WO2015147021A1 - 酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法 - Google Patents

酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法 Download PDF

Info

Publication number
WO2015147021A1
WO2015147021A1 PCT/JP2015/059028 JP2015059028W WO2015147021A1 WO 2015147021 A1 WO2015147021 A1 WO 2015147021A1 JP 2015059028 W JP2015059028 W JP 2015059028W WO 2015147021 A1 WO2015147021 A1 WO 2015147021A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium oxide
weight
granules
reinforced plastic
recovery method
Prior art date
Application number
PCT/JP2015/059028
Other languages
English (en)
French (fr)
Inventor
啓子 北村
逸志 樫本
雅宏 西村
Original Assignee
Rapas株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rapas株式会社 filed Critical Rapas株式会社
Priority to US15/306,764 priority Critical patent/US10279336B2/en
Priority to EP15768800.3A priority patent/EP3124528B1/en
Priority to JP2016510405A priority patent/JP6364068B2/ja
Priority to CN201580028062.6A priority patent/CN106459472B/zh
Publication of WO2015147021A1 publication Critical patent/WO2015147021A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/16Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with inorganic material
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • B29B2017/0213Specific separating techniques
    • B29B2017/0255Specific separating techniques using different melting or softening temperatures of the materials to be separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/04Disintegrating plastics, e.g. by milling
    • B29B2017/0424Specific disintegrating techniques; devices therefor
    • B29B2017/0496Pyrolysing the materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2213/00Glass fibres or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method of recovering a reinforcing material from reinforced plastic using titanium oxide granules, and more particularly to a method of recovering carbon fiber from carbon fiber reinforced plastic using heated titanium oxide granules.
  • Reinforced plastic is a material in which fibers made of various materials are put into the plastic to make up for the lack of strength and heat resistance of the plastic.
  • metal fiber ⁇ MFRP: fiber (reinforcing material) is metal fiber ⁇ are known.
  • Carbon fiber reinforced plastics are used in aerospace agents, sporting goods (golf, tennis rackets) and the like due to their excellent properties such as tensile modulus.
  • Glass fiber reinforced plastics are used for building materials and the like due to their non-flammability and heat resistance.
  • Patent Document 1 states that “when carbon fiber reinforced plastic is carbonized in a carbonization furnace and recycled carbon fiber is recovered, a pulverized product having a maximum diameter of carbon fiber reinforced plastic of 20 mm or less is made to have a layer thickness of 300 mm or less.
  • the furnace pressure was 0.3 to 1.0 mmH 2 O while introducing an inert gas at a processing temperature of 400 ° C. to 950 ° C. and introducing an inert gas 10 to 100 times / minute of the furnace capacity.
  • a method for recovering regenerated carbon fiber, characterized in that carbonization treatment is performed below.
  • the recovery method described in Patent Document 1 is obviously different from the recovery method of the present application because carbonization is performed.
  • Patent Document 2 states that “in a carbon fiber reinforced plastic in which a mixture of carbon fiber reinforced plastic and tetralin or decalin is pressurized and heated in a non-oxidizing gas atmosphere to decompose and remove the resin in the carbon fiber reinforced plastic.
  • the carbon fiber recovery method is disclosed.
  • the collection method described in Patent Document 2 uses a mixture with tetralin or decalin, it is clearly different from the collection method of the present application.
  • Patent Document 3 states that “a fiber reinforced plastic including glass fiber and a polymer provided so as to cover the glass fiber is contacted with semiconductor powder at 100 ° C. or more in the presence of oxygen to oxidatively decompose the polymer. The method for recovering glass fiber from fiber-reinforced plastic, wherein the glass fiber is recovered by removing the glass fiber. " However, the only semiconductor powder that indicates that glass fiber was actually recovered was Cr 2 O 3 powder. Although titanium oxide is also mentioned, only powdered titanium oxide is targeted.
  • Patent Documents 4 and 5 Various studies have also been conducted on catalysts used for waste plastic decomposition treatment.
  • the present inventors have found that the reinforcing material can be recovered with high efficiency by bringing the heated titanium oxide granules into contact with the reinforced plastic, thereby completing the present invention. That is, the present invention is as follows. “1. A method for recovering a reinforcing material by bringing heated titanium oxide granules into contact with a reinforced plastic. 2. The said contact is the collection
  • the angle at which the granules start to slide is 0.5 to 15.0 degrees
  • the angle at which all the granules finish sliding is 2.0 to 30.0 degrees 8.
  • (1) The titanium oxide sol is dried to form a titanium oxide gel.
  • the titanium oxide gel is fired at a temperature in the range of 450 to 850 ° C., and the fired product is crushed and made of titanium oxide granules obtained by edge treatment.
  • the proportion of particles having a particle size of 0.5 to 1.18 mm is in the range of 50 to 95% by weight and has a wear rate of 2.0% or less.
  • the particle size distribution falls within the following range: 1.4 mm or more is 0 to 1.0% by weight 1.0 ⁇ 1.4mm is 0 ⁇ 10.0wt% 0.6 to 1.0 mm is 10 to 60.0% by weight 0.3 to 0.6 mm is 10 to 60.0% by weight 0.125-0.3mm is 0-30.0% by weight 0.13mm or less is 0 to 30.0% by weight (2)
  • the particle size distribution falls within the following range: 1.4 mm or more is 0% by weight 1.0 ⁇ 1.4mm is 0 ⁇ 2.0wt% 0.6 to 1.0 mm is 27 to 60.0% by weight 0.3 to 0.6 mm is 30 to 55.0% by weight 0.125-0.3mm is 0-20.0% by weight 0.125mm or less is 0 to 25.0% by weight 13 6.
  • the recovery method according to item 14, wherein the supported amount of copper oxide is 0.5% by weight to 5.0% by weight in terms of copper oxide.
  • the method of recovering reinforcing material from reinforced plastic using the titanium oxide granules of the present invention in particular, the method of recovering carbon fibers from carbon fiber reinforced plastic using titanium oxide granules is compared with the conventional recovery method Thus, it has the following remarkable effects.
  • High recovery efficiency (2) Capable of recovering in a short time (3) Capable of recovering in the state of long fibers or fine fabrics (4) Less exhaust gas generation due to recovery (5) Purity of recovered reinforcing material is high (6) The surface of the collected reinforcing material is not scratched or scarce
  • Carbon fiber reinforced plastic (state of fabric) before and after recovery.
  • the arrow means “nylon resin”.
  • the electron microscope figure (state of a textile cloth) of the carbon fiber reinforced plastic before a collection process and after a collection process.
  • Carbon fiber reinforced plastic before recovery and after recovery (long fiber).
  • C Short fiber carbon fiber was recovered from the crushed sample.
  • the present invention relates to “a method for recovering a reinforcing material by bringing heated titanium oxide granules into contact with a reinforced plastic”.
  • the present invention relates to “a method for recovering carbon fibers from carbon fiber reinforced plastic using heated titanium oxide granules”. Details will be described below.
  • the “reinforced plastic” used in the present invention is not particularly limited, but glass fiber reinforced plastic ⁇ GFRP: fiber (reinforced material) is glass fiber ⁇ , carbon fiber reinforced plastic ⁇ CFRP: fiber (reinforced material) is carbon fiber ⁇ , Boron fiber reinforced plastic ⁇ BFRP: fiber (reinforcing material) is boron fiber ⁇ and metal fiber ⁇ MFRP: fiber (reinforcing material) is metal fiber ⁇ can be exemplified, preferably carbon fiber reinforced plastic and glass fiber. It is a reinforced plastic, more preferably a carbon fiber reinforced plastic.
  • the “carbon fiber reinforced plastic” used in the present invention is a material in which carbon fiber is put in plastic.
  • the plastic as such matrix resin is not particularly limited, but is thermosetting resin (epoxy resin, phenol resin, unsaturated polyester resin, vinyl ester resin, etc.), thermoplastic resin (polypropylene resin, polyamide resin, polyether ether). Ketone resin, polycarbonate resin, polyphenylene sulfide, etc.).
  • the carbon fiber is not particularly limited, and examples thereof include pitch yarn, rayon yarn, and acrylic yarn.
  • Carbon fiber reinforced plastic is not particularly limited, but prepreg ⁇ thermoplastic prepreg (carbon fiber impregnated with thermoplastic resin such as acrylic, HTPE, PET, PP, nylon PA6, PPS), carbon fiber spread yarn fabric Prepreg ⁇ , semi-preg (thermoplastic semi-preg) and the like.
  • the “glass fiber reinforced plastic” used in the present invention is a material in which glass fiber is put in plastic.
  • the kind of thermoplastic resin which is a plastic as a matrix resin is not particularly limited.
  • general-purpose plastics vinyl chloride resin, heat-resistant vinyl chloride resin, polyethylene, polypropylene, polystyrene, ABS resin, AS resin, polymethyl methacrylate, etc.
  • thermoplastic engineering plastics polyamide, polyethylene terephthalate (PET), polyacetal, polycarbonate, modified Polyphenylene oxide, polybutylene terephthalate (PBT), ultra-high molecular weight polyethylene, etc.
  • super engineering plastics polysulfone, polyethersulfone, polyphenylenesulfide, polyarylate, polyetherimide, polyetheretherketone, polyimide, polytetrafluoroethylene (fluorine) Resin
  • the like is not particularly limited.
  • titanium oxide granules The “titanium oxide granules” of the present invention can support not only titanium oxide but also copper and / or copper oxide.
  • the “heating temperature of the titanium oxide granules” of the present invention must be at least 300 ° C. and 700 ° C., preferably 350 ° C. or more, particularly preferably 420 ° C. to 560 ° C., The range is preferably 480 ° C to 550 ° C, and most preferably 500 ° C to 530 ° C.
  • the heating temperature is the temperature in the reaction vessel for reacting the titanium oxide granules and the reinforced plastic, and indicates the set temperature for maintaining the set temperature of the titanium oxide granules.
  • the fluctuation range of the titanium oxide granule temperature in the reaction tank is about +/ ⁇ 30 ° C. from the set temperature.
  • it may be higher or lower than a particularly preferable “heating temperature of the titanium oxide granules” in the present invention at a certain location in the reaction tank.
  • most of the titanium oxide granules need only be maintained at a preferred heating temperature.
  • the reinforcing material can be recovered with high efficiency by using the titanium oxide granules under optimum heating conditions. Furthermore, the titanium oxide granules can be easily separated from components other than plastic (particularly, metals and inorganics mixed in the plastic) contained in the reinforced plastic. Furthermore, the recovery method of the present invention is not particularly limited as long as the heated titanium oxide granules can be brought into contact with the reinforced plastic, but preferably, the titanium oxide granules and the reinforced plastic are placed in a reaction vessel and allowed to stand. Stir as well as heat.
  • the method of stirring the titanium oxide granules and the reinforced plastic is not particularly limited, but a reaction vessel in which a stirring device is introduced can be used, but preferably the titanium oxide granules and the reinforced plastic are placed in the reaction vessel.
  • Use an apparatus capable of circulating stirring examples include, but are not particularly limited to, the decomposition apparatuses described in International Publication No. 2007/122967 and International Publication No. 2009/051253.
  • the “particle diameter” of the titanium oxide granules used in the recovery method of the present invention is 0.20 mm to 1.2 mm, preferably 0.30 mm to 1.0 mm, more preferably 0.40 mm to 1.0 mm, and most preferably 0.40 mm to 0.80 mm. is there. More specifically, the particle diameter of 70% or more, preferably 80% or more, more preferably 90% or more of the total titanium oxide granules before use has a particle size of 0.20 mm to 1.2 mm, preferably 0.3 mm to 1.0 mm. mm, more preferably 0.40 mm to 1.0 mm, and most preferably 0.40 mm to 0.80 mm.
  • the center distribution of the particle diameter is 0.4 mm to 0.6 mm, preferably about 0.50 mm, for titanium oxide before use.
  • the “particle diameter” of the titanium oxide granules is 0.4 mm to 1.0 mm, preferably 0.5 mm to 0.8 mm.
  • the recovery rate of fine metal / inorganic mixed in the reinforced plastic can be increased.
  • the particle diameter of the said range can refer the content as described in international publication 2010/021122.
  • the “particle diameter” of the titanium oxide granules used in the recovery method of the present invention may be in the following range. 1.4mm or more is 0 to 1.0% by weight 1.0 ⁇ 1.4mm is 0 ⁇ 10.0wt% 0.6 to 1.0 mm is 10 to 60.0% by weight 0.3 to 0.6 mm is 10 to 60.0% by weight 0.125-0.3mm is 0-30.0% by weight 0.13mm or less is 0 to 30.0% by weight More specifically, the particle size distribution falls in the following range.
  • the “particle diameter” of the titanium oxide granules used in the recovery method of the present invention may be in the following range. 1.2 mm or more is 1 to 50% by weight, 0.5-1.2mm is 40-90% by weight 0.5 mm or less is 1 to 20% by weight.
  • the content of the said range can refer the content as described in Japanese Patent 4848479.
  • the shape of the granule is substantially spherical
  • index which shows that the spherical degree of particle shape is high index which shows that the spherical degree of particle shape is high, "roundness”, “rolling inclination angle of a granule (particle)", “rest angle”, etc. are mentioned.
  • International Publication 2013/088922 can be referred to.
  • the “roundness measurement method” of the present invention can be performed under the following conditions and apparatus.
  • condition A CCD camera is attached to the inverted microscope, and image processing is performed using Image-Pro Plus. Specifically, the titanium oxide granules are put so as not to overlap the plastic petri dish. Then, an image is captured at a magnification of 4 times with the inverted microscope described below, and the roundness is automatically measured with Image-Pro Plus.
  • apparatus Microscope: Inverted microscope TMD-300 Nihon Optics (Nikon), CCD camera: Nippon Roper, Retiga 2000R (1600 ⁇ 1200pixels) Image processing equipment: Nippon Roper, Image-Pro Plus
  • the “roundness” of the titanium oxide granules used in the recovery method of the present invention is 1.00 to 2.00, preferably 1.00 to 1.50, more preferably 1.00 to 1.40, still more preferably 1.00 to 1.30, and most preferably 1.00 to 1.20. More specifically, the roundness of granules of 70% or more, preferably 80% or more, more preferably 90% or more of all titanium oxide granules before use is 1.00 to 2.00, preferably 1.00 to 1.50, more Preferably it is 1.00 to 1.40, more preferably 1.00 to 1.30, and most preferably 1.00 to 1.20.
  • the “rolling inclination angle of the granule” of the present invention can be performed under the following conditions. 20g of titanium oxide granules are placed on a glass plate, and the glass plate is inclined from the horizontal (0 degree), (1) the angle at which the titanium oxide granules start to slide, (2) the angle at which all the granules finish sliding Measure.
  • the numerical value of the “rolling inclination angle of the granules” of the titanium oxide granules used in the recovery method of the present invention is as follows. (1) The angle at which the granules start to slide is 0.5 ° to 15.0 °, preferably 0.5 ° to 10.0 °, more preferably 0.5 ° to 8.0 °, and most preferably 0.5 ° to 5.0 °. (2) The angle at which all the granules finish sliding is 2.0 to 30.0 degrees, preferably 2.0 to 25.0 degrees, more preferably 2.0 to 22.0 degrees, and most preferably 2.0 to 18.0 degrees.
  • the “rest angle” of the present invention can be measured by the following method. 20g of unused titanium oxide granules are dropped with a funnel, and the angle between the slope and the horizontal plane when the layer is formed in a mountain shape is measured. The angle of repose is smaller for powders with good fluidity, and conversely becomes larger for powders with poor powder flowability.
  • the “rest angle” of the titanium oxide granules used in the recovery method of the present invention is 15 to 35 degrees, preferably 20 to 35 degrees.
  • tap density is another index indicating the characteristics of the titanium oxide granules used in the recovery method of the present invention.
  • the tap density of the titanium oxide granules can be measured as follows. About 180 g of titanium oxide granules are put into a 200 mL glass graduated cylinder, and this graduated cylinder is naturally dropped 10 times on a 10 mm thick rubber sheet from a position of 50 mm in height, and then a wooden plate is taken from a distance of 50 mm. 10 times, and the above operation was repeated twice. Then, the scale of the graduated cylinder was read to make the volume of the granule V (mL). Separately, the granule was dried at 110 ° C. for 3 hours. The weight M (g) is measured, and based on these, the tap density is obtained from the formula M / V.
  • the “tap density” of the titanium oxide granules used in the recovery method of the present invention is 1.00 g / mL to 1.80 g / mL, preferably 1.03 g / mL to 1.60 g / mL, more preferably 1.05 g / mL to 1.40 g / mL.
  • wear rate Another index indicating the characteristics of the titanium oxide granules used in the recovery method of the present invention is “wear rate”.
  • the wear rate of the titanium oxide granules of the present invention can be measured by the following method.
  • this wear rate measuring apparatus is configured by attaching a stirrer 202 to a sample container 201 having an inner diameter of 63 mm and a depth of 86 mm, and the stirrer 202 has an elliptical stirring blade 204 having a length of 20 mm at the lower end portion of the shaft body 203.
  • the stirring blades are inclined so as to have an angle of 45 ° with respect to the horizontal.
  • the lowermost edge of the stirring blade is located at a distance of 8 mm from the bottom of the sample container.
  • the “wear rate” of the titanium oxide granules used in the recovery method of the present invention is 2.0% by weight or less, preferably 1.5% by weight or less, more preferably 1.0% by weight or less.
  • specific surface area is another index showing the characteristics of the titanium oxide granules used in the recovery method of the present invention.
  • the specific surface area of the titanium oxide granules of the present invention can be measured by the following method. In the present invention, measurement is performed using the BET method. Details are as follows.
  • the BET method is a method in which molecules having a known adsorption occupation area are adsorbed on the surface of powder particles at the temperature of liquid nitrogen, and the specific surface area of the sample is obtained from the amount.
  • the 2300 type automatic measuring device manufactured by Shimadzu Corporation is used as the specific surface area measuring device.
  • the “specific surface area” of the titanium oxide granules used in the recovery method of the present invention is 30 m 2 / g or more, preferably 33 m 2 / g to 80 m 2 / g, more preferably 35 m 2 / g to 70 m 2. / g. Furthermore, the specific surface area of the titanium oxide granules before use is 30 m 2 / g to 70 m 2 / g. This means that the larger the specific surface area, the larger the contact surface between the granule and the reinforced plastic, and the recovery efficiency can be increased. However, if the specific surface area is too large, the heat resistance becomes weak, and the granule tends to collapse and become powdered easily.
  • the pore volume of titanium oxide as an active ingredient is 0.05 ml / g to 1.00 ml / g, preferably 0.07 ml / g to 0.80 ml / g, more preferably 0.10. ml / g to 0.60 ml / g.
  • a method for measuring the pore volume of the titanium oxide granule a method known per se can be used, but in the present invention, the pore volume is measured using a mercury intrusion method. Details are as follows.
  • the mercury intrusion method is a method for obtaining the pore volume from the pressure and the amount of injected mercury by applying a pressure to make mercury enter the fine pores of the powder by utilizing the high surface tension of mercury.
  • a porosimeter manufactured by Thermo Finnigan (mercury intrusion type maximum pressure: 200 MPa) was used.
  • the titanium oxide sol is dried to obtain a titanium oxide gel.
  • the titanium oxide gel is fired at a temperature in the range of 450 to 850 ° C., and the fired product is crushed and subjected to edge treatment.
  • the proportion of particles having a particle diameter of 0.5 to 1.18 mm is in the range of 50 to 95% by weight and has a wear rate of 2.0% or less.
  • Japanese Patent Publication No. 2005-307007 can be referred to.
  • copper oxide or copper may be supported on the titanium oxide granules described above.
  • the amount of copper oxide supported is not particularly limited, but is preferably 0.5% by weight to 5.0% by weight in terms of copper oxide.
  • International Publication 2013/088922 can be referred to.
  • the “titanium oxide granule” or “titanium oxide granule carrying copper oxide or copper” of the present invention has the above-mentioned characteristics, so that the reinforcing material can be recovered with high efficiency over a long period of time. Furthermore, in the “titanium oxide granules” of the present invention, the particle size distribution of the titanium oxide granules is narrower than the particle size distribution of the conventional titanium oxide. Therefore, by using a sieve larger and smaller than the particle distribution of the titanium oxide granules, it is possible to easily separate the granules and foreign substances (metal, inorganic, etc. mixed in the reinforced plastic).
  • the “method for producing a titanium oxide granule” of the present invention comprises a titania sol (including at least one sol selected from a silica sol, an alumina sol, and a zirconia sol as necessary) after stirring to form a spherical granule.
  • a titania sol including at least one sol selected from a silica sol, an alumina sol, and a zirconia sol as necessary
  • the baking is performed at a temperature in the range of 400 ° C. to 850 ° C.
  • the granule after baking with a specific particle size is obtained by sieving.
  • the stirring granulation can use a method known per se, but the liquid binder (in the present invention, the sol described above) is stirred, and the above-mentioned powder is mixed by a shearing effect by a high-speed stirring blade. Granulation to obtain consolidated aggregates is preferred. Furthermore, the powder of the inorganic oxide and the liquid binder (in the present invention, the sol described above) are stirred, and the powder is consolidated by the shearing effect of the high-speed stirring blade together with the aggregation of the powder by the sol. Granulation may be used to obtain agglomerated aggregates.
  • the pressure density and particle size of the obtained aggregate can be arbitrarily adjusted by the amount of sol, the rotational speed of the stirring blade, the granulation time, and the like.
  • the shape of the obtained aggregate can be further spheroidized by appropriately selecting the bottom plate in the granulation container of the stirring granulator.
  • the granulator for stirring and granulating is not particularly limited.
  • a mixed granulator NMG series manufactured by Nara Machinery Co., Ltd. a high speed mixer manufactured by Fukae Powtech Co., Ltd. High Flex Gral, Eirich Intensive Mixer (Eirich Backflow High-Speed Mixer) manufactured by Eirich Japan Co., Ltd., G-LABO High Speed Mixing Granulator HSG Series, Dalton Co., Ltd. Kneading and High-speed Mixing Granulator
  • the SPG series, high-speed mixing / fine-grained machine Spartan Luther, and the vertical granulator VG-CT series manufactured by POWREC Co., Ltd. are preferably used.
  • the granules obtained by stirring granulation are subjected to rolling granulation and fluidized bed granulation in the presence of the sol.
  • the sol is obtained by pulverizing the inorganic oxide pulverized product or the sol after drying and firing. You may use the mixture with a ground material.
  • Rolling granulation refers to a granulation method in which a mixture of powder and liquid binder is given a rolling motion to obtain agglomerated particles.
  • Fluidized bed granulation is already well known. As described above, it refers to a granulation method in which a liquid binder is supplied to a fluidized bed of powder to form aggregates by forming a cross-link by a binder between particles.
  • the temperature is in the range of 400 ° C to 850 ° C.
  • Granules having the required particle size by collecting particles having a particle size in the range of 0.1 mm to 1.2 mm (or 0.1 mm to 1.4 mm) by calcination at a temperature followed by sieving Can be obtained.
  • Such a rolling granulator and fluidized bed granulator (composite granulator) for granulation are not particularly limited in the present invention, but, for example, manufactured by Dalton Co., Ltd. Fluidized bed granulator “New / Malmerizer”, spherical granulator “Malmerizer”, fluid bed granulator manufactured by POWREC, tumbling fluidized coating device “Multiplex” series, etc. .
  • a known plastic / organic decomposition apparatus can be used as the apparatus used in the recovery method of the present invention.
  • the catalyst circulation type waste plastics having a higher contact efficiency between the granules and the reinforced plastic than the conventional batch decomposition apparatus.
  • Organic matter decomposition devices are preferred.
  • the catalyst circulation type waste plastic / organic decomposition apparatus is described in International Publication No. 2007/122967 and International Publication No. 2009/051253.
  • the above-described decomposition apparatus includes an oxidation catalyst treatment means and / or a reduction catalyst treatment means, and more preferably includes a lime neutralization treatment means.
  • Alumina catalyst treatment means (2) Reinforced plastic crushing means (3) Carrier gas supply means (4) Means for collecting scattered metal / inorganic matter and / or catalyst discharged from the reaction tank of the reinforced plastic treatment means.
  • Cyclone dust collecting means (first dust collecting means) (6) Dust collecting means with bag filter (second dust collecting means) (7) Heat exchange means (8) Preheater means (9) Exhaust blower means (10) Cooling means (11) Heat recovery means (12) Hydrogen chloride continuous measurement means (13) CO continuous measurement means (14) Alarm means ( 15) Oxidation catalyst treatment means / reduction catalyst treatment means
  • the stirring of the titanium oxide granules and the reinforced plastic varies depending on the volume of the reaction vessel, the shape of the stirring blade, and the stirring method, but the rotational speed is 5 rpm to 70 rpm, preferably 10 rpm to 60 rpm. In addition, the same rotation speed is preferable even if the reaction vessel is a batch system or a circulation system. This is a value that takes into account that if the rotational speed is too fast, the titanium oxide granules wear significantly, but if the rotational speed is slow, the contact efficiency between the titanium oxide granules and the reinforced plastic decreases.
  • titanium oxide granules used in the method for recovering a reinforcing material of the present invention were produced by the following methods. Details are as follows.
  • Titanium oxide granules 1 In the titanium oxide production process by the sulfuric acid method, the slurry of titanium hydroxide obtained from the hydrolysis process was filtered, washed with water, and repulped to obtain slurry A. To this slurry A, nitric acid was added as a solubilizer to obtain a titanium oxide sol B. Further, a part of the sol B was heated to 100 ° C. and dried to obtain a dried gel, which was baked in an electric furnace at 500 ° C. for 3 hours to obtain a titanium oxide fired product C.
  • This titanium oxide calcined product C was pulverized, and the obtained pulverized product was diluted 5-fold with water using a high-speed stirring granulator SPG-25 manufactured by Dalton Co., Ltd. under the conditions of a stirring blade 250 rpm and a high-speed chopper 3000 rpm.
  • the sol B was granulated while sprayed to obtain titanium oxide particles.
  • the titanium oxide particles are dried at 100 ° C. for 3 hours, then calcined at 600 ° C., and sieved with sieves having an opening of 1.19 mm and 0.104 mm, and granules having a particle size of 0.1 mm to 1.2 mm Was 100% by weight.
  • granules having a particle size of 0.1 mm to 1.2 mm have a standard sieve 15 mesh (wire diameter 0.5 mm, opening 1.19 mm) and 150 mesh (wire diameter of 0.1 mm) made of a stainless steel wire mesh. 065 mm, aperture 0.104 mm), and 15 meshes below (passing part) and 150 meshes above (residual part).
  • granules having a particle size of 0.1 mm to 1.2 mm were obtained as follows.
  • the 15 mesh standard sieve is attached to the upper lid of a low tap type standard sieve shaker manufactured by Yoshida Seisakusho Co., Ltd.
  • the 150 mesh standard sieve is attached to the lower tray, and 100 g of titanium oxide granules are used as a sample on the 15 mesh standard sieve.
  • the titanium oxide granules obtained above had a specific surface area of 60 m 2 / g by the BET method, a pore volume of 0.15 mL (cc) / g by the mercury intrusion method, and a tap density of 1.16 g / mL. It was. The wear rate was 0.3%.
  • Titanium oxide granules 2 The titanium hydroxide slurry A obtained in (1) above is heated and dried at 100 ° C. to obtain a dried gel, which is baked in an electric furnace at 500 ° C. for 3 hours, pulverized, and titanium oxide.
  • a pulverized product of the baked product D was obtained, and 50 parts by weight of the pulverized product of the titanium oxide baked product D and 50 parts by weight of the pulverized product of the titanium oxide baked product C were mixed.
  • a mixture of 50 parts by weight of the pulverized product of the titanium oxide fired product D and 50 parts by weight of the pulverized product of the titanium oxide fired product C is treated in the same manner as in the above (1), and the obtained particles are dried, fired, and sieved.
  • the titanium oxide granules obtained above had a specific surface area of 62 m 2 / g, a pore volume of 0.28 mL (cc) / g, a tap density of 1.06 g / mL, and a wear rate of 1.0%.
  • Titanium oxide granules 3 The titanium oxide granules obtained in the above (1) are sprayed with a pulverized product of the titanium oxide C obtained in the above (1) and the sol B diluted 4 times with water by a rolling granulator “Malmerizer”. Then, the particles were sized in a more spherical shape, and the obtained particles were obtained in the same manner as in (1) above to obtain granules having a particle size in the range of 0.1 mm to 1.2 mm.
  • the titanium oxide granules obtained above had a specific surface area of 59 m 2 / g, a pore volume of 0.17 mL (cc) / g, a tap density of 1.18 g / mL, and a wear rate of 0.3%.
  • Titanium oxide granules 4 The titanium oxide sol B obtained in (1) above and ammonium tungstate were mixed. This mixture was heated to 100 ° C. and dried to obtain a dried gel, which was fired in an electric furnace at 500 ° C. for 3 hours to obtain a titanium / tungsten composite oxide (titanium oxide / tungsten oxide weight ratio 90:10). A fired product was obtained. The fired product of the titanium / tungsten composite oxide E was pulverized to obtain a pulverized product. This pulverized product is granulated using a high-speed stirring granulator SPG-25 manufactured by Dalton Co., Ltd.
  • the titanium oxide granule obtained above has a specific surface area of 69 m 2 / g, a pore volume of 0.2 ml (cc) / g, a tap density of 1.20 g / ml, and a wear rate of 0. .5%.
  • the particle diameter (twice the radius) of 70% or more of the total titanium oxide granules obtained above is 0.2 mm to 1.0 mm, more preferably 0
  • the range was from 3 mm to 1.0 mm. More specifically, the particle diameter range was as follows. 1.4% or more is 0% by weight 1.0 ⁇ 1.4mm is 0 ⁇ 2.0wt% 0.6 to 1.0 mm is 27 to 60.0% by weight 0.3 to 0.6 mm is 30 to 55.0% by weight 0.125-0.3mm is 0-20.0% by weight 0.125mm or less is 0 to 25.0% by weight
  • titanium oxide granules supporting copper oxide used in the method for recovering a reinforcing material of the present invention were produced by the following methods. Details are as follows.
  • Titanium oxide granules 1 supporting copper oxide In the titanium oxide production process by the sulfuric acid method, the slurry of titanium hydroxide obtained from the hydrolysis process was filtered, washed with water, and repulped to obtain slurry A. To this slurry A, nitric acid was added as a solubilizer to obtain a titanium oxide sol B. Further, a part of the sol B was heated to 100 ° C. and dried to obtain a dried gel, which was baked in an electric furnace at 500 ° C. for 3 hours to obtain a titanium oxide fired product C.
  • This titanium oxide calcined product C was pulverized, and the obtained pulverized product was diluted 5-fold with water using a high-speed stirring granulator SPG-25 manufactured by Dalton Co., Ltd. under the conditions of a stirring blade 250 rpm and a high-speed chopper 3000 rpm.
  • the sol B was granulated while sprayed to obtain titanium oxide particles.
  • the titanium oxide particles are dried at 100 ° C. for 3 hours, then calcined at 600 ° C., and sieved with sieves having an opening of 1.19 mm and 0.104 mm, and granules having a particle size of 0.1 mm to 1.2 mm Was 100% by weight.
  • granules having a particle size of 0.1 mm to 1.2 mm have a standard sieve 15 mesh (wire diameter 0.5 mm, opening 1.19 mm) and 150 mesh (wire diameter of 0.1 mm) made of a stainless steel wire mesh. 065 mm, aperture 0.104 mm), and 15 meshes below (passing part) and 150 meshes above (residual part).
  • granules having a particle size of 0.1 mm to 1.2 mm were obtained as follows.
  • the 15 mesh standard sieve is attached to the upper lid of a low tap type standard sieve shaker manufactured by Yoshida Seisakusho Co., Ltd.
  • the 150 mesh standard sieve is attached to the lower tray, and 100 g of titanium oxide granules are used as a sample on the 15 mesh standard sieve.
  • the granules are immersed in various concentrations of copper nitrate aqueous solution, dried, and then fired at 500 ° C. to carry titanium oxide supporting 1 wt% CuO, 3 wt% CuO, or 5 wt% CuO. Granules were obtained. The amount of copper oxide supported was confirmed by fluorescent X-ray.
  • Titanium oxide granules 2 supporting copper oxide The titanium hydroxide slurry A obtained in (1) above is heated and dried at 100 ° C. to obtain a dried gel, which is baked in an electric furnace at 500 ° C. for 3 hours, pulverized, and titanium oxide.
  • a pulverized product of the baked product D was obtained, and 50 parts by weight of the pulverized product of the titanium oxide baked product D and 50 parts by weight of the pulverized product of the titanium oxide baked product C were mixed.
  • a mixture of 50 parts by weight of the pulverized product of the titanium oxide fired product D and 50 parts by weight of the pulverized product of the titanium oxide fired product C is treated in the same manner as in the above (1), and the obtained particles are dried, fired, and sieved.
  • granules having a particle size of 0.1 mm to 1.2 mm were obtained.
  • the granules are immersed in various concentrations of copper nitrate aqueous solution, dried, and then fired at 500 ° C. to carry titanium oxide supporting 1 wt% CuO, 3 wt% CuO, or 5 wt% CuO.
  • Granules were obtained. The amount of copper oxide supported was confirmed by fluorescent X-ray.
  • Titanium oxide granules 3 supporting copper oxide The titanium oxide granules obtained in (1) above are spheroidized while spraying the pulverized product of titanium oxide C and the sol B diluted four times with water with a rolling granulator “Malmerizer”. The obtained particles were treated in the same manner as in the above (1) to obtain granules having a particle size in the range of 0.1 mm to 1.2 mm. Finally, the granules are immersed in various concentrations of copper nitrate aqueous solution, dried, and then fired at 500 ° C. to carry titanium oxide supporting 1 wt% CuO, 3 wt% CuO, or 5 wt% CuO. Granules were obtained. The amount of copper oxide supported was confirmed by fluorescent X-ray.
  • Titanium oxide granules 4 supporting copper oxide The titanium oxide sol B obtained in (1) above and ammonium tungstate were mixed. This mixture was heated to 100 ° C. and dried to obtain a dried gel, which was fired in an electric furnace at 500 ° C. for 3 hours to obtain a titanium / tungsten composite oxide (titanium oxide / tungsten oxide weight ratio 90:10). A fired product was obtained. The fired product of the titanium / tungsten composite oxide E was pulverized to obtain a pulverized product. This pulverized product is granulated using a high-speed stirring granulator SPG-25 manufactured by Dalton Co., Ltd.
  • the granules are immersed in various concentrations of aqueous copper nitrate solution, dried, and then fired at 500 ° C. to support titanium / carbon containing 1 wt% CuO, 3 wt% CuO, or 5 wt% CuO. Tungsten composite oxide granules were obtained. The amount of copper oxide supported was confirmed by fluorescent X-ray.
  • the ratio between the weight of the inorganic residue after the recovery treatment and the weight before the recovery treatment was defined as “residue (CF) ratio”.
  • the ratio of the residue (CF) ratio and the CF weight ratio described in the product catalog of samples A and B was defined as “CF recovery rate”.
  • the residue (CF) ratio and the CF recovery rate are shown in Table 1 below.
  • FIG. 2 and an electron micrograph are shown in FIG. 2 and FIG. 3, respectively, before and after the sample B recovery process and after the recovery process from the decomposition tank (after contact with the titanium oxide granules).
  • FIG. 2A in Sample B before treatment, it was confirmed that thin carbon fibers were hardened into a plate shape with a resin and further knitted together with a nylon resin (arrow).
  • FIG. 2B in Sample B after being recovered from the decomposition tank, the resin content is neatly decomposed, and the plate-like carbon fibers become independent fibers one by one like hair. Was confirmed. Furthermore, it was confirmed that the nylon resin part was also decomposed. Moreover, it was able to collect
  • FIG. 3A-1 1000 times
  • FIG. 3A-2 3000 times
  • the entire surface of the carbon fiber is coated with resin.
  • the carbon fiber and the carbon fiber are connected by a resin.
  • FIG. 3B-1 1000 times
  • FIG. 3B-2 3000 times
  • the surface of the carbon fiber was very smooth and clean.
  • the exhaust gas generated during carbon fiber recovery was continuously collected with an exhaust gas analyzer (PG250) to confirm the safety and decomposition time of the exhaust gas. It was confirmed that the recovery process (decomposition process) was completed in about 3 minutes. In addition, a peak of CO 2 generation appeared 30 seconds after the introduction of the carbon fiber reinforced plastic, and it was confirmed that the decomposition treatment was performed. As the exhaust gas component, almost no CO was detected, and CH 4 and NO X were also low in concentration.
  • glass fibers could be recovered in a short time and with a high recovery rate.
  • Samples used as carbon fiber reinforced plastics are: Sample A: Prepreg cured product (sheet form) after thermosetting treatment, Sample B: Carbon shaft cured product (pipe shape) after thermosetting treatment, Sample C: Thermosetting treatment This is a carbon shaft crushed product obtained by crushing a later cured carbon shaft product. Details of each condition, used apparatus, sample, etc. are as follows.
  • Titanium oxide granules used Titanium oxide granules 1 of Example 1
  • FIG. 5 shows an overall view of the samples A, B, and C before the recovery process and after the recovery process from the decomposition tank (after contact with the titanium oxide granules).
  • FIG. 5A even in the heat-cured sample, only the pliable carbon fiber was recovered as a long fiber, as in the pre-cured sample.
  • the recovered CF was 1.0 g. By using a wire mesh, CF could be recovered without scattering.
  • FIG. 5B it was possible to collect supple carbon fibers while maintaining the pipe shape even in the pipe-shaped thermoset-treated sample.
  • FIG. 5C short-fiber carbon fibers could be recovered from the sample crushed after the thermosetting treatment.
  • CF that had partially passed through the sieve was directly recovered from the titanium oxide catalyst by tweezers.
  • the CF adhering to the inner wall of the decomposition tank was also collected.
  • CF was scattered at the time of recovery, and the total amount was not recovered.
  • CF recovered from the decomposition tank was 0.3 g, and CF collected in the exhaust route was 0.2 g, and 0.5 g of CF was recovered as a whole. From the result of the carbon shaft crushed product that has been confirmed to be decomposed, the hardened CFRP that has been finely crushed can recover CF in a processing time of 4 to 5 minutes.
  • the recovery method of the present invention can be described as follows. (1) Compared with conventionally reported recovery methods, the recovery time is short and the recovery rate is high. (2) Conventionally reported collection methods often collect short fibers (chopped strands). However, in the recovery method of the present invention, it can be recovered even in the state of long fibers or fine fabrics. (3) The recovery of the sample CF after the thermosetting treatment was possible without problems. (4) When a wire mesh was used for the pipe-shaped carbon shaft sample, CF could be recovered in the form of a pipe. Therefore, it can be applied to other shapes. (5) Compared with the conventionally reported recovery methods, the purity of the recovered reinforcing material is very high.
  • the recovered reinforcing material (particularly carbon fiber) has a sufficiently recyclable strength. As described above, the above (1) to (8) are very promising in the recycling business of reinforcing materials (particularly carbon fibers).
  • the present inventors have confirmed from the present example that the conventional powdered titanium oxide has the following problems.
  • Conventional powdered titanium oxide is a very fine powder (eg, particle size of 7 nanometers) and is difficult to handle.
  • it is necessary to use a large apparatus (particularly, a large disassembly apparatus).
  • the conventional powdered titanium oxide is scattered in the air when it is carried into the apparatus, it is necessary to take a safety measure to prevent the worker from inhaling.
  • the amount of powdered titanium oxide that can actually be used is reduced by scattering in the air.
  • the mechanical treatment method (such as crushing and using as a reinforcing material for concrete) has limited applications because it cannot recover only carbon fiber.
  • the carbon fiber may deteriorate due to the treatment at a high temperature of 700 ° C. to 800 ° C.
  • the normal pressure dissolution method required a long treatment time.
  • the supercritical / subcritical fluid method had a problem of increasing the size of the apparatus. Furthermore, the present inventors confirmed in this example that the titanium oxide granules used in this example can solve the problems of the above-mentioned conventional powdered titanium oxide.
  • the recovery method of the present invention is very promising for the recycling business of reinforcing materials (particularly carbon fibers).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Textile Engineering (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)
  • Catalysts (AREA)

Abstract

【課題】炭素繊維強化プラスチック及びガラス繊維強化プラスチックの優れた特性により、廃棄物処理やリサイクルが困難である。 【解決手段】加熱した酸化チタン顆粒体を強化プラスチックに接触することにより、高効率で強化材を回収できることを見出し、本発明を完成した。

Description

酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法
 本発明は、酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法、特に、加熱した酸化チタン顆粒体を使用して炭素繊維強化プラスチックから炭素繊維を回収する方法に関する。
 なお、本出願は、参照によりここに援用されるところ、日本特許出願番号2011-065649からの優先権を請求する。
 強化プラスチックは、プラスチックの強度、耐熱性の不足を補うために種々の材料でできた繊維をプラスチックの中に入れた材料である。強化プラスチックとして、ガラス繊維強化プラスチック{GFRP:繊維(強化材)はガラス繊維}、炭素繊維強化プラスチック{CFRP:繊維(強化材)は炭素繊維}、ホウ素繊維強化プラスチック{BFRP:繊維(強化材)はホウ素繊維}及び金属繊維{MFRP:繊維(強化材)は金属繊維}等が知られている。
 炭素繊維強化プラスチックは、その優れた引張弾性率等の特性により、航空宇宙剤、スポーツ用品(ゴルフ、テニスラケット)等に利用されている。
 ガラス繊維強化プラスチックは、不燃・耐熱性等の特性により、建築材料等に利用されている。
 一方、上記炭素繊維強化プラスチック及びガラス繊維強化プラスチックの優れた特性により、廃棄物処理やリサイクルが困難であるという問題がある。
 上記問題を解決すべく、以下のような特許出願が報告されている。
 特許文献1は、「炭素繊維強化プラスチックを炭化炉で炭化処理し再生炭素繊維を回収するに際し、炭素繊維強化プラスチックの最大径が20mm以下である粉砕物を、層厚が300mm以内になるようにして炭化炉に入れ、処理温度400℃~950℃で、炉内容量に対して10~100倍/分の不活性ガスを導入しながら、炉内圧力が0.3~1.0mmHOの下で炭化処理することを特徴とする再生炭素繊維の回収方法」を開示している。
 しかし、特許文献1に記載の回収方法では、炭化処理を行うので、本出願の回収方法とは明らかに異なる。
 特許文献2は、「炭素繊維強化プラスチックと、テトラリン又はデカリンとの混合物を、非酸化性ガス雰囲気下、加圧・加熱して炭素繊維強化プラスチック中の樹脂を分解、除去する炭素繊維強化プラスチック中の炭素繊維の回収方法」を開示している。
 しかし、特許文献2に記載の回収方法では、テトラリン又はデカリンとの混合物を使用するので、本出願の回収方法とは明らかに異なる。
 特許文献3は、「グラスファイバーと、前記グラスファイバーを覆うように設けられたポリマーとを備えた繊維強化プラスチックを、酸素の存在下、半導体粉末に100℃以上で接触させ、前記ポリマーを酸化分解して除去することで、前記グラスファイバーを回収することを特徴とする繊維強化プラスチックからのグラスファイバーの回収方法。」を開示している。
 しかし、実際にグラスファイバーを回収できたことを示す半導体粉末は、Cr23粉末のみである。また、酸化チタンについても言及しているが、粉末の酸化チタンのみを対象としている。
 近年、廃プラスチックを処理し又は再利用する方法として、種々のものが提案され、また、一部は実用化されている。このような廃プラスチック処理の一つの有力な方法として、廃プラスチック片を光触媒として知られている酸化チタンからなる分解触媒の存在下において、加熱して、廃プラスチックをガス化する方法及び装置が提案されている(特許文献4、5参照)。
 また、廃プラスチックの分解処理に用いられる触媒についても種々検討されている(特許文献6~11)。
特開2005-307121号公報 特開2004-091719号公報 特開2012-211223号公報 特開2002-363337号公報 特開2004-182837号公報 特開2005-066433号公報 特開2005-205312号公報 特開2005-307007号公報 国際公開2007/122967号公報 国際公開2010/021122号公報 国際公開2013/089222号公報
 炭素繊維強化プラスチック及びガラス繊維強化プラスチックの優れた特性により、廃棄物処理やリサイクルが困難であるという課題がある。
 本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、加熱した酸化チタン顆粒体を強化プラスチックに接触することにより、高効率で強化材を回収できることを見出し、本発明を完成した。
 すなわち、本発明は以下の通りである。
「1.加熱した酸化チタン顆粒体を強化プラスチックに接触させることにより、強化材を回収する方法。
 2.前記接触とは、前記加熱した酸化チタン顆粒体と共に前記強化プラスチックを撹拌することである、前項1に記載の回収方法。
 3.前記加熱温度は、300℃~600℃の範囲である前項1又は2に記載の回収方法。
 4.前記強化プラスチックが炭素繊維強化プラスチックであり、前記強化材が炭素繊維である前項1~3のいずれか1に記載の回収方法。
 5.前記強化プラスチックがガラス繊維強化プラスチックであり、前記強化材がガラス繊維である前項1~3のいずれか1に記載の回収方法。
 6.前記酸化チタン顆粒体の特性は以下であることを特徴とする前項1~5のいずれか1に記載の回収方法。
 (1)顆粒体の形状が略球形である
 (2)全顆粒体の70%以上の顆粒体の粒子径が0.2mm~1.0mmである
 7.前記顆粒体の形状が略球形とは、以下の特性であることを特徴とする前項6に記載の回収方法。
 (1)顆粒体の滑り始める角度が0.5度~15.0度である
 (2)全ての顆粒体が滑り終わる角度が2.0度~30.0度である
 8.前記顆粒体の比表面積が30m2/g~70m2/gの範囲であることを特徴とする前項1~7のいずれか1に記載の回収方法。
 9.前記顆粒体のタップ密度が1.00g/mL~1.80g/mLの範囲であることを特徴とする前項1~8のいずれか1に記載の回収方法。
 10.前記顆粒体の細孔容積が0.10cc/g~0.60cc/gの範囲であることを特徴とする前項1~9のいずれか1に記載の回収方法。
 11.前記酸化チタン顆粒体の特性は以下の(1)であることを特徴とする前項1~10のいずれか1に記載の回収方法。
 (1)酸化チタンのゾルを乾燥して酸化チタンゲルとし、この酸化チタンゲルを450~850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られる酸化チタン顆粒体からなり、0.5~1.18mmの粒径を有する粒子の割合が50~95重量%の範囲にあり、2.0%以下の摩耗率を有するものである
 12.前記酸化チタン顆粒体の特性は以下の(1)又は(2)であることを特徴とする前項1~5のいずれか1に記載の回収方法。
 (1)粒度分布が次の範囲に入る
 1.4mm以上が、0~1.0重量%
 1.0~1.4mmが、0~10.0重量%
 0.6~1.0mmが、10~60.0重量%
 0.3~0.6mmが、10~60.0重量%
 0.125~0.3mmが、0~30.0重量%
 0.125mm以下が、0~30.0重量%
 (2)粒度分布が次の範囲に入る
 1.4mm以上が、0重量%
 1.0~1.4mmが、0~2.0重量%
 0.6~1.0mmが、27~60.0重量%
 0.3~0.6mmが、30~55.0重量%
 0.125~0.3mmが、0~20.0重量%
 0.125mm以下が、0~25.0重量%
 13.前記酸化チタン顆粒体の特性は以下であることを特徴とする前項1~5のいずれか1に記載の回収方法。
 (1)粒度分布が次の範囲に入る
 1.2mm以上が、1~50重量%、
 0.5~1.2mmが、40~90重量%
 0.5mm以下が、1~20重量%。
 14.前記酸化チタン顆粒体は、酸化銅又は銅を担持していることを特徴とする前項1~13に記載のいずれか1に記載の回収方法。
 15.前記酸化銅の担持量は、酸化銅換算で0.5重量%~5.0重量%であることを特徴とする前項14に記載の回収方法。」
 本発明の酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法、特に、酸化チタン顆粒体を使用して炭素繊維強化プラスチックから炭素繊維を回収する方法は、従来の回収方法と比較して、以下の顕著な効果を有する。
 (1)回収効率が高い
 (2)短時間で回収が可能
 (3)長繊維又は繊布の状態で回収ができる
 (4)回収に伴う排ガス発生が少ない
 (5)回収した強化材の純度が高い
 (6)回収した強化材の表面に傷がない又は傷が少ない
酸化チタン顆粒体の摩耗率を測定するための装置を示す図。 回収処理前及び回収処理後の炭素繊維強化プラスチック(繊布の状態)。矢印は、「ナイロン樹脂」を意味する。 回収処理前及び回収処理後の炭素繊維強化プラスチックの電子顕微鏡図(繊布の状態)。 回収処理前及び回収処理後の炭素繊維強化プラスチック(長繊維の状態)。 回収処理前及び回収処理後の熱硬化処理後炭素繊維強化プラスチック。A:熱硬化処理後硬化サンプルでも、硬化前サンプルと同様に、しなやかなカーボンファイバー(炭素繊維)だけを長繊維のまま回収できた。B:治具(金網)を使用することにより、パイプ状のままカーボンファイバーを回収できた。C:破砕したサンプルからは、短繊維のカーボンファイバーを回収できた。
(本発明)
 本発明は、「加熱した酸化チタン顆粒体を強化プラスチックに接触させることにより、強化材を回収する方法」に関する。特に、本発明は、「加熱した酸化チタン顆粒体を使用して炭素繊維強化プラスチックから炭素繊維を回収する方法」に関する。詳細は、以下で説明する。
(強化プラスチック)
 本発明で使用する「強化プラスチック」は、特に限定されないが、ガラス繊維強化プラスチック{GFRP:繊維(強化材)はガラス繊維}、炭素繊維強化プラスチック{CFRP:繊維(強化材)は炭素繊維}、ホウ素繊維強化プラスチック{BFRP:繊維(強化材)はホウ素繊維}及び金属繊維{MFRP:繊維(強化材)は金属繊維}等を例示することができるが、好ましくは、炭素繊維強化プラスチック及びガラス繊維強化プラスチックであり、より好ましくは炭素繊維強化プラスチックである。
(炭素繊維強化プラスチック)
 本発明で使用する「炭素繊維強化プラスチック」は、炭素繊維をプラスチックの中に入れた材料である。
 このようなマトリックス樹脂としてのプラスチックは、特に限定されないが、熱硬化性樹脂(エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂等)、熱可塑性樹脂(ポリプロピレン樹脂、ポリアミド樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、ポリフェニレンサルファイド等)を例示することができる。
 炭素繊維は、特に限定されないが、ピッチ糸、レーヨン糸、アクリル糸等を例示できる。
 炭素繊維強化プラスチックは、特に限定されないが、プリプレグ{熱可塑プリプレグ(アクリル、HTPE、PET、PPやナイロンPA6、PPS等の熱可塑性樹脂を炭素繊維に含浸させたもの)、炭素繊維開繊糸織物プリプレグ}、セミプレグ(熱可塑性セミプレグ)等を例示することができる。
(ガラス繊維強化プラスチック)
 本発明で使用する「ガラス繊維強化プラスチック」は、ガラス繊維をプラスチックの中に入れた材料である。
 マトリックス樹脂としてのプラスチックである熱可塑性樹脂の種類は、特に限定されない。例えば、汎用プラスチック(塩化ビニル樹脂・耐熱塩化ビニル樹脂・ポリエチレン・ポリプロピレン・ポリスチレン・ABS樹脂・AS樹脂・ポリメチルメタアクリレート等)、熱可塑性エンプラ(ポリアミド・ポリエチレンテレフタレート(PET)・ポリアセタール・ポリカーボネート・変性ポリフェニレンオキサイド・ポリブチレンテレフタレート(PBT)・超高分子量ポリエチレン等)、スーパーエンプラ{ポリサルフォン・ポリエーテルサルホン・ポリフェニレンサルファイド・ポリアリレート・ポリエーテルイミド・ポリエーテルエーテルケトン・ポリイミド・ポリテトラフロロエチレン(フッ素樹脂)等}を挙げることができるが、特に限定されない。
(酸化チタン顆粒体)
 本発明の「酸化チタン顆粒体」は、活性成分が酸化チタンのみでだけでなく、銅及び/又は酸化銅を担持することもできる。
(酸化チタン顆粒体の加熱温度)
 本発明の「酸化チタン顆粒体の加熱温度」は、少なくとも、300℃以上かつ700℃以下は必要であり、好ましくは、350℃以上であり、特に好ましくは、420℃~560℃であり、さらに好ましくは480℃~550℃の範囲であり、最も好ましくは500℃~530℃である。
 なお、加熱温度とは、酸化チタン顆粒体と強化プラスチックを反応させるための反応槽内の温度であり、その酸化チタン顆粒体の設定温度を保つための設定温度を指す。すなわち、設定温度を480℃としても、反応槽内の酸化チタン顆粒体温度の振れ範囲は設定温度からプラス・マイナス約30℃となる。
 さらに、反応槽内のある箇所では、反応槽の形状や大きさにより、本発明の特に好ましい「酸化チタン顆粒体の加熱温度」よりも高く又は低くなる場合がある。しかしながら、酸化チタン顆粒体の大部分が好ましい加熱温度に維持されていれば良い。
 本発明の回収方法では、最適な加熱条件下で酸化チタン顆粒体を使用することにより、高効率で強化材の回収を行うことができる。さらには、該酸化チタン顆粒体は、強化プラスチックに含まれるプラスチック以外の成分(特に、プラスチックに混在する金属・無機等)と容易に分離可能である。
 さらに、本発明の回収方法では、加熱した酸化チタン顆粒体を強化プラスチックに接触することができれば特に限定されないが、好ましくは、酸化チタン顆粒体と強化プラスチックを、反応容器に入れて静置して加熱するだけでなく、撹拌する。なお、酸化チタン顆粒体と強化プラスチックを撹拌する方法は、特に限定されないが、撹拌装置を導入した反応容器を使用することもできるが、好ましくは、酸化チタン顆粒体と強化プラスチックが反応容器内を循環撹拌可能な装置を使用する。
 なお、反応容器内を循環撹拌できる装置としては、国際公開2007/122967号公報、国際公開2009/051253号公報に記載されている分解装置を例示することができるが特に限定されない。
(酸化チタン顆粒体の粒子径)
 本発明の回収方法に用いる酸化チタン顆粒体の「粒子径」は、0.20mm~1.2mm、好ましくは0.30mm~1.0mm、より好ましくは0.40mm~1.0mm、最も好ましくは0.40mm~0.80mmである。
 より詳しくは、使用前の全酸化チタン顆粒体中の70%以上、好ましくは80%以上、より好ましくは90%以上の顆粒体の粒子径が、0.20mm~1.2mm、好ましくは0.3mm~1.0mm、より好ましくは0.40mm~1.0mm、最も好ましくは0.40mm~0.80mmである。
 加えて、粒子径の中心分布は、使用前の酸化チタンでは、0.4mm~0.6mm、好ましくは約0.50mmである。
 さらに、金属・無機特にレアメタルなどの微粉金属が混在した強化プラスチックを分解するには、上記酸化チタン顆粒体の「粒子径」は、上記範囲の中でも、0.4mm~1.0mm、好ましくは0.5mm~0.8mmである。
 なお、粒子径の大きい酸化チタン顆粒体を使用することにより、強化プラスチックに混在した微粉金属・無機の回収率を高めることができる。
 なお、上記範囲の粒子径は、国際公開2010/021122に記載の内容を参照することができる。
 また、本発明の回収方法に用いる酸化チタン顆粒体の「粒子径」は、下記の範囲でも良い。
 1.4mm以上が、0~1.0重量%
 1.0~1.4mmが、0~10.0重量%
 0.6~1.0mmが、10~60.0重量%
 0.3~0.6mmが、10~60.0重量%
 0.125~0.3mmが、0~30.0重量%
 0.125mm以下が、0~30.0重量%
 より詳細には、粒度分布が次の範囲に入る。
 1.4mm以上が、0重量%
 1.0~1.4mmが、0~2.0重量%
 0.6~1.0mmが、27~60.0重量%
 0.3~0.6mmが、30~55.0重量%
 0.125~0.3mmが、0~20.0重量%
 0.125mm以下が、0~25.0重量%
 なお、上記範囲の粒子径は、本実施例1で確認済である。
 また、本発明の回収方法に用いる酸化チタン顆粒体の「粒子径」は、下記の範囲でも良い。
 1.2mm以上が、1~50重量%、
 0.5~1.2mmが、40~90重量%
 0.5mm以下が、1~20重量%。
 なお、上記範囲の粒子径は、日本特許4848479に記載の内容を参照することができる。
(酸化チタン顆粒体の形状が略球形)
 本発明の「顆粒体の形状が略球形」とは、従来の酸化チタンの形状と比較して、顆粒体(粒子)表面の角が取れ、粒子形状の球形の度合いが高いことを意味する。
 なお、粒子形状の球形度合いが高いことを示す指標として、「真円度」、「顆粒体(粒子)の転がり傾斜角度」、「安息角度」等が挙げられる。
 詳細は、国際公開2013/089222号公報を参照することができる。
 本発明の「真円度測定方法」は、以下の条件及び装置で行うことができる。
(条件)
 倒立型顕微鏡にCCDカメラを装着し、画像の処理はImage-Pro Plusにより行う。詳しくは、酸化チタン顆粒体をプラスチックシャーレに重ならないように入れる。そして、下記倒立型顕微鏡により倍率4倍で画像を取り込み、Image-Pro Plusにより真円度を自動計測する。
(装置)
 顕微鏡:倒立型顕微鏡 TMD-300 日本光学(ニコン),
 CCDカメラ:日本ローパー株(Nippon Roper) Retiga 2000R(1600×1200pixels)
 画像処理装置:Nippon Roper, Image-Pro Plus
 なお、本発明の回収方法に用いる酸化チタン顆粒体の「真円度」は、1.00~2.00、好ましくは1.00~1.50、より好ましくは1.00~1.40、さらに好ましくは1.00~1.30、最も好ましくは1.00~1.20である。
 より詳しくは、使用前の全酸化チタン顆粒体中の70%以上、好ましくは80%以上、より好ましくは90%以上の顆粒体の真円度が、1.00~2.00、好ましくは1.00~1.50、より好ましくは1.00~1.40、さらに好ましくは1.00~1.30、最も好ましくは1.00~1.20である。
 本発明の「顆粒体の転がり傾斜角度」は、以下の条件で行うことができる。
 酸化チタン顆粒体20gをガラス板上に載せ、そして該ガラス板を水平(0度)から斜めにして、(1)酸化チタン顆粒体の滑り始める角度、(2)全ての顆粒体が滑り終わる角度を測定する。
 なお、本発明の回収方法に用いる酸化チタン顆粒体の「顆粒体の転がり傾斜角度」の数値は以下の通りである。
 (1)顆粒体の滑り始める角度は、0.5度~15.0度、好ましくは0.5度~10.0度、より好ましくは0.5度~8.0度、最も好ましくは0.5度~5.0度である。
 (2)全ての顆粒体が滑り終わる角度は、2.0度~30.0度、好ましくは2.0度~25.0度、より好ましくは2.0度~22.0度、最も好ましくは2.0度~18.0度である。
 本発明の「安息角度」の測定は、以下の方法で行うことができる。
 未使用の酸化チタン顆粒体20gをロートで落下させ、山型に層を形成した時の斜面が水平面となす角を測定する。なお、 安息角度は,流動性の良い粉粒体ほど小さく、逆に粉体流動性の良くない粉粒体の場合には大きくなる。
 なお、本発明の回収方法に用いる酸化チタン顆粒体の「安息角度」は、15度~35度、好ましくは20度~35度である。
 また、本発明の回収方法に用いる酸化チタン顆粒体の特性を示す別の指標として「タップ密度」がある。
 本発明において、酸化チタン顆粒体のタップ密度は以下のように測定できる。
 酸化チタン顆粒体約180gを200mLガラス製メスシリンダーに投入し、このメスシリンダーを厚み10mmのゴム製シート上に高さ50mmの位置から繰り返し10回自然落下させた後、50mmの距離から木製の板の側面に10回打ち当て、以上の操作を2回繰り返した後、メスシリンダーの目盛を読み取り、顆粒体の容積V(mL)とし、別に、顆粒体を110℃で3時間乾燥した後、その重量M(g)を測定、これらに基づいて、タップ密度を式M/Vから求める。
 なお、本発明の回収方法に用いる酸化チタン顆粒体の「タップ密度」は、1.00g/mL~1.80g/mL、好ましくは1.03g/mL~1.60g/mL、より好ましくは1.05g/mL~1.40g/mLである。
 また、本発明の回収方法に用いる酸化チタン顆粒体の特性を示す別の指標として「摩耗率」がある。
 本発明の酸化チタン顆粒体の摩耗率は以下の方法で測定をすることができる。
 図1に示す摩耗率測定装置にて測定する。即ち、この摩耗率測定装置は、内径63mm、深さ86mmの試料容器201に攪拌機202を取付けてなり、この攪拌機202は、軸体203の下端部にそれぞれ長さ20mmの楕円形状の攪拌羽根204を3枚、60゜間隔で軸体から直径方向に延びるように取付けたものであって、攪拌羽根はそれぞれ水平に対して45゜の角度を有するように傾斜している。この攪拌羽根は、その最下縁が試料容器の底から8mmの距離に位置する。
 なお、酸化チタン顆粒体の摩耗率の測定に際しては、200mLメスシリンダーで酸化チタン顆粒体150mLを計量し、重量を記録した後、試料容器に全量を投入し、300rpmで30分間上記攪拌機を用いて攪拌した後、試料容器から試料を取り出し、全量を目開き0.5mmの篩に移し、この篩を通過した試料の重量を測定する。ここに、試料の摩耗率Aは、目開き0.5mmの篩を通過した試料の重量をWとし、測定に供した試料の重量をW0とするとき、A=(W/W0)×100(%)である。
 なお、本発明の回収方法に用いる酸化チタン顆粒体の「磨耗率」は、2.0重量%以下、好ましくは1.5重量%以下、より好ましくは1.0重量%以下である。
 また、本発明の回収方法に用いる酸化チタン顆粒体の特性を示す別の指標として「比表面積」がある。
 本発明の酸化チタン顆粒体の比表面積は以下の方法で測定をすることができる。
 本発明ではBET法を使用して測定する。詳しくは、以下の通りである。
 BET法は、粉体粒子表面に吸着占有面積の判った分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法である。
 本発明では、比表面積測定装置は、2300形 自動測定装置(島津製作所(株)製造元)を使用する。
 なお、本発明の回収方法に用いる酸化チタン顆粒体の「比表面積」は、30m2/g 以上であり、好ましくは33m2/g~80m2/g、より好ましくは35m2/g~70m2/gである。
 さらには、使用前の酸化チタン顆粒体の比表面積は、30m2/g~70m2/gである。
 これは、比表面積が大きいほど、顆粒体と強化プラスチックとの接触面が大きくなり、回収効率を上げることができる。しかし、比表面積が大きすぎると耐熱性が弱くなり、かつ顆粒体が崩れやすく粉末化しやすくなる。
 また、本発明の「酸化チタン顆粒体」は、活性成分としての酸化チタンの細孔容積が0.05ml/g~1.00ml/g、好ましくは0.07ml/g~0.80ml/g、より好ましくは0.10ml/g~0.60ml/gである。
 なお、酸化チタン顆粒体の細孔容積の測定方法は、自体公知の方法を利用することができるが、本発明では水銀圧入法を使用して測定する。詳しくは、以下の通りである。
 水銀圧入法は、水銀の表面張力が大きいことを利用して粉体の細孔に水銀を浸入させるために圧力を加え、圧力と圧入された水銀量から細孔容積を求める方法である。
 本発明では、Thermo Finnigan 社製のポロシメーター(水銀圧入式 最高圧力:200MPa)を使用した。
 また、本発明では、酸化チタンのゾルを乾燥して酸化チタンゲルとし、この酸化チタンゲルを450~850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られる酸化チタン顆粒体からなり、0.5~1.18mmの粒径を有する粒子の割合が50~95重量%の範囲にあり、2.0%以下の摩耗率を有するものである。
 詳細は、日本特許公開2005-307007号公報を参照することができる。
 本発明では、前記記載した酸化チタン顆粒体に、酸化銅又は銅を担持していても良い。酸化銅の担持量は、特に限定されないが、酸化銅換算で0.5重量%~5.0重量%であることが好ましい。
 詳細は、国際公開2013/089222号公報を参照することができる。
 本発明の「酸化チタン顆粒体」又は「酸化銅又は銅を担持した酸化チタン顆粒体」は、上記特性を有することにより、長時間にわたって強化材を高効率で回収することができる。
 さらに、本発明の「酸化チタン顆粒体」は、酸化チタン顆粒体の粒子径の分布が、従来の酸化チタンの粒子径分布より狭い。よって、酸化チタン顆粒体の粒子分布よりも大きい篩及び小さい篩を使用することで、該顆粒体と異物(強化プラスチックに混在する金属・無機等)を容易に分離することができる。
(酸化チタン顆粒体の製造方法)
 本発明の「酸化チタン顆粒体の製造方法」は、チタニアゾル(必要に応じて、シリカゾル、アルミナゾル及びジルコニアゾルから選ばれる少なくとも1種のゾルも含める)を攪拌造粒して球状の顆粒とした後、好ましくは、400℃~850℃の範囲の温度で焼成する。そして、篩分けによって、特定の粒径を持つ焼成した後の顆粒体を得る。
 なお、上記攪拌造粒は、自体公知の方法を利用することができるが、液体バインダー(本発明においては、前述したゾル)を攪拌して、高速の攪拌羽根によるせん断効果によって、上記粉体の圧密化された凝集体を得る造粒が好ましい。
 さらには、無機酸化物の粉体と液体バインダー(本発明においては、前述したゾル)を攪拌して、ゾルによる粉体の凝集と共に、高速の攪拌羽根によるせん断効果によって、上記粉体の圧密化された凝集体を得る造粒でも良い。
 なお、ゾルの量、攪拌羽根の回転数、造粒時間等によって、得られる凝集粒の圧密度や粒度を任意に調整することができる。また、攪拌造粒装置の造粒容器内の底盤を適宜に選択することによって、得られる凝集体の形状を、より一層、球状化することもできる。
 本発明において、攪拌造粒するための造粒機は、特に限定されるものではないが、例えば、(株)奈良機械製作所製混合造粒機NMGシリーズ、深江パウテック(株)製ハイスピードミキサーやハイフレックスグラル、日本アイリッヒ(株)製アイリッヒインテンシブミキサー(アイリッヒ逆流式高速混合機)、(有)G-LABO製高速攪拌造粒機HSGシリーズ、(株)ダルトン製混練・高速攪拌造粒機SPGシリーズや高速混合・細粒機スパルタン・リューザー、(株)パウレック製バーチカル・グラニュレータVG-CTシリーズ等が好ましく用いられる。
 上記で得られた顆粒の球状性を一層高めると共に、粒度分布を一層精密なものとするために、攪拌造粒して得られた顆粒を前記ゾルの存在下に転動造粒と流動層造粒から選ばれる少なくとも1種の方法にて更に造粒してもよい。
 この造粒に際して、得られる顆粒をより硬くして、その磨耗性を一層向上させるために、前記ゾルと共に、前記無機酸化物の粉砕物や前記ゾルを乾燥、焼成した後、粉砕して得られる粉砕物との混合物を用いてもよい。
 転動造粒は、既によく知られているように、粉体と液体バインダーの混合物に転動運動を与えて、凝集粒を得る造粒法をいい、流動層造粒も既によく知られているように、粉体の流動層に液体バインダーを供給して、粒子間のバインダーによる架橋を形成させて凝集粒を得る造粒法をいう。
 このようにして、攪拌造粒し、更に、転動造粒と流動層造粒から選ばれる少なくとも1種の方法にて更に造粒した後、前述したように、400℃~850℃の範囲の温度で焼成し、この後、篩分けによって、粒径が0.1mm~1.2mm(又は、0.1mm~1.4mm)の範囲にある粒子を集めることによって、必要な粒度を有する顆粒体を得ることができる。
 このような造粒のための転動造粒機や流動層造粒機(複合型造粒機)もまた、本発明においては、特に限定されるものではないが、例えば、(株)ダルトン製の流動層造粒装置「ニュー/マルメライザー」や球形整粒機「マルメライザー」、(株)パウレック製の流動層造粒装置や転動流動コーティング装置「マルチプレックス」シリーズ等を挙げることができる。
(本発明の回収方法で使用する装置)
 本発明の回収方法で使用する装置は、自体公知のプラスチック・有機物の分解装置を利用することができる。特に、本発明の回収方法で使用する酸化チタン顆粒体は、非常に回収効率が高いので、従来のバッチ式分解装置よりも、該顆粒体と強化プラスチックの接触効率が高い触媒循環式廃プラスチック・有機物の分解装置が好ましい。なお、触媒循環式廃プラスチック・有機物の分解装置は、国際公開2007/122967号公報、国際公開2009/051253号公報に記載されている。
 さらに、上記の分解装置では、酸化触媒処理手段及び/又は還元触媒処理手段を含み、さらに好ましくは石灰中和処理手段を含む。
 また、本発明の回収方法で使用する分解装置では、以下のいずれか1以上の手段を有することができる。
 (1)アルミナ触媒処理手段
 (2)強化プラスチックの破砕手段
 (3)担体ガス供給手段
 (4)強化プラスチック処理手段の反応槽から排出される飛散した金属・無機物及び/又は触媒を回収する手段。
 (5)サイクロン集塵手段(第1集塵手段)
 (6)バグフィルター付き集塵手段(第2集塵手段)
 (7)熱交換手段
 (8)プレヒーター手段
 (9)排気ブロアー手段
 (10)冷却手段
 (11)熱回収手段
 (12)塩化水素連続測定手段
 (13)CO連続測定手段
 (14)警報手段
 (15)酸化触媒処理手段・還元触媒処理手段
 酸化チタン顆粒体と強化プラスチックの攪拌は、反応容器の容積量、攪拌羽根の形状及び攪拌方法により異なるが、回転数は5rpm~70rpm、好ましくは10rpm~60rpmである。なお、反応容器がバッチ方式又は循環方式でも同様な回転数が好ましい。
 これは、回転数が速すぎると、酸化チタン顆粒体の磨耗が大きい、しかし回転数を遅くすると、酸化チタン顆粒体と強化プラスチックの接触効率が落ちることを考慮した値である。
 以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
(本発明の強化材の回収方法に用いる酸化チタン顆粒体の製造)
 下記の複数の方法により、本発明で使用する酸化チタン顆粒体を製造した。詳細は、以下の通りである。
(1)酸化チタン顆粒体1
 硫酸法による酸化チタン製造工程のうち、加水分解工程から得られたチタン水酸化物のスラリーを濾過、水洗し、これをリパルプして、スラリーAを得た。このスラリーAにゾル化剤として硝酸を加え、チタン酸化物のゾルBを得た。更に、このゾルBの一部を100℃に加熱、乾燥し、乾燥ゲルとし、これを電気炉中、500℃で3時間焼成して、酸化チタン焼成物Cを得た。
 この酸化チタン焼成物Cを粉砕し、得られた粉砕物を(株)ダルトン製高速攪拌造粒機SPG-25型を用いて、攪拌羽根250rpm、高速チョッパ3000rpmの条件下、水で5倍希釈した前記ゾルBを噴霧しながら造粒して、酸化チタン粒子を得た。
 この酸化チタン粒子を100℃で3時間乾燥し、次いで、600℃で焼成し、目開き1.19mmと0.104mmの篩で篩分けして、粒径0.1mm~1.2mmの顆粒体を100重量%とした。
 なお、本発明において、粒径0.1mm~1.2mmの顆粒体は、ステンレス製金網からなる標準篩15メッシュ(線径0.5mm、目開き1.19mm)と150メッシュ(線径0.065mm、目開き0.104mm)を用いて篩分けし、15メッシュ下(通過分)、150メッシュ上(残留分)をいうものとする。
 詳しくは、次のようにして、粒径0.1mm~1.2mmの顆粒体を得た。即ち、(株)吉田製作所製ロータップ式標準篩振盪機に上蓋に上記15メッシュ標準篩を取り付け、下受皿に上記150メッシュ標準篩を取り付け、15メッシュ標準篩上に酸化チタン顆粒体100gを試料として供給し、振盪回転数300rpm、打数150回/分で3分間篩分けして、15メッシュ下(通過分)、150メッシュ上(残留分)を粒径0.1mm~1.2mmの顆粒体として得た。
 上記で得られた酸化チタン顆粒体は、BET法による比表面積60m/gであり、水銀圧入法による細孔容積0.15mL(cc)/gであり、タップ密度1.16g/mLであった。また、摩耗率は0.3%であった。
(2)酸化チタン顆粒体2
 上記(1)で得られたチタン水酸化物のスラリーAを100℃で加熱、乾燥し、乾燥ゲルとし、これを電気炉中にて500℃で3時間焼成し、粉砕処理して、酸化チタン焼成物Dの粉砕物を得、この酸化チタン焼成物Dの粉砕物50重量部と前記酸化チタン焼成物Cの粉砕物50重量部を混合した。
 この酸化チタン焼成物Dの粉砕物50重量部と酸化チタン焼成物Cの粉砕物50重量部の混合物を上記(1)と同様に処理し、得られた粒子を乾燥、焼成し、篩分けして、粒径0.1mm~1.2mmの顆粒体を得た。
 上記で得られた酸化チタン顆粒体は比表面積62m/g、細孔容積0.28mL(cc)/g、タップ密度1.06g/mL、摩耗率は1.0%であった。
(3)酸化チタン顆粒体3
 上記(1)で得られた酸化チタンの顆粒に転動造粒機「マルメライザー」にて上記(1)で得られた酸化チタンCの粉砕物と水で4倍希釈した前記ゾルBを噴霧しながら、より球状に整粒し、得られた粒子を上記(1)と同様にして、粒径が0.1mm~1.2mmの範囲の顆粒体を得た。
 上記で得られた酸化チタン顆粒体は、比表面積59m/g、細孔容積0.17mL(cc)/g、タップ密度1.18g/mL、摩耗率0.3%であった。
(4)酸化チタン顆粒体4
 上記(1)で得たチタン酸化物のゾルBとタングステン酸アンモニウムを混合した。この混合物を100℃に加熱、乾燥して、乾燥ゲルとし、これを電気炉中、500℃で3時間焼成して、チタン/タングステン複合酸化物(酸化チタン/酸化タングステン重量比90:10)の焼成物を得た。
 このチタン/タングステン複合酸化物Eの焼成物を粉砕して、粉砕物を得た。この粉砕物を(株)ダルトン製高速攪拌造粒機SPG-25型を用いて、攪拌羽根250rpm、高速チョッパ3000rpmの条件下、水で5倍希釈した前記ゾルBを噴霧しながら造粒して、チタン/タングステン複合酸化物顆粒を得た。
 次いで、この顆粒に球形整粒機「マルメライザー」にて上記チタン/タングステン複合酸化物Eの焼成物の粉砕物と水で4倍希釈した前記ゾルBを噴霧しながら、より球状に整粒し、得られた顆粒を上記(1)と同様にして、粒径が0.1mm~1.2mmの顆粒体を得た。
 上記で得られた酸化チタン顆粒体の比表面積は69m/gであり、細孔容積は0.2ml(cc)/gであり、タップ密度は1.20g/mlであり、摩耗率は0.5%であった。
(5)酸化チタン顆粒体の粒子径
 上記で得られた全酸化チタン顆粒体中の70%以上の顆粒体の粒子径(半径の2倍)は、0.2mm~1.0mm、さらには0.3mm~1.0mmの範囲であった。
より詳しくは、以下の粒子径の範囲であった。
 1.4mm以上が、0重量%
 1.0~1.4mmが、0~2.0重量%
 0.6~1.0mmが、27~60.0重量%
 0.3~0.6mmが、30~55.0重量%
 0.125~0.3mmが、0~20.0重量%
 0.125mm以下が、0~25.0重量%
(6)酸化チタン顆粒体の真円度
 上記で得られた全酸化チタン顆粒体中の70%以上の顆粒体の真円度は、1.00~1.50、さらには1.00~1.30の範囲であった。
(7)酸化チタン顆粒体の転がり傾斜角度の測定
 上記で得られた酸化チタン顆粒体の滑り始める角度は、1.5度~2.5度であった。
 上記で得られた酸化チタン顆粒体の全ての顆粒体が滑り終わる角度は、9.0度~10.0度であった。
(本発明の強化材の回収方法に用いる酸化銅を担持した酸化チタン顆粒体の製造)
 下記の複数の方法により、本発明で使用する酸化銅を担持した酸化チタン顆粒体を製造した。詳細は、以下の通りである。
(1)酸化銅を担持した酸化チタン顆粒体1
 硫酸法による酸化チタン製造工程のうち、加水分解工程から得られたチタン水酸化物のスラリーを濾過、水洗し、これをリパルプして、スラリーAを得た。このスラリーAにゾル化剤として硝酸を加え、チタン酸化物のゾルBを得た。更に、このゾルBの一部を100℃に加熱、乾燥し、乾燥ゲルとし、これを電気炉中、500℃で3時間焼成して、酸化チタン焼成物Cを得た。
 この酸化チタン焼成物Cを粉砕し、得られた粉砕物を(株)ダルトン製高速攪拌造粒機SPG-25型を用いて、攪拌羽根250rpm、高速チョッパ3000rpmの条件下、水で5倍希釈した前記ゾルBを噴霧しながら造粒して、酸化チタン粒子を得た。
 この酸化チタン粒子を100℃で3時間乾燥し、次いで、600℃で焼成し、目開き1.19mmと0.104mmの篩で篩分けして、粒径0.1mm~1.2mmの顆粒体を100重量%とした。
 なお、本発明において、粒径0.1mm~1.2mmの顆粒体は、ステンレス製金網からなる標準篩15メッシュ(線径0.5mm、目開き1.19mm)と150メッシュ(線径0.065mm、目開き0.104mm)を用いて篩分けし、15メッシュ下(通過分)、150メッシュ上(残留分)をいうものとする。
 詳しくは、次のようにして、粒径0.1mm~1.2mmの顆粒体を得た。即ち、(株)吉田製作所製ロータップ式標準篩振盪機の上蓋に上記15メッシュ標準篩を取り付け、下受皿に上記150メッシュ標準篩を取り付け、15メッシュ標準篩上に酸化チタン顆粒体100gを試料として供給し、振盪回転数300rpm、打数150回/分で3分間篩分けして、15メッシュ下(通過分)、150メッシュ上(残留分)を粒径0.1mm~1.2mmの顆粒体として得た。
 最後に、該顆粒体を様々な濃度の硝酸銅水溶液に浸漬し、さらに乾燥した後に、500℃で焼成して、1重量%CuO、3重量%CuO、又は5重量%CuOを担持した酸化チタン顆粒体を得た。なお、酸化銅の担持量は、蛍光X線で確認した。
(2)酸化銅を担持した酸化チタン顆粒体2
 上記(1)で得られたチタン水酸化物のスラリーAを100℃で加熱、乾燥し、乾燥ゲルとし、これを電気炉中にて500℃で3時間焼成し、粉砕処理して、酸化チタン焼成物Dの粉砕物を得、この酸化チタン焼成物Dの粉砕物50重量部と前記酸化チタン焼成物Cの粉砕物50重量部を混合した。
 この酸化チタン焼成物Dの粉砕物50重量部と酸化チタン焼成物Cの粉砕物50重量部の混合物を上記(1)と同様に処理し、得られた粒子を乾燥、焼成し、篩分けして、粒径0.1mm~1.2mmの顆粒体を得た。
 最後に、該顆粒体を様々な濃度の硝酸銅水溶液に浸漬し、さらに乾燥した後に、500℃で焼成して、1重量%CuO、3重量%CuO、又は5重量%CuOを担持した酸化チタン顆粒体を得た。なお、酸化銅の担持量は、蛍光X線で確認した。
(3)酸化銅を担持した酸化チタン顆粒体3
 上記(1)で得られた酸化チタンの顆粒に転動造粒機「マルメライザー」にて前記酸化チタンCの粉砕物と水で4倍希釈した前記ゾルBを噴霧しながら、より球状に整粒し、得られた粒子を上記(1)と同様に処理し、粒径が0.1mm~1.2mmの範囲の顆粒体を得た。
 最後に、該顆粒体を様々な濃度の硝酸銅水溶液に浸漬し、さらに乾燥した後に、500℃で焼成して、1重量%CuO、3重量%CuO、又は5重量%CuOを担持した酸化チタン顆粒体を得た。なお、酸化銅の担持量は、蛍光X線で確認した。
(4)酸化銅を担持した酸化チタン顆粒体4
 上記(1)で得られたチタン酸化物のゾルBとタングステン酸アンモニウムを混合した。この混合物を100℃に加熱、乾燥して、乾燥ゲルとし、これを電気炉中、500℃で3時間焼成して、チタン/タングステン複合酸化物(酸化チタン/酸化タングステン重量比90:10)の焼成物を得た。
 このチタン/タングステン複合酸化物Eの焼成物を粉砕して、粉砕物を得た。この粉砕物を(株)ダルトン製高速攪拌造粒機SPG-25型を用いて、攪拌羽根250rpm、高速チョッパ3000rpmの条件下、水で5倍希釈した前記ゾルBを噴霧しながら造粒して、チタン/タングステン複合酸化物顆粒を得た。
 次いで、この顆粒に球形整粒機「マルメライザー」にて上記チタン/タングステン複合酸化物Eの焼成物の粉砕物と水で4倍希釈した前記ゾルBを噴霧しながら、より球状に整粒し、得られた顆粒を上記(1)と同様に処理し、粒径が0.1mm~1.2mmの顆粒体を得た。
 最後に、該顆粒体を様々な濃度の硝酸銅水溶液に浸漬し、さらに乾燥した後に、500℃で焼成して、1重量%CuO、3重量%CuO、又は5重量%CuOを担持したチタン/タングステン複合酸化物の顆粒体を得た。なお、酸化銅の担持量は、蛍光X線で確認した。
 上記酸化銅を担持した酸化チタン顆粒体1~4の特性は、いずれも以下の範囲に含まれていることを確認した。
 BET法による比表面積:30m2/g~70m2/g
 水銀圧入法による細孔容積:0.20cc/g~0.60cc/g
 タップ密度:1.00g/mL~1.80g/mL
 摩耗率:2.0重量%以下
 顆粒体の滑り始める角度:0.5度~15.0度
 全ての顆粒体が滑り終わる角度:2.0度~30.0度
 真円度:1.00~2.00
 安息角度:15度~35度
(酸化チタン顆粒体を使用して炭素繊維強化プラスチックから炭素繊維の回収)
 本実施例では、炭素繊維強化プラスチックから炭素繊維を回収した。さらに、回収した炭素繊維の特性を確認した。
 各条件、使用する装置、試料等の詳細は、以下の通りである。
(使用した装置、試料)
 1.実験装置(反応容器):小型攪拌式分解実験機
   (反応容器の体積:2200mL)
 2.強化プラスチック(市販品) 
   サンプルA 310g/m2 CF 65%:PA6 35% t=0.48mm (セミプレグ)
   サンプルB 480g/m2 CF 64%:PA6 36% t=0.59mm (セミプレグ)
   サンプルA、Bともに2cm×2cmの正方形状(織布形状)に切断し、処理
   後のCF(炭素繊維)が飛散しない様に金網に挟んで撹拌羽根に固定し
   、回収処理を行った。
 3.使用した酸化チタン顆粒体:実施例1の酸化チタン顆粒体1
(炭素繊維回収での条件)
 1.酸化チタン顆粒体の量:800g
 2.反応時間:5分
 3.供給空気量:30 l/min
 4.排気量:124 l/min(インバータ設定30Hz)
 5.石灰ペレット:700g
 6.還元触媒入口温度:200℃
 7.酸化触媒入口温度:450℃
 8.分解槽チタン温度:490℃
 9.分解槽撹拌数:30rpm
(炭素繊維回収時に発生する排ガス分析での条件)
 1.供給空気量:10 l/min
 2.排気量:30 l/min(インバータ設定10Hz)
 3.分解槽撹拌数:60rpm
 4.サンプル投入量:1.0g/回 n=3
(強化プラスチックから強化材の回収結果)
 回収処理後の無機物残渣の重量と回収処理前重量の比率を「残渣(CF)比率」とした。
 残渣(CF)比率と、サンプルA,Bの製品カタログに記されているCF重量比の比率を「CF回収率」とした。
 残渣(CF)比率及びCF回収率を下記表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記表1から明らかなように、強化材(炭素繊維)の回収率は、サンプルAでは98.8%、サンプルBでは100%であった。これらの回収率は、従来報告されている回収方法と比較して、短時間かつ高回収率であった。
 サンプルのBの回収処理前と分解槽内から回収処理後(酸化チタン顆粒体と接触した後)の全体図を図2及び電子顕微鏡図を図3に示した。
 図2Aから明らかなように、処理前のサンプルBでは、細い炭素繊維を樹脂によって板状に固め、さらにそれをナイロン樹脂(矢印)とともに編んである様子を確認できた。
 図2Bから明らかなように、分解槽内から回収した後のサンプルBでは、樹脂分が綺麗に分解され、板状の炭素繊維が髪の毛のような一本一本独立した繊維になっているのを確認できた。さらに、ナイロン樹脂部分も分解されていることを確認できた。また、織布の状態で回収することができた。
 図3A-1(1000倍)から明らかなように、炭素繊維と炭素繊維の間、および炭素繊維の表面にも樹脂が存在しているのを確認できる。さらに、図3A-2(3000倍)から明らかなように、炭素繊維の表面には全体に樹脂がコーティングされていることが分かる。そのうえで炭素繊維と炭素繊維を樹脂でつないでいるのを確認できる。
 図3B-1(1000倍)から明らかなように、炭素繊維と炭素繊維の間、および炭素繊維の表面に存在した樹脂がきれいになくなっていることを確認できた。さらに、図3B-2(3000倍)から明らかなように、炭素繊維間にある樹脂はもちろん、炭素繊維の表面にコーティングされた樹脂も綺麗に分解されていることを確認できた。さらに、炭素繊維の表面は非常に滑らかできれいであることを確認できた。
 炭素繊維回収時に発生する排ガスを排ガス分析計(PG250)で連続採取して、排ガスの安全性及び分解時間を確認した。
 回収処理(分解処理)は、約3分間で分解が終了していることを確認した。また、炭素繊維強化プラスチック投入から30秒後にCO2発生のピークが現れ、分解処理されていることが確認できた。
 排ガス成分としては、CO発生はほとんど検出されず、またCH4、NOXも低濃度であった。
 さらに、上記同様に、プリプレグ品である長繊維においても同様に炭素繊維を回収した。
 図4から明らかなように、処理後のサンプルBでは、長繊維の状態で回収できることを確認した。
(酸化銅を担持した酸化チタン顆粒体を使用して炭素繊維強化プラスチックから炭素繊維の回収)
 本実施例では、実施例3と同様に、酸化銅を担持した酸化チタン顆粒体(実施例2の酸化銅を担持した酸化チタン顆粒体1)を使用して炭素繊維強化プラスチックから炭素繊維を回収した。
 実施例3と同様に、短時間かつ高回収率で炭素繊維を回収できた。
(ガラス繊維強化プラスチックからガラス繊維の回収)
 本実施例では、実施例3と同様に、酸化チタン顆粒体を使用してガラス繊維強化プラスチックからガラス繊維を回収した。
 実施例3と同様に、短時間かつ高回収率でガラス繊維を回収できた。
(酸化チタン顆粒体を使用して熱硬化処理後炭素繊維強化プラスチックから炭素繊維の回収)
 本実施例では、熱硬化処理後炭素繊維強化プラスチックから炭素繊維を回収した。さらに、回収した炭素繊維の特性を確認した。
 炭素繊維強化プラスチックとして使用したサンプルは、サンプルA:熱硬化処理後であるプリプレグ硬化品(シート状)、サンプルB:熱硬化処理後であるカーボンシャフト硬化品(パイプ状)、サンプルC:熱硬化処理後であるカーボンシャフト硬化品を破砕したカーボンシャフト破砕品である。
 各条件、使用する装置、試料等の詳細は、以下の通りである。
(使用した装置、試料)
 1.実験装置(反応容器):小型攪拌式分解実験機
   (反応容器の体積:約2330mL、φ150mm、高さ132mm)
 2.強化プラスチック(市販品) 
   サンプルA 1.2 g (プリプレグ硬化品)
   サンプルB 2.5 g (カーボンシャフト硬化品)
   サンプルC 1.1 g (カーボンシャフト破砕品)
   サンプルAは、0.4 gに分け3回処理した。処理後のCF(炭素繊維)が飛
   散しない様に金網に挟んで撹拌羽根に固定し、回収処理を行った。
   サンプルBは、パイプ形状を保ったまま分解処理するために、パイプ状
   のサンプルの内側と外側に、筒状にした金網を取り付け、撹拌羽根に
   固定し、回収処理を行った。
   サンプルCは、1.1 gを分解槽に直接投入して時間の経過と共に分解さ
   れていく様子を確認した。
 3.使用した酸化チタン顆粒体:実施例1の酸化チタン顆粒体1
(炭素繊維回収での条件)
 1.酸化チタン顆粒体の量:800g
 2.反応時間:10分(サンプルA及びB)
        7分(サンプルC)
 3.供給空気量:20 l/min
 4.排気量:48 l/min(インバータ設定15Hz)
 5.石灰ペレット:700g
 6.還元触媒入口温度:200℃
 7.酸化触媒入口温度:450℃
 8.分解槽チタン温度:550℃
 9.分解槽撹拌数:60rpm
(熱硬化処理後の強化プラスチックから強化材の回収結果)
 これらの回収率は、実施例3と同様に、短時間かつ高回収率であったことを確認した。
 サンプルA、B及びCの回収処理前と分解槽内から回収処理後(酸化チタン顆粒体と接触した後)の全体図を図5に示した。
 図5Aから明らかなように、熱硬化処理済みサンプルでも、硬化前サンプルと同様に、しなやかなカーボンファイバーだけを長繊維のまま回収できた。回収したCFは1.0 gであった。金網を使用することでCFを飛散させることなく回収できた。
 図5Bから明らかなように、パイプ状の熱硬化処理済みサンプルでも、パイプ状の形状を保ったままのしなやかなカーボンファイバーを回収できた。
 図5Cから明らかなように、熱硬化処理済後に破砕したサンプルからは、短繊維のカーボンファイバーを回収できた。カーボンシャフト破砕品は直接分解槽に投入したため分解の様子が観察できた。投入から2分後には束になっていた処理サンプルがバラバラになり始め、綿状のCFが舞い始めた。4分後、処理サンプルの硬さがなくなり、綿状のCFがさらに多く飛散した。4分以降は処理サンプルの状態に変化がなく、分解処理が終了したと判断し、処理サンプル投入から7分後に処理を終了した。飛散した綿状のCFは分解槽フタの排気口に取り付けたメッシュにより捕集した(図なし)。分解槽のCFは綿状にはならず、直線的な繊維の形を保っていた。酸化チタン触媒と混在するCFは篩により選別し回収した。一部篩の目を抜けていったCFはピンセットにより直接酸化チタン触媒から回収した。分解槽内壁面に付着していたCFも回収した。回収時にCFが飛散してしまい、全量の回収とはならなかった。分解槽より回収したCFは0.3 g、排気経路で捕集したCFは0.2 gであり、全体で0.5 gのCFを回収した。分解の様子が確認できたカーボンシャフト破砕品の結果から、細かく破砕した硬化済みのCFRPは4~5分の処理時間でCFを回収することが可能である。
(総論)
 以上の回収結果より、本発明の回収方法は以下のことが言える。
 (1)従来報告されている回収方法と比較して、短時間かつ高回収率である。
 (2)従来報告されている回収方法では短繊維(チョップトストランド)で回収されることが多い。しかし、本発明の回収方法では、長繊維や繊布の状態でも回収できる。
 (3)熱硬化処理後のサンプルのCFの回収は問題なくできた。
 (4)パイプ状のカーボンシャフトサンプルも金網を使用すると、パイプ状のままCFを回収することができた。このことから他の形状でも応用が可能である。
 (5)従来報告されている回収方法と比較して、回収された強化材の純度が非常に高い。
 (6)従来報告されている回収方法と比較して、回収された強化材の表面が傷ついておらずきれいである。
 (7)回収に伴う排ガス発生が少ない。
 (8)回収した強化材(特に、炭素繊維)は、十分リサイクル可能な強度を有する。
 以上により、上記(1)~(8)により、強化材(特に、炭素繊維)のリサイクル事業に非常に有望である。
 加えて、本発明者らは、本実施例により、従来の粉末酸化チタンでは、下記の問題点があることを確認した。
 (1)従来の粉末酸化チタンは、非常に細かな粉体(例、粒径7ナノメートル)であり取扱いが困難であった。特に、大量の強化材を回収するには、大型装置(特に、大型の分解装置)を使用する必要がある。しかし、従来の粉末酸化チタンは、該装置への搬入の際に空気中に飛散するために、作業者が吸い込まないための安全対策が必要であった。さらに、空気中に飛散することにより、実際に使用できる粉末酸化チタン量が減るという問題があった。
 (2)装置内部で、空気を送り込んだり排気したりする場合、従来の粉末酸化チタンは、飛散するために、装置のあらゆる隙間から外部へ噴出する。よって、装置として必要な隙間や穴などを閉塞させたり、表面を覆ったりして機能を持続させることが装置の複雑化につながった。
 (3)従来の粉末酸化チタンは、処理対象物である強化プラスチックの表面にくっついたままとなり強化材の回収が促進されない状態になり、高効率で強化材を回収することができない。
 (4)強化プラスチックに含まれる無機物の回収時において、粉末酸化チタンは該無機物と一緒に回収される。よって、無機物のみを回収するのが困難である。
 (5)機械的処理方法(破砕してコンクリートの補強材として使用するなど)では炭素繊維のみを回収することが出来ないため用途が制限されていた。
 (6)熱分解法では700℃~800℃の高温での処理の為、炭素繊維が劣化する場合があった。
 (7)常圧溶解法では長い処理時間が必要であった。
 (8)超臨界・亜臨界流体法では装置の大型化が課題であった。
 さらに、本発明者らは、上記の従来の粉末酸化チタンの問題点を解消できるのが、本実施例で使用した酸化チタン顆粒体であることを本実施例で確認した。
 本発明の回収方法は、強化材(特に、炭素繊維)のリサイクル事業に非常に有望である。
 201:試料容器
 202:攪拌機
 203:軸体
 204:攪拌羽根

Claims (15)

  1.  加熱した酸化チタン顆粒体を強化プラスチックに接触させることにより、強化材を回収する方法。
  2.  前記接触とは、前記加熱した酸化チタン顆粒体と共に前記強化プラスチックを撹拌することである、請求項1に記載の回収方法。
  3.  前記加熱温度は、300℃~600℃の範囲である請求項1又は2に記載の回収方法。
  4.  前記強化プラスチックが炭素繊維強化プラスチックであり、前記強化材が炭素繊維である請求項1~3のいずれか1に記載の回収方法。
  5.  前記強化プラスチックがガラス繊維強化プラスチックであり、前記強化材がガラス繊維である請求項1~3のいずれか1に記載の回収方法。
  6.  前記酸化チタン顆粒体の特性は以下であることを特徴とする請求項1~5のいずれか1に記載の回収方法。
    (1)顆粒体の形状が略球形である
    (2)全顆粒体の70%以上の顆粒体の粒子径が0.2mm~1.0mmである
  7.  前記顆粒体の形状が略球形とは、以下の特性であることを特徴とする請求項6に記載の回収方法。
    (1)顆粒体の滑り始める角度が0.5度~15.0度である
    (2)全ての顆粒体が滑り終わる角度が2.0度~30.0度である
  8.  前記顆粒体の比表面積が30m2/g~70m2/gの範囲であることを特徴とする請求項1~7のいずれか1に記載の回収方法。
  9.  前記顆粒体のタップ密度が1.00g/mL~1.80g/mLの範囲であることを特徴とする請求項1~8のいずれか1に記載の回収方法。
  10.  前記顆粒体の細孔容積が0.10cc/g~0.60cc/gの範囲であることを特徴とする請求項1~9のいずれか1に記載の回収方法。
  11.  前記酸化チタン顆粒体の特性は以下の(1)であることを特徴とする請求項1~10のいずれか1に記載の回収方法。
    (1)酸化チタンのゾルを乾燥して酸化チタンゲルとし、この酸化チタンゲルを450~850℃の範囲の温度で焼成し、この焼成物を破砕し、エッジ処理して得られる酸化チタン顆粒体からなり、0.5~1.18mmの粒径を有する粒子の割合が50~95重量%の範囲にあり、2.0%以下の摩耗率を有するものである
  12.  前記酸化チタン顆粒体の特性は以下の(1)又は(2)であることを特徴とする請求項1~5のいずれか1に記載の回収方法。
     (1)粒度分布が次の範囲に入る
     1.4mm以上が、0~1.0重量%
     1.0~1.4mmが、0~10.0重量%
     0.6~1.0mmが、10~60.0重量%
     0.3~0.6mmが、10~60.0重量%
     0.125~0.3mmが、0~30.0重量%
     0.125mm以下が、0~30.0重量%
     (2)粒度分布が次の範囲に入る
     1.4mm以上が、0重量%
     1.0~1.4mmが、0~2.0重量%
     0.6~1.0mmが、27~60.0重量%
     0.3~0.6mmが、30~55.0重量%
     0.125~0.3mmが、0~20.0重量%
     0.125mm以下が、0~25.0重量%
  13.  前記酸化チタン顆粒体の特性は以下であることを特徴とする請求項1~5のいずれか1に記載の回収方法。
     (1)粒度分布が次の範囲に入る
     1.2mm以上が、1~50重量%、
     0.5~1.2mmが、40~90重量%
     0.5mm以下が、1~20重量%。
  14.  前記酸化チタン顆粒体は、酸化銅又は銅を担持していることを特徴とする請求項1~13に記載のいずれか1に記載の回収方法。
  15.  前記酸化銅の担持量は、酸化銅換算で0.5重量%~5.0重量%であることを特徴とする請求項14に記載の回収方法。
PCT/JP2015/059028 2014-03-27 2015-03-25 酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法 WO2015147021A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/306,764 US10279336B2 (en) 2014-03-27 2015-03-25 Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
EP15768800.3A EP3124528B1 (en) 2014-03-27 2015-03-25 Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
JP2016510405A JP6364068B2 (ja) 2014-03-27 2015-03-25 酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法
CN201580028062.6A CN106459472B (zh) 2014-03-27 2015-03-25 使用氧化钛颗粒体从增强塑料回收增强材料的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-065649 2014-03-27
JP2014065649 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015147021A1 true WO2015147021A1 (ja) 2015-10-01

Family

ID=54195533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059028 WO2015147021A1 (ja) 2014-03-27 2015-03-25 酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法

Country Status (5)

Country Link
US (1) US10279336B2 (ja)
EP (1) EP3124528B1 (ja)
JP (1) JP6364068B2 (ja)
CN (1) CN106459472B (ja)
WO (1) WO2015147021A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084785A (ja) * 2017-11-09 2019-06-06 三菱重工業株式会社 強化繊維再生方法
JP2019172799A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 炭素繊維の回収方法
JP2019189674A (ja) * 2018-04-18 2019-10-31 株式会社ジンテク 積層したチップ状または板状プラスチック複合材料の処理方法及び処理装置
WO2020040081A1 (ja) * 2018-08-22 2020-02-27 三菱重工業株式会社 プラスチック複合材の分解方法
JP2020513044A (ja) * 2017-04-01 2020-04-30 ザ・ボーイング・カンパニーThe Boeing Company 複合材廃棄物から炭素繊維を回収するための方法
JP2020515658A (ja) * 2017-04-01 2020-05-28 ザ・ボーイング・カンパニーThe Boeing Company 複合材料廃棄物から炭素繊維を回収する方法
WO2023037943A1 (ja) * 2021-09-10 2023-03-16 三菱ケミカル株式会社 再生炭素繊維の製造方法
JP7454227B2 (ja) 2020-05-28 2024-03-22 株式会社サンケン 炭素繊維の分離回収方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111136832A (zh) * 2019-12-04 2020-05-12 中国纺织科学研究院有限公司 一种含有pps和ptfe的废旧除尘过滤袋的分离方法及系统
JPWO2022050281A1 (ja) * 2020-09-01 2022-03-10
US12053908B2 (en) 2021-02-01 2024-08-06 Regen Fiber, Llc Method and system for recycling wind turbine blades
EP4299269A1 (en) * 2022-06-28 2024-01-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for detaching a fiber layer from a multilayer fiber composite material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288265A (en) * 1976-01-19 1977-07-23 Matsushita Electric Ind Co Ltd Thermal decomposition of organic high molecular compounds
JP2005139440A (ja) * 2003-10-17 2005-06-02 Hitoshi Mizuguchi 化合物の分解方法
JP2005307007A (ja) * 2004-04-21 2005-11-04 Sakai Chem Ind Co Ltd 廃プラスチックの分解方法
WO2009004801A1 (ja) * 2007-07-05 2009-01-08 Panasonic Corporation 廃家電から有価物を回収する方法
JP2009270123A (ja) * 2006-04-19 2009-11-19 Kusatsu Electric Co Ltd 廃プラスチック・有機物の分解方法、分解装置及び分解システム
JP2012211223A (ja) * 2011-03-30 2012-11-01 Yokohama National Univ 繊維強化プラスチックからのグラスファイバーの回収方法
WO2013089222A1 (ja) * 2011-12-15 2013-06-20 堺化学工業株式会社 遷移金属及び/又は遷移金属酸化物を担持した酸化チタンの顆粒体並びに該顆粒体を使用した廃プラスチック・有機物の分解方法
JP2013146649A (ja) * 2012-01-17 2013-08-01 Shinshu Univ プラスチックまたはプラスチック複合材料の処理方法及び処理装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004091720A (ja) * 2002-09-03 2004-03-25 National Institute Of Advanced Industrial & Technology 炭素繊維と樹脂との分離方法
US8067493B2 (en) * 2003-12-30 2011-11-29 Sabic Innovative Plastics Ip B.V. Polymer compositions, method of manufacture, and articles formed therefrom
US7776284B2 (en) 2006-04-19 2010-08-17 Kusatsu Electric Co., Ltd. Apparatus of catalyst-circulation type for decomposing waste plastics and organics, and system thereof
JP5638746B2 (ja) * 2008-08-20 2014-12-10 堺化学工業株式会社 有機物を熱分解するための触媒と方法と、そのような触媒を製造する方法
WO2010021122A1 (ja) 2008-08-20 2010-02-25 草津電機株式会社 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法
US8613312B2 (en) * 2009-12-11 2013-12-24 Technological Research Ltd Method and apparatus for stimulating wells
JP6164581B2 (ja) 2013-03-14 2017-07-19 国立大学法人信州大学 プラスチック複合材料の処理方法及び処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5288265A (en) * 1976-01-19 1977-07-23 Matsushita Electric Ind Co Ltd Thermal decomposition of organic high molecular compounds
JP2005139440A (ja) * 2003-10-17 2005-06-02 Hitoshi Mizuguchi 化合物の分解方法
JP2005307007A (ja) * 2004-04-21 2005-11-04 Sakai Chem Ind Co Ltd 廃プラスチックの分解方法
JP2009270123A (ja) * 2006-04-19 2009-11-19 Kusatsu Electric Co Ltd 廃プラスチック・有機物の分解方法、分解装置及び分解システム
WO2009004801A1 (ja) * 2007-07-05 2009-01-08 Panasonic Corporation 廃家電から有価物を回収する方法
JP2012211223A (ja) * 2011-03-30 2012-11-01 Yokohama National Univ 繊維強化プラスチックからのグラスファイバーの回収方法
WO2013089222A1 (ja) * 2011-12-15 2013-06-20 堺化学工業株式会社 遷移金属及び/又は遷移金属酸化物を担持した酸化チタンの顆粒体並びに該顆粒体を使用した廃プラスチック・有機物の分解方法
JP2013146649A (ja) * 2012-01-17 2013-08-01 Shinshu Univ プラスチックまたはプラスチック複合材料の処理方法及び処理装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7138572B2 (ja) 2017-04-01 2022-09-16 ザ・ボーイング・カンパニー 複合材廃棄物から炭素繊維を回収するための方法
JP7098639B2 (ja) 2017-04-01 2022-07-11 ザ・ボーイング・カンパニー 複合材料廃棄物から炭素繊維を回収する方法
US11319489B2 (en) 2017-04-01 2022-05-03 The Boeing Company Method for recovering carbon fibers from composite material waste
JP2020515658A (ja) * 2017-04-01 2020-05-28 ザ・ボーイング・カンパニーThe Boeing Company 複合材料廃棄物から炭素繊維を回収する方法
JP2020513044A (ja) * 2017-04-01 2020-04-30 ザ・ボーイング・カンパニーThe Boeing Company 複合材廃棄物から炭素繊維を回収するための方法
JP2019084785A (ja) * 2017-11-09 2019-06-06 三菱重工業株式会社 強化繊維再生方法
JP2019172799A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 炭素繊維の回収方法
JP7223243B2 (ja) 2018-03-28 2023-02-16 三菱ケミカル株式会社 炭素繊維の回収方法
JP7148109B2 (ja) 2018-04-18 2022-10-05 株式会社ジンテク 積層したチップ状または板状プラスチック複合材料の処理方法
JP2019189674A (ja) * 2018-04-18 2019-10-31 株式会社ジンテク 積層したチップ状または板状プラスチック複合材料の処理方法及び処理装置
JP2020028850A (ja) * 2018-08-22 2020-02-27 三菱重工業株式会社 プラスチック複合材の分解方法
WO2020040081A1 (ja) * 2018-08-22 2020-02-27 三菱重工業株式会社 プラスチック複合材の分解方法
JP7454227B2 (ja) 2020-05-28 2024-03-22 株式会社サンケン 炭素繊維の分離回収方法
WO2023037943A1 (ja) * 2021-09-10 2023-03-16 三菱ケミカル株式会社 再生炭素繊維の製造方法

Also Published As

Publication number Publication date
JPWO2015147021A1 (ja) 2017-04-13
CN106459472B (zh) 2020-09-29
JP6364068B2 (ja) 2018-07-25
US20170106351A1 (en) 2017-04-20
CN106459472A (zh) 2017-02-22
EP3124528A1 (en) 2017-02-01
US10279336B2 (en) 2019-05-07
EP3124528A4 (en) 2017-11-15
EP3124528B1 (en) 2020-09-16

Similar Documents

Publication Publication Date Title
JP6364068B2 (ja) 酸化チタン顆粒体を使用して強化プラスチックから強化材を回収する方法
JP5190897B2 (ja) 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法
JP5638746B2 (ja) 有機物を熱分解するための触媒と方法と、そのような触媒を製造する方法
JP5655162B2 (ja) 遷移金属及び/又は遷移金属酸化物を担持した酸化チタンの顆粒体並びに該顆粒体を使用した廃プラスチック・有機物の分解方法
TWI460014B (zh) 連續生產幾何成形觸媒體k之方法
JPWO2009008516A1 (ja) カーボンナノチューブの造粒物およびその製造方法
WO2022265100A1 (ja) 繊維集合体の製造方法及びプリプレグシートの製造方法
WO2010094639A2 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
JP6017730B2 (ja) 酸化チタンを使用してシリカ含有植物体からシリカを回収する方法
JP6941902B1 (ja) 対象物の処理方法および処理装置
WO2022009441A1 (ja) 対象物の処理方法および処理装置
JP2024086632A (ja) 繊維束の製造方法
EP4363096A1 (de) Kontaktierung von feinen partikeln mit einer gasphase in einem rührbettreaktor
JP2022170581A (ja) 熱可塑性樹脂繊維及び炭素繊維の紡錘形の集合体並びにその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768800

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510405

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015768800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768800

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15306764

Country of ref document: US