the above, and it is used in an amount of from 0 to 60% by weight based on the flame retardant resin composition.
  • the catalyst includes a tertiary amine, a tertiary phosphine, a quaternary ammonium salt, a quaternary phosphonium salt, an organic metal complex or an imidazole compound.
  • tertiary amines are: triethylamine, tributylamine, dimethylamine ethanol, hydrazine, hydrazine-dimethyl-aminomethylphenol, benzyldimethylamine, etc.; Examples include: triphenylphosphine, etc.; examples of quaternary ammonium salts include: tetramethylammonium bromide, tetramethylammonium chloride, tetramethylammonium iodide, benzyltrimethylammonium chloride, benzyltriethyl Examples of ammonium chloride, cetyltrimethylammonium bromide, etc.; specific examples of the quaternary phosphonium salt include: tetrabutyl chlorinated scale, tetrabutyl brominated scale, tetrabutyl iodinated scale, tetraphenyl chloride Scale, tetraphenyl bromide scale, te
  • the amount of catalyst used depends on the type of epoxy resin, the type of curing agent, and the type of catalyst.
  • the amount of the catalyst used in the present invention is 0.001 to 5.0% by weight, preferably 0.02 to 4.0% by weight, more preferably 0.005 to 3.0% by weight based on the total amount of the flame retardant resin composition. Excessive use of the catalyst (more than 5.0% by weight) will result in an excessively high reactivity of the epoxy resin composition, adversely affecting the formation of by-products and the uniformity of conversion of the curing reaction; if the amount of the catalyst is used in the composition Below 0.005 wt%, the reactivity is too slow, which is not conducive to the preparation of prepreg.
  • One principle of using a catalyst is that the gelation time of the glue should not be less than 120 s.
  • the flame-retardant resin composition of the present invention may be prepared by adding a solvent to form a glue.
  • the solvent which can be used include ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; hydrocarbons such as toluene and xylene; alcohols such as methanol, ethanol, primary alcohol; ethers such as ethylene glycol Methyl ether, propylene glycol monomethyl ether; esters such as propylene glycol methyl ether acetate, ethyl acetate; aprotic solvents such as N, N-dimethyl
  • the amide, N, N-diethylformamide, one or more of the above solvents may be used arbitrarily in combination with the other.
  • the present invention also provides a prepreg according to the flame-retardant resin composition, which comprises a binder and a flame-retardant resin composition which is adhered to the binder after being impregnated and dried.
  • the binder can be an inorganic or organic material.
  • the present invention also provides a printed circuit board laminate using the flame-retardant resin composition, comprising a plurality of laminated prepregs, and a single-sided or double-sided metal provided on the laminated prepreg.
  • the foil, each of the cured sheets includes a base material and a halogen-free flame-retardant resin composition attached to the base material after being impregnated and dried.
  • the metal foil is copper, brass, aluminum, nickel, and alloys or composite metal foils of these metals.
  • the flame-retardant resin composition of the present invention can also be used for producing a resin sheet, a resin composite metal copper foil, a laminate, and a printed wiring board.
  • the method for producing a resin sheet of the halogen-free flame-retardant resin composition of the present invention is as follows, but the method for preparing the resin sheet is not limited thereto.
  • the above non-flame retardant resin composition is applied to a carrier film which may be a polyester film or a polyimide film and has a thickness of 5 to 150 ⁇ m. Then, it is heated at 100 to 250 ° C for 10 seconds to 30 minutes to form a sheet, and the thickness of the formed resin sheet is 5 to 100 ⁇ m.
  • the method for producing a resin composite metal copper foil (RCC) of the halogen-free flame-retardant resin composition of the present invention is as follows.
  • the method for producing the resin composite metal copper foil is not limited thereto.
  • the metal foil copper, brass, aluminum, nickel, and an alloy of these metals or a composite metal foil having a thickness of 5 to 150 ⁇ m can be used.
  • the epoxy resin composition is glued onto the metal foil by a manual or mechanical roller coating device, and then the metal foil coated with the flame retardant resin composition is heated and dried to make a halogen-free flame retardant.
  • the resin composition is in a semi-cured state (B-Stage), where the heating temperature is 100-250 ° C, the heating time is 10 seconds - 30 minutes, and the resin layer of the finally formed resin composite metal is 1-150 ⁇ .
  • the resin composite metal copper foil can be used as a inner layer or an outer layer of a printed wiring board to laminate a printed wiring board.
  • the method of producing a prepreg using the halogen-free flame-retardant resin composition of the present invention is as follows, but the method of producing the prepreg is not limited thereto.
  • the halogen-free flame-retardant resin composition glue (here, solvent-adjusted viscosity is used) is impregnated on the base, and the prepreg impregnated with the flame-retardant resin composition is heated and dried to make the prepreg
  • the non-flame retardant resin composition is in a semi-cured stage (B-Stage), and a prepreg is obtained.
  • the binder used therein may be an inorganic or organic material.
  • the inorganic material examples include woven fabrics or nonwoven fabrics or papers of glass fibers, carbon fibers, boron fibers, metals, and the like.
  • the glass fiber cloth or the non-woven fabric can be made of E-glass, Q-type cloth, NE cloth, D-type cloth, S-type cloth, high-silicone cloth, and the like.
  • Organic fibers such as polyester, polyamine, polyacrylic acid, polyimide, aramid, polytetrafluoroethylene, syndiotactic polystyrene, etc. Weaving or non-woven or paper.
  • the binder is not limited to this.
  • the heating temperature for the prepreg sheet is
  • the resin content in the prepreg is between 25 and 70%.
  • the laminate, the copper clad laminate, and the printed wiring board can be produced using the above-described resin sheet, resin composite metal foil, and prepreg.
  • the copper foil laminate is taken as an example to illustrate the production method, but is not limited thereto.
  • a copper-clad laminate is produced using a prepreg, one or more of the prepregs are cut into a certain size, laminated, and then fed into a laminating apparatus for lamination, while the metal foil is placed on one side or both sides of the prepreg, Hot press forming will be semi-cured to form a metal foil laminate.
  • the metal foil copper, brass, aluminum, nickel, and an alloy of these metals or a composite metal foil can be used.
  • suitable lamination curing conditions should be selected according to the actual conditions of the epoxy resin composition. If the pressing pressure is too low, there will be voids in the laminate, and the electrical properties will be lowered. If the lamination pressure is too large, excessive internal stress will be present in the laminate, so that the dimensional stability of the laminate can be lowered.
  • the molding pressure is met to compress the sheet to achieve the desired requirements.
  • the general guiding principle for conventional pressed laminates is that the lamination temperature is 130 to 250 ° C, the pressure is 3 to 50 kgf/cm 2 , and the hot pressing time is 60 to 240 minutes.
  • a printed wiring board or a complicated multilayer circuit board can be produced by an addition or subtraction method using a resin sheet, a resin composite metal foil, a prepreg, or a metal-clad laminate.
  • the flame-retardant resin composition of the present invention can be used for making a paste in addition to a resin sheet, a resin composite metal copper foil, a prepreg, a laminate, a copper-clad laminate, and a printed wiring board.
  • Adhesives, coatings, composites can also be used in the construction, aerospace, marine, automotive industries.
  • An eight-sided prepreg and two sheets of one ounce of electrolytic copper foil were laminated together and laminated by a hot press to obtain a double-sided copper clad laminate.
  • the lamination conditions are as follows: 1. When the material temperature is 80-120 degrees, the heating rate is controlled at 1.0-3.0 degrees/min; 2. The pressure is set to 20kg/cm 2 ; 3. The curing temperature is 190 degrees, and the temperature is maintained at 90. minute. The corresponding performance is shown in Table 1.
  • An eight-sided prepreg and two sheets of one ounce of electrolytic copper foil were laminated together and laminated by a hot press to obtain a double-sided copper clad laminate.
  • the lamination conditions are as follows: 1. When the material temperature is 80-120 degrees, the heating rate is controlled at 1.0-3.0 degrees/min; 2. The pressure is set to 20kg/cm 2 ; 3. The curing temperature is 190 degrees, and the temperature is maintained at 90. minute. The corresponding performance is shown in Table 1.
  • XZ92530 is an epoxy resin of DOW
  • N695 is an o-methyl phenolic epoxy resin of DIC
  • PS6313 is a nitrogen-containing phenolic acid resin of Japan Qunrong Chemical Industry Co., Ltd.;
  • Phenol type phenolic resin is DIC production grade TD2090;
  • HF-1 is cyanate resin of Shanghai Huifeng Electronics Co., Ltd.;
  • PMP is a poly(m-phenylene phosphonite) produced by ICL-IP. Note 2, the characteristics test method in Table 1 is as follows:
  • Glass transition temperature (Tg) Determined by DSC test according to the DSC test method specified in IPC-TM-650 2.4.25.
  • the copper-clad laminate was immersed in a copper etching solution to remove the surface copper foil evaluation substrate.
  • the substrate is placed in a pressure cooker, and after being treated at 121 ° C, 2 atm for a certain period of time, it is immersed in a 288-degree tin furnace for 20 seconds, and then taken out. If there is no delamination or foaming, the cooking time of the plate in the pressure cooker is extended until the plate is pressed. The stratified foaming occurs, and the cooking time of the layered foamed sheet in the pressure cooker is recorded, which is the limit of the heat and humidity resistance of the sheet.
  • Flammability Measured according to UL94 method.
  • the copper-clad laminates prepared in Examples 1-3 have excellent heat resistance, moist heat resistance, alkali resistance and flame retardancy, and are suitable for use in printed circuit board materials, and compared.
  • the heat resistance and alkali resistance of Example 1 were defective, and the alkali resistance and the prepreg of Comparative Example 2-3 were apparently defective.
  • the heat and humidity resistance of Comparative Example 4 was defective, and it was not suitable for use in a printed circuit board material.
  • the high-frequency circuit substrate of the present invention has more excellent dielectric properties, i.e., has a lower dielectric constant and dielectric loss tangent, and has high frequency performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Reinforced Plastic Materials (AREA)

Description

无卤阻燃性树脂组合物及其应用 技术领域
本发明涉及一种树脂组合物, 尤其涉及含一种无 阻燃性树脂组合物 及其应用。 背景技术
随着电子电气在全球的快速发展, 电子电气产品废弃物以及电子电气 中有毒物质对环境的危害越来越严重。 现有的电子材料为了达到优异的阻 燃性, 通常采用含溴的环氧树脂或含溴的阻燃剂, 然而他们在高温长时间 使用状态下会离解形成溴化氢和溴素, 并有可能产生电线腐蚀造成危险; 此外燃烧过程中会产生大量令人窒息的烟雾, 在燃烧过程中还会产生二恶 英、 二苯并呋喃等致癌物质。 此外处理或回收含溴废料也相当困难。 2006 年 7月 1 日欧盟的两份指令《关于报废电气电子设备指令》 、 《关于在电 气电子设备中限制使用某些有害物质指令》正式实施, 无卤阻燃型印制线 路板基材的开发成为业界的工作重点。
磷元素作为广泛存在于自然界容易获得而被大量用来作为无 阻燃剂 以应对环境友好的要求。 目前使用含磷环氧树脂, 配合双氰胺或酚醛树脂 作为固化剂来制作无卤阻燃型印制线路基板材料。 使用双氰胺作为固化剂 制作的板材其耐热性较差; 使用酚醛树脂作为固化剂制作的固化片存在表 观较差, 板材较脆的弱点。 此外具有反应性的聚膦酸酯被人们关注。 反应 性膦酸酯固化环氧树脂, 通过环氧基团插入磷酸酯基 P-0-C, 获得交联网 络结构而获得较好的耐热性。 世界专利 WO2003/029258 描述了一种阻燃 性环氧树脂组合物, 其中在甲基咪唑固化催化剂存在下使用环氧树脂以及 可包含羟基封端的低聚膦酸酯作为固化剂和阻燃剂进行固化。 但是该申请 一般地说明这样的膦酸酯含量需要在环氧树脂约为 20-30wt%附近, 或者 对于可接受的结果含量更高, 才能达到 94V-0 级 。 本发明专利中实施例 3, 仅使用 5wt (甲基膦酸间亚苯基酯)就可以达到 94V-0级。 同时在 这样的组合物中没有提到使用填料。 面对环保概念的提出, 无铅焊接温度 的提升, 将会面临失效风险。
氰酸酯由于其优秀的耐热性能而被人们广泛关注和研究, 以用于半固 化片或印制线路板, 但是随着环保的要求, 无铅焊料得以流行, 焊料温度 有了很大提升, 这使得需要考虑改善氰酸酯的耐湿热性以期通过无铅工艺 的考验。 中国专利 CN1684995A、 CN1962755A使用含联苯结构的环氧树 脂来改性氰酸酯的获得耐湿热性改善且高频下介电性能优异、 介电特性随 温度变化变小而能体现优异稳定性的印制线路用树脂组合物。 但是为了达 到阻燃的效果, 使用了如 1 , 2-二澳 -4- ( 1 , 2-二溴乙基)环己烷等含溴的 阻燃剂, 由于溴的存在在热分解会产生腐蚀性的溴、 溴化氢的问题, 不能 满足无卤环保要求。 中国专利 CN101024715A揭露了一种实现高多层和高 频率的印制线路板具有优异的耐湿热性、 无铅回流、 尺寸稳定性和电特性 的树脂组合物。 该组合物由氰酸酯、 环氧树脂、 和填料组成, 但是此体系 为了实现阻燃使用了含溴的双酚 A型环氧树脂, 由于溴的存在热分解会产 生腐蚀性的溴、 溴化氢的问题, 不能满足无卤环保要求。 发明内容
本发明的目的在于提供一种无 阻燃性树脂组合物, 无 环保, 具有 耐热性、 耐浸焊性、 耐湿性、 及耐湿热性的特点, 从而可以用于树脂片 材、 树脂复合金属箔、 半固化片、 层压板、 以及印制线路板的制作。
本发明的另一目的在于提供一种上述无 阻燃性树脂组合物的应用, 应用该无 阻燃性树脂组合物的半固化片, 满足无 环保要求, 其具有耐 热性、 耐浸焊性、 耐湿性、 及耐湿热性的特点。
本发明的又一目的在于提供一种上述无 阻燃性树脂组合物的应用, 应用该无卤阻燃性树脂组合物的印制电路用层压板, 满足无卤环保要求, 具有耐热性、 耐浸焊性、 耐湿性、 及耐湿热性的特点, 适合用于印制电路 基板材料。
为实现上述目的, 本发明提供一种无 阻燃性树脂组合物, 按固体组 分总重量份计, 其包括组分及其重量份如下: 双官能或多官能无 环氧树 脂 20~70重量份、 反应性聚膦酸酯 5~40重量份以及氰酸酯树脂 5~50重量 份。
其中, 所述双官能或多官能无 环氧树脂为双酚 A型环氧树脂、 双酚 F型环氧树脂、 双酚 S型、 联苯型环氧树脂、 萘类环氧树脂、 脂环族类环 氧树脂、 苯酚-酚醛型环氧、 邻甲酚-酚醛性环氧、 双酚 A-酚醛型环氧、 间 苯二酚型环氧树脂、 聚乙二醇型环氧树脂、 三官能团环氧树脂、 四官能团 环氧树脂、 环戊二烯或二环二烯与酚类缩聚树脂的环氧树脂、 异氰酸酯改 性的环氧树脂、 缩水甘油胺型环氧树脂, 海因环氧树脂, 经萜烯改性之环 氧树脂, 9, 10-二氢 -9-氧杂 -10-磷杂菲 -10-氧化物改性环氧树脂、 10-(2,5- 二羟基苯基)— 9, 10-二氢 -9-氧杂 -10-磷杂菲 -10-氧化物改性环氧树脂、 及 10- ( 2, 9-二羟基萘基) -9, 10-二氢 -9-氧杂 -10-磷杂菲 -10-氧化物改性环氧 树脂中的一种或多种。
反应性聚膦酸酯为聚(甲基膦酸间亚苯基酯) , 其结构式如下:
Figure imgf000005_0001
其中 m和 n是 0或 1 , 且 p=2~15。
所述氰酸酯树脂包括 1个分子中至少有 2个氰酸酯基的氰酸酯树脂, 其为 2, 2-二(氰酸酯基苯基) 丙烷、 二(氰酸酯基苯基) 乙烷、 二(氰 酸酯基苯基) 甲烷、 二(4-氰酸酯基 -3 , 5-二甲基苯基) 甲烷、 二(4-氰酸 酯基苯基)硫醚、 苯酚酚醛型氰酸酯、 苯酚与双环戊二烯共聚物的氰酸酯 中的一种或两种以上单体和它们的预聚物。
还包含填料 5~25 重量份, 填料为: 膦腈类阻燃剂、 磷酸三苯酯、 双 酚 A双(二苯基磷酸酯) 、 结晶型二氧化硅、 熔融型二氧化硅、 球型二氧 化硅、 硼酸辞、 氢氧化铝、 氢氧化镁和三氧化锑中的一种或多种。
本发明还提供一种应用上述无 阻燃性树脂组合物的半固化片, 该半 固化片包括基料及通过含浸干燥之后附着在基料上的无 阻燃性树脂组合 物。
另外, 本发明还提供一种应用上述无卤阻燃性树脂组合物的印制电路 用层压板, 该印制电路用层压板包括数个叠合的半固化片、 及设于叠合后 的半固化片的单面或双面的金属箔, 每一片半固化片包括基料及通过含浸 干燥之后附着在基料上的无卤阻燃性树脂组合物。
本发明的有益效果: 1、 本发明的无 阻燃性树脂组合物制作的半固 化片与酚醛固化含磷环氧树脂制作的半固化片相比表观非常光滑; 2、 与 双氰胺固化含磷环氧树脂的印制线路基材相比的耐热性能更好; 3、 本发 明使用的反应性聚(甲基膦酸间亚苯基酯)和环氧树脂固化时, 通过环氧 基团插入插入磷酸酯基 P-0-C, 形成交联网络结构获得优异的耐热性; 聚 (甲基膦酸间亚苯基酯) 端基中存在 -OH, 该基团同时还和氰酸酯反应形 成网络结构, 降低氰酸酯吸水性, 形成互穿网络结构; 4、 氰酸酯的引入 可以同时和环氧树脂以及聚(甲基膦酸间亚苯基酯)反应提升组合物的耐 热性。 此外氰酸酯中的氮和聚(甲基膦酸间亚苯基酯) 中的磷达成协同阻 燃效果, 利于阻燃性的提升; 氰酸酯树脂本身有着优异的介电性能以及良 好的工艺性能、 耐热性、 耐湿热性, 氰酸酯的引入有利于体系获得优良的 耐热性、 耐湿热性以及介电性能的; 5、 本发明使用的环氧树脂一方面含 磷环氧树脂的引入可以适当减少聚(甲基膦酸间亚苯基酯) 的用量, 另一 方面环氧树脂的加入有利于提升体系的加工性而容易通过无铅焊接工艺的 考验。 因此, 使用本发明的无卤阻燃性树脂组合物制作的半固化片和印制 电路用层压板, 具有耐热性、 耐浸焊性、 耐湿性、 及耐湿热性的特点, 适 合用于印制电路基板材料本发明的目的在于提供一种无 阻燃性树脂组合 物, 无 环保, 具有耐热性、 耐浸焊性、 耐湿性、 及耐湿热性的特点, 从 而可以用于树脂片材、 树脂复合金属箔、 半固化片、 层压板、 以及印制线 路板的制作。 具体实施方式
本发明提供一种无 阻燃性树脂组合物, 按固体组分总重量份计, 其 包含组分及其重量份为: 双官能或多官能无卤环氧树脂 20~70重量份、 反 应性聚膦酸酯 5~40重量份、 以及氰酸酯树脂 5~50重量份。
本发明所述的双官能或多官能无 环氧树脂, 可以提及的是在 1 个分 子树脂中具有多于两个或两个以上环氧基团的无 环氧树脂, 例如双酚 A 型环氧树脂、 双酚 F型环氧树脂、 双酚 S型、 联苯型环氧树脂、 萘类环氧 树脂、 脂环族类环氧树脂、 苯酚 -酚醛型环氧(筒称 PNE ) 、 邻甲酚 -酚醛 性环氧(筒称 PNE ) 、 双酚 A-酚醛型环氧(筒称 BNE ) 、 间苯二酚型环 氧树脂、 聚乙二醇型环氧树脂、 三官能团环氧树脂、 四官能团环氧树脂、 环戊二烯或二环二烯与酚类缩聚树脂的环氧树脂、 异氰酸酯改性的环氧树 脂、 缩水甘油胺型环氧树脂、 海因环氧树脂、 经萜烯改性的环氧树脂、 9, 10-二氢 -9-氧杂 -10-磷杂菲 -10-氧化物 (筒称 DOPO ) 改性环氧树脂、 10-(2,5-二羟基苯基)- 9 , 10-二氢 -9-氧杂 -10-磷杂菲 -10-氧化物 (筒称 DOPO-HQ ) 改性环氧树脂、 及 10- ( 2, 9-二羟基茶基) -9, 10-二氢 -9-氧 杂 -10-磷杂菲 -10-氧化物 (DOPO-NQ ) 改性环氧树脂。 以上环氧树脂可以 单独或混合几种使用。 所述双官能或多官能无 环氧树脂的用量在 20~70 重量份, 最佳为 20~60重量份。
本发明的反应性聚膦酸酯为聚(甲基膦酸间亚苯基酯) 。 聚(甲基膦 酸间亚苯基酯)具有反应性, 在和环氧树脂固化时, 通过环氧基团插入插 入磷酸酯基 P-0-C, 形成交联网络结构获得优异的耐热性。 聚(甲基膦酸 间亚苯基酯) 端基中存在 -OH , 该基团同时还和氰酸酯反应形成网络结 构, 降低氰酸酯吸水性, 形成互穿网络结构。 此外, 氰酸酯中的氮和聚 (甲基膦酸间亚苯基酯) 中的磷形成协同阻燃的效果, 提升组合物的阻燃 性能。 聚(甲基膦酸间亚苯基酯) 的结构式见下:
Figure imgf000007_0001
其中 m和 n是 0或 1, 且 p=2~15。 本发明的聚(甲基膦酸间亚苯基 酯) 中的端羟基含量为 20~100%, 优选端羟基含量为 50~100%。
本发明的无 阻燃性树脂组合物中的氰酸酯树脂可以获得更加优异的 介电性能以及良好的工艺性能、 耐热性、 耐湿热性。 氰酸酯树脂的存在可 以同时和环氧树脂以及聚(甲基膦酸间亚苯基酯)反应提升组合物的耐热 性。 此外氰酸酯中的氮和聚(甲基膦酸间亚苯基酯) 中的磷达成协同阻燃 效果, 利于阻燃性的提升。 本发明中, 氰酸酯树脂包括 1 个分子中至少有
2 个氰酸酯基的氰酸酯树脂。 作为氰酸酯树脂中使用的氰酸酯化合物的具 体例子, 例如 2 , 2-二 (氰酸酯基苯基) 丙烷、 二 (氰酸酯基苯基) 乙 烷、 二 (氰酸酯基苯基) 甲烷、 二 (4-氰酸酯基 -3 , 5-二甲基苯基) 甲 烷、 二(4-氰酸酯基苯基)硫醚、 苯酚酚醛型氰酸酯、 苯酚与双环戊二烯 共聚物的氰酸酯等, 可以使用一种或两种以上单体和它们的预聚物混合使 用。 考虑到玻璃化转变温度、 耐浸焊性、 和铜箔的粘结性以及介电特性的 平衡, 其用量在 5~50重量份, 优选 5~40重量份。
另外, 本发明的无 阻燃性树脂组合物还包括固化催化剂, 作为氰酸 酯树脂固化催化剂, 其可为环烷酸辞、 环烷酸锰、 环烷酸钴、 环烷酸镍、 乙酰乙酸钴、 乙酰基乙酸铜等有机催化剂。 另外, 作为固化辅助催化剂的 例子, 例如苯酚、 壬基酚、 和对枯基苯酚等单酚化合物、 双酚 A、 苯酚酚 醛树脂等多元酚化合物。 作为固化催化剂, 从介电特性和耐热性及固化反 应速度和胶水稳定性的角度出发, 优选环烷酸辞、 环烷酸锰, 再优选环烷 酸辞。 固化催化剂的用量相对于氰酸酯树脂为 0.01~2.00重量%。
本发明的无 阻燃性树脂组合物还包括填料, 所述填料包含: 膦腈类 阻燃剂, 磷酸三苯酯和双酚 A双(二苯基磷酸酯)等磷酸酯; 结晶型二氧 化硅、 熔融型二氧化硅、 球型二氧化硅、 硼酸辞、 氢氧化铝、 氢氧化镁和 三氧化锑等无机填料。 填料可为上述中的一种或多种, 填料用量为 5~25 重量份。
本发明的无 阻燃性树脂组合物中还可以包含有其它填料, 所选用的 填料, 可以提及的是无机填料例如高岭土、 水滑石、 氧化钛、 硅酸钙、 氧 化铍、 氮化硼、 玻璃粉、 铝氮化合物、 氮化硅、 碳化硅、 氧化镁、 氧化 锆、 莫来石、 二氧化钛、 钛酸钾、 中空玻璃微珠、 聚四氟乙烯粉末、 聚苯 乙烯粉体等粉体以及钛酸钾、 碳化硅、 氮化硅、 氧化铝等单晶纤维、 玻璃 短纤维等。 硅微粉可以使球型二氧化硅、 熔融二氧化硅、 结晶性二氧化 硅。 填料的添加可以是以上的一种或几种混合使用, 其使用量在无 阻燃 性树脂组合组合物中占 0~60wt%。
本发明的无 阻燃性树脂组合物中, 视情况需要另外添加催化剂, 催 化剂包括三级胺、 三级膦、 季铵盐、 季鱗盐、 有机金属络合物或咪唑化合 物。 三级胺的实例为: 三乙基胺、 三丁基胺、 二甲基胺乙醇、 Ν,Ν-二甲基- 胺基甲基酚、 苯甲基二甲基胺等; 三级膦的实例包括: 三苯基膦等; 季铵 盐的实例包括: 四甲基溴化铵、 四甲基氯化铵、 四甲基碘化铵、 苄基三甲 基氯化铵、 苄基三乙基氯化铵、 十六烷基三甲基溴化铵等; 季鱗盐的具体 实例包括: 四丁基氯化鱗、 四丁基溴化鱗、 四丁基碘化鱗、 四苯基氯化 鱗、 四苯基溴化鱗、 四苯基碘化鱗、 乙基三苯基氯化鱗、 丙基三苯基氯化 鱗、 丙基三苯基溴化鱗、 丙基三苯基碘化鱗、 丁基三苯基氯化鱗、 丁基三 苯基溴化鱗、 丁基三苯基碘化鱗等; 有机金属络合物实例包括: 醋酸辞、 醋酸铜、 醋酸镍等; 咪唑类化合物实例包括: 2-甲基咪唑、 2-乙基 -4 甲基 咪唑、 2-苯基咪唑、 2-十一烷基咪唑、 1-苄基 -2-甲基咪唑、 2-十七烷基咪 唑、 2-异丙基咪唑、 2-苯基 -4-甲基咪唑、 2-十二烷基咪唑、 1-氰乙基 -2-甲 基咪唑等, 上述催化剂可以是单一形式或其混合物使用。 催化剂的使用量 视环氧树脂种类、 固化剂的种类和催化剂种类而定。 本发明中催化剂的用 量相对于无 阻燃性树脂组合物的总量为 0.001~5.0wt% , 优选为 0.02~4.0wt% , 更优选为 0.005~3.0wt%。 催化剂的用量过多 (超过 5.0wt% )将会导致环氧树脂组合物的反应性过快, 对副产物的生成及固化 反应的转化率的均匀性产生不良影响; 若组合物中催化剂的用量低于 0.005 wt% , 反应性过慢, 不利于半固化片的制作。 使用催化剂的一个原则 为, 胶水的凝胶化时间不应低于 120s。
本发明的无 阻燃性树脂组合物中可以添加溶剂调制成胶水。 可使用 的溶剂的例子包含酮类如丙酮、 甲基乙基酮和甲基异丁基酮; 烃类如甲苯 和二甲苯; 醇类如甲醇、 乙醇、 伯醇; 醚类如乙二醇单甲醚、 丙二醇单甲 醚; 酯类如丙二醇甲醚醋酸酯、 乙酸乙酯; 非质子溶剂如 N, N-二甲基甲 酰胺、 N, N-二乙基甲酰胺, 上述溶剂中的一种或多种可以与另一种任意 混合使用。
本发明还提供一种应用所述的无 阻燃性树脂组合物的半固化片, 包 括基料及通过含浸干燥之后附着在基料上的无 阻燃性树脂组合物。 基料 可为无机或有机材料。
本发明还提供一种应用所述的无 阻燃性树脂组合物的印制电路用层 压板, 其包括数个叠合的半固化片、 及设于叠合后的半固化片的单面或双 面的金属箔, 每一半固化片包括基料及通过含浸干燥之后附着在基料上的 无卤阻燃性树脂组合物。 其中金属箔为铜、 黄铜、 铝、 镍、 以及这些金属 的合金或复合金属箔。
此外, 本发明的无 阻燃性树脂组合物还可以用来制作树脂片、 树脂 复合物金属铜箔、 层压板、 印制线路板。
本发明无卤阻燃性树脂组合物制作树脂片的方法列举如下, 但制备树 脂片的方法不限于此。 将上述无 阻燃性树脂组合物涂覆于载体膜上, 该 载体膜可为聚酯膜或聚酰亚胺膜, 厚度在 5~150 μ ιη。 然后在 100~250°C下 加热 10秒~30分钟, 形成片材, 所形成的树脂片厚度在 5~100 μ ιη。
本发明无卤阻燃性树脂组合物制作树脂复合金属铜箔 (RCC ) 的方法 列举如下, 然而制作树脂复合金属铜箔的方法不仅限于此。 作为金属箔, 可以使用铜、 黄铜、 铝、 镍、 以及这些金属的合金或复合金属箔, 金属箔 的厚度在 5-150 μ ιη。 通过手工或机械滚涂装置将所述的环氧树脂组合物胶 水涂覆到上述金属箔上, 然后将此涂覆有无 阻燃性树脂组合物的金属箔 进行加热干燥, 使得无卤阻燃性树脂组合物处于半固化状态 (B-Stage ) , 此处的加热温度在 100-250 °C , 加热时间为 10秒 -30分钟, 最后形成的树 脂复合金属的树脂层厚度在 1-150 μ ιη, 该树脂复合物金属铜箔可作为印制 线路板的内层或外层而对印制线路板进行增层。
使用本发明的无卤阻燃性树脂组合物制造半固化片 (prepreg ) 的方法 列举如下, 然而制作半固化片的方法不仅限于此。 将无卤阻燃性树脂组合 物胶水(此处已使用溶剂调节黏度)浸渍在基料上, 并对浸渍有无 阻燃 性树脂组合物的预浸片进行加热干燥, 使得预浸片中的无 阻燃性树脂组 合物处于半固化阶段(B-Stage ) , 即可获得半固化片。 其中使用到的基料 可为无机或有机材料。 无机材料可列举的有玻璃纤维、 碳纤维、 硼纤维、 金属等的机织织物或无纺布或纸。 其中的玻璃纤维布或无纺布可以使 E- glass、 Q型布、 NE布、 D型布、 S型布、 高硅氧布等。 有机纤维如聚酯、 聚胺、 聚丙烯酸、 聚酰亚胺、 芳纶、 聚四氟乙烯、 间规聚苯乙烯等制造的 织布或无纺布或纸。 然而基料不限于此。 可列举的对预浸片的加热温度为
80-250 °C , 时间为 1~30分钟。 半固化片中的树脂含量在 25~70%之间。
层压板、 覆铜箔层压板、 印制线路板可以使用上述的树脂片、 树脂复 合金属箔、 和半固化片制作。 以覆铜箔层压板为例来说明此制作方式, 但 不仅限于此。 在使用半固化片制作覆铜箔层压板时, 将一个或多个半固化 片裁剪成一定尺寸进行叠片后送入层压设备中进行层压, 同时将金属箔放 置在半固化片的一侧或两侧, 通过热压成型将半固化压制形成覆金属箔层 压板。 作为金属箔可以使用铜、 黄铜、 铝、 镍、 以及这些金属的合金或复 合金属箔, 作为层压板的压制条件, 应根据环氧树脂组合物的实际情况选 择合适的层压固化条件。 如果压制压力过低, 会使层压板中存在空隙, 其 电性能会下降; 层压压力过大会使层压板中存在过多的内应力, 使得层压 板的尺寸稳定性能下降, 这些都需要通过合适的满足模塑的压力来压制板 材来达到所需的要求。 对于常规的压制层压板的通常指导原则为, 层压温 度在 130~250°C , 压力: 3~50kgf/cm2, 热压时间: 60-240分钟。 可以使用 树脂片材、 树脂复合金属箔、 半固化片、 覆金属层压板通过加成或减层法 制作印制线路板或复杂的多层电路板。
本发明的无 阻燃性树脂组合物除了可以用作制作树脂片、 树脂复合 物金属铜箔、 半固化片、 层压板、 覆铜箔层压板、 印制线路板之外, 还可 用于用来制作胶黏剂、 涂料、 复合材料, 也可用于建筑、 航空、 船舶、 汽 车工业。
以下实施例说明本发明的各个实施方案。 然而这些实施例并不以任何 方式限制本发明。 具体实施方式如下。
实施例 1:
使用 40份 XZ92530、 10份 PMP、 35份 HF-1、 15份 PX200并辅以催 化剂 2-PI和环烷酸辞, 使用 80份 MEK将上述化合物溶解, 并调制成合 适粘度的胶水。 使用 2116型电子级玻璃布浸润此胶水, 并在 155 度烘箱 中烘烤, 除去溶剂, 获得 B-stage的半固化片。
将八片半固化片和两片一盎司的电解铜箔叠合在一起, 通过热压机进 行层压得到双面覆铜箔层压板(印制电路用层压板) 。 层压条件如下: 1、 料温在 80-120度时, 升温速度控制在 1.0-3.0度 /分钟; 2、 压力设置为
20kg/cm2; 3、 固化温度在 190度, 并保持此温度 90分钟。 相应性能见表 实施例 2:
使用 25份 XZ92530、 20份 N695、 35分 PMP、 10分 HF-1、 10份 PX200并辅以催化剂 2-PI和环烷酸辞, 使用 80份 MEK将上述化合物溶 解, 并调制成合适粘度的胶水。 使用 2116 型电子级玻璃布浸润此胶水, 并在 155度烘箱中烘烤, 除去溶剂, 获得 B-stage的半固化片。
将八片半固化片和两片一盎司的电解铜箔叠合在一起, 通过热压机进 行层压得到双面覆铜箔层压板。 层压条件如下: 1、 料温在 80-120度时, 升温速度控制在 1.0-3.0度 /分钟; 2、 压力设置为 20kg/cm2; 3、 固化温度 在 190度, 并保持此温度 90分钟。 相应性能见表一。
实施例 3:
使用 45 份 XZ92530、 5 份 N695、 5 分 PMP、 30 分 HF-1、 15 份 PX200并辅以催化剂 2-PI、 环烷酸辞, 使用 100份 MEK将上述化合物溶 解, 并调制成合适粘度的胶水。 使用 2116 型电子级玻璃布浸润此胶水, 并在 155度烘箱中烘烤, 除去溶剂, 获得 B-stage的半固化片。
将八片半固化片和两片一盎司的电解铜箔叠合在一起, 通过热压机进 行层压得到双面覆铜箔层压板。 层压条件和实施例 1相同, 相应性能见表 一。 比较例 1:
使用 88份 XZ92530、 2份双氢胺和 10份氢氧化铝, 使用 40份 DMF 将上述化合物溶解, 并调制成合适粘度的胶水。 使用 2116 型电子级玻璃 布浸润此胶水, 并在 155度烘箱中烘烤, 除去溶剂, 获得 B-stage 的半固 化片试样。
将八片半固化片和两片一盎司的电解铜箔叠合在一起, 通过热压机进 行层压得到双面覆铜箔层压板。 层压条件如下: 1、 料温在 80-120度时, 升温速度控制在 1.0-3.0度 /分钟; 2、 压力设置为 20kg/cm2; 3、 固化温度 在 190度, 并保持此温度 90分钟。 相应性能见表一。
比较例 2:
使用 45份 XZ92530, 35份苯酚型酚醛树脂、 10份氢氧化铝、 10份 PX200, 使用 DMF40份并辅以催化剂 2-PI, 使用 100份 MEK将上述化合 物溶解, 并调制成合适粘度的胶水。 使用 2116 型电子级玻璃布浸润此胶 水, 并在 155度烘箱中烘烤, 除去溶剂, 获得 B-stage的半固化片试样。
将八片半固化片和两片一盎司的电解铜箔叠合在一起, 通过热压机进 行层压得到双面覆铜箔层压板。 层压条件和对比例 1相同, 相应性能见表 比较例 3: 使用 60份 XZ92530、 30份 Ps6313、 15份苯酚型酚醛树脂, 10份氢 氧化铝并辅以催化剂 2-PI, 使用 100份 MEK将上述化合物溶解, 并调制 成合适粘度的胶水。 使用 2116 型电子级玻璃布浸润此胶水, 并在 155 度 烘箱中烘烤, 除去溶剂, 获得 B-stage的半固化片。
将八片半固化片和两片一盎司的电解铜箔叠合在一起, 通过热压机进 行层压得到双面覆铜箔层压板。 层压条件和对比例 1相同, 相应性能见表 比较例 4:
使用 35份 XZ92530、 5分 PMP、 60分 HF-1 , 并辅以催化剂 2-PI、 环 烷酸辞, 使用 90份 MEK将上述化合物溶解, 并调制成合适粘度的胶水。 使用 2116型电子级玻璃布浸润此胶水, 并在 155 度烘箱中烘烤, 除去溶 剂, 获得 B-stage的半固化片。
将八片半固化片和两片一盎司的电解铜箔叠合在一起, 通过热压机进 行层压得到双面覆铜箔层压板。 层压条件和对比例 1相同, 相应性能见表
Figure imgf000012_0001
Figure imgf000013_0001
注 1:
1、 表一中各组分皆以固体含量重量份记;
2、 XZ92530为 DOW的环氧树脂;
3、 N695为 DIC的邻甲基酚醛环氧树脂;
4、 PX200 (日本大八化学柱式会社) ;
5、 PS6313为日本群荣化学工业株式会社含氮酚酸树脂;
6、 苯酚型酚醛树脂为 DIC生产牌号 TD2090;
7、 HF-1为上海慧峰科贸公司氰酸酯树脂;
8、 PMP为 ICL-IP生产的聚(甲基膦酸间亚苯基酯 ) 。 注 2 , 表一中特性测试方法如下:
1、 玻璃化转变温度(Tg ) : 使用 DSC测试, 按照 IPC-TM-650 2.4.25 所规定的 DSC测试方法进行测定。
2、 耐湿热性测定: 将覆铜箔层压板浸渍在铜蚀刻液中, 除去表面铜 箔评价基板。 将基板放置在压力锅中, 在 121 °C , 2atm下处理一定时间后 浸入 288度锡炉 20s后拿出, 如果没有分层、 起泡的现象, 则又延长板材 在压力锅中的蒸煮时间直到板材出现分层起泡, 记下该分层起泡板材在压 力锅中的 蒸煮时间, 此时间即为该板材耐湿热的极限。
3、 耐浸焊性的评价: 将覆铜箔层压板浸渍在温度为 288°C的锡炉中直 到板材分层起泡, 记下该板材分层起泡的时间, 此即为该板材耐浸焊性极 限。
4、 耐热性: 将含铜试样剪切成 100*100mm*mm, 然后放进 245 °C的 烘箱中烘烤 1小时, 观察有无分层起泡。
5、 耐碱性: 将试验蚀刻铜箔后, 放进 80°C、 10%NaOH溶液中浸泡 1 小时后, 拿出观察试样表面是否有白点出现。
6、 燃烧性: 按照 UL94方法测定。
7、 DK/Df按照 IPC-TM650-2.5.5.9的方法测试。
由表一结果可知, 实施例 1-3 所制得的覆铜箔层压板具有优良的耐热 性、 耐湿热性、 耐碱性和阻燃性能, 适合用于印制电路基板材料, 而比较 例 1 的耐热性和耐碱性存在缺陷, 比较例 2-3的耐碱性、 半固化片表观存 在缺陷; 比较例 4的耐湿热性存在缺陷, 不适合用于印制电路基板材料。
如上所述, 本发明的高频电路基板拥有更加优异的介电性能, 即具有 较低的介电常数和介质损耗角正切, 高频性能很好。
以上所述, 仅为本发明的较佳实施例, 对于本领域的普通技术人员来 说, 可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变 形, 而所有这些改变和变形都应属于本发明权利要求的保护范围。

Claims

权 利 要 求
1、 一种无 阻燃性树脂组合物, 其包含组分及其重量份为: 双官能 或多官能无卤环氧树脂 20~70重量份、 反应性聚膦酸酯 5~40重量份、 以 及氰酸酯树脂 5~50重量份。
2、 如权利要求 1 所述的无卤阻燃性树脂组合物, 其中, 所述双官能 或多官能无 环氧树脂为双酚 A型环氧树脂、 双酚 F型环氧树脂、 双酚 S 型、 联苯型环氧树脂、 萘类环氧树脂、 脂环族类环氧树脂、 苯酚-酚醛型环 氧、 邻甲酚-酚醛性环氧、 双酚 A-酚醛型环氧、 间苯二酚型环氧树脂、 聚 乙二醇型环氧树脂、 三官能团环氧树脂、 四官能团环氧树脂、 环戊二烯或 二环二烯与酚类缩聚树脂的环氧树脂、 异氰酸酯改性的环氧树脂、 缩水甘 油胺型环氧树脂, 海因环氧树脂, 经萜烯改性之环氧树脂, 9, 10-二氢 -9- 氧杂 -10-磷杂菲 -10-氧化物改性环氧树脂、 10-(2,5-二羟基苯基)- 9 , 10-二 氢— 9-氧杂 -10-磷杂菲 -10-氧化物改性环氧树脂、 及 10- ( 2 , 9-二羟基萘 基) -9, 10-二氢 -9-氧杂 -10-磷杂菲 -10-氧化物改性环氧树脂中的一种或多 种。
3、 如权利要求 1 所述的无卤阻燃性树脂组合物, 其中, 反应性聚膦 酸酯为聚(甲基膦酸间亚苯基酯) , 其结构式如下:
Figure imgf000015_0001
其中 m和 n是 0或 1 , 且 p=2~15。
4、 如权利要求 1 所述的无 阻燃性树脂组合物, 其中, 所述氰酸酯 树脂包括 1 个分子中至少有 2 个氰酸酯基的氰酸酯树脂, 其为 2, 2-二
(氰酸酯基苯基) 丙烷、 二(氰酸酯基苯基) 乙烷、 二(氰酸酯基苯基) 甲烷、 二(4-氰酸酯基 -3 , 5-二甲基苯基) 甲烷、 二(4-氰酸酯基苯基)硫 醚、 苯酚酚醛型氰酸酯、 苯酚与双环戊二烯共聚物的氰酸酯中的一种或两 种以上单体和它们的预聚物。
5、 如权利要求 1 所述的无 阻燃性树脂组合物, 其中, 还包含填料 5-25 重量份, 填料为: 膦腈类阻燃剂、 磷酸三苯酯、 双酚 A 双(二苯基 磷酸酯) 、 结晶型二氧化硅、 熔融型二氧化硅、 球型二氧化硅、 硼酸辞、 氢氧化铝、 氢氧化镁和三氧化锑中的一种或多种。
6、 一种如权利要求 1 所述的无 阻燃性树脂组合物应用于半固化 片。
7、 如权利要求 6 所述的无卤阻燃性树脂组合物应用于半固化片, 其 中, 该半固化片包括基料及通过含浸干燥之后附着在基料上的无卤阻燃性 树脂组合物。
8、 一种如权利要求 1 所述的无卤阻燃性树脂组合物应用于印制电路 用层压板。
9、 如权利要求 8 所述的无卤阻燃性树脂组合物应用于印制电路用层 压板, 其中, 该印制电路用层压板包括数个叠合的半固化片、 及设于叠合 后的半固化片的单面或双面的金属箔, 每一片半固化片包括基料及通过含 浸干燥之后附着在基料上的热固性树脂组合物。
PCT/CN2011/079245 2010-12-23 2011-09-01 无卤阻燃性树脂组合物及其应用 WO2012083725A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010602778.1 2010-12-23
CN2010106027781A CN102020830B (zh) 2010-12-23 2010-12-23 无卤阻燃性树脂组合物及其应用

Publications (1)

Publication Number Publication Date
WO2012083725A1 true WO2012083725A1 (zh) 2012-06-28

Family

ID=43862632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079245 WO2012083725A1 (zh) 2010-12-23 2011-09-01 无卤阻燃性树脂组合物及其应用

Country Status (2)

Country Link
CN (1) CN102020830B (zh)
WO (1) WO2012083725A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608582A (zh) * 2020-11-02 2021-04-06 建滔(江苏)化工有限公司 一种树脂组合物及其制备方法和应用
CN113801318A (zh) * 2021-09-24 2021-12-17 兰州瑞朴科技有限公司 双羟基低分子量聚苯醚烷基磷酸酯及其热固性树脂组合物和应用
CN116606530A (zh) * 2023-06-19 2023-08-18 苏州万润绝缘材料有限公司 一种无卤阻燃环氧树脂半固化片及其制备方法
CN116705620A (zh) * 2023-06-07 2023-09-05 江苏耀鸿电子有限公司 一种无卤环氧树脂ic封装板及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102020830B (zh) * 2010-12-23 2012-06-27 广东生益科技股份有限公司 无卤阻燃性树脂组合物及其应用
CN102964777B (zh) * 2012-11-27 2015-05-27 上海南亚覆铜箔板有限公司 一种含磷无卤素的阻燃性树脂粘合剂,其制备方法和用途
CN103709747B (zh) 2013-12-27 2017-01-04 广东生益科技股份有限公司 一种热固性树脂组合物及其用途
WO2015096116A1 (zh) * 2013-12-27 2015-07-02 广东生益科技股份有限公司 一种热固性树脂组合物及其用途
CN103770436B (zh) * 2014-01-16 2016-08-17 陕西生益科技有限公司 一种无卤高导热树脂基体组合物的制备方法及其应用
CN103965587A (zh) * 2014-05-28 2014-08-06 苏州生益科技有限公司 一种无卤树脂组合物及使用其制作的半固化片及层压板
CN107177030B (zh) * 2016-03-10 2019-06-14 广东生益科技股份有限公司 一种无卤热固性树脂组合物及使用它的预浸料和印制电路用层压板
CN106751524A (zh) * 2016-12-28 2017-05-31 广东生益科技股份有限公司 一种无卤热固性树脂组合物及含有它的预浸料、层压板和印制电路板
CN110016206B (zh) * 2019-03-18 2020-10-27 广东生益科技股份有限公司 一种树脂组合物、包含其的预浸料以及层压板和印制电路板
CN110105867A (zh) * 2019-04-20 2019-08-09 无锡天杨电子有限公司 一种陶瓷覆铜板高耐温阻焊的配方及其制备方法
CN116875151A (zh) * 2023-08-10 2023-10-13 江苏云湖新材料科技有限公司 一种电池包壳体用无卤阻燃环氧防火涂料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314160A1 (en) * 2009-06-11 2010-12-16 Arlon Low loss pre-pregs and laminates and compositions useful for the preparation thereof
CN102020830A (zh) * 2010-12-23 2011-04-20 广东生益科技股份有限公司 无卤阻燃性树脂组合物及其应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534179B2 (en) * 2001-03-27 2003-03-18 International Business Machines Corporation Halogen free triazines, bismaleimide/epoxy polymers, prepregs made therefrom for circuit boards and resin coated articles, and use
EP1432719A1 (en) * 2001-10-04 2004-06-30 Akzo Nobel N.V. Oligomeric, hydroxy-terminated phosphonates
US7655871B2 (en) * 2004-03-29 2010-02-02 Sumitomo Bakelite Company Limited Resin composition, resin-attached metal foil, base material-attached insulating sheet and multiple-layered printed wiring board
JP2006131743A (ja) * 2004-11-05 2006-05-25 Hitachi Chem Co Ltd 熱硬化性樹脂組成物及びそれを用いたプリプレグ、金属張積層板、プリント配線板
CN101277992A (zh) * 2005-09-30 2008-10-01 住友电木株式会社 环氧树脂组合物和半导体器件
CN101033327A (zh) * 2007-02-09 2007-09-12 广东生益科技股份有限公司 树脂组合物以及使用它的预浸料、印刷电路用覆铜板及印制电路板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100314160A1 (en) * 2009-06-11 2010-12-16 Arlon Low loss pre-pregs and laminates and compositions useful for the preparation thereof
CN102020830A (zh) * 2010-12-23 2011-04-20 广东生益科技股份有限公司 无卤阻燃性树脂组合物及其应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112608582A (zh) * 2020-11-02 2021-04-06 建滔(江苏)化工有限公司 一种树脂组合物及其制备方法和应用
CN113801318A (zh) * 2021-09-24 2021-12-17 兰州瑞朴科技有限公司 双羟基低分子量聚苯醚烷基磷酸酯及其热固性树脂组合物和应用
CN116705620A (zh) * 2023-06-07 2023-09-05 江苏耀鸿电子有限公司 一种无卤环氧树脂ic封装板及其制备方法
CN116705620B (zh) * 2023-06-07 2023-11-03 江苏耀鸿电子有限公司 一种无卤环氧树脂ic封装板及其制备方法
CN116606530A (zh) * 2023-06-19 2023-08-18 苏州万润绝缘材料有限公司 一种无卤阻燃环氧树脂半固化片及其制备方法

Also Published As

Publication number Publication date
CN102020830B (zh) 2012-06-27
CN102020830A (zh) 2011-04-20

Similar Documents

Publication Publication Date Title
WO2012083725A1 (zh) 无卤阻燃性树脂组合物及其应用
KR101799717B1 (ko) 열경화성 수지 조성물 및 그 용도
TWI638001B (zh) Thermosetting resin composition and use thereof
JP6381802B2 (ja) ノンハロゲン樹脂組成物、及びそれを用いて製造されたプリプレグと積層板
CN106916418B (zh) 一种热固性树脂组合物、半固化片、覆金属箔层压板以及印制电路板
TWI555793B (zh) 一種熱固性樹脂組合物及用其製作之預浸料與層壓板
TWI481659B (zh) Halogen-free resin composition and its application of copper foil substrate and printed circuit board
TWI588202B (zh) Low dielectric resin composition and copper foil substrate and printed circuit board using the same
KR101798809B1 (ko) 무할로겐 수지 조성물 및 이로 제조된 프리프레그와 적층판
EP2915848B1 (en) Thermosetting resin composition and use thereof
WO2012083728A1 (zh) 无卤树脂组合物及使用其的无卤覆铜板的制作方法
CN103709718B (zh) 一种热固性树脂组合物及其应用
TW201348323A (zh) 無鹵素樹脂組成物
TW201422673A (zh) 一種熱固性氰酸酯及其應用
CN109651763B (zh) 一种热固性树脂组合物及使用其的预浸料、层压板和覆金属箔层压板
WO2015154315A1 (zh) 一种无卤无磷阻燃树脂组合物
KR20220119107A (ko) 열경화성 에폭시 수지 조성물 및 이를 사용한 프리프레그, 적층판 및 인쇄회로기판
CN109608828B (zh) 一种热固性树脂组合物及使用其的预浸料、层压板和覆金属箔层压板
CN105131597A (zh) 一种无卤树脂组合物以及使用它的预浸料和印制电路用层压板
TWI421297B (zh) Halogen-free resin composition and its application of copper foil substrate and printed circuit board
CN109535653B (zh) 含磷环氧树脂组合物及应用其制备的半固化片和层压板
TW201425446A (zh) 無鹵素樹脂組成物及應用其之銅箔基板及印刷電路板
CN108530816B (zh) 一种热固性树脂组合物及使用它的半固化片、层压板和印制电路板
WO2013149386A1 (zh) 环氧树脂组合物及使用其制作的半固化片与覆铜箔层压板
TWI548666B (zh) A halogen-free thermosetting resin composition and a prepreg using the same, and a laminate for printed circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852093

Country of ref document: EP

Kind code of ref document: A1