WO2015141585A1 - オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子 - Google Patents

オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2015141585A1
WO2015141585A1 PCT/JP2015/057505 JP2015057505W WO2015141585A1 WO 2015141585 A1 WO2015141585 A1 WO 2015141585A1 JP 2015057505 W JP2015057505 W JP 2015057505W WO 2015141585 A1 WO2015141585 A1 WO 2015141585A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
atom
bis
Prior art date
Application number
PCT/JP2015/057505
Other languages
English (en)
French (fr)
Inventor
直樹 中家
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to EP15765128.2A priority Critical patent/EP3121163A4/en
Priority to JP2016508696A priority patent/JP6460093B2/ja
Priority to KR1020167026920A priority patent/KR101904510B1/ko
Priority to CN201580013967.6A priority patent/CN106132923B/zh
Publication of WO2015141585A1 publication Critical patent/WO2015141585A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/28Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton
    • C07C237/40Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atom of at least one of the carboxamide groups bound to a carbon atom of a non-condensed six-membered aromatic ring of the carbon skeleton having the nitrogen atom of the carboxamide group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/64Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings
    • C07C233/77Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups
    • C07C233/80Carboxylic acid amides having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a hydrocarbon radical substituted by amino groups with the substituted hydrocarbon radical bound to the nitrogen atom of the carboxamide group by a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/621Aromatic anhydride or imide compounds, e.g. perylene tetra-carboxylic dianhydride or perylene tetracarboxylic di-imide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Definitions

  • the present invention relates to an oligoaniline derivative, a charge transporting varnish, and an organic electroluminescence (EL) device.
  • a charge transporting thin film made of an organic compound is used as a light emitting layer or a charge injection layer.
  • the hole injection layer is responsible for charge transfer between the anode and the hole transport layer or the light emitting layer, and plays an important function to achieve low voltage driving and high luminance of the organic EL element.
  • the method of forming the hole injection layer is roughly divided into a dry process typified by vapor deposition and a wet process typified by spin coating. When these processes are compared, the wet process is more flat in a larger area. Can be manufactured efficiently. Therefore, at the present time when the area of the organic EL display is being increased, a hole injection layer that can be formed by a wet process is desired.
  • the present inventor is applicable to various wet processes and provides a charge transport material that provides a thin film that can realize excellent EL element characteristics when applied to a hole injection layer of an organic EL element.
  • compounds having good solubility in organic solvents used therefor have been developed (see, for example, Patent Documents 1 to 4).
  • the present invention like the technology of the above-mentioned patent document that has been developed so far, exhibits good solubility in an organic solvent and has excellent electrical characteristics when applied to a hole injection layer after being thinned. It is an object of the present invention to provide a novel oligoaniline derivative capable of realizing an EL element, a charge transporting varnish containing the oligoaniline derivative, and an organic EL element.
  • the present inventor has shown that a specific fluorine-containing oligoaniline derivative exhibits high solubility in an organic solvent, and that it is dissolved in an organic solvent together with an arbitrary dopant.
  • the present inventors have found that a thin film obtained from the prepared varnish has high charge transport properties, and that when the thin film is applied to a hole injection layer of an organic EL device, excellent electrical characteristics can be realized, and the present invention has been completed.
  • an oligoaniline derivative represented by the formula (1).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z
  • Z represents a halogen atom, a nitro group, a cyano group, an aldehyde group, a hydroxy group, a thiol
  • a sulfonic acid group a carboxylic acid group, an aryl group having 6 to 20 carbon atoms which may be substituted with Z ′, or a heteroaryl group having 2 to 20 carbon atoms which may be substituted with Z ′
  • R 2 to R 10 are each independently a hydrogen atom, a halogen atom, a halogen atom, a nitro group, a cyano group, an al
  • A is A cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a fluoroalkyl group having 1 to 20 carbon atoms, a fluorocyclo group having 3 to 20 carbon atoms, optionally substituted with a fluoroalkoxy group having 1 to 20 carbon atoms
  • a fluoroaryl group having 6 to 20 carbon atoms A fluoroalkyl group having 1 to 20 carbon atoms, a fluorocycloalkyl group having 3 to 20 carbon atoms, a fluorobicycloalkyl group having 4 to 20 carbon atoms, a fluoroalkenyl group having 2 to 20 carbon atoms, or a fluoroalkynyl group having 2 to 20 carbon atoms
  • An aryl group having 6 to 20 carbon atoms which may be substituted with a cyano group, a halogen atom or a fluoroalkoxy group having 1 to 20 carbon atoms, Cyano group, chlorine atom, bromine atom, iodine atom, nitro group, fluoroalkoxy group having 1 to 20 carbon atoms, fluoroalkyl group having 1 to 20 carbon atoms, fluorocycloalkyl group having 3 to 20 carbon atoms, 4 to 4 carbon atoms 20 fluorobicyclo
  • n 1 represents an integer of 1 to 20.
  • A may be substituted with a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group or a fluoroalkoxy group having 1 to 20 carbon atoms, a fluoroalkyl group having 1 to 20 carbon atoms, a cyano group, or a chlorine atom , A bromine atom, an iodine atom, a nitro group, an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group having 1 to 20 carbon atoms or a fluoroalkoxy group having 1 to 20 carbon atoms, which may be substituted with 6 to 20 carbon atoms Or a fluoroalkyl group having 1 to 20 carbon atoms, a fluorocycloalkyl group having 3 to 20 carbon atoms, a fluorobicycloalky
  • 1 oligoaniline derivative is an aryl group which have 1-6 carbon atoms which may be 20 substituted with a group. 3.
  • A is substituted with a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group having 1 to 20 carbon atoms or a fluoroalkoxy group having 1 to 20 carbon atoms.
  • a charge transport material comprising the oligoaniline derivative according to any one of 1 to 6.
  • a charge transporting varnish comprising a charge transporting material of 8.7 and an organic solvent.
  • the oligoaniline derivative of the present invention contains a fluorine atom, polarity is generated in the molecule, thereby improving the solubility in an organic solvent. Therefore, this can be dissolved in an organic solvent together with a dopant to easily prepare a charge transporting varnish. Since the thin film produced from the charge transporting varnish of the present invention contains the oligoaniline derivative, it exhibits high charge transportability regardless of the type of dopant. Therefore, it can be suitably used as a thin film for electronic devices including organic EL elements. In particular, by applying this thin film to a hole injection layer of an organic EL element, an organic EL element having excellent luminance characteristics can be obtained.
  • the charge transporting varnish of the present invention can produce a thin film excellent in charge transporting properties with good reproducibility even when using various wet processes capable of forming a large area such as a spin coating method and a slit coating method, It can sufficiently cope with recent progress in the field of organic EL elements.
  • oligoaniline derivatives The oligoaniline derivative of the present invention is represented by the formula (1).
  • R 1 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms which may be substituted with Z.
  • Z is a halogen atom, a nitro group, a cyano group, an aldehyde group, a hydroxy group, a thiol group, a sulfonic acid group, a carboxylic acid group, an aryl group having 6 to 20 carbon atoms which may be substituted with Z ′, or Z ′.
  • Z ′ represents a halogen atom, a nitro group, a cyano group, an aldehyde group, a hydroxy group, a thiol group, a sulfonic acid group, or a carboxylic acid group.
  • R 2 to R 10 are each independently a hydrogen atom, a halogen atom, a nitro group, a cyano group, or an alkyl group having 1 to 20 carbon atoms, optionally substituted with a halogen atom, or having 2 to 20 carbon atoms.
  • An alkenyl group, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a heteroaryl group having 2 to 20 carbon atoms is represented.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the alkyl group having 1 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, straight chain having 1 to 20 carbon atoms such as s-butyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, etc.
  • branched alkyl group cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, cyclodecyl group, bicyclobutyl group, bicyclopentyl group, bicyclohexyl group, bicycloheptyl group, bicyclo Examples thereof include cyclic alkyl groups having 3 to 20 carbon atoms such as octyl group, bicyclononyl group and bicyclodecyl group.
  • the alkenyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethenyl group, n-1-propenyl group, n-2-propenyl group, 1-methylethenyl group, n-1-butenyl group, n-2-butenyl group, n-3-butenyl group, 2-methyl-1-propenyl group, 2-methyl-2-propenyl group, 1-ethylethenyl group, 1-methyl-1- A propenyl group, a 1-methyl-2-propenyl group, an n-1-pentenyl group, an n-1-decenyl group, an n-1-eicocenyl group and the like can be mentioned.
  • the alkynyl group having 2 to 20 carbon atoms may be linear, branched or cyclic, and specific examples thereof include ethynyl group, n-1-propynyl group, n-2-propynyl group and n-1-butynyl.
  • aryl group having 6 to 20 carbon atoms include phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group. Group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • heteroaryl group having 2 to 20 carbon atoms examples include 2-thienyl group, 3-thienyl group, 2-furanyl group, 3-furanyl group, 2-oxazolyl group, 4-oxazolyl group, 5-oxazolyl group, 3-isoxazolyl group, 4-isoxazolyl group, 5-isoxazolyl group, 2-thiazolyl group, 4-thiazolyl group, 5-thiazolyl group, 3-isothiazolyl group, 4-isothiazolyl group, 5-isothiazolyl group, 2-imidazolyl group, Examples include 4-imidazolyl group, 2-pyridyl group, 3-pyridyl group, 4-pyridyl group, and the like.
  • R 1 is preferably a hydrogen atom or an alkyl group having 1 to 10 carbon atoms which may be substituted with Z, in consideration of the solubility of the oligoaniline derivative in an organic solvent.
  • An alkyl group having 1 to 4 carbon atoms which may be substituted with Z is more preferable, and a hydrogen atom is most preferable.
  • a plurality of R 1 may be the same or different.
  • R 1 is a hydrogen atom
  • particularly excellent charge transport properties can be realized when used together with a dopant such as an arylsulfonic acid or a protonic acid such as a heteropolyacid.
  • R 2 to R 10 may be substituted with a hydrogen atom, a halogen atom, a nitro group, a cyano group, or a halogen atom in consideration of the solubility of the oligoaniline derivative in an organic solvent.
  • An alkyl group having 1 to 10 carbon atoms is preferable, a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms which may be substituted with a halogen atom is more preferable, and the solubility of the oligoaniline derivative in an organic solvent is Considering the balance with the charge transporting property, a hydrogen atom is optimal.
  • the plurality of R 2 to R 5 may be the same or different.
  • A represents a cyano group, a chlorine atom, a bromine atom, an iodine atom, a nitro group, or a fluoroalkyl group having 1 to 20 carbon atoms which may be substituted with a fluoroalkoxy group having 1 to 20 carbon atoms.
  • the fluoroalkyl group is not particularly limited as long as it is a linear or branched alkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • the fluorocycloalkyl group is not particularly limited as long as it is a cycloalkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • a 1-fluorocyclopropyl group a 2-fluorocyclopropyl group 2,2-difluorocyclopropyl group, 2,2,3,3-tetrafluorocyclopropyl group, pentafluorocyclopropyl group, 2,2-difluorocyclobutyl group, 2,2,3,3-tetrafluorocyclo Butyl group, 2,2,3,3,4,4-hexafluorocyclobutyl group, heptafluorocyclobutyl group, 1-fluorocyclopentyl group, 3-fluorocyclopentyl group, 3,3-difluorocyclopentyl group, 3,3 , 4,4-tetrafluorocyclopentyl group, nonafluoro
  • the fluorobicycloalkyl group is not particularly limited as long as it is a bicycloalkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • the fluoroalkenyl group is not particularly limited as long as it is an alkenyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • the fluoroalkynyl group is not particularly limited as long as it is an alkynyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • a fluoroethynyl group, a 3-fluoro-1-propynyl group, 3, Examples include a 3-difluoro-1-propynyl group, a 3,3,3-trifluoro-1-propynyl group, a 1-fluoro-2-propynyl group, and a 1,1-difluoro-2-propynyl group.
  • the fluoroaryl group is not particularly limited as long as it is an aryl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • the fluoroaryl group includes a cyano group, a chlorine atom, a bromine atom in consideration of the balance of the solubility of the oligoaniline derivative in an organic solvent, the charge transportability of the oligoaniline derivative, the availability of the raw material of the oligoaniline derivative, etc.
  • Substituted with 3 or more fluorine atoms which may be substituted with an iodine atom, a nitro group, an alkyl group having 1 to 20 carbon atoms, a fluoroalkyl group having 1 to 20 carbon atoms or a fluoroalkoxy group having 1 to 20 carbon atoms
  • the substituted phenyl group is preferred.
  • the fluoroalkoxy group is not particularly limited as long as it is an alkoxy group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • An aryl group having 6 to 20 carbon atoms that may be substituted with an alkynyl group and optionally substituted with a cyano group, a halogen atom, or a fluoroalkoxy group having 1 to 20 carbon atoms hereinafter, also referred to as a substituted aryl group for convenience
  • At least one hydrogen atom on the carbon atom is a fluoroalkyl group having 1 to 20 carbon atoms, a fluorocycloalkyl group having 3 to 20 carbon atoms, a fluorobicycloalkyl group having 4 to 20 carbon atoms, or 2 carbon atoms.
  • the substituted aryl group has 3 to 20 carbon atoms in consideration of the balance of the solubility of the oligoaniline derivative in an organic solvent, the charge transportability of the oligoaniline derivative, the availability of the raw material for the oligoaniline derivative, and the like.
  • a fluorocycloalkyl group substituted with a fluorocycloalkyl group, a fluorobicycloalkyl group having 4 to 20 carbon atoms, a fluoroalkenyl group having 2 to 20 carbon atoms, or a fluoroalkynyl group having 2 to 20 carbon atoms, and a cyano group, a halogen atom or 1 carbon atom
  • a phenyl group optionally substituted with 20 to 20 fluoroalkoxy groups hereinafter also referred to as a substituted phenyl group for convenience
  • a substituted phenyl group for convenience
  • a p-trifluoromethylphenyl group is even more preferred.
  • the fluoroaralkyl group is not particularly limited as long as it is an aralkyl group in which at least one hydrogen atom on a carbon atom is substituted with a fluorine atom.
  • the aralkyl group having 7 to 20 carbon atoms that is substituted with an alkynyl group and optionally substituted with a cyano group, a halogen atom, or a fluoroalkoxy group having 1 to 20 carbon atoms includes at least one hydrogen on the carbon atom
  • A is preferably the optionally substituted fluoroalkyl group having 1 to 20 carbon atoms, the optionally substituted fluoroaryl group having 6 to 20 carbon atoms, or the substituted aryl group.
  • the optionally substituted fluoroaryl group having 6 to 20 carbon atoms or the substituted aryl group is more preferable, the optionally substituted fluorophenyl group or the substituted phenyl group is more preferable,
  • n 1 is an integer of 1 to 20, preferably 10 or less, more preferably 8 or less, and even more preferably 5 or less, from the viewpoint of the solubility of the oligoaniline derivative in the solvent. 4 or less is more preferable, and 2 or more is preferable, and 3 or more is more preferable from the viewpoint of enhancing the charge transport property of the oligoaniline derivative, and 3 is optimal in consideration of the balance between solubility and charge transport property.
  • the oligoaniline derivative of the present invention can be synthesized by reacting an amine compound represented by the formula (2) with a fluorine-containing acid halide represented by the formula (3).
  • a fluorine-containing acid halide represented by the formula (3) wherein R 1 to R 10 , A and n 1 are the same as described above.
  • X represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom or an iodine atom, preferably a chlorine atom or a bromine atom.
  • Examples of the amine compound represented by the formula (2) include, but are not limited to, those represented by the following formula.
  • fluorine-containing acid halide represented by the formula (3) examples include 2-fluorobenzoyl chloride, 3-fluorobenzoyl chloride, 4-fluorobenzoyl chloride, 2-fluoro-4-methylbenzoyl chloride, 2-fluoro-5- Methylbenzoyl chloride, 3-fluoro-4-methylbenzoyl chloride, 3-fluoro-6-methylbenzoyl chloride, 4-fluoro-2-methylbenzoyl chloride, 4-fluoro-3-methylbenzoyl chloride, 2,3-difluorobenzoyl Chloride, 2,4-difluorobenzoyl chloride, 2,5-difluorobenzoyl chloride, 2,6-difluorobenzoyl chloride, 3,4-difluorobenzoyl chloride, 3,5-difluorobenzoyl chloride, 3-chloro-2-fluorobenzo I Chloride, 4-chloro-2-fluorobenzoyl chloride, 5-chloro-2-flu
  • the reaction solvent is preferably an aprotic polar organic solvent, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, tetrahydrofuran And dioxane.
  • N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane and the like are preferable.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the target oligoaniline derivative can be obtained by post-treatment according to a conventional method.
  • the fluorine-containing acid halide represented by the formula (3) is a corresponding fluorine-containing carboxylic acid such as thionyl chloride, oxalyl chloride, phosphoryl chloride, sulfuryl chloride, phosphorus trichloride, phosphorus pentachloride and the like. It can be obtained by reacting with a halogenating agent.
  • a commercially available product may be used, which is described in a known method (for example, JP-A-9-67303, JP-A-9-67304, JP-A-2002-284733, etc.). The method can also be synthesized.
  • the charge transporting varnish of the present invention contains the oligoaniline derivative and an organic solvent.
  • Organic solvent As the organic solvent used when preparing the charge transporting varnish, a highly soluble solvent that can dissolve the charge transporting substance and the dopant well can be used.
  • Examples of such highly soluble solvents include cyclohexanone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylisobutyramide, N-methylpyrrolidone, and 1,3-dimethyl-2-imidazo.
  • Examples include, but are not limited to, organic solvents such as lysinone. These solvents can be used singly or in combination of two or more, and the amount used can be 5 to 100% by mass in the total solvent used in the varnish.
  • charge transporting substance and the dopant are preferably either completely dissolved or uniformly dispersed in the solvent, and more preferably completely dissolved.
  • the varnish has a viscosity of 10 to 200 mPa ⁇ s, particularly 35 to 150 mPa ⁇ s at 25 ° C., and a boiling point of 50 to 300 ° C., particularly 150 to 250 ° C. at normal pressure (atmospheric pressure).
  • At least one high-viscosity organic solvent can be contained.
  • Examples of the high viscosity organic solvent include cyclohexanol, ethylene glycol, ethylene glycol diglycidyl ether, 1,3-octylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tripropylene glycol, 1,3-butanediol, Examples include 2,3-butanediol, 1,4-butanediol, propylene glycol, hexylene glycol, and the like, but are not limited thereto.
  • the addition ratio of the high-viscosity organic solvent to the entire solvent used in the varnish of the present invention is preferably within a range where no solid is precipitated, and the addition ratio is preferably 5 to 90% by mass as long as no solid is precipitated.
  • solvents are used in an amount of 1 to 90% by weight, preferably 1 to 90%, based on the total solvent used in the varnish. It is also possible to mix at a ratio of 50% by mass.
  • solvents examples include propylene glycol monomethyl ether, ethylene glycol monobutyl ether, diethylene glycol diethyl ether, diethylene glycol monomethyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, propylene glycol monomethyl ether
  • solvents include, but are not limited to, ether acetate, diethylene glycol monoethyl ether, diacetone alcohol, ⁇ -butyrolactone, ethyl lactate, and n-hexyl acetate. These solvents can be used alone or in combination of two or more.
  • the viscosity of the varnish of the present invention is appropriately set according to the thickness of the thin film to be produced and the solid content concentration, but is usually 1 to 50 mPa ⁇ s at 25 ° C.
  • the solid content concentration of the charge transporting varnish in the present invention is appropriately set in consideration of the viscosity and surface tension of the varnish, the thickness of the thin film to be produced, etc., but is usually from 0.1 to 10 In consideration of improving the coatability of the varnish, it is preferably 0.5 to 5.0% by mass, more preferably 1.0 to 3.0% by mass.
  • solid content means what remove
  • the charge transporting varnish of the present invention may contain a dopant for the purpose of improving its charge transporting ability, depending on the use of the thin film obtained.
  • a dopant will not be specifically limited if it melt
  • the compounding amount is preferably 0.0001 to 1, more preferably 0.001 to 0.5, and still more preferably 0.5 as a substance ratio (mol ratio) to the oligoaniline derivative. 01 to 0.2.
  • Inorganic dopants include inorganic acids such as hydrogen chloride, sulfuric acid, nitric acid and phosphoric acid; aluminum chloride (III) (AlCl 3 ), titanium tetrachloride (IV) (TiCl 4 ), boron tribromide (BBr 3 ), Boron trifluoride ether complex (BF 3 ⁇ OEt 2 ), iron chloride (III) (FeCl 3 ), copper chloride (II) (CuCl 2 ), antimony pentachloride (V) (SbCl 5 ), antimony pentafluoride ( Metal halides such as V) (SbF 5 ), arsenic pentafluoride (V) (AsF 5 ), phosphorus pentafluoride (PF 5 ), tris (4-bromophenyl) aluminum hexachloroantimonate (TBPAH); Cl 2 , Br 2 , I 2 , ICl, ICl 3 , IBr,
  • organic dopants include benzenesulfonic acid, tosylic acid, p-styrenesulfonic acid, 2-naphthalenesulfonic acid, 4-hydroxybenzenesulfonic acid, 5-sulfosalicylic acid, p-dodecylbenzenesulfonic acid, dihexylbenzenesulfonic acid, 2 , 5-dihexylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, 6,7-dibutyl-2-naphthalenesulfonic acid, dodecylnaphthalenesulfonic acid, 3-dodecyl-2-naphthalenesulfonic acid, hexylnaphthalenesulfonic acid, 4-hexyl-1 -Naphthalenesulfonic acid, octylnaphthalenesulfonic acid, 2-octyl-1-na
  • the arylsulfonic acid compound represented by Formula (4) can also be used suitably as a dopant.
  • Ar is a group represented by the formula (5) or (6). (Wherein p represents an integer of 1 to 5 and q represents an integer of 1 to 7)]
  • the arylsulfonic acid compound represented by the formula (4) is represented by the formula (4 ′) by reacting the amine compound represented by the formula (5) with the acid halide represented by the formula (6).
  • An aryl sulfonate can be obtained, and this salt can be obtained by ion-exchange treatment.
  • Ar ′ represents a group represented by the formula (5 ′) or (6 ′).
  • M represents an alkali metal atom such as sodium or potassium.
  • Examples of the amine compound represented by the formula (5) include disodium aniline-2,4-disulfonate, disodium aniline-2,5-disulfonate, disodium 8-amino-naphthalene-1,5-disulfonate, 2-amino-naphthalene-1,5-disulfonic acid disodium salt, 2-amino-naphthalene-3,6-disulfonic acid disodium salt, 7-aminonaphthalene-1,5-disulfonic acid disodium salt, 7-aminonaphthalene-2 , 4-disulfonic acid disodium, 7-aminonaphthalene-1,3-disulfonic acid disodium, and the like, but are not limited thereto.
  • the amine compound represented by Formula (5) may use a hydrate.
  • Examples of the acid halide represented by the formula (6) include benzoyl chloride and benzoyl bromide.
  • the reaction solvent is preferably an aprotic polar organic solvent, for example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, dimethyl sulfoxide, tetrahydrofuran And dioxane.
  • N, N-dimethylformamide, N, N-dimethylacetamide, tetrahydrofuran, dioxane and the like are preferable.
  • the reaction temperature is usually from ⁇ 50 ° C. to the boiling point of the solvent used, but is preferably in the range of 0 to 140 ° C.
  • the reaction time is usually 0.1 to 100 hours.
  • the aryl sulfonate represented by the formula (4 ′) is recovered by filtration, evaporation of the reaction solvent, etc., and then, for example, the sulfonate is protonated with a cation exchange resin to obtain the formula (4
  • the aryl sulfonic acid compound represented by 1) can be produced.
  • the acid halide represented by the formula (6) is an electrophilic halogenating agent such as thionyl chloride, oxalyl chloride, phosphoryl chloride, sulfuryl chloride, phosphorus trichloride, or phosphorus pentachloride. It can obtain by making it react.
  • an arylsulfonic acid compound and a heteropolyacid are particularly preferable because they exhibit good solubility in an organic solvent when used together with the oligoaniline derivative of the present invention.
  • the charge transport varnish of the present invention may contain an organosilane compound.
  • the organic silane compound include dialkoxysilane compounds, trialkoxysilane compounds, and tetraalkoxysilane compounds. These can be used alone or in combination of two or more. Inclusion of the organosilane compound can be expected to improve the hole injection ability of the thin film when the resulting charge transporting thin film is used as a hole injection layer of an organic EL device.
  • the organosilane compound is preferably a dialkoxysilane compound or a trialkoxysilane compound, more preferably a trialkoxysilane compound.
  • alkoxysilane compounds include those represented by formulas (7) to (9). SiR ' 2 (OR) 2 (7) SiR '(OR) 3 (8) Si (OR) 4 (9)
  • R is independently an alkyl group, an alkenyl group carbon atoms which may be optionally 2-20 substituted with Z 101 of Z 101 is optionally ⁇ 1 to 20 carbon atoms substituted with substituted with Z 101 carbon atoms which may be optionally 2-20 alkynyl group, a heteroaryl group aryl or Z 102 is 1-2 carbon atoms which may be 20 substituted with ⁇ 20 6 carbon atoms which may be substituted with Z 102 Represents.
  • R ' is independently an alkyl group of Z 103 is 1 carbon atoms which may be ⁇ 20 substituted with an alkenyl group are optionally 2-20 carbon atoms substituted with Z 103, substituted by Z 103 an alkynyl group having 2 to 20 carbon atoms also represents a heteroaryl group of the aryl group or Z 104 is optionally 2-20 carbon atoms substituted with by carbon atoms 6 also be ⁇ 20 substituted by Z 104 .
  • Z 101 represents a halogen atom
  • the heteroaryl group of the aryl group or Z 105 is 1-2 carbon atoms which may be 20 substituted with by carbon atoms 6 also be ⁇ 20 substituted with Z 105.
  • Z 102 is a halogen atom, optionally substituted by an alkyl group, an alkenyl group, or Z 105 of to 2 carbon atoms which may be ⁇ 20 substituted by Z 105 of is ⁇ 1 carbon atoms which may be 20 substituted with Z 105 Or an alkynyl group having 2 to 20 carbon atoms.
  • Z 103 is a halogen atom, an aryl group of carbon atoms which may be have 6 to 20 substituted by Z 105, the heteroaryl group of which do 2-20 carbon atoms substituted with Z 105, epoxycyclohexyl group, a glycidoxy group Methacryloxy group, acryloxy group, ureido group (—NHCONH 2 ), thiol group, isocyanate group (—NCO), amino group, —NHY 101 group, or —NY 102 Y 103 group.
  • Z 104 is a halogen atom, Z 105 substituted by 1 carbon atoms which may be 1-20 alkyl group, an alkenyl group which 2 carbon atoms which may be ⁇ 20 substituted by Z 105, be substituted with Z 105 Alkynyl group having 2 to 20 carbon atoms, epoxy cyclohexyl group, glycidoxy group, methacryloxy group, acryloxy group, ureido group (—NHCONH 2 ), thiol group, isocyanate group (—NCO), amino group, —NHY 101 group, Or represents -NY 102 Y 103 group.
  • Y 101 ⁇ Y 103 each independently represent an alkyl group which 1 carbon atoms which may be ⁇ 20 substituted by Z 105, alkenyl group which 2 carbon atoms which may be ⁇ 20 substituted by Z 105, with Z 105 carbon atoms which may be substituted have 2-20 alkynyl group, a heteroaryl aryl group or Z 105 to 2 carbon atoms which may be ⁇ 20 substituted with which do 6 to carbon atoms which may be 20 substituted with Z 105 Represents a group.
  • Z 105 represents a halogen atom, an amino group, a nitro group, a cyano group or a thiol group.
  • a halogen atom an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an alkynyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and the number of carbon atoms
  • Examples of the 2 to 20 heteroaryl groups include those described above.
  • the carbon number of the alkyl group, alkenyl group, and alkynyl group is preferably 10 or less, more preferably 6 or less, and even more preferably 4 or less.
  • the carbon number of the aryl group and heteroaryl group is preferably 14 or less, more preferably 10 or less, and even more preferably 6 or less.
  • the R, optionally substituted alkenyl group, or Z 102 alkyl group, Z 101 is 2 carbon atoms which may be ⁇ 20 substituted with by-1 carbon atoms which may be 20 substituted with Z 101 carbon preferably an aryl group having 6 to 20, substituted with an alkyl group, an alkenyl group, or Z 102 to 6 2 carbon atoms which may be substituted with Z 101 to 6 carbon atoms 1 optionally substituted by Z 101
  • An optionally substituted phenyl group is more preferred, an alkyl group having 1 to 4 carbon atoms that may be substituted with Z 101 or a phenyl group that may be substituted with Z 102 is more preferred, and is substituted with Z 101.
  • An optionally substituted methyl group or ethyl group is more preferable.
  • R ′ is preferably an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 103 or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 104 , and is substituted with Z 103. More preferably an alkyl group having 1 to 10 carbon atoms which may be substituted or an aryl group having 6 to 14 carbon atoms which may be substituted with Z 104 , and an alkyl having 1 to 6 carbon atoms which may be substituted with Z 103 more preferably more aryl group having to 10 6 carbon atoms which may be substituted with a group or Z 104, which may be substituted with an alkyl group or Z 104 of to 1 carbon atoms which may be 1-4 substituted with Z 103 A good phenyl group is more preferred.
  • a plurality of R may be all the same or different, and a plurality of R ′ may all be the same or different.
  • Z 101 is preferably a halogen atom or an aryl group having 6 to 20 carbon atoms which may be substituted with Z 105 , more preferably a fluorine atom or a phenyl group which may be substituted with Z 105. Is optimal (ie, is unsubstituted).
  • a halogen atom or an alkyl group having 6 to 20 carbon atoms which may be substituted with Z 105 is preferable, and a fluorine atom or an alkyl group having 1 to 10 carbon atoms which may be substituted with Z 105 is preferable.
  • Alkyl groups are more preferred and optimally absent (ie, unsubstituted).
  • the Z 103, a halogen atom, Z 105 phenyl group which may be substituted by may furanyl group optionally substituted by Z 105, epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido group, thiol group, isocyanate group, amino group, good diphenylamino group optionally substituted by a phenyl amino group, or Z 104 may be substituted with Z 105 preferably that more preferably a halogen atom, no fluorine atom or presence ( That is, it is even more preferable that it is unsubstituted.
  • a halogen atom an alkyl group having 1 to 20 carbon atoms which may be substituted with Z 105 , an epoxycyclohexyl group, a glycidoxy group, a methacryloxy group, an acryloxy group, a ureido group, a thiol group, an isocyanate group,
  • An amino group, a phenylamino group optionally substituted with Z 105 or a diphenylamino group optionally substituted with Z 105 is preferred, a halogen atom is more preferred, and a fluorine atom or absent (ie, unsubstituted) Is more preferable.
  • Z 105 is preferably a halogen atom, more preferably a fluorine atom or not (that is, unsubstituted).
  • dialkoxysilane compounds include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diisopropyldimethoxysilane, and phenylmethyl.
  • Dimethoxysilane vinylmethyldimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, 3-methacryloxy Propylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-aminopropylmethyl Diethoxy silane, N- (2- aminoethyl) aminopropyl methyl dimethoxy silane, 3,3,3-trifluoropropyl methyl dimethoxy silane, and the like.
  • trialkoxysilane compounds include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, butyltrimethoxysilane, butyltriethoxysilane, Pentyltrimethoxysilane, pentyltriethoxysilane, heptyltrimethoxysilane, heptyltriethoxysilane, octyltrimethoxysilane, octyltriethoxysilane, dodecyltrimethoxysilane, dodecyltriethoxysilane, hexadecyltrimethoxysilane, hexadecyltriethoxy Silane, octadecyltrimethoxysilane, o
  • tetraalkoxysilane compound examples include tetramethoxysilane, tetraethoxysilane, and tetrapropoxysilane.
  • the content is based on the total mass of the charge transporting material (when the dopant is included, the total mass of the charge transporting material and the dopant). Although it is usually about 0.1 to 50% by mass, it suppresses the decrease in charge transportability of the obtained thin film, and is in contact with the hole injection layer on the side opposite to the anode such as the hole transport layer and the light emitting layer. In consideration of increasing the hole injecting ability to the layer laminated, it is preferably about 0.5 to 40% by mass, more preferably about 0.8 to 30% by mass, and still more preferably 1 to 20% by mass. Degree.
  • the charge transport varnish of the present invention may contain other known charge transport materials in addition to the oligoaniline derivative as long as the effects of the present invention are not impaired.
  • the method for preparing the charge transporting varnish is not particularly limited.
  • a method of dissolving the oligoaniline derivative of the present invention in a highly soluble solvent and adding a high viscosity organic solvent thereto, a highly soluble solvent and a high viscosity A method of mixing an organic solvent and dissolving the oligoaniline derivative of the present invention therein can be mentioned.
  • the charge transporting varnish is obtained by dissolving a charge transporting substance, a dopant and the like in an organic solvent, and then using a sub-micron order filter or the like. It is desirable to filter.
  • a charge transporting thin film can be formed on a base material by applying the charge transporting varnish of the present invention on the base material and baking it.
  • Examples of the varnish coating method include, but are not limited to, a dip method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an ink jet method, a spray method, and a slit coating method. It is preferable to adjust the viscosity and surface tension of the varnish depending on the coating method.
  • the firing atmosphere is not particularly limited, and a thin film having a uniform film formation surface and charge transportability can be obtained not only in the air atmosphere but also in an inert gas such as nitrogen or in a vacuum.
  • an air atmosphere is preferable.
  • the firing temperature is appropriately set within a range of about 100 to 260 ° C. in consideration of the use of the obtained thin film, the degree of charge transportability imparted to the obtained thin film, and the like.
  • the temperature is preferably about 140 to 250 ° C, more preferably about 145 to 240 ° C.
  • the firing time varies depending on the firing temperature and thus cannot be specified unconditionally, but is usually about 1 minute to 1 hour.
  • two or more steps of temperature change may be applied for the purpose of developing a higher uniform film forming property or causing the reaction to proceed on the substrate.
  • the heating may be performed using an appropriate device such as a hot plate or an oven.
  • the thickness of the charge transporting thin film is not particularly limited, but is preferably 5 to 200 nm when used as a hole injection layer in an organic EL device.
  • a method of changing the film thickness there are methods such as changing the solid content concentration in the varnish and changing the amount of the solution on the substrate during coating.
  • the charge transporting thin film of the present invention can be suitably used as a hole injection layer in an organic EL device, but can also be used as a charge transporting functional layer such as a hole injection transport layer.
  • Organic EL device has a pair of electrodes, and has the above-described charge transporting thin film of the present invention between these electrodes.
  • Typical configurations of the organic EL element include (a) to (f) below, but are not limited thereto.
  • an electron blocking layer or the like can be provided between the light emitting layer and the anode
  • a hole (hole) blocking layer or the like can be provided between the light emitting layer and the cathode.
  • the hole injection layer, the hole transport layer, or the hole injection transport layer may have a function as an electron block layer or the like
  • the electron injection layer, the electron transport layer, or the electron injection transport layer is a hole. It may have a function as a block layer or the like.
  • A Anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • b Anode / hole injection layer / hole transport layer / light emission layer / electron injection transport layer / Cathode
  • c anode / hole injection transport layer / light emitting layer / electron transport layer / electron injection layer / cathode
  • d anode / hole injection transport layer / light emitting layer / electron injection transport layer / cathode
  • e anode / positive Hole injection layer / hole transport layer / light emitting layer / cathode
  • f anode / hole injection transport layer / light emitting layer / cathode
  • “Hole injection layer”, “hole transport layer” and “hole injection transport layer” are layers formed between a light emitting layer and an anode, and transport holes from the anode to the light emitting layer. It has a function. When only one layer of a hole transporting material is provided between the light emitting layer and the anode, it is a “hole injection transporting layer”, and a layer of the hole transporting material is provided between the light emitting layer and the anode. When two or more layers are provided, the layer close to the anode is a “hole injection layer”, and the other layers are “hole transport layers”. In particular, for the hole injection layer and the hole injection transport layer, a thin film that is excellent not only in accepting holes from the anode but also injecting holes into the hole transport layer and the light emitting layer is used.
  • Electrode “Electron injection layer”, “electron transport layer” and “electron injection transport layer” are layers formed between a light emitting layer and a cathode, and have a function of transporting electrons from the cathode to the light emitting layer. It is. When only one layer of the electron transporting material is provided between the light emitting layer and the cathode, it is an “electron injecting and transporting layer”, and two layers of the electron transporting material are provided between the light emitting layer and the cathode. When provided as described above, the layer close to the cathode is an “electron injection layer”, and the other layers are “electron transport layers”.
  • the “light emitting layer” is an organic layer having a light emitting function, and includes a host material and a dopant material when a doping system is employed.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the charge transporting thin film of the present invention can be suitably used as a hole injection layer, a hole transport layer, and a hole injection transport layer in an organic EL device, and can be more suitably used as a hole injection layer.
  • Examples of materials used and methods for producing an organic EL device using the charge transporting varnish of the present invention include the following, but are not limited thereto.
  • the electrode substrate to be used is preferably cleaned in advance by cleaning with a liquid such as a detergent, alcohol, or pure water.
  • a liquid such as a detergent, alcohol, or pure water.
  • the anode substrate is subjected to surface treatment such as UV ozone treatment or oxygen-plasma treatment immediately before use. It is preferable.
  • the surface treatment may not be performed.
  • An example of the method for producing the organic EL device of the present invention when the thin film obtained from the charge transporting varnish of the present invention is a hole injection layer is as follows.
  • the charge transporting varnish of the present invention is applied on the anode substrate and baked to form a hole injection layer on the electrode.
  • a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order.
  • the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer may be formed by either a vapor deposition method or a coating method (wet process) depending on the characteristics of the material used.
  • anode material examples include transparent electrodes typified by indium tin oxide (ITO) and indium zinc oxide (IZO), metal anodes typified by aluminum, alloys thereof, and the like. What performed the chemical conversion process is preferable. Polythiophene derivatives and polyaniline derivatives having high charge transporting properties can also be used.
  • metals constituting the metal anode include scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, yttrium, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, cadmium.
  • Materials for forming the hole transport layer include (triphenylamine) dimer derivatives, [(triphenylamine) dimer] spirodimers, N, N′-bis (naphthalen-1-yl) -N, N′-bis (Phenyl) -benzidine ( ⁇ -NPD), N, N′-bis (naphthalen-2-yl) -N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl)- N, N′-bis (phenyl) -benzidine, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis ( Naphthalen-1-yl) -N, N′-bis (phenyl) -9,9-spirobifluorene, N, N′-bis (3-methylphenyl) -N, N′-bis (phenyl) -9,9-s
  • Materials for forming the light emitting layer include tris (8-quinolinolato) aluminum (III) (Alq 3 ), bis (8-quinolinolato) zinc (II) (Znq 2 ), bis (2-methyl-8-quinolinolato)- 4- (p-phenylphenolate) aluminum (III) (BAlq), 4,4′-bis (2,2-diphenylvinyl) biphenyl, 9,10-di (naphthalen-2-yl) anthracene, 2-t -Butyl-9,10-di (naphthalen-2-yl) anthracene, 2,7-bis [9,9-di (4-methylphenyl) -fluoren-2-yl] -9,9-di (4- Methylphenyl) fluorene, 2-methyl-9,10-bis (naphthalen-2-yl) anthracene, 2- (9,9-spirobifluoren-2-yl) -9,9-spir
  • Materials for forming the electron injection layer include lithium oxide (Li 2 O), magnesium oxide (MgO), alumina (Al 2 O 3 ), lithium fluoride (LiF), sodium fluoride (NaF), magnesium fluoride ( MgF 2 ), cesium fluoride (CsF), strontium fluoride (SrF 2 ), molybdenum trioxide (MoO 3 ), aluminum, lithium acetylacetonate (Li (acac)), lithium acetate, lithium benzoate, etc. .
  • cathode material examples include aluminum, magnesium-silver alloy, aluminum-lithium alloy, lithium, sodium, potassium, cesium and the like.
  • the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer are formed by sequentially forming the hole transport layer and the light emitting layer, instead of performing the vacuum deposition operation.
  • An organic EL device having a charge transporting thin film formed of a transporting varnish can be produced.
  • the charge transporting varnish of the present invention is applied onto an anode substrate, a hole injection layer is prepared by the above-described method, a hole transport layer and a light emitting layer are sequentially formed thereon, and a cathode electrode is further formed. Is evaporated to obtain an organic EL element.
  • the same materials as described above can be used, and the same cleaning treatment and surface treatment can be performed.
  • a hole transporting polymer material or a light emitting polymer material, or a material obtained by adding a dopant to these materials is dissolved or uniformly dispersed.
  • coating on a positive hole injection layer or a positive hole transport layer is mentioned.
  • Examples of the light-emitting polymer material include polyfluorene derivatives such as poly (9,9-dialkylfluorene) (PDAF), poly (2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene) (MEH). -PPV) and the like, polythiophene derivatives such as poly (3-alkylthiophene) (PAT), polyvinylcarbazole (PVCz) and the like.
  • PDAF poly (9,9-dialkylfluorene)
  • MEH 2-methoxy-5- (2′-ethylhexoxy) -1,4-phenylenevinylene
  • PVT polythiophene derivatives
  • PVCz polyvinylcarbazole
  • Examples of the solvent include toluene, xylene, chloroform and the like.
  • Examples of the dissolution or uniform dispersion method include methods such as stirring, heating and stirring, and ultrasonic dispersion.
  • the coating method is not particularly limited, and examples thereof include an inkjet method, a spray method, a dip method, a spin coating method, a transfer printing method, a roll coating method, and a brush coating.
  • the application is preferably performed under an inert gas such as nitrogen or argon.
  • the firing method a method of heating with an oven or a hot plate under an inert gas or in a vacuum can be mentioned.
  • An example of the method for producing the organic EL device of the present invention when the thin film obtained from the charge transporting varnish of the present invention is a hole injection transport layer is as follows.
  • a hole injection transport layer is formed on the anode substrate, and a light emitting layer, an electron transport layer, an electron injection layer, and a cathode are provided in this order on the hole injection transport layer.
  • Examples of the formation method and specific examples of the light emitting layer, the electron transport layer, and the electron injection layer include the same ones as described above.
  • Examples of the anode material, the light emitting layer, the light emitting dopant, the material for forming the electron transport layer and the electron block layer, and the cathode material include the same materials as described above.
  • a hole block layer, an electron block layer, or the like may be provided between the electrode and any of the layers as necessary.
  • a material for forming the electron blocking layer tris (phenylpyrazole) iridium and the like can be given.
  • the materials constituting the anode and the cathode and the layer formed between them differ depending on whether a device having a bottom emission structure or a top emission structure is manufactured. Therefore, the material is appropriately selected in consideration of this point. .
  • a transparent anode is used on the substrate side, and light is extracted from the substrate side
  • a reflective anode made of metal is used in the opposite direction to the substrate.
  • Light is extracted from a certain transparent electrode (cathode) side. Therefore, for example, regarding the anode material, a transparent anode such as ITO is used when manufacturing an element having a bottom emission structure, and a reflective anode such as Al / Nd is used when manufacturing an element having a top emission structure.
  • the organic EL device of the present invention may be sealed together with a water catching agent or the like according to a standard method in order to prevent deterioration of characteristics.
  • the flask was charged with 3.0 g of tetraaniline, 1.91 g of 2,3,4,5-tetrafluorobenzoyl chloride and 60 g of N, N-dimethylacetamide, and the atmosphere in the flask was replaced with nitrogen. Stir. After completion of the stirring, 30 mL of a 5 mol / L sodium hydroxide aqueous solution was added and further stirred for 30 minutes. Ethyl acetate and saturated brine were mixed into the reaction solution and subjected to liquid separation treatment until the pH reached 7 (3 times). The obtained organic layer was dried over sodium sulfate, and then concentrated under reduced pressure. To this concentrated solution, 15 mL of THF was added.
  • Example 2-2 0.2218 g of oligoaniline derivative 1 and 0.272 g of arylsulfonic acid 2 represented by the following formula as a dopant were dissolved in 8 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere. To the obtained solution, 12 g of cyclohexanol and 4 g of propylene glycol were added and stirred to prepare a charge transporting varnish. Aryl sulfonic acid 2 was synthesized according to International Publication No. 2006/025342.
  • Example 2-3 0.089 g of oligoaniline derivative 1 and 0.111 g of arylsulfonic acid 2 were dissolved in 3.3 g of 1,3-dimethyl-2-imidazolidinone under a nitrogen atmosphere. To the obtained solution, 4.9 g of cyclohexanol and 1.6 g of propylene glycol were added and stirred, and 0.007 g of 3,3,3-trifluoropropyltrimethoxysilane and 0.013 g of phenyltrimethoxysilane were further added thereto. In addition, the mixture was stirred to prepare a charge transporting varnish.
  • Example 3-1 Manufacture and characteristic evaluation of organic EL device
  • the varnish obtained in Example 2-1 was applied to an ITO substrate using a spin coater, then dried at 80 ° C. for 5 minutes, and further baked at 230 ° C. for 10 minutes in an air atmosphere. A uniform thin film of 30 nm was formed.
  • As the ITO substrate a glass substrate of 25 mm ⁇ 25 mm ⁇ 0.7 t with indium tin oxide (ITO) patterned to a thickness of 150 nm on the surface is used, and an O 2 plasma cleaning device (150 W, 30 seconds) before use. To remove impurities on the surface.
  • ITO indium tin oxide
  • a thin film of ⁇ -NPD, Alq 3 , lithium fluoride, and aluminum is sequentially stacked on the ITO substrate on which the thin film has been formed using a vapor deposition apparatus (vacuum degree: 1.0 ⁇ 10 ⁇ 5 Pa). An element was obtained. At this time, the deposition rate was 0.2 nm / second for ⁇ -NPD, Alq 3 and aluminum, and 0.02 nm / second for lithium fluoride, and the film thicknesses were 30 nm, 40 nm, and 0.0 nm, respectively. It was 5 nm and 120 nm.
  • the characteristic was evaluated. Sealing was performed according to the following procedure. In a nitrogen atmosphere with an oxygen concentration of 2 ppm or less and a dew point of -85 ° C or less, the organic EL element is placed between the sealing substrates, and the sealing substrate is adhesive (MORESCO Co., Ltd., Mores Moisture Cut WB90US (P)) Was pasted together. At this time, a water-absorbing agent (manufactured by Dynic Co., Ltd., HD-071010W-40) was placed in the sealing substrate together with the organic EL element. The bonded sealing substrate was irradiated with UV light (wavelength 365 nm, irradiation amount 6,000 mJ / cm 2 ), and then annealed at 80 ° C. for 1 hour to cure the adhesive.
  • UV light wavelength 365 nm, irradiation amount 6,000 mJ / cm 2
  • Examples 3-2 to 3-3 An organic EL device was produced in the same manner as in Example 3-1, except that the varnish obtained in Examples 2-2 to 2-3 was used instead of the varnish obtained in Example 2-1. .
  • a charge transporting varnish containing the oligoaniline derivative of the present invention as a charge transporting material can provide a charge transporting thin film suitable as a hole injection layer capable of realizing a high-luminance organic EL device. I found out that Such an element was also excellent in durability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 式(1)で表されるオリゴアニリン誘導体、該オリゴアニリン誘導体を含む電荷輸送性ワニス、及び有機EL素子を提供する(式中、R1は、水素原子又は置換されていてもよいアルキル基を表し、R2~R10は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又は置換されていてもよい、アルキル基、アルケニル基、アルキニル基、アリール基若しくはヘテロアリール基を表し、Aは、置換されていてもよい、フルオロアルキル基、フルオロシクロアルキル基、フルオロビシクロアルキル基、フルオロアルケニル基若しくはフルオロアルキニル基、置換されていてもよいフルオロアリール基、置換フェニル基、置換されていてもよいフルオロアラルキル基、又は置換アラルキル基を表し、n1は、1~20の整数を表す。)

Description

オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
 本発明は、オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス(EL)素子に関する。
 有機EL素子には、発光層や電荷注入層として、有機化合物からなる電荷輸送性薄膜が用いられる。特に、正孔注入層は、陽極と、正孔輸送層あるいは発光層との電荷の授受を担い、有機EL素子の低電圧駆動及び高輝度を達成するために重要な機能を果たす。
 正孔注入層の形成方法は、蒸着法に代表されるドライプロセスとスピンコート法に代表されるウェットプロセスとに大別され、これら各プロセスを比べると、ウェットプロセスの方が大面積に平坦性の高い薄膜を効率的に製造できる。それゆえ、有機ELディスプレイの大面積化が進められている現在、ウェットプロセスで形成可能な正孔注入層が望まれている。
 このような事情に鑑み、本発明者は、各種ウェットプロセスに適用可能であるとともに、有機EL素子の正孔注入層に適用した場合に優れたEL素子特性を実現できる薄膜を与える電荷輸送性材料や、それに用いる有機溶媒に対する溶解性の良好な化合物を開発してきている(例えば、特許文献1~4参照)。
国際公開第2008/032616号 国際公開第2008/129947号 国際公開第2006/025342号 国際公開第2010/058777号
 本発明は、これまでに開発してきた前記特許文献の技術と同様に、有機溶媒への良好な溶解性を示すとともに、薄膜化して正孔注入層に適用した場合に優れた電気特性を有する有機EL素子を実現できる新規オリゴアニリン誘導体、該オリゴアニリン誘導体を含む電荷輸送性ワニス、及び有機EL素子を提供することを目的とする。
 これまでの開発の中で、電荷輸送性物質としてフッ素原子を含まない化合物を用いる場合、ともに用いるドーパントによっては特性が低下することがあった。本発明者は、この問題を解決するために鋭意検討を重ねた結果、特定のフッ素含有オリゴアニリン誘導体が有機溶媒への高い溶解性を示すとともに、それを任意のドーパントとともに有機溶媒へ溶解させて調製したワニスから得られる薄膜が高い電荷輸送性を有し、当該薄膜を有機EL素子の正孔注入層に適用した場合に、優れた電気特性を実現できることを見出し、本発明を完成させた。
 すなわち、本発明は、下記オリゴアニリン誘導体、電荷輸送性ワニス及び有機EL素子を提供する。
1.式(1)で表されるオリゴアニリン誘導体。
Figure JPOXMLDOC01-appb-C000003
(式中、R1は、水素原子、又はZで置換されていてもよい炭素数1~20のアルキル基を表し、Zは、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、カルボン酸基、Z'で置換されていてもよい炭素数6~20のアリール基又はZ'で置換されていてもよい炭素数2~20のヘテロアリール基を表し、Z'は、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基又はカルボン酸基を表し;
 R2~R10は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
 Aは、
  シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基、
  シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のフルオロアリール基、
  炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のアリール基、
  シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のフルオロアルコキシ基、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されていてもよい炭素数7~20のフルオロアラルキル基、又は
  炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数7~20のアラルキル基
を表し;
 n1は、1~20の整数を表す。)
2.Aが、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数1~20のフルオロアルキル基、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のフルオロアリール基、又は炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のアリール基である1のオリゴアニリン誘導体。
3.Aが、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、3以上のフッ素原子で置換されたフェニル基、又は炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよいフェニル基である2のアニリン誘導体。
4.R1が水素原子である1~3のいずれかのオリゴアニリン誘導体。
5.R2~R10が水素原子である1~4のいずれかのオリゴアニリン誘導体。
6.n1が、2~10である1~5のいずれかのオリゴアニリン誘導体。
7.1~6のいずれかのオリゴアニリン誘導体からなる電荷輸送性物質。
8.7の電荷輸送性物質及び有機溶媒を含む電荷輸送性ワニス。
9.更にドーパントを含む8の電荷輸送性ワニス。
10.8又は9の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。
11.10の電荷輸送性薄膜を有する電子デバイス。
12.10の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
13.式(2)で表されるアミン化合物と式(3)で表されるフッ素含有酸ハロゲン化物とを反応させることを特徴とする1のオリゴアニリン誘導体の製造方法。
Figure JPOXMLDOC01-appb-C000004
(式中、R1~R10、A及びn1は、前記と同じ。Xは、ハロゲン原子を表す。)
 本発明のオリゴアニリン誘導体はフッ素原子を含むため分子内に極性が生じ、それによって有機溶媒への溶解性が向上する。よって、これをドーパントとともに有機溶媒へ溶解させて、容易に電荷輸送性ワニスを調製することができる。
 本発明の電荷輸送性ワニスから作製した薄膜は、前記オリゴアニリン誘導体を含むため、ドーパントの種類によらず、高い電荷輸送性を示す。よって、有機EL素子をはじめとした電子デバイス用薄膜として好適に用いることができる。特に、この薄膜を有機EL素子の正孔注入層に適用することで、輝度特性に優れた有機EL素子を得ることができる。
 また、本発明の電荷輸送性ワニスは、スピンコート法やスリットコート法等、大面積に成膜可能な各種ウェットプロセスを用いた場合でも電荷輸送性に優れた薄膜を再現性よく製造できるため、近年の有機EL素子の分野における進展にも十分対応できる。
[オリゴアニリン誘導体]
 本発明のオリゴアニリン誘導体は、式(1)で表される。
Figure JPOXMLDOC01-appb-C000005
 式中、R1は、水素原子、又はZで置換されていてもよい炭素数1~20のアルキル基を表す。Zは、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、カルボン酸基、Z'で置換されていてもよい炭素数6~20のアリール基又はZ'で置換されていてもよい炭素数2~20のヘテロアリール基を表し、Z'は、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基又はカルボン酸基を表す。
 R2~R10は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表す。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 炭素数1~20のアルキル基は直鎖状、分岐状、環状のいずれでもよく、その具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基等の炭素数1~20の直鎖状又は分岐状アルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基、シクロデシル基、ビシクロブチル基、ビシクロペンチル基、ビシクロヘキシル基、ビシクロヘプチル基、ビシクロオクチル基、ビシクロノニル基、ビシクロデシル基等の炭素数3~20の環状アルキル基が挙げられる。
 炭素数2~20のアルケニル基は直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エテニル基、n-1-プロペニル基、n-2-プロペニル基、1-メチルエテニル基、n-1-ブテニル基、n-2-ブテニル基、n-3-ブテニル基、2-メチル-1-プロペニル基、2-メチル-2-プロペニル基、1-エチルエテニル基、1-メチル-1-プロペニル基、1-メチル-2-プロペニル基、n-1-ペンテニル基、n-1-デセニル基、n-1-エイコセニル基等が挙げられる。
 炭素数2~20のアルキニル基は直鎖状、分岐状、環状のいずれでもよく、その具体例としては、エチニル基、n-1-プロピニル基、n-2-プロピニル基、n-1-ブチニル基、n-2-ブチニル基、n-3-ブチニル基、1-メチル-2-プロピニル基、n-1-ペンチニル基、n-2-ペンチニル基、n-3-ペンチニル基、n-4-ペンチニル基、1-メチル-n-ブチニル基、2-メチル-n-ブチニル基、3-メチル-n-ブチニル基、1,1-ジメチル-n-プロピニル基、n-1-ヘキシニル基、n-1-デシニル基、n-1-ペンタデシニル基、n-1-エイコシニル基等が挙げられる。
 炭素数6~20のアリール基の具体例としては、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。
 炭素数2~20のヘテロアリール基の具体例としては、2-チエニル基、3-チエニル基、2-フラニル基、3-フラニル基、2-オキサゾリル基、4-オキサゾリル基、5-オキサゾリル基、3-イソオキサゾリル基、4-イソオキサゾリル基、5-イソオキサゾリル基、2-チアゾリル基、4-チアゾリル基、5-チアゾリル基、3-イソチアゾリル基、4-イソチアゾリル基、5-イソチアゾリル基、2-イミダゾリル基、4-イミダゾリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基等が挙げられる。
 これらのうち、R1としては、オリゴアニリン誘導体の有機溶媒への溶解性を考慮すると、水素原子、又はZで置換されていてもよい炭素数1~10のアルキル基が好ましく、水素原子、又はZで置換されていてもよい炭素数1~4のアルキル基がより好ましく、水素原子が最適である。なお、複数のR1は、それぞれ同一であっても異なっていてもよい。
 R1が水素原子である場合、アリールスルホン酸、ヘテロポリ酸等のプロトン酸等のドーパントとともに用いた場合に、特に優れた電荷輸送性を実現できる。
 また、これらのうち、R2~R10としては、オリゴアニリン誘導体の有機溶媒への溶解性を考慮すると、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい炭素数1~10のアルキル基が好ましく、水素原子、ハロゲン原子、又はハロゲン原子で置換されていてもよい炭素数1~4のアルキル基がより好ましく、オリゴアニリン誘導体の有機溶媒への溶解性と電荷輸送性とのバランスを考慮すると、水素原子が最適である。なお、複数のR2~R5は、それぞれ同一であっても異なっていてもよい。
 式(1)中、Aは、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基;シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のフルオロアリール基;炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のアリール基;シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のフルオロアルコキシ基、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されていてもよい炭素数7~20のフルオロアラルキル基;又は炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数7~20のアラルキル基を表す。
 前記フルオロアルキル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換された直鎖状又は分岐状のアルキル基であれば特に限定されないが、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、1-フルオロエチル基、2-フルオロエチル基、1,2-ジフルオロエチル基、1,1-ジフルオロエチル基、2,2-ジフルオロエチル基、1,1,2-トリフルオロエチル基、1,2,2-トリフルオロエチル基、2,2,2-トリフルオロエチル基、1,1,2,2-テトラフルオロエチル基、1,2,2,2-テトラフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、1-フルオロプロピル基、2-フルオロプロピル基、3-フルオロプロピル基、1,1-ジフルオロプロピル基、1,2-ジフルオロプロピル基、1,3-ジフルオロプロピル基、2,2-ジフルオロプロピル基、2,3-ジフルオロプロピル基、3,3-ジフルオロプロピル基、1,1,2-トリフルオロプロピル基、1,1,3-トリフルオロプロピル基、1,2,3-トリフルオロプロピル基、1,3,3-トリフルオロプロピル基、2,2,3-トリフルオロプロピル基、2,3,3-トリフルオロプロピル基、3,3,3-トリフルオロプロピル基、1,1,2,2-テトラフルオロプロピル基、1,1,2,3-テトラフルオロプロピル基、1,2,2,3-テトラフルオロプロピル基、1,3,3,3-テトラフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2,3,3,3-テトラフルオロプロピル基、1,1,2,2,3-ペンタフルオロプロピル基、1,2,2,3,3-ペンタフルオロプロピル基、1,1,3,3,3-ペンタフルオロプロピル基、1,2,3,3,3-ペンタフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、ヘプタフルオロプロピル基等が挙げられる。
 前記フルオロシクロアルキル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたシクロアルキル基であれば特に限定されないが、例えば、1-フルオロシクロプロピル基、2-フルオロシクロプロピル基、2,2-ジフルオロシクロプロピル基、2,2,3,3-テトラフルオロシクロプロピル基、ペンタフルオロシクロプロピル基、2,2-ジフルオロシクロブチル基、2,2,3,3-テトラフルオロシクロブチル基、2,2,3,3,4,4-ヘキサフルオロシクロブチル基、ヘプタフルオロシクロブチル基、1-フルオロシクロペンチル基、3-フルオロシクロペンチル基、3,3-ジフルオロシクロペンチル基、3,3,4,4-テトラフルオロシクロペンチル基、ノナフルオロシクロペンチル基、1-フルオロシクロヘキシル基、2-フルオロシクロヘキシル基、4-フルオロシクロヘキシル基、4,4-ジフルオロシクロヘキシル基、2,2,3,3-テトラフルオロシクロヘキシル基、2,3,4,5,6-ペンタフルオロシクロヘキシル基、ウンデカフルオロシクロヘキシル基等が挙げられる。
 前記フルオロビシクロアルキル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたビシクロアルキル基であれば特に限定されないが、例えば、3-フルオロビシクロ[1.1.0]ブタン-1-イル基、2,2,4,4-テトラフルオロビシクロ[1.1.0]ブタン-1-イル基、ペンタフルオロビシクロ[1.1.0]ブタン-1-イル基、3-フルオロビシクロ[1.1.1]ペンタン-1-イル基、2,2,4,4,5-ペンタフルオロビシクロ[1.1.1]ペンタン-1-イル基、2,2,4,4,5,5-ヘキサフルオロビシクロ[1.1.1]ぺンタン-1-イル基、5-フルオロビシクロ[3.1.0]ヘキサン-6-イル基、6-フルオロビシクロ[3.1.0]ヘキサン-6-イル基、6,6-ジフルオロビシクロ[3.1.0]ヘキサン-2-イル基、2,2,3,3,5,5,6,6-オクタフルオロビシクロ[2.2.0]ヘキサン-1-イル基、1-フルオロビシクロ[2.2.1]ヘプタン-2-イル基、3-フルオロビシクロ[2.2.1]ヘプタン-2-イル基、4-フルオロビシクロ[2.2.1]ヘプタン-1-イル基、5-フルオロビシクロ[3.1.1]ヘプタン-1-イル基、1,3,3,4,5,5,6,6,7,7-デカフルオロビシクロ[2.2.1]ヘプタン-2-イル基、ウンデカフルオロビシクロ[2.2.1]ヘプタン-2-イル基、3-フルオロビシクロ[2.2.2]オクタン-1-イル基、4-フルオロビシクロ[2.2.2]オクタン-1-イル基等が挙げられる。
 前記フルオロアルケニル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアルケニル基であれば特に限定されないが、例えば、1-フルオロエテニル基、2-フルオロエテニル基、1,2-ジフルオロエテニル基、1,2,2-トリフルオロエテニル基、2,3,3-トリフルオロ-1-プロペニル基、3,3,3-トリフルオロ-1-プロペニル基、2,3,3,3-テトラフルオロ-1-プロペニル基、ペンタフルオロ-1-プロペニル基、1-フルオロ-2-プロペニル基、1,1-ジフルオロ-2-プロペニル基、2,3-ジフルオロ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、2,3,3-トリフルオロ-2-プロペニル基、1,2,3,3-テトラフルオロ-2-プロペニル基、ペンタフルオロ-2-プロペニル基等が挙げられる。
 前記フルオロアルキニル基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアルキニル基であれば特に限定されないが、例えば、フルオロエチニル基、3-フルオロ-1-プロピニル基、3,3-ジフルオロ-1-プロピニル基、3,3,3-トリフルオロ-1-プロピニル基、1-フルオロ-2-プロピニル基、1,1-ジフルオロ-2-プロピニル基等が挙げられる。
 前記フルオロアリール基は、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアリール基であれば特に限定されないが、例えば、2-フルオロフェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2,3-ジフルオロフェニル基、2,4-ジフルオロフェニル基、2,5-ジフルオロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、3,5-ジフルオロフェニル基、2,3,4-トリフルオロフェニル基、2,3,5-トリフルオロフェニル基、2,3,6-トリフルオロフェニル基、2,4,5-トリフルオロフェニル基、2,4,6-トリフルオロフェニル基、3,4,5-トリフルオロフェニル基、2,3,4,5-テトラフルオロフェニル基、2,3,4,6-テトラフルオロフェニル基、2,3,5,6-テトラフルオロフェニル基、ペンタフルオロフェニル基、2-フルオロ-1-ナフチル基、3-フルオロ-1-ナフチル基、4-フルオロ-1-ナフチル基、6-フルオロ-1-ナフチル基、7-フルオロ-1-ナフチル基、8-フルオロ-1-ナフチル基、4,5-ジフルオロ-1-ナフチル基、5,7-ジフルオロ-1-ナフチル基、5,8-ジフルオロ-1-ナフチル基、5,6,7,8-テトラフルオロ-1-ナフチル基、ヘプタフルオロ-1-ナフチル基、1-フルオロ-2-ナフチル基、5-フルオロ-2-ナフチル基、6-フルオロ-2-ナフチル基、7-フルオロ-2-ナフチル基、5,7-ジフルオロ-2-ナフチル基、ヘプタフルオロ-2-ナフチル基等が挙げられる。
 前記フルオロアリール基としては、オリゴアニリン誘導体の有機溶媒への溶解性、オリゴアニリン誘導体の電荷輸送性、オリゴアニリン誘導体の原料の入手容易性等のバランスを考慮すると、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、3以上のフッ素原子で置換されたフェニル基が好ましい。
 前記フルオロアルコキシ基としては、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアルコキシ基であれば特に限定されないが、例えば、フルオロメトキシ基、ジフルオロメトキシ基、トリフルオロメトキシ基、1-フルオロエトキシ基、2-フルオロエトキシ基、1,2-ジフルオロエトキシ基、1,1-ジフルオロエトキシ基、2,2-ジフルオロエトキシ基、1,1,2-トリフルオロエトキシ基、1,2,2-トリフルオロエトキシ基、2,2,2-トリフルオロエトキシ基、1,1,2,2-テトラフルオロエトキシ基、1,2,2,2-テトラフルオロエトキシ基、1,1,2,2,2-ペンタフルオロエトキシ基、1-フルオロプロポキシ基、2-フルオロプロポキシ基、3-フルオロプロポキシ基、1,1-ジフルオロプロポキシ基、1,2-ジフルオロプロポキシ基、1,3-ジフルオロプロポキシ基、2,2-ジフルオロプロポキシ基、2,3-ジフルオロプロポキシ基、3,3-ジフルオロプロポキシ基、1,1,2-トリフルオロプロポキシ基、1,1,3-トリフルオロプロポキシ基、1,2,3-トリフルオロプロポキシ基、1,3,3-トリフルオロプロポキシ基、2,2,3-トリフルオロプロポキシ基、2,3,3-トリフルオロプロポキシ基、3,3,3-トリフルオロプロポキシ基、1,1,2,2-テトラフルオロプロポキシ基、1,1,2,3-テトラフルオロプロポキシ基、1,2,2,3-テトラフルオロプロポキシ基、1,3,3,3-テトラフルオロプロポキシ基、2,2,3,3-テトラフルオロプロポキシ基、2,3,3,3-テトラフルオロプロポキシ基、1,1,2,2,3-ペンタフルオロプロポキシ基、1,2,2,3,3-ペンタフルオロプロポキシ基、1,1,3,3,3-ペンタフルオロプロポキシ基、1,2,3,3,3-ペンタフルオロプロポキシ基、2,2,3,3,3-ペンタフルオロプロポキシ基、ヘプタフルオロプロポキシ基等が挙げられる。
 前記炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のアリール基(以下、便宜上、置換されたアリール基ともいう)としては、炭素原子上の少なくとも1個の水素原子が炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基又は炭素数2~20のフルオロアルキニル基で置換されたアリール基である限り特に限定されないが、例えば、2-(トリフルオロメチル)フェニル基、3-(トリフルオロメチル)フェニル基、4-(トリフルオロメチル)フェニル基、4-エトキシ-3-(トリフルオロメチル)フェニル基、3-フルオロ-4-トリフルオロメチルフェニル基、4-フルオロ-3-トリフルオロメチルフェニル基、4-フルオロ-2-トリフルオロメチルフェニル基、2-フルオロ-5-(トリフルオロメチル)フェニル基、3-フルオロ-5-(トリフルオロメチル)フェニル基、3,5-ジ(トリフルオロメチル)フェニル基、2,4,6-トリ(トリフルオロメチル)フェニル基、4-(ペンタフルオロエチル)フェニル基、4-(3,3,3-トリフルオロプロピル)フェニル基、2,3,5,6-テトラフルオロ-4-トリフルオロメチルフェニル基、4-(パーフルオロビニル)フェニル基、4-(パーフルオロプロペニル)フェニル基、4-(パーフルオロブテニル)フェニル基等が挙げられる。
 前記置換されたアリール基としては、オリゴアニリン誘導体の有機溶媒への溶解性、オリゴアニリン誘導体の電荷輸送性、オリゴアニリン誘導体の原料の入手容易性等のバランスを考慮すると、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよいフェニル基(以下、便宜上、置換されたフェニル基ともいう)が好ましく、1~3個のトリフルオロメチル基で置換されたフェニル基がより好ましく、p-トリフルオロメチルフェニル基がより一層好ましい。
 前記フルオロアラルキル基としては、炭素原子上の少なくとも1個の水素原子がフッ素原子で置換されたアラルキル基である限り特に限定されないが、例えば、2-フルオロベンジル基、3-フルオロベンジル基、4-フルオロベンジル基、2,3-ジフルオロベンジル基、2,4-ジフルオロベンジル基、2,5-ジフルオロベンジル基、2,6-ジフルオロベンジル基、3,4-ジフルオロベンジル基、3,5-ジフルオロベンジル基、2,3,4-トリフルオロベンジル基、2,3,5-トリフルオロベンジル基、2,3,6-トリフルオロベンジル基、2,4,5-トリフルオロベンジル基、2,4,6-トリフルオロベンジル基、2,3,4,5-テトラフルオロベンジル基、2,3,4,6-テトラフルオロベンジル基、2,3,5,6-テトラフルオロベンジル基、2,3,4,5,6-ペンタフルオロベンジル基等が挙げられる。
 前記炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数7~20のアラルキル基としては、炭素原子上の少なくとも1個の水素原子が炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基又は炭素数2~20のフルオロアルキニル基で置換されたアラルキル基である限り特に限定されないが、2-トリフルオロメチルベンジル基、3-トリフルオロメチルベンジル基、4-トリフルオロメチルベンジル基、2,4-ジ(トリフルオロメチル)ベンジル基、2,5-ジ(トリフルオロメチル)ベンジル基、2,6-ジ(トリフルオロメチル)ベンジル基、3,5-ジ(トリフルオロメチル)ベンジル基、2,4,6-トリ(トリフルオロメチル)ベンジル基等が挙げられる。
 これらの中でも、Aは、前記置換されていてもよい炭素数1~20のフルオロアルキル基、前記置換されていてもよい炭素数6~20のフルオロアリール基又は前記置換されたアリール基が好ましく、前記置換されていてもよい炭素数6~20のフルオロアリール基又は前記置換されたアリール基がより好ましく、前記置換されていてもよいフルオロフェニル基又は前記置換されたフェニル基がより一層好ましく、前記置換されていてもよいトリフルオロフェニル基、前記置換されていてもよいテトラフルオロフェニル基、前記置換されていてもよいペンタフルオロフェニル基又は1~3個のトリフルオロメチル基で置換されたフェニル基が更に好ましい。
 以下、Aとして好適な基の具体例を挙げるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 また、式(1)中、n1は1~20の整数であるが、オリゴアニリン誘導体の溶媒に対する溶解性の点から、10以下が好ましく、8以下がより好ましく、5以下がより一層好ましく、4以下が更に好ましく、また、オリゴアニリン誘導体の電荷輸送性を高めるという点から、2以上が好ましく、3以上がより好ましく、溶解性と電荷輸送性のバランスを考慮すると、3が最適である。
[オリゴアニリン誘導体の合成方法]
 本発明のオリゴアニリン誘導体は、式(2)で表されるアミン化合物と式(3)で表されるフッ素含有酸ハロゲン化物とを反応させることで合成することができる。
Figure JPOXMLDOC01-appb-C000012
(式中、R1~R10、A及びn1は、前記と同じ。Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を表すが、塩素原子又は臭素原子が好ましい。)
 式(2)で表されるアミン化合物としては、例えば、下記式で表されるものが挙げられるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000013
 式(3)で表されるフッ素含有酸ハロゲン化物としては、2-フルオロベンゾイルクロリド、3-フルオロベンゾイルクロリド、4-フルオロベンゾイルクロリド、2-フルオロ-4-メチルベンゾイルクロリド、2-フルオロ-5-メチルベンゾイルクロリド、3-フルオロ-4-メチルベンゾイルクロリド、3-フルオロ-6-メチルベンゾイルクロリド、4-フルオロ-2-メチルベンゾイルクロリド、4-フルオロ-3-メチルベンゾイルクロリド、2,3-ジフルオロベンゾイルクロリド、2,4-ジフルオロベンゾイルクロリド、2,5-ジフルオロベンゾイルクロリド、2,6-ジフルオロベンゾイルクロリド、3,4-ジフルオロベンゾイルクロリド、3,5-ジフルオロベンゾイルクロリド、3-クロロ-2-フルオロベンゾイルクロリド、4-クロロ-2-フルオロベンゾイルクロリド、5-クロロ-2-フルオロベンゾイルクロリド、2-クロロ-6-フルオロベンゾイルクロリド、2-クロロ-3-フルオロベンゾイルクロリド、2-クロロ-4-フルオロベンゾイルクロリド、2-クロロ-5-フルオロベンゾイルクロリド、3-クロロ-4-フルオロベンゾイルクロリド、3-クロロ-5-フルオロベンゾイルクロリド、3-ブロモ-2-フルオロベンゾイルクロリド、4-ブロモ-2-フルオロベンゾイルクロリド、5-ブロモ-2-フルオロベンゾイルクロリド、2-ブロモ-6-フルオロベンゾイルクロリド、2-ブロモ-3-フルオロベンゾイルクロリド、2-ブロモ-4-フルオロベンゾイルクロリド、2-ブロモ-5-フルオロベンゾイルクロリド、3-ブロモ-4-フルオロベンゾイルクロリド、3-ブロモ-5-フルオロベンゾイルクロリド、2-フルオロ-5-ヨードベンゾイルクロリド、2-フルオロ-6-ヨードベンゾイルクロリド、2-フルオロ-3-(トリフルオロメチル)ベンゾイルクロリド、2-フルオロ-5-(トリフルオロメチル)ベンゾイルクロリド、2-フルオロ-6-(トリフルオロメチル)ベンゾイルクロリド、3-フルオロ-4-(トリフルオロメチル)ベンゾイルクロリド、3-フルオロ-5-(トリフルオロメチル)ベンゾイルクロリド、3-フルオロ-6-(トリフルオロメチル)ベンゾイルクロリド、4-フルオロ-2-(トリフルオロメチル)ベンゾイルクロリド、4-フルオロ-3-(トリフルオロメチル)ベンゾイルクロリド、2-フルオロ-4-ニトロベンゾイルクロリド、2-フルオロ-5-ニトロベンゾイルクロリド、3-フルオロ-2-ニトロベンゾイルクロリド、3-フルオロ-4-ニトロベンゾイルクロリド、3-フルオロ-6-ニトロベンゾイルクロリド、4-フルオロ-2-ニトロベンゾイルクロリド、4-フルオロ-3-ニトロベンゾイルクロリド、4-シアノ-2-フルオロベンゾイルクロリド、3-シアノ-5-フルオロベンゾイルクロリド、2,3,4-トリフルオロベンゾイルクロリド、2,3,5-トリフルオロベンゾイルクロリド、2,3,6-トリフルオロベンゾイルクロリド、2,4,5-トリフルオロベンゾイルクロリド、2,4,6-トリフルオロベンゾイルクロリド、3,4,5-トリフルオロベンゾイルクロリド、4-クロロ-2,4-ジフルオロベンゾイルクロリド、2,4-ジクロロ-5-フルオロ-4-ニトロベンゾイルクロリド、2,4,5-トリフルオロ-3-メチル-6-ニトロベンゾイルクロリド、2,3,4,5-テトラフルオロベンゾイルクロリド、2,3,5,6-テトラフルオロベンゾイルクロリド、2,3,5,6-テトラフルオロ-4-メチル-ベンゾイルクロリド、2,3,4,5-テトラフルオロ-6-ニトロベンゾイルクロリド、2,3,4,5,6-ペンタフルオロベンゾイルクロリド、2-(トリフルオロメチル)ベンゾイルクロリド、3-(トリフルオロメチル)ベンゾイルクロリド、4-(トリフルオロメチル)ベンゾイルクロリド、3-トリフルオロメチル-4-エトキシベンゾイルクロリド、3,5-ビス(トリフルオロメチル)ベンゾイルクロリド、2,4,6-トリス(トリフルオロメチル)ベンゾイルクロリド、4-(ペンタフルオロエチル)ベンゾイルクロリド、4-(3-テトラフルオロプロピル)ベンゾイルクロリド、2,3,5,6-テトラフルオロ-4-(トリフルオロメチル)ベンゾイルクロリド、2,3,5,6-テトラフルオロ-4-(トリフルオロビニル)ベンゾイルクロリド、2,3,5,6-テトラフルオロ-4-(ペンタフルオロアリル)ベンゾイルクロリド等が挙げられるが、これらに限定されない。
 反応溶媒は、非プロトン性極性有機溶媒が好ましく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等が挙げられる。反応後の反応溶媒の除去容易性の観点から、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジオキサン等が好適である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 反応終了後は、常法にしたがって後処理をし、目的とするオリゴアニリン誘導体を得ることができる。
 なお、式(3)で表されるフッ素含有酸ハロゲン化物は、対応するフッ素含有カルボン酸を、例えば、塩化チオニルや塩化オキサリル、塩化ホスホリル、塩化スルフリル、三塩化リン、五塩化リン等の求電子的ハロゲン化剤と反応させることによって得ることができる。
 また、対応するフッ素含有カルボン酸は、市販品を用いてもよく、公知の方法(例えば、特開平9-67303号公報、特開平9-67304号公報、特開2002-284733号公報等に記載の方法)で合成することもできる。
 以下、式(1)で表されるオリゴアニリン誘導体の具体例を挙げるが、これらに限定されない。なお、表の「R1~R10」、「A」及び「n1」は、各行に示された各化合物に関する式(1)中の規定を表すものであり、例えば式(E1)で表される化合物及び式(E138)で表される化合物は、それぞれ次のとおりである。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
[電荷輸送性ワニス]
 本発明の電荷輸送性ワニスは、前記オリゴアニリン誘導体及び有機溶媒を含む。
[有機溶媒]
 電荷輸送性ワニスを調製する際に用いられる有機溶媒としては、電荷輸送性物質及びドーパントを良好に溶解し得る高溶解性溶媒を用いることができる。
 このような高溶解性溶媒としては、例えば、シクロヘキサノン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイソブチルアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン等の有機溶媒が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で又は2種以上混合して用いることができ、その使用量は、ワニスに使用する全溶媒中5~100質量%とすることができる。
 なお、電荷輸送性物質及びドーパントは、いずれも前記溶媒に完全に溶解しているか、均一に分散している状態となっていることが好ましく、完全に溶解していることがより好ましい。
 また、本発明においては、ワニスに、25℃で10~200mPa・s、特に35~150mPa・sの粘度を有し、常圧(大気圧)で沸点50~300℃、特に150~250℃の高粘度有機溶媒を少なくとも1種含有させることができる。このような溶媒を加えることで、ワニスの粘度の調整が容易になり、平坦性の高い薄膜を再現性よく与える、用いる塗布方法に応じたワニス調製が可能となる。
 高粘度有機溶媒としては、例えば、シクロヘキサノール、エチレングリコール、エチレングリコールジグリシジルエーテル、1,3-オクチレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、1,3-ブタンジオール、2,3-ブタンジオール、1,4-ブタンジオール、プロピレングリコール、へキシレングリコール等が挙げられるが、これらに限定されない。
 本発明のワニスに用いられる溶媒全体に対する高粘度有機溶媒の添加割合は、固体が析出しない範囲内であることが好ましく、固体が析出しない限りにおいて、添加割合は、5~90質量%が好ましい。
 更に、基板に対する濡れ性の向上、溶媒の表面張力の調整、極性の調整、沸点の調整等の目的で、その他の溶媒を、ワニスに使用する全溶媒中1~90質量%、好ましくは1~50質量%の割合で混合することもできる。
 このような溶媒としては、例えば、プロピレングリコールモノメチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテル、ジアセトンアルコール、γ-ブチロラクトン、エチルラクテート、n-ヘキシルアセテート等が挙げられるが、これらに限定されない。これらの溶媒は、1種単独で又は2種以上混合して用いることができる。
 本発明のワニスの粘度は、作製する薄膜の厚み等や固形分濃度に応じて適宜設定されるものではあるが、通常、25℃で1~50mPa・sである。また、本発明における電荷輸送性ワニスの固形分濃度は、ワニスの粘度及び表面張力等や、作製する薄膜の厚み等を勘案して適宜設定されるものではあるが、通常、0.1~10.0質量%程度であり、ワニスの塗布性を向上させることを考慮すると、好ましくは0.5~5.0質量%、より好ましくは1.0~3.0質量%である。なお、固形分とは、ワニスの成分のうち、有機溶媒を除いたものをいう。
[ドーパント]
 本発明の電荷輸送性ワニスは、得られる薄膜の用途に応じ、その電荷輸送能の向上等を目的としてドーパントを含んでもよい。ドーパントは、ワニスに使用する少なくとも1種の溶媒に溶解するものであれば特に限定されず、無機系ドーパント、有機系ドーパントのいずれも使用できる。
 ドーパントを使用する場合、その配合量は、オリゴアニリン誘導体に対し、物質量比(mol比)で、好ましくは0.0001~1、より好ましくは0.001~0.5、更に好ましくは0.01~0.2である。
 無機系ドーパントとしては、塩化水素、硫酸、硝酸、リン酸等の無機酸;塩化アルミニウム(III)(AlCl3)、四塩化チタン(IV)(TiCl4)、三臭化ホウ素(BBr3)、三フッ化ホウ素エーテル錯体(BF3・OEt2)、塩化鉄(III)(FeCl3)、塩化銅(II)(CuCl2)、五塩化アンチモン(V)(SbCl5)、五フッ化アンチモン(V)(SbF5)、五フッ化ヒ素(V)(AsF5)、五フッ化リン(PF5)、トリス(4-ブロモフェニル)アルミニウムヘキサクロロアンチモナート(TBPAH)等の金属ハロゲン化物;Cl2、Br2、I2、ICl、ICl3、IBr、IF4等のハロゲン;リンモリブデン酸、リンタングステン酸等のヘテロポリ酸等が挙げられる。
 有機系ドーパントとしては、ベンゼンスルホン酸、トシル酸、p-スチレンスルホン酸、2-ナフタレンスルホン酸、4-ヒドロキシベンゼンスルホン酸、5-スルホサリチル酸、p-ドデシルベンゼンスルホン酸、ジヘキシルベンゼンスルホン酸、2,5-ジヘキシルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、6,7-ジブチル-2-ナフタレンスルホン酸、ドデシルナフタレンスルホン酸、3-ドデシル-2-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、4-ヘキシル-1-ナフタレンスルホン酸、オクチルナフタレンスルホン酸、2-オクチル-1-ナフタレンスルホン酸、ヘキシルナフタレンスルホン酸、7-へキシル-1-ナフタレンスルホン酸、6-ヘキシル-2-ナフタレンスルホン酸、ジノニルナフタレンスルホン酸、2,7-ジノニル-4-ナフタレンスルホン酸、ジノニルナフタレンジスルホン酸、2,7-ジノニル-4,5-ナフタレンジスルホン酸、国際公開第2005/000832号に記載されている1,4-ベンゾジオキサンジスルホン酸化合物、国際公開第2006/025342号に記載されているアリールスルホン酸化合物、国際公開第2009/096352号に記載されているアリールスルホン酸化合物、ポリスチレンスルホン酸等のアリールスルホン化合物等が挙げられる。これら無機系及び有機系のドーパントは、1種単独で用いてもよく、2種以上組み合わせて用いてもよい。
 また、式(4)で表されるアリールスルホン酸化合物もドーパントとして好適に使用できる。
Figure JPOXMLDOC01-appb-C000018
[式中、Arは、式(5)又は(6)で表される基である。
Figure JPOXMLDOC01-appb-I000019
(式中、pは1~5の整数を表し、qは1~7の整数を表す。)]
 式(4)で表されるアリールスルホン酸化合物は、式(5)で表されるアミン化合物と式(6)で表される酸ハロゲン化物とを反応させて式(4')で表されるアリールスルホン酸塩を得、この塩をイオン交換処理することで得ることができる。
Figure JPOXMLDOC01-appb-C000020
[式中、Ar及びXは、前記と同じ。Ar'は、式(5')又は(6')で表される基を表す。
Figure JPOXMLDOC01-appb-C000021
(式中、p及びqは、前記と同じ。Mは、ナトリウム、カリウム等のアルカリ金属原子を表す。)]
 式(5)で表されるアミン化合物としては、アニリン-2,4-ジスルホン酸二ナトリウム、アニリン-2,5-ジスルホン酸二ナトリウム、8-アミノ-ナフタレン-1,5-ジスルホン酸二ナトリウム、2-アミノ-ナフタレン-1,5-ジスルホン酸二ナトリウム、2-アミノ-ナフタレン-3,6-ジスルホン酸二ナトリウム、7-アミノナフタレン-1,5-ジスルホン酸二ナトリウム、7-アミノナフタレン-2,4-ジスルホン酸二ナトリウム、7-アミノナフタレン-1,3-ジスルホン酸二ナトリウム等が挙げられるが、これらに限定されない。なお、式(5)で表されるアミン化合物は、水和物を用いてもよい。
 式(6)で表される酸ハロゲン化物としては、ベンゾイルクロリド、ベンゾイルブロミド等が挙げられる。
 反応溶媒は、非プロトン性極性有機溶媒が好ましく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、1,3-ジメチル-2-イミダゾリジノン、ジメチルスルホキシド、テトラヒドロフラン、ジオキサン等が挙げられる。反応後の反応溶媒の除去容易性の観点から、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラヒドロフラン、ジオキサン等が好適である。
 反応温度は、通常、-50℃から使用する溶媒の沸点まで可能であるが、0~140℃の範囲が好ましい。反応時間は、通常、0.1~100時間である。
 反応終了後、ろ過、反応溶媒の留去等によって式(4')で表されるアリールスルホン酸塩を回収した後、例えば、陽イオン交換樹脂によってスルホン酸塩をプロトン化することで、式(1)で表されるアリールスルホン酸化合物を製造することができる。
 なお、式(6)で表される酸ハロゲン化物は、対応するカルボン酸を、例えば、塩化チオニルや塩化オキサリル、塩化ホスホリル、塩化スルフリル、三塩化リン、五塩化リンなどの求電子的ハロゲン化剤と反応させることによって得ることができる。
 ドーパントとしては、特に、本発明のオリゴアニリン誘導体とともに用いた場合に有機溶媒に良好な溶解性を示すことから、アリールスルホン酸化合物及びヘテロポリ酸が好ましい。
 以下、好適なドーパントの具体例を挙げるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000022
[その他の成分]
 本発明の電荷輸送性ワニスは、有機シラン化合物を含んでもよい。有機シラン化合物の具体例としては、ジアルコキシシラン化合物、トリアルコキシシラン化合物及びテトラアルコキシシラン化合物が挙げられる。これらは、1種単独で又は2種以上組み合わせて用いることができる。有機シラン化合物が含まれることで、得られる電荷輸送性薄膜を有機EL素子の正孔注入層として用いた場合における当該薄膜の正孔注入能の向上等が期待できる。
 とりわけ、有機シラン化合物としては、ジアルコキシシラン化合物又はトリアルコキシシラン化合物が好ましく、トリアルコキシシラン化合物がより好ましい。
 これらのアルコキシシラン化合物としては、例えば、式(7)~(9)で表されるものが挙げられる。
   SiR'2(OR)2      (7)
   SiR'(OR)3      (8)
   Si(OR)4        (9)
 式中、Rは、それぞれ独立に、Z101で置換されていてもよい炭素数1~20のアルキル基、Z101で置換されていてもよい炭素数2~20のアルケニル基、Z101で置換されていてもよい炭素数2~20のアルキニル基、Z102で置換されていてもよい炭素数6~20のアリール基又はZ102で置換されていてもよい炭素数2~20のヘテロアリール基を表す。
 R'は、それぞれ独立に、Z103で置換されていてもよい炭素数1~20のアルキル基、Z103で置換されていてもよい炭素数2~20のアルケニル基、Z103で置換されていてもよい炭素数2~20のアルキニル基、Z104で置換されていてもよい炭素数6~20のアリール基又はZ104で置換されていてもよい炭素数2~20のヘテロアリール基を表す。
 Z101は、ハロゲン原子、Z105で置換されていてもよい炭素数6~20のアリール基又はZ105で置換されていてもよい炭素数2~20のヘテロアリール基を表す。
 Z102は、ハロゲン原子、Z105で置換されていてもよい炭素数1~20のアルキル基、Z105で置換されていてもよい炭素数2~20のアルケニル基又はZ105で置換されていてもよい炭素数2~20のアルキニル基を表す。
 Z103は、ハロゲン原子、Z105で置換されていてもよい炭素数6~20のアリール基、Z105で置換されていてもよい炭素数2~20のヘテロアリール基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(-NHCONH2)、チオール基、イソシアネート基(-NCO)、アミノ基、-NHY101基、又は-NY102103基を表す。
 Z104は、ハロゲン原子、Z105で置換されていてもよい炭素数1~20のアルキル基、Z105で置換されていてもよい炭素数2~20のアルケニル基、Z105で置換されていてもよい炭素数2~20のアルキニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基(-NHCONH2)、チオール基、イソシアネート基(-NCO)、アミノ基、-NHY101基、又は-NY102103基を表す。
 Y101~Y103は、それぞれ独立に、Z105で置換されていてもよい炭素数1~20のアルキル基、Z105で置換されていてもよい炭素数2~20のアルケニル基、Z105で置換されていてもよい炭素数2~20のアルキニル基、Z105で置換されていてもよい炭素数6~20のアリール基又はZ105で置換されていてもよい炭素数2~20のヘテロアリール基を表す。
 Z105は、ハロゲン原子、アミノ基、ニトロ基、シアノ基又はチオール基を表す。
 式(7)~(9)におけるハロゲン原子、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基及び炭素数2~20のヘテロアリール基としては、前記と同様のものが挙げられる。
 R及びR'において、アルキル基、アルケニル基及びアルキニル基の炭素数は、好ましくは10以下であり、より好ましくは6以下であり、より一層好ましくは4以下である。また、アリール基及びヘテロアリール基の炭素数は、好ましくは14以下であり、より好ましくは10以下であり、より一層好ましくは6以下である。
 Rとしては、Z101で置換されていてもよい炭素数1~20のアルキル基、Z101で置換されていてもよい炭素数2~20のアルケニル基又はZ102で置換されていてもよい炭素数6~20のアリール基が好ましく、Z101で置換されていてもよい炭素数1~6のアルキル基、Z101で置換されていてもよい炭素数2~6のアルケニル基又はZ102で置換されていてもよいフェニル基がより好ましく、Z101で置換されていてもよい炭素数1~4のアルキル基又はZ102で置換されていてもよいフェニル基がより一層好ましく、Z101で置換されていてもよいメチル基又はエチル基が更に好ましい。
 また、R'としては、Z103で置換されていてもよい炭素数1~20のアルキル基又はZ104で置換されていてもよい炭素数6~20のアリール基が好ましく、Z103で置換されていてもよい炭素数1~10のアルキル基又はZ104で置換されていてもよい炭素数6~14のアリール基がより好ましく、Z103で置換されていてもよい炭素数1~6のアルキル基又はZ104で置換されていてもよい炭素数6~10のアリール基がより一層好ましく、Z103で置換されていてもよい炭素数1~4のアルキル基又はZ104で置換されていてもよいフェニル基が更に好ましい。
 なお、複数のRは全て同一でも異なっていてもよく、複数のR'も全て同一でも異なっていてもよい。
 Z101としては、ハロゲン原子、又はZ105で置換されていてもよい炭素数6~20のアリール基が好ましく、フッ素原子、又はZ105で置換されていてもよいフェニル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 また、Z102としては、ハロゲン原子、又はZ105で置換されていてもよい炭素数6~20のアルキル基が好ましく、フッ素原子、又はZ105で置換されていてもよい炭素数1~10のアルキル基がより好ましく、存在しないこと(すなわち、非置換であること)が最適である。
 一方、Z103としては、ハロゲン原子、Z105で置換されていてもよいフェニル基、Z105で置換されていてもよいフラニル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z105で置換されていてもよいフェニルアミノ基又はZ104で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子又は存在しないこと(すなわち、非置換であること)がより一層好ましい。
 また、Z104としては、ハロゲン原子、Z105で置換されていてもよい炭素数1~20のアルキル基、エポキシシクロヘキシル基、グリシドキシ基、メタクリロキシ基、アクリロキシ基、ウレイド基、チオール基、イソシアネート基、アミノ基、Z105で置換されていてもよいフェニルアミノ基又はZ105で置換されていてもよいジフェニルアミノ基が好ましく、ハロゲン原子がより好ましく、フッ素原子又は存在しないこと(すなわち、非置換であること)がより一層好ましい。
 そして、Z105としては、ハロゲン原子が好ましく、フッ素原子又は存在しないこと(すなわち、非置換であること)がより好ましい。
 以下、本発明で使用可能な有機シラン化合物の具体例を挙げるが、これらに限定されない。
 ジアルコキシシラン化合物の具体例としては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジイソプロピルジメトキシシラン、フェニルメチルジメトキシシラン、ビニルメチルジメトキシシラン、3-グリシドキシプロピルメチルジメトキシシシラン、3-グリシドキシプロピルメチルジエトキシシシラン、3-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3,3,3-トリフルオロプロピルメチルジメトキシシラン等が挙げられる。
 トリアルコキシシラン化合物の具体例としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ペンチルトリメトキシシラン、ペンチルトリエトキシシラン、ヘプチルトリメトキシシラン、ヘプチルトリエトキシシラン、オクチルトリメトキシシラン、オクチルトリエトキシシラン、ドデシルトリメトキシシラン、ドデシルトリエトキシシラン、ヘキサデシルトリメトキシシラン、ヘキサデシルトリエトキシシラン、オクタデシルトリメトキシシラン、オクタデシルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、ドデシルトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、(トリエトキシシリル)シクロヘキサン、パーフルオロオクチルエチルトリエトキシシラン、トリエトキシフルオロシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリエトキシシラン、ペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシラン、3-(ヘプタフルオロイソプロポキシ)プロピルトリエトキシシラン、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシルトリエトキシシラン、トリエトキシ-2-チエニルシラン、3-(トリエトキシシリル)フラン等が挙げられる。
 テトラアルコキシシラン化合物の具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン等が挙げられる。
 これらの中でも、3,3,3-トリフルオロプロピルメチルジメトキシシラン、トリエトキシ(4-(トリフルオロメチル)フェニル)シラン、3,3,3-トリフルオロプロピルトリメトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、ペンタフルオロフェニルトリメトキシシラン、ペンタフルオロフェニルトリエトキシシラン等が好ましい。
 本発明の電荷輸送性ワニスが有機シラン化合物を含有する場合、その含有量は、電荷輸送性物質の総質量(ドーパントが含まれる場合には、電荷輸送性物質及びドーパントの総質量)に対して、通常0.1~50質量%程度であるが、得られる薄膜の電荷輸送性の低下を抑制し、かつ、正孔輸送層や発光層といった陽極とは反対側に正孔注入層に接するように積層される層への正孔注入能を高めることを考慮すると、好ましくは0.5~40質量%程度、より好ましくは0.8~30質量%程度、より一層好ましくは1~20質量%程度である。
 なお、本発明の電荷輸送性ワニスは、本発明の効果を損なわない範囲で、前記オリゴアニリン誘導体のほかに公知のその他の電荷輸送性物質を含んでもよい。
 電荷輸送性ワニスの調製法としては、特に限定されないが、例えば、本発明のオリゴアニリン誘導体を高溶解性溶媒に溶解させ、そこへ高粘度有機溶媒を加える手法や、高溶解性溶媒と高粘度有機溶媒を混合し、そこへ本発明のオリゴアニリン誘導体を溶解させる手法が挙げられる。
 本発明においては、電荷輸送性ワニスは、より平坦性の高い薄膜を再現性よく得る観点から、電荷輸送性物質、ドーパント等を有機溶媒に溶解させた後、サブマイクロオーダーのフィルター等を用いて濾過することが望ましい。
[電荷輸送性薄膜]
 本発明の電荷輸送性ワニスを基材上に塗布して焼成することで、基材上に電荷輸送性薄膜を形成させることができる。
 ワニスの塗布方法としては、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り、インクジェット法、スプレー法、スリットコート法等が挙げられるが、これらに限定されない。塗布方法に応じて、ワニスの粘度及び表面張力を調節することが好ましい。
 また、本発明のワニスを用いる場合、焼成雰囲気も特に限定されず、大気雰囲気だけでなく、窒素等の不活性ガスや真空中でも均一な成膜面及び電荷輸送性を有する薄膜を得ることができるが、再現性よく高電荷輸送性薄膜を得ることを考慮すると、大気雰囲気が好ましい。
 焼成温度は、得られる薄膜の用途、得られる薄膜に付与する電荷輸送性の程度等を勘案して、100~260℃程度の範囲内で適宜設定されるものではあるが、得られる薄膜を有機EL素子の正孔注入層として用いる場合、140~250℃程度が好ましく、145~240℃程度がより好ましい。
 また、焼成時間は、焼成温度に応じて変化するため一概に規定できないが、通常1分間~1時間程度である。
 なお、焼成の際、より高い均一成膜性を発現させたり基材上で反応を進行させたりする目的で、2段階以上の温度変化をつけてもよい。加熱は、例えば、ホットプレートやオーブン等適当な機器を用いて行えばよい。
 電荷輸送性薄膜の膜厚は、特に限定されないが、有機EL素子内で正孔注入層として用いる場合、5~200nmが好ましい。膜厚を変化させる方法としては、ワニス中の固形分濃度を変化させたり、塗布時の基板上の溶液量を変化させたりする等の方法がある。
 本発明の電荷輸送性薄膜は、有機EL素子において、正孔注入層として好適に用いることができるが、正孔注入輸送層等の電荷輸送性機能層としても使用可能である。
[有機EL素子]
 本発明の有機EL素子は、一対の電極を有し、これら電極の間に、前述の本発明の電荷輸送性薄膜を有するものである。
 有機EL素子の代表的な構成としては、下記(a)~(f)が挙げられるが、これらに限定されない。なお、下記構成において、必要に応じて、発光層と陽極の間に電子ブロック層等を、発光層と陰極の間にホール(正孔)ブロック層等を設けることもできる。また、正孔注入層、正孔輸送層あるいは正孔注入輸送層が電子ブロック層等としての機能を兼ね備えていてもよく、電子注入層、電子輸送層あるいは電子注入輸送層がホール(正孔)ブロック層等としての機能を兼ね備えていてもよい。
(a)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
(b)陽極/正孔注入層/正孔輸送層/発光層/電子注入輸送層/陰極
(c)陽極/正孔注入輸送層/発光層/電子輸送層/電子注入層/陰極
(d)陽極/正孔注入輸送層/発光層/電子注入輸送層/陰極
(e)陽極/正孔注入層/正孔輸送層/発光層/陰極
(f)陽極/正孔注入輸送層/発光層/陰極
 「正孔注入層」、「正孔輸送層」及び「正孔注入輸送層」とは、発光層と陽極との間に形成される層であって、正孔を陽極から発光層へ輸送する機能を有するものである。発光層と陽極の間に、正孔輸送性材料の層が1層のみ設けられる場合、それが「正孔注入輸送層」であり、発光層と陽極の間に、正孔輸送性材料の層が2層以上設けられる場合、陽極に近い層が「正孔注入層」であり、それ以外の層が「正孔輸送層」である。特に、正孔注入層及び正孔注入輸送層は、陽極からの正孔受容性だけでなく、それぞれ正孔輸送層及び発光層への正孔注入性にも優れる薄膜が用いられる。
 「電子注入層」、「電子輸送層」及び「電子注入輸送層」とは、発光層と陰極との間に形成される層であって、電子を陰極から発光層へ輸送する機能を有するものである。発光層と陰極の間に、電子輸送性材料の層が1層のみ設けられる場合、それが「電子注入輸送層」であり、発光層と陰極の間に、電子輸送性材料の層が2層以上設けられる場合、陰極に近い層が「電子注入層」であり、それ以外の層が「電子輸送層」である。
 「発光層」とは、発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料とを含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
 本発明の電荷輸送性薄膜は、有機EL素子において、正孔注入層、正孔輸送層、正孔注入輸送層として好適に用いることができ、正孔注入層としてより好適に用いることができる。
 本発明の電荷輸送性ワニスを用いて有機EL素子を作製する場合の使用材料や作製方法としては、下記のようなものが挙げられるが、これらに限定されない。
 使用する電極基板は、洗剤、アルコール、純水等による液体洗浄をあらかじめ行って浄化しておくことが好ましく、例えば、陽極基板では使用直前にUVオゾン処理、酸素-プラズマ処理等の表面処理を行うことが好ましい。ただし、陽極材料が有機物を主成分とする場合、表面処理を行わなくともよい。
 本発明の電荷輸送性ワニスから得られる薄膜が正孔注入層である場合の、本発明の有機EL素子の作製方法の一例は、以下のとおりである。
 前述の方法により、陽極基板上に本発明の電荷輸送性ワニスを塗布して焼成し、電極上に正孔注入層を作製する。この正孔注入層の上に、正孔輸送層、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。正孔輸送層、発光層、電子輸送層及び電子注入層は、用いる材料の特性等に応じて、蒸着法又は塗布法(ウェットプロセス)のいずれかで形成すればよい。
 陽極材料としては、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)に代表される透明電極や、アルミニウムに代表される金属やこれらの合金等から構成される金属陽極が挙げられ、平坦化処理を行ったものが好ましい。高電荷輸送性を有するポリチオフェン誘導体やポリアニリン誘導体を用いることもできる。
 なお、金属陽極を構成するその他の金属としては、スカンジウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、カドミウム、インジウム、スカンジウム、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ハフニウム、タリウム、タングステン、レニウム、オスミウム、イリジウム、プラチナ、金、チタン、鉛、ビスマスやこれらの合金等が挙げられるが、これらに限定されない。
 正孔輸送層を形成する材料としては、(トリフェニルアミン)ダイマー誘導体、[(トリフェニルアミン)ダイマー]スピロダイマー、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-ベンジジン(α-NPD)、N,N'-ビス(ナフタレン-2-イル)-N,N'-ビス(フェニル)-ベンジジン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-ベンジジン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-スピロビフルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-スピロビフルオレン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-ジメチル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-ジメチル-フルオレン、N,N'-ビス(3-メチルフェニル)-N,N'-ビス(フェニル)-9,9-ジフェニル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-9,9-ジフェニル-フルオレン、N,N'-ビス(ナフタレン-1-イル)-N,N'-ビス(フェニル)-2,2'-ジメチルベンジジン、2,2',7,7'-テトラキス(N,N-ジフェニルアミノ)-9,9-スピロビフルオレン、9,9-ビス[4-(N,N-ビス-ビフェニル-4-イル-アミノ)フェニル]-9H-フルオレン、9,9-ビス[4-(N,N-ビス-ナフタレン-2-イル-アミノ)フェニル]-9H-フルオレン、9,9-ビス[4-(N-ナフタレン-1-イル-N-フェニルアミノ)-フェニル]-9H-フルオレン、2,2',7,7'-テトラキス[N-ナフタレニル(フェニル)-アミノ]-9,9-スピロビフルオレン、N,N'-ビス(フェナントレン-9-イル)-N,N'-ビス(フェニル)-ベンジジン、2,2'-ビス[N,N-ビス(ビフェニル-4-イル)アミノ]-9,9-スピロビフルオレン、2,2'-ビス(N,N-ジフェニルアミノ)-9,9-スピロビフルオレン、ジ-[4-(N,N-ジ(p-トリル)アミノ)-フェニル]シクロヘキサン、2,2',7,7'-テトラ(N,N-ジ(p-トリル)アミノ)-9,9-スピロビフルオレン、N,N,N',N'-テトラ-ナフタレン-2-イル-ベンジジン、N,N,N',N'-テトラ-(3-メチルフェニル)-3,3'-ジメチルベンジジン、N,N'-ジ(ナフタレニル)-N,N'-ジ(ナフタレン-2-イル)-ベンジジン、N,N,N',N'-テトラ(ナフタレニル)-ベンジジン、N,N'-ジ(ナフタレン-2-イル)-N,N'-ジフェニルベンジジン-1,4-ジアミン、N1,N4-ジフェニル-N1,N4-ジ(m-トリル)ベンゼン-1,4-ジアミン、N2,N2,N6,N6-テトラフェニルナフタレン-2,6-ジアミン、トリス(4-(キノリン-8-イル)フェニル)アミン、2,2'-ビス(3-(N,N-ジ(p-トリル)アミノ)フェニル)ビフェニル、4,4',4''-トリス[3-メチルフェニル(フェニル)アミノ]トリフェニルアミン(m-MTDATA)、4,4',4''-トリス[1-ナフチル(フェニル)アミノ]トリフェニルアミン(1-TNATA)等のトリアリールアミン類、5,5''-ビス-{4-[ビス(4-メチルフェニル)アミノ]フェニル}-2,2':5',2''-ターチオフェン(BMA-3T)等のオリゴチオフェン類等の正孔輸送性低分子材料等が挙げられる。
 発光層を形成する材料としては、トリス(8-キノリノラート)アルミニウム(III)(Alq3)、ビス(8-キノリノラート)亜鉛(II)(Znq2)、ビス(2-メチル-8-キノリノラート)-4-(p-フェニルフェノラート)アルミニウム(III)(BAlq)、4,4'-ビス(2,2-ジフェニルビニル)ビフェニル、9,10-ジ(ナフタレン-2-イル)アントラセン、2-t-ブチル-9,10-ジ(ナフタレン-2-イル)アントラセン、2,7-ビス[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2-メチル-9,10-ビス(ナフタレン-2-イル)アントラセン、2-(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2,7-ビス(9,9-スピロビフルオレン-2-イル)-9,9-スピロビフルオレン、2-[9,9-ジ(4-メチルフェニル)-フルオレン-2-イル]-9,9-ジ(4-メチルフェニル)フルオレン、2,2'-ジピレニル-9,9-スピロビフルオレン、1,3,5-トリス(ピレン-1-イル)ベンゼン、9,9-ビス[4-(ピレニル)フェニル]-9H-フルオレン、2,2'-ビ(9,10-ジフェニルアントラセン)、2,7-ジピレニル-9,9-スピロビフルオレン、1,4-ジ(ピレン-1-イル)ベンゼン、1,3-ジ(ピレン-1-イル)ベンゼン、6,13-ジ(ビフェニル-4-イル)ペンタセン、3,9-ジ(ナフタレン-2-イル)ペリレン、3,10-ジ(ナフタレン-2-イル)ペリレン、トリス[4-(ピレニル)-フェニル]アミン、10,10'-ジ(ビフェニル-4-イル)-9,9'-ビアントラセン、N,N'-ジ(ナフタレン-1-イル)-N,N'-ジフェニル-[1,1':4',1'':4'',1'''-クォーターフェニル]-4,4'''-ジアミン、4,4'-ジ[10-(ナフタレン-1-イル)アントラセン-9-イル]ビフェニル、ジベンゾ{[f,f']-4,4',7,7'-テトラフェニル}ジインデノ[1,2,3-cd:1',2',3'-lm]ペリレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジメチル-9H-フルオレン-2-イル)ピレン、1-(7-(9,9'-ビアントラセン-10-イル)-9,9-ジヘキシル-9H-フルオレン-2-イル)ピレン、1,3-ビス(カルバゾール-9-イル)ベンゼン、1,3,5-トリス(カルバゾール-9-イル)ベンゼン、4,4',4''-トリス(カルバゾール-9-イル)トリフェニルアミン、4,4'-ビス(カルバゾール-9-イル)ビフェニル(CBP)、4,4'-ビス(カルバゾール-9-イル)-2,2'-ジメチルビフェニル、2,7-ビス(カルバゾール-9-イル)-9,9-ジメチルフルオレン、2,2',7,7'-テトラキス(カルバゾール-9-イル)-9,9-スピロビフルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-ジ(p-トリル)フルオレン、9,9-ビス[4-(カルバゾール-9-イル)-フェニル]フルオレン、2,7-ビス(カルバゾール-9-イル)-9,9-スピロビフルオレン、1,4-ビス(トリフェニルシリル)ベンゼン、1,3-ビス(トリフェニルシリル)ベンゼン、ビス(4-N,N-ジエチルアミノ-2-メチルフェニル)-4-メチルフェニルメタン、2,7-ビス(カルバゾール-9-イル)-9,9-ジオクチルフルオレン、4,4''-ジ(トリフェニルシリル)-p-ターフェニル、4,4'-ジ(トリフェニルシリル)ビフェニル、9-(4-t-ブチルフェニル)-3,6-ビス(トリフェニルシリル)-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ジトリチル-9H-カルバゾール、9-(4-t-ブチルフェニル)-3,6-ビス(9-(4-メトキシフェニル)-9H-フルオレン-9-イル)-9H-カルバゾール、2,6-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、トリフェニル(4-(9-フェニル-9H-フルオレン-9-イル)フェニル)シラン、9,9-ジメチル-N,N-ジフェニル-7-(4-(1-フェニル-1H-ベンゾ[d]イミダゾール-2-イル)フェニル)-9H-フルオレン-2-アミン、3,5-ビス(3-(9H-カルバゾール-9-イル)フェニル)ピリジン、9,9-スピロビフルオレン-2-イル-ジフェニル-ホスフィンオキサイド、9,9'-(5-(トリフェニルシリル)-1,3-フェニレン)ビス(9H-カルバゾール)、3-(2,7-ビス(ジフェニルホスホリル)-9-フェニル-9H-フルオレン-9-イル)-9-フェニル-9H-カルバゾール、4,4,8,8,12,12-ヘキサ(p-トリル)-4H-8H-12H-12C-アザジベンゾ[cd,mn]ピレン、4,7-ジ(9H-カルバゾール-9-イル)-1,10-フェナントロリン、2,2'-ビス(4-(カルバゾール-9-イル)フェニル)ビフェニル、2,8-ビス(ジフェニルホスホリル)ジベンゾ[b,d]チオフェン、ビス(2-メチルフェニル)ジフェニルシラン、ビス[3,5-ジ(9H-カルバゾール-9-イル)フェニル]ジフェニルシラン、3,6-ビス(カルバゾール-9-イル)-9-(2-エチル-ヘキシル)-9H-カルバゾール、3-(ジフェニルホスホリル)-9-(4-(ジフェニルホスホリル)フェニル)-9H-カルバゾール、3,6-ビス[(3,5-ジフェニル)フェニル]-9-フェニルカルバゾール等が挙げられる。これらの材料と発光性ドーパントとを共蒸着することによって、発光層を形成してもよい。
 発光性ドーパントとしては、3-(2-ベンゾチアゾリル)-7-(ジエチルアミノ)クマリン、2,3,6,7-テトラヒドロ-1,1,7,7-テトラメチル-1H,5H,11H-10-(2-ベンゾチアゾリル)キノリジノ[9,9a,1gh]クマリン、キナクリドン、N,N'-ジメチル-キナクリドン、トリス(2-フェニルピリジン)イリジウム(III)(Ir(ppy)3)、ビス(2-フェニルピリジン)(アセチルアセトネート)イリジウム(III)(Ir(ppy)2(acac))、トリス[2-(p-トリル)ピリジン]イリジウム(III)(Ir(mppy)3)、9,10-ビス[N,N-ジ(p-トリル)アミノ]アントラセン、9,10-ビス[フェニル(m-トリル)アミノ]アントラセン、ビス[2-(2-ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(II)、N10,N10,N10,N10-テトラ(p-トリル)-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10,N10,N10-テトラフェニル-9,9'-ビアントラセン-10,10'-ジアミン、N10,N10-ジフェニル-N10,N10-ジナフタレニル-9,9'-ビアントラセン-10,10'-ジアミン、4,4'-ビス(9-エチル-3-カルバゾビニレン)-1,1'-ビフェニル、ペリレン、2,5,8,11-テトラ-t-ブチルペリレン、1,4-ビス[2-(3-N-エチルカルバゾリル)ビニル]ベンゼン、4,4'-ビス[4-(ジ-p-トリルアミノ)スチリル]ビフェニル、4-(ジ-p-トリルアミノ)-4'-[(ジ-p-トリルアミノ)スチリル]スチルベン、ビス[3,5-ジフルオロ-2-(2-ピリジル)フェニル-(2-カルボキシピリジル)]イリジウム(III)、4,4'-ビス[4-(ジフェニルアミノ)スチリル]ビフェニル、ビス(2,4-ジフルオロフェニルピリジナト)テトラキス(1-ピラゾリル)ボレートイリジウム(III)、N,N'-ビス(ナフタレン-2-イル)-N,N'-ビス(フェニル)-トリス(9,9-ジメチルフルオレニレン)、2,7-ビス{2-[フェニル(m-トリル)アミノ]-9,9-ジメチル-フルオレン-7-イル}-9,9-ジメチル-フルオレン、N-(4-((E)-2-(6((E)-4-(ジフェニルアミノ)スチリル)ナフタレン-2-イル)ビニル)フェニル)-N-フェニルベンゼンアミン、fac-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、mer-イリジウム(III)トリス(1-フェニル-3-メチルベンズイミダゾリン-2-イリデン-C,C2)、2,7-ビス[4-(ジフェニルアミノ)スチリル]-9,9-スピロビフルオレン、6-メチル-2-(4-(9-(4-(6-メチルベンゾ[d]チアゾール-2-イル)フェニル)アントラセン-10-イル)フェニル)ベンゾ[d]チアゾール、1,4-ジ[4-(N,N-ジフェニル)アミノ]スチリルベンゼン、1,4-ビス(4-(9H-カルバゾール-9-イル)スチリル)ベンゼン、(E)-6-(4-(ジフェニルアミノ)スチリル)-N,N-ジフェニルナフタレン-2-アミン、ビス(2,4-ジフルオロフェニルピリジナト)(5-(ピリジン-2-イル)-1H-テトラゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾール)((2,4-ジフルオロベンジル)ジフェニルホスフィネート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(ベンジルジフェニルホスフィネート)イリジウム(III)、ビス(1-(2,4-ジフルオロベンジル)-3-メチルベンズイミダゾリウム)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、ビス(3-トリフルオロメチル-5-(2-ピリジル)ピラゾレート)(4',6'-ジフルオロフェニルピリジネート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3,5-ビス(トリフルオロメチル)-2-(2'-ピリジル)ピロレート)イリジウム(III)、ビス(4',6'-ジフルオロフェニルピリジナト)(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾレート)イリジウム(III)、(Z)-6-メシチル-N-(6-メシチルキノリン-2(1H)-イリデン)キノリン-2-アミン-BF2、(E)-2-(2-(4-(ジメチルアミノ)スチリル)-6-メチル-4H-ピラン-4-イリデン)マロノニトリル、4-(ジシアノメチレン)-2-メチル-6-ジュロリジル-9-エニル-4H-ピラン、4-(ジシアノメチレン)-2-メチル-6-(1,1,7,7-テトラメチルジュロリジル-9-エニル)-4H-ピラン、4-(ジシアノメチレン)-2-t-ブチル-6-(1,1,7,7-テトラメチルジュロリジン-4-イル-ビニル)-4H-ピラン、トリス(ジベンゾイルメタン)フェナントロリンユーロピウム(III)、5,6,11,12-テトラフェニルナフタセン、ビス(2-ベンゾ[b]チオフェン-2-イル-ピリジン)(アセチルアセトネート)イリジウム(III)、トリス(1-フェニルイソキノリン)イリジウム(III)、ビス(1-フェニルイソキノリン)(アセチルアセトネート)イリジウム(III)、ビス[1-(9,9-ジメチル-9H-フルオレン-2-イル)-イソキノリン](アセチルアセトネート)イリジウム(III)、ビス[2-(9,9-ジメチル-9H-フルオレン-2-イル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[4,4'-ジ-t-ブチル-(2,2')-ビピリジン]ルテニウム(III)・ビス(ヘキサフルオロホスフェート)、トリス(2-フェニルキノリン)イリジウム(III)、ビス(2-フェニルキノリン)(アセチルアセトネート)イリジウム(III)、2,8-ジ-t-ブチル-5,11-ビス(4-t-ブチルフェニル)-6,12-ジフェニルテトラセン、ビス(2-フェニルベンゾチアゾラト)(アセチルアセトネート)イリジウム(III)、5,10,15,20-テトラフェニルテトラベンゾポルフィリン白金、オスミウム(II)ビス(3-トリフルオロメチル-5-(2-ピリジン)-ピラゾレート)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジフェニルメチルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(2-ピリジル)-1,2,4-トリアゾール)ジメチルフェニルホスフィン、オスミウム(II)ビス(3-(トリフルオロメチル)-5-(4-t-ブチルピリジル)-1,2,4-トリアゾレート)ジメチルフェニルホスフィン、ビス[2-(4-n-ヘキシルフェニル)キノリン](アセチルアセトネート)イリジウム(III)、トリス[2-(4-n-ヘキシルフェニル)キノリン]イリジウム(III)、トリス[2-フェニル-4-メチルキノリン]イリジウム(III)、ビス(2-フェニルキノリン)(2-(3-メチルフェニル)ピリジネート)イリジウム(III)、ビス(2-(9,9-ジエチル-フルオレン-2-イル)-1-フェニル-1H-ベンゾ[d]イミダゾラト)(アセチルアセトネート)イリジウム(III)、ビス(2-フェニルピリジン)(3-(ピリジン-2-イル)-2H-クロメン-2-オネート)イリジウム(III)、ビス(2-フェニルキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、ビス(フェニルイソキノリン)(2,2,6,6-テトラメチルヘプタン-3,5-ジオネート)イリジウム(III)、イリジウム(III)ビス(4-フェニルチエノ[3,2-c]ピリジナト-N,C2)アセチルアセトネート、(E)-2-(2-t-ブチル-6-(2-(2,6,6-トリメチル-2,4,5,6-テトラヒドロ-1H-ピローロ[3,2,1-ij]キノリン-8-イル)ビニル)-4H-ピラン-4-イリデン)マロノニトリル、ビス(3-トリフルオロメチル-5-(1-イソキノリル)ピラゾレート)(メチルジフェニルホスフィン)ルテニウム、ビス[(4-n-ヘキシルフェニル)イソキノリン](アセチルアセトネート)イリジウム(III)、白金(II)オクタエチルポルフィン、ビス(2-メチルジベンゾ[f,h]キノキサリン)(アセチルアセトネート)イリジウム(III)、トリス[(4-n-ヘキシルフェニル)キソキノリン]イリジウム(III)等が挙げられる。
 電子輸送層を形成する材料としては、8-ヒドロキシキノリノレート-リチウム、2,2',2''-(1,3,5-ベンジントリル)-トリス(1-フェニル-1-H-ベンズイミダゾール)、2-(4-ビフェニル)5-(4-t-ブチルフェニル)-1,3,4-オキサジアゾール、2,9-ジメチル-4,7-ジフェニル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン、ビス(2-メチル-8-キノリノレート)-4-(フェニルフェノラト)アルミニウム、1,3-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、6,6'-ビス[5-(ビフェニル-4-イル)-1,3,4-オキサジアゾ-2-イル]-2,2'-ビピリジン、3-(4-ビフェニル)-4-フェニル-5-t-ブチルフェニル-1,2,4-トリアゾール、4-(ナフタレン-1-イル)-3,5-ジフェニル-4H-1,2,4-トリアゾール、2,9-ビス(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、2,7-ビス[2-(2,2'-ビピリジン-6-イル)-1,3,4-オキサジアゾ-5-イル]-9,9-ジメチルフルオレン、1,3-ビス[2-(4-t-ブチルフェニル)-1,3,4-オキサジアゾ-5-イル]ベンゼン、トリス(2,4,6-トリメチル-3-(ピリジン-3-イル)フェニル)ボラン、1-メチル-2-(4-(ナフタレン-2-イル)フェニル)-1H-イミダゾ[4,5f][1,10]フェナントロリン、2-(ナフタレン-2-イル)-4,7-ジフェニル-1,10-フェナントロリン、フェニル-ジピレニルホスフィンオキサイド、3,3',5,5'-テトラ[(m-ピリジル)-フェン-3-イル]ビフェニル、1,3,5-トリス[(3-ピリジル)-フェン-3-イル]ベンゼン、4,4'-ビス(4,6-ジフェニル-1,3,5-トリアジン-2-イル)ビフェニル、1,3-ビス[3,5-ジ(ピリジン-3-イル)フェニル]ベンゼン、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム、ジフェニルビス(4-(ピリジン-3-イル)フェニル)シラン、3,5-ジ(ピレン-1-イル)ピリジン等が挙げられる。
 電子注入層を形成する材料としては、酸化リチウム(Li2O)、酸化マグネシウム(MgO)、アルミナ(Al2O3)、フッ化リチウム(LiF)、フッ化ナトリウム(NaF)、フッ化マグネシウム(MgF2)、フッ化セシウム(CsF)、フッ化ストロンチウム(SrF2)、三酸化モリブデン(MoO3)、アルミニウム、リチウムアセチルアセトネート(Li(acac))、酢酸リチウム、安息香酸リチウム等が挙げられる。
 陰極材料としては、アルミニウム、マグネシウム-銀合金、アルミニウム-リチウム合金、リチウム、ナトリウム、カリウム、セシウム等が挙げられる。
 また、本発明の電荷輸送性ワニスから得られる薄膜が正孔注入層である場合の、本発明の有機EL素子の作製方法のその他の例は、以下のとおりである。
 前述した有機EL素子作製方法において、正孔輸送層、発光層、電子輸送層、電子注入層の真空蒸着操作を行うかわりに、正孔輸送層、発光層を順次形成することによって本発明の電荷輸送性ワニスによって形成される電荷輸送性薄膜を有する有機EL素子を作製することができる。具体的には、陽極基板上に本発明の電荷輸送性ワニスを塗布して前記の方法により正孔注入層を作製し、その上に正孔輸送層、発光層を順次形成し、更に陰極電極を蒸着して有機EL素子とする。
 使用する陰極及び陽極材料としては、前述のものと同様のものが使用でき、同様の洗浄処理、表面処理を行うことができる。
 正孔輸送層及び発光層の形成方法としては、正孔輸送性高分子材料若しくは発光性高分子材料、又はこれらにドーパントを加えた材料に溶媒を加えて溶解するか、均一に分散し、それぞれ正孔注入層又は正孔輸送層の上に塗布した後、焼成することで成膜する方法が挙げられる。
 正孔輸送性高分子材料としては、ポリ[(9,9-ジヘキシルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[(9,9-ジオクチルフルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,1'-ビフェニレン-4,4-ジアミン)]、ポリ[(9,9-ビス{1'-ペンテン-5'-イル}フルオレニル-2,7-ジイル)-co-(N,N'-ビス{p-ブチルフェニル}-1,4-ジアミノフェニレン)]、ポリ[N,N'-ビス(4-ブチルフェニル)-N,N'-ビス(フェニル)-ベンジジン]-エンドキャップド ウィズ ポリシルセスキオキサン、ポリ[(9,9-ジジオクチルフルオレニル-2,7-ジイル)-co-(4,4'-(N-(p-ブチルフェニル))ジフェニルアミン)]等が挙げられる。
 発光性高分子材料としては、ポリ(9,9-ジアルキルフルオレン)(PDAF)等のポリフルオレン誘導体、ポリ(2-メトキシ-5-(2'-エチルヘキソキシ)-1,4-フェニレンビニレン)(MEH-PPV)等のポリフェニレンビニレン誘導体、ポリ(3-アルキルチオフェン)(PAT)等のポリチオフェン誘導体、ポリビニルカルバゾール(PVCz)等が挙げられる。
 溶媒としては、トルエン、キシレン、クロロホルム等が挙げられる。溶解又は均一分散法としては、攪拌、加熱攪拌、超音波分散等の方法が挙げられる。
 塗布方法としては、特に限定されず、インクジェット法、スプレー法、ディップ法、スピンコート法、転写印刷法、ロールコート法、刷毛塗り等が挙げられる。なお、塗布は、窒素、アルゴン等の不活性ガス下で行うことが好ましい。
 焼成方法としては、不活性ガス下又は真空中、オーブン又はホットプレートで加熱する方法が挙げられる。
 本発明の電荷輸送性ワニスから得られる薄膜が正孔注入輸送層である場合の、本発明の有機EL素子の作製方法の一例は、以下のとおりである。
 陽極基板上に正孔注入輸送層を形成し、この正孔注入輸送層の上に、発光層、電子輸送層、電子注入層、陰極をこの順で設ける。発光層、電子輸送層及び電子注入層の形成方法及び具体例としては、前述したものと同様のものが挙げられる。
 陽極材料、発光層、発光性ドーパント、電子輸送層及び電子ブロック層を形成する材料、陰極材料としては、前述したものと同様のものが挙げられる。
 なお、電極及び前記各層の間の任意の間に、必要に応じてホールブロック層、電子ブロック層等を設けてもよい。例えば、電子ブロック層を形成する材料としては、トリス(フェニルピラゾール)イリジウム等が挙げられる。
 陽極と陰極及びこれらの間に形成される層を構成する材料は、ボトムエミッション構造、トップエミッション構造のいずれを備える素子を製造するかで異なるため、その点を考慮して、適宜材料を選択する。
 通常、ボトムエミッション構造の素子では、基板側に透明陽極が用いられ、基板側から光が取り出されるのに対し、トップエミッション構造の素子では、金属からなる反射陽極が用いられ、基板と反対方向にある透明電極(陰極)側から光が取り出される。そのため、例えば陽極材料について言えば、ボトムエミッション構造の素子を製造する際はITO等の透明陽極を、トップエミッション構造の素子を製造する際はAl/Nd等の反射陽極を、それぞれ用いる。
 本発明の有機EL素子は、特性悪化を防ぐため、定法に従い、必要に応じて捕水剤等とともに封止してもよい。
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は下記の実施例に限定されない。なお、使用した装置は以下の通りである。
(1)1H-NMR測定:日本電子(株)製、JNM-ECP300 FT NMR SYSTEM
(2)基板洗浄:長州産業(株)製、基板洗浄装置(減圧プラズマ方式)
(3)ワニスの塗布:ミカサ(株)製、スピンコーターMS-A100
(4)膜厚測定:(株)小坂研究所製、微細形状測定機サーフコーダET-4000
(5)EL素子の作製:長州産業(株)製、多機能蒸着装置システムC-E2L1G1-N
(6)EL素子の輝度等の測定:(有)テック・ワールド製、I-V-L測定システム
(7)EL素子の寿命測定:(株)イーエッチシー製、有機EL輝寿命度評価システムPEL-105S
[1]化合物の合成
[実施例1-1]オリゴアニリン誘導体1の合成
 下記反応式に従い、オリゴアニリン誘導体1を合成した。
Figure JPOXMLDOC01-appb-C000023
 フラスコ内に、テトラアニリン3.0g、2,3,4,5-テトラフルオロベンゾイルクロリド1.91g及びN,N-ジメチルアセトアミド60gを入れた後、フラスコ内を窒素置換し、室温にて1時間攪拌した。
 攪拌終了後、5mol/L水酸化ナトリウム水溶液を30mL加え、更に30分攪拌した。反応液に酢酸エチル及び飽和食塩水を混合してpHが7になるまで分液処理を行った(3回)。得られた有機層を硫酸ナトリウムで乾燥し、次いで、減圧濃縮をおこなった。この濃縮液に、THF15mLを加えた。この溶液をイソプロピルアルコール210mLに滴下し、得られたスラリーを室温で30分間攪拌した。
 最後に、スラリー溶液をろ過し、得られたろ物を乾燥して、目的とするオリゴアニリン誘導体1を得た(収量2.94g)。1H-NMR測定の結果を以下に示す。
1H-NMR (400MHz, DMSO-d6) δ[ppm]: 10.35(s, 1H), 7.83(s, 1H), 7.79-7.68(m, 3H), 7.49(d, J=8.0Hz, 2H), 7.15(t, J=8.0Hz, 2H), 7.01-6.90(m, 12H), 6.68(t, J=8.0Hz, 1H)
[実施例1-2]オリゴアニリン誘導体2の合成
 下記反応式に従い、オリゴアニリン誘導体2を合成した。
Figure JPOXMLDOC01-appb-C000024
 フラスコ内に、テトラアニリン1.83g、4-(トリフルオロメチル)ベンゾイルクロリド1.91g及びN,N-ジメチルアセトアミド18gを入れた後、フラスコ内を窒素置換し、室温にて1時間攪拌した。
 攪拌終了後、5mol/L水酸化ナトリウム水溶液を18mL加え、更に30分攪拌した。反応液に酢酸エチル及び飽和食塩水を混合してpHが7になるまで分液処理を行った(3回)。得られた有機層を硫酸ナトリウムで乾燥し、次いで、減圧濃縮をおこなった。この濃縮液に、THF9mLを加えた。この溶液をイソプロピルアルコール128mLに滴下し、得られたスラリーを室温で30分間攪拌した。
 最後に、スラリー溶液をろ過し、得られたろ物を乾燥して、目的とするオリゴアニリン誘導体2を得た(収量2.04g)。1H-NMR測定の結果を以下に示す。
1H-NMR (400MHz, DMSO-d6) δ[ppm]: 10.27(s, 1H), 8.14(d, J=8.0Hz, 2H) , 7.90(d, J=8.4Hz, 2H) , 7.80(d, J=10.0Hz, 2H), 7.68(s, 1H), 7.57(d, J=8.8Hz, 2H), 7.15(t, J=8.0Hz, 3H), 7.01-6.90(m, 3H), 7.49(d, J=8.0Hz, 2H), 7.15(t, J=8.0Hz, 2H), 7.01-6.90(m, 12H), 6.68(t, J=7.2Hz, 1H)
[合成例1]アリールスルホン酸1の合成
 下記反応式に従い、アリールスルホン酸1を合成した。
Figure JPOXMLDOC01-appb-C000025
 窒素置換したフラスコ内に、6-アミノ-1,3-ナフタレンジスルホン酸二ナトリウム水和物(スガイ化学工業(株)製)10.0gと、N,N-ジメチルアセトアミド60gを入れて50℃で10分間攪拌した。そこへ、ベンゾイルクロリド(東京化成工業(株)製)4.32gを滴下した後、50℃で15分間加熱攪拌した。
 攪拌終了後、反応混合物を放冷し、減圧下で溶媒を留去し、得られた残渣とメタノール40mLとをよく混合した。
 次いで、得られた混合物を濾過し、濾液をイソプロパノール及びヘキサンの混合溶媒(体積比3:1)にゆっくりと滴下し、析出した固体を濾過によって回収した。回収した固体(濾物)を減圧下でよく乾燥してから純水20mLに溶解させ、その水溶液を、陽イオン交換樹脂ダウエックス650C(Hタイプ約100mL、留出溶媒:水)を充填させたカラムを通過させることによって、陽イオン交換、及び不純物の除去をした。
 最後に、この水溶液から水を留去し、得られた固体をよく乾燥して目的とするアリールスルホン酸1を得た(収量10.9g)。1H-NMR測定の結果を以下に示す。
1H-NMR (400MHz, DMSO-d6) δ[ppm]: 10.52(S, 1H),8.76(d, J=9.2Hz, 1H), 8.44(S, 1H),8.16(S, 1H), 8.03(t, J=7.6Hz, 3H), 7.89(dd, J=9.6, 2.0Hz, 1H), 7.64-7.55(m, 3H)
[2]電荷輸送性ワニスの調製
[実施例2-1]
 オリゴアニリン誘導体1 0.173g及びドーパントであるアリールスルホン酸1 0.195gを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン6gに溶解させた。得られた溶液に、シクロヘキサノール9g及びプロピレングリコール3gを加えて攪拌し、電荷輸送性ワニスを調製した。
[実施例2-2]
 オリゴアニリン誘導体1 0.218g及びドーパントである下記式で表されるアリールスルホン酸2 0.272gを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン8gに溶解させた。得られた溶液に、シクロヘキサノール12g及びプロピレングリコール4gを加えて攪拌し、電荷輸送性ワニスを調製した。なお、アリールスルホン酸2は、国際公開第2006/025342号に従って合成した。
Figure JPOXMLDOC01-appb-C000026
[実施例2-3]
 オリゴアニリン誘導体1 0.089g及びアリールスルホン酸2 0.111gを、窒素雰囲気下で1,3-ジメチル-2-イミダゾリジノン3.3gに溶解させた。得られた溶液に、シクロヘキサノール4.9g及びプロピレングリコール1.6gを加えて攪拌し、更にそこへ3,3,3-トリフルオロプロピルトリメトキシシラン0.007g及びフェニルトリメトキシシラン0.013gを加えて攪拌し、電荷輸送性ワニスを調製した。
[3]有機EL素子の製造及び特性評価
[実施例3-1]
 実施例2-1で得られたワニスを、スピンコーターを用いてITO基板に塗布した後、80℃で5分間乾燥し、更に、大気雰囲気下、230℃で10分間焼成し、ITO基板上に30nmの均一な薄膜を形成した。ITO基板としては、インジウム錫酸化物(ITO)が表面上に膜厚150nmでパターニングされた25mm×25mm×0.7tのガラス基板を用い、使用前にO2プラズマ洗浄装置(150W、30秒間)によって表面上の不純物を除却した。
 次いで、薄膜を形成したITO基板に対し、蒸着装置(真空度1.0×10-5Pa)を用いてα-NPD、Alq3、フッ化リチウム、及びアルミニウムの薄膜を順次積層し、有機EL素子を得た。この際、蒸着レートは、α-NPD、Alq3及びアルミニウムについては0.2nm/秒、フッ化リチウムについては0.02nm/秒の条件でそれぞれ行い、膜厚は、それぞれ30nm、40nm、0.5nm及び120nmとした。
 なお、空気中の酸素、水等の影響による特性劣化を防止するため、有機EL素子は封止基板により封止した後、その特性を評価した。封止は、以下の手順で行った。
 酸素濃度2ppm以下、露点-85℃以下の窒素雰囲気中で、有機EL素子を封止基板の間に収め、封止基板を接着材((株)MORESCO製、モレスコモイスチャーカットWB90US(P))により貼り合わせた。この際、捕水剤(ダイニック(株)製、HD-071010W-40)を有機EL素子と共に封止基板内に収めた。貼り合わせた封止基板に対し、UV光を照射(波長365nm、照射量6,000mJ/cm2)した後、80℃で1時間、アニーリング処理して接着材を硬化させた。
[実施例3-2~3-3]
 実施例2-1で得られたワニスのかわりに、実施例2-2~2-3で得られたワニスを用いた以外は、実施例3-1と同様の方法で有機EL素子を製造した。
 これらの素子について、駆動電圧5Vにおける電流密度、輝度、電流効率、半減期(初期輝度5,000cd/m2)を測定した。結果を表4に示す。なお、各素子の発光面サイズの面積は、2mm×2mmである。
Figure JPOXMLDOC01-appb-T000027
 表4に示したように、本発明のオリゴアニリン誘導体を電荷輸送性物質として含む電荷輸送性ワニスによって、高輝度の有機EL素子を実現できる、正孔注入層として好適な電荷輸送性薄膜が得られることがわかった。また、このような素子は、耐久性にも優れていた。

Claims (13)

  1.  式(1)で表されるオリゴアニリン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は、水素原子、又はZで置換されていてもよい炭素数1~20のアルキル基を表し、Zは、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基、カルボン酸基、Z'で置換されていてもよい炭素数6~20のアリール基又はZ'で置換されていてもよい炭素数2~20のヘテロアリール基を表し、Z'は、ハロゲン原子、ニトロ基、シアノ基、アルデヒド基、ヒドロキシ基、チオール基、スルホン酸基又はカルボン酸基を表し;
     R2~R10は、それぞれ独立して、水素原子、ハロゲン原子、ニトロ基、シアノ基、又はハロゲン原子で置換されていてもよい、炭素数1~20のアルキル基、炭素数2~20のアルケニル基、炭素数2~20のアルキニル基、炭素数6~20のアリール基若しくは炭素数2~20のヘテロアリール基を表し;
     Aは、
      シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基、
      シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のフルオロアリール基、
      炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のアリール基、
      シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のフルオロアルコキシ基、炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されていてもよい炭素数7~20のフルオロアラルキル基、又は
      炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数7~20のアラルキル基
    を表し;
     n1は、1~20の整数を表す。)
  2.  Aが、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、炭素数1~20のフルオロアルキル基、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のフルオロアリール基、又は炭素数1~20のフルオロアルキル基、炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい炭素数6~20のアリール基である請求項1記載のオリゴアニリン誘導体。
  3.  Aが、シアノ基、塩素原子、臭素原子、ヨウ素原子、ニトロ基、炭素数1~20のアルキル基、炭素数1~20のフルオロアルキル基若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよい、3以上のフッ素原子で置換されたフェニル基、又は炭素数3~20のフルオロシクロアルキル基、炭素数4~20のフルオロビシクロアルキル基、炭素数2~20のフルオロアルケニル基若しくは炭素数2~20のフルオロアルキニル基で置換されるとともに、シアノ基、ハロゲン原子若しくは炭素数1~20のフルオロアルコキシ基で置換されていてもよいフェニル基である請求項2記載のアニリン誘導体。
  4.  R1が水素原子である請求項1~3のいずれか1項記載のオリゴアニリン誘導体。
  5.  R2~R10が水素原子である請求項1~4のいずれか1項記載のオリゴアニリン誘導体。
  6.  n1が、2~10である請求項1~5のいずれか1項記載のオリゴアニリン誘導体。
  7.  請求項1~6のいずれか1項記載のオリゴアニリン誘導体からなる電荷輸送性物質。
  8.  請求項7記載の電荷輸送性物質及び有機溶媒を含む電荷輸送性ワニス。
  9.  更にドーパントを含む請求項8記載の電荷輸送性ワニス。
  10.  請求項8又は9記載の電荷輸送性ワニスを用いて作製される電荷輸送性薄膜。
  11.  請求項10記載の電荷輸送性薄膜を有する電子デバイス。
  12.  請求項10記載の電荷輸送性薄膜を有する有機エレクトロルミネッセンス素子。
  13.  式(2)で表されるアミン化合物と式(3)で表されるフッ素含有酸ハロゲン化物とを反応させることを特徴とする請求項1記載のオリゴアニリン誘導体の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式中、R1~R10、A及びn1は、前記と同じ。Xは、ハロゲン原子を表す。)
PCT/JP2015/057505 2014-03-17 2015-03-13 オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子 WO2015141585A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15765128.2A EP3121163A4 (en) 2014-03-17 2015-03-13 Oligoaniline derivative, charge-transporting varnish, and organic electroluminescent element
JP2016508696A JP6460093B2 (ja) 2014-03-17 2015-03-13 オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
KR1020167026920A KR101904510B1 (ko) 2014-03-17 2015-03-13 올리고아닐린 유도체, 전하 수송성 바니시 및 유기 일렉트로루미네슨스 소자
CN201580013967.6A CN106132923B (zh) 2014-03-17 2015-03-13 低聚苯胺衍生物、电荷传输性清漆以及有机电致发光元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-053431 2014-03-17
JP2014053431 2014-03-17

Publications (1)

Publication Number Publication Date
WO2015141585A1 true WO2015141585A1 (ja) 2015-09-24

Family

ID=54144554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057505 WO2015141585A1 (ja) 2014-03-17 2015-03-13 オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子

Country Status (6)

Country Link
EP (1) EP3121163A4 (ja)
JP (1) JP6460093B2 (ja)
KR (1) KR101904510B1 (ja)
CN (1) CN106132923B (ja)
TW (1) TWI632174B (ja)
WO (1) WO2015141585A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117521A1 (ja) * 2015-01-20 2016-07-28 日産化学工業株式会社 電荷輸送性薄膜形成用ワニス
WO2016190326A1 (ja) * 2015-05-27 2016-12-01 日産化学工業株式会社 電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
WO2020027014A1 (ja) * 2018-08-01 2020-02-06 日産化学株式会社 重合体及びその利用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111466038A (zh) * 2017-12-15 2020-07-28 日产化学株式会社 有机光电转换元件的空穴捕集层用组合物
CN111138314B (zh) * 2020-01-08 2021-05-07 北京航空航天大学 一种席夫碱结构苯胺齐聚物衍生物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390045A (ja) * 1989-08-18 1991-04-16 Ciba Geigy Ag 酪酸誘導体
US20130085133A1 (en) * 2010-02-08 2013-04-04 Sourthern Research Institute Office of Commercialization and Intellectual Prop. Anti-viral treatment and assay to screenfor anti-viral agent
JP2013525448A (ja) * 2010-04-27 2013-06-20 カルシメディカ,インク. 細胞内カルシウムを調節する化合物
JP2013136784A (ja) * 2005-10-28 2013-07-11 Nissan Chem Ind Ltd スプレー塗布用電荷輸送性ワニス

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102604074B (zh) * 2012-02-28 2013-06-26 吉林大学 电活性荧光聚合物、制备方法及用于检测氧化或还原性物质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0390045A (ja) * 1989-08-18 1991-04-16 Ciba Geigy Ag 酪酸誘導体
JP2013136784A (ja) * 2005-10-28 2013-07-11 Nissan Chem Ind Ltd スプレー塗布用電荷輸送性ワニス
US20130085133A1 (en) * 2010-02-08 2013-04-04 Sourthern Research Institute Office of Commercialization and Intellectual Prop. Anti-viral treatment and assay to screenfor anti-viral agent
JP2013525448A (ja) * 2010-04-27 2013-06-20 カルシメディカ,インク. 細胞内カルシウムを調節する化合物

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
"Novel electroactive poly(arylene ether sulfone) copolymers containing pendant oligoaniline groups: Synthesis and properties", JOURNAL OF POLYMER SCIENCE . PART A. POLYMER CHEMISTRY, vol. 49, no. 7, 2011, pages 1605 - 1614, XP055225495 *
JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 96, no. 4, 1976, pages 447 - 455, XP055358546 *
MACROMOLECULAR CHEMISTRY AND PHYSICS, vol. 210, no. 20, 2009, pages 1739 - 1745, XP055225497 *
POTENTIAL-DEPENDENT NUCLEOPHILICITY OF POLYANILINE, JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 117, no. 26, 1995, pages 6934 - 6943, XP055225511 *
See also references of EP3121163A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016117521A1 (ja) * 2015-01-20 2016-07-28 日産化学工業株式会社 電荷輸送性薄膜形成用ワニス
JPWO2016117521A1 (ja) * 2015-01-20 2017-11-02 日産化学工業株式会社 電荷輸送性薄膜形成用ワニス
US10301484B2 (en) 2015-01-20 2019-05-28 Nissan Chemical Industries, Ltd. Varnish for formation of charge-transporting thin film
WO2016190326A1 (ja) * 2015-05-27 2016-12-01 日産化学工業株式会社 電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JPWO2016190326A1 (ja) * 2015-05-27 2017-07-27 日産化学工業株式会社 電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
US10720584B2 (en) 2015-05-27 2020-07-21 Nissan Chemical Industries, Ltd. Charge-transporting varnish, and organic electroluminescent element
WO2020027014A1 (ja) * 2018-08-01 2020-02-06 日産化学株式会社 重合体及びその利用
JPWO2020027014A1 (ja) * 2018-08-01 2021-08-10 日産化学株式会社 重合体及びその利用
JP7322884B2 (ja) 2018-08-01 2023-08-08 日産化学株式会社 重合体及びその利用

Also Published As

Publication number Publication date
TW201542624A (zh) 2015-11-16
JP6460093B2 (ja) 2019-01-30
KR20160135225A (ko) 2016-11-25
JPWO2015141585A1 (ja) 2017-04-06
KR101904510B1 (ko) 2018-10-05
TWI632174B (zh) 2018-08-11
EP3121163A4 (en) 2017-11-08
EP3121163A1 (en) 2017-01-25
CN106132923A (zh) 2016-11-16
CN106132923B (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
JP6443587B2 (ja) スルホン酸エステル化合物及びその利用
JP6467842B2 (ja) 電荷輸送性ワニス、電荷輸送性薄膜、有機エレクトロルミネッセンス素子、及び電荷輸送性薄膜の製造方法
JP6597597B2 (ja) アニリン誘導体およびその利用
WO2016117521A1 (ja) 電荷輸送性薄膜形成用ワニス
JP6460093B2 (ja) オリゴアニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
WO2016190326A1 (ja) 電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JP6760455B2 (ja) アニリン誘導体およびその製造方法
JP6424835B2 (ja) アリールスルホン酸化合物及びその利用
JP6011723B2 (ja) トリフェニルアミン誘導体およびその利用
WO2019124412A1 (ja) スルホン酸エステル化合物及びその利用
JP6566032B2 (ja) 電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JP6402724B2 (ja) アリールスルホン酸化合物及びその利用
JPWO2015137384A1 (ja) アニリン誘導体およびその利用
JP6061034B2 (ja) アニリン誘導体、電荷輸送性ワニス及び有機エレクトロルミネッセンス素子
JP6488616B2 (ja) 電荷輸送性薄膜形成用ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
JPWO2015137391A1 (ja) アニリン誘導体およびその利用
JP6503675B2 (ja) 電荷輸送性ワニス、電荷輸送性薄膜及び有機エレクトロルミネッセンス素子
JP6558373B2 (ja) 電荷輸送性ワニス
WO2018012416A1 (ja) 電荷輸送性薄膜形成用ワニス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765128

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508696

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167026920

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015765128

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015765128

Country of ref document: EP