WO2022009441A1 - 対象物の処理方法および処理装置 - Google Patents

対象物の処理方法および処理装置 Download PDF

Info

Publication number
WO2022009441A1
WO2022009441A1 PCT/JP2020/037891 JP2020037891W WO2022009441A1 WO 2022009441 A1 WO2022009441 A1 WO 2022009441A1 JP 2020037891 W JP2020037891 W JP 2020037891W WO 2022009441 A1 WO2022009441 A1 WO 2022009441A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
container
granules
waste substrate
gas
Prior art date
Application number
PCT/JP2020/037891
Other languages
English (en)
French (fr)
Inventor
啓子 北村
逸志 樫本
雅宏 西村
Original Assignee
Rapas株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rapas株式会社 filed Critical Rapas株式会社
Priority to JP2020571903A priority Critical patent/JP6941902B1/ja
Priority to NZ788282A priority patent/NZ788282A/en
Priority to AU2020458189A priority patent/AU2020458189B2/en
Priority to US18/010,562 priority patent/US20230294150A1/en
Priority to EP20944200.3A priority patent/EP4169630A1/en
Priority to CN202080101414.7A priority patent/CN115768571A/zh
Priority to JP2021089037A priority patent/JP7011356B2/ja
Priority to TW110121167A priority patent/TW202216874A/zh
Priority to JP2021212171A priority patent/JP2022060206A/ja
Publication of WO2022009441A1 publication Critical patent/WO2022009441A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B17/00Recovery of plastics or other constituents of waste material containing plastics
    • B29B17/02Separating plastics from other materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/12Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by dry-heat treatment only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a processing method and a processing apparatus for an object.
  • a method using a catalyst made of titanium oxide is known. More specifically, a method has been proposed in which a waste plastic piece is brought into contact with a catalyst made of titanium oxide and the catalyst is heated, and the entire catalyst in the reaction vessel is stirred by a stirring blade (see Patent Documents 1 and 2). .. Further, a method using titanium oxide granules as a catalyst has been proposed (see Patent Documents 3 and 4). Further, a processing device including a circulation tank to which a rotating wheel for circulating an object and a catalyst is attached and a mixing tank for recovering the catalyst after circulation has been proposed (see Patent Document 5). ..
  • the catalyst may be worn due to the catalysts rubbing against each other or the waste plastic pieces and the catalyst. In such a case, it becomes difficult to use the catalyst for a long period of time.
  • one of the purposes is to provide a processing method and a processing apparatus for an object that can process the object for a long period of time.
  • the object treatment method of the present application is a treatment method for an object having an organic substance.
  • the method for treating an object of the present application includes a step of arranging the object in a first portion which has a space and is a part for processing the object, and granules made of a metal oxide containing titanium for the object. It comprises a step of maintaining the catalyst in the first portion at a temperature of 480 ° C. or higher and 550 ° C. or lower and decomposing the organic matter in the object while covering the catalyst with a catalyst composed of a body and bringing the catalyst into contact with the organic matter.
  • a gas containing oxygen flows into the first portion so that the decomposition reaction of the organic substance occurs and the catalyst trembles at least a part of the surface of the object.
  • a catalyst composed of granules made of a metal oxide containing titanium is used.
  • the metal oxide is a general term for oxides containing one or more kinds of metal elements.
  • the gas flowing into the first portion causes the catalyst to move slightly over the surface of the object and come into contact with different regions of the object. Such catalyst movements occur continuously, causing the catalyst to wiggle at least on at least a portion of the surface of the object. In this way, the decomposition of organic matter in the object is promoted.
  • it is not necessary to stir the object and the catalyst when decomposing the organic substance in the object so that the wear of the catalyst can be reduced and the organic substance in the object can be easily separated. Can be disassembled.
  • the object can be processed for a long period of time. In addition, the object can be easily processed.
  • the step of stirring the catalyst over the entire catalyst in the first portion is not carried out.
  • a stirring blade for stirring the entire catalyst in the first recess and a rotation for circulating the catalyst in the first recess and stirring the entire catalyst for example, a stirring blade for stirring the entire catalyst in the first recess and a rotation for circulating the catalyst in the first recess and stirring the entire catalyst.
  • mechanical stirring is carried out using a car or the like.
  • the step of stirring such a catalyst if the object and the catalyst are stirred, the object and the catalyst may be agitated and the organic matter in the object may be exposed on the surface.
  • undecomposed gas for example, methane gas, carbon monoxide gas, etc.
  • undecomposed gas for example, methane gas, carbon monoxide gas, etc.
  • the organic matter of the object is suppressed from being exposed to the surface, so that the generation of undecomposed gas of the organic matter can be reduced.
  • by not performing mechanical stirring it is possible to suppress the generation of a load that presses the catalyst. Therefore, the wear of the catalyst can be reduced.
  • the object in an object having a size and shape that makes it difficult to stir the object and the catalyst, the object can be processed as it is without crushing the object into small pieces.
  • the step of decomposing the organic substance in the object may be carried out without stirring the object and the catalyst.
  • the step of decomposing the organic substance in the object is a step of moving the object (changing the spatial position of the object) while maintaining the state in which the object is covered with the catalyst. It may be included. More specifically, in the step of arranging the object, the object housed in the container having a mesh-like shape through which the catalyst can pass may be arranged in the first portion. In the step of moving the object in the first portion, the container may be moved with the object contained in the container. By doing so, the catalyst can easily come into contact with the surface of the object. Therefore, the organic matter in the object can be decomposed more efficiently.
  • the flow velocity of the gas when the gas containing oxygen flows into the reactor may be 0.5 m / min or more and 200 m / min or less.
  • the catalyst When the flow rate of the gas is less than 0.5 m / min, the catalyst may not sufficiently flow on the surface of the object, and the organic matter in the object may not be sufficiently decomposed.
  • the flow velocity of the gas is preferably 0.5 m / min or more and 200 m / min or less.
  • the object In the step of decomposing the organic substance in the object, the object may be buried 50 mm or more from the surface of a plurality of catalysts housed in the space of the reactor. By doing so, when the organic matter in the object is decomposed, it is possible to suppress the generation of undecomposed gas formed without the organic matter being decomposed.
  • the gas containing oxygen may be air.
  • Air is suitable as a gas used in a method for treating an object.
  • the particle size of the granules may be 0.2 mm or more and less than 2 mm.
  • the angle at which the granules start to slide may be 0.5 degrees or more and 15 degrees or less, and the angle at which all the granules end to slide may be 2 degrees or more and 30 degrees or less.
  • the shape of the granules is substantially spherical.
  • the object may be a waste substrate. Depending on the size of the waste substrate, it may be difficult to stir the waste substrate and the catalyst. According to the object processing method of the present application, it is not necessary to crush the waste substrate into small pieces, and the waste substrate can be processed as it is.
  • the object may be waste plastic, medical waste, infectious medical waste, or the like, in addition to the waste substrate. According to the above-mentioned method for treating an object, it is not necessary to crush it, so that contamination and infection can be suppressed.
  • the waste substrate may have an area of 4 cm 2 or more when viewed in a plane from the thickness direction.
  • the area of the waste substrate is preferably 100 cm 2 or more, and more preferably 600 cm 2 or more.
  • the waste substrate is, for example, an electronic circuit board.
  • the electronic circuit board includes a printed circuit board and electronic components mounted on the printed circuit board.
  • the processing device of the present application is a processing device for decomposing organic substances in an object.
  • a catalyst having a first recess, which is a portion for processing an object, and a catalyst made of granules made of a metal oxide containing titanium, which is maintained in a state of being contained in the first recess,
  • a supply unit connected to the first portion and supplying a gas containing oxygen into the first recess, a heating unit for heating at least one of the catalyst and the gas, and an object can be accommodated and passed through the catalyst. It is provided with a container having a shape and a support portion for supporting the container.
  • the container is movable along the vertical direction so that at least a part of the container is in contact with the catalyst in the first recess and the container is not in contact with the catalyst.
  • the processing apparatus does not include a stirring unit for stirring the catalyst over the entire catalyst housed in the first recess.
  • the object and the catalyst circulate in the circulation tank by the rotary wheel, so that the object and the catalyst are agitated, so that the catalysts or the object and the catalyst come into contact with each other.
  • the catalyst wears.
  • a catalyst circulated in a circulation tank can be used to decompose plastics and organic substances in an object housed in a basket in a mixing tank.
  • the catalyst may leak from the mixing tank, making it difficult to process the object.
  • the processing apparatus of the present application includes a first part, a catalyst, a supply part, a heating part, and a container.
  • the catalyst consists of granules made of a metal oxide containing titanium.
  • the metal oxide is a general term for oxides containing one or more kinds of metal elements.
  • the catalyst falls into the first recess, so that it is possible to reduce the leakage of the catalyst from the first recess. Since the catalyst is maintained in the state of being contained in the first recess, it becomes easy to repeatedly process the object in the first portion.
  • the processing apparatus of the present application does not include a stirring unit that stirs the catalyst over the entire catalyst housed in the first recess when decomposing the organic substance in the object.
  • the stirring unit include a stirring blade that stirs the entire catalyst housed in the first recess, a rotary wheel that circulates the catalyst housed in the first recess, and stirs the entire catalyst.
  • the target Since the processing apparatus of the present application does not have the stirring unit, the target has a size and shape that makes it difficult to stir the target and the catalyst, and the target is not crushed into small pieces and remains as it is.
  • the object can be processed. Furthermore, it is possible to process an object that is difficult to crush or an object that cannot be crushed as it is. Since the object can be processed as it is without being crushed into small pieces, the object can be easily processed.
  • the container may be movable (the spatial position of the container can be changed) when at least a part of the container is in contact with the catalyst. Since the container can move when at least a part of the container is in contact with the catalyst, the catalyst can easily come into contact with the surface of the object, and the organic matter in the object can be decomposed more efficiently.
  • the support portion may include a rail including an inclined portion inclined with respect to the vertical direction, and a first component attached to the container and capable of traveling on the rail.
  • the processing device may be attached to a container and further provided with a brim portion that protrudes from either side in the traveling direction of the rail.
  • the support portion may include a second component that is attached to the container and can move along the vertical direction.
  • the container includes a bottom wall portion and a peripheral wall portion extending in the vertical direction from the outer edge of the bottom wall portion, and has a mesh-like shape through which a catalyst can pass, and a bottom wall. It may include a blade portion that protrudes to the side opposite to the peripheral wall portion of the portion and is rotatable along a virtual plane perpendicular to the vertical direction. By rotating the blades when moving the container along the vertical direction, it becomes easy to dive so that at least a part of the area of the container is covered with the catalyst while avoiding the catalyst.
  • the gas containing oxygen may be air. Air is suitable as a gas used in the treatment apparatus.
  • the object can be processed for a long period of time.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the processing apparatus according to the first embodiment.
  • FIG. 2 is a flowchart showing an example of a processing method for an object.
  • FIG. 3 is a schematic cross-sectional view showing a wear rate measuring device.
  • FIG. 4 is a schematic cross-sectional view showing the structure of the processing apparatus according to the second embodiment.
  • FIG. 5 is a schematic cross-sectional view showing the structure of the processing apparatus according to the second embodiment.
  • FIG. 6 is a schematic perspective view showing a container running on a rail.
  • FIG. 7 is a schematic side view showing a container running on a rail.
  • FIG. 8 is a schematic cross-sectional view showing a modified example of the processing apparatus of the second embodiment.
  • FIG. 9 is a schematic cross-sectional view showing the structure of the processing apparatus according to the third embodiment.
  • FIG. 10 is a schematic cross-sectional view showing the structure of the processing apparatus according to the third embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the processing apparatus according to the fourth embodiment.
  • FIG. 12 is a schematic view showing a state in which the container and the waste substrate are covered with the catalyst.
  • FIG. 13 is a photograph showing a state of the electronic circuit board before processing.
  • FIG. 14 is a photograph showing the state of the decomposed product.
  • FIG. 1 is a schematic cross-sectional view showing the structure of the processing apparatus according to the first embodiment.
  • the X-axis direction is the direction along the central axis of the side wall portion of the reactor.
  • the Y-axis direction is the radial direction of the side wall portion.
  • the processing apparatus 1 includes a reactor 10, a catalyst 30, and a container 40 as a first portion, which is a portion for processing the object 2.
  • the processing device 1 is a device for decomposing an organic substance in an object 2 having an organic substance.
  • the reactor 10 includes a side wall portion 101, an upper wall portion 102, and a lower wall portion 103.
  • the side wall portion 101 has a hollow cylindrical shape.
  • the inner diameter M of the side wall portion 101 is, for example, about 150 mm.
  • the length of the side wall portion 101 in the X-axis direction is, for example, about 135 mm.
  • the upper wall portion 102 is arranged so as to cover one opening of the side wall portion 101.
  • the lower wall portion 103 is arranged so as to cover the other opening of the side wall portion 101.
  • the reactor 10 has a space V surrounded by a side wall portion 101, an upper wall portion 102, and a lower wall portion 103.
  • a supply port 11 is formed in the center of the lower wall portion 103.
  • the supply port 11 is composed of a plurality of through holes.
  • the outer shape of the supply port 11 has a circular shape.
  • a pipe 51 is installed on the lower wall portion 103. The pipe 51 is arranged so that the space surrounded by the pipe 51 and the supply port 11 communicate with each other.
  • the pipe 51 is a gas inflow path. Therefore, the gas in the space V of the reactor 10 from the pipe 51 flows in the direction of arrow L 1.
  • a pipe 52 is installed in the center of the upper wall portion 102. A part of the pipe 52 is arranged so as to be exposed in the space V.
  • the pipe 52 is a gas discharge path. Therefore, gas is discharged in the direction of arrow L 2 in the pipe 52 from the space V of the reactor 10. The gas flows along the X-axis direction.
  • the plurality of catalysts 30 are maintained in a state of being housed in the space V of the reactor 10.
  • the catalyst 30 is arranged so as to be in contact with the lower wall portion 103.
  • the amount of the plurality of catalysts 30 housed in the space V is, for example, 1000 g or more.
  • the amount of the plurality of catalysts 30 accommodated in the space V is appropriately set according to the volume of the reactor 10.
  • the catalyst 30 is made of granules made of a metal oxide containing titanium.
  • the catalyst 30 is made of titanium oxide (titanium dioxide) granules.
  • the granules have a substantially spherical shape.
  • the particle size of the granules is 0.2 mm or more and less than 2 mm.
  • the particle size of the granules can be measured, for example, by a sieving method.
  • the rolling inclination angle of the granule has the following numerical range. Specifically, the angle at which the granules start to slide is 0.5 degrees or more and 15 degrees or less, and the angle at which all the granules end to slide is 2 degrees or more and 30 degrees or less.
  • the angle at which the granules start to slide is preferably 0.5 degrees or more and 10 degrees or less, more preferably 0.5 degrees or more and 8 degrees or less, and further preferably 0.5 degrees or more and 5 degrees or less.
  • the angle at which the granules finish sliding is preferably 2 degrees or more and 25 degrees or less, more preferably 2 degrees or more and 22 degrees or less, and further preferably 2 degrees or more and 18 degrees or less.
  • the degree of spherical shape of the granules can be increased.
  • the rolling inclination angle of the granules is measured, for example, under the following conditions. After 20 g of the granules are placed on the glass plate, the glass plate is slanted from the horizontal state (0 degree), and the angle at which the granules start to slide and the angle at which all the granules end to slide are measured.
  • the container 40 has a rectangular parallelepiped shape having an internal space.
  • the container 40 has a mesh-like shape through which the catalyst can be passed.
  • the container 40 is made of metal (iron) that can maintain its shape at a temperature of about 550 ° C.
  • the container 40 includes a mesh-like tubular portion, a mesh-like top lid arranged to cover one opening, and a mesh-like bottom lid arranged to cover the other opening.
  • the upper lid is attached so as to be removable from the tubular portion.
  • the connecting portion 31 is attached to the upper wall portion 102 so as to be movable in the Y-axis direction.
  • a rail (not shown) is installed on the upper wall portion 102, and a drive unit (not shown) capable of traveling on the rail is attached to one end of the connecting portion 31.
  • a drive unit (not shown) capable of traveling on the rail is attached to one end of the connecting portion 31.
  • the opening of the tubular portion, the upper lid and the lower lid is preferably 2 mm or more and 100 mm or less, more preferably 2 mm or more and 50 mm or less, further preferably 2 mm or more and 30 mm or less, and particularly preferably 2 mm or more and 6 mm or less. be.
  • the opening is appropriately determined by the size of the object 2 and the catalyst 30.
  • FIG. 2 is a flowchart showing an example of the processing method of the object 2 in the present embodiment.
  • a step (S10) a step of arranging the object 2 is carried out. More specifically, the object 2 is arranged in the reactor 10.
  • the object 2 is a waste substrate 20.
  • the waste substrate 20 has one surface 21 and the other surface 22.
  • the waste substrate 20 has an area of 4 cm 2 or more when viewed in a plane from the thickness direction, for example.
  • the waste substrate 20 is arranged in the reactor 10 in a state of being housed in the container 40.
  • the container 40 is embedded in the catalyst 30 so that the surfaces 21 and 22 of the waste substrate 20 are covered with the plurality of catalysts 30. Then, the waste substrate 20 is buried, for example, 50 mm or more from the surface of the catalyst 30.
  • the waste substrate 20 is arranged so as to intersect (orthogonally) in the X-axis direction. That is, the surfaces 21 and 22 of the waste substrate 20 are arranged so as to intersect (orthogonally) in the direction (X-axis direction) in which the gas flows. In this way, the object 2 is covered with the catalyst 30, and the catalyst 30 is brought into contact with the organic substance in the object 2.
  • the waste substrate 20 is, for example, an electronic circuit board including a printed circuit board and electronic components mounted on the printed circuit board.
  • the thickness direction of the electronic circuit board is the thickness direction of the printed circuit board.
  • the surface 22 of the electronic circuit board on which more electronic components are mounted is arranged so as to face the lower wall portion 103.
  • a step of decomposing organic substances is carried out. More specifically, the waste substrate 20 is covered with the catalyst 30, the catalyst 30 is brought into contact with the organic matter in the waste substrate 20, a gas containing oxygen flows into the reactor, and the catalyst 30 in the reactor 10 is heated to 480 ° C. or higher. Maintain the temperature below 550 ° C.
  • the catalyst 30 in the reactor 10 is maintained at a predetermined temperature by being heated from the outer wall side of the reactor 10 by a heating device or the like. More specifically, the fluctuation range of the temperature of the catalyst 30 with respect to the set temperature of the heating device is about plus or minus 30 ° C. from the set temperature. Therefore, the set temperature of the heating device is appropriately set so that the catalyst 30 is in the above temperature range.
  • the catalyst 30 in the reactor 10 is heated to a predetermined temperature (for example, 480 ° C. or higher and 550 ° C. or lower) before the waste substrate 20 is placed in the reactor 10.
  • the gas flows into the reactor 10 so that the decomposition reaction of the organic matter in the waste substrate 20 occurs.
  • the gas flows in so as to spread throughout the inside of the reactor 10.
  • the gas is a gas containing oxygen.
  • the gas containing oxygen is, for example, a mixed gas containing oxygen. More specifically, it is air.
  • the gas is flowed into the reactor 10 so that the decomposition reaction of the organic matter in the waste substrate 20 occurs and the catalyst 30 moves slightly on at least a part of the surfaces 21 and 22 of the waste substrate 20.
  • the volume of the waste substrate 20 decreases.
  • the gas flowing into the reactor 10 causes the catalyst 30 to move slightly over the surfaces 21 and 22 of the waste substrate 20 and come into contact with different regions of the waste substrate 20. Such movement of the catalyst 30 occurs continuously, and the catalyst 30 slightly moves on at least a part of the surfaces 21 and 22 of the waste substrate 20. In this way, the catalyst 30 is slightly flowed on the surfaces 21 and 22 of the waste substrate 20.
  • the gas flows into the reactor 10 to the extent that the catalyst 30 does not form a fluidized bed.
  • the flow velocity of the gas is 0.5 m / min or more and 200 m / min or less.
  • the lower limit of the gas flow rate is preferably 3 m / min, more preferably 4 m / min.
  • the upper limit of the flow rate of the gas is preferably 100 m / min, more preferably 50 m / min, still more preferably 20 m / min, and particularly preferably 10 m / min.
  • the gas flow velocity is calculated from, for example, the inner diameter of the side wall portion 101 and the gas flow rate.
  • the lower limit of the gas flow rate (l / min) per unit mass (g) of the catalyst 30 is 4 ⁇ 10 -3 l / min, preferably 0.01 l / min, and more. It is preferably 0.028 l / min.
  • the upper limit of the gas flow rate (l / min) per unit mass (g) of the catalyst 30 is 2 l / min, preferably 1 l / min, and more preferably 0.1 l / min. It is more preferably 0.085 l / min.
  • the step of stirring the catalyst 30 over the entire catalyst 30 in the reactor 10 is not carried out.
  • the object 2 is moved while maintaining the state in which the waste substrate 20 is covered with the catalyst 30.
  • the container 40 is moved while the waste substrate 20 is housed in the container 40.
  • the connecting portion 31 is moved so as to reciprocate in the radial direction (Y-axis direction), and the container 40 is moved relative to the catalyst 30.
  • the organic matter in the waste substrate 20 can be decomposed.
  • the gas containing oxygen flows into the reactor 10 and the catalyst 30 is heated, so that the organic substance in contact with the catalyst 30 is oxidatively decomposed. .. Further, the gas is allowed to flow into the first portion so that the decomposition reaction of the organic matter occurs and the catalyst 30 slightly moves on at least a part of the surfaces 21 and 22 of the waste substrate 20. By doing so, the decomposition of organic substances in the waste substrate 20 is promoted.
  • the method for treating the object 2 it is not necessary to stir the waste substrate 20 and the catalyst 30 when decomposing the organic matter in the waste substrate 20, so that the wear of the catalyst 30 can be reduced and the object can be reduced.
  • the organic substance in 2 can be easily decomposed.
  • the waste substrate 20 can be treated for a long period of time and the waste substrate 20 can be easily treated.
  • the step of stirring the catalyst 30 over the entire catalyst 30 in the reactor 10 is not carried out.
  • the organic matter of the waste substrate 20 is suppressed from being exposed to the surface, so that the generation of undecomposed gas of the organic matter in the waste substrate 20 can be reduced. ..
  • by not performing mechanical stirring it is possible to suppress the generation of a load such that the stirring blade presses the catalyst 30. Therefore, the wear of the catalyst 30 can be reduced.
  • the waste substrate 20 can be processed as it is without finely crushing the waste substrate 20. Since the waste substrate 20 can be processed as it is without being crushed into small pieces, the waste substrate 20 can be easily processed.
  • the waste substrate 20 is housed in the container 40.
  • the container 40 is moved while the waste substrate 20 is housed in the container 40.
  • the catalyst 30 can be easily brought into contact with the surfaces 21 and 22 of the waste substrate 20.
  • the container 40 is moved so as to reciprocate in the radial direction (Y-axis direction) of the side wall portion 101 , but the present invention is not limited to this, and the container 40 is directed by the arrow Y with respect to the catalyst 30. Or may be moved only in the opposite direction. Further, the container 40 may be made to vibrate with respect to the catalyst 30. Further, the container 40 may be rotated about an axis.
  • the container 40 is moved so that the catalyst 30 housed in the reactor 10 is not agitated.
  • the moving speed, the rotation speed, and the magnitude of vibration of the container 40 are appropriately set so that the catalyst 30 is not agitated.
  • the case where the container 40 containing the waste substrate 20 is moved has been described, but the present invention is not limited to this, and the waste substrate 20 is held by a jig (for example, an arm) and the jig is moved. , The waste substrate 20 may be moved. By doing so, the organic matter in the waste substrate 20 can be efficiently decomposed. Similarly, the jig is moved so that the catalyst 30 housed in the reactor 10 is not agitated.
  • the moving speed of the jig is appropriately set so that the catalyst 30 is not agitated.
  • the step of moving the waste substrate 20 may be carried out simultaneously over the entire step of decomposing the organic matter in the waste substrate 20, or may be carried out as a part of the step of decomposing the organic matter in the waste substrate 20. You may do it. It is not necessary to move the waste substrate 20 with respect to the catalyst 30 throughout the entire process of decomposing the organic matter in the waste substrate 20.
  • the present invention is not limited to this, and the waste substrate 20 may be arranged so as to be in direct contact with the catalyst 30.
  • the flow velocity of the gas when the gas containing oxygen flows into the reactor 10 is 0.5 m / min or more and 200 m / min or less.
  • the catalyst 30 may not sufficiently flow on the surfaces 21 and 22 of the waste substrate 20, and the organic matter in the waste substrate 20 may not be sufficiently decomposed.
  • the flow velocity of the gas is larger than 200 m / min, the catalyst 30 tends to flow, and it may be difficult to reduce the wear of the catalyst 30. Therefore, the flow velocity of the gas is preferably 0.5 m / min or more and 200 m / min or less.
  • the waste substrate 20 has an area of 4 cm 2 or more when viewed in a plane from the thickness direction.
  • the waste substrate 20 having a larger area can be treated.
  • the area of the waste substrate 20 is, for example, 100 cm 2 or more, preferably 600 cm 2 or more.
  • the upper limit of the area of the waste substrate 20 is not particularly limited, but is, for example, 1000 cm 2 .
  • the waste substrate 20 can be efficiently decomposed.
  • the waste substrate 20 is an electronic circuit board.
  • the resin in the printed circuit board is decomposed, and it becomes easy to recover the processed material having metal and the electronic component contained in the printed circuit board. Further, it is also possible to recover the processed material and the electronic component whose plate-like state is maintained by decomposing the resin in the printed circuit board to some extent.
  • the treatment method of the object 2 all the organic substances are removed without crushing the electronic circuit board, so that the rare metal contained in the electronic circuit board can be easily recovered. Further, by not crushing the electronic circuit board, the recovery rate of rare metals can be improved. In addition, removing all organic matter simplifies the metal smelting process during recycling.
  • the present invention is not limited to this, and the surface 21 of the waste substrate 20 is not limited to this.
  • 22 may be arranged along the X-axis direction.
  • the surface 22 of the electronic circuit board on which more electronic components are mounted is arranged so as to face the lower wall portion 103.
  • the object 2 (waste substrate 20) is buried, for example, 50 mm or more from the surface of the catalyst 30.
  • the depth at which the object 2 (waste substrate 20) is embedded from the surface of the catalyst 30 is preferably 100 mm or more, more preferably 150 mm or more, still more preferably 200 mm or more.
  • the catalyst 30 is made of titanium oxide granules, but the catalyst 30 is not limited to this, and the material constituting the granules is oxidized with at least one selected from aluminum oxide and silicon oxide. It may be a mixture with titanium. Further, the material constituting the granule is at least one selected from titanium / niobium composite oxide, titanium / silicon composite oxide, silicon and tungsten and at least one selected from titanium composite oxide, silicon and molybdenum. It may be at least one inorganic oxide selected from a composite oxide of titanium and titanium, a titanium / aluminum composite oxide, zirconium oxide, a titanium / zirconium composite oxide and a titanium-containing perovskite compound.
  • titanium-containing perovskite compound examples include strontium titanate, barium zirconate titanate, and calcium titanate, and barium, zirconium, strontium, and / or a part of calcium in these are substituted with lanthanum, cerium, ittium, or the like. Things can be mentioned, but the present invention is not limited to these.
  • the granules in the above embodiment can be produced, for example, by the following method. Titania sol (including at least one sol selected from silica sol, alumina sol and zirconia sol, if necessary) is stirred and granulated into spherical granules, and then calcined at a temperature in the range of 400 ° C. to 850 ° C. Then, by sieving, granules after firing having a specific particle size are obtained.
  • Titania sol including at least one sol selected from silica sol, alumina sol and zirconia sol, if necessary
  • the object 2 can be treated with high efficiency for a long period of time. It is produced by supporting at least one of copper and copper oxide on granules made of a metal oxide containing titanium produced by the above method.
  • a method for supporting at least one of copper and copper oxide various known methods can be used, and among them, the impregnation method can be preferably used.
  • the granules obtained above are immersed in an aqueous solution of copper nitrate, dried, and then calcined at a temperature of 200 ° C. or higher and 500 ° C. or lower to support at least one of copper and copper oxide. You can get a body.
  • the amount of at least one of copper and copper oxide supported is, for example, 0.1% by mass or more and 10% by mass or less.
  • the roundness of the granules in the above embodiment is 0.5 or more and 5 or less.
  • the roundness of the granules is preferably 1 or more and 2 or less, more preferably 1 or more and 1.5 or less, still more preferably 1 or more and 1.4 or less, and particularly preferably 1 or more and 1.3 or less. Most preferably, it is 1 or more and 1.2 or less. More specifically, the roundness of the granules of 70% or more, preferably 80% or more, more preferably 90% or more in the total titanium oxide granules before use is 1 or more and 2 or less, preferably 1 or more.
  • the roundness of the granules has the above range, the degree of spherical shape of the granules can be increased.
  • the measurement of roundness is carried out, for example, under the following conditions and devices.
  • a CCD camera is attached to an inverted microscope, and image processing is performed by Image-Pro Plus. Specifically, put the granules so that they do not overlap the plastic petri dish. Then, the image is captured by the following inverted microscope at a magnification of 4 times, and the roundness is automatically measured by Image-Pro Plus.
  • the rest angle of the granules in the above embodiment is 15 degrees or more and 35 degrees or less, preferably 20 degrees or more and 35 degrees or less.
  • the measurement of the rest angle is carried out by, for example, the following method. 20 g of granules are dropped by a funnel, and the angle between the slope and the horizontal plane when a mountain-shaped layer is formed is measured.
  • the rest angle is smaller for the powder or granular material having good fluidity, and conversely, it is larger for the powder or granular material having poor fluidity.
  • the tap density of the granules in the above embodiment is 1 g / ml or more and 1.8 g / ml or less, preferably 1.03 g / ml or more and 1.6 g / ml or less, and more preferably 1.05 g / ml or more and 1.55 g. It is less than / ml.
  • the measurement of the tap density is carried out, for example, as follows. Approximately 180 g of granules are put into a 200 ml glass graduated cylinder, and this graduated cylinder is repeatedly naturally dropped 10 times from a height of 50 mm on a rubber sheet with a thickness of 10 mm, and then the side surface of a wooden plate from a distance of 50 mm.
  • the wear rate of the granules in the above embodiment is 5% by mass or less, preferably 2% by mass or less, more preferably 1.5% by mass or less, still more preferably 1% by mass or less.
  • the measurement of the wear rate is carried out as follows. The measurement is carried out using the wear rate measuring device shown in FIG. That is, in this wear rate measuring device, a stirrer 202 is attached to a sample container 201 having an inner diameter of 63 mm and a depth of 86 mm, and the stirrer 202 stirs an elliptical shape having a length of 20 mm at the lower end of the shaft body 203.
  • Three blades 204 are attached so as to extend in the radial direction from the shaft body 203 at intervals of 60 °, and the stirring blade 204 is inclined so as to have an angle of 45 ° with respect to the horizontal.
  • the lowermost edge of the stirring blade 204 is located at a distance of 8 mm from the bottom of the sample container 201.
  • the specific surface area of the granules in the above embodiment is 30 m 2 / g or more and 100 m 2 / g or less, more preferably 30 m 2 / g or more and 60 m 2 / g or less, and further preferably 30 m 2 / g or more and 50 m or less. It is 2 / g or less, and particularly preferably 30 m 2 / g or more and 40 m 2 or less. If the specific surface area of the granules is less than 30 m 2 / g, the contact area between the granules and the object 2 becomes small, and the object 2 may not be sufficiently treated.
  • the specific surface area of the granules is larger than 100 m 2 / g, the heat resistance of the granules may be lowered, and the granules may be easily crumbled and powdered. Therefore, the specific surface area of the granules is preferably 30 m 2 / g or more and 100 m 2 / g or less.
  • the measurement of the specific surface area is carried out by, for example, the BET method.
  • the BET method is a method in which a molecule having a known adsorption area is adsorbed on the surface of powder particles at the temperature of liquid nitrogen, and the specific surface area of the sample is obtained from the amount.
  • a 2300 type automatic measuring device manufactured.
  • the pore volume of the granules in the above embodiment is 0.1 ml / g or more and 0.8 ml / g or less, more preferably 0.2 ml / g or more and 0.6 ml / g or less, and further preferably 0. .3 ml / g or more and 0.55 ml / g or less, and particularly preferably 0.4 ml / g or more and 0.5 ml / g or less.
  • the measurement of the pore volume is carried out, for example, by a mercury intrusion method.
  • the mercury intrusion method is a method in which pressure is applied to infiltrate the pores of powder into the pores of the powder by utilizing the large surface tension of mercury, and the pore volume is obtained from the pressure and the amount of injected mercury.
  • a porosimeter manufactured by Thermo Finnigan can be used.
  • the particle size of the granules in the above embodiment is preferably 0.2 mm or more and less than 1.2 mm when the waste substrate 20 is treated.
  • the particle size of the granules having a particle size of 70% by mass or more, preferably 80% by mass or more, more preferably 85% by mass or more among all the granules is 0.35 mm or more and less than 0.85 mm, and more. It is preferably 0.4 mm or more and less than 0.85 mm, and more preferably 0.5 mm or more and less than 0.85 mm.
  • granules having a larger particle size may be used.
  • the particle size at this time is, for example, 1 mm or more and less than 2 mm.
  • the side wall portion 101 has a hollow cylindrical shape
  • the present invention is not limited to this, and the side wall portion 101 may have a hollow shape and a prismatic outer shape.
  • the side wall portion 101 has a hollow rectangular parallelepiped shape
  • the cross section of the side wall portion 101 perpendicular to the X-axis direction is preferably rectangular.
  • the container 40 can be moved along the long side.
  • the processing time for decomposing organic substances in the waste substrate 20 can be made longer.
  • the inner wall of the side wall portion 101 in the above embodiment may have a tapered (curved surface) shape in which the inner diameter increases as the distance from the lower wall portion 103 increases.
  • the inner wall of the side wall portion 101 in the above embodiment may have a tapered (curved surface) shape in which the inner diameter increases as the distance from the upper wall portion 102 increases.
  • the outer shape of the supply port 11 has a circular shape when viewed in a plane from the X-axis direction, but the present invention is not limited to this, and the outer shape of the supply port 11 is from the X-axis direction. It may have a rectangular shape when viewed in a plane.
  • the treatment apparatus 1 in the above embodiment includes an oxidation catalyst treatment means, a reduction catalyst treatment means, a lime neutralization treatment means, a gas supply means, an alumina catalyst treatment means, and a heat exchange means.
  • Preheater means, exhaust blower means, cooling means, heat recovery means, hydrogen chloride continuous measuring means, CO continuous measuring means, and alarm means may be provided.
  • the waste substrate 20 is an electronic circuit board
  • the present invention is not limited to this, and may be a plate-like material such as a decorative steel plate or a resin laminated plate.
  • the object 2 includes general waste having organic substances such as waste plastic and resin, industrial waste, medical waste and infectious medical waste, and experimental waste (laboratory animal corpses such as rats). Can be processed.
  • the organic substances that can be decomposed by using the catalyst 30 are not particularly limited, and may be general-purpose thermoplastic resins such as polyethylene and polypropylene, thermosetting resins, organic substances contained in medical waste, and the like. be.
  • FIGS. 4 and 5 are schematic cross-sectional views showing the structure of the processing apparatus 1 according to the second embodiment.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG.
  • FIG. 5 is a cross-sectional view taken along the line AA of FIG.
  • FIG. 6 is a schematic perspective view showing the container 40 in a state of traveling on the rail.
  • FIG. 7 is a schematic side view showing the container 40 in a state of traveling on the rail.
  • the X-axis direction is the direction in which the first rail on the rail extends.
  • the Z-axis direction is the vertical direction.
  • the Y-axis direction is the direction perpendicular to the XZ plane.
  • the processing apparatus 1 in the present embodiment includes a reaction tank 10, a catalyst 30, a supply unit 50, and a reaction tank 10 as a first portion, which is a portion for processing the object 2.
  • a gas processing unit 53, a heating unit 60, a container 40, and a support unit 65 for supporting the container 40 are provided.
  • the reaction tank 10 has a shape in which a space for processing the object 2 is formed inside.
  • the reaction vessel 10 has, for example, a rectangular parallelepiped shape.
  • the reaction vessel 10 is formed with a space T penetrating from one end toward the other end. More specifically, the space T extends along the X-axis direction.
  • the reaction tank 10 includes a first inner wall surface 12, a pair of second inner wall surfaces 13, and a third inner wall surface 14 that surround the space T.
  • the first inner wall surface 12 has, for example, a planar shape. More specifically, the third inner wall surface 14 is arranged at a distance from the first inner wall surface 12 in the Z-axis direction. The first inner wall surface 12 and the third inner wall surface 14 are arranged in parallel.
  • the pair of second inner wall surfaces 13 are connected to the first inner wall surface 12 and the third inner wall surface 14, respectively.
  • the pair of second inner wall surfaces 13 are arranged at intervals in the Y-axis direction.
  • the second inner wall surface 13 has, for example, a planar shape.
  • the third inner wall surface 14 includes a first surface 141, a second surface 142, a third surface 143, a fourth surface 144, and a fifth surface 145. ..
  • the first surface 141, the second surface 142, the third surface 143, the fourth surface 144, and the fifth surface 145 each have a planar shape, for example. More specifically, the first surface 141, the third surface 143, and the fifth surface 145 are arranged parallel to the XY plane, respectively.
  • the first surface 141 and the fifth surface 145 are located at the same height in the Z-axis direction. In the Z-axis direction, the height of the third surface 143 is lower than the height of the first surface 141.
  • the second surface 142 connects to the first surface 141 and the third surface 143.
  • the fourth surface 144 connects to the third surface 143 and the fifth surface 145.
  • the second surface 142 and the fourth surface 144 are inclined in the XY plane, respectively.
  • the reaction tank 10 is formed with a through hole 15 communicating with the first recess S along the Z-axis direction. More specifically, a plurality of through holes 15 (eight in the present embodiment) are formed at intervals in the X-axis direction.
  • One opening of the through hole 15 is formed in the second surface 142, the third surface 143, and the fourth surface 144.
  • the other opening of the through hole 15 is formed in the outer wall of the reaction vessel 10.
  • the inner wall surface of the reaction tank 10 is formed with a first recess S surrounded by a second surface 142, a third surface 143, a fourth surface 144, and a pair of second inner wall surfaces 13. Has been done.
  • the catalyst 30 is maintained in a state of being housed in the first recess S.
  • the catalyst 30 is made of granules made of a metal oxide containing titanium.
  • the catalyst 30 is made of titanium oxide (titanium dioxide) granules.
  • the granules have, for example, a substantially spherical shape. Approximately spherical means that the corners of the granule surface are removed and the degree of sphere is high.
  • the particle size of the granules is the same as that of the first embodiment. In the present embodiment, the rolling inclination angle of the granules is the same as that in the first embodiment.
  • the processing apparatus 1 does not include a stirring unit that stirs the catalyst 30 over the entire catalyst 30 housed in the first recess S.
  • the supply unit 50 supplies a gas containing oxygen.
  • the supply unit 50 is, for example, a blower.
  • the gas containing oxygen is, for example, a mixed gas containing oxygen. More specifically, the gas containing oxygen is air.
  • the supply unit 50 is connected to the reaction tank 10 via the first pipe 511 and the second pipe 512. More specifically, the first pipe 511 extends along the X-axis direction.
  • the supply unit 50 is arranged at one end of the first pipe 511.
  • the second pipe 512 extends along the Z-axis direction from the branch point 513 in the first pipe 511. A plurality of second pipes 512 are arranged at intervals in the X-axis direction.
  • the second pipe 512 is arranged so that the space surrounding the second pipe 512 communicates with the through hole 15.
  • the gas supplied from the supply unit 50 is supplied into the first recess S.
  • the heating unit 60 is arranged along the outer circumference of the second pipe 512.
  • the heating unit 60 heats the gas supplied by the supply unit 50.
  • the heating unit 60 is, for example, a heater. In this way, the gas containing oxygen is supplied into the first recess S, and the catalyst 30 housed in the first recess S is heated.
  • the support portion 65 includes the drive portions 44A and 44B as the first component, the connection portions 42 and 43, and the rail 80.
  • the rail 80 has a shape in which the drive units 44A and 44B can travel. With reference to FIGS. 1 and 2, the rail 80 has, for example, an annular shape.
  • the rail 80 includes a first rail 81, a second rail 82, a third rail 83, and a fourth rail 84. More specifically, when viewed in a plane in the Z-axis direction, the first rail 81 and the second rail 82 extend linearly along the X-axis direction. The first rail 81 and the second rail 82 are arranged in parallel.
  • the third rail 83 is connected to each of one end of the first rail 81 and the second rail 82.
  • the fourth rail 84 is connected to each of the other ends of the first rail 81 and the second rail 82.
  • the first rail 81 is arranged so as to pass through the space T in the reaction vessel 10.
  • the first rail 81 is arranged so as to be exposed from the catalyst 30, for example.
  • the first rail 81 includes a first straight line portion 811, a second straight line portion 813, a third straight line portion 815, a first inclined portion 812, and a second inclined portion 814. More specifically, the first straight line portion 811, the second straight line portion 813, and the third straight line portion 815 extend along the X-axis direction, respectively.
  • the first straight line portion 811 and the third straight line portion 815 have the same height in the Z-axis direction. In the Z-axis direction, the height of the second straight line portion 813 is lower than the height of the first straight line portion 811.
  • the first inclined portion 812 is connected to the first straight line portion 811 and the second straight line portion 813.
  • the second inclined portion 814 is connected to the second straight line portion 813 and the third straight line portion 815.
  • the first inclined portion 812 and the second inclined portion 814 are inclined with respect to the Z-axis direction, respectively.
  • the drive units 44A and 44B can travel on the rail 80 by, for example, a built-in motor (not shown).
  • the connecting portions 42 and 43 have a shape suitable for suspending the container 40.
  • the connecting portions 42 and 43 have, for example, a shape extending linearly. More specifically, the drive unit 44A is connected to one end of the connection unit 42.
  • a drive unit 44B is connected to one end of the connection unit 43.
  • a container 40 is connected to the other end of the connecting portions 42, 43.
  • the connecting portions 42 and 43 are connected to the driving portions 44A and 44B and the container 40, and the driving portions 44A and 44B are attached to the container 40.
  • the container 40 has a shape suitable for holding the object 2 to be processed inside.
  • the container 40 has, for example, a rectangular parallelepiped shape. More specifically, the container 40 is made of metal (iron) capable of maintaining its morphology at a temperature of about 550 ° C.
  • the container 40 includes a first outer wall 411, a second outer wall 412, a third outer wall 413, a fourth outer wall 414, and a fifth outer wall 415.
  • the first outer wall 411, the second outer wall 412, the third outer wall 413, the fourth outer wall 414, and the fifth outer wall 415 have, for example, a mesh-like shape through which the catalyst 30 can pass.
  • the opening of the first outer wall 411, the second outer wall 412, the third outer wall 413, the fourth outer wall 414, and the fifth outer wall 415 is, for example, 1 mm or more.
  • the opening of the first outer wall 411, the second outer wall 412, the third outer wall 413, the fourth outer wall 414, and the fifth outer wall 415 is preferably 2 mm or more and 100 mm or less, more preferably 2 mm or more and 50 mm or less, and further preferably. Is 2 mm or more and 30 mm or less, and particularly preferably 2 mm or more and 6 mm or less.
  • the opening is appropriately determined by the size of the object 2 and the catalyst 30.
  • Each outer wall has a shape suitable for holding the object 2 to be processed.
  • the first outer wall 411, the second outer wall 412, the third outer wall 413, the fourth outer wall 414, and the fifth outer wall 415 have, for example, a flat plate shape. More specifically, the first outer wall 411 and the second outer wall 412 are arranged in parallel with an interval in the Z-axis direction. The third outer wall 413 and the fourth outer wall 414 are arranged in parallel with an interval in the Y-axis direction. When viewed in a plane from the Y-axis direction, the first outer wall 411 is connected to one long side of the third outer wall 413, and the second outer wall 412 is connected to the other long side of the third outer wall 413. There is.
  • the first outer wall 411 When viewed in a plane from the Y-axis direction, the first outer wall 411 is connected to one long side of the fourth outer wall 414, and the second outer wall 412 is connected to the other long side of the fourth outer wall 414. There is. When viewed in a plane from the X-axis direction, the first outer wall 411 is connected to one long side of the fifth outer wall 415, and the second outer wall 412 is connected to the other long side of the fifth outer wall 415. .. Further, a third outer wall 413 is connected to one short side of the fifth outer wall 415, and a fourth outer wall 414 is connected to the other short side of the fifth outer wall 415.
  • the container 40 is formed with an opening P surrounded by a first outer wall 411, a second outer wall 412, a third outer wall 413, and a fourth outer wall 414.
  • the object 2 can be arranged inside the container 40 from the opening P.
  • the object 2 is held in the space surrounded by the first outer wall 411, the second outer wall 412, the third outer wall 413, the fourth outer wall 414, and the fifth outer wall 415.
  • the first outer wall 411 is connected to the other end of the connecting portions 42 and 43. More specifically, the connecting portion 42 and the connecting portion 43 are arranged so as to sandwich the center of gravity of the container 40 when viewed in a plane in the Z-axis direction. In this way, the container 40 can move along the traveling direction H of the rail 80.
  • the processing device 1 may have a means for allowing the container 40 to slip into the catalyst 30.
  • the processing apparatus 1 further includes a brim portion 416. More specifically, the brim 416 is arranged so as to project from the outer edge of the second outer wall 412. When viewed in a plane from the Z-axis direction, the brim portion 416 is connected to the side of the second outer wall 412 opposite to the side to which the fifth outer wall 415 is connected. The brim 416 projects in the direction of the arrow in the traveling direction H of the rail 80.
  • the brim 416 has, for example, a flat plate shape. The brim 416 is inclined with respect to the second outer wall 412.
  • the angle formed by the brim portion 416 and the second outer wall 412 is, for example, 10 degrees or more and 45 degrees or less.
  • the brim portion 416 protrudes from the main body portion 417 and includes a plurality of protrusions 418 arranged at intervals in the Y-axis direction.
  • the processing apparatus 1 includes a gas processing unit 53 which is a portion for processing a gas generated by decomposing an organic substance in the object 2. More specifically, the reaction tank 10 is connected to one end of the pipe 521. The pipe 521 is connected so that the space surrounded by the pipe 521 communicates with the space T. A gas processing unit 53 is connected to the other end of the pipe 521. The gas processed by the gas processing unit 53 is discharged to the outside through the pipe 522.
  • the gas treatment unit 53 includes, for example, an oxidation catalyst treatment means, a reduction catalyst treatment means, a lime neutralization treatment means, and the like.
  • the waste substrate 20 as the object 2 is prepared.
  • the waste substrate 20 is an electronic circuit board including a printed circuit board and electronic components mounted on the printed circuit board.
  • the size (area when viewed in a plane) of the waste substrate 20 is the same as that of the first embodiment.
  • the waste substrate 20 is arranged inside from the opening P of the container 40.
  • the waste substrate 20 is arranged so as to intersect (orthogonally) in the Z-axis direction.
  • the surface of the electronic circuit board on which more electronic components are mounted is arranged so as to face the third inner wall surface 14.
  • the container 40 moves along the rail 80 by the drive units 44A and 44B traveling on the rail 80 in a state where the waste substrate 20 is housed in the container 40. ..
  • the container 40 moves in the reaction tank 10.
  • the drive units 44A and 44B travel on the first straight line portion 811 of the first rail 81
  • the container 40 moves along the horizontal direction (X-axis direction), and the container 40 enters the reaction tank 10.
  • the waste substrate 20 housed in the container 40 will be arranged in the reaction tank 10.
  • the container 40 is not in contact with the catalyst 30.
  • the container 40 moves along the vertical direction (Z-axis direction) and the horizontal direction (X-axis direction).
  • the container 40 moves so that the height of the container 40 is lower than the height of the container 40 in the Z-axis direction when the drive units 44A and 44B travel on the first straight line portion 811.
  • the container 40 is buried in the catalyst 30 housed in the first recess S, and the waste substrate 20 is covered with the catalyst 30.
  • the depth of burying the waste substrate 20 in the catalyst 30 is the same as that of the first embodiment. At this time, the container 40 is in contact with the catalyst 30.
  • a step of decomposing organic substances is carried out. More specifically, the drive units 44A and 44B are driven on the second straight line portion 813 of the first rail 81, and the container 40 is moved along the X-axis direction. At this time, the moving speed is appropriately set by the container 40 so that the catalyst 30 is not agitated. At this time, the waste substrate 20 is covered with the catalyst 30, and the organic matter in the waste substrate 20 is maintained in contact with the catalyst 30. Then, a gas containing oxygen is allowed to flow into the first recess S to maintain the catalyst 30 at a temperature of 480 ° C. or higher and 550 ° C. or lower.
  • the temperature of the gas supplied into the first recess S is appropriately set so that the catalyst 30 is in the above temperature range.
  • the catalyst 30 is heated to a predetermined temperature (for example, 480 ° C. or higher and 550 ° C. or lower).
  • the flow velocity (m / min) of the gas flowing into the first recess S and the flow rate (l / min) of the gas per unit mass (g) of the catalyst 30 are the same as those in the first embodiment.
  • the temperature of the catalyst 30 is the same as that of the first embodiment.
  • the gas flows into the first recess S so that the decomposition reaction of the organic substance in the waste substrate 20 occurs.
  • the gas flows in so as to spread throughout the inside of the first recess S.
  • the gas is flowed into the first recess S so that the decomposition reaction of the organic matter in the waste substrate 20 occurs and the catalyst 30 slightly moves at least a part of the surface of the waste substrate 20.
  • the volume of the waste substrate 20 decreases.
  • the gas flowing into the first recess S causes the catalyst 30 to move slightly on the surface of the waste substrate 20 and come into contact with different regions of the waste substrate 20.
  • Such movement of the catalyst 30 occurs continuously, and the catalyst 30 moves slightly on at least a part of the surface of the waste substrate 20. In this way, the catalyst 30 is slightly flowed on the surface of the waste substrate 20. The gas flows into the first recess S to the extent that the catalyst 30 does not form a fluidized bed.
  • the step of stirring the catalyst 30 over the entire catalyst 30 housed in the first recess S is not carried out.
  • the container 40 moves along the horizontal direction (X-axis direction) and the vertical direction (Z-axis direction).
  • the container 40 moves so that the height of the container 40 is higher than the height of the container 40 in the Z-axis direction when the drive units 44A and 44B travel on the second straight line portion 813. In this way, the container 40 is removed from the catalyst 30.
  • the drive units 44A and 44B travel on the third straight line portion 815 of the first rail 81, and the container 40 moves out of the reaction tank 10.
  • a step of recovering the decomposition product may be carried out. For example, when the drive units 44A and 44B travel on the second rail 82, the decomposition product may be taken out from the container 40. Further, after the step (S20), the step (S10) and the step (S20) may be repeated again. For example, when the drive units 44A and 44B travel on the second rail 82, the waste substrate 20 may be arranged again in the container 40, and the waste substrate 20 may be repeatedly processed.
  • the catalyst 30 housed in the first recess S is maintained at a temperature of 480 ° C. or higher and 550 ° C. or lower, and the waste substrate 20 is covered with the catalyst 30 to decompose the organic matter of the waste substrate 20. can.
  • the container 40 is moved so that the waste substrate 20 held in the container 40 is covered with the catalyst 30. Then, the gas containing oxygen is supplied into the first recess S and the catalyst 30 is heated, so that the organic matter in the waste substrate 20 can be decomposed. After processing the waste substrate 20, the container 40 is moved along the vertical direction (Z-axis direction), and the container 40 is taken out from the catalyst 30. At this time, the container 40 is not in contact with the catalyst 30. When the container 40 is moved in the vertical direction (Z-axis direction), the catalyst 30 falls into the first recess S, so that it is possible to reduce the leakage of the catalyst 30 from the first recess.
  • the processing apparatus 1 in the present embodiment does not include a stirring unit that stirs the catalyst 30 over the entire catalyst 30 housed in the first recess S. By not providing the stirring unit in the processing apparatus 1, it is possible to reduce the friction between the catalysts 30 and the waste substrate 20 and the catalyst 30. Therefore, it is reduced that the catalyst 30 is worn. As described above, according to the processing apparatus 1 in the present embodiment, it becomes easy to repeatedly process the object 2 (waste substrate 20), and the object 2 (waste substrate 20) can be processed for a long period of time. It is possible.
  • the container 40 is movable when at least a part of the container 40 is in contact with the catalyst 30. More specifically, the container 40 can move along the horizontal direction (X-axis direction). By adopting such a configuration, the catalyst 30 can easily come into contact with the surface of the waste substrate 20, and the organic matter in the waste substrate 20 can be decomposed more efficiently.
  • the container 40 is moved along the X-axis direction has been described, but the present invention is not limited to this, and the container 40 is moved along the X-axis direction and the container 40 is rotated about the axis. You may. Further, the container 40 may be vibrated with respect to the catalyst 30. The container 40 is moved so that the catalyst 30 is not agitated. For example, the moving speed, the rotation speed, and the magnitude of vibration of the container 40 are appropriately set so that the catalyst 30 is not agitated.
  • the support portion 65 includes a rail 80 including a first inclined portion 812, a second inclined portion 814, and drive portions 44A and 44B capable of traveling on the rail 80. Be prepared.
  • the container 40 can be moved along the rail 80. Therefore, it becomes easy to continuously process the waste substrate 20.
  • the first inclined portion 812 and the second inclined portion 814 make it easy to move the container 40 along the vertical direction (Z-axis direction).
  • the processing device 1 in the present embodiment includes a brim portion 416 attached to the container 40 so as to project to either one of the rails 80 in the traveling direction H.
  • a brim portion 416 attached to the container 40 so as to project to either one of the rails 80 in the traveling direction H.
  • the processing apparatus 1 in the present embodiment does not include a stirring unit that stirs the catalyst 30 over the entire catalyst 30 housed in the first recess S.
  • a stirring unit that stirs the catalyst 30 over the entire catalyst 30 housed in the first recess S.
  • the object 2 and the catalyst 30 may be agitated and the organic matter in the object 2 may be exposed on the surface.
  • undecomposed gas for example, methane gas, carbon monoxide gas, etc.
  • the organic matter of the object 2 is suppressed from being exposed to the surface, so that the undecomposed gas of the organic matter is generated. Can be reduced.
  • the waste substrate 20 can be processed as it is without finely crushing the waste substrate 20. Since the waste substrate 20 can be processed as it is without being crushed into small pieces, the waste substrate 20 can be easily processed.
  • the surface of the electronic circuit board on which more electronic components are mounted is arranged so as to face the third inner wall surface 14.
  • the gas comes into direct contact with the surface of the electronic circuit board, and the electronic circuit board can be efficiently processed.
  • the electronic components in the electronic circuit board are likely to fall downward due to their own weight, and the metal contained in the printed circuit board and the electronic components can be easily separated.
  • the material constituting the granules of the catalyst 30 is the same as that of the first embodiment.
  • the catalyst 30 granules made of a metal oxide containing titanium on which at least one of copper and copper oxide is supported may be adopted.
  • the roundness, rest angle, tap density, wear rate, specific surface area and pore volume of the granules are the same as those in the first embodiment.
  • the waste substrate 20 may be a plate-like material such as a decorative steel plate or a resin laminated plate, in addition to the electronic circuit board, as in the first embodiment.
  • the object 2 is a waste substrate 20, general waste having organic substances such as waste plastic and resin, industrial waste, medical waste, infectious medical waste, and experimental waste. It is possible to process objects (laboratory animal corpses such as rats).
  • FIG. 8 is a schematic cross-sectional view showing a modified example of the processing apparatus 1 of the first embodiment.
  • the height of the region where the second surface 142 and the third surface 143 are connected becomes the lowest in the Z-axis direction, and the height of the third surface 143 increases as the distance from the second surface 142 increases.
  • the height in the Z-axis direction becomes higher.
  • the first rail 81 in the rail 80 is composed of a first straight line portion 811, a third straight line portion 815, a first inclined portion 812, and a second inclined portion 814.
  • a part of the region of the first inclined portion 812 and the second inclined portion 814 is covered with the catalyst 30.
  • the drive units 44A and 44B travel on the region connecting the first inclined portion 812 and the second inclined portion 814, the container 40 is buried deepest from the surface of the catalyst 30.
  • undecomposed gas for example, methane gas, carbon monoxide gas, etc.
  • the undecomposed gas can be decomposed by the catalyst 30 and the generation of the undecomposed gas can be reduced.
  • FIG. 3 a third embodiment, which is another embodiment of the processing apparatus 1 of the present invention, will be described.
  • the processing apparatus 1 in the third embodiment basically has the same configuration as that of the first embodiment, and has the same effect.
  • the configurations of the reaction tank 10 and the rail 80 are different from those of the second embodiment.
  • the differences from the second embodiment will be described.
  • FIGS. 9 and 10 are schematic cross-sectional views showing the structure of the processing apparatus 1 according to the second embodiment.
  • FIG. 9 is a cross-sectional view taken along the line DD of FIG.
  • FIG. 10 is a cross-sectional view taken along the line CC of FIG.
  • the reaction vessel 10 has, for example, an annular shape. More specifically, the reaction vessel 10 is formed with an annular space U.
  • the reaction tank 10 includes a first inner wall surface 12, a pair of second inner wall surfaces 13, and a third inner wall surface 14 surrounding the space U.
  • the first inner wall surface 12 and the third inner wall surface 14 each have a planar annular shape, for example.
  • the pair of second inner wall surfaces 13 has, for example, an annular shape.
  • the reaction tank 10 is formed with an annular first recess S surrounded by a pair of second inner wall surfaces 13 and a third inner wall surface 14.
  • the catalyst 30 is housed in the first recess S.
  • the first rail 81 of the rail 80 includes a fourth straight line portion 816, a fifth straight line portion 818, a sixth straight line portion 820, a third inclined portion 817, and a fourth inclined portion 819.
  • the fourth straight line portion 816, the fifth straight line portion 818, and the sixth straight line portion 820 extend along the X-axis direction, respectively.
  • the fourth straight line portion 816 and the sixth straight line portion 820 have the same height in the Z-axis direction. In the Z-axis direction, the height of the fifth straight line portion 818 is higher than the height of the fourth straight line portion 816.
  • the third inclined portion 817 is connected to the fourth straight line portion 816 and the fifth straight line portion 818.
  • the fourth inclined portion 819 is connected to the fifth straight line portion 818 and the sixth straight line portion 820.
  • the third inclined portion 817 and the fourth inclined portion 819 are inclined with respect to the Z-axis direction, respectively.
  • the container 40 is horizontal when the drive portions 44A and 44B travel on the fourth straight portion 816, the sixth straight portion 820, the second rail 82, the third rail 83, and the fourth rail 84. It moves along the direction (X-axis direction). At this time, the container 40 is buried in the catalyst 30, and the object 2 is covered with the catalyst 30. In the present embodiment, when the drive units 44A and 44B travel on the third inclined portion 817 and the fourth inclined portion 819, the container 40 is in the horizontal direction (X-axis direction) and the vertical direction (Z-axis direction). Move along. In the present embodiment, when the drive units 44A and 44B travel on the fifth straight line portion 818, the container 40 moves along the horizontal direction (X-axis direction).
  • the height of the container 40 in the Z-axis direction is such that the height of the container 40 is above the fourth straight line portion 816, the sixth straight line portion 820, the second rail 82, the third rail 83, and the fourth rail 84. It is higher than the height of the container 40 when the 44B travels. At this time, the container 40 is exposed from the catalyst 30.
  • the drive units 44A and 44B travel on the fifth straight line portion 818, the object 2 (see FIG. 3) is arranged in the container 40 and the decomposed product is taken out.
  • an opening in the region corresponding to the fifth straight line portion 818 of the first inner wall surface 12 in the reaction tank 10, for example, an opening (FIG. (Not shown) may be formed.
  • an openable lid (not shown) may be attached so as to close the opening.
  • a heat insulating plate (not shown) may be attached in the region corresponding to the fifth straight line portion 818 of the second inner wall surface 13 of the reaction tank 10 in order to insulate the heat from the catalyst 30. In this way, the processing of the object 2 is repeatedly carried out.
  • the processing device 1 in the third embodiment also makes it easy to repeatedly process the object 2 as in the second embodiment, and it is possible to process the object 2 for a long period of time. According to the processing device 1 in the present embodiment, it can be made more compact than the processing device 1 in the second embodiment.
  • FIG. 11 is a schematic cross-sectional view showing the structure of the processing apparatus 1 according to the fourth embodiment.
  • the ⁇ -axis direction is the vertical direction
  • the ⁇ - ⁇ plane is a plane perpendicular to the ⁇ -axis direction.
  • the processing apparatus 1 includes a reactor 10, a catalyst 30, a container 40, a blade portion 41, a gas processing portion 53, and a heating portion 60 as first components. And a support portion 65.
  • the reactor 10 includes a side wall portion 101 and a lower wall portion 103.
  • the side wall portion 101 has, for example, a hollow cylindrical shape. More specifically, the flat plate-shaped lower wall portion 103 is arranged so as to close one opening of the side wall portion 101.
  • the reactor 10 is formed with a first recess S surrounded by a side wall portion 101 and a lower wall portion 103. The state in which the catalyst 30 is housed in the first recess S is maintained.
  • a supply port 11 is formed in the center of the lower wall portion 103. In the present embodiment, the supply port 11 is composed of a plurality of through holes. When viewed in a plane from the X-axis direction, the outer shape of the supply port 11 has a circular shape.
  • a pipe 51 is installed on the lower wall portion 103.
  • the pipe 51 is arranged so that the space surrounded by the pipe 51 and the supply port 11 communicate with each other.
  • the pipe 51 is a gas inflow path. Therefore, gas flows in the direction of arrow L 1 in a first recess S of the reactor 10 from the pipe 51.
  • a pipe 521 is installed in the other opening of the side wall portion 101.
  • a gas processing unit 53 is connected to the end of the pipe 521 on the opposite side of the reactor 10.
  • a heating portion 60 is arranged along the outer circumference of the side wall portion 101. In the present embodiment, the heating unit 60 heats the catalyst 30 housed in the first recess S.
  • the processing apparatus 1 does not include a stirring unit that stirs the catalyst 30 over the entire catalyst 30 housed in the first recess S.
  • the container 40 has a shape capable of accommodating the catalyst 30 inside.
  • the container 40 has, for example, a rectangular parallelepiped shape having an internal space Q.
  • the container 40 has a mesh-like shape through which the catalyst 30 can pass.
  • the container 40 is made of metal (iron) capable of maintaining its morphology at a temperature of about 550 ° C.
  • the container 40 includes a first wall portion 401 as a peripheral wall portion, a second wall portion 402, a third wall portion 403 as a bottom wall portion, and steps 404 and 405.
  • the second wall portion 402 and paragraphs 404 and 405 are detachably attached to the first wall portion 401.
  • the first wall portion 401, the second wall portion 402, the third wall portion 403, and the steps 404, 405 have, for example, a mesh-like shape. More specifically, the opening of the first wall portion 401, the second wall portion 402, the third wall portion 403, and the steps 404, 405 is the same as that of the container 40 in the first embodiment.
  • the first wall portion 401 has, for example, a hollow rectangular parallelepiped shape.
  • the second wall portion 402 and the third wall portion 403 have, for example, a flat plate shape. More specifically, the second wall portion 402 is arranged so as to close one opening of the first wall portion 401.
  • the third wall portion 403 is arranged so as to close the other opening of the first wall portion 401.
  • the first wall portion 401 is arranged so as to extend along the Z-axis direction from the outer edge of the third wall portion 403.
  • the blade portion 41 is arranged on the side of the third wall portion 403 opposite to the first wall portion 401.
  • the blade portion 41 is arranged so as to project from the third wall portion 403.
  • the blade portion 41 has, for example, a flat plate shape.
  • the size of the blade portion 41 is appropriately set according to the volume, diameter, and the like of the reactor 10.
  • a plurality of mesh-like steps 404 and 405 for separating the internal space Q in the container 40 are arranged in the container 40 at intervals in the X-axis direction (two in the present embodiment). ..
  • Three waste substrates 20 can be arranged in the container 40 in the present embodiment.
  • the support portion 65 includes a first motor 47, a plate 48, and a conveyor 90. More specifically, the conveyor 90 includes a second motor 91 and a belt 93 as a second component. A belt 93 is installed at the end of the shaft portion 92 of the second motor 91. The belt 93 has a strip shape in which both ends in the longitudinal direction are connected to each other. The belt 93 is arranged so as to extend along the ⁇ -axis direction. The flat plate-shaped plate 48 is fixed to the belt 93 so as to intersect (orthogonally) in the ⁇ -axis direction. By driving the second motor 91, the belt 93 moves along the ⁇ -axis direction, and the plate 48 also moves along the ⁇ -axis direction.
  • the first motor 47 is installed on the plate 48.
  • the second wall portion 402 of the container 40 is connected to the tip of the shaft portion 46 of the first motor 47. More specifically, the shaft portion 46 is connected to a region substantially in the center of the second wall portion 402.
  • the first motor 47 is driven, the first motor 47 is arranged so that the container 40 rotates along the ⁇ - ⁇ plane perpendicular to the ⁇ -axis direction.
  • the container 40 rotates, and the blade portion 41 also rotates along the ⁇ - ⁇ plane. Therefore, the blade portion 41 attached to the container 40 is rotatable.
  • a step (S10) a step of arranging the object 2 is carried out.
  • the waste substrate 20 is an electronic circuit board having the same area as that of the first embodiment.
  • the waste substrate 20 is arranged in the container 40 in the same manner as in the first embodiment. More specifically, the waste substrate 20 is arranged with the second wall portion 402 and the paragraphs 404 and 405 removed from the first wall portion 401. Then, after the step 404 is attached to the first wall portion 401, the waste substrate 20 is arranged. Further, after the step 405 is attached to the first wall portion 104, the waste substrate 20 is arranged. In this way, the three waste substrates 20 are arranged in the container 40.
  • the second motor 91 is driven to move the belt 93 along the ⁇ -axis direction.
  • the container 40 moves along the ⁇ -axis direction.
  • the first motor 47 is driven to rotate the container 40, and the blade portion 41 is rotated along the ⁇ - ⁇ plane. By doing so, it becomes easy to bury the container 40 in the catalyst 30. In this state, the container 40 is not in contact with the catalyst 30. Then, the container 40 is moved in the direction of the arrow in the traveling direction J so that the container 40 is covered with the catalyst 30.
  • FIG. 12 is a schematic view showing a state in which the container 40 and the waste substrate 20 are covered with the catalyst 30.
  • the container 40 is buried in the catalyst 30 housed in the first recess S, and the waste substrate 20 is covered with the catalyst 30.
  • the waste substrate 20 is buried, for example, 50 mm or more from the surface of the catalyst 30.
  • the container 40 is in contact with the catalyst 30, and the waste substrate 20 is arranged in the reaction tank 10.
  • a step of decomposing organic substances is carried out. More specifically, the waste substrate 20 is covered with the catalyst 30, and the organic matter in the waste substrate 20 is maintained in contact with the catalyst 30. Then, a gas containing oxygen is allowed to flow into the first recess S to maintain the catalyst 30 at a temperature of 480 ° C. or higher and 550 ° C. or lower. The gas flowing into the first recess S flows into the first recess in the same manner as in the first embodiment.
  • the flow velocity (m / min) of the gas flowing into the first recess S and the flow rate (l / min) of the gas per unit mass (g) of the catalyst 30 are the same as those in the first embodiment.
  • the temperature of the catalyst 30 is the same as that of the first embodiment. By being heated by the heating unit 60 from the outer wall side of the reactor 10, the catalyst 30 in the reactor 10 is maintained at a predetermined temperature. In the present embodiment, in the step (S20), the step of stirring the catalyst 30 over the entire catalyst 30 housed in the first recess S is not carried out.
  • the container 40 is moved in the direction opposite to the direction of the arrow in the traveling direction J of the belt 93, and the container 40 is taken out from the catalyst 30. Then, the decomposition product is taken out from the container 40, and the waste substrate 20 is arranged again in the container 40. As described above, the processing of the waste substrate 20 is repeatedly carried out.
  • the container 40 may be rotatable. More specifically, the container 40 may be rotated along the ⁇ - ⁇ plane. In this case, the container 40 is rotated so that the catalyst 30 is not agitated by the blade portion 41 attached to the container 40 or the container 40 itself.
  • the blade portion 41 having an appropriate size and protrusion length is used so that the catalyst 30 is not agitated, and the rotation speed is appropriately set.
  • the container 40 may be moved so as to reciprocate along the ⁇ -axis direction, or may be moved only in the direction of the arrow ⁇ or in the opposite direction. Further, the container 40 may be vibrated with respect to the catalyst 30. In such a case, the container 40 is moved or vibrated so that the catalyst 30 is not agitated. For example, the moving speed and the magnitude of vibration of the container 40 are appropriately set so that the catalyst 30 is not agitated.
  • the step of moving the container 40 while the container 40 is covered with the catalyst 30 may be simultaneously carried out throughout the entire step of decomposing the organic matter in the waste substrate 20, or the organic matter in the waste substrate 20 is decomposed. It may be carried out as part of the process. It is not necessary to move the waste substrate 20 with respect to the catalyst 30 throughout the entire process of decomposing the organic matter in the waste substrate 20.
  • the side wall portion 101 has a hollow cylindrical shape
  • the present invention is not limited to this, and the side wall portion 101 may have a hollow shape and a prismatic outer shape.
  • the side wall portion 101 has a hollow rectangular parallelepiped shape
  • the cross section of the side wall portion 101 perpendicular to the ⁇ -axis direction is preferably rectangular.
  • the container 40 can be moved along the long side.
  • the processing time for decomposing organic substances in the waste substrate 20 can be made longer.
  • the inner wall of the side wall portion 101 in the above embodiment may have a tapered (curved surface) shape in which the inner diameter increases as the distance from the lower wall portion 103 increases.
  • the inner wall of the side wall portion 101 in the above embodiment may have a tapered (curved surface) shape in which the inner diameter increases as the distance from the upper wall portion 102 increases.
  • the outer shape of the supply port 11 has a circular shape when viewed in a plane from the X-axis direction, but the present invention is not limited to this, and the outer shape of the supply port 11 is from the X-axis direction. It may have a rectangular shape when viewed in a plane.
  • the present invention is not limited to this, and a plurality of nozzles are installed in the lower wall portion 103, and the plurality of nozzles are in the first recess S. It may be attached to the lower wall portion 103 so as to be exposed to the lower wall portion 103. By providing the plurality of nozzles in this way, it becomes easy to finely move only the catalyst 30 in a specific region.
  • the shaft portion 46 of the first motor 47 is attached to substantially the center of the second wall portion 402 of the container 40 has been described, but the present invention is not limited to this, and the tip of the shaft portion 46 is the second wall. It may be attached to a part of the outer edge of the portion 402. Further, the outer peripheral surface of the shaft portion 46 may be attached to the first wall portion 401 of the container 40 so that the container 40 rotates around the central axis of the shaft portion 46.
  • the processing device 1 in the fourth embodiment also makes it easy to repeatedly process the object 2 as in the second embodiment, and it is possible to process the object 2 for a long period of time.
  • Example 1 An experiment was conducted in which the organic substance in the object 2 was decomposed by the treatment method in the present embodiment.
  • the procedure of the experiment is as follows. First, granules as the catalyst 30 used in this experiment were produced by the following method. Of the titanium oxide production steps by the sulfuric acid method, the titanium hydroxide slurry obtained from the hydrolysis step was filtered, washed with water, and repulped to obtain slurry A. Nitric acid was added to this slurry A as a sol agent to obtain a titanium oxide sol B. Further, a part of this sol B was heated to 100 ° C. and dried to obtain a dry gel, which was calcined at 500 ° C.
  • titanium oxide calcined product C This titanium oxide calcined product C is crushed, and the obtained crushed product is diluted 5-fold with water using a high-speed stirring granulator SPG-25 manufactured by Dalton Co., Ltd. under the conditions of stirring blade 250 rpm and high-speed chopper 3000 rpm.
  • the sol B was granulated while spraying to obtain titanium oxide particles.
  • the titanium oxide particles are dried at 100 ° C. for 3 hours, then fired at 600 ° C., and then a standard sieve 15 mesh (wire diameter 0.5 mm, mesh opening 1.19 mm) and 150 mesh (wire diameter) made of stainless wire mesh. Sieving was performed using 0.065 mm, opening 0.104 mm). Granules under 15 mesh (passing portion) and above 150 mesh (residual portion) were used in this experiment. In this way, titanium oxide granules (first granules) were obtained.
  • the particle size distribution of the obtained first granules was as follows. 0.2 mm or more and less than 0.35 mm is 0% by mass, 0.35 mm or more and less than 0.5 mm is 1% by mass, and 0.5 mm or more and less than 0.85 mm is 97% by mass. 2% by mass was 85 mm or more and less than 1.2 mm.
  • the specific surface area of the first granules by the BET method was 35 m 2 / g.
  • the angle at which the first granules started to slide was 0.5 degrees or more and 15 degrees or less, and the angle at which all the first granules finished sliding was 2 degrees or more and 30 degrees or less.
  • the pore volume of the first granules by the mercury intrusion method was 0.1 ml / g or more and 0.8 ml / g or less.
  • the tap density of the first granule was 1 g / ml or more and 1.8 g / ml or less.
  • the wear rate of the first granule was 2% by mass or less.
  • the catalyst 30 was arranged in the reactor 10 so that the height in the X-axis direction was about 100 mm.
  • An electronic circuit board having a thickness of 1.4 mm and an area of about 3 cm in length ⁇ about 3 cm in width was prepared as the waste substrate 20.
  • the electronic circuit board is housed in the container 40, the container 40 is embedded about 30 mm from the surface of the catalyst 30 (the electronic circuit board is about 5 cm), and the electronic circuit board is arranged so that the catalyst 30 covers the surface of the electronic circuit board. did.
  • the container 40 was repeatedly moved for about 15 minutes so as to reciprocate the container 40 along the Y-axis direction.
  • the first in the reactor 10 under the conditions that the air flow velocity is 3.4 m / min and the set temperature of the heating device is 500 ° C. (the temperature of the catalyst 30 in the reactor 10 is in the range of 480 ° C to 540 ° C).
  • the electronic circuit substrate was processed without carrying out the step of stirring the first granules over the entire granules to obtain a decomposition product.
  • the weight loss rate (mass%) of the electronic circuit board and the decomposition product before the treatment was measured.
  • the weight loss rate (mass%) means the ratio (mass%) of the value obtained by subtracting the mass of the decomposition product from the mass of the electronic circuit board before processing with respect to the mass of the electronic circuit board before processing.
  • the electronic circuit board was treated in the same manner as above except that the set temperature was set to 400 ° C. (the temperature of the catalyst 30 in the reactor 10 was in the range of 400 ° C. to 440 ° C.) for comparison.
  • the weight loss rate (mass%) of the electronic circuit board before the treatment and the decomposition product was measured in the same manner. The measurement results of the above weight loss rate are shown in Table 1.
  • FIG. 13 is a photograph showing a state of the electronic circuit board before processing.
  • FIG. 14 is a photograph showing the state of the decomposed product when the set temperature of the heating device is set to 500 ° C.
  • the resin of the printed circuit board in the electronic circuit board was decomposed. Further, the processed material having a metal (for example, copper foil) contained in the printed circuit board and the electronic component could be collected separately.
  • the weight loss rate was 20% or more when the air flow velocity was in the range of 0.5 m / min or more and 200 m / min or less.
  • the weight loss rate was 35% or more. Therefore, the lower limit of the air flow velocity is preferably 3 m / min.
  • the upper limit of the air flow velocity is preferably 10 m / min.
  • a resin decorative steel plate (length: about 5 cm ⁇ width: about 5 cm) in which a steel plate, a polyethylene terephthalate film, and an aluminum foil were laminated was prepared as a waste substrate 20.
  • the resin decorative steel sheet was embedded about 50 mm from the surface of the catalyst 30, and the resin decorative steel sheet was arranged so that the catalyst 30 covered the surface of the resin decorative steel sheet.
  • the resin decorative steel plate was moved for about 60 seconds so as to reciprocate along the Y-axis direction.
  • the resin decorative steel sheet is made of the resin decorative steel sheet without carrying out the step of stirring the first granules over the entire first granules in the reactor 10. Processing was carried out. The state of the resin decorative steel sheet after the treatment was visually observed. As a result, the polyethylene terephthalate film in the resin decorative steel sheet was decomposed, and the steel sheet and the aluminum foil remained.
  • Weight of the first granulate before processing of the processing before the first granule mass (V 0) first value obtained by subtracting the mass (V) of the granules remaining on the sieve from (V 0 -V) (V The ratio (mass%) to 0) was calculated.
  • the ratio (mass%) to 0) was calculated.
  • the treatment was carried out in the same manner as above.
  • the rotation speed of the stirring blade was set to 60 rpm.
  • the degree of wear of the first granule was measured. The measurement results are shown in Table 3.
  • the wear of the catalyst 30 can be reduced by not stirring the catalyst 30.
  • a product name "GV-100S” manufactured by Gastec Co., Ltd. was used.
  • the detector tube the product names “1L”, “103", “105”, and “2HH” manufactured by Gastec Co., Ltd. were used.
  • a cap is placed in the reactor 10 and the first granule is stirred over the entire first granule in the reactor 10 using a stirring blade to obtain the cap and the first granule. Stirring was performed.
  • the cap treatment was carried out under the conditions that the air flow velocity was 3.4 m / min, the set temperature was 500 ° C., and the treatment time was 2 minutes.
  • the generation ratio of undecomposed gas was measured in the gas (2 liters) discharged when the cap treatment was performed.
  • Table 4 The measurement results are shown in Table 4.
  • examples of the lower hydrocarbon include acetylene, isobutane, isopentane, ethylene, butane, n-hexane, heptane, pentane, propane and the like.
  • Examples of higher hydrocarbons include octane, decane, nonane, hexane, heptane and the like.
  • the cap is formed without being completely decomposed when the stirring is not carried out, as compared with the case where the step of stirring the catalyst 30 over the entire catalyst 30 in the reactor 10 is carried out.
  • the proportion and volume of undecomposed gas (carbon monoxide, lower hydrocarbons and higher hydrocarbons) produced is reduced.
  • the organic substance in the object 2 is decomposed without performing the step of stirring the catalyst 30 over the entire catalyst 30 in the reactor 10. can do. Therefore, the organic matter in the object 2 can be easily decomposed while reducing the wear of the catalyst 30. Therefore, the object 2 can be processed for a long period of time, and the object 2 can be easily processed.
  • the method for treating an object of the present invention is particularly advantageous when it is required to treat the object for a long period of time or to easily process the object.
  • 1 processing device 2 object, 10 reactor, reaction tank, 11 supply port, 12 1st inner wall surface, 13 2nd inner wall surface, 14 3rd inner wall surface, 15 through hole, 20 waste substrate, 21 surface, 22 surface , 30 catalyst, 31 connection part, 40 container, 41 blade part, 42 connection part, 43 connection part, 44A drive part, 44B drive part, 46 shaft part, 47 first motor, 48 plate, 50 supply part, 51 piping, 52 Piping, 53 Gas processing section, 60 heating section, 65 support section, 80 rail, 81 1st rail, 82 2nd rail, 83 3rd rail, 84 4th rail, 90 conveyor, 91 2nd motor, 92 shaft section , 93 belt, 101 side wall part, 102 upper wall part, 103 lower wall part, 141 first surface, 142 second surface, 143 third surface, 144 fourth surface, 145 fifth surface, 201 sample Container, 202 stirrer, 203 shaft body, 204 stirring blade, 401 first wall part, 402 second wall part, 403 third wall part, 404 stage

Abstract

対象物の処理方法は、空間を有し、対象物を処理するための部分である第1部分内に、対象物を配置する工程と、対象物をチタンを含む金属酸化物製の顆粒体からなる触媒によって覆うと共に有機物に触媒を接触させつつ、第1部分内における触媒を480℃以上550℃以下の温度に維持し、対象物における有機物を分解する工程と、を含む。対象物における有機物を分解する工程では、有機物の分解反応が生じると共に、対象物の表面の少なくとも一部で触媒が微動するように、酸素を含むガスを第1部分内に流入する。

Description

対象物の処理方法および処理装置
 本発明は、対象物の処理方法および処理装置に関するものである。
 本出願は、令和2年7月10日出願の日本出願第2020-118884号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 対象物に含まれる有機物だけを分解する処理方法として、酸化チタン(二酸化チタン)からなる触媒を用いる方法が知られている。より具体的には、廃プラスチック片に酸化チタンからなる触媒に接触させると共に触媒を加熱し、反応容器内における触媒全体を攪拌羽によって攪拌する方法が提案されている(特許文献1、2参照)。さらに、触媒として酸化チタンの顆粒体を用いる方法が提案されている(特許文献3、4参照)。また、対象物と触媒とを循環させるための回転車が取り付けられた循環槽と、循環後の触媒を回収するための混合槽と、を備える処理装置が提案されている(特許文献5参照)。
特開2002-363337号公報 特開2004-182837号公報 国際公開第2010/021122号 国際公開第2013/089222号 国際公開第2009/051253号
 上記対象物の処理方法において、反応容器内における触媒全体を攪拌羽によって攪拌すると、触媒同士や廃プラスチック片と触媒とが擦れることで、触媒が摩耗してしまう場合がある。このような場合、触媒を長期にわたって使用することが困難となってしまう。
 そこで、長期にわたって対象物を処理することができる対象物の処理方法および処理装置を提供することを目的の1つとする。
 本願の対象物の処理方法は、有機物を有する対象物の処理方法である。本願の対象物の処理方法は、空間を有し、対象物を処理するための部分である第1部分内に、対象物を配置する工程と、対象物をチタンを含む金属酸化物製の顆粒体からなる触媒によって覆うと共に有機物に触媒を接触させつつ、第1部分内における触媒を480℃以上550℃以下の温度に維持し、対象物における有機物を分解する工程と、を含む。対象物における有機物を分解する工程では、有機物の分解反応が生じると共に、対象物の表面の少なくとも一部で触媒が微動するように、酸素を含むガスを第1部分内に流入する。
 本願の対象物の処理方法では、チタンを含む金属酸化物製の顆粒体からなる触媒を用いる。ここで、金属酸化物とは、1種以上の金属元素を含む酸化物の総称である。酸素を含むガスが反応器内に流入されると共に触媒を所定の温度に維持することで、触媒に接触する有機物の酸化分解が生じる。上記対象物の処理方法では、有機物の分解反応が生じると共に、対象物の表面の少なくとも一部で触媒が微動するように、酸素を含むガスを第1部分内に流入させている。対象物の有機物が分解されると、対象物の体積が減少する。第1部分内に流入されるガスによって、触媒は対象物の表面上を僅かに移動し、対象物の異なる領域に接触する。このような触媒の動きが連続的に起こり、対象物の表面の少なくとも一部で触媒が微動する。このようにして、対象物における有機物の分解が促進される。上記対象物の処理方法によれば、対象物における有機物を分解する際に対象物と触媒とを攪拌する必要がないため、触媒の摩耗を低減することができると共に、対象物における有機物を容易に分解することができる。このように本願の対象物の処理方法によれば、長期にわたって対象物を処理することができる。さらに、対象物を容易に処理することができる。
 上記対象物の処理方法において、対象物における前記有機物を分解する工程では、第1部分内における触媒全体に亘って触媒を攪拌する工程が実施されない。第1部分内における触媒全体に亘って触媒を攪拌する工程としては、例えば、第1凹部内における触媒全体を攪拌する攪拌羽や第1凹部内における触媒を循環させると共に、触媒全体を攪拌する回転車等を用いた機械的な攪拌を実施する場合があげられる。このような触媒を攪拌する工程において、対象物と触媒との攪拌を実施すると、対象物と触媒とがかき混ぜられ、対象物における有機物が表面に露出してしまう場合がある。このような場合、有機物が完全に分解されずに形成される未分解のガス(例えばメタンガスや一酸化炭素ガス等)が発生する場合がある。このような触媒を攪拌する工程を実施しないことで、対象物の有機物が表面に露出することが抑制されるため、上記有機物の未分解のガスの発生を低減することができる。さらに、触媒同士や対象物と触媒とが擦れることを低減することができる。また、機械的な攪拌を実施しないことで、触媒を押し付けるような負荷の発生を抑制することができる。したがって、触媒の摩耗を低減することができる。また、対象物と触媒とを攪拌することが困難な程度の大きさや形状を有する対象物において、対象物を細かく破砕することなく、そのままの状態で対象物を処理することができる。さらに破砕し難い対象物や、破砕できない対象物に対しても、そのままの状態で対象物を処理することができる。対象物を細かく破砕せずにそのままの状態で処理することができるため、対象物を容易に処理することができる。なお、対象物における有機物を分解する工程は、対象物と触媒とを攪拌することなく実施されてもよい。
 上記対象物の処理方法において、対象物における有機物を分解する工程は、対象物が触媒によって覆われた状態を維持しつつ、対象物を運動させる(対象物の空間的位置を変える)工程をさらに含んでもよい。より具体的には、対象物を配置する工程では、触媒を通すことが可能な網目状の形状を有する容器に収容された対象物を第1部分内に配置してもよい。第1部分内において対象物を運動させる工程では、容器に対象物が収容された状態で容器を運動させてもよい。このようにすることで、対象物の表面に触媒が接触し易くすることができる。したがって、対象物における有機物をより効率良く分解することができる。
 上記対象物の処理方法において、酸素を含むガスを反応器内に流入する際のガスの流速が、0.5m/min以上200m/min以下であってもよい。ガスの流速が0.5m/min未満である場合、対象物の表面上において触媒が十分に流動せず、対象物における有機物を十分に分解することができない場合がある。ガスの流速が200m/minより大きくなると、触媒が流動し易くなり、触媒の摩耗を低減することが困難となってしまう場合がある。したがって、ガスの流速が、0.5m/min以上200m/min以下であることが好ましい。
 対象物における有機物を分解する工程は、反応器の空間内に収容される複数の触媒の表面から50mm以上対象物を埋没させてもよい。このようにすることで、対象物における有機物を分解する際に、有機物が分解されずに形成される未分解ガスの発生を抑制することができる。
 上記対象物の処理方法において、酸素を含むガスが、空気であってもよい。空気は、対象物の処理方法において用いるガスとして好適である。
 上記対象物の処理方法において、顆粒体の粒子径は、0.2mm以上2mm未満であってもよい。顆粒体の滑り始める角度が0.5度以上15度以下であり、かつ全ての顆粒体が滑り終わる角度が2度以上30度以下であってもよい。上記顆粒体の形状は、略球状となる。このような粒子径を有し、略球状の顆粒体からなる触媒を用いることで、対象物の表面上において触媒を微動させることが容易となる。したがって、上記顆粒体からなる触媒は、対象物の処理方法において用いる触媒として好適である。
 上記対象物の処理方法において、対象物は、廃基板であってもよい。廃基板の大きさによって、廃基板と触媒とを攪拌することが困難となる場合がある。本願の対象物の処理方法によれば、廃基板を細かく破砕する必要がなく、そのままの状態で廃基板を処理することができる。対象物は、廃基板の他、廃プラスチック、医療廃棄物や感染性医療廃棄物等であってもよい。上記対象物の処理方法によれば、破砕する必要がないため、汚染や感染を抑制することができる。
 上記対象物の処理方法において、廃基板が、厚み方向から平面的に見て、4cm以上の面積を有してもよい。厚み方向から平面的に見て、廃基板の面積は、好ましくは100cm以上であり、より好ましくは600cm以上である。上記面積を有する廃基板を用いることで、対象物を効率良く処理することができる。廃基板は、例えば電子回路基板である。電子回路基板は、プリント基板と、プリント基板上に搭載される電子部品とを含む。上記対象物の処理方法によって、電子回路基板を処理することでプリント基板における樹脂を分解し、プリント基板に含まれていた金属を有する処理物と電子部品とを回収することが容易となる。プリント基板における樹脂をある程度分解することで、板状の状態が維持された処理物と電子部品とを回収することもできる。
 本願の処理装置は、対象物における有機物を分解するための処理装置である。第1凹部を有し、対象物を処理するための部分である第1部分と、第1凹部内に収容された状態が維持され、チタンを含む金属酸化物製の顆粒体からなる触媒と、第1部分に接続され、酸素を含むガスを第1凹部内に供給する供給部と、触媒およびガスの少なくともいずれか一方を加熱する加熱部と、対象物を収容し、触媒を通すことが可能な形状を有する容器と、容器を支持する支持部と、を備える。容器の少なくとも一部が第1凹部内における触媒に接触している状態、および容器が触媒に接触していない状態を選択的に取り得るように、容器は鉛直方向に沿って移動可能である。処理装置は、第1凹部内に収容される触媒全体に亘って触媒を攪拌するための攪拌部を備えない。
 上記特許文献1に開示される処理装置では、対象物と触媒とが回転車によって循環槽を循環することにより、対象物と触媒とが攪拌されるため、触媒同士や対象物と触媒とが接触し、触媒の摩耗が生じてしまう。また、上記特許文献1では、循環槽において循環される触媒を利用し、カゴ内に収容された対象物におけるプラスチックや有機物を混合槽内で分解できるとされている。しかしながら、混合槽からカゴを取り出す際に、混合槽から触媒が漏れ出てしまい、対象物を処理することが困難となる場合がある。
 本願の処理装置は、第1部分と、触媒と、供給部と、加熱部と、容器と、を備える。上記触媒は、チタンを含む金属酸化物製の顆粒体からなる。ここで、金属酸化物とは、1種以上の金属元素を含む酸化物の総称である。まず、容器によって収容された対象物が触媒によって覆われるように、容器を鉛直方向に沿って移動させる。この際に、容器の少なくとも一部は触媒に接触している状態となる。そして、酸素を含むガスが第1凹部内に供給されると共に触媒が加熱されることで、対象物における有機物を分解することができる。対象物を処理した後に、容器を鉛直方向に沿って移動させ、容器が触媒から取り出される。この際に、容器が触媒に接触していない状態となる。容器を鉛直方向に移動させると、触媒は第1凹部内に落下するため、触媒が第1凹部内から漏れ出てしまうことを低減することができる。触媒は第1凹部内に収容された状態が維持されるため、第1部分において繰り返し対象物を処理することが容易となる。
 本願の処理装置では、対象物における有機物を分解する際に、第1凹部内に収容される触媒全体に亘って触媒を攪拌する攪拌部を備えない。攪拌部としては、例えば、第1凹部内に収容される触媒全体を攪拌する攪拌羽や、第1凹部内に収容される触媒を循環させると共に、触媒全体を攪拌する回転車等があげられる。このような攪拌部を備えないことで、触媒同士や対象物と触媒とが擦れることを低減することができる。また、機械的な攪拌を実施しないことで、触媒を押し付けるような負荷の発生を抑制することができる。このため、触媒の摩耗を低減することができる。このように、本願の処理装置によれば、長期に亘って対象物を処理することができる。さらに、繰り返し対象物を処理することが容易である。
 本願の処理装置が上記攪拌部を備えないことで、対象物と触媒とを攪拌することが困難な程度の大きさや形状を有する対象物において、対象物を細かく破砕することなく、そのままの状態で対象物を処理することができる。さらに破砕し難い対象物や、破砕できない対象物に対しても、そのままの状態で対象物を処理することができる。対象物を細かく破砕せずにそのままの状態で処理することができるため、対象物を容易に処理することができる。
 上記処理装置は、容器の少なくとも一部が触媒に接触している際に、容器は運動可能(容器の空間的位置を変えることが可能である)であってもよい。容器の少なくとも一部が触媒に接触している際に容器が運動可能であることで、対象物の表面に触媒が接触し易くなり、対象物における有機物をより効率良く分解することができる。
 上記処理装置において、支持部は、鉛直方向に対して傾斜する傾斜部を含むレールと、容器に取り付けられ、レール上を走行可能な第1部品と、を含んでもよい。このような構成を採用することで、レールに沿って容器を移動させることができ、対象物を連続的に処理することが容易となる。さらに、レールが傾斜部を含むことで、容器を鉛直方向に沿って移動させることが容易となる。
 上記処理装置は、容器に取り付けられ、レールの進行方向におけるいずれか一方に突出するつば部をさらに備えてもよい。このような構成を採用することで、レールに沿って容器を移動させつつ、つば部を触媒内に潜り込ませることが容易となる。したがって、容器の少なくとも一部の領域を触媒によって覆われるように潜らせることが容易となる。
 上記処理装置において、支持部は、容器に取り付けられ、鉛直方向に沿って移動可能な第2部品を含んでもよい。このような構成を採用することで、容器を鉛直方向に沿って移動させることが容易となる。
 上記処理装置において、容器は、底壁部と、底壁部の外縁から鉛直方向に沿って延びる周壁部と、を含み、触媒を通すことが可能な網目状の形状を有する容器と、底壁部の周壁部とは反対側に突出し、鉛直方向に垂直な仮想平面に沿って回動可能な羽根部と、を含んでもよい。鉛直方向に沿って容器を移動させる際に羽根部を回動させることで、触媒を避けつつ、容器の少なくとも一部の領域を触媒によって覆われるように潜らせることが容易となる。
 上記処理装置において、酸素を含むガスが、空気であってもよい。空気は、処理装置に用いるガスとして好適である。
 上記対象物の処理方法および処理装置によれば、長期にわたって対象物を処理することができる。
図1は実施の形態1における処理装置の構造を示す概略断面図である。 図2は対象物の処理方法の一例を示すフローチャートである。 図3は摩耗率測定装置を示す概略断面図である。 図4は実施の形態2における処理装置の構造を示す概略断面図である。 図5は実施の形態2における処理装置の構造を示す概略断面図である。 図6はレール上を走行する状態の容器を示す概略斜視図である。 図7はレール上を走行する状態の容器を示す概略側面図である。 図8は実施の形態2の処理装置の変形例を示す概略断面図である。 図9は実施の形態3における処理装置の構造を示す概略断面図である。 図10は実施の形態3における処理装置の構造を示す概略断面図である。 図11は実施の形態4にける処理装置の構造を示す概略断面図である。 図12は容器および廃基板が触媒によって覆われている状態を示す概略図である。 図13は電子回路基板の処理前の状態を示す写真である。 図14は分解物の状態を示す写真である。
 次に、本発明の対象物の処理方法および処理装置の一実施の形態を、図面を参照しつつ説明する。以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
 (実施の形態1)
 図1は、実施の形態1における処理装置の構造を示す概略断面図である。図1において、X軸方向は、反応器における側壁部の中心軸に沿った方向である。Y軸方向は、側壁部の径方向である。図1を参照して、処理装置1は、対象物2を処理するための部分である第1部分としての反応器10と、触媒30と、容器40と、を備える。処理装置1は、有機物を有する対象物2において有機物を分解するための装置である。
 反応器10は、側壁部101と、上壁部102と、下壁部103と、を含む。本実施の形態では、側壁部101は、中空円筒状の形状を有する。側壁部101の内径Mは、例えば150mm程度である。側壁部101のX軸方向における長さは、例えば135mm程度である。側壁部101の一方の開口を覆うように上壁部102が配置される。側壁部101の他方の開口を覆うように下壁部103が配置される。反応器10は、側壁部101、上壁部102および下壁部103によって取り囲まれた空間Vを有する。下壁部103の中央には、供給口11が形成されている。本実施の形態において、供給口11は、複数の貫通孔によって構成されている。X軸方向から平面的に見て、供給口11の外形は、円形状の形状を有する。下壁部103には、配管51が設置されている。配管51によって取り囲まれた空間と供給口11とが連通するように、配管51が配置されている。配管51は、ガスの流入路である。したがって、配管51から反応器10の空間V内にガスが矢印Lの向きに流入する。上壁部102の中央には、配管52が設置されている。配管52の一部は、空間V内に露出するように配置されている。配管52は、ガスの排出路である。したがって、反応器10の空間Vから配管52にガスが矢印Lの向きに排出される。ガスは、X軸方向に沿って流れる。
 複数の触媒30は、反応器10の空間V内に収容された状態が維持されている。触媒30は、下壁部103に接触するように配置される。本実施の形態では、空間V内に収容される複数の触媒30の量は、例えば1000g以上である。空間V内に収容される複数の触媒30の量は、反応器10の容積に応じて適宜設定される。触媒30は、チタンを含む金属酸化物製の顆粒体からなる。本実施の形態では、触媒30は、酸化チタン(二酸化チタン)製の顆粒体からなる。本実施の形態において、顆粒体は、略球状の形状を有する。略球状とは、顆粒体表面の角が取れ、球形の度合いが高いことを意味する。本実施の形態において、顆粒体の粒子径は、0.2mm以上2mm未満である。上記顆粒体の粒子径は、例えば篩分け法によって測定することができる。
 本実施の形態において、顆粒体の転がり傾斜角度は、以下の数値範囲を有する。具体的には、顆粒体の滑り始める角度は、0.5度以上15度以下であり、全ての顆粒体が滑り終わる角度は、2度以上30度以下である。顆粒体の滑り始める角度は、好ましくは0.5度以上10度以下であり、より好ましくは0.5度以上8度以下であり、さらに好ましくは0.5度以上5度以下である。顆粒体の滑り終わる角度は、好ましくは2度以上25度以下であり、より好ましくは2度以上22度以下であり、さらに好ましくは2度以上18度以下である。顆粒体が上記範囲を有することで、顆粒体の形状の球形度合いを高くすることができる。上記顆粒体の転がり傾斜角度は、例えば以下の条件で測定される。顆粒体20gをガラス板上に載置した後、ガラス板を水平な状態(0度)から斜めにし、顆粒体の滑り始める角度および全ての顆粒体が滑り終わる角度を測定する。
 容器40は、内部空間を有する直方体状の形状を有する。容器40は、上記触媒を通すことが可能な網目状の形状を有する。容器40は、約550℃の温度で形態を維持可能な金属製(鉄製)である。容器40は、網目状の筒状部と、一方の開口を覆うように配置される網目状の上蓋と、他方の開口を覆うように配置される網目状の底蓋と、を含む。上蓋は、筒状部から取り外し可能なように取り付けられている。接続部31は、Y軸方向に移動可能なように上壁部102に取り付けられている。例えば、上壁部102にレール(図示せず)が設置され、接続部31の一方の端部にはレール上を走行可能な駆動部(図示せず)が取り付けられている。上蓋が取り外された状態で対象物2を容器40内に配置し、上蓋を取り付けることで、対象物2が容器40内に収容される。そして、接続部31の他方の端部が容器40の上蓋に接続される。筒状部のX軸方向における長さは、例えば30mm程度である。上蓋および下蓋は、例えば45mm×55mm程度の面積を有する。筒状部、上蓋および下蓋の目開きは、例えば1mm以上である。筒状部、上蓋および下蓋の目開きは、好ましくは2mm以上100mm以下であり、より好ましくは2mm以上50mm以下であり、さらに好ましくは2mm以上30mm以下であり、特に好ましくは2mm以上6mm以下である。上記目開きは、対象物2や触媒30の大きさによって適宜決定される。
 次に、本実施の形態における対象物2の処理方法の手順を説明する。図2は、本実施の形態における対象物2の処理方法の一例を示すフローチャートである。図1および図2を参照して、本実施の形態における対象物2の処理方法では、まず工程(S10)として、対象物2を配置する工程が実施される。より具体的には、反応器10内に対象物2が配置される。本実施の形態において、対象物2は、廃基板20である。廃基板20は、一方の面21と、他方の面22と、を有する。廃基板20は、例えば、厚み方向から平面的に見て、4cm以上の面積を有する。本実施の形態では、廃基板20は、容器40に収容された状態で、反応器10内に配置される。この際に、廃基板20の表面21,22を複数の触媒30が覆うように、容器40を触媒30内に埋没させる。そして、廃基板20は、触媒30の表面から例えば50mm以上埋没させる。本実施の形態では、廃基板20は、X軸方向に交差(直交)するように配置される。すなわち、廃基板20の表面21,22がガスが流れる方向(X軸方向)に交差(直交)するように配置される。このようにして、対象物2を触媒30によって覆うと共に対象物2における有機物に触媒30を接触させる。廃基板20は、例えば、プリント基板と、プリント基板上に搭載される電子部品と、を含む電子回路基板である。電子回路基板における厚み方向は、プリント基板の厚み方向である。本実施の形態では、電子回路基板のうち、電子部品がより多く搭載されている面22が、下壁部103に対向するように配置される。
 次に、工程(S20)として、有機物を分解する工程が実施される。より具体的には、廃基板20を触媒30によって覆うと共に廃基板20における有機物に触媒30を接触させ、酸素を含むガスを反応器内に流入すると共に反応器10内における触媒30を480℃以上550℃以下の温度に維持する。反応器10における外壁側から加熱装置等によって加熱されることで、反応器10内における触媒30は所定の温度に維持される。より具体的には、上記加熱装置の設定温度に対して、触媒30の温度の振れ範囲は、設定温度からプラスマイナス30℃程度となる。したがって、触媒30を上記温度範囲となるように、加熱装置の設定温度が適切に設定される。本実施の形態では、廃基板20が反応器10内に配置される前に、反応器10内における触媒30が所定の温度(例えば480℃以上550℃以下)となるように加熱される。
 工程(S20)では、廃基板20における有機物の分解反応が生じるようにガスが反応器10内に流入される。この際に、反応器10内全体に行き渡るようにガスが流入される。ガスは、酸素を含むガスである。酸素を含むガスは、例えば酸素を含む混合ガスである。より具体的には、空気である。さらに、廃基板20における有機物の分解反応が生じると共に廃基板20の表面21,22の少なくとも一部で触媒30が微動するようにガスが反応器10内に流入されている。廃基板20の有機物が分解されると、廃基板20の体積が減少する。反応器10内に流入されるガスによって、触媒30は廃基板20の表面21,22上を僅かに移動し、廃基板20の異なる領域に接触する。このような触媒30の動きが連続的に起こり、廃基板20の表面21,22の少なくとも一部で触媒30が微動する。このように、廃基板20の表面21,22上において触媒30を僅かに流動させている。ガスは、触媒30が流動層を形成しない程度に反応器10内に流入される。本実施の形態では、ガスの流速は、0.5m/min以上200m/min以下である。ガスの流速の下限は、好ましくは3m/minであり、より好ましくは4m/minである。ガスの流速の上限は、好ましくは100m/minであり、より好ましくは50m/minであり、さらに好ましくは20m/minであり、特に好ましくは10m/minである。上記ガスの流速は、例えば、側壁部101の内径やガスの流量から算出される。本実施の形態では、触媒30の単位質量(g)当たりのガスの流量(l/min)の下限は、4×10-3l/minであり、好ましくは0.01l/minであり、より好ましくは0.028l/minである。本実施の形態では、触媒30の単位質量(g)当たりのガスの流量(l/min)の上限は、2l/minであり、好ましくは1l/minであり、より好ましくは0.1l/minであり、さらに好ましくは0.085l/minである。
 本実施の形態では、工程(S20)は、反応器10内における触媒30全体に亘って触媒30を攪拌する工程が実施されない。本実施の形態では、工程(S20)において、廃基板20が触媒30によって覆われた状態を維持しつつ、対象物2を運動させる。より具体的には、容器40に廃基板20が収容された状態で容器40を運動させる。例えば、接続部31を径方向(Y軸方向)に往復させるように移動させ、容器40を触媒30に対して相対的に移動させる。以上のようにして、廃基板20における有機物を分解することができる。
 ここで、本実施の形態における対象物2の処理方法では、酸素を含むガスが反応器10内に流入されると共に触媒30が加熱されることで、触媒30に接触する有機物の酸化分解が生じる。さらに、有機物の分解反応が生じると共に、廃基板20の表面21,22の少なくとも一部で触媒30が微動するように、ガスを第1部分内に流入させている。このようにすることで、廃基板20における有機物の分解が促進される。上記対象物2の処理方法によれば、廃基板20における有機物を分解する際に廃基板20と触媒30とを攪拌する必要がないため、触媒30の摩耗を低減することができると共に、対象物2における有機物を容易に分解することができる。このように本実施の形態における対象物2の処理方法によれば、長期にわたって廃基板20を処理することができると共に廃基板20を容易に処理することができる。
 上記実施の形態では、廃基板20における有機物を分解する工程では、反応器10内における触媒30全体に亘って触媒30を攪拌する工程が実施されない。このような触媒30を攪拌する工程を実施しないことで、廃基板20の有機物が表面に露出することが抑制されるため、廃基板20における有機物の未分解のガスの発生を低減することができる。さらに、触媒30同士や廃基板20と触媒30とが擦れることを低減することができる。また、機械的な攪拌を実施しないことで、攪拌羽が触媒30を押し付けるような負荷の発生を抑制することができる。したがって、触媒30の摩耗を低減することができる。また、攪拌することが困難な程度の大きさや形状を有する廃基板20において、廃基板20を細かく破砕することなく、そのままの状態で廃基板20を処理することができる。廃基板20を細かく破砕せずにそのままの状態で処理することができるため、廃基板20を容易に処理することができる。
 上記実施の形態では、廃基板20は、容器40に収容されている。触媒30を加熱する工程では、容器40に廃基板20が収容された状態で容器40を運動させる。このようにすることで、廃基板20の表面21,22に触媒30が接触し易くすることができる。上記実施の形態では、容器40を側壁部101の径方向(Y軸方向)に往復するように移動させる場合について説明したが、これに限られず、容器40は触媒30に対して矢印Yの向きや反対の向きだけに移動させるようにしてもよい。また、容器40は、触媒30に対して振動させるようにしてもよい。さらに、容器40を軸周りに回転するようにしてもよい。このような場合、反応器10内に収容される触媒30が攪拌されないように、容器40を運動させる。例えば、触媒30が攪拌されないように容器40の移動速度、回転速度や振動の大きさが適宜設定される。上記実施の形態では、廃基板20が収容された容器40を移動させる場合について説明したが、これに限られず、廃基板20を治具(例えばアーム)によって保持し、治具を移動させることで、廃基板20を移動させてもよい。このようにすることで、廃基板20における有機物を効率よく分解することができる。同様に、反応器10内に収容される触媒30が攪拌されないように、治具を移動させる。例えば、触媒30が攪拌されないように治具の移動速度が適宜設定される。なお、廃基板20を移動させる工程は、廃基板20における有機物を分解する工程の全体に亘って同時に実施されてもよいし、廃基板20における有機物を分解する工程の一部で実施されるようにしてもよい。なお、廃基板20における有機物を分解する工程全体に亘って触媒30に対して廃基板20を運動させなくてもよい。
 上記実施の形態では、廃基板20が容器40に収容されている場合について説明したが、これに限られず、廃基板20を直接触媒30に接触するように配置してもよい。
 上記実施の形態では、酸素を含むガスを反応器10内に流入する際のガスの流速が、0.5m/min以上200m/min以下である。ガスの流速が0.5m/min未満である場合、廃基板20の表面21,22上において触媒30が十分に流動せず、廃基板20における有機物を十分に分解することができない場合がある。ガスの流速が200m/minより大きくなると、触媒30が流動し易くなり、触媒30の摩耗を低減することが困難となってしまう場合がある。したがって、ガスの流速が、0.5m/min以上200m/min以下であることが好ましい。
 上記実施の形態では、廃基板20が、厚み方向から平面的に見て、4cm以上の面積を有する。反応器10内の容積を変更することにより、より大きな面積を有する廃基板20を処理することができる。このような場合、廃基板20の面積は、例えば100cm以上であり、好ましくは600cm以上である。廃基板20の面積の上限は、特に限定されるわけではないが、例えば1000cmである。上記面積を有する廃基板20を用いることで、廃基板20を効率良く分解することができる。上記実施の形態では、廃基板20は、電子回路基板である。上記対象物2の処理方法によって、電子回路基板を処理することでプリント基板における樹脂を分解し、プリント基板に含まれていた金属を有する処理物と電子部品とを回収することが容易となる。また、プリント基板における樹脂をある程度分解することで板状の状態が維持された処理物と、電子部品と、を回収することもできる。上記対象物2の処理方法によって、電子回路基板を破砕することなく、有機物を全て取り除くことで、電子回路基板に含まれていた希少金属の回収が容易となる。さらに、電子回路基板を破砕しないことで、希少金属の回収率を向上させることができる。また、有機物を全て取り除くことで、リサイクル時における金属の製錬工程が簡易となる。
 上記実施の形態では、廃基板20の表面21,22がガスが流れる方向(X軸方向)に交差するように配置される場合について説明したが、これに限られず、廃基板20の表面21,22がX軸方向に沿って配置するようにしてもよい。上記実施の形態では、電子回路基板のうち、電子部品がより多く搭載されている面22が、下壁部103に対向するように配置される。電子回路基板における面22がX軸方向に交差(直交)するように配置されることで、ガスが電子回路基板における面22に直接接触し、電子回路基板を効率良く処理することができる。また、電子回路基板における電子部品が自重によって下方側に落下し易くなり、プリント基板に含まれていた金属と電子部品とを分離し易くすることができる。
 上記実施の形態では、対象物2(廃基板20)は、触媒30の表面から例えば50mm以上埋没させる。対象物2(廃基板20)を触媒30の表面から埋没させる深さは、好ましくは100mm以上であり、より好ましくは150mm以上であり、さらに好ましくは200mm以上である。対象物2(廃基板20)を触媒30の表面から50mm以上埋没させることで、対象物2(廃基板20)における有機物を分解する際の有機物の未分解ガスの発生を抑制することができる。対象物2(廃基板20)を埋没させる深さは、反応器10の大きさや反応器10内に収容される触媒30の量に応じて適宜設定される。
 上記実施の形態では、触媒30は、酸化チタン製の顆粒体からなる場合について説明したが、これに限られず、顆粒体を構成する材料が、酸化アルミニウムおよび酸化ケイ素から選ばれる少なくとも1種と酸化チタンとの混合物であってもよい。また、顆粒体を構成する材料が、チタン/ニオブ複合酸化物、チタン/ケイ素複合酸化物、ケイ素およびタングステンから選ばれる少なくとも1種とチタンとの複合酸化物、ケイ素およびモリブデンから選ばれる少なくとも1種とチタンとの複合酸化物、チタン/アルミニウム複合酸化物、酸化ジルコニウム、チタン/ジルコニウム複合酸化物及びチタン含有ぺロブスカイト化合物から選ばれる少なくとも1種の無機酸化物であってもよい。チタン含有ぺロブスカイト化合物としては、例えば、チタン酸ストロンチウム、チタン酸ジルコン酸バリウム、チタン酸カルシウムのほか、これらにおけるバリウム、ジルコニウム、ストロンチウム及び/又はカルシウムの一部をランタン、セリウム、イットリウム等で置換したもの等を挙げることができるが、これらに限定されるものではない。
 上記実施の形態における顆粒体は、例えば、以下の方法により製造することができる。チタニアゾル(必要に応じて、シリカゾル、アルミナゾル及びジルコニアゾルから選ばれる少なくとも1種のゾルも含める)を撹拌造粒して球状の顆粒とした後、400℃~850℃の範囲の温度で焼成する。そして、篩分けによって、特定の粒径を持つ焼成した後の顆粒体を得る。
 上記実施の形態における触媒30として、銅および酸化銅の少なくともいずれか一方が担持されるチタンを含む金属酸化物製の顆粒体を採用してもよい。このような顆粒体を採用することで、長期間に亘って対象物2を高効率で処理することができる。上記方法によって製造されるチタンを含む金属酸化物製の顆粒体に銅および酸化銅の少なくともいずれか一方を担持することで製造される。銅および酸化銅の少なくともいずれか一方を担持させる方法としては、種々の公知の方法を用いることができるが、中でも含侵法を好適に用いることができる。例えば、硝酸塩銅水溶液に上記で得られた顆粒体を浸漬し、さらに乾燥した後、200℃以上500℃以下の温度で焼成することにより、銅および酸化銅の少なくともいずれか一方が担持される顆粒体を得ることができる。銅および酸化銅の少なくともいずれか一方の担持量は、例えば、0.1質量%以上10質量%以下である。
 上記実施の形態における顆粒体の真円度は、0.5以上5以下である。顆粒体の真円度は、好ましくは1以上2以下であり、より好ましくは1以上1.5以下であり、さらに好ましくは1以上1.4以下であり、特に好ましくは1以上1.3以下であり、最も好ましくは1以上1.2以下である。より詳しくは、使用前の全酸化チタン顆粒体中の70%以上、好ましくは80%以上、より好ましくは90%以上の顆粒体の真円度が、1以上2以下であり、好ましくは1以上1.5以下であり、より好ましくは1以上1.4以下であり、さらに好ましくは1以上1.3以下であり、最も好ましくは1以上1.2以下である。顆粒体の真円度が上記範囲を有することで、顆粒体の形状の球形度合いを高くすることができる。上記真円度の測定は、例えば以下の条件および装置によって実施される。倒立型顕微鏡にCCDカメラを装着し、画像の処理はImage-Pro Plusにより行う。詳しくは、顆粒体をプラスチックシャーレに重ならないようにいれる。そして、下記倒立型顕微鏡により倍率4倍で画像を取り込み、Image-Pro Plusにより真円度を自動計測する。
(装置)
 顕微鏡:商品名「TMD-300」,株式会社ニコン
 CCDカメラ:商品名「Retiga 2000R(1600×1200pixels)」,Q-Imaging社
 画像処理装置:商品名「Image-Pro Plus」,Media Cybernetics社
 上記実施の形態における顆粒体の安息角度は、15度以上35度以下であり、好ましくは20度以上35度以下である。安息角度の測定は、例えば以下の方法により実施される。顆粒体20gをロートにより落下させ、山型に層を形成した時の斜面と水平面とのなす角を測定する。なお、安息角度は,流動性の良い粉粒体ほど小さく、逆に流動性の良くない粉粒体の場合には大きくなる。
 上記実施の形態における顆粒体のタップ密度は、1g/ml以上1.8g/ml以下、好ましくは1.03g/ml以上1.6g/ml以下、より好ましくは1.05g/ml以上1.55g/ml以下である。上記タップ密度の測定は、例えば以下のようにして実施される。顆粒体約180gを200mlガラス製メスシリンダーに投入し、このメスシリンダーを厚み10mmのゴム製シート上に高さ50mmの位置から繰り返し10回自然落下させた後、50mmの距離から木製の板の側面に10回打ち当て、以上の操作を2回繰り返した後、メスシリンダーの目盛を読み取り、顆粒体の容積V(ml)とし、別に、顆粒体を110℃で3時間乾燥した後、その質量N(g)を測定、これらに基づいて、タップ密度を式N/Vから求める。
 上記実施の形態における顆粒体の摩耗率は、5質量%以下、好ましくは2質量%以下、より好ましくは1.5質量%以下、さらに好ましくは1質量%以下である。上記摩耗率の測定は、以下のようにして実施される。図3に示す摩耗率測定装置を用いて測定が実施される。即ち、この摩耗率測定装置は、内径63mm、深さ86mmの試料容器201に撹拌機202を取付けてなり、この撹拌機202は、軸体203の下端部にそれぞれ長さ20mmの楕円形状の撹拌羽204を3枚、60゜間隔で軸体203から直径方向に延びるように取付けたものであって、撹拌羽204はそれぞれ水平に対して45゜の角度を有するように傾斜している。この撹拌羽204は、その最下縁が試料容器201の底から8mmの距離に位置する。なお、酸化チタン顆粒体の摩耗率の測定に際しては、200mlメスシリンダーで顆粒体150mlを計量し、質量を記録した後、試料容器201に全量を投入し、300rpmで30分間上記撹拌機を用いて撹拌した後、試料容器201から試料を取り出し、全量を目開き0.5mmの篩に移し、この篩を通過した試料の質量を測定する。ここに、試料の摩耗率Aは、目開き0.5mmの篩を通過した試料の質量をWとし、測定に供した試料の質量をW0とするとき、A=(W/W0)×100(%)である。
 上記実施の形態における顆粒体の比表面積は、30m/g以上100m/g以下であり、より好ましくは30m/g以上60m/g以下であり、さらに好ましくは30m/g以上50m/g以下であり、特に好ましくは30m/g以上40m以下である。顆粒体の比表面積が30m/g未満であると、顆粒体と対象物2との接触面積が小さくなり、対象物2が十分に処理できない場合がある。顆粒体の比表面積が100m/gより大きいと、顆粒体の耐熱性が低下すると共に、顆粒体が崩れやすく粉末化しやすくなる場合がある。したがって、顆粒体の比表面積は、30m/g以上100m/g以下であることが好ましい。上記比表面積の測定は、例えばBET法によって実施される。BET法は,粉体粒子表面に吸着占有面積の判った分子を液体窒素の温度で吸着させ、その量から試料の比表面積を求める方法である。測定装置は、2300形 自動測定装置(島津製作所(株)製造元)を用いることができる。
 上記実施の形態における顆粒体の細孔容積は、0.1ml/g以上0.8ml/g以下であり、より好ましくは0.2ml/g以上0.6ml/g以下であり、さらに好ましくは0.3ml/g以上0.55ml/g以下であり、特に好ましくは0.4ml/g以上0.5ml/g以下である。上記細孔容積の測定は、例えば水銀圧入法により実施される。水銀圧入法は、水銀の表面張力が大きいことを利用して粉体の細孔に水銀を浸入させるために圧力を加え、圧力と圧入された水銀量から細孔容積を求める方法である。測定装置は、Thermo Finnigan社製のポロシメーター(水銀圧入式 最高圧力:200MPa)を用いることができる。
 上記実施の形態における顆粒体の粒子径は、廃基板20を処理する場合、好ましくは0.2mm以上1.2mm未満である。このような場合、全ての顆粒体のうち70質量%以上、好ましくは80質量%以上、さらに好ましくは85質量%以上の顆粒体の粒子径が、0.35mm以上0.85mm未満であり、より好ましくは0.4mm以上0.85mm未満であり、さらに好ましくは0.5mm以上0.85mm未満である。他の用途では、顆粒体の粒子径がより大きいものを使用してもよい。この際の粒子径は、例えば1mm以上2mm未満である。
 側壁部101は、中空円筒状の形状を有する場合について説明したが、これに限られず、側壁部101は、中空状であると共に角柱状の外形を有してもよい。例えば、側壁部101が、中空直方体状の形状を有する場合、側壁部101のX軸方向に垂直な断面は、長方形状であることが好ましい。このような形状を有することで、長辺に沿って、容器40を移動させることができる。長辺の長さをより長くすることで、廃基板20における有機物を分解する処理時間をより長くすることができる。また、上記実施の形態における側壁部101の内壁は、下壁部103から離れるにしたがって内径が大きくなるテーパー状(曲面状)の形状を有してもよい。さらに、上記実施の形態における側壁部101の内壁は、上壁部102から離れるにしたがって内径が大きくなるテーパー状(曲面状)の形状を有してもよい。上記実施の形態では、供給口11の外形は、X軸方向から平面的に見て円形状の形状を有する場合について説明したが、これに限られず、供給口11の外形は、X軸方向から平面的に見て長方形状の形状であってもよい。上記実施の形態では、1つの配管51が供給口11に接続される場合について説明したが、これに限られず、複数のノズルが下壁部103に設置され、複数のノズルが空間V内に露出するように下壁部103に取り付けられてもよい。このように複数のノズルを設けることで、特定の領域における触媒30のみを微動させることが容易となる。上記実施の形態における処理装置1は、反応器10、触媒30および容器40の他、酸化触媒処理手段、還元触媒処理手段、石灰中和処理手段、ガス供給手段、アルミナ触媒処理手段、熱交換手段、プレヒーター手段、排気ブロアー手段、冷却手段、熱回収手段、塩化水素連続測定手段、CO連続測定手段および警報手段のいずれか1以上の手段を有してもよい。
 上記実施の形態において、廃基板20は、電子回路基板である場合について説明したが、これに限られず、例えば化粧鋼板や樹脂積層板などの板状物であってもよい。対象物2は、廃基板20の他、廃プラスチック、樹脂等の有機物を有する一般廃棄物、産業廃棄物、医療廃棄物および感染性医療廃棄物、実験廃棄物(ラット等の実験動物死体)を処理することができる。また、触媒30を用いて分解することができる有機物は、特に限定されるものではなく、ポリエチレン、ポリプロピレン等の汎用の熱可塑性樹脂のほか、熱硬化性樹脂や医療廃棄物に含まれる有機物等である。
 (実施の形態2)
 次に、実施の形態2について説明する。実施の形態2における処理方法は、基本的に実施の形態1と同様の工程を有し、同様の効果を奏する。しかしながら、実施の形態2においては、処理装置1の構成が実施の形態1の場合と異なっている。以下、実施の形態1と異なる点について説明する。
 図4および図5は、実施の形態2における処理装置1の構造を示す概略断面図である。図4は、図5のB-Bで切断した場合の断面図である。図5は、図4のA-Aで切断した場合の断面図である。図6は、レール上を走行する状態の容器40を示す概略斜視図である。図7は、レール上を走行する状態の容器40を示す概略側面図である。図4および図5において、X軸方向とはレールにおける第1レールが延びる方向である。Z軸方向は、鉛直方向である。Y軸方向は、X-Z平面に垂直な方向である。
 図4および図5を参照して、本実施の形態における処理装置1は、対象物2を処理するための部分である第1部分としての反応槽10と、触媒30と、供給部50と、ガス処理部53と、加熱部60と、容器40と、容器40を支持する支持部65と、を備える。反応槽10は、内部に対象物2を処理するための空間が形成された形状を有する。図4および図5を参照して、反応槽10は、例えば、直方体状の形状を有する。本実施の形態では、反応槽10には、一方の端部から他方の端部に向かって貫通する空間Tが形成されている。より具体的には、空間Tは、X軸方向に沿って延びる。
 本実施の形態では、反応槽10は、空間Tを取り囲む第1内壁面12、一対の第2内壁面13および第3内壁面14を含む。第1内壁面12は、例えば、平面状の形状を有する。より具体的には、第3内壁面14は、第1内壁面12とZ軸方向に間隔をあけて配置される。第1内壁面12と第3内壁面14とは、平行に配置される。一対の第2内壁面13は、それぞれ第1内壁面12および第3内壁面14に接続する。一対の第2内壁面13は、それぞれY軸方向に間隔をあけて配置される。第2内壁面13は、例えば、平面状の形状を有する。
 本実施の形態では、第3内壁面14は、第1の面141と、第2の面142と、第3の面143と、第4の面144と、第5の面145と、を含む。第1の面141、第2の面142、第3の面143、第4の面144および第5の面145は、例えばそれぞれ平面状の形状を有する。より具体的には、第1の面141、第3の面143および第5の面145は、それぞれX-Y平面に平行に配置される。第1の面141および第5の面145は、Z軸方向において同じ高さに位置する。Z軸方向において、第3の面143の高さは、第1の面141の高さよりも低い。第2の面142は、第1の面141と第3の面143とに接続する。第4の面144は、第3の面143と第5の面145とに接続する。第2の面142および第4の面144は、それぞれX-Y平面に傾斜する。本実施の形態では、反応槽10には、第1凹部Sに連通する貫通孔15がZ軸方向に沿って形成されている。より具体的には、貫通孔15は、X軸方向に間隔をあけて複数(本実施の形態では8つ)形成されている。貫通孔15の一方の開口部は、第2の面142、第3の面143および第4の面144に形成されている。貫通孔15の他方の開口部は、反応槽10の外壁に形成されている。本実施の形態では、反応槽10の内壁面には、第2の面142、第3の面143、第4の面144および一対の第2内壁面13によって取り囲まれた第1凹部Sが形成されている。
 図5を参照して、触媒30は、第1凹部S内に収容された状態が維持されている。触媒30は、チタンを含む金属酸化物製の顆粒体からなる。本実施の形態では、触媒30は、酸化チタン(二酸化チタン)製の顆粒体からなる。顆粒体は、例えば、略球状の形状を有する。略球状とは、顆粒体表面の角が取れ、球形の度合いが高いことを意味する。顆粒体の粒子径は、実施の形態1と同様である。本実施の形態において、顆粒体の転がり傾斜角度は、実施の形態1と同様である。処理装置1は、第1凹部S内に収容される触媒30全体に亘って触媒30を攪拌する攪拌部を備えない。
 供給部50は、酸素を含むガスを供給する。供給部50は、例えばブロワである。酸素を含むガスは、例えば酸素を含む混合ガスである。より具体的には、酸素を含むガスは、空気である。本実施の形態では、供給部50は、第1配管511および第2配管512を介して、反応槽10に接続されている。より具体的には、第1配管511は、X軸方向に沿って延びる。第1配管511の一方の端部に供給部50が配置される。第2配管512は、第1配管511における分岐点513からZ軸方向に沿って延びる。第2配管512は、X軸方向に間隔をあけて複数配置されている。第2配管512を取り囲む空間が貫通孔15に連通するように、第2配管512が配置される。供給部50から供給されるガスが、第1凹部S内に供給される。本実施の形態では、第2配管512の外周に沿って加熱部60が配置される。加熱部60によって、供給部50によって供給されるガスが加熱される。加熱部60は、例えばヒーターである。このようにして、第1凹部S内に酸素を含むガスが供給され、第1凹部S内に収容されている触媒30が加熱される。
 図5および図6を参照して、本実施の形態では、支持部65は、第1部品としての駆動部44A,44Bと、接続部42,43と、レール80と、を含む。レール80は、駆動部44A,44Bが走行可能な形状を有する。図1および図2を参照して、レール80は、例えば、環状の形状を有する。本実施の形態では、レール80は、第1レール81と、第2レール82と、第3レール83と、第4レール84と、を含む。より具体的には、Z軸方向に平面的に見て、第1レール81および第2レール82は、X軸方向に沿って直線状に延びる。第1レール81と第2レール82とは、平行に配置される。第3レール83は、第1レール81および第2レール82の一方の端部のそれぞれに接続する。第4レール84は、第1レール81および第2レール82の他方の端部のそれぞれに接続される。図5を参照して、第1レール81は、反応槽10における空間Tを挿通するように配置される。第1レール81は、例えば、触媒30から露出するように配置される。本実施の形態では、第1レール81は、第1直線部811と、第2直線部813と、第3直線部815と、第1傾斜部812と、第2傾斜部814と、を含む。より具体的には、第1直線部811、第2直線部813および第3直線部815は、それぞれX軸方向に沿って延びる。第1直線部811と、第3直線部815とは、Z軸方向において同じ高さを有する。Z軸方向において、第2直線部813の高さは、第1直線部811の高さよりも低い。第1傾斜部812は、第1直線部811および第2直線部813に接続する。第2傾斜部814は、第2直線部813および第3直線部815に接続する。第1傾斜部812および第2傾斜部814は、それぞれZ軸方向に対して傾斜している。
 図4、図5および図6を参照して、駆動部44A,44Bは、例えば内蔵されているモーター(図示せず)によってレール80上を走行可能である。接続部42,43は、容器40の懸架に適した形状を有する。接続部42,43は、例えば、直線状に延びる形状を有する。より具体的には、接続部42の一方の端部には、駆動部44Aが接続されている。接続部43の一方の端部には、駆動部44Bが接続されている。図6および図7を参照して、接続部42,43の他方の端部には、容器40が接続されている。駆動部44A,44Bと容器40とに接続部42,43が接続し、駆動部44A,44Bは、容器40に取り付けられている。
 図5、図6および図7を参照して、容器40は、処理する対象物2を内部に保持することに適した形状を有する。容器40は、例えば、直方体状の形状を有する。より具体的には、容器40は、約550℃の温度で形態を維持可能な金属製(鉄製)である。本実施の形態では、容器40は、第1外壁411と、第2外壁412と、第3外壁413と、第4外壁414と、第5外壁415と、を含む。第1外壁411、第2外壁412、第3外壁413、第4外壁414および第5外壁415は、例えば、触媒30を通すことが可能な網目状の形状を有する。より具体的には、第1外壁411、第2外壁412、第3外壁413、第4外壁414および第5外壁415の目開きは、例えば1mm以上である。第1外壁411、第2外壁412、第3外壁413、第4外壁414および第5外壁415の目開きは、好ましくは2mm以上100mm以下であり、より好ましくは2mm以上50mm以下であり、さらに好ましくは2mm以上30mm以下であり、特に好ましくは2mm以上6mm以下である。上記目開きは、対象物2や触媒30の大きさによって適宜決定される。
 各外壁は、処理する対象物2を保持することに適した形状を有する。第1外壁411、第2外壁412、第3外壁413、第4外壁414および第5外壁415は、例えば、平板状の形状を有する。より具体的には、第1外壁411と第2外壁412とは、Z軸方向に間隔をあけて平行に配置される。第3外壁413と第4外壁414とは、Y軸方向に間隔をあけて平行に配置される。Y軸方向から平面的に見て、第3外壁413の一方の長辺には、第1外壁411が接続され、第3外壁413の他方の長辺には、第2外壁412が接続されている。Y軸方向から平面的に見て、第4外壁414の一方の長辺には、第1外壁411が接続され、第4外壁414の他方の長辺には、第2外壁412が接続されている。X軸方向から平面的に見て、第5外壁415の一方の長辺には、第1外壁411が接続され、第5外壁415の他方の長辺には、第2外壁412が接続される。さらに、第5外壁415の一方の短辺には、第3外壁413が接続され、第5外壁415の他方の短辺には、第4外壁414が接続される。
 本実施の形態では、容器40には、第1外壁411、第2外壁412、第3外壁413および第4外壁414によって取り囲まれた開口部Pが形成されている。開口部Pから容器40の内部に対象物2を配置することができる。対象物2は、第1外壁411、第2外壁412、第3外壁413、第4外壁414および第5外壁415によって取り囲まれた空間内に保持される。本実施の形態では、接続部42,43の他方の端部に、第1外壁411が接続されている。より具体的には、Z軸方向に平面的に見て、接続部42および接続部43は、容器40の重心は挟むように配置される。このようにして、容器40は、レール80の進行方向Hに沿って移動可能である。
 処理装置1は、容器40が触媒30内に潜り込ませることを可能にする手段を有してもよい。本実施の形態では、処理装置1は、つば部416をさらに備える。より具体的には、つば部416は、第2外壁412の外縁から突出するように配置される。Z軸方向から平面的に見て、つば部416は、第2外壁412の第5外壁415が接続される側とは反対側の辺に接続される。つば部416は、レール80の進行方向Hにおける矢印の向きに突出する。つば部416は、例えば、平板状の形状を有する。つば部416は、第2外壁412に対して傾斜する。本実施の形態では、つば部416と第2外壁412とのなす角は、例えば10度以上45度以下である。本実施の形態では、つば部416は、本体部417から突出すると共に、Y軸方向に間隔をあけて配置される複数の突起418を含む。
 例えば、反応槽10において対象物2における有機物が分解されることによって発生するガスを処理した後に、外部に排出してもよい。図5を参照して、本実施の形態では、処理装置1は、対象物2における有機物が分解されることによって発生するガスを処理する部分であるガス処理部53を備える。より具体的には、配管521の一方の端部に反応槽10が接続される。配管521によって取り囲まれる空間が空間Tに連通するように配管521は接続される。配管521の他方の端部にはガス処理部53が接続される。ガス処理部53によって処理されたガスは、配管522を通じて外部に放出される。上記ガス処理部53としては、例えば、酸化触媒処理手段、還元触媒処理手段、石灰中和処理手段などである。
 次に、本実施の形態における処理装置1を用いて、対象物2を処理する方法について説明する。図2を参照して、まず、工程(S10)として、対象物2を容器40の内部に配置する工程が実施される。図6を参照して、対象物2としての廃基板20が準備される。本実施の形態では、廃基板20は、プリント基板と、プリント基板上に搭載される電子部品と、を含む電子回路基板である。廃基板20の大きさ(平面的に見た時の面積)は、実施の形態1と同様である。容器40の開口部Pから内部に廃基板20が配置される。廃基板20は、Z軸方向に交差(直交)するように配置される。本実施の形態では、電子回路基板のうち、電子部品がより多く搭載されている面が、第3内壁面14に対向するように配置される。
 そして、図4および図5を参照して、容器40に廃基板20が収容された状態で、駆動部44A,44Bがレール80上を走行することで、容器40はレール80に沿って移動する。駆動部44A,44Bが第1レール81上を走行することで、容器40は反応槽10内を移動する。例えば、駆動部44A,44Bが進行方向Hにおける矢印の向きに走行する場合について説明する。駆動部44A,44Bが第1レール81の第1直線部811上を走行することで、容器40は水平方向(X軸方向)に沿って移動し、容器40は反応槽10内に入る。容器40内に収容される廃基板20は、反応槽10内に配置されることとなる。この状態では、容器40は、触媒30に接触していない。第1レール81の第1傾斜部812上を駆動部44A,44Bが走行することで、容器40は鉛直方向(Z軸方向)および水平方向(X軸方向)に沿って移動する。駆動部44A,44Bが第1直線部811上を走行する際のZ軸方向における容器40の高さよりも容器40の高さが低くなるように、容器40は移動する。その結果、容器40は第1凹部S内に収容される触媒30内に埋没し、廃基板20は触媒30によって覆われる。廃基板20を触媒30内に埋没させる深さは、実施の形態1と同様である。この際に、容器40は、触媒30に接触している状態となる。
 次に、工程(S20)として、有機物を分解する工程が実施される。より具体的には、第1レール81の第2直線部813上において駆動部44A,44Bを走行させ、容器40をX軸方向に沿って移動させる。この時に、容器40によって、触媒30が攪拌されないように移動速度が適宜設定される。この際に、廃基板20は、触媒30によって覆われ、廃基板20における有機物は触媒30に接触している状態が維持される。そして、酸素を含むガスを第1凹部S内に流入させ、触媒30を480℃以上550℃以下の温度に維持する。本実施の形態では、触媒30が上記温度範囲となるように、第1凹部S内に供給されるガスの温度が適切に設定される。廃基板20が反応槽10内に配置される前に、触媒30が所定の温度(例えば480℃以上550℃以下)となるように加熱される。第1凹部内Sに流入されるガスの流速(m/min)や、触媒30の単位質量(g)当たりのガスの流量(l/min)は、実施の形態1と同様である。触媒30の温度は、実施の形態1と同様である。
 工程(S20)では、廃基板20における有機物の分解反応が生じるようにガスが第1凹部S内に流入される。この際に、第1凹部S内全体に行き渡るようにガスが流入される。さらに、廃基板20における有機物の分解反応が生じると共に廃基板20の表面の少なくとも一部で触媒30が微動するようにガスが第1凹部S内に流入されている。廃基板20の有機物が分解されると、廃基板20の体積が減少する。第1凹部S内に流入されるガスによって、触媒30は廃基板20の表面上を僅かに移動し、廃基板20の異なる領域に接触する。このような触媒30の動きが連続的に起こり、廃基板20の表面の少なくとも一部で触媒30が微動する。このように、廃基板20の表面上において触媒30を僅かに流動させている。ガスは、触媒30が流動層を形成しない程度に第1凹部S内に流入される。
 本実施の形態では、工程(S20)において、第1凹部S内に収容される触媒30全体に亘って触媒30を攪拌する工程が実施されない。そして、駆動部44A,44Bが第1レール81の第2傾斜部814上を走行することで、容器40は水平方向(X軸方向)および鉛直方向(Z軸方向)に沿って移動する。駆動部44A,44Bが第2直線部813上を走行する際のZ軸方向における容器40の高さよりも容器40の高さが高くなるように、容器40は移動する。このようにして、容器40は触媒30から取り出される。そして、駆動部44A,44Bが第1レール81の第3直線部815上を走行し、容器40は反応槽10外に移動する。工程(S20)の後に、分解物を回収する工程を実施してもよい。例えば、駆動部44A,44Bが第2レール82上を走行する際に、容器40内から分解物が取り出されてもよい。また、工程(S20)の後に、再び工程(S10)および工程(S20)を繰り返し実施してもよい。例えば、駆動部44A,44Bが第2レール82上を走行する際に、容器40内に再び廃基板20を配置し、廃基板20の処理を繰り返し実施してもよい。この場合、第1凹部S内に収容される触媒30は、480℃以上550℃以下の温度に維持され、廃基板20が触媒30によって覆われることで、廃基板20の有機物を分解することができる。
 本実施の形態では、容器40内に保持された廃基板20が触媒30によって覆われるように、容器40を移動させる。そして、酸素を含むガスが第1凹部S内に供給されると共に触媒30が加熱されることで、廃基板20における有機物を分解することができる。廃基板20を処理した後に、容器40を鉛直方向(Z軸方向)に沿って移動させ、容器40が触媒30から取り出される。この際に、容器40が触媒30に接触していない状態となる。容器40を鉛直方向(Z軸方向)に移動させると、触媒30は第1凹部S内に落下するため、触媒30が第1凹部内から漏れ出てしまうことを低減することができる。触媒30は第1凹部S内に収容された状態が維持されるため、反応槽10において繰り返し廃基板20を処理することが容易である。本実施の形態における処理装置1は、第1凹部S内に収容される触媒30全体に亘って触媒30を攪拌する攪拌部を備えない。処理装置1が上記攪拌部を備えないことで、触媒30同士や廃基板20と触媒30とが擦れることを低減することができる。このため、触媒30が摩耗してしまうことが低減されている。このように、本実施の形態における処理装置1によれば、繰り返し対象物2(廃基板20)を処理することが容易となり、長期に亘って対象物2(廃基板20)を処理することが可能となっている。
 本実施の形態における処理装置1は、容器40の少なくとも一部が触媒30に接触している際に、容器40は運動可能である。より具体的には、容器40は水平方向(X軸方向)に沿って移動可能である。このような構成を採用することで、廃基板20の表面に触媒30が接触し易くなり、廃基板20における有機物をより効率良く分解することができる。上記実施の形態では、容器40をX軸方向に沿って移動させる場合について説明したが、これに限られず、容器40をX軸方向に沿って移動させると共に容器40を軸周りに回転するようにしてもよい。また、容器40を触媒30に対して振動させるようにしてもよい。容器40は、触媒30が攪拌されないように運動させる。例えば、触媒30が攪拌されないように容器40の移動速度、回転速度や振動の大きさが適宜設定される。
 本実施の形態における処理装置1において、支持部65は、第1傾斜部812と、第2傾斜部814と、を含むレール80と、レール80上を走行可能な駆動部44A,44Bと、を備える。このような構成を採用することで、レール80に沿って容器40を移動させることができる。したがって、廃基板20を連続的に処理することが容易となる。また、第1傾斜部812および第2傾斜部814によって、容器40を鉛直方向(Z軸方向)に沿って移動させることが容易となる。
 本実施の形態における処理装置1は、レール80の進行方向Hにおけるいずれか一方に突出するように容器40に取り付けられているつば部416を備える。このような構成を採用することで、レール80に沿って容器40を移動させつつ、つば部416を触媒30内に潜り込ませることが容易となる。したがって、容器40の少なくとも一部の領域を触媒30によって覆われるように潜らせることが容易となる。
 本実施の形態における処理装置1は、第1凹部S内に収容される触媒30全体に亘って触媒30を攪拌する攪拌部を備えない。このような攪拌部を用いて対象物2と触媒30との攪拌を実施すると、対象物2と触媒30とがかき混ぜられ、対象物2における有機物が表面に露出してしまう場合がある。このような場合、有機物が完全に分解されずに形成される未分解のガス(例えばメタンガスや一酸化炭素ガス等)が発生する場合がある。このような攪拌部を用いた対象物2と触媒30との攪拌を実施しないことで、対象物2の有機物が表面に露出することが抑制されるため、上記有機物の未分解のガスの発生を低減することができる。また、攪拌することが困難な程度の大きさや形状を有する廃基板20において、廃基板20を細かく破砕することなく、そのままの状態で廃基板20を処理することができる。廃基板20を細かく破砕せずにそのままの状態で処理することができるため、廃基板20を容易に処理することができる。
 上記実施の形態では、電子回路基板のうち、電子部品がより多く搭載されている面が、第3内壁面14に対向するように配置される。このようにすることで、ガスが電子回路基板における面に直接接触し、電子回路基板を効率良く処理することができる。また、電子回路基板における電子部品が自重によって下方側に落下し易くなり、プリント基板に含まれていた金属と電子部品とを分離し易くすることができる。
 触媒30の顆粒体を構成する材料は、実施の形態1と同様である。実施の形態1と同様に、触媒30として、銅および酸化銅の少なくともいずれか一方が担持されるチタンを含む金属酸化物製の顆粒体を採用してもよい。顆粒体の真円度、安息角度、タップ密度、摩耗率、比表面積および細孔容積は、実施の形態1と同様である。廃基板20は、実施の形態1と同様に、電子回路基板の他、例えば化粧鋼板や樹脂積層板などの板状物であってもよい。さらに、対象物2は、実施の形態1と同様に、廃基板20の他、廃プラスチック、樹脂等の有機物を有する一般廃棄物、産業廃棄物、医療廃棄物および感染性医療廃棄物、実験廃棄物(ラット等の実験動物死体)を処理することができる。
 (変形例)
 反応槽10の第3内壁面14における第3の面143は、X-Y平面に対して傾斜してもよい。図8は、実施の形態1の処理装置1の変形例を示す概略断面図である。図8を参照して、第2の面142と第3の面143とが接続する領域のZ軸方向における高さが最も低くなり、第2の面142から離れるにしたがって第3の面143のZ軸方向における高さは高くなる。レール80における第1レール81は、第1直線部811と、第3直線部815と、第1傾斜部812と、第2傾斜部814とによって構成されている。第1傾斜部812および第2傾斜部814の一部の領域は、触媒30によって覆われている。第1傾斜部812と第2傾斜部814とを接続する領域上を駆動部44A,44Bが走行する際に、容器40は触媒30の表面から最も深く埋没することとなる。廃基板20の処理において、当初、有機物が完全に分解されずに形成される未分解のガス(例えばメタンガスや一酸化炭素ガス等)が発生する場合がある。上記変形例における構成を採用することで、上記未分解ガスが触媒30によって分解され、未分解のガスの発生を低減させることができる。
 (実施の形態3)
 次に、本発明の処理装置1の他の実施の形態である実施の形態3について説明する。実施の形態3における処理装置1は、基本的に実施の形態1と同様の構成を有し、同様の効果を奏する。しかしながら、実施の形態3においては、反応槽10およびレール80の構成が実施の形態2の場合と異なっている。以下、実施の形態2と異なる点について説明する。
 図9および図10は、実施の形態2における処理装置1の構造を示す概略断面図である。図9は、図10のD-Dで切断した場合の断面図である。図10は、図9のC-Cで切断した場合の断面図である。図9および図10を参照して、反応槽10は、例えば、環状の形状を有する。より具体的には、反応槽10には、環状の空間Uが形成されている。本実施の形態では、反応槽10は、空間Uを取り囲む第1内壁面12、一対の第2内壁面13および第3内壁面14を含む。第1内壁面12および第3内壁面14は、例えばそれぞれ平面環状の形状を有する。一対の第2内壁面13は、例えば、環状の形状を有する。本実施の形態では、反応槽10には、一対の第2内壁面13および第3内壁面14によって囲まれた環状の第1凹部Sが形成されている。第1凹部Sには、触媒30は収容されている。
 本実施の形態では、レール80における第1レール81は、第4直線部816と、第5直線部818と、第6直線部820と、第3傾斜部817と、第4傾斜部819と、を含む。より具体的には、第4直線部816、第5直線部818および第6直線部820は、それぞれX軸方向に沿って延びる。第4直線部816と、第6直線部820とは、Z軸方向において同じ高さを有する。Z軸方向において、第5直線部818の高さは、第4直線部816の高さよりも高い。第3傾斜部817は、第4直線部816および第5直線部818に接続する。第4傾斜部819は、第5直線部818および第6直線部820に接続する。第3傾斜部817および第4傾斜部819は、それぞれZ軸方向に対して傾斜している。
 本実施の形態では、第4直線部816、第6直線部820、第2レール82、第3レール83および第4レール84の上を駆動部44A,44Bが走行する際に、容器40は水平方向(X軸方向)に沿って移動する。この際に、容器40は触媒30内に埋没し、対象物2は触媒30によって覆われる。本実施の形態では、第3傾斜部817および第4傾斜部819の上を駆動部44A,44Bが走行する際に、容器40は水平方向(X軸方向)および鉛直方向(Z軸方向)に沿って移動する。本実施の形態では、第5直線部818上を駆動部44A,44Bが走行する際に、容器40は水平方向(X軸方向)に沿って移動する。より具体的には、Z軸方向における容器40の高さは、第4直線部816、第6直線部820、第2レール82、第3レール83および第4レール84の上を駆動部44A,44Bが走行する際の容器40の高さよりも高くなる。この際に、容器40は触媒30から露出することとなる。第5直線部818上を駆動部44A,44Bが走行する際に、容器40内に対象物2(図3参照)を配置したり、分解物を取り出したりする。この場合、反応槽10における第1内壁面12の第5直線部818に対応する領域において、例えば、容器40内に対象物2を配置したり、分解物を取り出したりできるように開口部(図示せず)が形成されていてもよい。さらに、開閉式の蓋(図示せず)が開口部を閉塞するように取り付けられていてもよい。また、反応槽10における第2内壁面13の第5直線部818に対応する領域において、触媒30からの熱を断熱するために断熱板(図示せず)が取り付けられていてもよい。このようにして、対象物2の処理を繰り返し実施する。
 上記実施の形態3における処理装置1によっても、実施の形態2と同様に繰り返し対象物2を処理することが容易となり、長期に亘って対象物2を処理することが可能となっている。本実施の形態における処理装置1によれば、実施の形態2における処理装置1よりもコンパクトにすることができる。
 (実施の形態4)
 次に、本発明の処理装置1の他の実施の形態である実施の形態4について説明する。図11は、実施の形態4における処理装置1の構造を示す概略断面図である。図11において、α軸方向は鉛直方向であり、β-γ平面はα軸方向に垂直な面である。図11を参照して、本実施の形態において、処理装置1は、第1部品としての反応器10と、触媒30と、容器40と、羽根部41と、ガス処理部53と、加熱部60と、支持部65と、を備える。
 本実施の形態において、反応器10は、側壁部101と、下壁部103と、を含む。側壁部101は、例えば、中空円筒状の形状を有する。より具体的には、側壁部101の一方の開口を閉塞するように平板状の下壁部103が配置される。反応器10には、側壁部101および下壁部103によって取り囲まれた第1凹部Sが形成されている。第1凹部S内に触媒30が収容された状態が維持されている。下壁部103の中央には、供給口11が形成されている。本実施の形態において、供給口11は、複数の貫通孔によって構成されている。X軸方向から平面的に見て、供給口11の外形は、円形状の形状を有する。下壁部103には、配管51が設置されている。配管51によって取り囲まれた空間と供給口11とが連通するように、配管51が配置されている。配管51は、ガスの流入路である。したがって、配管51から反応器10の第1凹部S内にガスが矢印Lの向きに流入する。側壁部101の他方の開口には、配管521が設置されている。配管521の反応器10とは反対側の端部には、ガス処理部53が接続されている。側壁部101の外周に沿って、加熱部60が配置されている。本実施の形態では、加熱部60によって、第1凹部S内に収容されている触媒30が加熱される。処理装置1は、第1凹部S内に収容される触媒30全体に亘って触媒30を攪拌する攪拌部を備えない。
 容器40は、内部に触媒30を収容可能な形状を有する。容器40は、例えば、内部空間Qを有する直方体状の形状を有する。本実施の形態では、容器40は、触媒30を通すことが可能な網目状の形状を有する。より具体的には、容器40は、約550℃の温度で形態を維持可能な金属製(鉄製)である。本実施の形態では、容器40は、周壁部としての第1壁部401と、第2壁部402と、底壁部としての第3壁部403と、段404,405と、を含む。第2壁部402および段落404,405は、第1壁部401から取り外し可能なように取り付けられている。第1壁部401、第2壁部402、第3壁部403および段404,405は、例えば、網目状の形状を有する。より具体的には、第1壁部401、第2壁部402、第3壁部403および段404,405の目開きは、実施の形態1における容器40と同様である。第1壁部401は、例えば、中空直方体状の形状を有する。第2壁部402および第3壁部403は、例えば、平板状の形状を有する。より具体的には、第1壁部401の一方の開口を閉塞するように第2壁部402が配置される。第1壁部401の他方の開口を閉塞するように第3壁部403が配置される。第3壁部403の外縁からZ軸方向に沿って延びるように第1壁部401は配置される。第3壁部403の第1壁部401とは反対側には、羽根部41が配置されている。羽根部41は、第3壁部403から突出するように配置される。羽根部41は、例えば、平板状の形状を有する。羽根部41の大きさは、反応器10の容積や径等に合わせて適宜設定される。本実施の形態では、容器40には、容器40内の内部空間Qを分離する網目状の段404,405がX軸方向に間隔をあけて複数(本実施の形態では2つ)配置される。本実施の形態における容器40には、3つの廃基板20を配置することができる。
 本実施の形態では、支持部65は、第1モーター47と、プレート48と、コンベア90と、を含む。より具体的には、コンベア90は、第2モーター91と、第2部品としてのベルト93と、を含む。第2モーター91における軸部92の端部には、ベルト93が設置されている。ベルト93は、長手方向の両端が互いに接続される帯状の形状を有する。ベルト93は、α軸方向に沿って延びるように配置される。平板状のプレート48は、α軸方向に交差(直交)するようにベルト93に固定されている。第2モーター91が駆動することで、ベルト93はα軸方向に沿って移動すると共に、プレート48もα軸方向に沿って移動する。第1モーター47は、プレート48上に設置されている。本実施の形態では、第1モーター47における軸部46の先端には、容器40の第2壁部402が接続されている。より具体的には、第2壁部402のほぼ中央の領域に軸部46が接続されている。第1モーター47を駆動させると、容器40がα軸方向に垂直なβ-γ平面に沿って回動するように、第1モーター47が配置される。第1モーター47を駆動させることで、容器40は回動し、羽根部41もβ-γ平面に沿って回動する。したがって、容器40に取り付けられている羽根部41は回動可能である。
 次に、本実施の形態における処理装置1を用いて、対象物2を処理する方法について説明する。図2を参照して、まず、工程(S10)として、対象物2を配置する工程が実施される。図11を参照して、対象物2としての廃基板20が準備される。廃基板20は、実施の形態1と同様の面積を有する電子回路基板である。廃基板20は、実施の形態1と同様にして、容器40内に配置されている。より具体的には、第2壁部402および段落404,405が、1壁部401から取り外された状態で、廃基板20が配置される。そして、段404を第1壁部401に取り付けられた後に、廃基板20が配置される。さらに、段405が第1壁部104に取り付けられた後に、廃基板20が配置される。このようにして、3つの廃基板20が容器40内に配置される。
 容器40に廃基板20が収容された状態で、第2モーター91を駆動させ、ベルト93をα軸方向に沿って移動させる。ベルト93がα軸方向に沿って移動することで、容器40がα軸方向に沿って移動する。例えば、ベルト93の進行方向Jにおける矢印の向きに容器40を移動させる場合について説明する。第1モーター47を駆動させ、容器40を回動し、羽根部41をβ-γ平面に沿って回動させる。このようにすることで、容器40を触媒30内に埋没させることが容易となる。この状態では、容器40は、触媒30に接触していない。そして、容器40が触媒30によって覆われるように、容器40を進行方向Jにおける矢印の向きに移動させる。図12は容器40および廃基板20が触媒30によって覆われている状態を示す概略図である。図12を参照して、容器40は第1凹部S内に収容される触媒30内に埋没し、廃基板20は触媒30によって覆われる。廃基板20は、触媒30の表面から例えば50mm以上埋没させる。この際に、容器40は、触媒30に接触している状態ととなり、廃基板20は反応槽10内に配置されることとなる。
 次に、工程(S20)として、有機物を分解する工程が実施される。より具体的には、廃基板20は、触媒30によって覆われ、廃基板20における有機物は触媒30に接触している状態が維持される。そして、酸素を含むガスを第1凹部S内に流入させ、触媒30を480℃以上550℃以下の温度に維持する。第1凹部S内に流入されるガスは、実施の形態1と同様にして第1凹部内に流入される。第1凹部内Sに流入されるガスの流速(m/min)や、触媒30の単位質量(g)当たりのガスの流量(l/min)は、実施の形態1と同様である。触媒30の温度は、実施の形態1と同様である。反応器10における外壁側から加熱部60によって加熱されることで、反応器10内における触媒30は所定の温度に維持される。本実施の形態では、工程(S20)において、第1凹部S内に収容される触媒30全体に亘って触媒30を攪拌する工程が実施されない。
 ベルト93の進行方向Jにおける矢印の向きとは反対の向きに容器40を移動させ、容器40が触媒30から取り出される。そして、容器40から分解物を取り出したり、容器40内に再び廃基板20を配置したりする。以上のようにして、廃基板20の処理を繰り返し実施する。
 上記実施の形態では、容器40を回動させることで羽根部41が回動する場合について説明したが、これに限られず、容器40は回動せずに、羽根部41自身が回動するようにしてもよい。上記実施の形態における工程(S20)において、容器40は回動可能であってもよい。より具体的には、容器40をβ-γ平面に沿って回動させてもよい。この場合、容器40に取り付けられている羽根部41や、容器40自身によって触媒30が攪拌されないように、容器40を回動させる。例えば、触媒30が攪拌されないように、適切な大きさや突出長さを有する羽根部41が用いられると共に、回転速度が適宜設定される。また、容器40は、β軸方向に沿って往復するように移動させてもよいし、矢印βの向きや反対の向きにだけに移動させてもよい。さらに、容器40は、触媒30に対して振動させてもよい。このような場合、触媒30が攪拌されないように、容器40を移動もしくは振動させる。例えば、触媒30が攪拌されないように容器40の移動速度や振動の大きさが適宜設定される。容器40が触媒30によって覆われた状態で、容器40を運動させる工程は、廃基板20における有機物を分解する工程の全体に亘って同時に実施されてもよいし、廃基板20における有機物を分解する工程の一部で実施されるようにしてもよい。なお、廃基板20における有機物を分解する工程全体に亘って触媒30に対して廃基板20を運動させなくてもよい。
 上記実施の形態では、側壁部101は、中空円筒状の形状を有する場合について説明したが、これに限られず、側壁部101は、中空状であると共に角柱状の外形を有してもよい。例えば、側壁部101が、中空直方体状の形状を有する場合、側壁部101のα軸方向に垂直な断面は、長方形状であることが好ましい。このような形状を有することで、長辺に沿って、容器40を移動させることができる。長辺の長さをより長くすることで、廃基板20における有機物を分解する処理時間をより長くすることができる。また、上記実施の形態における側壁部101の内壁は、下壁部103から離れるにしたがって内径が大きくなるテーパー状(曲面状)の形状を有してもよい。さらに、上記実施の形態における側壁部101の内壁は、上壁部102から離れるにしたがって内径が大きくなるテーパー状(曲面状)の形状を有してもよい。上記実施の形態では、供給口11の外形は、X軸方向から平面的に見て円形状の形状を有する場合について説明したが、これに限られず、供給口11の外形は、X軸方向から平面的に見て長方形状の形状であってもよい。上記実施の形態では、1つの配管51が供給口11に接続される場合について説明したが、これに限られず、複数のノズルが下壁部103に設置され、複数のノズルが第1凹部S内に露出するように下壁部103に取り付けられてもよい。このように複数のノズルを設けることで、特定の領域における触媒30のみを微動させることが容易となる。上記実施の形態では、第1モーター47における軸部46が、容器40の第2壁部402のほぼ中央に取り付けられる場合について説明したが、これに限られず、軸部46の先端が第2壁部402の外縁の一部に取り付けられてもよい。さらに、軸部46の中心軸周りに容器40が回動するように、軸部46の外周面が容器40の第1壁部401に取り付けられてもよい。
 上記実施の形態4における処理装置1によっても、実施の形態2と同様に繰り返し対象物2を処理することが容易となり、長期に亘って対象物2を処理することが可能となっている。
 [実験1]
 本実施の形態における処理方法により、対象物2における有機物を分解する実験を行った。実験の手順は、以下の通りである。まず、本実験において用いた触媒30としての顆粒体を下記の方法により製造した。硫酸法による酸化チタン製造工程のうち、加水分解工程から得られたチタン水酸化物のスラリーを濾過、水洗し、これをリパルプして、スラリーAを得た。このスラリーAにゾル化剤として硝酸を加え、チタン酸化物のゾルBを得た。更に、このゾルBの一部を100℃に加熱、乾燥し、乾燥ゲルとし、これを電気炉中、500℃で3時間焼成して、酸化チタン焼成物Cを得た。この酸化チタン焼成物Cを粉砕し、得られた粉砕物を(株)ダルトン製高速撹拌造粒機SPG-25型を用いて、撹拌羽250rpm、高速チョッパ3000rpmの条件下、水で5倍希釈した前記ゾルBを噴霧しながら造粒して、酸化チタン粒子を得た。この酸化チタン粒子を100℃で3時間乾燥し、次いで、600℃で焼成し、その後ステンレス製金網からなる標準篩15メッシュ(線径0.5mm、目開き1.19mm)と150メッシュ(線径0.065mm、目開き0.104mm)を用いて篩分けした。15メッシュ下(通過分)および150メッシュ上(残留分)を本実験で用いる顆粒体とした。このようにして酸化チタン製の顆粒体(第1顆粒体)を得た。
 得られた第1顆粒体の粒度分布は、以下の通りであった。0.2mm以上0.35mm未満が、0質量%であり、0.35mm以上0.5mm未満が、1質量%であり、0.5mm以上0.85mm未満が、97質量%であり、0.85mm以上1.2mm未満が、2質量%であった。第1顆粒体のBET法による比表面積は、35m/gであった。第1顆粒体の滑り始める角度が、0.5度以上15度以下であり、全ての第1顆粒体が滑り終わる角度が2度以上30度以下であった。第1顆粒体の水銀圧入法による細孔容積は、0.1ml/g以上0.8ml/g以下であった。第1顆粒体のタップ密度は、1g/ml以上1.8g/ml以下であった。第1顆粒体の摩耗率は、2質量%以下であった。
 次に、得られた第1顆粒体2100gを図1に示す反応器10内に配置した。触媒30は、X軸方向における高さが約100mmとなるように反応器10内に配置された。プリント基板の厚み1.4mmであり、縦約3cm×横約3cmの面積を有する電子回路基板を廃基板20として準備した。電子回路基板を容器40に収容し、容器40を触媒30の表面から約30mm程度(電子回路基板は約5cm程度)埋没させ、電子回路基板の表面を触媒30が覆うように電子回路基板を配置した。容器40をY軸方向に沿って往復させるように繰り返し容器40を約15分間移動させた。空気の流速が3.4m/min、加熱装置の設定温度が500℃(反応器10内における触媒30の温度は480℃~540℃の範囲となった)の条件で、反応器10内における第1顆粒体全体に亘って第1顆粒体を攪拌する工程を実施することなく、電子回路基板の処理を実施し、分解物を得た。処理前の電子回路基板と分解物とにおける質量の減量率(質量%)を測定した。ここで、減量率(質量%)とは、処理前の電子回路基板の質量に対する処理前の電子回路基板の質量から分解物の質量を減じた値の割合(質量%)をいう。さらに、分解物の状態を目視にて観察した。比較のために設定温度を400℃(反応器10内における触媒30の温度は400℃~440℃の範囲となった)とした以外は、上記と同様にして電子回路基板の処理を実施した。処理前の電子回路基板と分解物とにおける質量の減量率(質量%)を同様に測定した。上記の減量率の測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1を参照して、設定温度を400℃とした場合(触媒30の温度範囲が400℃~440℃)に比べて、設定温度を500℃とした場合(触媒30の温度範囲が480℃~540℃)には、減量率が約3倍上昇した。したがって、反応器10内における触媒30の温度を480℃以上550℃以下とすることで、電子回路基板における有機物の分解を向上させることができる。図13は、電子回路基板の処理前の状態を示す写真である。図14は、加熱装置の設定温度を500℃とした場合の分解物の状態を示す写真である。図13および図14を参照して、電子回路基板におけるプリント基板の樹脂が分解されていた。さらに、プリント基板に含まれていた金属(例えば銅箔)を有する処理物と、電子部品とを分けて回収することができた。
 [実験2]
 次に、廃基板20として実装部品を有さないガラスエポキシ基板を用い、空気の流速を0.5m/min、3.4m/min、5m/min、10m/minと変化させ、それ以外は実験1と同様にして実験を行った。厚みが1.5mmであり、縦約6cm×横約4cmの面積を有するガラスエポキシ基板を用いた。各流速に対する減量率の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2を参照して、空気の流速が、0.5m/min以上200m/min以下の範囲内では、減量率が20%以上となった。空気の流速が3m/min以上の場合、減量率が35%以上となった。したがって、空気の流速の下限は、3m/minであることが好ましい。空気の流速が5m/minの場合と比較して、空気の流速が10m/minの場合は、同程度の減量率となった。したがって、空気の流速の上限は、10m/minであることが好ましい。
 [実験3]
 次に、得られた第1顆粒体1600gを図1に示す反応器10内に配置した。鋼板と、ポリエチレンテレフタレートフィルムと、アルミニウム箔とが積層された樹脂化粧鋼板(縦約5cm×横約5cm)を廃基板20として準備した。樹脂化粧鋼板を触媒30の表面から約50mm埋没させ、樹脂化粧鋼板の表面を触媒30が覆うように樹脂化粧鋼板を配置した。樹脂化粧鋼板をY軸方向に沿って往復させるように約60秒移動させた。空気の流速が2.3m/min、設定温度が500℃の条件で、反応器10内における第1顆粒体全体に亘って第1顆粒体を攪拌する工程を実施することなく、樹脂化粧鋼板の処理を実施した。処理後の樹脂化粧鋼板の状態を目視にて観察した。その結果、樹脂化粧鋼板におけるポリエチレンテレフタレートフィルムは分解され、鋼板とアルミニウム箔とが残存した。
 [実験4]
 次に、樹脂化粧鋼板の処理条件と同様にして、樹脂が付着する金属製の成型機押出スクリュー部品(縦約4cm×横約4cm×高さ約5cm)を対象物2として処理を実施した。その結果、成型機押出スクリュー部品に付着する樹脂は分解され、成型機押出スクリュー部品のみが残存した。
 [実験5]
 次に、反応器10内における触媒30全体に亘って触媒30を攪拌することによる触媒30の摩耗の度合いを確認する実験を行った。実験の手順は以下のとおりである。
 まず、第1顆粒体800gを図1に示す反応器10内に配置した。反応器10における第1顆粒体全体に亘って第1顆粒体を攪拌する工程を実施せずに、加熱装置による加熱も行わず、流速3.4m/minの条件で空気を反応器10内に10時間流入した。処理を実施したことによる第1顆粒体の摩耗度を測定した。第1顆粒体の摩耗度の測定手順は、以下の通りである。まず、処理後の第1顆粒体について、目開き250μmの篩によって篩分けを行った。そして、篩上に残存した第1顆粒体の質量(V)を測定した。処理前の第1顆粒体の質量(V)から篩上に残存した第1顆粒体の質量(V)を減じた値(V-V)の処理前の第1顆粒体の質量(V)に対する割合(質量%)を算出した。比較のために、攪拌羽を用いて反応器10における第1顆粒体全体に亘って第1顆粒体を攪拌し、反応器10内に流入される空気の流速を2m/minとした以外は、上記と同様にして処理を実施した。攪拌羽の回転速度は、60rpmに設定された。同様に、第1顆粒体の摩耗度を測定した。測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3を参照して、第1顆粒体の攪拌を行った場合と比較して、第1顆粒体の攪拌を行わなかった場合には、第1顆粒体の摩耗度が大きく低下した。したがって、触媒30の攪拌を行わないことで、触媒30の摩耗を低減することができる。
 [実験6]
 次に、反応器10内における触媒30全体に亘って触媒30を攪拌する場合と、上記攪拌を実施しない場合とで、未分解のガスが発生する度合いを比較する実験を行った。実験の手順は、以下の通りである。
 まず、第1顆粒体2500gを図1に示す反応器10内に配置した。ペットボトルに取り付けられていたポリプロピレン製のキャップを準備し、触媒30の表面から約80mm埋没させた。この状態が維持され、空気の流速が1.7m/min、設定温度が500℃および処理時間が5分の条件で、キャップの処理を実施した。キャップの処理は、反応器10内における第1顆粒体全体に亘って第1顆粒体を攪拌する工程を行わずに実施された。キャップの処理を実施する際に排出されるガス(5リットル)において、未分解のガスの発生割合を測定した。測定には、検知管式気体測定器を用いた。測定器は、株式会社ガステック製、商品名「GV-100S」を用いた。検知管は、株式会社ガステック製、商品名「1L」、「103」、「105」、「2HH」を用いた。比較のために、反応器10内にキャップを入れ、攪拌羽を用いて反応器10内の第1顆粒体全体に亘って第1顆粒体を攪拌することで、キャップと第1顆粒体との攪拌を行った。空気の流速が3.4m/min、設定温度が500℃および処理時間が2分の条件で、キャップの処理を実施した。キャップの処理を実施する際に排出されるガス(2リットル)において、未分解のガスの発生割合を測定した。測定結果を表4に示す。表中において、未分解のガスのそれぞれの割合と共に排出されるガスの体積から換算した未分解のガスの体積も併せて記載している。表4において、低級炭化水素として、例えば、アセチレン、イソブタン、イソペンタン、エチレン、ブタン、n-ヘキサン、ヘプタン、ペンタン、プロパン等があげられる。高級炭化水素として、例えば、オクタン、デカン、ノナン、ヘキサン、ヘプタン等があげられる。
Figure JPOXMLDOC01-appb-T000004
 表4を参照して、反応器10内における触媒30全体に亘って触媒30を攪拌する工程を実施した場合と比較して、上記攪拌を実施しない場合にはキャップが完全に分解されずに形成される未分解のガス(一酸化炭素、低級炭化水素や高級炭化水素)の割合や体積が低減されている。
 以上の結果から、本発明に係る対象物2の処理方法によれば、反応器10内における触媒30全体に亘って触媒30を攪拌する工程を実施しなくても、対象物2における有機物を分解することができる。このため、触媒30の摩耗を低減しつつ、対象物2における有機物を容易に分解することができる。したがって、長期にわたって対象物2を処理することができると共に対象物2を容易に処理することができる。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
 本発明の対象物の処理方法は、長期にわたって対象物を処理することや対象物を容易に処理することが求められる場合に特に有利に適用される。
1 処理装置、2 対象物、10 反応器,反応槽、11 供給口、12 第1内壁面、13 第2内壁面、14 第3内壁面、15 貫通孔、20 廃基板、21 面、22 面、30 触媒、31 接続部、40 容器、41 羽根部、42 接続部、43 接続部、44A 駆動部、44B 駆動部、46 軸部、47 第1モーター、48 プレート、50 供給部、51 配管、52 配管、53 ガス処理部、60 加熱部、65 支持部、80 レール、81 第1レール、82 第2レール、83 第3レール、84 第4レール、90 コンベア、91 第2モーター、92 軸部、93 ベルト、101 側壁部、102 上壁部、103 下壁部、141 第1の面、142 第2の面、143 第3の面、144 第4の面、145 第5の面、201 試料容器、202 撹拌機、203 軸体、204 撹拌羽、401 第1壁部、402 第2壁部、403 第3壁部、404 段、405 段、411 第1外壁、412 第2外壁、413 第3外壁、414 第4外壁、415 第5外壁、416 つば部、417 本体部、418 突起、511 第1配管、512 第2配管、513 分岐点、521 配管、522 配管、811 第1直線部、812 第1傾斜部、813 第2直線部、814 第2傾斜部、815 第3直線部、816 第4直線部、817 第3傾斜部、818 第5直線部、819 第4傾斜部、820 第6直線部。

Claims (17)

  1.  有機物を有する対象物の処理方法であって、
     空間を有し、前記対象物を処理するための部分である第1部分内に、前記対象物を配置する工程と、
     前記対象物をチタンを含む金属酸化物製の顆粒体からなる触媒によって覆うと共に前記有機物に前記触媒を接触させつつ、前記第1部分内における前記触媒を480℃以上550℃以下の温度に維持し、前記対象物における前記有機物を分解する工程と、を含み、
     前記対象物における前記有機物を分解する工程では、前記有機物の分解反応が生じると共に、前記対象物の表面の少なくとも一部で前記触媒が微動するように、酸素を含むガスを前記第1部分内に流入する、対象物の処理方法。
  2.  前記対象物における前記有機物を分解する工程では、前記第1部分内における前記触媒全体に亘って前記触媒を攪拌する工程が実施されない、請求項1に記載の対象物の処理方法。
  3.  前記対象物における前記有機物を分解する工程は、前記対象物が前記触媒によって覆われた状態を維持しつつ、前記対象物を運動させる工程をさらに含む、請求項1または請求項2に記載の対象物の処理方法。
  4.  前記対象物を配置する工程では、前記触媒を通すことが可能な網目状の形状を有する容器に収容された前記対象物を前記第1部分内に配置し、
     前記第1部分内において前記対象物を運動させる工程では、前記容器に前記対象物が収容された状態で前記容器を運動させる、請求項3に記載の対象物の処理方法。
  5.  前記酸素を含むガスを前記第1部分内に流入する際の前記酸素を含むガスの流速が、0.5m/min以上200m/min以下である、請求項1から請求項4のいずれか1項に記載の対象物の処理方法。
  6.  前記対象物における前記有機物を分解する工程は、前記第1部分の前記空間内に収容される複数の前記触媒の表面から5cm以上前記対象物を埋没させる、請求項1から請求項5のいずれか1項に記載の対象物の処理方法。
  7.  前記酸素を含むガスが、空気である、請求項1から請求項6のいずれか1項に記載の対象物の処理方法。
  8.  前記顆粒体の粒子径は、0.2mm以上2mm未満であり、
     前記顆粒体の滑り始める角度が0.5度以上15度以下であり、かつ全ての顆粒体が滑り終わる角度が2度以上30度以下である、請求項1から請求項7のいずれか1項に記載の対象物の処理方法。
  9.  前記対象物が、廃基板である、請求項1から請求項8のいずれか1項に記載の対象物の処理方法。
  10.  前記廃基板が、厚み方向から平面的に見て、4cm以上の面積を有する、請求項9に記載の対象物の処理方法。
  11.  対象物における有機物を分解するための処理装置であって、
     第1凹部を有し、前記対象物を処理するための部分である第1部分と、
     前記第1凹部内に収容された状態が維持され、チタンを含む金属酸化物製の顆粒体からなる触媒と、
     前記第1部分に接続され、酸素を含むガスを前記第1凹部内に供給する供給部と、
     前記触媒および前記ガスの少なくともいずれか一方を加熱する加熱部と、
     前記対象物を収容し、前記触媒を通すことが可能な形状を有する容器と、
     前記容器を支持する支持部と、を備え、
     前記容器の少なくとも一部が前記第1凹部内における前記触媒に接触している状態、および前記容器が前記触媒に接触していない状態を選択的に取り得るように、前記容器は鉛直方向に沿って移動可能であり、
     前記第1凹部内に収容される前記触媒全体に亘って前記触媒を攪拌するための攪拌部を備えない、処理装置。
  12.  前記容器の少なくとも一部が前記触媒に接触している際に、前記容器は運動可能である、請求項11に記載の処理装置。
  13.  前記支持部は、
     鉛直方向に対して傾斜する傾斜部を含むレールと、
     前記容器に取り付けられ、前記レール上を走行可能な第1部品と、を含む、請求項11または請求項12に記載の処理装置。
  14.  前記容器に取り付けられ、前記レールの進行方向におけるいずれか一方に突出するつば部をさらに備える、請求項13に記載の処理装置。
  15.  前記支持部は、前記容器に取り付けられ、鉛直方向に沿って移動可能な第2部品を含む、請求項11または請求項12に記載の処理装置。
  16.  前記容器は、底壁部と、前記底壁部の外縁から鉛直方向に沿って延びる周壁部と、を含み、
     前記底壁部の前記周壁部とは反対側に突出し、鉛直方向に垂直な仮想平面に沿って回動可能な羽根部を、さらに備える、請求項15に記載の処理装置。
  17.  前記酸素を含むガスが、空気である、請求項11から請求項16のいずれか1項に記載の処理装置。
PCT/JP2020/037891 2020-07-10 2020-10-06 対象物の処理方法および処理装置 WO2022009441A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2020571903A JP6941902B1 (ja) 2020-07-10 2020-10-06 対象物の処理方法および処理装置
NZ788282A NZ788282A (en) 2020-07-10 2020-10-06 A processing apparatus for decomposing an organic substance in an object
AU2020458189A AU2020458189B2 (en) 2020-07-10 2020-10-06 Method and device for processing object
US18/010,562 US20230294150A1 (en) 2020-07-10 2020-10-06 Method and device for processing object
EP20944200.3A EP4169630A1 (en) 2020-07-10 2020-10-06 Method and device for processing object
CN202080101414.7A CN115768571A (zh) 2020-07-10 2020-10-06 用于处理物体的方法和装置
JP2021089037A JP7011356B2 (ja) 2020-07-10 2021-05-27 対象物の処理方法および処理装置
TW110121167A TW202216874A (zh) 2020-07-10 2021-06-10 對象物之處理方法及處理裝置
JP2021212171A JP2022060206A (ja) 2020-07-10 2021-12-27 対象物の処理方法および処理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-118884 2020-07-10
JP2020118884 2020-07-10

Publications (1)

Publication Number Publication Date
WO2022009441A1 true WO2022009441A1 (ja) 2022-01-13

Family

ID=79552842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/037891 WO2022009441A1 (ja) 2020-07-10 2020-10-06 対象物の処理方法および処理装置

Country Status (1)

Country Link
WO (1) WO2022009441A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357002A (ja) * 1991-02-01 1992-12-10 Nippon Mokuzai Boufu Kogyo Kumiai 防腐・防虫性木材廃棄物の処理方法
WO2007122967A1 (ja) * 2006-04-19 2007-11-01 Kusatsu Electric Co., Ltd. 廃プラスチック・有機物の分解方法、分解装置及び分解システム
WO2009004801A1 (ja) * 2007-07-05 2009-01-08 Panasonic Corporation 廃家電から有価物を回収する方法
WO2009051253A1 (ja) * 2007-10-19 2009-04-23 Kusatsu Electric Co., Ltd. 触媒循環型廃プラスチック・有機物の分解装置及び分解システム
JP2019093321A (ja) * 2017-11-20 2019-06-20 株式会社東芝 コンクリートの処理方法及び処理装置
JP2020118884A (ja) 2019-01-25 2020-08-06 京セラドキュメントソリューションズ株式会社 画像形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357002A (ja) * 1991-02-01 1992-12-10 Nippon Mokuzai Boufu Kogyo Kumiai 防腐・防虫性木材廃棄物の処理方法
WO2007122967A1 (ja) * 2006-04-19 2007-11-01 Kusatsu Electric Co., Ltd. 廃プラスチック・有機物の分解方法、分解装置及び分解システム
WO2009004801A1 (ja) * 2007-07-05 2009-01-08 Panasonic Corporation 廃家電から有価物を回収する方法
WO2009051253A1 (ja) * 2007-10-19 2009-04-23 Kusatsu Electric Co., Ltd. 触媒循環型廃プラスチック・有機物の分解装置及び分解システム
JP2019093321A (ja) * 2017-11-20 2019-06-20 株式会社東芝 コンクリートの処理方法及び処理装置
JP2020118884A (ja) 2019-01-25 2020-08-06 京セラドキュメントソリューションズ株式会社 画像形成装置

Similar Documents

Publication Publication Date Title
JP5190897B2 (ja) 最適な粒子特性を有する酸化チタンの顆粒体を使用した廃プラスチック・有機物の分解方法
EP3124528B1 (en) Method for using titanium oxide granules to recover reinforcing material from reinforced plastic
TWI592211B (zh) Particulate matter containing titanium oxide of transition metal and / or transition metal oxide and method for decomposing waste plastics and organic matter using the same
CN1689694A (zh) 稳定的吸附剂颗粒
WO2022009441A1 (ja) 対象物の処理方法および処理装置
JP7011356B2 (ja) 対象物の処理方法および処理装置
CN105964217B (zh) 一种磁性KMS-1/Fe3O4复合材料的制备方法及其用于去除环丙沙星
JPH08266897A (ja) 固定化光触媒及びその製造方法
CN107175077A (zh) 负载Mn掺杂TiO2活性炭纤维空气净化器过滤网及制备方法
Chang et al. CeO2 Structure Adjustment by H2O via the Microwave–Ultrasonic Method and Its Application in Imine Catalysis
Zhang et al. Mechanisms of removing terdizolamide phosphate from water by the activation of potassium peroxymonosulfate salt with CeFe2O4 biochar
JP2001079351A (ja) 排ガス処理方法およびその装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020571903

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944200

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020458189

Country of ref document: AU

Date of ref document: 20201006

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020944200

Country of ref document: EP

Effective date: 20230117

NENP Non-entry into the national phase

Ref country code: DE