WO2015151753A1 - 分析装置及び分析方法 - Google Patents

分析装置及び分析方法 Download PDF

Info

Publication number
WO2015151753A1
WO2015151753A1 PCT/JP2015/057304 JP2015057304W WO2015151753A1 WO 2015151753 A1 WO2015151753 A1 WO 2015151753A1 JP 2015057304 W JP2015057304 W JP 2015057304W WO 2015151753 A1 WO2015151753 A1 WO 2015151753A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
reference value
detection
pulse width
substrate
Prior art date
Application number
PCT/JP2015/057304
Other languages
English (en)
French (fr)
Inventor
雅之 小野
柳生 慎悟
糸長 誠
祐一 長谷川
辻田 公二
Original Assignee
株式会社Jvcケンウッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Jvcケンウッド filed Critical 株式会社Jvcケンウッド
Priority to CN201580014243.3A priority Critical patent/CN106461531B/zh
Priority to SG11201607752QA priority patent/SG11201607752QA/en
Priority to EP15772509.4A priority patent/EP3128310B1/en
Publication of WO2015151753A1 publication Critical patent/WO2015151753A1/ja
Priority to US15/268,989 priority patent/US20170003213A1/en
Priority to US16/694,014 priority patent/US20200088626A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N15/1434Electro-optical investigation, e.g. flow cytometers using an analyser being characterised by its optical arrangement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • G01N15/01
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Electro-optical investigation, e.g. flow cytometers
    • G01N2015/1486Counting the particles

Definitions

  • the present invention relates to an analyzer and an analysis method for analyzing biological materials such as antibodies and antigens.
  • An immunoassay is known in which a specific antigen or antibody associated with a disease is detected as a biomarker to quantitatively analyze the effect of disease discovery or treatment.
  • An ELISA method Enzyme-Linked ImmunoSorbent Assay
  • an enzyme reaction for detecting an antigen or antibody labeled with an enzyme is one of immunoassays, and is widely used because of merit such as cost.
  • the total time of pretreatment, antigen-antibody reaction, B / F (bond / free) separation, enzyme reaction, etc. is from several hours to one day, and requires a long time.
  • the antibody fixed on the optical disk is bound to the antigen in the sample, the antigen and the particle having the antibody are bound, and the particles captured on the disk are scanned in a short time by scanning with an optical head.
  • a technique for counting has been proposed (Patent Document 1). Further, a technique has been proposed in which a biological sample or particles are attached to the surface on which the tracking structure of an optical disk is formed, and a change in signal is detected by an optical pickup (Patent Document 2).
  • Patent Documents 1 and 2 may not be able to obtain a detection signal corresponding to the particle depending on the type and arrangement of the particle. Then, the particle counting result becomes inaccurate, and there is a possibility that the quantitativeness with respect to the detection target is deteriorated.
  • an object of the present invention is to provide an analysis apparatus and an analysis method that can improve the quantitativeness of a detection target.
  • the first aspect of the present invention optically scans the substrate (100) on which the detection target (620) and the particles (66) for labeling the detection target (620) are fixed.
  • the optical scanning unit (3), and the optical scanning unit (3) detects the pulse wave and the pulse width of the pulse wave included in the detection signal acquired from the optical scanning unit (3) by scanning the substrate (100).
  • the detection target It is an analyzer provided with the counting part (50) which counts the number of (620) as 1.
  • the second aspect of the present invention is to optically scan the substrate (100) on which the detection target (620) and the particles (66) for labeling the detection target (620) are fixed, and the substrate (100). Detecting a pulse wave and a pulse width of the pulse wave included in the detection signal obtained by scanning the signal, and two pulse widths (Ta) less than the first reference value (T2) from the detection signal.
  • the analysis method includes counting the number of detection objects (620) as 1.
  • FIG. 1 is a schematic block diagram illustrating a basic configuration of an analyzer according to an embodiment of the present invention.
  • 2 (a) to 2 (f) are enlarged sectional views of typical substrates for explaining an example of a method for fixing antibodies, antigens, and beads to the substrate of the analyzer according to the embodiment of the present invention.
  • FIG. 3 is a schematic diagram for explaining how two beads 66 are bound to one exosome on the substrate.
  • FIG. 4 is a simulation result showing the characteristics of the spot position and signal intensity when scanning the substrate for each number of adjacent beads.
  • FIG. 5 is a diagram showing the number of adjacent beads for explaining the characteristics of the spot position and the signal intensity when scanning the substrate of the analyzer according to the embodiment of the present invention.
  • FIG. 1 is a schematic block diagram illustrating a basic configuration of an analyzer according to an embodiment of the present invention.
  • 2 (a) to 2 (f) are enlarged sectional views of typical substrates for explaining an example of a method for fixing antibodies, antigens, and
  • FIG. 6 is a diagram for explaining a method for determining a reference value stored in the storage unit of the analyzer according to the embodiment of the present invention.
  • FIG. 7 is a diagram for explaining a method for determining the reference value stored in the storage unit of the analyzer according to the embodiment of the present invention.
  • FIG. 8 is a flowchart for explaining the operation of the analyzer according to the embodiment of the present invention.
  • FIG. 9 is a diagram for explaining the operation of the analyzer according to the embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the operation of the analyzer according to the embodiment of the present invention.
  • FIG. 11 is a diagram comparing the characteristics of the biomarker concentration and the bead counting result in the analyzer according to the embodiment of the present invention with those of the conventional apparatus.
  • the analyzer As shown in FIG. 1, the analyzer according to the embodiment of the present invention includes a substrate 100, a motor 2 that rotates the substrate 100, an optical scanning unit 3 that optically scans the substrate 100, a motor 2, and optical scanning. And a control unit 5 that controls the unit 3.
  • the substrate 100 has a disk shape having the same dimensions as an optical disc such as a compact disc (CD), a digital versatile disc (DVD), and a Blu-ray disc (BD).
  • the substrate 100 has a track structure that can be scanned by the optical scanning unit 3 on the surface.
  • the track structure is composed of grooves, lands, pits, etc., and is formed in a spiral shape from the inner peripheral side to the outer peripheral side.
  • the substrate 100 is made of, for example, a resin material having hydrophobicity such as polycarbonate resin or cycloolefin polymer used for general optical disks.
  • the surface of the substrate 100 can be subjected to surface treatment with a thin film formation or a silane coupling agent as required.
  • the substrate 100 has an antibody 61 that specifically binds to an antigen 62, which is a biological material to be detected, immobilized on the surface.
  • the antigen 62 is labeled with a bead (particle) 66 on which an antibody 65 that specifically binds to the antigen 62 is immobilized on the surface, whereby the antigen 62 and the bead 66 are immobilized relative to the surface of the substrate 100. Is done.
  • the antigen 62 is used as a biomarker that serves as an indicator of disease or the like by specifically binding to the antibody 61 and the antibody 65.
  • the antibody 61 is fixed to the surface of the substrate 100 in advance.
  • the antibody 61 is bound to the surface of the substrate 100 by a hydrophobic bond or a covalent bond.
  • the antibody 61 may be fixed to the surface of the substrate 100 via a substance such as avidin.
  • a sample solution 63 containing the antigen 62 is dropped on the surface of the substrate 100.
  • the antigen 62 contacts with the antibody 61 by moving through the sample solution 63 by Brownian motion, and specifically binds to the antibody 61 by an antigen-antibody reaction.
  • FIG. 2 (c) the sample liquid 63 dropped on the substrate 100 is subjected to spin cleaning using pure water or the like, so that the sample liquid 63 containing excess antigen 62 that does not bind to the antibody 61 is removed.
  • a buffer solution 64 including beads 66 is dropped on the surface of the substrate 100.
  • the buffer solution 64 may be dropped onto the substrate 100 while the sample solution 63 remains.
  • the antibody 65 immobilized on the surface of the bead 66 specifically binds to the antigen 62 by an antigen-antibody reaction.
  • the beads 66 bind to the antigen 62 to label the antigen 62.
  • the bead 66 is formed in a substantially spherical shape by a synthetic resin such as polystyrene containing a magnetic material such as ferrite.
  • the diameter of the bead 66 is about several tens nm to several hundreds nm, for example, a diameter of 200 nm.
  • the beads 66 are quickly gathered on the surface of the substrate 100 when the buffer solution 64 is dropped, so that the reaction with the antigen 62 can be promoted. Further, by simultaneously loading the antigen 62 and the beads 66, the time required for labeling the antigen 62 fixed on the substrate 100 can be shortened to about several minutes.
  • the antibody 61 and the antibody 65 may be a specific biological substance that specifically binds to the antigen 62, and a combination in which each binds to another site is selected.
  • the target of detection is a membrane vesicle such as an exosome in which a plurality of types of antigens 62 are expressed on the surface
  • the antibody 61 and the antibody 65 are different types, so that a biological sample having two types of antigens 62 is obtained. Can be detected.
  • exosomes and the like are different from normal antigens, and a plurality of antigens that are the same kind of proteins exist on the surface. Therefore, the antibody 61 and the antibody 65 may be the same type.
  • the buffer solution 64 containing excess beads 66 that do not bind to the antigen 62 is removed by washing the buffer solution 64 dropped onto the substrate 100 with pure water or the like.
  • the substrate 100 is optically scanned by the optical scanning unit 3 and the beads 66 are detected, whereby the antigen 62 labeled on the beads 66 can be analyzed.
  • the optical scanning unit 3 includes a laser oscillator 31, a collimator lens 32, a beam splitter 33, an actuator 34, an objective lens 35, a condenser lens 36, and a light detection unit 37. .
  • the optical scanning unit 3 is an optical pickup that optically scans the substrate 100.
  • the laser oscillator 31 emits a laser beam toward the collimator lens 32 under the control of the control unit 5.
  • the laser oscillator 31 is, for example, a semiconductor laser oscillator that emits a laser beam having a wavelength of 405 nm, which is the same as that for reproducing a BD, and an output of about 1 mW.
  • the collimator lens 32 collimates the laser light emitted from the laser oscillator 31.
  • the beam splitter 33 reflects the laser light collimated by the collimator lens 32 toward the objective lens 35.
  • the objective lens 35 focuses the laser light that has passed through the beam splitter 33 on the surface of the substrate 100 on which the antibody 61 is fixed, and forms an image of the spot S by driving the actuator 34 according to the control of the control unit 5. .
  • the objective lens 35 has a numerical aperture of 0.85, for example.
  • the laser light focused on the objective lens 35 is reflected by the substrate 100 and enters the beam splitter 33.
  • the incident laser light passes through the beam splitter 33 and enters the light detection unit 37 via the condenser lens 36.
  • the condensing lens 36 condenses the laser light reflected on the substrate 100 on the light detection unit 37.
  • the light detection unit 37 is made of, for example, a photodiode, and outputs a detection signal corresponding to the amount of laser light reflected from the substrate 100 to the control unit 5.
  • the control unit 5 controls the driving of the motor 2 via the rotation control unit 21.
  • the motor 2 rotates the substrate 100 by a constant linear velocity (CLV) system under the control of the control unit 5.
  • the linear velocity is, for example, 4.92 m / s.
  • the control unit 5 controls driving of the laser oscillator 31 and the actuator 34 via the optical system control unit 4.
  • the actuator 34 moves the optical scanning unit 3 in the radial direction of the substrate 100 so as to scan the surface of the rotating substrate 100 in a spiral shape under the control of the control unit 5.
  • the control unit 5 detects errors such as a focus error (FE) and a tracking error (TE) from the detection signal output from the light detection unit 37.
  • the control unit 5 controls the actuator 34 and the like so as to appropriately scan the surface of the substrate 100 according to the detected error.
  • the control unit 5 includes a pulse detection unit 51, a storage unit 52, and a counting unit 50.
  • the pulse detection unit 51 receives the detection signal output from the light detection unit 37.
  • the pulse detector 51 detects the pulse wave and the pulse width of the pulse wave included in the detection signal acquired from the optical scanning unit 3.
  • the pulse detection unit 51 includes a signal processing device such as a digital signal processor (DSP).
  • the storage unit 52 includes a storage device such as a semiconductor memory.
  • the storage unit 52 stores a reference value or the like for the pulse wave and the pulse width detected by the pulse detection unit 51.
  • the counting unit 50 counts the number of detection targets fixed on the surface of the substrate 100 based on the pulse wave detected by the pulse detection unit 51 and the reference value stored in the storage unit 52.
  • the counting unit 50 includes a central processing unit (CPU) and the like.
  • the counting unit 50 includes a first counter 501, a second counter 502, and a target counter 503 as a logical structure.
  • the first counter 501 measures the pulse width Ta of the pulse wave detected by the pulse detector 51.
  • the second counter 502 measures the pulse interval Tb between the next detected pulse wave according to the pulse width Ta of the pulse wave detected by the pulse detector 51.
  • the target counter 503 counts the number of detection targets by counting the number of beads 66 based on the measurement results of the first counter 501 and the second counter 502 and the reference value stored in the storage unit 52. .
  • the bead 66 labels a biological substance such as an exosome having a plurality of antigens 62 on the surface.
  • the amount of beads 66 in the liquid is excessively added compared to the amount of exosomes.
  • Exosomes generally have various diameters on the order of 50 nm to 150 nm. On the other hand, the diameter of the bead 66 is about 200 nm.
  • two beads 66 may bind to one exosome 620 in which one of the antigens 62 on the surface binds to the antibody 61 on the substrate 100. That is, when the exosome 620 is detected by optically detecting the bead 66, two pulse waves corresponding to the two beads 66 adjacent to each other are labeled on the respective antibodies 65 of the two beads 66, respectively. The probability of being one exosome 620 with two antigens 62 is very high.
  • FIG. 3 shows an example in which a well 11 having a through hole is arranged on the upper surface of the substrate 100, and the through hole of the well 11 and the substrate 100 constitute a container into which a liquid is dropped.
  • the analysis apparatus determines whether or not the detected pulse wave is based on two adjacent beads 66 based on the detection signal and the reference value stored in the storage unit 52 or the like. to decide.
  • the number of exosomes 620 present in the corresponding scanning range is counted as 1, thereby detecting the exosome that is the detection target.
  • the quantitative property of 620 is improved.
  • the three detection signals DS1 to DS3 shown in FIG. 4 are adjacent to each other assuming one convex pit assuming one bead on the substrate 100, two adjacent convex pits assuming two beads, and three adjacent beads. It is the result of having simulated the detection signal at the time of scanning 3 convex pits, respectively.
  • the horizontal axis represents the position of the spot S relative to the first bead 66 in a certain section, and the vertical axis represents the signal intensity obtained by normalizing the detection signal with the detection signal when the bead 66 does not exist.
  • the detection signals DS1 to DS3 are considered to increase in pulse width as the number of two or three beads 66 from one isolated bead 66 increases.
  • the actual detection signal D2 when scanning two adjacent beads 66 has a pulse width smaller than the detection signal D1 when scanning an isolated bead 66, respectively.
  • Two pulse waves of the same degree are included.
  • the detection signal when the three beads 66 are adjacent to each other includes two pulse waves that are substantially equal to the pulse width of the detection signal D2 and have a pulse interval larger than that of the detection signal D2.
  • the diameter of the bead 66 is about 1 ⁇ 2 of the wavelength of the laser beam to be scanned and there are a plurality of adjacent beads 66, the counting result of the beads 66 may be inaccurate.
  • the inventors of the present invention have described the Maxwell's equation as a function of the finite difference time domain (FDTD) method for the action of light on structures (particles) having a size smaller than the wavelength of light, which is different from the pits of general optical discs as described above. It was clarified by solving for spatial variables.
  • FDTD finite difference time domain
  • the two beads 66 are likely to label one exosome 620.
  • the analyzer based on the pulse width Ta of the detection signal corresponding to the arrangement of the beads 66, the pulse interval Tb, and the reference value stored in the storage unit 52. The number of exosomes 620 can be counted with high accuracy.
  • the storage unit 52 includes a first pulse width T1 and a first pulse width of two pulse waves of the detection signal D2 when the optical scanning unit 3 scans two adjacent beads 66.
  • a first reference value T2 determined according to T1 is stored in advance.
  • the first reference value T2 is, for example, the sum of the first pulse width T1 and a predetermined value.
  • the predetermined value added to the first pulse width T1 may be a jitter value included in the detection signal.
  • the predetermined value added to the first pulse width T1 may be about 100% to 130% of the jitter value.
  • the first reference value T2 may be a predetermined ratio of the first pulse width T1.
  • the ratio of the first reference value T2 is, for example, about 100% to 130% of the first pulse width T1.
  • the storage unit 52 corresponds to the second pulse width T3 and the second pulse width T3 of the detection signal D1 when the optical scanning unit 3 scans the bead 66 isolated from the other beads 66.
  • the determined second reference value T4 is stored in advance.
  • the second reference value T4 is, for example, the sum of the second pulse width T3 and a predetermined value.
  • the predetermined value added to the second pulse width T3 may be a jitter value included in the detection signal.
  • the predetermined value added to the second pulse width T3 may be about 100% to 130% of the jitter value.
  • the second reference value T4 may be a predetermined ratio of the second pulse width T3.
  • the ratio of the second reference value T4 is, for example, about 100% to 130% of the second pulse width T3.
  • the storage unit 52 includes a pulse interval T5 of two pulse waves included in the detection signal D2 when the optical scanning unit 3 scans two adjacent beads 66, and a pulse interval.
  • a third reference value T6 determined according to T5 is stored in advance.
  • the third reference value T6 is, for example, the sum of the pulse interval T5 and a predetermined value.
  • the predetermined value added to the pulse interval T5 may be a jitter value included in the detection signal.
  • the predetermined value added to the pulse interval T5 may be about 100% to 130% of the jitter value.
  • the third reference value T6 may be a predetermined ratio of the pulse interval T5.
  • the ratio of the third reference value T6 is, for example, about 100% to 130% of the first pulse interval T5.
  • the optical scanning unit 3 optically scans the substrate 100 and the counting unit 50 uses the exosome 620 fixed to the substrate 100 as a detection target. A method of analyzing by counting will be described.
  • the rotation control unit 21 and the optical system control unit 4 start driving the motor 2 and the optical scanning unit 3 by the operation of the operator, respectively.
  • the substrate 100 on which the antigen 62 and the beads 66 are fixed on the surface by an antigen-antibody reaction or the like is rotated at a constant linear velocity by the motor 2 and optically scanned by the optical scanning unit 3.
  • the optical scanning unit 3 detects the laser beam emitted from the laser oscillator 31 and reflected on the surface of the substrate 100 by the light detection unit 37.
  • the light detection unit 37 outputs a detection signal corresponding to the detected amount of laser light to the pulse detection unit 51.
  • step S1 the pulse detection unit 51 acquires the detection signal output from the light detection unit 37, and detects the falling edge of the acquired detection signal.
  • the pulse detection unit 51 holds in advance a threshold set to an intensity that is about 1 ⁇ 2 of the peak value of the detection signal when the bead 66 is scanned, and the time when the detection signal falls below the threshold is regarded as the fall of the detection signal. To detect.
  • step S2 the first counter 501 starts measuring the time Ta from the time point when the falling edge is detected in step S1.
  • step S ⁇ b> 3 the pulse detection unit 51 detects the rising edge of the detection signal acquired from the light detection unit 37.
  • the pulse detection unit 51 holds in advance a threshold value set to an intensity that is about 1 ⁇ 2 of the peak value of the detection signal when the bead 66 is scanned, and detects when the detection signal exceeds the threshold value as the rising edge of the detection signal. To do.
  • step S4 the first counter 501 determines and resets the time Ta from the time when the falling edge is detected in step S1 to the time when the rising edge is detected in step S3.
  • the target counter 503 acquires the time Ta determined by the first counter 501 and holds it as the pulse width (half-value width) Ta of the pulse wave detected in steps S1 to S3.
  • step S5 the target counter 503 reads the first reference value T2 from the storage unit 52, and determines whether or not the pulse width Ta held in step S4 is less than the first reference value T2. If the pulse width Ta is less than the first reference value T2, the target counter 503 proceeds to step S6. If the pulse width Ta is greater than or equal to the first reference value T2, the target counter 503 proceeds to step S11.
  • the target counter 503 determines in step S6 whether or not the adjacent flag is high (High: 1).
  • the adjacent flag is a flag that is set in association with the second counter 502 in the target counter 503.
  • the target counter 503 advances the process to step S7 when the adjacent flag is high in step S6, and advances the process to step S14 when the adjacent flag is low (Low: 0).
  • step S14 it is assumed that the detection signal D2 is input to the pulse detection unit 51, and the pulse detection unit 51 detects the rising edge of the first pulse wave in step S3.
  • the adjacent flag is low in step S6, and the counting unit 50 advances the processing to step S14.
  • step S14 the second counter 502 starts measuring the time Tb from the time when the rising edge is detected in step S3.
  • the target counter 503 sets the adjacent flag to high from the time when the rising edge is detected in step S3, and proceeds to step S10.
  • step S10 the control unit 5 determines whether or not the scanning by the optical scanning unit 3 in the track range of the substrate 100 set in advance is completed. The control unit 5 ends the process when the scanning is finished, and returns the process to step S1 when the scanning is not finished yet.
  • step S7 the detection signal D2 is input to the pulse detection unit 51, and the pulse detection unit 51 detects the rise of the second pulse wave in step S3.
  • the adjacent flag is high in step S6, and the counting unit 50 advances the process to step S7.
  • step S7 the second counter 502 resets after determining the time Tb from the time when the first rising edge is detected in step S3 to the time when the second rising edge is detected in the next step S3.
  • the target counter 503 acquires the time Tb determined by the second counter 502, holds it as the pulse interval Tb of the two pulse waves detected in the two steps S1 to S3, and sets the adjacent flag to low.
  • step S8 the target counter 503 reads the third reference value T6 from the storage unit 52, and determines whether or not the pulse interval Tb held in step S7 is less than the third reference value T6. If the pulse interval Tb is less than the third reference value T6, the target counter 503 proceeds to step S9. If the pulse interval Tb is greater than or equal to the third reference value T6, the target counter 503 proceeds to step S15.
  • step S9 the target counter 503 determines in step S9 that the optical scanning unit 3 has scanned two beads 66 adjacent to each other, and the number of exosomes 620 is determined. Is counted as 1, and the process proceeds to step S10. That is, in the example shown in FIG. 9, when the detection signal D ⁇ b> 2 is input to the pulse detection unit 51, the number of beads 66 is 2, but the two beads 66 adjacent to each other are combined with one exosome 620. Therefore, the number of exosomes 620 is counted as 1. Thus, when two pulse waves having a pulse interval Tb less than the third reference value T6 are detected twice in succession, the target counter 503 counts the number of exosomes 620 that are detection targets as 1.
  • the target counter 503 applies a pulse wave having a pulse width greater than or equal to the third reference value T6 to noise caused by foreign matter, aggregates, or the like. Ignore it when counting. That is, three or more beads 66 adjacent to each other need to bind to the plurality of exosomes 620 on the substrate 100, and the possibility of appearance is extremely low. Therefore, a pulse wave having a pulse width greater than or equal to the third reference value T6 that is extremely likely to be noise is ignored in counting.
  • the target counter 503 reads the second reference value T4 from the storage unit 52 in step S11, and the pulse width Ta held in step S4 is the second reference value T2. It is determined whether or not the value is less than T4. If the pulse width Ta is less than the second reference value T4, the target counter 503 proceeds to step S12. If the pulse width Ta is greater than or equal to the second reference value T4, the target counter 503 proceeds to step S13.
  • the detection signal D1 is input to the pulse detection unit 51, and the pulse detection unit 51 detects the rising edge of the pulse wave in step S3.
  • the pulse width Ta is greater than or equal to the first reference value T2 in step S5
  • the pulse width Ta is less than the second reference value T4 in step S9
  • the counting unit 50 advances the process to step S12.
  • step S12 the target counter 503 determines that the optical scanning unit 3 has scanned one bead 66 isolated from the other beads 66, and counts the number of exosomes 620 as 1. There is a high possibility that one isolated bead 66 is bonded to one exosome 620 on the substrate 100. In this way, the target counter 503 counts the number of exosomes 620 as 1, when a pulse wave is detected with a pulse width Ta that is greater than or equal to the first reference value T2 and less than the second reference value T4. In addition, the target counter 503 sets the adjacent flag to low and advances the processing to step S10.
  • step S13 the target counter 503 detects a pulse wave having a pulse width greater than or equal to the second reference value T4 as noise caused by foreign matter, aggregates, or the like. Ignore it when counting. In addition, the target counter 503 sets the adjacent flag to low and advances the processing to step S10.
  • a pulse wave having a pulse width Ta less than the first reference value T2 is detected.
  • the second reference value T4 is greater than or equal to the first reference value T2. It is assumed that a pulse wave having a pulse width Ta of less than is detected. In this case, the target counter 503 determines that the previously detected pulse wave is noise caused by a foreign substance or the like, and ignores it when counting.
  • the target counter 503 when the target counter 503 detects a pulse wave having a pulse width Ta less than the first reference value T2 twice in succession in the detection signal, the target counter 503 adds 1 to the exosome 620. Count the number. In addition, the target counter 503 counts the number of beads 66 by adding 1 to the detection signal when a pulse wave is detected with a pulse width Ta that is greater than or equal to the first reference value T2 and less than the second reference value T4. .
  • curve P2 has fewer count results regardless of the biomarker concentration. As indicated by the broken lines along the curves P1 and P2, ideally, if the biomarker content is 0, the counting result should also be 0. However, in the detection method using the antigen-antibody reaction, non-specific adsorption occurs on the substrate 100 in addition to the binding by the antigen-antibody reaction. For this reason, even if the concentration of the biomarker is 0, the beads 66 fixed on the surface of the substrate 100 due to non-specific adsorption are counted.
  • the minimum detection sensitivity R1 of the analyzer according to the embodiment of the present invention is improved as compared with the minimum detection sensitivity R2 of the conventional method, and the sensitivity of biomarker detection is improved. Therefore, according to the analyzer according to the embodiment of the present invention, it is possible to improve the detection sensitivity of diseases and the like.
  • the conventional method since one exosome 620 labeled on the two beads 66 is counted as two, there is a possibility that a variation from the true value may result in a large counting result. For example, when the noise level Q is considered as a reference, the conventional method has a risk of misdiagnosis for a sample whose concentration does not reach the reference.
  • the count result of exosome 620 is: In the method of the embodiment of the present invention, the number is 10,000, and in the method according to the conventional method, the number is 12,000. Further, assuming that there are 5,000 exosomes 620 that bind to one bead 66 and 5,000 exosomes 620 that bind to two beads 66, the counting result of the exosome 620 is the method according to the embodiment of the present invention. In the case of the conventional method, the number is 10,000.
  • the counting result of exosome 620 is the method according to the embodiment of the present invention.
  • the number is 10,000
  • the conventional method is 18,000.
  • the ratio of the number of exosomes 620 that bind to one bead 66 and the number of exosomes 620 that bind to two beads 66 differ each time analysis is performed.
  • the exosomes 620 are considered in consideration of the arrangement of the beads 66 according to the pulse width of the detection signal. Count the number of Therefore, according to the analyzer according to the embodiment of the present invention, even when an irregular pulse wave is detected in the detection signal due to the arrangement of the beads 66, the number of exosomes 620 can be counted with high accuracy. It is possible to improve the quantitativeness with respect to the detection target.
  • the first reference value T2, the second reference value T4, and the third reference value T6 are determined in consideration of the jitter value of the detection signal,
  • the influence of jitter can be reduced, and the number of exosomes 620 can be counted with higher accuracy.
  • the combination of the biological material that is the detection target and the specific biological material that specifically binds to the detection target is fixed to the antigen 62 of the exosome 620, the antibody 61, and the bead 66.
  • the combination with the antibody 65 is not limited.
  • the combination that specifically binds may be, for example, a combination of a ligand and a receptor (enzyme protein, lectin, hormone, etc.), a combination of nucleic acids having mutually complementary base sequences, and the like.
  • a well-type well made of silicone rubber or the like is installed on the surface of the substrate 100, and the reaction of the target antibody 61, antigen 62, beads 66, etc., and unreacted substances are washed only in the region within the well.
  • processes such as spin cleaning and drying can be simplified, and a plurality of wells can be set on the same radius as long as the area of the substrate 100 allows, so that a plurality of samples can be measured simultaneously.
  • the present invention includes a program for causing a computer to execute the function of the notification device according to the embodiment described above.
  • the program may be read from a recording medium and taken into a computer, or may be transmitted via an electric communication line and taken into a computer.
  • the present invention includes various embodiments that are not described here, such as a configuration in which the above-described configurations are mutually applied. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
  • the present invention it is possible to provide an analysis apparatus and an analysis method that can improve the quantitativeness of a detection target by changing the number to be added according to the pulse width of the detection signal.

Abstract

 分析装置は、表面に検出対象620及び検出対象620を標識する粒子66が固定された基板100を光学的に走査し、光走査部3が基板100を走査することにより光走査部3から取得される検出信号に含まれるパルス波を検出し、光走査部3が互いに隣接する複数の粒子66を走査する場合の検出信号の第1パルス幅T1に応じた第1基準値T2未満のパルス幅Taをそれぞれ有する2つのパルス波が2回連続して検出されると、検出対象620の数を1として計数する。

Description

分析装置及び分析方法
 本発明は、抗体、抗原等の生体物質を分析するための分析装置及び分析方法に関する。
 疾病に関連付けられた特定の抗原または抗体をバイオマーカーとして検出することで、疾病の発見や治療の効果等を定量的に分析する免疫検定法(immunoassay)が知られている。酵素により標識された抗原または抗体を検出するELISA法(Enzyme-Linked ImmunoSorbent Assay)は、免疫検定法の一つであり、コスト等のメリットから広く普及している。ELISA法は、前処理、抗原抗体反応、B/F(bond/free)分離、酵素反応等を合計した時間が、数時間から1日程度であり、長時間を要する。
 これに対して、光ディスクに固定された抗体と試料中の抗原を結合させ、抗原と抗体を有する粒子とを結合させ、光ヘッドで走査することにより、ディスク上に捕捉された粒子を短時間に計数する技術が提案されている(特許文献1)。また、光ディスクのトラッキング構造が形成される面に生体試料や粒子を付着させ、光ピックアップで信号の変化を検出する技術が提案されている(特許文献2)。
特開平5-5741号公報 特表2002-530786号公報
 しかしながら、特許文献1及び2に記載の技術は、粒子の種類及び配置等により、粒子に対応した検出信号が得られない可能性がある。すると、粒子の計数結果が不正確となり、検出対象に対する定量性が悪化するおそれがある。
 上記問題点を鑑み、本発明は、検出対象に対する定量性を向上できる分析装置及び分析方法を提供することを目的とする。
 上記目的を達成するために、本発明の第1の態様は、表面に検出対象(620)及び検出対象(620)を標識する粒子(66)が固定された基板(100)を光学的に走査する光走査部(3)と、光走査部(3)が基板(100)を走査することにより光走査部(3)から取得される検出信号に含まれるパルス波及びパルス波のパルス幅を検出するパルス検出部(51)と、パルス検出部(51)により第1基準値(T2)未満のパルス幅(Ta)をそれぞれ有する2つのパルス波が2回連続して検出されると、検出対象(620)の数を1として計数する計数部(50)とを備える分析装置であることを特徴とする。
 本発明の第2の態様は、表面に検出対象(620)及び検出対象(620)を標識する粒子(66)が固定された基板(100)を光学的に走査することと、基板(100)を走査することにより取得される検出信号に含まれるパルス波及びパルス波のパルス幅を検出することと、前記検出信号から第1基準値(T2)未満のパルス幅(Ta)をそれぞれ有する2つのパルス波が2回連続して検出されると、検出対象(620)の数を1として計数することとを含む分析方法であることを特徴とする。
図1は、本発明の実施の形態に係る分析装置の基本的な構成を説明する模式的なブロック図である。 図2(a)~(f)は、本発明の実施の形態に係る分析装置の基板に抗体、抗原、ビーズを固定する方法の一例を説明する模式的な基板の拡大断面図である。 図3は、基板において、1個のエキソソームに2個のビーズ66が結合する様子を説明する模式的な図である。 図4は、基板を走査する時のスポット位置と信号強度との特性を隣接するビーズの数毎に示すシミュレーション結果である。 図5は、本発明の実施の形態に係る分析装置の基板を走査する際のスポット位置と信号強度との特性を説明する隣接するビーズの数毎に示す図である。 図6は、本発明の実施の形態に係る分析装置の記憶部が記憶する基準値の決定方法を説明する図である。 図7は、本発明の実施の形態に係る分析装置の記憶部が記憶する基準値の決定方法を説明する図である。 図8は、本発明の実施の形態に係る分析装置の動作を説明するフローチャートである。 図9は、本発明の実施の形態に係る分析装置の動作を説明する図である。 図10は、本発明の実施の形態に係る分析装置の動作を説明する図である。 図11は、本発明の実施の形態に係る分析装置におけるバイオマーカー濃度とビーズ計数結果との特性を従来装置と比較する図である。
 次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略している。
(分析装置)
 本発明の実施の形態に分析装置は、図1に示すように、基板100と、基板100を回転させるモータ2と、基板100を光学的に走査する光走査部3と、モータ2及び光走査部3を制御する制御部5とを備える。
 基板100は、例えば、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、ブルーレイディスク(BD)等の光ディスクと同等の寸法を有する円盤状である。基板100は、表面に光走査部3が走査可能なトラック構造を有する。トラック構造は、グルーブ、ランド、ピット等からなり、内周側から外周側にスパイラル状に形成される。基板100は、例えば、一般の光ディスクに用いられるポリカーボネート樹脂やシクロオレフィンポリマー等の疎水性を有する樹脂材料からなる。また、基板100表面には必要に応じて、薄膜形成やシランカップリング剤などによる表面処理を施すこともできる。
 基板100は、図2に示すように、検出対象の生体物質である抗原62と特異的に結合する抗体61が表面に固定される。抗原62が、表面に抗原62と特異的に結合する抗体65が固定されたビーズ(粒子)66によって標識されることにより、抗原62及びビーズ66は、基板100の表面に対して相対的に固定される。抗原62は、抗体61及び抗体65と特異的に結合することにより、疾病等の指標となるバイオマーカーとして用いられる。
 図2(a)に示すように、基板100は、予め、表面に抗体61が固定される。抗体61は、疎水結合や共有結合により基板100の表面に結合される。抗体61は、アビジン等の物質を介して基板100の表面に固定されてもよい。次に、図2(b)に示すように、抗原62を含む試料液63が基板100の表面に滴下される。抗原62は、ブラウン運動により試料液63中を移動することにより抗体61と接触し、抗原抗体反応により、抗体61と特異的に結合する。図2(c)に示すように、基板100に滴下された試料液63を、純水等を用いてスピン洗浄することにより、抗体61と結合しない余剰の抗原62を含む試料液63が除去される。
 図2(d)に示すように、ビーズ66を含む緩衝液64が基板100の表面に滴下される。緩衝液64は、試料液63が残存するまま基板100に滴下されてもよい。ビーズ66の表面に固定された抗体65は、抗原抗体反応により、抗原62と特異的に結合する。次に、ビーズ66は、抗原62と結合することにより、抗原62を標識する。
 ビーズ66は、例えば、フェライト等の磁性材料を内包するポリスチレン等の合成樹脂により略球形に形成される。ビーズ66の直径は、数十nm~数百nm程度であり、例えば直径200nmである。ビーズ66は、緩衝液64が滴下される際に基板100の反対側に磁石が配置されることにより、迅速に基板100の表面に集合され、抗原62との反応を促進することができる。また、抗原62とビーズ66とが同時に投入されることにより、基板100に固定された抗原62を標識するまでの時間を数分程度に短縮することができる。
 抗体61及び抗体65とは、抗原62と特異的に結合する特異性生体物質であればよく、それぞれが別の部位と結合する組み合わせを選択する。例えば、複数種類の抗原62が表面に発現しているエキソソーム等の膜小胞を検出対象とする場合は、抗体61及び抗体65は異なる種類とすることにより、2種類の抗原62を有する生体試料を検出することができる。これに限らず、エキソソーム等は通常の抗原とは異なり、表面に同種のたんぱく質である抗原が複数存在していることから、抗体61及び抗体65は、同じ種類とされてもよい。
 図2(e)に示すように、基板100に滴下された緩衝液64を、純水等を用いて洗浄することにより、抗原62と結合しない余剰のビーズ66を含む緩衝液64が除去される。図2(f)に示すように、基板100が光走査部3により光学的に走査され、ビーズ66が検出されることにより、ビーズ66に標識された抗原62を分析することができる。
 光走査部3は、図1に示すように、レーザ発振器31と、コリメータレンズ32と、ビームスプリッタ33と、アクチュエータ34と、対物レンズ35と、集光レンズ36と、光検出部37とを備える。光走査部3は、基板100を光学的に走査する光ピックアップである。
 レーザ発振器31は、制御部5の制御に応じて、コリメータレンズ32に向けてレーザ光を出射する。レーザ発振器31は、例えば、波長がBDの再生用と同一の405nmであり、出力が1mW程度のレーザ光を出射する半導体レーザ発振器である。コリメータレンズ32は、レーザ発振器31から出射されたレーザ光を平行にする。ビームスプリッタ33は、コリメータレンズ32により平行にされたレーザ光を対物レンズ35に向けて反射する。
 対物レンズ35は、制御部5の制御に応じたアクチュエータ34の駆動により、ビームスプリッタ33を経由したレーザ光を、抗体61が固定された基板100の表面に集光してスポットSを結像する。対物レンズ35は、例えば開口数が0.85である。対物レンズ35に集光されたレーザ光は、基板100において反射し、ビームスプリッタ33に入射する。ビームスプリッタ33は、入射したレーザ光は、ビームスプリッタ33を透過し、集光レンズ36を介して光検出部37に入射する。集光レンズ36は、基板100において反射したレーザ光を光検出部37に集光する。光検出部37は、例えばフォトダイオードからなり、基板100から反射したレーザ光の光量に対応する検出信号を制御部5に出力する。
 制御部5は、回転制御部21を介して、モータ2の駆動を制御する。モータ2は、制御部5の制御により、線速度一定(CLV)方式で基板100を回転させる。線速度は、例えば4.92m/sである。
 制御部5は、光学系制御部4を介して、レーザ発振器31及びアクチュエータ34の駆動を制御する。アクチュエータ34は、制御部5の制御により、回転する基板100の表面をスパイラル状に走査するように、光走査部3を基板100の半径方向に移動させる。その他、制御部5は、光検出部37から出力された検出信号から、フォーカスエラー(FE)やトラッキングエラー(TE)を等のエラーを検出する。制御部5は、検出したエラーに応じて、基板100の表面を適正に走査するようにアクチュエータ34等を制御する。
 制御部5は、パルス検出部51と、記憶部52と、計数部50とを備える。パルス検出部51は、光検出部37により出力された検出信号を入力する。パルス検出部51は、光走査部3から取得される検出信号に含まれるパルス波及びパルス波のパルス幅を検出する。パルス検出部51は、デジタルシグナルプロセッサ(DSP)等の信号処理装置から構成される。記憶部52は、半導体メモリ等の記憶装置から構成される。記憶部52は、パルス検出部51が検出するパルス波及びパルス幅に対する基準値等を記憶する。
 計数部50は、パルス検出部51により検出されたパルス波と、記憶部52が記憶する基準値に基づいて、基板100の表面に固定された検出対象の個数を計数する。計数部50は、中央演算処理装置(CPU)等から構成される。計数部50は、第1カウンタ501と、第2カウンタ502と、対象カウンタ503とを論理構造として有する。
 第1カウンタ501は、パルス検出部51により検出されたパルス波のパルス幅Taを測定する。第2カウンタ502は、パルス検出部51により検出されたパルス波のパルス幅Taに応じて、次に検出されるパルス波との間のパルス間隔Tbを測定する。対象カウンタ503は、第1カウンタ501及び第2カウンタ502の測定結果と、記憶部52に記憶される基準値とに基づいて、ビーズ66の個数を計数することにより、検出対象の個数を計数する。
 仮に、図2(d)に示す例において、ビーズ66が複数の抗原62を表面に有するエキソソーム等の生体物質を標識するとする。一般に、癌の早期発見等、微量のエキソソーム検出を想定する場合、液中のビーズ66の量は、エキソソームの量と比較して過剰に投入される。エキソソームは、一般に50nm~150nm程度の様々な直径を有する。一方、ビーズ66の直径は200nm程度である。
 よって、例えば図3に示すように、表面の抗原62の1つが基板100上の抗体61に結合した1個のエキソソーム620に、2個のビーズ66が結合することがある。すなわち、ビーズ66を光学的に検出することによりエキソソーム620を検出する場合、互いに隣接する2個のビーズ66に対応する2つのパルス波は、2個のビーズ66の各抗体65にそれぞれ標識された2つの抗原62を有する1個のエキソソーム620である確立が極めて高い。なお図3は、基板100の上面に貫通孔を有するウェル11が配置され、ウェル11の貫通孔と基板100とが、液体が滴下される容器を構成する例を示している。
 本発明の実施の形態に係る分析装置は、検出信号及び記憶部52に記憶される基準値等に基づいて、検出されたパルス波が、互いに隣接する2個のビーズ66によるものか否かを判断する。そして、互いに隣接する2個のビーズ66によるものと判断されたパルス波のパターンが検出された場合、対応する走査範囲に存在するエキソソーム620の個数を1として計数することにより、検出対象であるエキソソーム620の定量性が向上される。
-基準値-
 図4に示す3つの検出信号DS1~DS3は、基板100上のビーズ1個を想定した凸ピット1個、ビーズ2個を想定した隣接した凸ピット2個、隣接ビーズ3個を想定した隣接した凸ピット3個をそれぞれ走査する際の検出信号をシミュレーションした結果である。横軸はある区間における先頭のビーズ66に対するスポットSの位置、縦軸は検出信号をビーズ66が存在しないときの検出信号で正規化した信号強度である。検出信号DS1~DS3は、孤立する1個のビーズ66から、2個、3個とビーズ66の個数が増加する従い、パルス幅が大きくなると考えられる。
 しかしながら、図5に示すように、互いに隣接する2個のビーズ66を走査する際の実際の検出信号D2は、パルス幅が、孤立するビーズ66を走査する際の検出信号D1よりもそれぞれ小さく、互いに同程度の2つのパルス波を含む。なお、3個のビーズ66が互いに隣接する場合の検出信号も同様に、検出信号D2のパルス幅とほぼ等しく、検出信号D2よりパルス間隔が大きい2つのパルス波を含む。
 このように、ビーズ66の直径が走査するレーザ光の波長の1/2程度であり、隣接する複数のビーズ66が存在する場合、ビーズ66の計数結果が不正確になる可能性がある。発明者らは、以上のような、一般の光ディスクのピットと異なる、光の波長以下の大きさの構造体(粒子)に対する光の作用を、有限差分時間領域(FDTD)法によりマクスウェル方程式を時間と空間変数に関して解くことにより明らかにした。
 更に、互いに隣接する2個のビーズ66が基板100上に存在する場合、2個のビーズ66は、1個のエキソソーム620を標識している可能性が高い。本発明の実施の形態に係る分析装置によれば、後述するように、ビーズ66の配置に応じた検出信号のパルス幅Ta、パルス間隔Tb、及び記憶部52に記憶される基準値に基づいて、エキソソーム620の個数を高精度に計数することができる。
 記憶部52は、図6に示すように、光走査部3が互いに隣接する2個のビーズ66を走査する場合の検出信号D2の2つのパルス波の第1パルス幅T1と、第1パルス幅T1に応じて決定される第1基準値T2とを予め記憶する。第1基準値T2は、例えば、第1パルス幅T1と所定値の和である。第1パルス幅T1に加算される所定値は、検出信号が有するジッタ値とすればよい。第1パルス幅T1に加算される所定値は、ジッタ値の100%~130%程度としてもよい。その他、第1基準値T2は、第1パルス幅T1の所定の比率としてもよい。第1基準値T2の比率は、例えば第1パルス幅T1の100%~130%程度である。
 記憶部52は、図7に示すように、光走査部3が他のビーズ66から孤立するビーズ66を走査する場合の検出信号D1の第2パルス幅T3と、第2パルス幅T3に応じて決定される第2基準値T4とを予め記憶する。第2基準値T4は、例えば、第2パルス幅T3と所定値の和である。第2パルス幅T3に加算される所定値は、検出信号が有するジッタ値とすればよい。第2パルス幅T3に加算される所定値は、ジッタ値の100%~130%程度としてもよい。その他、第2基準値T4は、第2パルス幅T3の所定の比率としてもよい。第2基準値T4の比率は、例えば第2パルス幅T3の100%~130%程度である。
 更に、記憶部52は、図6に示すように、光走査部3が互いに隣接する2個のビーズ66を走査する場合の検出信号D2に含まれる2つのパルス波のパルス間隔T5と、パルス間隔T5に応じて決定される第3基準値T6とを予め記憶する。第3基準値T6は、例えば、パルス間隔T5と所定値の和である。パルス間隔T5に加算される所定値は、検出信号が有するジッタ値とすればよい。パルス間隔T5に加算される所定値は、ジッタ値の100%~130%程度としてもよい。その他、第3基準値T6は、パルス間隔T5の所定の比率としてもよい。第3基準値T6の比率は、例えば第パルス間隔T5の100%~130%程度である。
(分析方法)
 図8のフローチャートを用いて、本発明の実施の形態に係る分析装置において、光走査部3が基板100を光学的に走査し、計数部50が基板100に固定されたエキソソーム620を検出対象として計数することにより分析する方法を説明する。
 先ず、オペレータの操作により、制御部5の制御に応じた回転制御部21及び光学系制御部4が、モータ2及び光走査部3の駆動をそれぞれ開始する。抗原抗体反応等により抗原62及びビーズ66が表面に固定された基板100は、モータ2により線速度一定に回転され、光走査部3により光学的に走査される。光走査部3は、レーザ発振器31から出射され基板100の表面において反射したレーザ光を、光検出部37において検出する。光検出部37は、検出したレーザ光の光量に応じた検出信号をパルス検出部51に出力する。
 ステップS1において、パルス検出部51は、光検出部37から出力された検出信号を取得し、取得した検出信号の立ち下がりを検出する。パルス検出部51は、ビーズ66が走査される際の検出信号のピーク値の1/2程度の強度に設定された閾値を予め保持し、検出信号が閾値を下回る時点を検出信号の立ち下がりとして検出する。
 次に、ステップS2において、第1カウンタ501は、図9に示すように、ステップS1において立ち下がりが検出された時点から、時間Taの測定を開始する。
 次に、ステップS3において、パルス検出部51は、光検出部37から取得した検出信号の立ち上がりを検出する。パルス検出部51は、ビーズ66が走査される際の検出信号のピーク値の1/2程度の強度に設定された閾値を予め保持し、検出信号が閾値を上回る時点を検出信号の立ち上がりとして検出する。
 次に、ステップS4において、第1カウンタ501は、ステップS1において立ち下がりが検出された時点からステップS3において立ち上がりが検出された時間までの時間Taを確定し、リセットする。対象カウンタ503は、第1カウンタ501により確定された時間Taを取得し、ステップS1~S3において検出されたパルス波のパルス幅(半値幅)Taとして保持する。
 次に、ステップS5において、対象カウンタ503は、記憶部52から第1基準値T2を読み出し、ステップS4において保持したパルス幅Taが第1基準値T2未満であるか否かを判定する。対象カウンタ503は、パルス幅Taが第1基準値T2未満である場合、ステップS6に処理を進め、パルス幅Taが第1基準値T2以上である場合、ステップS11に処理を進める。
 ステップS5においてパルス幅Taが第1基準値T2未満である場合、ステップS6において、対象カウンタ503は、隣接フラグがハイ(High:1)であるか否かを判定する。隣接フラグは、対象カウンタ503において、第2カウンタ502に連動して設定されるフラグである。対象カウンタ503は、ステップS6において隣接フラグがハイである場合、ステップS7に処理を進め、隣接フラグがロー(Low:0)である場合、ステップS14に処理を進める。
 仮に、図9に示す例において、検出信号D2がパルス検出部51に入力され、1回目のパルス波の立ち上がりをステップS3においてパルス検出部51が検出したとする。この場合、ステップS6において隣接フラグはローであり、計数部50は、ステップS14に処理を進める。
 ステップS14において、第2カウンタ502は、ステップS3において立ち上がりが検出された時点から、時間Tbの測定を開始する。対象カウンタ503は、第2カウンタ502に連動して、ステップS3において立ち上がりが検出された時点から隣接フラグをハイに設定し、ステップS10に処理を進める。
 ステップS10において、制御部5は、予め設定された基板100のトラック範囲の光走査部3による走査が終了したか否かを判定する。制御部5は、走査が終了している場合、処理を終了し、未だ走査が終了していない場合、ステップS1に処理を戻す。
 仮に、図9に示す例において、検出信号D2がパルス検出部51に入力され、2回目のパルス波の立ち上がりをステップS3においてパルス検出部51が検出したとする。この場合、ステップS6において隣接フラグはハイであり、計数部50は、ステップS7に処理を進める。
 ステップS7において、第2カウンタ502は、ステップS3において1回目の立ち上がりが検出された時点から次のステップS3において2回目の立ち上がりが検出された時間までの時間Tbを確定した後、リセットする。対象カウンタ503は、第2カウンタ502により確定された時間Tbを取得し、2回のステップS1~S3において検出された2つのパルス波のパルス間隔Tbとして保持し、隣接フラグをローに設定する。
 次に、ステップS8において、対象カウンタ503は、記憶部52から第3基準値T6を読み出し、ステップS7において保持したパルス間隔Tbが第3基準値T6未満であるか否かを判定する。対象カウンタ503は、パルス間隔Tbが第3基準値T6未満である場合、ステップS9に処理を進め、パルス間隔Tbが第3基準値T6以上である場合、ステップS15に処理を進める。
 ステップS8においてパルス間隔Tbが第3基準値T6未満である場合、ステップS9において、対象カウンタ503は、光走査部3が互いに隣接する2個のビーズ66を走査したと判断し、エキソソーム620の個数を1として計数し、ステップS10に処理を進める。すなわち、図9に示す例において、検出信号D2がパルス検出部51に入力された場合、ビーズ66の個数は2となるが、互いに隣接する2個のビーズ66は1個のエキソソーム620と結合している可能性が極めて高いことから、エキソソーム620の個数を1として計数する。このように、対象カウンタ503は、第3基準値T6未満のパルス間隔Tbを有する2つのパルス波が2回連続して検出されると、検出対象であるエキソソーム620の個数を1として計数する。
 ステップS9においてパルス間隔Tbが第3基準値T6以上である場合、ステップS15において、対象カウンタ503は、第3基準値T6以上のパルス幅を有するパルス波を、異物、凝集塊等に起因するノイズであると判断し、計数に際して無視する。すなわち、互いに隣接する3個以上のビーズ66は、基板100上において、すべて複数のエキソソーム620と結合する必要があり、出現の可能性が極めて低い。よって、ノイズである可能性が極めて高い第3基準値T6以上のパルス幅を有するパルス波を、計数に際して無視する。
 ステップS5においてパルス幅Taが第1基準値T2以上である場合、ステップS11において、対象カウンタ503は、記憶部52から第2基準値T4を読み出し、ステップS4において保持したパルス幅Taが第2基準値T4未満か否かを判定する。対象カウンタ503は、パルス幅Taが第2基準値T4未満である場合、ステップS12に処理を進め、パルス幅Taが第2基準値T4以上である場合、ステップS13に処理を進める。
 仮に、図10に示すように、検出信号D1がパルス検出部51に入力され、パルス波の立ち上がりをステップS3においてパルス検出部51が検出したとする。この場合、ステップS5においてパルス幅Taが第1基準値T2以上、ステップS9においてパルス幅Taが第2基準値T4未満であり、計数部50は、ステップS12に処理を進める。
 ステップS12において、対象カウンタ503は、光走査部3が他のビーズ66から孤立する1個のビーズ66を走査したと判断し、エキソソーム620の個数を1として計数する。孤立する1個のビーズ66は、基板100上において、1個のエキソソーム620と結合している可能性が高い。このように、対象カウンタ503は、第1基準値T2以上第2基準値T4未満のパルス幅Taをパルス波が検出されると、エキソソーム620の個数を1として計数する。また、対象カウンタ503は、隣接フラグをローに設定し、ステップS10に処理を進める。
 ステップS11においてパルス幅Taが第2基準値T4以上である場合、ステップS13において、対象カウンタ503は、第2基準値T4以上のパルス幅を有するパルス波を、異物、凝集塊等に起因するノイズであると判断し、計数に際して無視する。また、対象カウンタ503は、隣接フラグをローに設定し、ステップS10に処理を進める。
 また、一回目のステップS1~S3において第1基準値T2未満のパルス幅Taを有するパルス波が検出された次に、2回目のステップS1~S3において第1基準値T2以上第2基準値T4未満のパルス幅Taを有するパルス波が検出されたとする。この場合、対象カウンタ503は、先に検出されたパルス波を異物等に起因するノイズであると判断し、計数に際して無視する。
 以上のように、対象カウンタ503は、検出信号に第1基準値T2未満のパルス幅Taを有するパルス波が2回連続して検出されると、1を加算していくことにより、エキソソーム620の個数を計数する。また、対象カウンタ503は、検出信号に第1基準値T2以上第2基準値T4未満のパルス幅Taをパルス波が検出されると1を加算していくことにより、ビーズ66の個数を計数する。
(比較例)
 図11を用いて、本発明の実施の形態に係る分析装置によるビーズ66の計数結果と、従来方法による計数結果との比較例を説明する。横軸は、検出対象となるバイオマーカー(エキソソーム620)の濃度であり、縦軸はビーズ66の計数結果である。本発明の実施の形態に係る分析装置による計数結果を曲線P1に、従来方法による計数結果を曲線P2に示す。
 曲線P1に対して、曲線P2はバイオマーカーの濃度に関わらず計数結果が少なくなっている。曲線P1及び曲線P2に沿う破線のように、理想的にはバイオマーカー含有量が0であれば計数結果も0となるべきである。しかしながら、抗原抗体反応を用いた検出方法では、基板100上に、抗原抗体反応による結合の他に非特異吸着が生じる。このため、バイオマーカーの濃度が0であっても、非特異吸着により基板100の表面に固定されたビーズ66が計数されてしまう。
 曲線P1,P2において、曲線P1,P2のバイオマーカー濃度がそれぞれ0(図11における最左端のプロット)の誤差上限Q1,Q2をバックグラウンドノイズという。このバックグラウンドノイズと各プロットにおける誤差下限との接点(交点)をそれぞれ最小検出感度R1,R2という。従来方法による計数結果は、ビーズ66のカウント数そのものであり、実験(分析)を行うたびに異なるため、バラツキも大きくなる。本発明の実施の形態に係る分析装置による計数結果は、ビーズカウント数=エキソソーム数であるため、実験(分析)を繰り返してもバラツキは小さくなる。その結果、本発明の実施の形態に係る分析装置の最小検出感度R1は、従来方法の最小検出感度R2に比べて向上しており、バイオマーカー検出の感度が向上していることが分かる。よって、本発明の実施の形態に係る分析装置によれば、疾病等の検出感度を向上することができる。
 従来方法では、2個のビーズ66に標識された1個のエキソソーム620を2個として計数してしまうため、真値とのばらつきが大きな計数結果となるおそれがあった。例えば、ノイズレベルQを基準と考える場合、従来方法は、濃度が基準に達していない検体に対して誤診断を行う危険性を有する。
 例えば、1万個のエキソソーム620について、1個のビーズ66と結合するエキソソーム620が8千個、2個のビーズ66と結合するエキソソーム620が2千個あったとすると、エキソソーム620の計数結果は、本発明の実施の形態の方法では1万個、従来方法による方法では1万2千個となる。また、1個のビーズ66と結合するエキソソーム620が5千個、2個のビーズ66と結合するエキソソーム620が5千個あったとすると、エキソソーム620の計数結果は、本発明の実施の形態の方法では1万個、従来方法による方法では1万5千個となる。更に、1個のビーズ66と結合するエキソソーム620が2千個、2個のビーズ66と結合するエキソソーム620が8千個あったとすると、エキソソーム620の計数結果は、本発明の実施の形態の方法では1万個、従来方法による方法では1万8千個となる。このように、1個のビーズ66と結合するエキソソーム620の個数と、2個のビーズ66と結合するエキソソーム620の個数の割合は、分析を行う度に異なる。
 本発明の実施の形態に係る分析装置は、基板100上にビーズ66が隣接して固定される場合であっても、検出信号のパルス幅に応じて、ビーズ66の配置を考慮してエキソソーム620の個数を計数する。よって、本発明の実施の形態に係る分析装置によれば、ビーズ66の配置により検出信号に不規則なパルス波が検出された場合であっても、エキソソーム620の個数を高精度に計数することが可能となり、検出対象に対する定量性を向上することができる。
 また、本発明の実施の形態に係る分析装置によれば、第1基準値T2、第2基準値T4及び第3基準値T6が、検出信号のジッタ値を考慮されて決定されることにより、パルス幅Taの類別に際してジッタの影響を低減することができ、エキソソーム620の個数を更に高精度に計数することができる。
(その他の実施の形態)
 上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。
 例えば、既に述べた実施の形態において、検出対象である生体物質と、検出対象と特異的に結合する特異性生体物質との組み合わせは、エキソソーム620の抗原62と、抗体61及びビーズ66に固定された抗体65との組み合わせに限るものでない。特異的に結合する組み合わせは、例えば、リガンドと受容体(酵素タンパク質、レクチン、ホルモン等)との組み合わせ、互いに相補的な塩基配列を有する核酸の組み合わせ等であってもよい。
 さらに、基板100表面にシリコーンゴム等で作製された井戸型のウェルを設置し、そのウェル内のみの領域において、対象の抗体61、抗原62、ビーズ66などの反応、未反応物の洗浄を行うことで、スピン洗浄、乾燥などのプロセスを簡略化できたり、基板100の面積が許す範囲で複数のウェルを同一半径上に設置することにより、複数検体の同時計測も可能である。
 また、本発明は、既に述べた実施の形態に係る通知装置の機能をコンピュータに実行させるためのプログラムを含む。プログラムは、記録媒体から読み取られコンピュータに取り込まれてもよく、電気通信回線を介して伝送されてコンピュータに取り込まれてもよい。
 その他、上述の構成を相互に応用した構成等、本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 特願2014-072552号(出願日:2014年3月31日)の全内容は、ここに援用される。
 本発明によれば、検出信号のパルス幅に応じて、加算する数を変更することにより、検出対象に対する定量性を向上できる分析装置及び分析方法を提供することができる。
 2 モータ
 3 光走査部
 4 光学系制御部
 5 制御部
 21 回転制御部
 31 レーザ発振器
 32 コリメータレンズ
 33 ビームスプリッタ
 34 アクチュエータ
 35 対物レンズ
 36 集光レンズ
 37 光検出部
 50 計数部
 51 パルス検出部
 52 記憶部
 61 抗体
 62 抗原
 63 試料液
 64 緩衝液
 65 抗体
 66 ビーズ(粒子)
 100 基板
 501 第1カウンタ
 502 第2カウンタ
 503 対象カウンタ
 620 エキソソーム(検出対象)

Claims (8)

  1.  表面に検出対象及び前記検出対象を標識する粒子が固定された基板を光学的に走査する光走査部と、
     前記光走査部が前記基板を走査することにより前記光走査部から取得される検出信号に含まれるパルス波及び前記パルス波のパルス幅を検出するパルス検出部と、
     前記パルス検出部により第1基準値未満のパルス幅をそれぞれ有する2つのパルス波が2回連続して検出されると、前記検出対象の数を1として計数する計数部と
     を備えることを特徴とする分析装置。
  2.  前記計数部は、前記検出部において、前記第1基準値以上かつ第2基準値未満のパルス幅を有するパルス波が検出されると、前記検出対象の数を1として計数することを特徴とする請求項1に記載の分析装置。
  3.  前記計数部は、前記検出部において、前記第1基準値未満のパルス幅を有する第1パルス波が検出され、前記第1パルス波の次の第2パルス波が検出され、前記第1パルス波と前記第2パルス波とのパルス間隔が第3基準値以上である場合において、前記第1パルス波及び前記第2パルス波を計数しないことを特徴とする請求項1又は2に記載の分析装置。
  4.  前記計数部は、前記検出部において、前記第1基準値未満のパルス幅を有する第1パルス波が検出された次に、前記第1基準値以上前記第2基準値未満のパルス幅を有するパルス波が検出された場合において、前記第1パルス波を計数しないことを特徴とする請求項2又は3に記載の分析装置。
  5.  前記計数部は、前記検出部において、前記第2基準値以上のパルス幅を有するパルス波が検出された場合において、前記第2基準値以上のパルス幅を有するパルス波を計数しないことを特徴とする請求項2~4のいずれか1項に記載の分析装置。
  6.  前記第1基準値は、前記第1パルス幅と前記検出信号が有するジッタ値との和であることを特徴とする請求項1~5のいずれか1項に記載の分析装置。
  7.  前記第2基準値は、前記第2パルス幅と前記検出信号が有するジッタ値との和であることを特徴とする請求項2~6のいずれか1項に記載の分析装置。
  8.  表面に検出対象及び前記検出対象を標識する粒子が固定された基板を光学的に走査することと、
     前記基板を走査することにより取得される検出信号に含まれるパルス波及び前記パルス波のパルス幅を検出することと、
     前記検出信号から第1基準値未満のパルス幅をそれぞれ有する2つのパルス波が2回連続して検出されると、前記検出対象の数を1として計数することと
     を含むことを特徴とする分析方法。
PCT/JP2015/057304 2014-03-31 2015-03-12 分析装置及び分析方法 WO2015151753A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580014243.3A CN106461531B (zh) 2014-03-31 2015-03-12 分析装置和分析方法
SG11201607752QA SG11201607752QA (en) 2014-03-31 2015-03-12 Analysis device and analysis method
EP15772509.4A EP3128310B1 (en) 2014-03-31 2015-03-12 Analysis device and analysis method
US15/268,989 US20170003213A1 (en) 2014-03-31 2016-09-19 Analysis Device and Analysis Method
US16/694,014 US20200088626A1 (en) 2014-03-31 2019-11-25 Analysis device and analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014072552A JP6225798B2 (ja) 2014-03-31 2014-03-31 分析装置及び分析方法
JP2014-072552 2014-03-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/268,989 Continuation US20170003213A1 (en) 2014-03-31 2016-09-19 Analysis Device and Analysis Method

Publications (1)

Publication Number Publication Date
WO2015151753A1 true WO2015151753A1 (ja) 2015-10-08

Family

ID=54240085

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057304 WO2015151753A1 (ja) 2014-03-31 2015-03-12 分析装置及び分析方法

Country Status (6)

Country Link
US (2) US20170003213A1 (ja)
EP (1) EP3128310B1 (ja)
JP (1) JP6225798B2 (ja)
CN (1) CN106461531B (ja)
SG (1) SG11201607752QA (ja)
WO (1) WO2015151753A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962276B2 (ja) * 2018-06-06 2021-11-05 株式会社Jvcケンウッド 分析用閾値決定装置及び分析用閾値決定方法
JP7000998B2 (ja) * 2018-06-06 2022-01-19 株式会社Jvcケンウッド 分析用閾値生成装置及び分析用閾値生成方法
JP7218788B2 (ja) * 2018-06-06 2023-02-07 株式会社Jvcケンウッド 分析用閾値生成装置及び分析用閾値生成方法
JP7208468B2 (ja) * 2018-08-01 2023-01-19 株式会社Jvcケンウッド 分析装置及び分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309288A (ja) * 2003-04-07 2004-11-04 Matsushita Electric Ind Co Ltd 分析装置
JP2005156538A (ja) * 2003-10-30 2005-06-16 Matsushita Electric Ind Co Ltd 光学分析装置およびその粒子カウント方法
JP2012237711A (ja) * 2011-05-13 2012-12-06 Jvc Kenwood Corp 光学的分析装置、光学的分析方法
JP2013064722A (ja) * 2011-05-13 2013-04-11 Jvc Kenwood Corp 試料分析用ディスク

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6829208B1 (en) * 1999-08-18 2004-12-07 Matsushita Electric Industrial Co., Ltd. Optical disk reproducing method and reproducing device
US7221632B2 (en) * 2001-07-12 2007-05-22 Burstein Technologies, Inc. Optical disc system and related detecting methods for analysis of microscopic structures
US20030133840A1 (en) * 2001-10-24 2003-07-17 Coombs James Howard Segmented area detector for biodrive and methods relating thereto
AU2003279801A1 (en) * 2002-10-02 2004-04-23 Airadvice, Inc. Method and apparatus for particle sizing
JP2008071422A (ja) * 2006-09-14 2008-03-27 Sanyo Electric Co Ltd トラックジャンプ制御回路
TW201017149A (en) * 2008-08-06 2010-05-01 Invitrox Inc Use of focused light scattering techniques in biological applications
WO2012014778A1 (ja) * 2010-07-26 2012-02-02 オリンパス株式会社 発光プローブを用いて溶液中の希薄粒子を検出する方法
US8691160B2 (en) * 2011-05-13 2014-04-08 JVC Kenwood Corporation Sample analysis disc and method of producing sample analysis disc

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004309288A (ja) * 2003-04-07 2004-11-04 Matsushita Electric Ind Co Ltd 分析装置
JP2005156538A (ja) * 2003-10-30 2005-06-16 Matsushita Electric Ind Co Ltd 光学分析装置およびその粒子カウント方法
JP2012237711A (ja) * 2011-05-13 2012-12-06 Jvc Kenwood Corp 光学的分析装置、光学的分析方法
JP2013064722A (ja) * 2011-05-13 2013-04-11 Jvc Kenwood Corp 試料分析用ディスク

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOJI TSUJITA ET AL.: "Ultrahigh-Sensitivity Biomarker Sensing System Based on the Combination of Optical Disc Technologies and Nanobead Technologies", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 52, 2013, pages 09LB02 - 1- 09LB02-4, XP055228014 *
MASAYUKI ONO ET AL.: "Hikari Disc Gijutsu o Oyo shita Biomaker Koseido Kenshutsu Gijutsu no Kaihatsu", SOCIETY FOR CHEMISTRY AND MICRO-NANO SYSTEMS DAI 27 KAI KENKYUKAI KOEN YOSHISHU, vol. 27 th, May 2013 (2013-05-01), pages 23, XP008183992 *
See also references of EP3128310A4 *

Also Published As

Publication number Publication date
JP2015194405A (ja) 2015-11-05
EP3128310A1 (en) 2017-02-08
CN106461531B (zh) 2020-03-27
SG11201607752QA (en) 2016-11-29
US20170003213A1 (en) 2017-01-05
JP6225798B2 (ja) 2017-11-08
EP3128310A4 (en) 2017-04-19
EP3128310B1 (en) 2021-10-20
US20200088626A1 (en) 2020-03-19
CN106461531A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US10627398B2 (en) Analysis device and analysis method
US20200088626A1 (en) Analysis device and analysis method
JP5776433B2 (ja) 光学的分析装置、光学的分析方法
CN107076662B (zh) 分析装置以及分析方法
EP3460473B1 (en) Analysis method and analysis device
JP2014219384A (ja) 試料分析用デバイス及びエクソソームの捕捉方法
JP2015127691A (ja) 分析用基板、分析用基板の製造方法及び基板分析装置
JP5899908B2 (ja) 試料分析用ディスク
JP2017058242A (ja) 検体検出用ユニット、分析装置、及び、分析方法
US8691160B2 (en) Sample analysis disc and method of producing sample analysis disc
JP5510388B2 (ja) 光学的分析装置、光学的分析方法
JP5939021B2 (ja) 試料分析用ディスク
JP2018136297A (ja) 分析装置及び分析方法
JP5958066B2 (ja) 試料分析用ディスク
JP6760508B2 (ja) 分析方法及び分析装置
JP2012255773A (ja) 試料分析用ディスクおよび試料分析用ディスク製造方法
WO2019235209A1 (ja) 分析用閾値決定装置及び分析用閾値決定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15772509

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015772509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015772509

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE