WO2015146989A1 - ニッケル粉の製造方法 - Google Patents
ニッケル粉の製造方法 Download PDFInfo
- Publication number
- WO2015146989A1 WO2015146989A1 PCT/JP2015/058941 JP2015058941W WO2015146989A1 WO 2015146989 A1 WO2015146989 A1 WO 2015146989A1 JP 2015058941 W JP2015058941 W JP 2015058941W WO 2015146989 A1 WO2015146989 A1 WO 2015146989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nickel
- nickel powder
- seed crystal
- surfactant
- powder
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D9/00—Crystallisation
- B01D9/0036—Crystallisation on to a bed of product crystals; Seeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F9/26—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/24—Alkaline accumulators
- H01M10/30—Nickel accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F2009/245—Reduction reaction in an Ionic Liquid [IL]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a production method for producing a nickel powder having a large particle diameter in which the surface is smoothed and the inside is densified in a step of obtaining nickel powder by blowing hydrogen gas into a nickel sulfate ammine complex solution under high temperature and high pressure.
- Nickel powder is increasingly used as a functional material and a positive electrode active material such as a nickel metal hydride battery, and a method for producing nickel powder using a wet process has been developed as a method for producing such nickel powder.
- This method is described as a nickel powder manufacturing process in “Sherritt Gordon” as shown in Non-Patent Document 1.
- This is a mixture of nickel sulfate aqueous solution and a complexing agent to form a nickel ammine complex.
- the solution is put in a pressure vessel and sealed, heated to about 150 to 250 ° C. to obtain a saturated vapor pressure, and hydrogen gas is contained therein.
- the nickel powder is obtained by reduction with hydrogen.
- the nickel powder obtained by this method is a particle having irregularities with voids on the surface. Since the particle size is small, the bulk density is low due to the presence of dust and irregularities when the powder is shipped as a nickel metal product, and there is a problem that an extra volume is required when filling the container.
- nickel powder obtained by adding a seed crystal to a nickel ammine complex solution using an autoclave and carrying out a hydrogen reduction reaction at high temperature and high pressure has dust and unevenness when shipped as a nickel metal product as powder. Therefore, it solves the above-mentioned problem that the bulk density is low and an extra volume is required when filling the container.
- a seed crystal is added to the nickel ammine complex solution and a hydrogen reduction reaction is performed at high temperature and high pressure. In the nickel powder obtained in this way, nickel powder that does not generate dust during handling and can be efficiently filled into a container is provided.
- the first invention of the present invention that solves the above problem is a mixed slurry formed by adding a seed crystal and a surfactant having a nonionic or anionic functional group to a solution containing a nickel ammine complex.
- a nickel powder production method characterized in that nickel powder is obtained from a mixed slurry by hydrogen reduction in a pressure vessel under high temperature and high pressure conditions.
- the second invention of the present invention is a nickel powder production method in which a nickel crystal is formed by adding a surfactant having a seed crystal and a nonionic or anionic functional group to a solution containing a nickel ammine complex.
- a nickel powder manufacturing method is characterized in that nickel powder is formed through the following steps (1) to (4) in order.
- (1) A complexing step in which ammonia gas or aqueous ammonia (NH 4 OH) is added to a nickel sulfate (NiSO 4 ) solution to form an ammine complex of nickel to obtain a nickel sulfate ammine complex solution.
- the nickel sulfate ammine complex solution obtained in the complexing step of (1) is added to form a nickel complex slurry containing nickel powder, and the nickel powder
- the nickel complex slurry containing the powder is subjected to the reduction step of (3) as a mixed slurry used in the reduction step of (3), subjected to reduction treatment with hydrogen gas, and the nickel powder in the nickel complex slurry containing the nickel powder
- the growth process which performs the process which grows at least once, and produces
- a third invention of the present invention is a method for producing nickel powder, wherein the surfactant having the nonionic functional group in the first and second inventions is either polyethylene glycol or polyvinyl alcohol. is there.
- a fourth invention of the present invention is a method for producing nickel powder, wherein the surfactant having an anionic functional group in the first and second inventions is sodium polyacrylate.
- the amount of the surfactant having a nonionic or anionic functional group in the first to fourth aspects is the weight of the seed crystal added to the solution containing the nickel ammine complex.
- the unevenness of the powder surface is suppressed and the surface has a smooth surface, and a nickel powder having a dense surface shape as shown in FIG. 2 can be obtained. Moreover, since a thing with a large particle size can be obtained, handling becomes easy and the industrial value is large. Furthermore, the dense nickel powder shown in FIG. 3 is obtained, the bulk density thereof is increased, and the volume can be reduced when the container is filled.
- nickel powder of the present invention It is a manufacturing flow figure of nickel powder of the present invention.
- (a) and (d) are seed crystals
- (b) and (e) are nickel powder before growth
- (c) and (f) are nickel after growth. It is powder. It is transition of the bulk density by the repeated reduction reaction of the nickel powder of this invention.
- the nickel powder production method of the present invention will be described with reference to the flow chart of production of the nickel powder of the present invention shown in FIG.
- a method of obtaining the nickel sulfate solution before the complexing step for example, nickel oxide ore is pressure-leached by a known method, the obtained leachate is neutralized to remove impurities, and the solution after removing impurities
- the nickel-containing sulfide is precipitated by adding a sulfiding agent, and then the nickel-containing sulfide is dissolved in sulfuric acid and the like, and nickel and other impurities are separated by a known solvent extraction method or the like.
- This step is a step in which ammonia gas or aqueous ammonia (NH 4 OH) is added to a nickel sulfate (NiSO 4 ) solution to form an ammine complex of nickel. At this time, ammonia is added so that the ammonium concentration is 1.9 or more in molar ratio with respect to the nickel concentration in the solution. If it is less than 1.9, a part of nickel does not form an ammine complex, and a precipitate of nickel hydroxide is generated.
- NH 4 OH ammonia gas or aqueous ammonia
- NiSO 4 nickel sulfate
- ammonium sulfate can be added in this step, and the ammonium sulfate concentration at that time is preferably 100 to 500 g / L. If the amount exceeds 500 g / L, the solubility is exceeded and crystals are precipitated, and it is difficult to achieve less than 100 g / L due to the metal balance of the process.
- nickel powder having an average particle size of 10 to 200 ⁇ m as a seed crystal is added to the nickel sulfate ammine complex solution obtained in the “complexing step” of (1) above.
- 1 to 20 wt% of a surfactant for smoothing the flat surface is added to the weight of the nickel powder in the seed crystal slurry to form a mixed slurry.
- polyethylene glycol having a nonionic functional group at least one of polyvinyl alcohol, or sodium polyacrylate having an anionic functional group can be used.
- the amount of the surfactant added When the amount is less than 1 wt%, the effect of smoothing is thin.
- Reduction step This step is formed by blowing hydrogen gas into the mixed slurry obtained in the “seed crystal and surfactant addition step” in (2) and precipitating nickel in the solution into the voids of the seed crystal. After the reduced slurry containing the reduced nickel powder is formed, the reduced slurry is subjected to a solid-liquid separation process to produce a nickel powder before growth of the reduced nickel powder.
- the reaction temperature is preferably 150 to 200 ° C. If it is less than 150 degreeC, reduction efficiency will fall, and even if it is 200 degreeC or more, there will be no influence on reaction and loss, such as a heat energy, will increase.
- the pressure during the reaction is preferably 1.0 to 4.0 MPa. If the pressure is less than 1.0 MPa, the reaction efficiency decreases, and if it exceeds 4.0 MPa, the reaction is not affected and the loss of hydrogen gas increases.
- the reduced slurry produced in the “reduction process” of (3) is recovered from the “pre-growth nickel powder” recovered by solid-liquid separation, and the “complexation process” of (1).
- the nickel complex slurry formed by adding the obtained nickel sulfate ammine complex solution is provided again as a “mixed slurry” in the “reduction step” of (3), and subjected to reduction treatment with hydrogen gas to “grow” in the nickel complex slurry. This is a process of growing from “pre-nickel powder” to “post-growth nickel powder” to produce “product nickel powder”.
- the growth process of (4) is repeated at least once, so that the nickel powder grows and the surface thereof is smoothed precisely.
- This recovered pre-growth nickel powder contains a nickel ammine complex prepared by adding 191 ml of 25% aqueous ammonia to a solution containing 336 g of nickel sulfate and 330 g of ammonium sulfate and complexing the solution to a total liquid volume of 1000 ml.
- the product nickel powder having a smooth surface was obtained by adding again to the solution and repeating the reaction.
- the bulk density increased as the reduction treatment (number of reactions) in the growth process increased.
- this nickel powder was filled in a 50 cc shipping container, it did not scatter and could be operated without operating the local exhaust system.
- This recovered pre-growth nickel powder contains a nickel ammine complex prepared by adding 191 ml of 25% aqueous ammonia to a solution containing 336 g of nickel sulfate and 330 g of ammonium sulfate and complexing the solution to a total liquid volume of 1000 ml. By adding again to the solution and repeating the reaction, product nickel powder having a smooth surface was obtained.
- the bulk density increased as the reduction treatment (number of reactions) in the growth process increased.
- this nickel powder was filled in a 50 cc shipping container, it did not scatter and could be operated without operating the local exhaust system.
- This recovered pre-growth nickel powder contains a nickel ammine complex prepared by adding 191 ml of 25% aqueous ammonia to a solution containing 336 g of nickel sulfate and 330 g of ammonium sulfate and complexing the solution to a total liquid volume of 1000 ml. By adding again to the solution and repeating the reaction, product nickel powder having a smooth surface as shown in FIG. 2 was obtained.
- the bulk density was increased by the reduction treatment in the growth process.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
(1)硫酸ニッケル(NiSO4)溶液に、アンモニアガスまたはアンモニア水(NH4OH)を添加してニッケルのアンミン錯体を形成させ、硫酸ニッケルアンミン錯体溶液を得る錯化工程。
(2)前記(1)の錯化工程で得られた硫酸ニッケルアンミン錯体溶液に、種晶となるニッケル粉を含む種晶スラリーを添加し、次いで界面活性剤を添加して混合スラリーを形成する種晶・界面活性剤添加工程。
(3)前記(2)の種晶・界面活性剤添加工程で得られた混合スラリーに、水素ガスを吹き込み、前記混合スラリー中のニッケルを還元して種晶の空隙内に析出させて形成した還元ニッケル粉を含む還元スラリーを形成した後、固液分離処理してニッケル粉を形成する還元工程。
(4)前記(3)の還元工程で形成したニッケル粉に、前記(1)の錯化工程で得られた硫酸ニッケルアンミン錯体溶液を加えてニッケル粉を含むニッケル錯体スラリーを形成し、前記ニッケル粉を含むニッケル錯体スラリーを、前記(3)の還元工程において用いる混合スラリーとして前記(3)の還元工程に供し、水素ガスによる還元処理を施して前記ニッケル粉を含むニッケル錯体スラリー中のニッケル粉を成長させる処理を少なくとも1回以上行い、製品ニッケル粉を生成する成長工程。
さらに、図3に示す緻密なニッケル粉が得られ、そのかさ密度も増加し、容器への充填時に容積を小さくできる効果を奏する。
なお、錯化工程以前の硫酸ニッケル溶液を得る方法としては、例えばニッケル酸化鉱石を公知の方法により加圧浸出し、得た浸出液を中和して不純物を除去し、不純物を除去した後の溶液に硫化剤を添加してニッケルを硫化物として沈殿させ、次いでこのニッケルを含有する硫化物を硫酸等で溶解し、公知の溶媒抽出等の方法でニッケルとそれ以外の不純物を分離して硫酸ニッケル溶液とする方法などがある。
この工程は、硫酸ニッケル(NiSO4)溶液に、アンモニアガスまたはアンモニア水(NH4OH)を添加し、ニッケルのアンミン錯体を形成する工程である。
このときのアンモニウム濃度は溶液中のニッケル濃度に対しモル比で1.9以上になるようにアンモニアを添加する。1.9未満では一部のニッケルがアンミン錯体を形成せず、水酸化ニッケルの沈殿が生成されてしまう。
この工程では、上記(1)の「錯化工程」で得られた硫酸ニッケルアンミン錯体溶液に、種晶となる平均粒径が10~200μmのニッケル粉を含む種晶スラリーを添加し、さらに、平面を平滑化させるための界面活性剤を、種晶スラリー中のニッケル粉の重量に対して1~20wt%添加して混合スラリーを形成する。
この工程は、(2)の「種晶、界面活性剤添加工程」で得られた混合スラリーに水素ガスを吹き込み、溶液中のニッケルを種晶の空隙内に析出させて形成した還元ニッケル粉を含む還元スラリーを形成した後、この還元スラリーを固液分離処理に供して、還元ニッケル粉の成長前ニッケル粉を生成するものである。
150℃未満では還元効率が低下し、200℃以上にしても反応への影響はなく熱エネルギー等のロスが増加する。
また、反応時の圧力は1.0~4.0MPaが好ましい。1.0MPa未満では反応効率が低下し、4.0MPaを超えても反応への影響はなく水素ガスのロスが増加する。
この工程は、(3)の「還元工程」で生成した還元スラリーを固液分離処理して回収された「成長前ニッケル粉」に、(1)の「錯化工程」で得られた硫酸ニッケルアンミン錯体溶液を加えて形成したニッケル錯体スラリーを、再度(3)の「還元工程」における「混合スラリー」として供し、水素ガスによる還元処理を施してニッケル錯体スラリー中の「成長前ニッケル粉」から「成長後ニッケル粉」へと成長させ、「製品ニッケル粉」を生成する工程である。
硫酸ニッケル336g、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml添加し、合計の液量が1000mlになるように調整して錯化処理を行い、ニッケルアンミン錯体を含む溶液を作製した。
この溶液に種晶75gを含む種晶スラリーを加え、さらにノニオン系の界面活性剤ポリエチレングリコール「PEG-20000」(日油株式会社製)を2.5g(3wt%)添加して、種晶・界面活性剤添加工程を行い、混合スラリーを作製した。
次に、この混合スラリーを高圧容器のオートクレーブ内に装入し、撹拌しながら185℃に昇温後、還元剤の水素ガスを吹き込み、オートクレーブ内の圧力が3.5MPaになるように水素ガスを供給して還元処理を行った。
水素ガスを供給してから1時間が経過した後に、その水素ガスの供給を停止してオートクレーブを冷却した。冷却後得られた還元スラリーを洗浄・濾過により固液分離し、成長前ニッケル粉を回収した。
この回収した成長前ニッケル粉を、硫酸ニッケル336g、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml添加して錯化処理して合計の液量が1000mlになるように調整したニッケルアンミン錯体を含む溶液に、再度添加して、反応を繰り返すことで平滑な面を持つ製品ニッケル粉を得た。
また、このニッケル粉末を50ccの出荷容器に充填したが、飛散することはなく、局所排気装置を運転せずに作業できた。
この溶液に種晶75gを含む種晶スラリーを加え、さらにノニオン系の界面活性剤としてポリビニルアルコール「PVA-2000」(関東化学株式会社製)を5.0g(7wt%)添加して、種晶・界面活性剤添加工程を行い、混合スラリーを作製した。
次に、この混合スラリーを高圧容器のオートクレーブ内に装入し、撹拌しながら185℃に昇温後、還元剤の水素ガスを吹き込み、オートクレーブ内の圧力が3.5MPaになるように水素ガスを供給して還元処理を行った。
水素ガスを供給してから1時間が経過した後に、その水素ガスの供給を停止してオートクレーブを冷却した。冷却後得られた還元スラリーを洗浄・濾過により固液分離し、成長前ニッケル粉を回収した。
この回収した成長前ニッケル粉を、硫酸ニッケル336g、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml添加して錯化処理して合計の液量が1000mlになるように調整したニッケルアンミン錯体を含む溶液に、再度添加して、反応を繰り返すことで、平滑な面を持つ製品ニッケル粉を得た。
また、このニッケル粉末を50ccの出荷容器に充填したが、飛散することはなく、局所排気装置を運転せずに作業できた。
この溶液に種晶75gを含む種晶スラリーを加え、さらにアニオン系の界面活性剤ポリアクリル酸Na「PAA-6000」(東亜合成株式会社製T-50:固形分40%)を3.73g(2wt%)添加して、種晶・界面活性剤添加工程を行い、混合スラリーを作製した。
次に、この混合スラリーを高圧容器のオートクレーブ内に装入し、撹拌しながら185℃に昇温後、還元剤の水素ガスを吹き込み、オートクレーブ内の圧力が3.5MPaになるように水素ガスを供給して還元処理を行った。
水素ガスを供給してから1時間が経過した後に、その水素ガスの供給を停止してオートクレーブを冷却した。冷却後得られた還元スラリーを洗浄・濾過により固液分離し、成長前ニッケル粉を回収した。
この回収した成長前ニッケル粉を、硫酸ニッケル336g、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml添加して錯化処理して合計の液量が1000mlになるように調整したニッケルアンミン錯体を含む溶液に、再度添加して、反応を繰り返すことで、図2に示す通り平滑な面を持つ製品ニッケル粉を得た。
硫酸ニッケル336g、硫酸アンモニウム330gを含む溶液に25%アンモニア水を191ml添加し、合計の液量が1000mlになるように調整して錯化処理を行い、ニッケルアンミン錯体を含む溶液を作製した。
この溶液に種晶75gを含む種晶スラリーのみを添加して混合スラリーを作製した。
次に、この作製した混合スラリーを高圧容器のオートクレーブ内に装入し、撹拌しながら185℃に昇温し、還元剤の水素ガスを吹き込み、オートクレーブ内の圧力が3.5MPaになるように水素ガスを供給して還元処理を施した。
水素ガスを供給してから1時間が経過した後に、水素ガスの供給を停止して、オートクレーブを冷却後、得られたスラリーを洗浄・濾過し、ニッケル粉を回収した。
この回収したニッケル粉は、その外表面が種晶と同様の凹凸を持つニッケル粉であった。
Claims (5)
- ニッケルアンミン錯体を含有する溶液に、種晶と、ノニオン系あるいはアニオン系の官能基を持つ界面活性剤を添加して形成した混合スラリーを、圧力容器内において高温高圧状態下で、水素還元して前記混合スラリーからニッケルの粉末を得ることを特徴とするニッケル粉の製造方法。
- ニッケルアンミン錯体を含有する溶液に、種晶と、ノニオン系あるいはアニオン系の官能基を持つ界面活性剤を添加してニッケルの粉末を形成するニッケル粉の製造方法であって、
下記(1)~(4)の工程を順に経てニッケル粉末を形成することを特徴とするニッケル粉の製造方法。
(記)
(1)硫酸ニッケル(NiSO4)溶液に、アンモニアガスまたはアンモニア水(NH4OH)を添加してニッケルのアンミン錯体を形成させ、硫酸ニッケルアンミン錯体溶液を得る錯化工程。
(2)前記(1)の錯化工程で得られた硫酸ニッケルアンミン錯体溶液に、種晶となるニッケル粉を含む種晶スラリーを添加し、次いで界面活性剤を添加して混合スラリーを形成する種晶・界面活性剤添加工程。
(3)前記(2)の種晶・界面活性剤添加工程で得られた混合スラリーに、水素ガスを吹き込み、前記混合スラリー中のニッケルを還元して種晶の空隙内に析出させて形成した還元ニッケル粉を含む還元スラリーを形成した後、固液分離処理してニッケル粉を形成する還元工程。
(4)前記(3)の還元工程で形成したニッケル粉に、前記(1)の錯化工程で得られた硫酸ニッケルアンミン錯体溶液を加えてニッケル粉を含むニッケル錯体スラリーを形成し、前記ニッケル粉を含むニッケル錯体スラリーを、前記(3)の還元工程において用いる混合スラリーとして前記(3)の還元工程に供し、水素ガスによる還元処理を施して前記ニッケル粉を含むニッケル錯体スラリー中のニッケル粉を成長させる処理を少なくとも1回以上行い、製品ニッケル粉を生成する成長工程。 - 前記ノニオン系の官能基を持つ界面活性剤が、ポリエチレングリコール、ポリビニルアルコールのいずれかであることを特徴とする請求項1又は2に記載のニッケル粉の製造方法。
- 前記アニオン系の官能基を持つ界面活性剤が、ポリアクリル酸ナトリウムであることを特徴とする請求項1又は2に記載のニッケル粉の製造方法。
- 前記ノニオン系あるいはアニオン系の官能基を持つ界面活性剤の添加量が、前記ニッケルアンミン錯体を含有する溶液に添加される前記種晶の種晶重量の1~20wt%であることを特徴とする請求項1から4のいずれか1項に記載のニッケル粉の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2015234992A AU2015234992B2 (en) | 2014-03-26 | 2015-03-24 | Method for producing nickel powder |
US15/127,816 US10434577B2 (en) | 2014-03-26 | 2015-03-24 | Method for producing nickel powder |
EP15770302.6A EP3124142A4 (en) | 2014-03-26 | 2015-03-24 | Method for producing nickel powder |
CN201580016174.XA CN106457405A (zh) | 2014-03-26 | 2015-03-24 | 镍粉的制造方法 |
CA2943649A CA2943649C (en) | 2014-03-26 | 2015-03-24 | Method for producing nickel powder |
PH12016501890A PH12016501890A1 (en) | 2014-03-26 | 2016-09-26 | Method for producing nickel powder |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-063106 | 2014-03-26 | ||
JP2014063106 | 2014-03-26 | ||
JP2014155547 | 2014-07-30 | ||
JP2014-155547 | 2014-07-30 | ||
JP2015-010720 | 2015-01-22 | ||
JP2015010720A JP6442298B2 (ja) | 2014-03-26 | 2015-01-22 | ニッケル粉の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015146989A1 true WO2015146989A1 (ja) | 2015-10-01 |
Family
ID=54195501
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/058941 WO2015146989A1 (ja) | 2014-03-26 | 2015-03-24 | ニッケル粉の製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10434577B2 (ja) |
EP (1) | EP3124142A4 (ja) |
JP (1) | JP6442298B2 (ja) |
CN (1) | CN106457405A (ja) |
AU (1) | AU2015234992B2 (ja) |
CA (1) | CA2943649C (ja) |
PH (1) | PH12016501890A1 (ja) |
WO (1) | WO2015146989A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017073578A1 (ja) * | 2015-10-26 | 2017-05-04 | 住友金属鉱山株式会社 | 高密度ニッケル粉の製造方法 |
JP2017150002A (ja) * | 2016-02-22 | 2017-08-31 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
JP2017155253A (ja) * | 2016-02-29 | 2017-09-07 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
WO2017150717A1 (ja) * | 2016-03-04 | 2017-09-08 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
JP2018141203A (ja) * | 2017-02-28 | 2018-09-13 | 住友金属鉱山株式会社 | 種晶用ニッケル粉末の製造方法 |
CN108698131A (zh) * | 2016-02-29 | 2018-10-23 | 住友金属矿山株式会社 | 镍粉的制造方法 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6245314B2 (ja) * | 2016-05-30 | 2017-12-13 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
JP6819087B2 (ja) * | 2016-06-21 | 2021-01-27 | 住友金属鉱山株式会社 | ニッケル粉の製造方法、ニッケル粉の製造装置 |
CN107746951A (zh) * | 2017-09-26 | 2018-03-02 | 北京矿冶研究总院 | 一种硫酸盐溶液中镍的分离方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4974160A (ja) * | 1972-10-20 | 1974-07-17 | ||
US4148632A (en) * | 1977-11-02 | 1979-04-10 | Sherritt Gordon Mines Limited | Treatment of dissolved basic nickel carbonate to obtain nickel |
CN101429652A (zh) * | 2008-07-29 | 2009-05-13 | 张建玲 | 一种铁粉表面包镀镍的方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3640706A (en) * | 1970-02-20 | 1972-02-08 | Nicolas Zubryckyj | Method for recovering substantially pure nickel from ammoniacal nickel ammonium carbonate leach solutions |
JPH10317022A (ja) * | 1997-05-22 | 1998-12-02 | Daiken Kagaku Kogyo Kk | 金属微粒子粉末の製造方法 |
JP4322395B2 (ja) | 2000-04-27 | 2009-08-26 | 株式会社東芝 | 不揮発性半導体記憶装置 |
US6875253B2 (en) | 2001-02-08 | 2005-04-05 | Hitachi Maxell, Ltd. | Metal alloy fine particles and method for producing thereof |
JP4063151B2 (ja) * | 2003-06-11 | 2008-03-19 | 住友金属鉱山株式会社 | 多孔質の球状ニッケル粉末とその製造方法 |
FR2914200B1 (fr) | 2007-03-30 | 2009-11-27 | Inst Francais Du Petrole | Procede de synthese de nanoparticules metalliques cubiques en presence de deux reducteurs |
CN101428349B (zh) | 2008-07-29 | 2011-06-22 | 张建玲 | 一种镍钴金属粉末的制备方法 |
US9127335B2 (en) | 2009-04-27 | 2015-09-08 | Sandvik Intellectual Property Ab | Cemented carbide tools |
JP5574154B2 (ja) * | 2010-01-25 | 2014-08-20 | 住友金属鉱山株式会社 | ニッケル粉末およびその製造方法 |
JP5556561B2 (ja) * | 2010-10-06 | 2014-07-23 | 住友金属鉱山株式会社 | 銀粉及びその製造方法 |
KR101191970B1 (ko) * | 2011-12-09 | 2012-10-17 | 한화케미칼 주식회사 | 인 도핑된 니켈 나노 입자 및 이의 제조방법 |
EP3108987A4 (en) * | 2014-02-21 | 2018-02-07 | Kochi University, National University Corporation | Method for producing nickel powder |
-
2015
- 2015-01-22 JP JP2015010720A patent/JP6442298B2/ja active Active
- 2015-03-24 AU AU2015234992A patent/AU2015234992B2/en not_active Ceased
- 2015-03-24 CA CA2943649A patent/CA2943649C/en not_active Expired - Fee Related
- 2015-03-24 WO PCT/JP2015/058941 patent/WO2015146989A1/ja active Application Filing
- 2015-03-24 US US15/127,816 patent/US10434577B2/en not_active Expired - Fee Related
- 2015-03-24 EP EP15770302.6A patent/EP3124142A4/en not_active Withdrawn
- 2015-03-24 CN CN201580016174.XA patent/CN106457405A/zh active Pending
-
2016
- 2016-09-26 PH PH12016501890A patent/PH12016501890A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4974160A (ja) * | 1972-10-20 | 1974-07-17 | ||
US4148632A (en) * | 1977-11-02 | 1979-04-10 | Sherritt Gordon Mines Limited | Treatment of dissolved basic nickel carbonate to obtain nickel |
CN101429652A (zh) * | 2008-07-29 | 2009-05-13 | 张建玲 | 一种铁粉表面包镀镍的方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3124142A4 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108349012A (zh) * | 2015-10-26 | 2018-07-31 | 住友金属矿山株式会社 | 高密度镍粉的制造方法 |
JP2017082269A (ja) * | 2015-10-26 | 2017-05-18 | 住友金属鉱山株式会社 | 高密度ニッケル粉の製造方法 |
US10766072B2 (en) | 2015-10-26 | 2020-09-08 | Sumitomo Metal Mining Co., Ltd. | Method for producing high density nickel powder |
WO2017073578A1 (ja) * | 2015-10-26 | 2017-05-04 | 住友金属鉱山株式会社 | 高密度ニッケル粉の製造方法 |
AU2016344866B2 (en) * | 2015-10-26 | 2018-11-22 | Sumitomo Metal Mining Co., Ltd. | Method for manufacturing high density nickel powder |
WO2017145892A1 (ja) * | 2016-02-22 | 2017-08-31 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
CN108699627A (zh) * | 2016-02-22 | 2018-10-23 | 住友金属矿山株式会社 | 镍粉的制造方法 |
JP2017150002A (ja) * | 2016-02-22 | 2017-08-31 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
CN108698131A (zh) * | 2016-02-29 | 2018-10-23 | 住友金属矿山株式会社 | 镍粉的制造方法 |
JP2017155253A (ja) * | 2016-02-29 | 2017-09-07 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
EP3424625A4 (en) * | 2016-02-29 | 2019-11-20 | Sumitomo Metal Mining Co., Ltd. | NICKEL POWDER PROCESS |
WO2017150717A1 (ja) * | 2016-03-04 | 2017-09-08 | 住友金属鉱山株式会社 | ニッケル粉の製造方法 |
CN108778578A (zh) * | 2016-03-04 | 2018-11-09 | 住友金属矿山株式会社 | 镍粉的制造方法 |
AU2017226381B2 (en) * | 2016-03-04 | 2019-12-12 | Sumitomo Metal Mining Co., Ltd. | Nickel powder production method |
JP2018141203A (ja) * | 2017-02-28 | 2018-09-13 | 住友金属鉱山株式会社 | 種晶用ニッケル粉末の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3124142A4 (en) | 2018-01-03 |
US20170095862A1 (en) | 2017-04-06 |
CA2943649A1 (en) | 2015-10-01 |
PH12016501890B1 (en) | 2017-02-20 |
JP6442298B2 (ja) | 2018-12-19 |
EP3124142A1 (en) | 2017-02-01 |
AU2015234992A1 (en) | 2016-10-06 |
AU2015234992B2 (en) | 2018-02-22 |
PH12016501890A1 (en) | 2017-02-20 |
US10434577B2 (en) | 2019-10-08 |
JP2016033255A (ja) | 2016-03-10 |
CA2943649C (en) | 2018-09-25 |
CN106457405A (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015146989A1 (ja) | ニッケル粉の製造方法 | |
JP2016033255A5 (ja) | ||
JP6099601B2 (ja) | ニッケル粉の製造方法 | |
JP6489315B2 (ja) | コバルト粉の製造方法 | |
JP5811376B2 (ja) | 水素還元ニッケル粉の製造に用いる種結晶の製造方法 | |
JP2015166488A5 (ja) | ||
JPWO2015125650A1 (ja) | ニッケル粉の製造方法 | |
JP6816755B2 (ja) | ニッケル粉の製造方法 | |
CN108529666B (zh) | 由无机钛源制备钛酸锂的方法、产品及应用 | |
JP5796696B1 (ja) | ニッケル粉の製造方法 | |
JP6241617B2 (ja) | コバルト粉の製造方法 | |
WO2017073392A1 (ja) | コバルト粉の種結晶の製造方法 | |
JP5881091B2 (ja) | ニッケル粉の製造方法 | |
CA3016924A1 (en) | Method for producing nickel powder | |
JP2017155265A5 (ja) | ||
JP2020015971A (ja) | ニッケル粉の製造方法 | |
JP2018154883A (ja) | ニッケル粉の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15770302 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 15127816 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2943649 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12016501890 Country of ref document: PH |
|
ENP | Entry into the national phase |
Ref document number: 2015234992 Country of ref document: AU Date of ref document: 20150324 Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015770302 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015770302 Country of ref document: EP |