WO2015141537A1 - ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物 - Google Patents

ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物 Download PDF

Info

Publication number
WO2015141537A1
WO2015141537A1 PCT/JP2015/057124 JP2015057124W WO2015141537A1 WO 2015141537 A1 WO2015141537 A1 WO 2015141537A1 JP 2015057124 W JP2015057124 W JP 2015057124W WO 2015141537 A1 WO2015141537 A1 WO 2015141537A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylamide
urethane oligomer
weight
active energy
Prior art date
Application number
PCT/JP2015/057124
Other languages
English (en)
French (fr)
Inventor
美希 竹之内
祐輔 足立
明理 平田
Original Assignee
Kjケミカルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kjケミカルズ株式会社 filed Critical Kjケミカルズ株式会社
Priority to US15/125,892 priority Critical patent/US9738748B2/en
Priority to CN201580009572.9A priority patent/CN106029727B/zh
Priority to KR1020167025457A priority patent/KR101770649B1/ko
Priority to EP15764606.8A priority patent/EP3121209B1/en
Priority to JP2015547581A priority patent/JP5954556B2/ja
Publication of WO2015141537A1 publication Critical patent/WO2015141537A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • C08F290/067Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/06Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/44Polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/62Polymers of compounds having carbon-to-carbon double bonds
    • C08G18/6204Polymers of olefins
    • C08G18/6208Hydrogenated polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
    • C08G18/673Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/675Low-molecular-weight compounds
    • C08G18/677Low-molecular-weight compounds containing heteroatoms other than oxygen and the nitrogen of primary or secondary amino groups
    • C08G18/678Low-molecular-weight compounds containing heteroatoms other than oxygen and the nitrogen of primary or secondary amino groups containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/69Polymers of conjugated dienes
    • C08G18/698Mixtures with compounds of group C08G18/40
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/73Polyisocyanates or polyisothiocyanates acyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/751Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring
    • C08G18/752Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group
    • C08G18/753Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group
    • C08G18/755Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing only one cycloaliphatic ring containing at least one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group containing one isocyanate or isothiocyanate group linked to the cycloaliphatic ring by means of an aliphatic group having a primary carbon atom next to the isocyanate or isothiocyanate group and at least one isocyanate or isothiocyanate group linked to a secondary carbon atom of the cycloaliphatic ring, e.g. isophorone diisocyanate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C08L75/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09D175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • C09J175/16Polyurethanes having carbon-to-carbon unsaturated bonds having terminal carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics

Definitions

  • the present invention is a (meth) acrylamide-based urethane oligomer which is excellent in compatibility with organic solvents, general-purpose acrylic monomers and oligomers, and has a high curing rate with respect to active energy rays, adhesion containing the same, moisture resistance and surface curing
  • the present invention relates to an active energy ray-curable resin composition which is excellent in properties and has low cure shrinkage, high transparency and high elongation, and a molded article thereof.
  • Urethane acrylate is widely used in coatings, inks, adhesives, adhesives and the like as ultraviolet (UV) curable resin compositions.
  • UV curable resin compositions by having a polybutadiene or polycarbonate skeleton, adhesion, water resistance, chemical resistance, flexibility, elasticity and toughness are imparted, and in recent years, as being actively studied also in the optical members, electronic materials, and semiconductor fields. became.
  • Such urethane acrylate is usually reacted with polybutadiene polyol or polycarbonate polyol and polyisocyanate to obtain a polyurethane having a hydroxyl group or an isocyanate group at both ends, and then by further reacting with a hydroxyl group-containing acrylate or an isocyanate group-containing acrylate It is synthesized (Patent Documents 1 to 7).
  • Patent Documents 8 and 9 There is also proposed a synthesis method in which a hydroxyl group-containing acrylate is reacted with a polyisocyanate and then attached to an end of a polyol having a polybutadiene skeleton or a polycarbonate skeleton.
  • urethane acrylates having these polybutadiene skeletons or polycarbonate skeletons often have a glass transition temperature (Tg) lower than room temperature, and when applied as a resin composition on a substrate and cured by irradiation with active energy rays such as ultraviolet light
  • Tg glass transition temperature
  • stickiness remains on the surface of the coating film, and there is a drawback that it is difficult to become tack free.
  • a combination with monofunctional or polyfunctional acrylic monomers and photosensitizers has been reported to solve the residual tackiness.
  • Patent Document 1 proposes a photocurable resin composition containing 20 to 80% of a monofunctional acrylate and 2% of a sensitizer
  • Patent Document 2 synthesizes a modified acrylate-based urethane prepolymer from trimethylolpropane, It was further used in combination with monofunctional acrylates.
  • the urethane acrylate having a polybutadiene skeleton or a polycarbonate skeleton is hydrophobic and strong, so that the solubility in many acrylic monomers is insufficient, and there is a problem that the flexibility is reduced by using a polyfunctional acrylate.
  • the acrylate group of the urethane acrylate resin has an ester structure, it is easily hydrolyzed, is lacking in moisture resistance, water resistance, durability and the like, and has a low curing rate with respect to active energy rays.
  • Patent Document 11 In order to improve the active energy ray curability of urethane acrylate, a urethane acrylamide oligomer has been proposed (Patent Document 11).
  • Patent Document 11 By changing the polymerizable group from an acrylate group to an acrylamide group, the ultraviolet ray curability is improved and the stickiness of the surface of the cured film is improved, but the solubility and the obtained cured film in general organic solvents and acrylic monomers No mention was made of the transparency of
  • Patent Document 8 points out one serious drawback of the urethane acrylate having a polybutadiene backbone. It is that white turbidity is likely to occur before and after UV curing. When white turbidity occurs, it is not applied to an optical member that requires transparency, and since the light transmittance is low, UV may not reach the inside of the resin, and curing may be insufficient. Although the urethanization reaction by a tin-based catalyst was mentioned as an improvement plan of this patent document, the risk of causing a corrosion, a short circuit, etc. when used for long-term storage stability declines due to catalyst remaining occurred.
  • Patent Document 5 proposes a pressure-sensitive adhesive for optical members
  • Patent Document 6 proposes a urethane acrylate having a carbonate skeleton as a UV curable resin composition used for a semiconductor element or a liquid crystal display element.
  • Patent Document 7 prepares a laminate of a urethane acrylate having a polybutadiene skeleton and a photocurable resin comprising a (meth) acrylic monomer, and after irradiating a black light with an irradiation amount of 10 to 300 mJ / cm 2
  • a two-step irradiation method in which active energy rays are further irradiated at an irradiation dose of 500 to 5000 mJ / cm 2
  • Patent document 10 similarly adopted a two-stage irradiation UV curing method for urethane acrylate having a polycarbonate skeleton.
  • This method was intended to reduce the residual monomer after photocuring by gradually curing, to improve the curability and at the same time to suppress curing shrinkage and to make distortion less likely to occur between the coating film and the substrate.
  • it is not preferable because it leads to complication of the process by two-stage irradiation and cost increase of the product.
  • Japanese Patent Application Laid-Open No. 61-21120 Japanese Patent Application Laid-Open No. 6-145276 JP, 2009-046605, A JP, 2010-267703, A JP, 2013-035920, A JP, 2013-028675, A WO 2013/088889 gazette JP 2002-371101 A JP-A-8-092342 Japanese Patent Application Publication No. 2004-155893 Japanese Patent Application Laid-Open No. 2002-37849
  • the present invention is a (meth) acrylamide-based urethane oligomer which is excellent in compatibility with organic solvents, general-purpose acrylic monomers and oligomers, and has a high curing rate with respect to active energy rays, adhesion containing the same, moisture resistance, and chemical resistance It is an object of the present invention to provide an active energy ray curable resin composition having excellent properties and surface curability, low cure shrinkage, high transparency and high elongation, and a molded article thereof.
  • the present inventors have found that the content of components having a (meth) acrylamide group at the end and having a molecular weight of less than 1000 (excluding (meth) acrylamide compounds having a hydroxyl group) It has been found that the above-mentioned target can be achieved by using a polybutadiene-based and / or polycarbonate-based urethane oligomer having a content of not more than 5% by weight, and the present invention has been made.
  • the present invention (1) has one or two or more skeletons selected from a carbonate skeleton, a diene skeleton and a hydrogenated diene skeleton in one molecule, and at least one (meth) acrylamide group (Meth) acrylamide-based urethane oligomer characterized in that the content of the component having a molecular weight of less than 1000 (excluding the (meth) acrylamide compound (A) having a hydroxyl group) having a molecular weight of 5% by weight or less (2)
  • the component having a molecular weight of less than 1000 (excluding the (meth) acrylamide compound (A) having a hydroxyl group) has an isocyanate monomer (B) having two or more isocyanate groups in one molecule and a hydroxyl group )
  • the (meth) acrylamide-based urethane oligomer according to the above (1) which is a urethane adduct compound obtained by an addition reaction of an acrylamide compound (
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 and R 3 are the same or different, and are a hydrogen atom or an alkyl having 1 to 3 carbon atoms which may be substituted by a hydroxyl group
  • Methodh acrylamide-based urethane oligomer according to any one of the above (1) to (3), which is characterized in that
  • a hydroxyl group-containing (meth) acrylamide compound having a diene skeleton, a hydrogenated diene skeleton and / or a polycarbonate skeleton in the molecule and having one or more (meth) acrylamide groups is excluded.
  • the content of the component having a molecular weight of less than 1000 is suppressed to 5% by weight or less to provide a urethane oligomer excellent in compatibility with organic solvents, general-purpose acrylic monomers and oligomers, and having a high curing rate with respect to active energy rays. be able to.
  • an active energy ray is excellent in adhesion, moisture resistance, chemical resistance and surface curability, and has low cure shrinkage, high transparency and high elongation. It is possible to provide a curable resin composition and a molded article thereof.
  • the (meth) acrylamide-based urethane oligomer of the present invention has one or more skeletons selected from polycarbonate, polybutadiene and hydrogenated polybutadiene in the molecule as an essential component, and one or more (meth) acrylamide groups
  • the content of the component having a molecular weight of less than 1000 excluding a (meth) acrylamide compound having a hydroxyl group is 5% by weight or less.
  • the content of the component having a molecular weight of less than 1000 is 5% by weight or less, excluding the (meth) acrylamide compound having a hydroxyl group in the (meth) acrylamide-based urethane oligomer of the present invention.
  • a component having a molecular weight of less than 1000 means one having a molecular weight lower than 1000, and an isocyanate monomer (B) having two or more isocyanate groups in one molecule and a (meth) acrylamide compound having a hydroxyl group It is a urethane adduct compound obtained by the addition reaction of (A), hereinafter abbreviated as a low molecular weight component.
  • the urethane oligomer usually contains a few to several tens weight percent of low molecular weight components, and the presence of these causes the solubility of the urethane oligomer to decrease, the occurrence of white turbidity, and the residual adhesion after curing of the active energy ray. They guess. Therefore, the above-mentioned various problems can be solved by controlling the content of the low molecular weight component to 5% by weight or less.
  • the diene skeleton or hydrogenated diene skeleton used in the urethane oligomer of the present invention is one or more selected from the group consisting of polybutadiene, polyisoprene, a hydrogenated product of polybutadiene and a hydrogenated product of polyisoprene. It is a skeleton.
  • the (meth) acrylamide group used for the (meth) acrylamide-based urethane oligomer of the present invention is one or two or more polymerizable groups selected from a methacrylamide group and an acrylamide group.
  • the method for synthesizing the (meth) acrylamide-based urethane oligomer of the present invention is not particularly limited, and can be synthesized by a known urethanation reaction technique. That is, a monofunctional or polyfunctional alcohol (hereinafter abbreviated as polyol) having one or two or more kinds of skeletons selected from a polycarbonate skeleton, a polybutadiene skeleton, a hydrogenated polybutadiene skeleton, a polyisoprene skeleton, and a hydrogenated polyisoprene skeleton It can be synthesized from the reaction of an isocyanate monomer (B) having two or more isocyanate groups in one molecule and a (meth) acrylamide monomer (A) having a hydroxyl group.
  • polyol monofunctional or polyfunctional alcohol
  • a polyol and (B) are reacted to synthesize a compound (C) having one or more isocyanate groups in the molecule, and then (C) And (A) are further reacted to obtain a target (meth) acrylamide urethane oligomer.
  • the compound (C) of the present invention is an addition reaction product of the above-mentioned polyol and (B).
  • Polybutadiene-based polyols have a main chain skeleton selected from the group consisting of polybutadiene, hydrogenated products of polybutadiene, polyisoprene, and hydrogenated products of polyisoprene, and one or more at the terminal or side chain of the main chain skeleton. It has a hydroxyl group. Also, from the viewpoint of industrial availability and ease of handling, hydroxyl groups are included at both ends of the molecule that contain 1,4-vinyl bond and / or 1,2-vinyl bond, or those containing a hydrogenated product of those vinyl groups.
  • the liquid polybutadiene-based polyol is preferred.
  • NISSO-PB series (Nippon Soda Co., Ltd.) G-1000, G-2000, G-3000, Poly bd series (Idemitsu Kosan Co., Ltd.) R-15HT, R-45HT and Krasol series (Clay Valley)
  • a diol having a polybutadiene skeleton such as LBH2000, LBH-P2000, LBH-3000, LBH-P3000, etc., and as a hydrogenated product of polybutadiene
  • GI-1000 of NISSO-PB series manufactured by Nippon Soda Co., Ltd.
  • GI-2000, GI-3000 and diols having a hydrogenated polybutadiene skeleton
  • Krasol series manufactured by Clay Valley
  • Polyip made by Idemitsu Kosan Co., Ltd.
  • polyisoprene containing both terminal hydroxyl groups examples of the hydrogenated substance of polyisoprene having hydroxyl groups at both ends include EPOL (manufactured by Idemitsu Kosan Co., Ltd.).
  • EPOL manufactured by Idemitsu Kosan Co., Ltd.
  • These polybutadiene-based polyols can be used alone or in combination of two or more.
  • Polycarbonate-based polyols are obtained by transesterification using diols and carbonic acid esters as raw materials, having a main chain skeleton consisting of carbonate groups, and having one or more hydroxyl groups at the ends or side chains of the main chain It is.
  • a liquid polycarbonate polyol having a carbonate skeleton and hydroxyl groups at both ends in the molecule is preferable in terms of industrial availability and easy handling.
  • Plaxcel CD series (made by Daicel Chemical Industries, Ltd.), ETERANACL UH, UHC, UC, UM series (made by Ube Industries, Ltd.), Duranol series (made by Asahi Kasei Chemicals), NIPPOLLAN 982R (made by Nippon Polyurethane Co., Ltd.) and Kurare polyol Series (made by Kuraray Co., Ltd.) etc. are mentioned.
  • These polycarbonate-based polyols can be used alone or in combination of two or more.
  • one or more polyols selected from the group consisting of these polybutadiene-based polyols and polycarbonate-based polyols may be used in combination with polyols having other skeletons such as polyether and polyester. it can.
  • Examples of the isocyanate monomer (B) having two or more isocyanate groups in one molecule include, for example, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate (2,2,4-, 2,4,4-, or Aliphatic isocyanates such as (mixtures), 1,3- or 1,4-phenylene diisocyanate, 2,4- or 2,6-tolylene diisocyanate, 4,4'- or 2,4-diphenylmethane diisocyanate, xylylene diisocyanate Aliphatic isocyanates such as aromatic isocyanates such as, eg, cyclohexylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, methylcyclohexylene diisocyanate, 2,5- or 2,6-norbornane diisocyanate Or an adduct type, an isocyanurate type, a bur
  • the (meth) acrylamide monomer (A) having a hydroxyl group is a hydroxyl group-containing methacrylamide and a hydroxyl group-containing acrylamide, and can be used singly or in combination of two or more.
  • the use of acrylamide containing a hydroxyl group is particularly preferable, because the effect of improving the tackiness of the coating film is high and the curability is remarkably improved.
  • (A) represents a compound represented by the general formula [1] (R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms substituted with a hydroxyl group, R 3 represents a hydrogen atom, And R 1 represents an alkyl group having 1 to 3 carbon atoms, or an alkyl group having 1 to 3 carbon atoms substituted with a hydroxyl group.
  • These (meth) acrylamides containing hydroxyl groups can be used singly or in combination of two or more.
  • the total of hydroxyl groups is preferably equal to or greater than the total of isocyanate groups, and the equivalent ratio (hydroxyl group / isocyanate group) is preferably 1.01 / 1
  • the method of reacting at a ratio of 3/1 is particularly preferred. If the total amount of hydroxyl groups is less than the same amount, the reactivity with carbon dioxide and water is high even if the amount of residual isocyanate groups is small, which may lead to a decrease in product stability. On the other hand, when the total amount of hydroxyl groups exceeds 3 times equivalent, the amount of residual hydroxyl groups increases, and the water resistance and the moisture resistance may decrease depending on the average molecular weight of the resulting urethane oligomer.
  • the urethanization reaction of the present invention includes the reaction of a polybutadiene polyol or polycarbonate polyol with an isocyanate monomer (B) and the reaction of a hydroxyl group-containing (meth) acrylamide monomer (A) with an isocyanate compound (C).
  • the reaction components can be mixed, the temperature can be raised if desired, and the reaction can be carried out in a known manner. It is desirable to carry out this reaction at a temperature of 10 to 160 ° C., preferably 20 to 140 ° C.
  • the mixing of the reaction components can be carried out by known methods. Also, the addition of the reaction components can be performed in several stages if desired.
  • the reaction may be carried out without a solvent, but can be carried out in an organic solvent or in a reactive diluent as required.
  • solvents that can be used include acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethyl acetate, butyl acetate, tetrahydrofuran, hexane, cyclohexane, benzene, toluene, xylene, aliphatic hydrocarbon solvents It can be carried out in the presence of a solvent (such as petroleum ether).
  • the reactive diluent which can be used is not particularly limited as long as it does not react with isocyanate, but methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl ( Meta) acrylate, 1,6-hexanediacrylate, tetraethylene glycol diacrylate, dipentaerythritol hexaacrylate, trimethylolpropane triacrylate, isobornyl (meth) acrylate, dimethyl (meth) acrylamide, di (meth) ethyl acrylamide, N -(Meth) acryloyl morpholine etc. are illustrated.
  • the amount of the organic solvent or reactive diluent used is 0 to 400% by weight, preferably 0 to 200% by weight, based on the isocyanate compound.
  • a catalyst can be added for the purpose of reaction promotion.
  • the catalyst for example, potassium or sodium salt of alkylphosphonic acid, sodium, potassium, nickel, cobalt, cadmium, barium, calcium, zinc, etc. of a fatty acid having 8 to 20 carbon atoms, dibutyltin dilaurate, dioctyl Organic tin compounds such as tin maleate, dibutyl dibutoxy tin, bis (2-ethylhexyl) tin oxide, 1,1,3,3-tetrabutyl-1,3-diacetoxy distannoxane, etc. may be mentioned alone or Two or more can be used in combination.
  • the amount of the catalyst used is preferably 5% by weight or less, more preferably 3% by weight or less, based on the total weight of the raw material components.
  • a polymerization inhibitor can be used as needed to suppress radical polymerization of (A) during the urethanization reaction.
  • a radical polymerization inhibitor for example, quinone type polymerization inhibitors such as hydroquinone, methoxyhydroquinone, benzoquinone, p-tert-butylcatechol; 2,6-di-tert-butylphenol, 2,4-di-tert-butylphenol, Alkylphenol-based polymerization inhibitors such as 2-tert-butyl 4,6-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2,4,6-tri-tert-butylphenol; alkylated diphenylamines Amine polymerization inhibitors such as N, N'-diphenyl-p-phenylenediamine and phenothiazine N-oxyls such as 4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl; dimethyldithiocarbamic acid Copper
  • the addition amount of these polymerization inhibitors may be appropriately set according to the type, blending amount, etc. of (A), but from the viewpoint of the polymerization suppression effect, production simplicity and economy, (A)
  • the preferred range is usually 0.001 to 5% by weight, more preferably 0.01 to 1% by weight, based on the total weight of (C) and (C).
  • the weight average molecular weight of the (meth) acrylamide-based urethane oligomer of the present invention is 1,000 to 50,000, and more preferably 2,000 to 20,000.
  • the component having a weight average molecular weight of less than 1,000 contains a large amount of the adducts (urethane adduct compounds) of (A) and (B) described above, and the transparency of the resin composition consisting thereof and the curability of active energy rays As a result, the adhesion and water resistance of the resulting coating film also decrease.
  • the weight average molecular weight exceeds 50,000, the viscosity becomes high, and the handling property is unfavorably deteriorated.
  • the content of the component having a molecular weight of less than 1000 (excluding (A)) is 5% by weight or less, particularly preferably 3% by weight or less. If the content of the component having a molecular weight of less than 1000 exceeds 5% by weight, the solubility of the urethane oligomer of the present invention in general-purpose solvents and general-purpose monomers decreases significantly, and physical properties such as curability and transparency of active energy ray cured products It is not preferable because adhesion to a substrate, shrinkage resistance, moisture resistance, strength, elongation and the like deteriorate.
  • the average number of functional groups (average value of the number of (meth) acrylamide groups contained in one molecule) of the (meth) acrylamide urethane oligomer of the present invention is preferably 1 to 10, and more preferably 2 to 6. Is more preferred. If the average number of functional groups is less than 1, the active energy ray curability by the presence of the non-polymerizable compound, and the strength and water resistance of the cured film may be reduced. On the other hand, when the average number of functional groups exceeds 10, although the curing speed is increased, the cured film becomes too hard, so the elongation decreases and the curing shrinkage also increases, which is not preferable.
  • the glass transition temperature (Tg) of the (meth) acrylamide-based urethane oligomer of the present invention is preferably ⁇ 50 ° C. to 80 ° C., and more preferably ⁇ 30 ° C. to 50 ° C. If the Tg is less than ⁇ 50 ° C., the surface curability of the cured film is reduced, and the surface is easily sticky. On the other hand, if the temperature exceeds 80 ° C., the film after curing becomes too hard, and although the strength and hardness are improved, it is not preferable because the shape following property may be lowered and the flexibility and the elongation may be reduced.
  • the active energy ray curable resin composition can be prepared by mixing the (meth) acrylamide-based urethane oligomer of the present invention alone with other active energy ray curable monomers, oligomers and the like.
  • the (meth) acrylamide-based urethane oligomer of the present invention is used alone, the curability of the resin composition, the cured product obtained, depending on the structure of the main chain skeleton and the type and number of (meth) acrylamide groups and the molecular weight of the oligomer
  • physical properties such as water absorbency, strength and elongation are different, it is preferable that they are generally within the following range.
  • the (meth) acrylamide-based urethane oligomer of the present invention can be completely cured by active energy ray irradiation.
  • the necessary amount of active energy ray irradiation (integrated light amount) varies depending on the type and number of (meth) acrylamide groups of urethane oligomer, type of energy ray light source, irradiation method and the like, but it is preferably 2 to 10000 mJ / cm 2 Furthermore, about 5 to 5000 mJ / cm 2 is particularly preferable. If the integrated light amount is less than 2 mJ / cm 2 , a portion which is not sufficiently cured may remain, and the overall strength, elongation, and water resistance of the cured product may be reduced. Further, when the integrated light amount exceeds 10000 mJ / cm 2 , side reactions such as decomposition due to excessive energy occur, and it is observed that the cured film tends to be colored.
  • the water absorption of the cured film comprising the (meth) acrylamide urethane oligomer of the present invention is preferably 2% or less, and more preferably 1% or less. If the water absorption rate is more than 2%, the cured film absorbs water over time when used for a long time under a high humidity environment, causing distortion of the shape due to swelling and swelling, which may reduce the adhesion and transparency. There is.
  • the tensile breaking strength of the cured film comprising the (meth) acrylamide-based urethane oligomer of the present invention is preferably 5 to 50 N / mm, and the tensile breaking elongation is preferably 5 to 200%.
  • An active energy ray-curable resin composition comprising a mixture of other active energy ray-curable monomers and oligomers as the strength and elongation of the (meth) acrylamide-based urethane oligomer fall within these ranges is an adhesive, an adhesive It can be used in a wide variety of fields such as hard coats, sealants, and ink compositions.
  • the active energy ray-curable resin composition containing the (meth) acrylamide-based urethane oligomer of the present invention optionally contains a general-purpose acrylic monomer (D) and / or a polymerizable quaternary salt ionic liquid (E). be able to.
  • component (D) various kinds such as monofunctional (meth) acrylate and / or monofunctional (meth) acrylamide, polyfunctional (meth) acrylate and / or polyfunctional (meth) acrylamide, etc. can be used.
  • the constituent compounds of the component (D) may be used alone or in combination of two or more.
  • the monofunctional (meth) acrylate is, for example, (meth) acrylate having a saturated or unsaturated, linear or branched alkyl group having 1 to 22 carbon atoms, alkoxy (1 to 4 carbon atoms) alkyl (1 carbon atom) To 4) (meth) acrylate, alkoxy (1 to 4 carbon atoms) di (tri or tetra) alkyl (1 to 4 carbon atoms) (meth) acrylate, 2- (2-ethoxyethoxy) ethyl acrylate, phenoxy alkyl (meth) ) Acrylate, phenoxy (di, tri, telora or hexa) alkylene (1 to 4 carbon atoms) glycol (meth) acrylate, alkoxy (1 to 4 carbon atoms) di (tri) oxylene (1 to 4 carbon atoms) glycol (meth) ) Acrylate, cyclohexyl (meth) acrylate, tert-butylcycl
  • the monofunctional (meth) acrylamide used in the present invention is, for example, N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N -Methoxyethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, Nn-butoxymethyl (meth) acrylamide, N-isobutoxymethyl (meth) acrylamide, N-vinylpyrrolidone, N-vinylcaprolactam, N- (2-hydroxyethyl) acrylamide, N- [3- (dimethylamino)] propyl acrylamide, N, N- dimethyl (meth) acrylamide, N, N- diethyl (meth) acrylamide, N- (meth) acryloyl morpholine, Hydroxyeth Hydroxyalkyl acrylamide, (me
  • polyfunctional (meth) acrylate examples include (di) ethylene glycol di (meth) acrylate, (tri) propylene glycol di (meth) acrylate, ditetraethylene glycol di (meth) acrylate, and polyalkylene (number of carbon atoms) 1-4) Glycol di (meth) acrylate, polytetramethylene glycol di (meth) acrylate, 1,3 (or 1,4) -butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate , Dicyclopentanyl di (meth) acrylate, caprolactone modified dicyclopentenyl di (meth) acrylate, pentaerythritol tetra (or tri) (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylol ethane tri ( Me ) Acrylate, trimethylol
  • polyfunctional (meth) acrylamides examples include methylene (or ethylene) bis (meth) acrylamide, diallyl (meth) acrylamide and the like.
  • organic ionic compounds include ionic vinyl monomers and / or oligomers and polymers containing them as constituent components.
  • the ionic vinyl monomer is an onium salt in which a cation and an anion are combined, and specifically, a (meth) acrylate type or (meth) acrylamide type ammonium ion or imidazolium ion as a cation, Cl ⁇ as an anion, br -, I - a halogen ion or OH in -, CH 3 COO -, NO 3 -, ClO 4 -, PF 6 -, BF 4 -, HSO 4 -, CH 3 SO 3 -, CF 3 SO 3 -, Inorganic acid anions or organic acid anions such as CH 3 C 6 H 6 SO 3 ⁇ , C 4 F 9 SO 3 ⁇ , (CF 3 SO 2 ) 2 N ⁇ , SCN ⁇
  • a tertiary amine having a polymerizable group is a quaternizing agent such as alkyl halide, dialkyl sulfates, methyl p-toluenesulfonate and the like
  • Quaternization method with quaternization method quaternary ammonium salt obtained by quaternization is further subjected to anion exchange using a salt having an objective anion, or quaternary ammonium salt is prepared using an anion exchange resin.
  • the ions of the organic ionic compound tend to form hydrogen bonds and ionic bonds with the coated substrate, and since conductivity and antistatic properties can be imparted, the wettability is improved and more uniform. It can be applied to form a film more stably. Furthermore, since the ionic vinyl monomer itself is also an active energy ray-curable compound, it does not bleed out by copolymerizing with the active energy ray-curable resin composition of the present invention, and thus the electroconductive or antistatic property is permanent. It is possible to provide an auxiliary effect of imparting the
  • the organic ionic compound is a single molecular compound having a molecular weight of several tens to several hundreds, an oligomer having a molecular weight of several hundred to several thousand, a polymer having a molecular weight of several thousand to several tens of thousands, or a combination of two or more as needed. Can be used.
  • the blending amount of these organic ionic compounds can be adjusted according to the number of functional groups and molecular weight of the ion pair, and is not particularly limited. In general, 0 to 50% by weight, preferably 0 to 10% by weight is preferably added to the urethane oligomer of the present invention. If the compounding amount of the organic ionic compound exceeds 50% by weight, although depending on the type of the organic ionic compound, the transparency of the cured film may be lowered.
  • the active energy ray of the present invention is defined as an energy ray capable of decomposing a compound (photopolymerization initiator) generating an active species to generate an active species.
  • active energy rays include light energy rays such as visible light, electron beams, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays and ⁇ -rays.
  • light energy rays such as visible light, electron beams, ultraviolet rays, infrared rays, X-rays, ⁇ -rays, ⁇ -rays and ⁇ -rays.
  • ultraviolet light it is preferable to use ultraviolet light in view of the balance of the generation apparatus of the active energy ray, the curing speed and the safety.
  • an ultraviolet light source a xenon lamp, a low pressure mercury lamp, a high pressure mercury lamp, a metal halide lamp, an ultraviolet LED lamp, a microwave type excimer lamp and the like can be mentioned.
  • the active energy ray irradiation is preferably performed under an inert gas atmosphere such as nitrogen gas or carbon dioxide gas or an atmosphere with reduced oxygen concentration, but since the (meth) acrylamide-based urethane oligomer of the present invention has excellent curability.
  • An active energy ray-curable resin composition using the same can be sufficiently cured even in a normal air atmosphere.
  • the irradiation temperature of the active energy ray is preferably 10 to 200 ° C., and the irradiation time is preferably 1 second to 60 minutes.
  • a photopolymerization initiator can be added as necessary, but it is not particularly necessary in the case of using an electron beam.
  • the photopolymerization initiator may be appropriately selected from usual ones such as acetophenone type, benzoin type, benzophenone type and thioxanthone type.
  • the amount of these photopolymerization initiators used is not particularly limited, but generally 0.1 to 10% by weight, preferably 1 to 5% by weight, is added to the active energy ray curable resin composition. preferable. If the amount is less than 0.1% by weight, sufficient curability can not be obtained, and if the amount is more than 10% by weight, the strength of the coating may decrease or it may turn yellow.
  • Other optional components such as an agent, an ultraviolet sensitizer, and a preservative may be used in combination.
  • the active energy ray-curable resin composition of the present invention can be used as paper, cloth, non-woven fabric, glass, polyethylene terephthalate, diacetate cellulose, triacetate cellulose, acrylic polymer, polyvinyl chloride, cellophane, celluloid, polycarbonate, polyimide, etc.
  • a high-performance coating layer, ink layer, pressure-sensitive adhesive layer, sealing agent layer or adhesive layer can be obtained.
  • the active energy ray-curable resin composition of the present invention has a highly transparent urethane oligomer, it is an optical pressure-sensitive adhesive, an optical adhesive or sealing agent, an optical resin composition such as an optical film coating material It can be suitably used as Moreover, as a method of applying these resin compositions on a substrate, a spin coating method, a spray coating method, a dipping method, a gravure roll method, a knife coating method, a reverse roll method, a screen printing method, a bar coater method, etc. The film formation method of can be used. Moreover, as a method of apply
  • the weight average molecular weight and the content of low molecular weight components of the obtained urethane oligomer are high performance liquid chromatography ("LC-10A” manufactured by Shimadzu Corporation, column: Shodex GPC KF-806L (exclusion limit molecular weight) : 2 ⁇ 10 7 , separation range: 100 to 2 ⁇ 10 7 , theoretical plate number: 10,000 plates / body, filler material: styrene-divinylbenzene copolymer, filler particle diameter: 10 ⁇ m), eluent: tetrahydrofuran ), And calculated by standard polystyrene molecular weight conversion.
  • LC-10A high performance liquid chromatography
  • Tg glass phase transition temperature
  • the obtained curable composition was applied onto a fluorine resin sheet, dried (80 ° C., 2 minutes), and then cured by ultraviolet irradiation (integrated light amount: 2000 mJ / cm 2 ).
  • 10 mg of a homopolymer of urethane oligomer is taken out from the obtained cured film, put in an aluminum pan, sealed, and raised by 10 ° C./min using a differential scanning calorimeter (EXSTAR 6000 manufactured by SII Nano Technology Co., Ltd.) It measured by the temperature rate.
  • Synthesis Example 2 Synthesis of Urethane Oligomer UTB-2
  • GI-1000 bi-terminal hydroxyl group
  • HDI hexamethylene diisocyanate
  • dibutyltin dilaurate 75.0 g (50.0 mmol) of hydrogenated polybutadiene having a weight average molecular weight: 1,500 was added dropwise and reacted at 70 ° C. for 2 hours.
  • Synthesis Example 3 Synthesis of Urethane Oligomer UTB-3 Using the same apparatus as in Synthesis Example 1, 11.9 g (53.5 mmol) of IPDI, Poly ip (polyisoprene having hydroxyl groups at both ends, number average molecular weight: 2500) 125 g (50. 0 mmol) and 0.07 g of dibutyltin dilaurate were charged, and allowed to react at 90 ° C. for 5 hours while passing dry nitrogen. Next, 0.1 g of MHQ and 1.7 g (14.8 mmol) of “HEAA” were charged, and the reaction was continued at 80 ° C. for 5 hours.
  • UTB-3 136.5 g was obtained as a light yellow viscous liquid, and the yield was 98.2%.
  • the formation of UTB-3 was confirmed by IR analysis.
  • the weight-average molecular weight of UTB-3 was 18,000, the viscosity at 60 ° C. was 91,000 mPa ⁇ s, the Tg was ⁇ 9.3 ° C., and the low molecular weight component contained was 1.5%.
  • Synthesis Example 4 Synthesis of Urethane Oligomer UTB-4 Using the same apparatus as in Synthesis Example 1, 70.0 g (50.0 mmol) of G-1000 and 0.04 g of dibutyltin dilaurate were charged, and then dried while passing through dry nitrogen. 0.5 g (110.0 mmol) was added dropwise while maintaining the temperature at 80 ° C., and the mixture was allowed to react at 80 ° C. for 7 hours. Next, 0.1 g of MHQ and 3.9 g (30.0 mmol) of hydroxyethyl methacrylamide (HEMAA) were charged in the same manner as in Synthesis Example 1, and stirring was continued at 80 ° C. for 7 hours.
  • HEMAA hydroxyethyl methacrylamide
  • UTB-4 90.4 g was obtained as a light yellow viscous liquid, and the yield was 97.6%.
  • the formation of UTB-4 was confirmed by IR analysis.
  • the weight average molecular weight of UTB-4 was 12000, the viscosity at 60 ° C. was 85000 mPa ⁇ s, the Tg was ⁇ 2.3 ° C., and the low molecular weight component contained was 1.8%.
  • Synthesis Example 5 Synthesis of Urethane Oligomer UTB-5 Using the same apparatus (volume 500 mL) as in Synthesis Example 1, 70.0 g (50.0 mmol) of G-1000, 22.2 g (100.0 mmol) of IPDI and dimethylacetamide (DMAc) 110 g were charged and reacted at 100 ° C. for 10 hours while passing dry nitrogen. Next, 0.1 g of MHQ, 8.0 g (69.3 mmol) of “HEAA” and 30 g of DMAc were charged in the same manner as in Synthesis Example 1, and the reaction was continued at 80 ° C. for 8 hours.
  • DMAc dimethylacetamide
  • the solvent was distilled off by a reduced pressure method to obtain 91.5 g of UTB-5 as a light yellow viscous liquid, and the yield was 96.4%.
  • the formation of UTB-5 was confirmed by IR analysis.
  • the weight average molecular weight of UTB-5 was 2700, the viscosity at 60 ° C. was 13000 mPa ⁇ s, the Tg was 13.3 ° C., and the contained low molecular weight component was 1.1%.
  • Synthesis Example 6 Synthesis of Urethane Oligomer UTB-6 In the same manner as in Synthesis Example 1, 42.0 g (30.0 mmol) of G-1000 and a mixed solution of 16.1 g (95.8 mmol) of HDI and 0.04 g of dibutyltin dilaurate A mixture of 75.0 g (30.0 mmol) of Poly ip was added dropwise at 80 ° C. and allowed to react for 2 hours. Next, 0.1 g of MHQ and 5.1 g (39.8 mmol) of MHEAA were charged in the same manner as in Synthesis Example 1, and stirring was continued at 80 ° C. for 6 hours.
  • UTB-6 136.4 g was obtained as a light yellow viscous liquid, and the yield was 98.5%.
  • the formation of the target urethane oligomer UTB-6 was confirmed by IR analysis.
  • the weight-average molecular weight of UTB-6 was 6000, the viscosity at 60 ° C. was 70000 mPa ⁇ s, the Tg was 4.2 ° C., and the low molecular weight component contained was 4.1%.
  • TMDI trimethylhexamethylene diisocyanate
  • Synthesis Example 8 Synthesis of Urethane Oligomer UTB-8 Using the same apparatus as in Synthesis Example 1, 56.0 g (40.0 mmol) of G-1000, 25.0 g (10.0 mmol) of Poly ip, and 0.04 g of dibutyltin dilaurate were charged. Then, while passing dry nitrogen, HDI 10.1 g (60.0 mmol) was added dropwise while maintaining the temperature at 80 ° C., and the reaction was further performed at 80 ° C. for 2 hours. Next, 0.1 g of MHQ and 2.3 g (20.0 mmol) of “HEAA” were charged in the same manner as in Synthesis Example 1, and stirring was continued at 80 ° C. for 3 hours.
  • UTB-8 92.3 g was obtained as a light yellow viscous liquid, and the yield was 96.9%. The formation of UTB-8 was confirmed by IR analysis. The weight-average molecular weight of UTB-8 was 9300, the viscosity at 60 ° C. was 95000 mPa ⁇ s, the Tg was 0.5 ° C., and the low molecular weight component contained was 1.8%.
  • Synthesis Example 9 Synthesis of Urethane Oligomer UTB-9 In a mixture liquid of 3.8 g (2.5 mmol) of GI-1000, 118.8 g (47.5 mmol) of EPOL and 0.04 g of dibutyltin dilaurate in the same manner as in Synthesis Example 8. 9.7 g (57.5 mmol) of HDI was added dropwise at 80 ° C., and the reaction was further continued for 2 hours. Next, 0.1 g of MHQ and 2.9 g (25.0 mmol) of “HEAA” were charged in the same manner as in Synthesis Example 1, and stirring was continued at 80 ° C. for 3 hours.
  • UTB-9 133.6 g was obtained as a light yellow viscous liquid, and the yield was 98.9%.
  • the weight-average molecular weight of UTB-9 was 10,600, the viscosity at 60 ° C. was 150,000 mPa ⁇ s, the Tg was ⁇ 1.1 ° C., and the low molecular weight component contained was 2.3%.
  • Synthesis Example 10 Synthesis of Urethane Oligomer UTB-10 Using the same apparatus as in Synthesis Example 1, 150.0 g (50.0 mmol) of G-3000 (both-end hydroxyl group polybutadiene, number average molecular weight: 3000) and 22.2 g of IPDI (100. 0 mol) was charged and reacted at 130 ° C. for 1 hour while passing through dry nitrogen. Next, in the same manner as in Synthesis Example 1, 0.2 g of MHQ and 45.0 g (391.3 mmol) of “HEAA” were charged, and stirring was continued at 70 ° C. for 8 hours. 205.3 g of a light yellow viscous liquid was obtained, and the yield was 97.7%.
  • urethane oligomers were confirmed by IR analysis. Since it was 6.5% when the low molecular weight component contained was measured, it was decided to carry out a further purification step.
  • the resulting urethane oligomer was reprecipitated with a mixture of methyl ethyl ketone and water to remove low molecular weight monomers. Under reduced pressure, methyl ethyl ketone and water were completely removed to obtain the target urethane oligomer UTB-10 as a light yellow viscous liquid.
  • the weight average molecular weight of UTB-10 was 4200, the viscosity at 60 ° C. was 22000 mPa ⁇ s, the Tg was 8.4 ° C., and the contained low molecular weight component was 0.4%.
  • Synthesis Example 11 Synthesis of Urethane Oligomer UTC-1
  • 12.7 g (57.0 mmol) of IPDI and 0.03 g of dibutyltin dilaurate were charged, and then C-1090 (both ends manufactured by Kuraray Co., Ltd.)
  • Synthesis Example 12 Synthesis of Urethane Oligomer UTC-2 Using the same apparatus as in Synthesis Example 1, 13.5 g (80.0 mmol) of HDI was charged, and then, while passing dry nitrogen, 50.0 g (50.0 mmol) of C-1090. The reaction solution was added dropwise while maintaining at 60.degree. C., and allowed to react at 60.degree. C. for 5 hours. Next, 0.1 g of MHQ and 2.5 g (21.6 mmol) of “HEAA” were charged in the same manner as in Synthesis Example 1, and stirring was continued at 80 ° C. for 2 hours. 61.4 g of UTC-2 was obtained as a light yellow viscous liquid, and the yield was 97.2%.
  • UTC-2 Similar to Synthesis Example 1, IR analysis confirmed the formation of UTC-2.
  • the weight average molecular weight of UTC-2 was 5600, the viscosity at 60 ° C. was 32000 mPa ⁇ s, the Tg was 8.6 ° C., and the contained low molecular weight component was 1.2%.
  • Synthesis Example 13 Synthesis of Urethane Oligomer UTC-3 Using the same apparatus as in Synthesis Example 1, 9.5 g (56.5 mmol) of HDI, 50.0 g (50.0 mmol) of C-1090 and 0.03 g of dibutyltin dilaurate were charged. After mixing, the mixture was heated at 80 ° C. for 4 hours while passing dry nitrogen. Next, 0.1 g of MHQ and 1.4 g (10.8 mmol) of MHEAA were charged in the same manner as in Synthesis Example 1, and stirring was continued at 60 ° C. for 3 hours. 59.9 g of UTC-3 was obtained as a light yellow viscous liquid, and the yield was 98.2%. The formation of UTC-3 was confirmed by IR analysis.
  • the weight average molecular weight of the obtained urethane oligomer UTC-3 was 11000, the viscosity at 60 ° C. was 85000 mPa ⁇ s, the Tg was 3.2 ° C., and the contained low molecular weight component was 2.5%.
  • Synthesis Example 14 Synthesis of Urethane Oligomer UTC-4 In the same manner as in Synthesis Example 5, 50.0 g (50.0 mmol) of C-1090, 16.7 g (75.0 mmol) of IPDI, 0.03 g of dibutyltin dilaurate and 120 g of DMAc were charged. The reaction was carried out at 100 ° C. for 3 hours while passing dry nitrogen. Next, in the same manner as in Synthesis Example 1, 0.1 g of MHQ, 6.6 g (51.3 mmol) of HEMAA and 10 g of DMAc were charged, and stirring was continued at 90 ° C. for 5 hours.
  • UTC-4 had a weight-average molecular weight of 2600, a viscosity at 60 ° C. of 8900 mPa ⁇ s, a Tg of 13.3 ° C., and the contained low molecular weight component was 0.8%.
  • UTC-5 64. as a light yellow viscous liquid. The yield was 98.5%, and the formation of UTC-5 was confirmed by IR analysis. Viscosity at 6300,60 ° C. is 50000 mPa ⁇ s, Tg is 7.10 ° C., the low molecular weight components contained was 0.9%.
  • Synthesis Example 16 Synthesis of Urethane Oligomer UTC-6 Using the same apparatus as in Synthesis Example 1, 35.0 g (35.0 mmol) of C-1090, polyester diol (manufactured by Asahi Denka Kogyo Co., Ltd., Adeka Nuace Y 6-30, Number) After charging 45.0 g (15.0 mmol) and 0.04 g of dibutyltin dilaurate with an average molecular weight of 3000), 13.3 g (60.0 mmol) of IPDI is added dropwise while maintaining at 80 ° C. while passing through dry nitrogen, The reaction was carried out at 80 ° C. for 2 hours.
  • UAB-1 The crude urethane oligomer obtained in Synthesis Example 10 (containing 6.5% of low molecular weight components) is designated as UAB-1.
  • the composition was evaluated by the above method, and the weight average molecular weight of UAB-1 was 3800, the viscosity at 60 ° C. was 35000 mPa ⁇ s, and the Tg was 5.2 ° C.
  • urethane oligomers The formation of urethane oligomers was confirmed by IR analysis.
  • the weight average molecular weight of the obtained urethane oligomer UAB-2 was 7,900, the viscosity at 60 ° C. was 95,000 mPa ⁇ s, the Tg was ⁇ 3.4 ° C., and the contained low molecular weight component was 5.2%.
  • urethane oligomer UAC-2 was confirmed by IR analysis.
  • the weight-average molecular weight of the obtained UAC-2 was 7,900, the viscosity at 60 ° C. was 82000 mPa ⁇ s, the Tg was 5.3 ° C., and the contained low molecular weight component was 5.4%.
  • urethane oligomer UAC-3 was confirmed by IR analysis.
  • the weight average molecular weight of the obtained UAC-3 was 12,500, the viscosity at 60 ° C. was 103,000 mPa ⁇ s, the Tg was ⁇ 2.5 ° C., and the contained low molecular weight component was 1.2%.
  • IPA Isopropanol MEK: Methyl ethyl ketone
  • THF Tetrahydrofuran “ACMO”: N-Acryloyl morpholine (KJ Chemicals Co., Ltd.)
  • HDDA 1,6-hexanediol diacrylate
  • BA butyl acrylate
  • IBOA isobornyl acrylate 2EHA; 2-ethylhexyl acrylate THFA; tetrahydrofurfuryl acrylate
  • An active energy ray curable resin composition was prepared using the urethane oligomer obtained in the synthesis example and the comparative synthesis example. And using these resin compositions, preparation of an ultraviolet cured film and characteristic evaluation of a cured film were performed, and the result is shown in Tables 3 and 4.
  • Example B-1 100 parts by weight of the (meth) acrylamide-based urethane oligomer UTB-1 obtained in Synthesis Example 1, 100 parts by weight of methyl ethyl ketone (MEK) and 3 parts by weight of Darocur 1173 as a photopolymerization initiator are uniformly mixed and activated energy ray curable A resin composition was prepared. Then, the active energy ray cured film was produced by the following method using the obtained curable resin composition.
  • MEK methyl ethyl ketone
  • Preparation method of active energy ray cured film It coats with a bar coater (RDS 12) on the anchor coat side of polyethylene terephthalate (PET) film ("Cosmo Shine A4100" Toyobo Co., Ltd., single-sided anchor coat processing) of 100 ⁇ m thickness, The coating was prepared such that the thickness of the dried coating was 10 ⁇ m. The obtained coating film is dried at 80 ° C.
  • RDS 12 bar coater
  • PET polyethylene terephthalate
  • UV-LED irradiator HOYA CANDEO OPTRONICS CO., LTD.
  • EXECURE-H-1 VC2 where the distance between the coating and the lamp is adjusted so that the UV energy is 2.7 mJ / cm 2 per second for the coating obtained. It hardened by Formula, 385 nm), and produced the UV-LED cured film.
  • the UV-LED curability was evaluated by the following method and is shown in Table 3.
  • Examples B-2 to B18, Comparative Examples B-19 to B-24 An active energy ray-curable resin composition was prepared in the same manner as in Example B-1 except that the composition described in Table 3 was substituted, a cured film was produced, and evaluation was performed by the above method. The results are shown in Tables 3 and 4.
  • urethane oligomers containing 5% by weight or more of low molecular weight components require much time and energy for curing, and the obtained cured products have tack resistance and It is inferior in shrinkage resistance and water absorption. It is considered that this is because the low molecular weight component is a component with high polarity, and the inclusion of the low molecular weight substance increases the polarity of the urethane oligomer as a whole and the adhesion is lowered.
  • the content of the low molecular weight component having a molecular weight of less than 1000 is 5% by weight or less, and the (meth) acrylamide urethane oligomer of the present invention has excellent curability even when using a UV lamp as well as a UV lamp as an active energy ray light source.
  • a resin composition which is excellent in tack resistance, shrinkage resistance, transparency, and water absorption of the cured product obtained, and in which adhesion to an untreated PET surface, PC and PMMA is improved. it can.
  • the urethane oligomers obtained in Synthesis Examples 1 to 17 and Comparative Synthesis Examples 1 to 6 were characterized in each application field.
  • the materials used in the examples and comparative examples are as follows. "HEAA”; hydroxyethyl acrylamide (KJ Chemicals Co., Ltd.) "DMAA”; N, N-dimethyl acrylamide (KJ Chemicals Ltd.) “DEAA”; N, N-diethyl acrylamide (KJ Chemicals Ltd.) "ACMO”; N-acryloyl morpholine (KJ Chemicals Co., Ltd.) "DMAPAA”; dimethylaminopropyl acrylamide (KJ Chemicals Co., Ltd.) HEA; hydroxyethyl acrylate 4HBA; 4-hydroxybutyl acrylate 2EHA; 2-ethylhexyl acrylate EEA; 2- (2-ethoxyethoxy) ethyl acrylate THFA; tetrahydrofurfuryl
  • Evaluation Example C-1 22 parts by weight of (meth) acrylamide-based urethane oligomer UTB-1 synthesized in Synthesis Example 1, 10 parts by weight of “HEAA”, 40 parts by weight of 2EHA, 7 parts by weight of CHA, 20 parts by weight of EEA, 1 part by weight of DMAEA-TFSIQ Then, 3 parts by weight of Irgacure 184 as a photopolymerization initiator was added and uniformly mixed to prepare a UV curable adhesive. Then, preparation and evaluation of an ultraviolet curable adhesive sheet were performed by UV irradiation by the following method using the obtained adhesive.
  • UV-curable pressure-sensitive adhesive prepared above is applied to a heavy release separator (silicone-coated PET film), and the light release separator (silicone-coated PET film) does not bite air bubbles.
  • Evaluation Examples C-2 to 20 Evaluation Comparative Examples C-21 to 25
  • An ultraviolet curable resin was prepared in the same manner as in Evaluation Example C-1 except that the composition described in Table 5 was substituted, and a pressure-sensitive adhesive sheet was produced and evaluated by the above method. The results are shown in Tables 5-7.
  • urethane oligomers containing 5% by weight or more of a component having a molecular weight of less than 1000 tend to lower the transparency, the adhesive strength, and the moist heat resistance, and after curing of the adhesive sheet It was difficult to use due to its poor resistance to contamination and punching processability.
  • the (meth) acrylamide-based urethane oligomer of the present invention is highly transparent and can provide a pressure-sensitive adhesive sheet excellent in stain resistance and punching processability while having adhesiveness.
  • Evaluation Example D-1 20 parts by weight of (meth) acrylamide-based urethane oligomer UTB-1 synthesized in Synthesis Example 1, 40 parts by weight of "DEAA”, 25 parts by weight of M-106, 10 parts by weight of 4-HBA and 5 parts by weight of "HEAA” Then, 3 parts by weight of Darocur 1173 as a photopolymerization initiator was added and uniformly mixed to prepare an ultraviolet curable sealant. Then, preparation and physical-property evaluation of sealing agent resin cured material by ultraviolet curing were performed by the following method using the obtained sealing agent.
  • Permeability 90% or more ⁇ : Permeability is 85% or more and less than 90% ⁇ : Permeability is 50% or more and less than 85% ⁇ : Permeability is less than 50% (21) Light Resistance
  • CM-3600 d manufactured by Konica Minolta Co., Ltd.
  • SC-700-WA manufactured by Suga Test Instruments Co., Ltd.
  • Outgas generation rate (%) (weight after constant temperature-weight before constant temperature) / weight before constant temperature ⁇ 100 :: Occurrence rate is less than 0.1% ⁇ : Occurrence rate is 0.1% or more and less than 0.3% ⁇ : Occurrence rate is 0.3% or more and less than 1.0% ⁇ : Occurrence rate is 1 .0% or more (24) Heat cycle resistance The obtained cured product was repeated 100 times with -40 ° C for 30 minutes, then left at 100 ° C for 30 minutes as one cycle, and the state of the cured product was visually observed. ⁇ : no change is observed ⁇ : slight generation of air bubbles is observed, but no generation of cracks is observed. It is transparent. ⁇ : Some bubbles or cracks were observed, and a slight cloud was observed. X: A bubble or a crack generate
  • Evaluation Examples D-2 to 18; Evaluation Comparative Examples D-19 to 24 An ultraviolet curable resin was prepared in the same manner as in Evaluation Example D-1 except that the composition described in Table 8 was substituted, and a pressure-sensitive adhesive sheet was produced and evaluated by the above method. The results are shown in Tables 8 and 9.
  • Evaluation Example E-1 12 parts by weight of the (meth) acrylamide-based urethane oligomer UTB-1 synthesized in Synthesis Example 1, 25 parts by weight of ACMO, 23 parts by weight of DMAA, 25 parts by weight of HEA, 15 parts by weight of THFA and Darocur 1173 as a photopolymerization initiator Three parts by weight were added and uniformly mixed to prepare a UV curable adhesive. Thereafter, using the obtained adhesive, preparation of a polarizing plate by ultraviolet curing and physical property evaluation of the polarizing plate were performed by the following method, and the results are shown in Table 10.
  • Irradiate ultraviolet light from the upper surface of the laminated transparent film (Device: Inverter-made conveyor device ECS-4011GX, metal halide lamp: made by Igraphics M04-L41, ultraviolet illuminance: 700 mW / cm 2 , accumulated light quantity: 1000 mJ / cm 2 ), and a polarizing plate having a transparent film on both sides of the polarizing film was produced.
  • an acrylic (ACR) protective film (Sandurene SD-014 manufactured by Kaneka Co., Ltd.), a cyclic olefin (COP) protective film (Zeonor film ZF16 manufactured by Nippon Zeon Co., Ltd.) and a triacetyl cellulose TAC) Protective film (retardation film n-TAC using a polymer mainly composed of cellulose ester manufactured by Konica Minolta Opto, Inc.) was used.
  • ACR acrylic
  • COP cyclic olefin
  • TAC triacetyl cellulose TAC
  • Peeling occurred on part of the interface between the polarizer and the protective film (1 mm or more and less than 3 mm).
  • Fair Peeling occurred on part of the interface between the polarizer and the protective film (3 mm or more and less than 5 mm).
  • X Peeling occurs at the interface between the polarizer and the protective film (5 mm or more).
  • Evaluation Examples E-2 to 20 Evaluation Comparative Examples E-21 to 26
  • An ultraviolet curable resin was prepared in the same manner as in Evaluation Example E-1 except that the composition described in Table 10 was substituted, and a polarizing plate was produced and evaluated by the above method. The results are shown in Tables 10-12.
  • the urethane oligomer containing 5% by weight or more of the low molecular weight component has a low peel strength, and the low molecular weight component has a relatively high polarity, so the obtained polarized light
  • the water resistance and durability of the plate were also insufficient.
  • the polarizing plate obtained by the (meth) acrylamide type urethane oligomer of the present invention does not have streaks or overall unevenness on the surface.
  • a polarizing plate adhesive composition having high peel strength while having water resistance and durability can be obtained.
  • Viscosity The viscosity of the obtained ink composition was measured according to JIS K 5600-2-3 using a cone and plate viscometer (apparatus name: RE550 viscometer, manufactured by Toki Sangyo Co., Ltd.). Based on ink jet printing, the viscosity of the ink composition at 20 ° C. is preferably 3 to 20 mPa ⁇ s or less, more preferably 5 to 18 mPa ⁇ s. If the viscosity is less than 3 mPa ⁇ s, printing may occur after discharge, and a decrease in discharge followability due to printing deviation may be observed. If 20 mPa ⁇ s or more, a decrease in discharge stability due to clogging of the discharge nozzle may be observed.
  • the obtained ink composition is coated on a polyethylene terephthalate (PET) film with a thickness of 100 ⁇ m with a bar coater (RDS 12) and irradiated with ultraviolet light (Device: inverter type conveyor device ECS made by Igraphics) It hardened by -4011GX, metahalide lamp: I Graphics-made M04-L41), and produced the printed matter.
  • PET polyethylene terephthalate
  • RDS 12 bar coater
  • Ink jet printing and printability evaluation Solid images are printed using an ink jet color printer (PM-A890 manufactured by Seiko Epson) and irradiated with ultraviolet light (apparatus: inverter made by Igraphics inverter type conveyor system ECS-4011GX, metal halide lamp: A printed material was produced by using an I GRAPHICS M04-L41, an ultraviolet illuminance: 700 mW / cm 2 , and an integrated light amount: 1000 mJ / cm 2 ), and evaluated by the following method. The results are shown in Table 13.
  • Evaluation Examples F-2 to 20 Evaluation Comparative Examples F-21 to 26
  • An ink composition was prepared in the same manner as in Example F-1 except that the composition described in Table 13 was substituted, and a print was produced by the above method and evaluated by the above method. The results are shown in Tables 13-15.
  • urethane oligomers containing 5% by weight or more of low molecular weight components are inferior in curability and surface dryness, and low polar components having high polarity also cause printed matter after discharge curing.
  • the water resistance was found to be poor.
  • the (meth) acrylamide-based urethane oligomer obtained in the present invention has excellent curability and surface drying properties, and has also been able to obtain an excellent ink composition having both discharge stability, sharpness and water resistance.
  • Evaluation Example G-1 40 parts by weight of the (meth) acrylamide-based urethane oligomer UTB-1 synthesized in Synthesis Example 1, 25 parts by weight of UV-1700, 20 parts by weight of DPHA and 15 parts by weight of ACMO are mixed, and 3 parts by weight of Darocur 1173 as a photopolymerization initiator Were uniformly mixed to prepare a photocurable coating composition.
  • the obtained coating agent composition is applied to a PET film with a thickness of 100 ⁇ m using a bar coater (numbers RDS 0 and RDS 12), and the thickness of the dried coating is 1 ⁇ m (RDS 0)
  • the coating film was produced to be 10 ⁇ m (RDS 12).
  • Irradiated with ultraviolet light apparatus: made by Igraphics inverter type conveyor ECS-4011GX, metal halide lamp: made by Igraphics M04-L41, ultraviolet illuminance: 700mW / cm 2 , accumulated light quantity: 1000mJ / cm 2
  • The transparency is maintained even under high temperature and high humidity, and no decrease in adhesion is observed.
  • Good The transparency is maintained even under high temperature and high humidity, but a slight decrease in adhesion is observed.
  • The transparency is maintained even under high temperature and high humidity, but the adhesion is significantly reduced.
  • X Decrease in transparency and further decrease in adhesion under high temperature and high humidity conditions.
  • Evaluation Examples G-2 to 18; Evaluation Comparative Examples G-19 to 24 A coat composition was prepared in the same manner as in Example G-1 except that the composition described in Table 16 was substituted, and a cured film was produced by the above method and evaluated by the above method. The results are shown in Tables 16-18.
  • the (meth) acrylamide urethane oligomer of the present invention has a diene skeleton or a hydrogenated diene skeleton in its molecule and has one or more (meth) acrylamide groups, and has a molecular weight of less than 1000. Since the content of the low molecular weight component is 5% by weight or less, the compatibility with general-purpose organic solvents and monomers is excellent, and a high curing rate is exhibited by active energy ray irradiation.
  • the (meth) acrylamide-based urethane oligomer of the present invention a cured film having high shrinkage resistance and high moisture and heat resistance can be produced without stickiness.
  • monofunctional and polyfunctional monomers, ionic monomers, active energy ray polymerization initiators, pigments and the like as needed, adhesive, electronic material, ink, coating agent, light curing It can be suitably used for mold resist applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

【課題】有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化速度を有する(メタ)アクリルアミド系ウレタンオリゴマー及びそれを含有する密着性、耐湿性と表面硬化性に優れ、且つ低硬化収縮性を有する活性エネルギー線硬化性樹脂組成物及びその成形品を提供することを課題とする。 【解決手段】分子内にカーボネート骨格、ジエン系骨格又は水素添加ジエン系骨格を有し、1つ以上の(メタ)アクリルアミド基を有する、分子量1000未満の成分(水酸基を有する(メタ)アクリルアミド化合物(A)を除く)の含有率が5重量%以下である(メタ)アクリルアミド系ウレタンオリゴマーを用いることで、有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、硬化性の高いウレタンオリゴマー及びそれを含有する密着性、耐タック性、耐湿性、耐収縮性に優れる活性エネルギー線硬化性樹脂組成物を得ることが出来る。

Description

ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物
 本発明は、有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化速度を有する(メタ)アクリルアミド系ウレタンオリゴマー及びそれを含有する密着性、耐湿性と表面硬化性に優れ、且つ低硬化収縮性、高透明性と高伸度を有する活性エネルギー線硬化性樹脂組成物及びその成形品に関する。
 ウレタンアクリレートは紫外線(UV)硬化性樹脂組成物としてコーティング、インキ、粘着剤、接着剤等に多く使用されている。中でもポリブタジエンやポリカーボネート骨格を有することによって、密着性、耐水性、耐薬品性、柔軟性、弾性と強靭性を付与され、近年、光学部材、電子材料、半導体分野においても盛んに検討されるようになった。このようなウレタンアクリレートは通常、ポリブタジエンポリオール又はポリカーボネートポリオールとポリイソシアネートとを反応させ、両末端に水酸基又はイソシアネート基を有するポリウレタンを得、その後、水酸基含有アクリレート又はイソシアネート基含有アクリレートと更に反応することにより合成されている(特許文献1~7)。又、水酸基含有アクリレートとポリイソシアネートとを反応させてから、ポリブタジエン骨格又はポリカーボネート骨格を有するポリオールの末端に付ける合成方法も提案されている(特許文献8、9)。
 しかし、これらのポリブタジエン骨格又はポリカーボネート骨格を有するウレタンアクリレートは、ガラス転移温度(Tg)が室温より低いものが多く、樹脂組成物として基材上に塗布、紫外線等の活性エネルギー線照射により硬化させる際に、塗膜の表面にべたつきが残存し、タックフリーになり難い欠点があった。ベタつきの残存を解決するため、単官能又は多官能のアクリルモノマーや光増感剤との併用が報告された。例えば、特許文献1は単官能アクリレート20~80%、増感剤2%を配合した光硬化型樹脂組成物を提案し、特許文献2はトリメチロールプロパンから変性アクリレート系ウレタンプレポリマーを合成し、更に単官能アクリレートと混合して使用された。又、ポリブタジエン骨格又はポリカーボネート骨格を有するウレタンアクリレートが疎水性強いため、多くのアクリルモノマーに対する溶解性が不十分で、又、多官能アクリレートの使用による柔軟性が低下する問題があった。更に、ウレタンアクリレート樹脂のアクリレート基がエステル構造であるため加水分解し易く、耐湿性、耐水性、耐久性等に欠けており、活性エネルギー線に対する硬化速度も低い。
 ウレタンアクリレートの活性エネルギー線硬化性を改善するため、ウレタンアクリルアミドオリゴマーが提案された(特許文献11)。重合性基をアクリレート基からアクリルアミド基への変更により、紫外線硬化性が向上され、硬化膜表面のべたつきが改善されたが、汎用な有機溶剤やアクリルモノマーに対して溶解性や得られた硬化膜の透明性について、一切言及されなかった。
 特許文献8ではポリブタジエン骨格を有するウレタンアクリレートの1つ重大な欠点が指摘された。それは、UV硬化前後の白濁発生しやすいことである。白濁発生する場合、透明性が要求される光学部材には適用せず、又、光透過性が低いため、UVが樹脂内部までに到達せず、硬化が不十分となる場合があった。該特許文献の改善案としてスズ系触媒によるウレタン化反応を挙げたが、触媒残存による長期的保存安定性の低下や電気機器に用いられる場合の腐食、短絡等を招くリスクが新たに発生した。
 一方、特許文献5では光学部材用粘着剤、特許文献6では半導体素子や液晶表示素子に用いられるUV硬化型樹脂組成物としてカーボネート骨格を有するウレタンアクリレートを提案した。これらの特許文献は、ポリカーボネート骨格の耐熱性、耐湿性に注目し、高温高湿環境に対応出来る組成物を提供したが、光学部材等に必須の透明性や粘着層を有する保護フィルムの基材に対する汚染性等について、一切言及されなかった。
 更に、特許文献7は、ポリブタジエン骨格を有するウレタンアクリレートと(メタ)アクリル系モノマーからなる光硬化性樹脂の積層体を作製し、ブラックライトを10~300mJ/cmの照射量で照射させた後、活性エネルギー線を500~5000mJ/cmの照射量で更に照射するという二段階照射の方法を提案した。特許文献10は、ポリカーボネート骨格を有するウレタンアクリレートに対して同様に二段照射のUV硬化方法を採用した。この方法は、徐々に硬化することにより、光硬化後の残存モノマーを低減させ、硬化性改善と同時に、硬化収縮を抑え、塗膜と基板との間に歪みが生じ難くする目的であった。しかし、二段照射による工程の複雑化と製品のコストアップに招くことになるので、好ましくない。
特開昭61-21120号公報 特開平6-145276号公報 特開2009-046605号公報 特開2010-267703号公報 特開2013-035920号公報 特開2013-028675号公報 WO2013/088889号公報 特開2002-371101号公報 特開平8-092342号公報 特開2004-155893号公報 特開2002-37849号公報
 本発明は、有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化速度を有する(メタ)アクリルアミド系ウレタンオリゴマー及びそれを含有する密着性、耐湿性、耐薬品性と表面硬化性に優れ、且つ低硬化収縮性、高透明性と高伸度を有する活性エネルギー線硬化性樹脂組成物及びその成形品を提供するものである。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、末端に(メタ)アクリルアミド基を有する、分子量1000未満の成分(水酸基を有する(メタ)アクリルアミド化合物を除く)の含有率が5重量%以下であるポリブタジエン系及び/又はポリカーボネート系ウレタンオリゴマーを用いることで前記の目標を達成しえることを見出し、本発明に至ったものである。
 すなわち、本発明は
(1)分子内にカーボネート骨格、ジエン系骨格と水素添加ジエン系骨格から選ばれる1種又は2種以上の骨格を有し、かつ、1つ以上の(メタ)アクリルアミド基を有する、分子量1000未満の成分(水酸基を有する(メタ)アクリルアミド化合物(A)を除く)の含有率が5重量%以下であることを特徴とする(メタ)アクリルアミド系ウレタンオリゴマー、
(2)分子量1000未満の成分(水酸基を有する(メタ)アクリルアミド化合物(A)を除く)は、1分子中に2個以上のイソシアネート基を有するイソシアネート単量体(B)と水酸基を有する(メタ)アクリルアミド化合物(A)の付加反応で得られるウレタンアダクト化合物であることを特徴とする前記(1)に記載の(メタ)アクリルアミド系ウレタンオリゴマー、
(3)ジエン系骨格又は水素添加ジエン系骨格が、ポリブタジエン、ポリブタジエンの水素添加物、ポリイソプレン、ポリイソプレンの水素添加物からなる群から選ばれる1種以上の骨格であることを特徴とする前記(1)又は(2)に記載の(メタ)アクリルアミド系ウレタンオリゴマー、
(4)一般式[1](Rは水素原子又はメチル基を示し、R及びRは同一又は異なって、水素原子、又は水酸基で置換されていてもよい炭素数1乃至3のアルキル基を示す。但し、R及びRが同時に水素原子の場合、及びR及びRが同時にアルキル基の場合を除く。)で示される化合物(A)と、1分子中に1個以上のイソシアネート基を有するポリカーボネート骨格、ポリブタジエン骨格、水添ポリブタジエン骨格、ポリイソプレン骨格、水添ポリイソプレン骨格から選ばれる1種又は2種以上の骨格を有する化合物(C)、との付加反応で得られるものであることを特徴とする前記(1)~(3)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマー、
Figure JPOXMLDOC01-appb-C000002
(5)化合物(A)は、N-ヒドロキシアルキレン(メタ)アクリルアミド、N,N-ジヒドロキシアルキレン(メタ)アクリルアミド、N-アルキル-N-ヒドロキシアルキレン(メタ)アクリルアミドであることを特徴とする前記(1)~(4)のいずれか一項に記載の(メタ)アクリルアミド系ウレタンオリゴマー、
(6)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを含有する活性エネルギー線硬化性樹脂組成物、
(7)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する光学材料用活性エネルギー線硬化性樹脂組成物、
(8)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性粘着剤組成物、
(9)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性接着剤組成物、
(10)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する光学部材用活性エネルギー線硬化性接着剤組成物、
(11)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する偏光板用活性エネルギー線硬化性接着剤組成物、
(12)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する電子部品用活性エネルギー線硬化性封止剤組成物、
(13)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性コーティング組成物、
(14)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性インクジェットインキ組成物、
(15)前記(1)~(5)のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性立体造形用樹脂組成物
を提供するものである。
 本発明によれば、分子内にジエン系骨格、水素添加ジエン系骨格及び/又はポリカーボネート骨格を有し、かつ1つ以上の(メタ)アクリルアミド基を有する、水酸基を有する(メタ)アクリルアミド化合物を除いた分子量1000未満の成分の含有率が5重量%以下に抑えることにより、有機溶媒、汎用アクリルモノマーやオリゴマーとの相溶性に優れ、活性エネルギー線に対して高硬化速度を有するウレタンオリゴマーを提供することができる。又、本発明の(メタ)アクリルアミド系ウレタンオリゴマーを用いることにより密着性、耐湿性、耐薬品性と表面硬化性に優れ、且つ低硬化収縮性、高透明性と高伸度を有する活性エネルギー線硬化性樹脂組成物及びその成形品を提供可能である。
 以下に、本発明を詳細に説明する。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーは、必須成分として分子内にポリカーボネート、ポリブタジエン、水添ポリブタジエンから選ばれる1種又は2種以上の骨格を有し、かつ1つ以上の(メタ)アクリルアミド基を有する、水酸基を有する(メタ)アクリルアミド化合物を除いた分子量1000未満の成分の含有率が5重量%以下であることを特徴とする。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマー中に水酸基を有する(メタ)アクリルアミド化合物を除いて、分子量1000未満の成分の含有率が5重量%以下である。ここで、分子量1000未満の成分とは、分子量が1000より低いものをいい、主に1分子中に2個以上のイソシアネート基を有するイソシアネート単量体(B)と水酸基を有する(メタ)アクリルアミド化合物(A)の付加反応で得られるウレタンアダクト化合物であり、以下低分子量成分と略称する。ウレタンオリゴマー中に通常数~数十重量%の低分子量成分を含有し、これらの存在はウレタンオリゴマーの溶解性低下や白濁発生、活性エネルギー線硬化後のベタ付け残存を引き起こす原因だと本発明者らが推測する。従って、低分子量成分の含有率を5重量%以下に抑えることにより前記様々な問題を解決することができる。
 本発明のウレタンオリゴマーに用いられるジエン系骨格又は水素添加ジエン系骨格とは、ポリブタジエン、ポリイソプレン、ポリブタジエンの水素添加物及びポリイソプレンの水素添加物からなる群から選ばれる1種又は2種以上の骨格である。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーに用いられる(メタ)アクリルアミド基とは、メタアクリルアミド基とアクリルアミド基から選ばれる1種又は2種の重合性基である。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーの合成方法は、特に限定することがなく、公知のウレタン化反応技術により合成することができる。即ち、ポリカーボネート骨格、ポリブタジエン骨格、水添ポリブタジエン骨格、ポリイソプレン骨格、水添ポリイソプレン骨格から選ばれる1種又は2種以上の骨格を有する単官能又は多官能のアルコール(以下、ポリオールと略称)、1分子中に2個以上のイソシアネート基を有するイソシアネート単量体(B)及び水酸基を有する(メタ)アクリルアミドモノマー(A)との反応から合成できる。又、低分子量成分の含有率をより低減できる観点から、まず、ポリオールと(B)とを反応させ、分子中に1個以上のイソシアネート基を有する化合物(C)を合成し、その後、(C)と(A)を更に反応させ、目的の(メタ)アクリルアミド系ウレタンオリゴマーを取得する方法が好ましい。
 本発明の化合物(C)は、前記のポリオールと(B)の付加反応物である。化合物(C)を得るに当たっては、イソシアネート基と反応し得る水酸基を有する化合物の水酸基の合計に対してイソシアネート基の合計は当量以上となるよう反応させることが好ましく、中でも当量比(モル比)(水酸基/イソシアネート基)は1/1~1/2.5となるような割合で反応させる方法がより好ましい。
 ポリブタジエン系のポリオールは、ポリブタジエン、ポリブタジエンの水素添加物、ポリイソプレン、ポリイソプレンの水素添加物からなる群から選ばれる主鎖骨格を有し、かつ主鎖骨格の末端又は側鎖に1個以上の水酸基を有するものである。また、工業的に入手しやすく、取り扱い易い点から、分子中に1,4-ビニル結合及び/又は1,2-ビニル結合を含む、もしくはそれらビニル基の水素添加物を含む両末端に水酸基を有する液状のポリブタジエン系のポリオールが好ましい。例えば、NISSO-PBシリーズ(日本曹達社製)のG-1000、G-2000、G-3000、Poly bdシリーズ(出光興産社製)のR-15HT、R-45HTとKrasolシリーズ(クレイバレー社製)のLBH2000、LBH-P2000、LBH-3000、LBH-P3000等のポリブタジエン骨格を有するジオールが挙げられ、又、ポリブタジエンの水素添加物としては、NISSO-PBシリーズ(日本曹達社製)のGI-1000、GI-2000、GI-3000とKrasolシリーズ(クレイバレー社製)のHLBH-P2000、HLBH-P3000等の水素添加ポリブタジエン骨格を有するジオールが挙げられる。両末端水酸基含有ポリイソプレンとしては、Poly ip(出光興産社製)等が挙げられる。両末端水酸基含有ポリイソプレンの水素添加物としては、EPOL(出光興産社製)等が挙げられる。これらのポリブタジエン系ポリールは、1種を単独で、又は2種以上を組み合わせて用いることができる。
 ポリカーボネート系のポリオールは、ジオール類と炭酸エステルを原料としてエステル交換反応によって得られるもので、カーボネート基からなる主鎖骨格を有し、主鎖の末端又は側鎖に1個以上の水酸基を有するものである。また、工業的に入手しやすく、取り扱い易い点から、分子中にカーボネート骨格と両末端に水酸基を有する液状のポリカーボネート系のポリオールが好ましい。例えば、プラクセルCDシリーズ(ダイセル化学工業社製)、ETERNACOLL UH、UHC、UC、UMシリーズ(宇部興産社製)、デュラノールシリーズ(旭化成ケミカルズ社製)、NIPPOLLAN 982R(日本ポリウレタン社製)とクラレポリオールシリーズ(クラレ社製)等が挙げられる。これらのポリカーボネート系ポリオールは、1種を単独で、又は2種以上を組み合わせて用いることができる。
 又、これらのポリブタジエン系ポリオールとポリカーボネート系ポリオールからなる群より選べる1種又は2種以上のポリオールを用いて、更にポリエーテル、ポリエステル等の他の骨格を有するポリオールと任意に組み合わせて使用することができる。
 1分子内に2個以上のイソシアネート基を有するイソシアネート単量体(B)としては、例えば、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート(2,2,4-、2,4,4-、又はそれらの混合物)等の脂肪族イソシアネート類、1,3-又は1,4-フェニレンジイソシアネート、2,4-又は2,6-トリレンジイソシアネート、4,4′-又は2,4-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート等の芳香族イソシアネート類、シクロヘキシレンジイソシアネート、イソホロンジイソシアネート、4,4'-ジシクロヘキシルメタンジイソシアネート、メチルシクロヘキシレンジイソシアネート、2,5-又は2,6-ノルボルナンジイソシアネート等の脂環族イソシアネート類、もしくは、これらのアダクトタイプ、イソシアヌレートタイプ、ビュレットタイプ等が挙げられる。これらのイソシアネート単量体は、1種を単独で、又は2種以上を組み合わせて用いることができる。
 水酸基を有する(メタ)アクリルアミドモノマー(A)は、水酸基を含有するメタクリルアミドと水酸基を含有するアクリルアミドであり、1種を単独で、又は2種以上を組み合わせて用いることができる。又、水酸基を含有するアクリルアミドを用いることにより、塗膜のべた付け改善効果が高いとともに、硬化性が著しく向上されるので、特に好ましい。
 本発明の(A)は、一般式[1](Rは水素原子又はメチル基を示し、Rは水酸基で置換された炭素数1乃至3のアルキル基を示し、Rは水素原子、炭素数1乃至3のアルキル基、又は水酸基で置換された炭素数1乃至3のアルキル基を示す。)で示される化合物である。
Figure JPOXMLDOC01-appb-C000003
 化合物(A)としては、例えば、N-ヒドロキシメチル(メタ)アクリルアミド、N-ヒドロキシエチル(メタ)アクリルアミド、N-ヒドロキシプロピル(メタ)アクリルアミド、N-ヒドロキシイソプロピル(メタ)アクリルアミド、N-メチルヒドロキシメチル(メタ)アクリルアミド、N-メチルヒドロキシエチル(メタ)アクリルアミド、N-メチルヒドロキシプロピル(メタ)アクリルアミド、N-メチルヒドロキシイソプロピル(メタ)アクリルアミド、N-エチルヒドロキシメチル(メタ)アクリルアミド、N-エチルヒドロキシエチル(メタ)アクリルアミド、N-エチルヒドロキシプロピル(メタ)アクリルアミド、N-エチルヒドロキシイソプロピル(メタ)アクリルアミド、N-プロピルヒドロキシメチル(メタ)アクリルアミド、N-プロピルヒドロキシエチル(メタ)アクリルアミド、N-プロピルヒドロキシプロピル(メタ)アクリルアミド、N-プロピルヒドロキシイソプロピル(メタ)アクリルアミド、N-イソプロピルヒドロキシエチル(メタ)アクリルアミド、N-イソプロピルヒドロキシプロピル(メタ)アクリルアミド、N-イソプロピルヒドロキシイソプロピル(メタ)アクリルアミド、N,N-ジヒドロキシメチル(メタ)アクリルアミド、N,N-ジヒドロキシエチル(メタ)アクリルアミド、N,N-ジヒドロキシプロピル(メタ)アクリルアミド、N,N-ジヒドロキシイソプロピル(メタ)アクリルアミドが挙げられる。特に、N-ヒドロキシエチル(メタ)アクリルアミドが、高屈折率(1.502)を有するので優れた透明性を提供でき、皮膚刺激性(PII=0)が低いので安全性が高くて取り扱い易く、又、高純度な工業品を安易に入手できるため、好ましい。これらの水酸基を含有する(メタ)アクリルアミドは1種を単独で、又は2種以上を組み合わせて用いることができる。
 (A)と化合物(C)との付加反応において、水酸基の合計がイソシアネート基の合計に対して等量以上であることが好ましく、中でも当量比(水酸基/イソシアネート基)は1.01/1~3/1となるような割合で反応させる方法が特に好ましい。水酸基の合計が等量に満たない場合、残存するイソシアネート基が、僅かであっても、二酸化炭素や水との反応性が高いので、製品の安定性低下を招く可能性がある。一方、水酸基の合計が3倍当量を超えると、逆に残存する水酸基の量が多くなり、得られるウレタンオリゴマーの平均分子量によって、耐水性、耐湿性が低下する可能性があった。
 本発明のウレタン化反応は、ポリブタジエン系ポリオール或いはポリカーボネート系ポリオールとイソシアネート単量体(B)との反応及び水酸基を有する(メタ)アクリルアミドモノマー(A)とイソシアネート化合物(C)との反応があるが、何れも反応成分を混合し、所望により温度を上げ、公知の方法で実施することができる。この反応は10~160℃、好ましくは20~140℃の温度で行うことが望ましい。前記反応成分の混合は、公知の方法で行うことができる。又、前記反応成分の添加は所望により幾つかの段階に分けて行うことができる。又、前記反応は無溶媒でも可能であるが、必要に応じて有機溶剤中或いは反応性希釈剤中で実施できる。使用できる溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、酢酸エチル、酢酸ブチル、テトラヒドロフラン、ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、脂肪族炭化水素系溶剤(石油エーテル等)等の存在下で行うことができる。使用できる反応性希釈剤としては、イソシアネートと反応しないものであれば特に限定されないが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、1,6-ヘキサンジアクリレート、テトラエチレングリコールジアクリレート、ジペンタエリスリトールヘキサアクリレート、トリメチロールプロパントリアクリレート、イソボルニル(メタ)アクリレート、ジメチル(メタ)アクリルアミド、ジ(メタ)エチルアクリルアミド、N-(メタ)アクリロイルモルホリン等が例示される。有機溶媒又は反応性希釈剤の使用量はイソシアネート化合物に対して0~400重量%、好適には0~200重量%である。
 又、かかる反応においては、反応促進の目的で触媒を添加することができる。当該触媒としては、例えば、アルキルホスホン酸のカリウムもしくはナトリウム塩等、炭素数8~20の脂肪酸のナトリウム、カリウム、ニッケル、コバルト、カドミウム、バリウム、カルシウム、亜鉛等の金属塩、ジブチル錫ジラウレート、ジオクチル錫マレエート、ジブチルジブトキシ錫、ビス(2-エチルヘキシル)錫オキサイド、1,1,3,3-テトラブチル-1,3-ジアセトキシジスタノキサン等の有機錫化合物が挙げられ、これらは単独で又は2種以上組み合わせて使用することができる。触媒の使用量は、原料成分の合計重量に対して通常5重量%以下であることが好ましく、3重量%以下であることが更に好ましい。
 ウレタン化反応中に(A)のラジカル重合を抑制するために、必要に応じて重合禁止剤を使用することができる。ラジカル重合禁止剤としては、例えば、ヒドロキノン、メトキシヒドロキノン、ベンゾキノン、p-tert-ブチルカテコール等のキノン系重合禁止剤;2,6-ジ-tert-ブチルフェノール、2,4-ジ-tert-ブチルフェノール、2-tert-ブチル4,6-ジメチルフェノール、2,6-ジ-tert-ブチル-4-メチルフェノール、2,4,6-トリ-tert-ブチルフェノール等のアルキルフェノール系重合禁止剤;アルキル化ジフェニルアミン、N,N′-ジフェニル-p-フェニレンジアミン、フェノチアジン等のアミン系重合禁止剤、4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン-N-オキシル等のN-オキシル類;ジメチルジチオカルバミン酸銅、ジエチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅等のジチオカルバミン酸銅系重合禁止剤等が挙げられ、これらは単独で用いてもよく、2種以上を併用してもよい。
 これらの重合禁止剤の添加量としては、(A)の種類や配合量等に応じて適宜に設定すればよいが、重合抑制効果、生産上の簡便性及び経済性の観点から、(A)と(C)の合計重量に対して通常0.001~5重量%であることが好ましく、0.01~1重量%であることが更に好ましい。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーの重量平均分子量は1,000~50,000であり、更に2,000~20,000であることが好ましい。重量平均分子量が1,000未満の成分には、前記した(A)と(B)の付加体(ウレタンアダクト化合物)が多く含まれ、それからなる樹脂組成物の透明性、活性エネルギー線の硬化性が悪くなり、得られる塗膜の密着性や耐水性も低下する。一方、重量平均分子量は50,000を超えると高粘度となるためハンドリング性が悪くなり、好ましくない。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーは分子量1000未満の成分((A)を除く)の含有率が5重量%以下であり、特に好ましくは3重量%以下である。分子量1000未満の成分の含有率が5重量%を超えると本発明のウレタンオリゴマーの汎用溶媒、汎用モノマーに対する溶解性が著しく低下し、活性エネルギー線硬化物の硬化性、透明性等の物性や各基板への密着性、耐収縮性、耐湿性、強度、伸度等が悪化するため、好ましくない。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーの平均官能基数(1分子中に含有する(メタ)アクリルアミド基の数の平均値)は1~10であることが好ましく、更には2~6であることがより好ましい。平均官能基数が1未満であれば、非重合性化合物の存在による活性エネルギー線硬化性、硬化膜の強度や耐水性が低下する恐れがある。又、平均官能基数が10を超えると硬化速度は速まるが、硬化膜は硬くなりすぎるため、伸度が低下し、更に硬化収縮も大きくなるため、好ましくない。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーのガラス転移温度(Tg)は-50℃~80℃であることが好ましく、-30℃~50℃であることがより好ましい。Tgが-50℃未満であれば、硬化膜の表面硬化性が低下し、表面がべたつきやすくなる。又、80℃を超えると硬化後の膜が硬すぎるため、強度、硬度は向上するものの、形状追従性の低下、柔軟性や伸度が低減することがあるため好ましくない。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーが単独でも、他の活性エネルギー線硬化性モノマーやオリゴマー等と混合することにより活性エネルギー線硬化性樹脂組成物を調製することができる。本発明の(メタ)アクリルアミド系ウレタンオリゴマーが単独で用いられる場合、主鎖骨格の構造や(メタ)アクリルアミド基の種類、数及びオリゴマーの分子量によって、樹脂組成物の硬化性、得られる硬化物の吸水性、強度や伸度等の物性値が異なるが、概ね下記範囲内であることが好ましい。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーは活性エネルギー線照射による完全に硬化することができる。必要な活性エネルギー線照射量(積算光量)はウレタンオリゴマーの(メタ)アクリルアミド基の種類、数及びエネルギー線光源の種類、照射方式等によって変動するが、2~10000mJ/cmであることが好ましく、更に5~5000mJ/cm程度が特に好ましい。積算光量は2mJ/cm未満であると、硬化不十分な部位が残存し、硬化物全体的な強度や伸度、耐水性が低下する恐れがある。又、積算光量は10000mJ/cmを超えると過剰のエネルギーによる分解等の副反応が起こり、硬化膜が着色しやすい傾向が見られる。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーからなる硬化膜の吸水率は2%以下であることが好ましく、更には1%以下であることがより好ましい。吸水率が2%より大きくなると、高湿度環境下で長時間に使用される場合、硬化膜が経時的に吸水し、膨膨潤による形状の歪みを生じるため密着性や透明性が低下する可能性がある。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーからなる硬化膜の引張破断強度は5~50N/mm、引張破断伸度は5~200%であることが好ましい。(メタ)アクリルアミド系ウレタンオリゴマーの強度と伸度がこれらの範囲内であると、他の活性エネルギー線硬化性モノマーやオリゴマーとの混合からなる活性エネルギー線硬化性樹脂組成物は粘着剤、接着剤、ハードコート、封止剤、インキ組成物等多種多様の分野に用いることができる。
 本発明の(メタ)アクリルアミド系ウレタンオリゴマーを配合する活性エネルギー線硬化性樹脂組成物は必要に応じて汎用のアクリルモノマー(D)、及び/又は重合性4級塩イオン液体(E)を含有することができる。
 ここで(D)成分としては単官能(メタ)アクリレート及び/又は単官能(メタ)アクリルアミドや多官能(メタ)アクリレート及び/又は多官能(メタ)アクリルアミド等、様々に用いることが可能である。又、これらの(D)成分の構成化合物は単独で使用してもよいし、又2種類以上併用してもよい。
 単官能(メタ)アクリレートは、例えば、炭素数1~22の飽和又は不飽和、直鎖又は分岐鎖状のアルキル基を有する(メタ)アクリレート、アルコキシ(炭素数1~4)アルキル(炭素数1~4)(メタ)アクリレート、アルコキシ(炭素数1~4)ジ(トリ又はテトラ)アルキル(炭素数1~4)(メタ)アクリレート、2-(2-エトキシエトキシ)エチルアクリレート、フェノキシアルキル(メタ)アクリレート、フェノキシ(ジ、トリ、テロラ又はヘキサ)アルキレン(炭素数1~4)グリコール(メタ)アクリレート、アルコキシ(炭素数1~4)ジ(トリ)アクキレン(炭素数1~4)グリコール(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、(イソ)ボルニル(メタ)アクリレート、テトラヒドロフルフリルアクリレート、2-メチル-2-アダマンチル(メタ)アクリレート、アリル(メタ)アクリレート、ヒドロキシアルキル(炭素数1~6)(メタ)アクリレート等が挙げられる。
 本発明に用いられる単官能(メタ)アクリルアミドは、例えば、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-n-ブトキシメチル(メタ)アクリルアミド、N-イソブトキシメチル(メタ)アクリルアミド、N-ビニルピロリドン、N-ビニルカプロラクタム、N-(2-ヒドロキシエチル)アクリルアミド、N-[3-(ジメチルアミノ)]プロピルアクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、前記ヒドロキシエチルアクリルアミド等のヒドロキシアルキル(メタ)アクリルアミド等が挙げられる。
 前記の多官能(メタ)アクリレートとしては、例えば、(ジ)エチレングリコールジ(メタ)アクリレート、(トリ)プロピレングリコールジ(メタ)アクリレート、ジテトラエチレングリコールジ(メタ)アクリレート、ポリアルキレン(炭素数1~4)グリコールジ(メタ)アクリレート、ポリテトラメチレングリコールジ(メタ)アクリレート、1,3(又は1,4)-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、カプロラクトン変性ジシクロペンテニルジ(メタ)アクリレート、ペンタエリスリトールテトラ(又はトリ)(メタ)アクリレート、ジペンタエリスルトールヘキサ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エチレン(又はプロピレン)オキサイド変性ビスフェノールAジ(メタ)アクリレート、シクロヘキサンジメタノールジ(メタ)アクリレート、アクリレートエステル(ジオキサングリコールジアクリレート)、アルコキシ化(シクロ)ヘキサンジオールジ(メタ)アクリレート、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート等のモノマーとオリゴマーが挙げられる。
 前記の多官能(メタ)アクリルアミドとしては、メチレン(又はエチレン)ビス(メタ)アクリルアミド、ジアリル(メタ)アクリルアミド等が挙げられる。
 (E)成分としては有機系イオン性化合物を配合することが可能である。有機系イオン性化合物としては、イオン性ビニルモノマー及び/又はそれらを構成成分としたオリゴマー、ポリマーが挙げられる。イオン性ビニルモノマーとは、カチオンとアニオンを組み合わせたオニウム塩であり、具体的には、カチオンとして(メタ)アクリレート系あるいは(メタ)アクリルアミド系のアンモニウムイオンやイミダゾリウムイオン、アニオンとしてはCl-、Br-、I-等のハロゲンイオン又はOH-、CHCOO-、NO -、ClO -、PF -、BF -、HSO -、CHSO -、CFSO -、CHSO -、CSO -、(CFSO-,SCN-等の無機酸アニオン又は有機酸アニオンが挙げられる。
 本発明に用いられるイオン性ビニルモノマーの合成方法としては、一般的には、重合性基を有する第3級アミンをハロゲン化アルキル、ジアルキル硫酸類、p-トルエンスルホン酸メチル等の4級化剤で4級化する方法、4級化により得られた4級アンモニウム塩を更に、目的のアニオンを有する塩を用いてアニオン交換を行う方法や、陰イオン交換樹脂を用いて4級アンモニウム塩を水酸化物に変換した後に目的のアニオンを有する酸で中和する方法等があり、詳細は本発明者らが先に報告した特開2011-012240号公報、特開2011-074216号公報、特開2011-140448号公報、特開2011-140455号公報、特開2011-153109号公報に記載されている。
 有機系イオン性化合物のイオンは塗布基材との間に水素結合やイオン結合を形成し易く、又、導電性や帯電防止性を付与することができるので、ぬれ性が向上し、より均一に塗布でき、より安定に膜を形成できる。更に、イオン性ビニルモノマー自身も活性エネルギー線硬化性化合物であるため、本発明の活性エネルギー線硬化性樹脂組成物と共重合することにより、ブリードアウトせず、永久的に導電性や帯電防止性を付与する補助効果及び密着性向上効果が提供できる。
 有機系イオン性化合物は、分子量数十~数百の単分子化合物、分子量数百~数千のオリゴマー、分子量数千~数万のポリマーから選ばれる1種又は必要に応じて2種以上を組み合わせて使用することができる。これらの有機系イオン性化合物の配合量は、イオン対の官能基数や分子量によって調整できるので、特に制限されることはない。一般に本発明のウレタンオリゴマーに対して、0~50重量%、中でも0~10重量%添加されることが好ましい。有機系イオン性化合物の配合量が50重量%を超えると、有機系イオン性化合物の品種にもよるが、硬化膜の透明性低下を招く可能性がある。
 本発明の活性エネルギー線とは、活性種を発生する化合物(光重合開始剤)を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、電子線、紫外線、赤外線、X線、α線、β線、γ線等の光エネルギー線が挙げられる。中でも、活性エネルギー線の発生装置、硬化速度及び安全性のバランスから紫外線を使用することが好ましい。又、紫外線源としては、キセノンランプ、低圧水銀ランプ、高圧水銀ランプ、メタルハライドランプ、紫外線LEDランプ、マイクロ波方式エキシマランプ等を挙げられる。
 活性エネルギー線照射は、窒素ガスや炭酸ガス等の不活性ガス雰囲気又は酸素濃度を低下させた雰囲気下で行うことが好ましいが、本発明の(メタ)アクリルアミド系ウレタンオリゴマーが優れる硬化性を有するため、それを用いた活性エネルギー線硬化性樹脂組成物において、通常の空気雰囲気でも十分に硬化させることができる。活性エネルギー線の照射温度は、好ましくは10~200℃であり、照射時間は、好ましくは1秒~60分である。
 本発明の活性エネルギー線硬化性樹脂組成物を硬化させる際には、必要に応じて光重合開始剤を添加しておくことができるが、電子線を用いる場合には特に必要はない。光重合開始剤はアセトフェノン系、ベンゾイン系、ベンゾフェノン系、チオキサントン系等の通常のものから適宜選択すればよい。市販品としてはBASF社製、商品名Darocur 1116、Darocur 1173、Irgacure 184、Irgacure 369、Irgacure 500、Irgacure 651、Irgacure 754、Irgacure 819、Irgacure 907、Irgacure 1300、Irgacure 1800、Irgacure 1870、Irgacure 2959、Darocur 4265、Darocur TPO、UCB社製、商品名ユベクリルP36等を用いることができる。これらの光重合開始剤は1種又は2種以上を組み合わせて用いることができる。
 これらの光重合開始剤の使用量は特に制限されていないが、一般に活性エネルギー線硬化性樹脂組成物に対して、0.1~10重量%、中でも1~5重量%が添加されることが好ましい。0.1重量%未満だと十分な硬化性が得られず、10重量%を越えると塗膜の強度低下や黄変してしまう可能性がある。
 本発明の活性エネルギー線硬化性樹脂組成物及びそれから作製される成形品の特性を阻害しない範囲で、顔料、染料、界面活性剤、ブロッキング防止剤、レベリング剤、分散剤、消泡剤、酸化防止剤、紫外線増感剤、防腐剤等の他の任意成分を併用してもよい。
 本発明の活性エネルギー線硬化性樹脂組成物を紙、布、不織布、ガラス、ポリエチレンテレフタレート、ジアセテートセルロース、トリアセテートセルロース、アクリル系ポリマー、ポリ塩化ビニル、セロハン、セルロイド、ポリカーボネート、ポリイミド等のプラスチック及び金属等の基材の表面や間に塗布し、活性エネルギー線照射で硬化させることにより、高性能のコーティング層やインキ層、粘着剤層、封止剤層又は接着剤層を得ることができる。特に、本発明の活性エネルギー線硬化性樹脂組成物が高透明性のウレタンオリゴマーを有するため、光学用粘着剤、光学用接着剤や封止剤、光学用フィルムのコート材等光学用樹脂組成物として好適に用いることができる。又、これらの樹脂組成物を基材上に塗布する方法としては、スピンコート法、スプレーコート法、ディッピング法、グラビアロール法、ナイフコート法、リバースロール法、スクリーン印刷法、バーコーター法等通常の塗膜形成法が用いられることができる。又、基材間に塗布する方法としては、ラミネート法、ロールツーロール法等が挙げられる。
 以下に合成実施例及び評価実施例により、本発明をより具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。得られたウレタンオリゴマーの物性分析は下記方法により行った。
(1)分子量測定
 得られたウレタンオリゴマーの重量平均分子量と低分子量成分の含有量は高速液体クロマトグラフィー((株)島津製作所製「LC-10A」、カラム:Shodex GPC KF-806L(排除限界分子量:2×107、分離範囲:100~2×10、理論段数:10,000段/本、充填剤材質:スチレン-ジビニルベンゼン共重合体、充填剤粒径:10μm)、溶離液:テトラヒドロフラン)により測定し、標準ポリスチレン分子量換算により算出した。
(2)粘度測定
 コーンプレート型粘度計(東機産業株式会社製「RE550型粘度計」)を使用し、JIS K5600-2-3に準じて、所定温度で各合成例と比較合成例で得られたウレタンオリゴマーの粘度を測定した。
(3) ガラス相転移温度(Tg)測定
 合成したウレタンオリゴマー 1重量部、メチルエチルケトン(MEK) 1重量部と光重合開始剤としてDarocur 1173  0.03重量部を均一に混合し、紫外線硬化性樹脂組成物を調製した。得られた硬化性組成物をフッ素樹脂シート上に塗布し、乾燥(80℃、2分間)後、紫外線照射(積算光量2000mJ/cm)により硬化させた。得られた硬化膜からウレタンオリゴマーのホモポリマー10mgを取り出し、アルミニウムパンに入れて密封し、示差走査熱量計(エスアイアイ・ナノテクノロジー株式会社製、EXSTAR 6000)を用いて、10℃/minの昇温速度で測定した。
合成例1 ウレタンオリゴマー UTB-1の合成
 撹拌機、温度計、冷却器及びガス導入管を備えた容量300mLの4つ口フラスコにイソホロンジイソシアネート(IPDI) 13.9g(62.5mmol)、ジブチル錫ジラウレート 0.04gを仕込んだ後、乾燥窒素を通しながら、G-1000(両末端水酸基を有するポリブタジエン、数量平均分子量=1400) 70.0g(50.0mmol)を80℃に維持するように滴下速度を調製しながら滴下し、80℃で2時間反応させた。次に、反応液を40℃まで冷やした後、メチルハイドロキノン(MHQ) 0.1gを添加し、乾燥空気を10分間バブリングした。そして、ヒドロキシエチルアクリルアミド(KJケミカルズ(株)製、商標登録「HEAA」) 2.4g(20.7mmol)を仕込み、乾燥空気の気流下、系内温度を80℃に保持しながら6時間撹拌を続けた。薄黄色粘性のある液体としてUTB-1 84.1gを得、収率は 98.5%であった。赤外吸収スペクトル(IR)により分析を行い、原料であるIPDIのイソシアネート基の特有吸収(2250cm-1)が完全に消失し、又、「HEAA」由来のアミド基の特有吸収(1650cm-1)及び生成するウレタン結合の特有吸収(1740cm-1)が検出されたことにより、目的のウレタンオリゴマーUTB-1の生成を確認した。UTB-1の重量平均分子量は8300、60℃における粘度は88000mPa・s、Tgは1.3℃であり、含まれる低分子量成分は2.5%であった。
合成例2 ウレタンオリゴマー UTB-2の合成
 合成例1と同様に、ヘキサメチレンジイソシアネート(HDI) 13.5g(80.0mmol)とジブチル錫ジラウレート 0.04gの混合液中にGI-1000(両末端水酸基を有する水素化ポリブタジエン、数量平均分子量:1500) 75.0g(50.0mmol)を滴下し、70℃で2時間反応した。その後、合成例1と同様にMHQ 0.1gとN-メチルヒドロキシエチルアクリルアミド(MHEAA) 4.4g(34.2mmol)を添加し、80℃で2時間反応を行った。薄黄色粘性のある液体としてUTB-2  88.2gを得、収率は97.8%であった。IR分析によりUTB-2の生成を確認した。UTB-2の重量平均分子量は5300、60℃における粘度は65000mPa・s、Tgは5.4℃であり、含まれる低分子量成分は2.1%であった。
合成例3 ウレタンオリゴマー UTB-3の合成
 合成例1と同じ装置を用い、IPDI 11.9g(53.5mmol)、Poly ip(両末端水酸基を有するポリイソプレン、数平均分子量:2500) 125g(50.0mmol)とジブチル錫ジラウレート 0.07gを仕込んで、乾燥窒素を通しながら、90℃で5時間反応させた。次に、MHQ 0.1gと「HEAA」 1.7g(14.8mmol)を仕込んで、80℃で5時間反応を続けた。薄黄色粘性のある液体としてUTB-3 136.5gを得、収率は98.2%であった。IR分析によりUTB-3の生成を確認した。UTB-3の重量平均分子量は18000、60℃における粘度は91000mPa・s、Tgは-9.3℃であり、含まれる低分子量成分は1.5%であった。
合成例4 ウレタンオリゴマーUTB-4の合成
 合成例1と同じ装置を用い、G-1000 70.0g(50.0mmol)、ジブチル錫ジラウレート 0.04gを仕込んだ後、乾燥窒素を通しながら、HDI 18.5g(110.0mmol)を80℃に維持しながら滴下し、更に80℃で7時間反応させた。次に、合成例1と同様にMHQ 0.1gとヒドロキシエチルメタクリルアミド(HEMAA) 3.9g(30.0mmol)を仕込み、80℃で7時間撹拌を続けた。薄黄色粘性のある液体としてUTB-4  90.4gを得、収率は97.6%であった。IR分析によりUTB-4の生成を確認した。UTB-4の重量平均分子量は12000、60℃における粘度は85000mPa・s、Tgは-2.3℃であり、含まれる低分子量成分は1.8%であった。
合成例5 ウレタンオリゴマーUTB-5の合成
 合成例1と同様な装置(容量500mL)を用い、G-1000 70.0g(50.0mmol)、IPDI 22.2g(100.0mmol)とジメチルアセトアミド(DMAc)110gを仕込んで、乾燥窒素を通しながら、100℃で10時間反応させた。次に、合成例1と同様にMHQ 0.1g、「HEAA」 8.0g(69.3mmol)とDMAc 30gを仕込み、80℃で8時間反応を続けた。減圧法により溶剤を留去し、薄黄色粘性のある液体としてUTB-5 91.5gを得、収率は96.4%であった。IR分析によりUTB-5の生成を確認した。UTB-5の重量平均分子量は2700、60℃における粘度は13000mPa・s、Tgは13.3℃であり、含まれる低分子量成分は1.1%であった。
合成例6 ウレタンオリゴマー UTB-6の合成
 合成例1と同様に、HDI 16.1g(95.8mmol)とジブチル錫ジラウレート 0.04gの混合液中にG-1000 42.0g(30.0mmol)とPoly ip 75.0g(30.0mmol)の混合物を80℃で滴下してから2時間反応させた。次に、合成例1と同様にMHQ 0.1gとMHEAA 5.1g(39.8mmol)を仕込んで、80℃で6時間撹拌を続けた。薄黄色粘性のある液体としてUTB-6 136.4gを得、収率は 98.5%であった。IR分析により目的のウレタンオリゴマーUTB-6の生成を確認した。UTB-6の重量平均分子量は6000、60℃における粘度は70000mPa・s、Tgは4.2℃であり、含まれる低分子量成分は4.1%であった。
合成例7 ウレタンオリゴマー UTB-7の合成
 合成例1と同様にトリメチルヘキサメチレンジイソシアネート(TMDI) 12.1g(57.5mmol)とジブチル錫ジラウレート 0.04gの混合物にGI-1000 28.0g(20.0mmol)とEPOL(両末端水酸基を有する水素化ポリイソプレン、数量平均分子量=2500)75.0g(30.0mmol)の混合物を滴下し、80℃で2時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」2.3g(20.0mmol)を仕込み、80℃で3時間撹拌を続けた。薄黄色粘性のある液体としてUTB-7 114.8gを得、収率は 97.6%であった。IR分析によりUTB-7の生成を確認した。UTB-7の重量平均分子量は12000、60℃における粘度は100000mPa・s、Tgは-5.1℃であり、含まれる低分子量成分は1.7%であった。
 合成例8 ウレタンオリゴマーUTB-8の合成
 合成例1と同じ装置を用い、G-1000 56.0g(40.0mmol)、Poly ip 25.0g(10.0mmol)、ジブチル錫ジラウレート 0.04gを仕込んだ後、乾燥窒素を通しながら、HDI 10.1g(60.0mmol)を80℃に維持しながら滴下し、更に80℃で2時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」2.3g(20.0mmol)を仕込み、80℃で3時間撹拌を続けた。薄黄色粘性のある液体としてUTB-8 92.3gを得、収率は 96.9%であった。IR分析によりUTB-8の生成を確認した。UTB-8の重量平均分子量は9300、60℃における粘度は95000mPa・s、Tgは0.5℃であり、含まれる低分子量成分は1.8%であった。
 合成例9 ウレタンオリゴマーUTB-9の合成
 合成例8と同様にGI-1000 3.8g(2.5mmol)、EPOL 118.8g(47.5mmol)とジブチル錫ジラウレート 0.04gの混合液中に、HDI 9.7g(57.5mmol)を80℃で滴下し、更に2時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」 2.9g(25.0mmol)を仕込み、80℃で3時間撹拌を続けた。薄黄色粘性のある液体としてUTB-9 133.6gを得、収率は 98.9%であった。IR分析によりUTB-9の生成を確認した。UTB-9の重量平均分子量は10600、60℃における粘度は150000mPa・s、Tgは-1.1℃であり、含まれる低分子量成分は2.3%であった。
 合成例10 ウレタンオリゴマーUTB-10の合成
 合成例1と同じ装置を用い、G-3000(両末端水酸基ポリブタジエン、数平均分子量:3000) 150.0g(50.0mmol)とIPDI 22.2g(100.0mol)を仕込んで、乾燥窒素を通しながら、130℃で1時間反応させた。次に、合成例1と同様にMHQ 0.2gと「HEAA」 45.0g(391.3mmol)を仕込み、70℃で8時間撹拌を続けた。薄黄色粘性のある液体 205.3gを得、収率は97.7%であった。IR分析によりウレタンオリゴマーの生成を確認した。含まれる低分子量成分を測定したところ6.5%であったことから、更に精製工程を行うこととした。
 得られたウレタンオリゴマーは、メチルエチルケトンと水の混合液を用いて再沈殿を行い、低分子量体を除去した。減圧下、メチルエチルケトンと水を完全に除き、薄黄色粘性のある液体として目的のウレタンオリゴマーUTB-10を取得した。上記方法にて評価を行い、UTB-10の重量平均分子量は4200、60℃における粘度は22000mPa・s、Tgは8.4℃であり、含まれる低分子量成分は0.4%であった。
 合成例11 ウレタンオリゴマーUTC-1の合成
 合成例1と同様に、IPDI 12.7g(57.0mmol)とジブチル錫ジラウレート 0.03gを仕込んだ後、C-1090((株)クラレ製の両末端に水酸基を有するポリカーボネートポリオール、3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール=9/1、重量平均分子量=1000) 50.0g(50.0mmol)を80℃で滴下し、更に2時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」 1.6g(14.1mmol)を仕込み、80℃で3時間撹拌を続けた。薄黄色粘性のある液体としてUTC-1 63.0gを得、収率は 97.8%であった。IR分析によりUTC-1の生成を確認した。得られたUTC-1の重量平均分子量は8900、60℃における粘度は65000mPa・s、Tgは5.8℃であり、含まれる低分子量成分は1.8%であった。
合成例12 ウレタンオリゴマー UTC-2の合成
 合成例1と同じ装置を用い、HDI 13.5g(80.0mmol)を仕込んだ後、乾燥窒素を通しながら、C-1090 50.0g(50.0mmol)を60℃に維持しながら滴下し、60℃で5時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」 2.5g(21.6mmol)を仕込んで、80℃で2時間撹拌を続けた。薄黄色粘性のある液体としてUTC-2  61.4gを得、収率は97.2%であった。合成例1と同様に、IR分析によりUTC-2の生成を確認した。UTC-2の重量平均分子量は5600、60℃における粘度は32000mPa・s、Tgは8.6℃であり、含まれる低分子量成分は1.2%であった。
合成例13 ウレタンオリゴマー UTC-3の合成
 合成例1と同じ装置を用い、HDI 9.5g(56.5mmol)、C-1090 50.0g(50.0mmol)とジブチル錫ジラウレート 0.03gを仕込んで、混合後、乾燥窒素を通しながら、80℃で4時間加熱した。次に、合成例1と同様にMHQ 0.1gとMHEAA 1.4g(10.8mmol)を仕込み、60℃で3時間撹拌を続けた。薄黄色粘性のある液体としてUTC-3 59.9gを得、収率は98.2%であった。IR分析によりUTC-3の生成を確認した。得られたウレタンオリゴマーUTC-3の重量平均分子量は11000、60℃における粘度は85000mPa・s、Tgは3.2℃であり、含まれる低分子量成分は2.5%であった。
合成例14 ウレタンオリゴマーUTC-4の合成
 合成例5と同様にC-1090 50.0g(50.0mmol)、IPDI 16.7g(75.0mmol)、ジブチル錫ジラウレート 0.03gとDMAc 120gを仕込んで、乾燥窒素を通しながら、100℃で3時間反応させた。次に、合成例1と同様にMHQ 0.1g、HEMAA 6.6g(51.3mmol)とDMAc 10gを仕込み、90℃で5時間撹拌を続けた。減圧下で溶剤を留去し、薄黄色粘性のある液体としてUTC-4 70.4gを得、収率は95.9%であった。IR分析によりUTC-4の生成を確認した。得られたUTC-4の重量平均分子量は2600、60℃における粘度は8900mPa・s、Tgは13.3℃であり、含まれる低分子量成分は0.8%であった。
合成例15 ウレタンオリゴマーUTC-5の合成
 合成例1と同じ装置を用い、IPDI 13.3g(60.0mmol)、C-1090 45.0g(45.0mmol)、ユニオールD-1000(ユニオールD-1000,日油(株)社製 ポリプロピレングリコール、重量平均分子量=1000  5.0g(5.0mmol)とジブチル錫ジラウレート 0.03gを仕込んで、混合後、乾燥窒素を通しながら、80℃で2時間反応させた。合成例1と同様にMHQ 0.1gと「HEAA」 2.3g(20.1mmol)を仕込み、60℃で3時間撹拌を続けた。薄黄色粘性のある液体としてUTC-5 64.8gを得、収率は98.5%であった。IR分析によりUTC-5の生成を確認した。得られたUTC-5の重量平均分子量は6300、60℃における粘度は50000mPa・s、Tgは7.10℃であり、含まれる低分子量成分は0.9%であった。
合成例16 ウレタンオリゴマーUTC-6の合成
 合成例1と同じ装置を用い、C-1090 35.0g(35.0mmol)、ポリエステルジオール(旭電化工業(株)製、アデカニューエースY6-30、数平均分子量3000) 45.0g(15.0mmol)とジブチル錫ジラウレート 0.04gを仕込んだ後、乾燥窒素を通しながら、IPDI 13.3g(60.0mmol)を80℃に維持しながら滴下し、更に80℃で2時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」2.1g(18.3mmol)を仕込み、80℃で3時間撹拌を続けた。薄黄色粘性のある液体としてUTC-6 93.0gを得、収率は 97.3%であった。IR分析によりUTC-6の生成を確認した。得られたUTC-6の量平均分子量は10200、60℃における粘度は78500mPa・s、Tgは3.1℃であった。
合成例17 ウレタンオリゴマーUTC-7の合成
 合成例1と同じ装置を用い、C-3090(両末端に水酸基を有するカーボネートポリオール、3-メチル-1,5-ペンタンジオール/1,6-ヘキサンジオール=9/1、数量平均分子量=3000) 150.0g(50.0mmol)とIPDI 27.8g(125.2mmol)を仕込んで、乾燥窒素を通しながら、110℃で5時間反応させた。次に、合成例1と同様にMHQ 0.2gと「HEAA」 5.0g(43.5mmol)を仕込み、80℃で2時間撹拌を続けた。薄黄色粘性のある液体 180.4gを得、収率は98.5%であった。IR分析によりウレタンオリゴマーの生成を確認した。含まれる低分子量成分を測定したところ、6.8%であったことから、更に精製工程を行うこととした。
 得られたウレタンオリゴマーは、合成例10と同様に精製し、薄黄色粘性のある液体として目的のウレタンオリゴマーUTC-7を取得した。上記方法にて評価を行い、UTC-7の重量平均分子量は16000、60℃における粘度は135000mPa・s、Tgは-1.2℃であり、含まれる低分子量成分は0.6%であった。
比較合成例1 ウレタンオリゴマー(UAB-1)の合成
 合成例10で得られた未精製のウレタンオリゴマー(低分子量成分を6.5%含有するもの)をUAB-1とする。又、上記方法にて評価を行い、UAB-1の重量平均分子量は3800、60℃における粘度は35000mPa・s、Tgは5.2℃であった。
比較合成例2 ウレタンオリゴマー(UAB-2)の合成
 合成例1と同じ装置を用い、G-1000 70.0g(50.0mmol)、IPDI 33.3g(150.0mmol)、ジブチル錫ジラウレート 0.04gを仕込んで、乾燥窒素を通しながら、50℃で5時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」 6.3g(50.0mmol)を仕込み、80℃で6時間撹拌を続けた。薄黄色粘性のある液体106.3gを得、収率は96.8%であった。IR分析によりウレタンオリゴマーの生成を確認した。得られたウレタンオリゴマーUAB-2の重量平均分子量は7900、60℃における粘度は95000mPa・s、Tgは-3.4℃であり、含まれる低分子量成分は5.2%であった。
比較例合成3 ウレタンオリゴマーUAB-3の合成
 合成例1と同じ装置を用い、IPDI 13.3g(59.9mmol)、ジブチル錫ジラウレート 0.04gを仕込んだ後、乾燥窒素を通しながら、GI-1000 75.0g(50.0mmol)を80℃に維持しながら滴下し、80℃で6時間反応させた。次に、合成例1と同様にMHQ 0.1gとヒドロキシエチルアクリレート(HEA)2.3g(20.0mmol)を仕込み、乾燥空気の気流下、60℃で8時間撹拌を続けた。薄黄色粘性のある液体89.0gを得、収率は97.9%であった。IRにより分析を行い、原料であるIPDIのイソシアネート基の特有吸収(2250cm-1)が完全に消失し、又、HEA由来のエステル基の特有吸収(1730cm-1)及び生成するウレタン結合の特有吸収(1740cm-1)が検出されたことにより、ウレタンオリゴマーUAB-3の生成を確認した。得られたUAB-3の重量平均分子量は12500、60℃における粘度は112000mPa・s、Tgは-10.7℃であり、含まれる低分子量成分は2.1%であった。
比較例合成4 ウレタンオリゴマーUAC-1の合成
 合成例17で得られた未精製のウレタンオリゴマー(低分子量成分を6.8%含有するもの)をUAC-1とする。又、上記方法にて評価を行い、UAC-1の重量平均分子量は15000、60℃における粘度は148000mPa・s、Tgは0.5℃であった。
比較合成例5 ウレタンオリゴマーUAC-2の合成
 合成例1と同じ装置を用い、C-1090 50.0g(50.0mmol)、IPDI 32.8g(147.7mmol)とジブチル錫ジラウレート 0.03gを仕込んで、乾燥窒素を通しながら、40℃で2時間反応させた。次に、合成例1と同様にMHQ 0.1gと「HEAA」 9.2g(80.0mmol)を仕込み、80℃で3時間撹拌を続けた。薄黄色粘性のある液体90.2gを得、収率は97.9%であった。IR分析によりウレタンオリゴマーUAC-2の生成を確認した。得られたウUAC-2の重量平均分子量は7900、60℃における粘度は82000mPa・s、Tgは5.3℃であり、含まれる低分子量成分は5.4%であった。
比較例合成例6 ウレタンオリゴマーUAC-3の合成
 合成例1と同じ装置を用い、C-1090 50.0g(50.0mmol)、IPDI 13.3g(60.0mmol)、ジブチル錫ジラウレート 0.03gを仕込んで、乾燥窒素を通しながら、80℃で2時間反応させた。次に、合成例1と同様にMHQ 0.1gとHEA 1.3g(11.2mmol)を添加し、60℃で3時間撹拌を続けた。薄黄色粘性のある液体63.6gを得、収率は98.3%であった。IR分析によりウレタンオリゴマーUAC-3の生成を確認した。得られたUAC-3の重量平均分子量は12500、60℃における粘度は103000mPa・s、Tgは-2.5℃であり、含まれる低分子量成分は1.2%であった。
 合成例1~17、比較合成例1~6で得られたウレタンオリゴマーの特性を以下の方法で評価し、結果を表1、2に示す。又、評価に用いた溶剤、モノマーは以下の通りである。
IPA:イソプロパノール
MEK:メチルエチルケトン
THF:テトラヒドロフラン
「ACMO」:N-アクリロイルモルホリン(KJケミカルズ(株)社製)
HDDA:1,6-ヘキサンジオール ジ アクリレート
BA:ブチルアクリレート
IBOA:イソボルニルアクリレート
2EHA;2-エチルヘキシルアクリレート
THFA;テトラヒドロフルフリルアクリレート
(4)相溶性
 得られたウレタンオリゴマー 1重量部に希釈剤として汎用の溶媒及びアクリルモノマーを1重量部添加、撹拌後、一晩静置し、目視により溶解の程度を確認した。
  ◎:透明性が高く、白濁や分離が全く確認されない。
 ○:透明性は高いが、白濁が僅かに見られる。
 △:層分離はしてないが、白濁している。
 ×:白濁し、更に層分離している
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 評価実施例A-1~A-18と評価比較例A-19~A-24の結果に示されているとおり、ウレタンオリゴマー中に低分子量成分が5重量%以上含まれると、汎用の溶媒やモノマーとの相溶性が著しく悪くなり、光学用部材等幅広く使用され難いことが分かった。
 合成例と比較合成例で得られたウレタンオリゴマーを用いて、活性エネルギー線硬化性樹脂組成物を調製した。そして、これらの樹脂組成物を使用し、紫外線硬化膜の作製及び硬化膜の特性評価を行い、結果を表3、4に示す。
実施例B-1
 合成例1で得られた(メタ)アクリルアミド系ウレタンオリゴマーUTB-1 100重量部、メチルエチルケトン(MEK) 100重量部と光重合開始剤としてDarocur 1173  3重量部を均一に混合し、活性エネルギー線硬化性樹脂組成物を調製した。その後、得られた硬化性樹脂組成物を用い、下記方法にて活性エネルギー線硬化膜を作製した。
活性エネルギー線硬化膜の作製方法
 厚さ100μmのポリエチレンテレフタラート(PET)フィルム(「コスモシャイン A4100」東洋紡社製、片面アンカーコート処理)のアンカーコート面にバーコーター(RDS 12)にて塗布し、乾燥塗膜の厚みが10μmになるように塗膜を作製した。得られた塗膜は防爆式乾燥機にて80℃、2分間乾燥した後、UV照射(装置:三永電機製作所製スポット照射式のSUPERCURE-204S、出力200Wの水銀キセノンランプ1本設置、1秒当たりに紫外線エネルギー2.7mJ/cm)により硬化させ、UV硬化膜を作製した。UV硬化性、得られたUV硬化膜の耐タック性、耐収縮性、透明性、吸水率、密着性、強度と伸度については下記方法にて評価し、結果を表3に示す。
 同様にUV-LEDによる紫外線硬化膜は以下のように作成した。得られた塗膜を1秒当たりに紫外線エネルギーは2.7mJ/cmであるように塗膜とランプの距離を調節したUV-LED照射器(HOYA CANDEO OPTRONICS株式会社 EXECURE-H-1VC2、スポット式、385nm)により硬化させ、UV-LED硬化膜を作製した。UV-LED硬化性については下記方法にて評価し、表3に示す。
(5) 硬化性
 乾燥した塗膜を用い、上記のスポット式UV照射及びUV-LED照射により樹脂組成物を硬化させ、完全硬化するまでの所要時間を測定し、積算光量を算出した。完全硬化とは硬化膜の表面をシリコンゴムでなぞった際に跡がつかなくなる状態とする。
(6) 耐タック性
 上記(5)のUV照射で得られた完全硬化塗膜を用い、硬化膜の表面を指で触り、べたつき具合を評価した。
  ◎:べたつきが全くない。
  ○:若干のべたつきがあるが、表面に指の跡が残らない。
  △:べとつきがあり、表面に指の跡が残る。
  ×:べとつきがひどく、表面に指が貼りつく。
(7) 耐収縮性
 上記(5)のUV照射で得られた完全硬化塗膜を用い、10cm角に切り取り、四隅の浮き上がりの高さを測定し、平均値を算出した。
  ◎:0.5mm以下の浮き上がりがある
  ○:1mm以下の浮き上がりがある
  △:3mm以下の浮き上がりがある
  ×:大きくカールする
(8)透明性(目視)
 上記(5)のUV照射で得られた完全硬化塗膜を用いて、目視によって観察し、透明性を評価した。
◎:透明であり、曇りが全くない。
○:透明であり、曇りが僅かにある。
△:曇りがあるが、透明な部分も残ってある。
×:極度な曇りがあり、透明な部分が確認できない。
(9) 吸水率
 深さ1mmとなるようにくり抜いたフッ素樹脂シート上に硬化性樹脂組成物を流し込み、真空乾燥(50℃、400torr)した後、UV照射(700mW/cm、2000mJ/cm)にて硬化させ、硬化シートを作製した。得られたシートを3cm角に切り取り、それを試験片とした。得られた試験片を温度50℃、相対湿度95%の環境に24時間静置し、その吸水率を式1に従って算出した。
(式1)
吸水率(%)=(恒温恒湿後の重量-恒温恒湿前の重量)/恒温恒湿前の重量×100
(10)密着性
 上記(5)のUV照射で得られた完全硬化塗膜を用い、JIS K 5600に準拠して、1mm角のマス目を100個作成し、セロハンテープを貼り付け、一気に剥がした時に基板側に塗膜が残ったマス目の数を数えて評価した。
(11)破断強度・破断伸度
 上記(5)のUV照射で得られた完全硬化塗膜を用い、JIS K 7127に準拠して、温度25℃、相対湿度50%の雰囲気下にて測定した(測定機器:テンシロン万能材料試験機RTA-100(オリエンテック社製)、試験条件:試験速度10mm/min、試験片サイズ:標線間距離25mm、幅15mm、厚さ50μm)。
実施例B-2~B18、比較実施例B-19~B-24
 表3に記載の組成に代えた以外は実施例B-1と同様に活性エネルギー線硬化性樹脂組成物を調製し、硬化膜を作製、上記方法にて評価を行った。結果を表3、4に示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 評価実施例と評価比較例の結果に示されるとおり、低分子量成分が5重量%以上含まれるウレタンオリゴマーにおいて、硬化に多くの時間とエネルギーを必要とし、又得られた硬化物は耐タック性や耐収縮性、吸水率において劣る。これは低分子量成分が極性の高い成分であることが原因であると考えられ、低分子量体の含有により、ウレタンオリゴマーの極性も全体的に増加し、密着性が低下していると本発明者らが考えている。本発明の(メタ)アクリルアミド系ウレタンオリゴマーが分子量1000未満の低分子量成分の含有率が5重量%以下であり、活性エネルギー線光源としてUVランプはもちろん、LEDランプを使用しても優れる硬化性を示し、又得られた硬化物の耐タック性、耐収縮性、透明性、吸水率が良好で、PET未処理面やPC、PMMAへの密着性が改善された樹脂組成物を取得することができる。
 合成例1~17、比較合成例1~6で得られたウレタンオリゴマーにおいて各応用分野における特性評価を行った。実施例及び比較例に用いた材料は以下の通りである。
「HEAA」;ヒドロキシエチルアクリルアミド(KJケミカルズ(株)社製)
「DMAA」;N,N-ジメチルアクリルアミド(KJケミカルズ(株)社製)
「DEAA」;N,N-ジエチルアクリルアミド(KJケミカルズ(株)社製)
「ACMO」;N-アクリロイルモルホリン(KJケミカルズ(株)社製)
「DMAPAA」;ジメチルアミノプロピルアクリルアミド(KJケミカルズ(株)社製)
HEA;ヒドロキシエチルアクリレート
4HBA;4-ヒドロキシブチルアクリレート
2EHA;2-エチルヘキシルアクリレート
EEA;2-(2-エトキシエトキシ)エチルアクリレート
THFA;テトラヒドロフルフリルアクリレート
IBOA;イソボルニルアクリレート
CHA;シクロヘキシルアクリレート
M-106;o-フェニルフェノールEO変性アクリレート(東亜合成株式会社製)
HDDA;1,6-ヘキサンジオールジアクリレート
TPGDA;トリプロピレングリコールジアクリレート
PETA;ペンタエリスリトールトリアクリレート
DPHA;ジペンタエリスリトールヘキサアクリレート
UV-1700;10官能ウレタンアクリレート(日本合成(株) 社製)
UV-7600;6官能ウレタンアムリレート(日本合成(株) 社製)
DMAEA-TFSIQ;アクリロイルオキシエチルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(KJケミカルズ(株)社製)
DMAPAA-TFSIQ;アクリロイルアミノプロピルトリメチルアンモニウムビス(トリフルオロメタンスルホニル)イミド(KJケミカルズ(株)社製)
PET未処理基板:ポリエステルシート(「コスモシャイン A4100」東洋紡社製、アンカーコート未処理面)
PET易接着基板:ポリエステルシート(「コスモシャイン A4100」東洋紡社製、アンカーコート処理面)
PC基板:ポリカーボネートシート
PMMA:アクリル樹脂シート
COP:環状オレフィンポリマーフィルム
評価実施例C-1
 合成例1で合成した(メタ)アクリルアミド系ウレタンオリゴマーUTB-1 22重量部、「HEAA」 10重量部、2EHA  40重量部、CHA 7重量部、EEA  20重量部、DMAEA-TFSIQ 1重量部を混合し、光重合開始剤としてIrgacure 184 3重量部を加え、均一に混合し、紫外線硬化性粘着剤を調製した。その後、得られた粘着剤を用い、下記方法にて、UV照射により紫外線硬化型粘着シートの作製及び評価を行った。
紫外線硬化型粘着シートの作製方法
 上記にて調製した紫外線硬化型粘着剤を重剥離セパレーター(シリコーンコートPETフィルム)に塗工し、軽剥離セパレーター(シリコーンコートPETフィルム)で気泡を噛まないように卓上型ロール式ラミネーター機(Royal Sovereign製 RSL-382S)を用いて、粘着層が厚さ25μmになるように貼り合わせ、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS-4011GX、メタルハライドランプ:アイグラフィックス製 M04-L41、紫外線照度:700mW/cm、積算光量:1000mJ/cm)し、光学用透明粘着シートを作製した。得られた粘着シートの特性を下記方法で評価し、結果を表5に示す。
(12)透明性(透過率)
 温度23℃、相対湿度50%の条件下、被着体としてガラス基板に25mm幅に裁断した粘着シートの軽剥離セパレーターの剥がした面を貼り付け、更に重剥離セパレーターを剥がし、透過率を測定した。測定はヘイズメーター(日本電色工業社製、NDH-2000)を用いて、JIS K 7105に準拠し、ガラス基板の全光線透過率を測定した後、ガラス板の透過率を差し引き、粘着層自体の透過率を算出し、透明性を数値として評価した。透過率が高いほど、透明性が良い。
(13)表面抵抗率測定
 型板 (縦110×横110mm) を用い、カッターナイフで粘着シートを裁断し、温度23℃、相対湿度50%に調整した恒温恒湿機に入れ、3時間静置し、表面抵抗率測定用試料を得た。JIS K 6911 に基づき、デジタルエレクトロメーター(R8252型:エーディーシー社製)を用いて測定を行った。
(14)粘着力
 温度23℃、相対湿度50%の条件下、被着体としてポリエチレンテレフタレート(PET)フィルム(厚さ100μm)又はガラスの基板に転写し、重さ2kgの圧着ローラーを用いて2往復することにより加圧貼付し、同雰囲気下で30分間放置した。その後、引っ張り試験機(装置名:テンシロンRTA-100 ORIENTEC社製)を用いて、剥離速度300mm/分にて180°剥離強度(N/25mm)を測定した。
◎ :30(N/25mm)以上
○ :15(N/25mm)以上、30(N/25mm)未満
△ :8(N/25mm)以上、15(N/25mm)未満
× :8(N/25mm)未満
(15)耐汚染性
 粘着シートを前述の粘着力の測定と同様に被着体に貼り付け、80℃、24時間放置した後、粘着シートを剥がした後の被着体表面の汚染を目視によって観察した。
 ◎:汚染なし
 ○:ごく僅かに汚染がある。
 △:僅かに汚染がある。
 ×:糊(粘着剤)残りがある。
(16)耐黄変性
 粘着シートをガラス基板に貼り付け、キセノンフェードメーター(SC-700-WA:スガ試験機社製)にセットし、70mW/cmの強度の紫外線を、120時間照射した後、粘着シートの変色を目視によって観察した。
 ◎:黄変が目視で全く確認できない。
 ○:黄変が目視でごく僅かに確認できる。
 △:黄変が目視で確認できる。
 ×:明らかな黄変が目視で確認できる。
(17)耐湿熱性
 粘着シートを前述の耐黄変性試験と同様にガラス基板に貼り付け、温度85℃、相対湿度85%の条件下で100時間保持した後の浮き・剥がれ、気泡、白濁の発生有無を目視によって観察、評価した。
 ◎:透明で、浮き・剥がれも気泡も発生しない。
 ○:ごく僅かな曇りがあるが、浮き・剥がれも気泡も発生しない。
 △:僅かな曇り又は浮き・剥がれ、気泡がある。
 ×:極度な曇り又は浮き・剥がれ、気泡がある。
(18)段差追従性
 ガラス基板に厚み20μmの黒色テープを貼り合わせ、段差付きのガラスを作製した。粘着シートを段差付きガラスに転写し、温度23℃、相対湿度50%の雰囲気下で2kg荷重のローラーにて1往復(圧着速度300mm/分)加圧貼付し、温度80℃にて24時間放置した後、段差部分の状態を光学顕微鏡で確認した。
 ◎:全く気泡が見られない
 〇:わずかに小さな球状の気泡が見られる
 △:大きな気泡が見られ、気泡同士がつながっている場合がある
 ×:大きな気泡同士がつながり、段差部分で線上に広がっている 
(19)抜き打ち加工性
 得られた粘着シートをトムソン打ち抜き法(直線刃が並行に5.0mm間隔で10本並んだ抜き打ち刃による打ち抜き法)によってカッティングを施した。
  ◎:打ち抜き刃に全く何も残らなかった。
  〇:打ち抜き刃にわずかに粘着剤が残った。
  △:打ち抜き刃に粘着剤が残る。
  ×:打ち抜き刃に粘着剤が著しく残り、明確にカッティング表面を確認できない。
評価実施例C-2~20、評価比較例C-21~25
 表5に記載の組成に代えた以外は評価実施例C-1と同様に紫外線硬化樹脂を調製し、粘着シートを作製し、上記方法にて評価した。結果を表5~7に示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 評価実施例と評価比較例の結果に示されるとおり、分子量1000未満の成分が5重量%以上含まれるウレタンオリゴマーでは透明性、粘着力、耐湿熱性が低下する傾向であり、又硬化後粘着シートの耐汚染性や抜き打ち加工性においても不良であることから使用が困難であった。本発明の(メタ)アクリルアミド系ウレタンオリゴマーでは透明性が高く、粘着力もありながら耐汚染性、抜き打ち加工性に優れた粘着シートを得ることが出来る。
評価実施例D-1
 合成例1で合成した(メタ)アクリルアミド系ウレタンオリゴマーUTB-1  20重量部、「DEAA」  40重量部、M-106 25重量部、4-HBA  10重量部と「HEAA」 5重量部を混合し、光重合開始剤としてDarocur 1173 3重量部を加え、均一に混合し、紫外線硬化性封止剤を調製した。その後、得られた封止剤を用い、下記方法にて、紫外線硬化による封止剤樹脂硬化物の作製及び物性評価を行った。
紫外線硬化型封止剤樹脂硬化物の作製方法
 ガラス板(縦50mm×横50mm×厚さ5mm)上にシリコン製のスペーサー(縦30mm×横15mm×厚さ3mm)をセットし、スペーサーの内部に上記にて調製した紫外線硬化型封止剤を注入した。十分に脱気した後、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS-4011GX、メタルハライドランプ:アイグラフィックス製 M04-L41、紫外線照度:700mW/cm、積算光量:1000mJ/cm)し、封止剤樹脂硬化物を作製した。得られた硬化物の特性を下記方法で評価し、結果を表8に示す。
(20)透明性(透過率)
 得られた硬化物を用いて、温度23℃、相対湿度50%の雰囲気下で、24時間を静止した。それ後、ヘイズメーター(日本電色工業社製、NDH-2000)により硬化膜の透過率を測定し、透明性を下記通り4段階分けて評価した。
 ◎:透過率は90%以上
 ○:透過率は85%以上、かつ90%未満
 △:透過率は50%以上、かつ85%未満
 ×:透過率は50%未満
(21) 耐光性
 得られた硬化物をガラス基板に貼り付け、分光測色計(CM-3600d:コニカミノルタ社製)で黄色度を測定した。その後、キセノンフェードメーター(SC-700-WA:スガ試験機社製)にセットし、30℃でおいて、4W/cmの強度の紫外線を100時間照射し、照射後も照射前と同様に黄色度を測定し、硬化物の変色を目視によって観察した。
 ◎:黄変が目視で全く確認できない。
 ○:黄変が目視でごく僅かに確認できる。
 △:黄変が目視で確認できる。
 ×:明らかな黄変が目視で確認できる。
(22)吸水率試験
 得られた硬化物から1gを切り取って、試験片として温度85℃×相対湿度95%の恒温恒湿機にセットし、48時間静置し、その後再び試験片の重量を測定し、吸水率を前記評価項目(9)と同様に算出した。
 ◎:吸水率は1.0%未満
 ○:吸水率は1.0%以上、かつ2.0%未満
 △:吸水率は2.0%以上、かつ3.0%未満
 ×:吸水率は3.0%以上
(23)アウトガス試験
 得られた硬化物から1gを切り取って、試験片として温度100℃に設定した恒温槽に静置し、乾燥窒素気流を24時間流して、その後再び試験片の重量を測定し、(式2)によりアウトガスの発生率を算出した。
(式2)
アウトガス発生率(%)=(恒温後の重量-恒温前の重量)/恒温前の重量×100
 ◎:発生率は0.1%未満
 ○:発生率は0.1%以上、かつ0.3%未満
 △:発生率は0.3%以上、かつ1.0%未満
 ×:発生率は1.0%以上
(24)耐ヒートサイクル性
 得られた硬化物を-40℃で30分間、次に100℃で30分間放置を1サイクルとして100回繰り返し、硬化物の状態を目視によって観察した。
◎:全く変化が見られない
〇:わずかに気泡の発生が見られるが、クラックの発生が見られない。透明である。
△:多少の気泡或いはクラックの発生が見られ、わずかな曇である。
×:気泡又はクラックが全面的に発生し、半透明状態である。
評価実施例D-2~18、評価比較例D-19~24
 表8に記載の組成に代えた以外は評価実施例D-1と同様に紫外線硬化樹脂を調製し、粘着シートを作製し、上記方法にて評価した。結果を表8、9に示す。
Figure JPOXMLDOC01-appb-T000012
 評価実施例と評価比較例の結果に示されるとおり、分子量1000未満の成分が5重量%以上に含まれるウレタンオリゴマーを配合した場合、得られる硬化物の透明性、耐光性又は耐ヒートサイクル性が経時的に低下し、吸水率も高かった。一方、本願発明の分子量1000未満の成分が5重量%未満に含まれるウレタンオリゴマーを使用した場合、全ての要求特性においては優れており、電子部品、半導体、太陽電池等の封止剤として幅広く利用することができる。
評価実施例E-1
 合成例1で合成した(メタ)アクリルアミド系ウレタンオリゴマーUTB-1  12重量部、ACMO  25重量部、DMAA  23重量部、HEA  25重量部、THFA  15重量部を混合し、光重合開始剤としてDarocur 1173 3重量部を加え、均一に混合し、紫外線硬化性接着剤を調製した。その後、得られた接着剤を用い、下記方法にて、紫外線硬化による偏光板作製及び偏光板の物性評価を行い、結果を表10に示す。
UV照射による偏光板の作製
 卓上型ロール式ラミネーター機(Royal Sovereign製 RSL-382S)を用いて、2枚の透明フィルム(保護フィルム、位相差フィルム又は光学補償フィルム)の間に偏光フィルムを挟み、透明フィルムと偏光フィルムの間に、実施例又は比較例の接着剤を、厚さ10μmになるように貼り合わせた。貼り合わせた透明フィルムの上面から紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS-4011GX、メタルハライドランプ:アイグラフィックス製 M04-L41、紫外線照度:700mW/cm、積算光量:1000mJ/cm)し、偏光フィルムの両側に透明フィルムを有する偏光板を作製した。なお、透明フィルムとして、アクリル系(ACR)保護フィルム(カネカ社製のサンデュレンSD-014)、環状オレフィン系(COP)保護フィルム(日本ゼオン(株)製のゼオノアフィルムZF16)とトリアセチルセルロース系(TAC)保護フィルム((株)コニカミノルタオプト製のセルロースエステルを主成分とする高分子を用いた位相差フィルムn-TAC)を使用した。
(25)表面形状観察
 得られた偏光板表面を目視によって観察し、下記基準で評価した。
 ◎:偏光板の表面に微小なスジも凹凸ムラも確認できない。
 ○:偏光板の表面に部分的に微小なスジが確認できる。
 △:偏光板の表面に微小なスジや凹凸ムラが確認できる。
 ×:偏光板の表面に明らかなスジや凹凸ムラが確認できる。
(26)剥離強度
 温度23℃、相対湿度50%の条件下、20mm×150mmに裁断した偏光板(試験片)を、引っ張り試験機(島津製作所製 オートグラフAGXS-X 500N)に取り付けた試験板に両面接着テープを用いて貼り付けた。両面接着テープを貼付していない方の透明保護フィルムと偏光フィルムの一片を、20~30mm程度あらかじめ剥がしておき、上部つかみ具にチャックし、剥離速度300mm/minにて90°剥離強度(N/20mm)を測定した。
 ◎:3.0(N/20mm)以上
 ○:1.5(N/20mm)以上、3.0(N/20mm)未満
 △:1.0(N/20mm)以上、1.5(N/20mm)未満
 ×:1.0(N/20mm)未満
(27)耐水性
 得られた偏光板を20×80mmに切断し、60℃の温水に48時間浸漬した後、偏光子と保護フィルム、位相差フィルム、光学補償フィルムとの界面における剥離の有無を確認した。判定は下記の基準で行った。
 ◎:偏光子と保護フィルムとの界面で剥離なし(1mm未満)。
 ○:偏光子と保護フィルムとの界面の一部に剥離あり(1mm以上、3mm未満)。
 △:偏光子と保護フィルムとの界面の一部に剥離あり(3mm以上、5mm未満)。
 ×:偏光子と保護フィルムとの界面で剥離あり(5mm以上)。
(28)耐久性
 得られた偏光板を150mm×150mmに裁断し、冷熱衝撃装置(エスペック社製TSA-101L-A)に入れ、-40℃~80℃のヒートショックを各30分間、100回行い、下記基準で評価した。
 ◎:クラックの発生なし。
 ○:端部にのみ5mm以下の短いクラックの発生あり。
△:端部以外の場所にクラックが短い線状に発生している。しかし、その線により偏光板が2つ以上の部分に分離してはいない。
 ×:端部以外の場所にクラックの発生あり。その線により、偏光板が2つ以上の部分に分離している。
評価実施例E-2~20、評価比較例E-21~26
 表10に記載の組成に代えた以外は評価実施例E-1と同様に紫外線硬化樹脂を調製し、偏光板を作製し、上記方法にて評価した。結果を表10~12に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
 評価実施例と評価比較例の結果に示されるとおり、低分子量成分が5重量%以上含まれるウレタンオリゴマーでは剥離強度が低くなり、又、低分子量成分は比較的極性が高いので、得られた偏光板の耐水性、耐久性も不十分であった。本発明の(メタ)アクリルアミド系ウレタンオリゴマーにより得られた偏光板は表面にスジや全体的な凹凸ムラもない。又、耐水性、耐久性を有しながら剥離強度の高い偏光板用接着剤組成物を得ることが出来た。
評価実施例F-1
 合成例1で合成した(メタ)アクリルアミド系ウレタンオリゴマーUTB-1  12重量部、HDDA 35重量部、THFA 27重量部、IBOA 20重量部、顔料3重量部、顔料分散剤 3重量部を混合し、光重合開始剤としてDarocur TPO 5重量部を加え、均一に混合し、光硬化性インキ組成物を調製した。その後、下記方法にて、インクジェット印刷を行い、得られた印刷物の評価を行った。
(29) 粘度
 得られたインク組成物の粘度をJIS K5600-2-3に準じて、コーンプレート型粘度計(装置名:RE550型粘度計 東機産業株式会社製)を使用し、測定した。インクジェット式印刷を踏まえて、20℃におけるインク組成物の粘度は3~20mPa・s以下であることが好ましく、更には5~18mPa・sであることが好ましい。3mPa・s未満では吐出後の印刷にじみ、印刷ずれによる吐出追従性の低下が見られ、20mPa・s以上では吐出ノズルのつまりによる吐出安定性の低下がみられるため、好ましくない。
(30) 相溶性
 上記の方法により調製したインク組成物を目視により相溶性を確認した。
  ◎:インク組成物に不溶解物なし。
  〇:インク組成物にわずかに不溶解物がみられる。
  △:インク組成物全体に不溶解物がみられる。
  ×:インク組成物に沈殿物あり。
UV照射による印刷物の作製
 得られたインク組成物を厚さ100μmのポリエチレンテレフタラート(PET)フィルムにバーコーター(RDS 12)にて塗布し、紫外線照射(装置:アイグラフィックス製インバーター式コンベア装置ECS-4011GX、メタハライドランプ:アイグラフィックス製M04-L41)により硬化させ、印刷物を作製した。
(31) 硬化性
 上記方法にて印刷物を作成する際、インク組成物が完全硬化するまでの積算光量を測定した。
  ◎:1000mJ/cmで完全硬化
  ○:1000~2000mJ/cmで完全硬化
  △:2000~5000mJ/cmで完全硬化
  ×:完全硬化までに5000mJ/cm以上が必要
(32) 表面乾燥性
 上記方法にて作製した印刷物を、室温23℃、相対湿度50%の環境に5分間静置し、印刷面に上質紙を重ね、荷重1kg/cmの付加を1分間かけ、紙へのインクの転写程度を評価した。
  ◎:インクが乾燥し、紙への転写が全くなかった。
  ○:インクが乾燥し、紙への転写がわずかにあった。
  △:インクがほぼ乾燥し、紙への転写があった。
  ×:インクが殆ど乾燥せず、紙への転写が多かった。
インクジェット印刷と印刷適性評価
 インクジェット方式のカラープリンタ(セイコーエプソン製PM-A890)を用いて、ベタ画像を印刷し、紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS-4011GX、メタルハライドランプ:アイグラフィックス製 M04-L41、紫外線照度:700mW/cm、積算光量:1000mJ/cm)することで印刷物を作製し、以下の方法にて評価した。結果は表13に示す。
(33) 吐出安定性
上記したインクジェットプリンタにて印字を行い、印字物の印刷状態を目視により評価した。
  ◎:ノズル抜けなく、良好に印刷されている。
  〇:わずかにノズル抜けあり。
  △:広い範囲にてノズル抜けがあり。
  ×:不吐出がある。
(34) 鮮明度
 印刷後の画像の鮮明度を目視で観察した。
  ◎:インクにじみが全く見られなく、画像が鮮明であった。
  ○:インクにじみが殆どなく、画像が良好であった。
  △:インクにじみが若干見られた。
  ×:インクにじみが著しくみられた。
(35) 耐水性
流水中に印刷面を1分間さらし、画像の変化を目視で観察した。
  ◎:画像の鮮明度が全く変わらなかった。
  ○:画像の鮮明度が殆ど変らなかったが、インクにじみが僅かに見られた。
  △:画像の鮮明度が低下し、インクにじみが見られた。
  ×:画像の鮮明度が著しく低下し、インクにじみが著しく見られた。
評価実施例F-2~20、評価比較例F-21~26
 表13に記載の組成に代えた以外は評価実施例F-1と同様にインク組成物を調製し、上記方法にて印刷物を作製し、上記方法にて評価した。結果を表13~15に示す。
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 評価実施例と評価比較例の結果に示されるとおり、低分子量成分が5重量%以上含まれるウレタンオリゴマーでは硬化性、表面乾燥性が劣り、極性の高い低分子量成分により吐出硬化後の印刷物においても耐水性が不良であることが分かった。本発明で得られる(メタ)アクリルアミド系ウレタンオリゴマーでは優れた硬化性、表面乾燥性を有し、吐出安定性、鮮明度、耐水性をも併せ持つ、優れたインク組成物を得ることが出来た。
評価実施例G-1
 合成例1で合成した(メタ)アクリルアミド系ウレタンオリゴマーUTB-1  40重量部、UV-1700 25重量部、DPHA 20重量部、ACMO 15重量部を混合し、光重合開始剤としてDarocur 1173 3重量部を加え、均一に混合し、光硬化性コート組成物を調製した。
(36)相溶性
 上記の方法により得られたコート剤組成物を目視により相溶性を確認した。
  ◎:コート組成物透明性が高く、白濁や分離が全く確認ない。
  〇:コート組成物の透明性は高いが、白濁が僅かに見られる。
  △:コート組成物全体が白濁している。
  ×:コート組成物に白濁し、更に分離している。
(37) 濡れ性
 得られたコート剤組成物を基材上に塗布し、塗膜の付着状態を目視によって観察した。
 ◎:塗布直後も、5分静置後も、はじくことなく、平滑な塗膜を形成していた。
 〇:塗布直後ははじかなかったが、5分静置後は少々はじきがみられた。
 △:塗布直後に少々はじきがみられた。
 ×:塗布直後に多くのはじきがみられ、均一な塗膜が得られなかった。
UV照射によるコート膜の作製
 得られたコート剤組成物を厚さ100μmのPETフィルムにバーコーター(番号RDS 0とRDS 12)を用いて塗布し、乾燥塗膜の厚みが1μm(RDS 0)と10μm(RDS 12)になるように塗膜を作製した。紫外線を照射(装置:アイグラフィックス製 インバーター式コンベア装置ECS-4011GX、メタルハライドランプ:アイグラフィックス製 M04-L41、紫外線照度:700mW/cm、積算光量:1000mJ/cm)することでコート膜を作製し、下記方法にて評価した。結果を表16に示す。又、溶媒を用いる場合、塗布後80℃にて3分を乾燥させてから紫外線を照射した。
(38) 硬化性
 コート剤組成物を塗布し、得られた塗膜に、紫外線照度700mW/cmを照射し、樹脂組成物が完全硬化するまでの積算光量を測定した。完全硬化とは硬化膜の表面をシリコンゴムでなぞった際に跡がつかなくなる状態とする。
  ◎:積算光量1000mJ/cmで完全硬化。
  〇:積算光量1000mJ/cm~2000mJ/cmで完全硬化。
  △:積算光量2000mJ/cm~5000mJ/cmで完全硬化。
  ×:完全硬化まで積算光量5000mJ/cm以上が必要。
(39) 耐タック性
 上記方法にて得られたコート膜の表面を指で触り、べたつき具合を評価した。
  ◎:べたつきが全くない。
  ○:若干のべたつきがあるが、表面に指の跡が残らない。
  △:べとつきがあり、表面に指の跡が残る。
  ×:べとつきがひどく、表面に指が貼りつく。
(40) 耐収縮性
 上記方法にて得られた塗膜に紫外線照射(紫外線照度700mW/cm,積算光量2000mJ/cm)して得られたコート膜を10cm角に切り取り、四隅の浮き上がりの平均を測定した。
  ◎:0.5mm以下の浮き上がりがある。
  ○:1mm以下の浮き上がりがある。
  △:3mm以下の浮き上がりがある。
  ×:大きくカールする。
(41)耐擦傷性
 #0000のスチールウールを用いて、200g/cmの荷重をかけながら10往復させ、傷の発生の有無を目視で評価した。
 ◎:膜の剥離や傷の発生がほとんど認められない。
 ○:膜の一部にわずかな細い傷が認められる。
 △:膜全面に筋状の傷が認められる。
 ×:膜の剥離が生じる。
(42)自己修復性
 上記方法にて得られたコート膜にさじで傷をつけてから温度25℃、相対湿度50%の環境に静置し、傷の回復状態を目視にて評価した。
  ◎:30分以内に傷が完全に回復している。
  ○:30分~5時間以内に傷が完全に回復している。
  △:5時間~24時間以内に傷が完全に回復している。
  ×:24時間静置後も傷が完全に回復しない。
(43) 密着性
 JIS K 5600に準拠して、1mm角のマス目を100個作成し、セロハンテープを貼り付け、一気に剥がした時に基板側に塗膜が残ったマス目の数を数えて評価した。
(44) 耐湿性
 PETフィルム(100μm)上に得られたコート膜を、温度50℃、相対湿度95%の環境に24時間静置し、その後の膜を目視、もしくは密着性試験にて評価した。
  ◎:高温高湿下でも透明性を維持し、密着性の低下も見られない。
  〇:高温高湿下でも透明性を維持するが、密着性においてわずかに低下がみられる。
  △:高温高湿下でも透明性を維持するが、密着性において大幅に低下がみられる。
  ×:高温高湿下において透明性の低下、更に密着性の低下がみられる。
評価実施例G-2~18、評価比較例G-19~24
 表16に記載の組成に代えた以外は評価実施例G-1と同様にコート組成物を調製し、上記方法にて硬化膜を作製し、上記方法にて評価した。結果を表16~18に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 評価実施例と評価比較例の結果に示されるとおり、低分子量成分が5重量%以上含まれる(メタ)アクリルアミド系ウレタンオリゴマーでは硬化性、耐タック性が劣り、極性の高い低分子量成分の含有によりコート組成物の極性が高くなり、PET未処理面やPC、PMMA、特にガラスや金属への密着性、耐湿性が低下傾向であった。本発明の(メタ)アクリルアミド系ウレタンオリゴマーでは優れた硬化性を有しながら、耐湿性、密着性、耐タック性においても良好な結果を示すコート剤組成物を得ることが出来た。
 以上説明してきたように、本発明の(メタ)アクリルアミド系ウレタンオリゴマーは分子内にジエン系骨格又は水素添加ジエン系骨格を有し、かつ1つ以上の(メタ)アクリルアミド基を有する、分子量1000未満の低分子量成分の含有率が5重量%以下であるため、汎用の有機溶剤やモノマーに対する相溶性に優れ、活性エネルギー線照射により高硬化速度を示す。本発明の(メタ)アクリルアミド系ウレタンオリゴマーを用いることにより、べたつくことがなく、高耐収縮性、高耐湿熱性を有する硬化膜を作製することができる。更に、必要に応じて単官能、多官能モノマー、イオン性モノマー、活性エネルギー線重合開始剤、顔料等を混合して使用することにより、粘接着剤、電子材料、インク、コーティング剤、光硬化型のレジスト用途に好適に用いることができる。

Claims (15)

  1. 分子内にカーボネート骨格、ジエン系骨格と水素添加ジエン系骨格から選ばれる1種又は2種以上の骨格を有し、かつ、1つ以上の(メタ)アクリルアミド基を有する、分子量1000未満の成分(水酸基を有する(メタ)アクリルアミド化合物(A)を除く)の含有率が5重量%以下であることを特徴とする(メタ)アクリルアミド系ウレタンオリゴマー。
  2. 分子量1000未満の成分(水酸基を有する(メタ)アクリルアミド化合物(A)を除く)は、1分子中に2個以上のイソシアネート基を有するイソシアネート単量体(B)と水酸基を有する(メタ)アクリルアミド化合物(A)の付加反応で得られるウレタンアダクト化合物であることを特徴とする請求項1に記載の(メタ)アクリルアミド系ウレタンオリゴマー。
  3. ジエン系骨格又は水素添加ジエン系骨格が、ポリブタジエン、ポリブタジエンの水素添加物、ポリイソプレン、ポリイソプレンの水素添加物からなる群から選ばれる1種以上の骨格であることを特徴とする請求項1又は請求項2に記載の(メタ)アクリルアミド系ウレタンオリゴマー。
  4. 一般式[1](Rは水素原子又はメチル基を示し、R及びRは同一又は異なって、水素原子、又は水酸基で置換されていてもよい炭素数1乃至3のアルキル基を示す。但し、R及びRが同時に水素原子の場合、及びR及びRが同時にアルキル基の場合を除く。)で示される化合物(A)と、1分子中に1個以上のイソシアネート基を有するポリカーボネート骨格、ポリブタジエン骨格、水添ポリブタジエン骨格、ポリイソプレン骨格、水添ポリイソプレン骨格から選ばれる1種又は2種以上の骨格を有する化合物(C)、との付加反応で得られるものであることを特徴とする請求項1~3のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマー。
    Figure JPOXMLDOC01-appb-C000001
  5. 化合物(A)は、N-ヒドロキシアルキレン(メタ)アクリルアミド、N,N-ジヒドロキシアルキレン(メタ)アクリルアミド、N-アルキル-N-ヒドロキシアルキレン(メタ)アクリルアミドであることを特徴とする請求項1~4のいずれか一項に記載の(メタ)アクリルアミド系ウレタンオリゴマー。
  6. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを含有する活性エネルギー線硬化性樹脂組成物。
  7. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する光学材料用活性エネルギー線硬化性樹脂組成物。
  8. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性粘着剤組成物。
  9. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性接着剤組成物。
  10. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する光学部材用活性エネルギー線硬性接着剤組成物。
  11. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する偏光板用活性エネルギー線硬性接着剤組成物。
  12. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する電子部品用活性エネルギー線硬性封止剤組成物。
  13. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬化性コーティング組成物。
  14. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬性インクジェットインキ組成物。
  15. 請求項1~5のいずれか1項に記載の(メタ)アクリルアミド系ウレタンオリゴマーを1重量%以上含有する活性エネルギー線硬性立体造形用樹脂組成物。
PCT/JP2015/057124 2014-03-17 2015-03-11 ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物 WO2015141537A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/125,892 US9738748B2 (en) 2014-03-17 2015-03-11 Urethane oligomer and active energy ray curable resin composition containing same
CN201580009572.9A CN106029727B (zh) 2014-03-17 2015-03-11 聚氨酯低聚物和含有它的活性能量射线固化性树脂组合物
KR1020167025457A KR101770649B1 (ko) 2014-03-17 2015-03-11 우레탄 올리고머 및 그것을 함유하는 활성 에너지선 경화성 수지 조성물
EP15764606.8A EP3121209B1 (en) 2014-03-17 2015-03-11 Urethane oligomer and active energy ray curable resin composition containing same
JP2015547581A JP5954556B2 (ja) 2014-03-17 2015-03-11 ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2014053782 2014-03-17
JP2014-053782 2014-03-17
JP2014-055342 2014-03-18
JP2014055342 2014-03-18
JP2015-003381 2015-01-09
JP2015003381 2015-01-09
JP2015-023927 2015-02-10
JP2015023927 2015-02-10

Publications (1)

Publication Number Publication Date
WO2015141537A1 true WO2015141537A1 (ja) 2015-09-24

Family

ID=54144508

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057124 WO2015141537A1 (ja) 2014-03-17 2015-03-11 ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物

Country Status (7)

Country Link
US (1) US9738748B2 (ja)
EP (1) EP3121209B1 (ja)
JP (1) JP5954556B2 (ja)
KR (1) KR101770649B1 (ja)
CN (1) CN106029727B (ja)
TW (1) TWI643878B (ja)
WO (1) WO2015141537A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047615A1 (ja) * 2015-09-16 2017-03-23 Kjケミカルズ株式会社 (メタ)アクリルアミド系ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP2017101213A (ja) * 2015-12-04 2017-06-08 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク組成物、活性エネルギー線硬化型インクジェット用インク組成物、組成物収容容器、2次元又は3次元の像形成装置、及び2次元又は3次元の像形成方法
KR20180100415A (ko) * 2016-02-02 2018-09-10 반도 카가쿠 가부시키가이샤 광학투명점착시트, 광학투명점착시트의 제조방법, 적층체 및 터치패널을 구비한 표시장치
JP2019129280A (ja) * 2018-01-26 2019-08-01 協立化学産業株式会社 インプリント成型用光硬化性樹脂組成物
CN110114434A (zh) * 2016-12-29 2019-08-09 汉高股份有限及两合公司 可光固化的粘合剂组合物、固化产物及其用途
WO2019189566A1 (ja) * 2018-03-28 2019-10-03 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
JP2019199448A (ja) * 2018-05-17 2019-11-21 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
JP2020019879A (ja) * 2018-07-31 2020-02-06 株式会社Adeka 組成物、その硬化物および硬化物の製造方法
JP2020193302A (ja) * 2019-05-30 2020-12-03 セーレン株式会社 インクジェット用インク、プリント物およびプリント物の製造方法
JP7391365B2 (ja) 2018-12-21 2023-12-05 Kjケミカルズ株式会社 自己修復性ウレタン(メタ)アクリルアミド及びそれを含有する樹脂組成物
WO2024009593A1 (ja) * 2022-07-08 2024-01-11 株式会社レゾナック 粘着剤組成物及び保護シート
JP7413648B2 (ja) 2018-10-25 2024-01-16 東ソー株式会社 ウレタン樹脂組成物、接着剤組成物、及び物品の製造方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924553B1 (ko) * 2015-09-15 2018-12-03 케이제이 케미칼즈 가부시키가이샤 우레탄변성 (메타)아크릴아미드 화합물 및 이를 함유하는 활성에너지선 경화성 수지 조성물
KR102555675B1 (ko) * 2016-10-14 2023-07-13 삼성전자주식회사 광경화성 코팅 조성물, 이를 이용하는 코팅막 형성 방법 및 이를 이용하는 코팅막 형성 장치
CN109890916B (zh) 2016-10-28 2022-01-28 理研科技株式会社 无光泽硬涂层形成用涂料和使用了该涂料的装饰板
GB2562747B (en) * 2017-05-23 2019-06-26 Henkel IP & Holding GmbH Low-viscosity photocurable adhesive compositions
KR102588034B1 (ko) * 2017-06-30 2023-10-11 다이이치 고교 세이야쿠 가부시키가이샤 중합성 수지 조성물 및 그 경화물
CN111051440B (zh) * 2017-08-29 2022-09-06 富士胶片株式会社 油墨组合物及其制造方法、以及图像形成方法
JP7199693B2 (ja) * 2017-11-09 2023-01-06 Kjケミカルズ株式会社 光硬化性爪化粧料
KR102248556B1 (ko) * 2018-01-24 2021-05-04 주식회사 엘지화학 반도체 웨이퍼용 보호필름
JP6742654B2 (ja) 2018-06-25 2020-08-19 Kjケミカルズ株式会社 三次元造形用光硬化性樹脂組成物及びそれを用いた三次元造形方法、三次元造形物
EP3820924A1 (en) * 2018-07-10 2021-05-19 DSM IP Assets B.V. Radiation-curable aqueous polyurethane dispersions
CN113056496B (zh) * 2018-11-19 2023-09-08 应用材料公司 用于3d打印的低粘度uv可固化配方
JP7182144B2 (ja) * 2019-02-28 2022-12-02 関西ペイント株式会社 活性エネルギー線硬化型塗料組成物、硬化塗膜、塗装物品及び塗膜形成方法
US20200291204A1 (en) * 2019-03-15 2020-09-17 University Of South Alabama Build materials for photochemical additive manufacturing applications
WO2020235556A1 (ja) * 2019-05-22 2020-11-26 東レ株式会社 活性エネルギー線硬化型平版印刷用インキ、およびそれを用いた印刷物の製造方法
CN112175162B (zh) * 2019-07-05 2022-04-19 万华化学(宁波)有限公司 改性水性聚氨酯树脂、其制备方法及应用
EP4227334A4 (en) * 2020-10-05 2024-04-03 Sumitomo Electric Industries RESIN COMPOSITION, OPTICAL FIBER AND METHOD FOR PRODUCING OPTICAL FIBER
CN116348512A (zh) * 2020-10-05 2023-06-27 住友电气工业株式会社 树脂组合物、光纤以及光纤的制造方法
TWI785846B (zh) * 2021-10-15 2022-12-01 明基材料股份有限公司 用於牙體修復之成型裝置的樹脂組合物
KR102623580B1 (ko) * 2021-12-27 2024-01-15 주식회사 켐코 자외선 경화성 고탄성 점착제 조성물과 이의 제조 방법, 및 이를 이용하여 제조된 점착시트

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037849A (ja) * 2000-07-27 2002-02-06 Kohjin Co Ltd 新規なウレタンアクリルアミド類および該ウレタンアクリルアミド類を含有した紫外線及び電子線硬化性樹脂組成物
JP2003165965A (ja) * 2001-11-28 2003-06-10 Kohjin Co Ltd 粘接着剤用組成物
WO2007139157A1 (ja) * 2006-05-31 2007-12-06 Nippon Shokubai Co., Ltd. 多価(メタ)アクリルアミド化合物及びこれを含有する水系硬化性樹脂組成物
JP2009244460A (ja) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd 電子写真機器用材料および電子写真機器用導電性ロール
JP2010128417A (ja) * 2008-12-01 2010-06-10 Sumitomo Chemical Co Ltd 光学フィルム

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5014277B2 (ja) 1971-09-14 1975-05-26
JPS6121120A (ja) 1984-07-10 1986-01-29 Yokohama Rubber Co Ltd:The 光硬化型樹脂組成物
JPS6329701A (ja) 1986-07-24 1988-02-08 Kureha Chem Ind Co Ltd 高屈折率樹脂レンズ
JP2600563B2 (ja) 1992-11-09 1997-04-16 東亞合成株式会社 光硬化型樹脂組成物
JP3362322B2 (ja) 1994-09-22 2003-01-07 ジェイエスアール株式会社 放射線硬化性樹脂組成物
ITVA20000017A1 (it) 2000-06-08 2001-12-08 Lamberti Spa Dispersioni acquose di copolimeri uretano-acrilici e loro impiego come agenti di finissaggio.
JP4799755B2 (ja) 2001-04-13 2011-10-26 日本曹達株式会社 液状ポリブタジエン(メタ)アクリレートの製造方法
JP2004155893A (ja) 2002-11-06 2004-06-03 Tokushiki:Kk 紫外線硬化型樹脂組成物
JP2008045032A (ja) * 2006-08-16 2008-02-28 Showa Denko Kk 熱硬化性樹脂組成物、オーバーコート剤および、保護膜
JP5067039B2 (ja) * 2007-06-25 2012-11-07 パナソニック株式会社 半導体装置の製造方法
JP5153257B2 (ja) 2007-08-21 2013-02-27 十条ケミカル株式会社 紫外線硬化型インキ組成物および印刷表示物
JP2010059343A (ja) * 2008-09-05 2010-03-18 Sumitomo Chemical Co Ltd 組成物、光学フィルム及び該光学フィルムの製造方法
JP5370747B2 (ja) 2009-05-13 2013-12-18 日立化成株式会社 結晶系半導体基板用保護フィルム
JP5388908B2 (ja) 2010-03-08 2014-01-15 富士フイルム株式会社 赤外線レーザー用ポジ型平版印刷版原版、及び、平版印刷版の製版方法
CN103140560B (zh) * 2010-10-01 2014-05-28 昭和电工株式会社 光固化性透明粘合片用组合物
JP2013028675A (ja) 2011-07-27 2013-02-07 Hitachi Chemical Co Ltd 回路接続材料及びそれを用いた回路接続構造体
JP5834606B2 (ja) 2011-08-05 2015-12-24 Dic株式会社 紫外線硬化型粘着剤用樹脂組成物、粘着剤及び積層体
JP2013091575A (ja) 2011-10-24 2013-05-16 Sumitomo Electric Ind Ltd 光ファイバ素線の製造方法及びその製造方法により得られた光ファイバ素線
WO2013088889A1 (ja) 2011-12-13 2013-06-20 昭和電工株式会社 透明両面粘着シートの製造方法、透明両面粘着シート
JP2015145437A (ja) 2014-01-31 2015-08-13 三洋化成工業株式会社 ディスプレイ緩衝層用ウレタン樹脂及びそれを含有するディスプレイ緩衝層用樹脂組成物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002037849A (ja) * 2000-07-27 2002-02-06 Kohjin Co Ltd 新規なウレタンアクリルアミド類および該ウレタンアクリルアミド類を含有した紫外線及び電子線硬化性樹脂組成物
JP2003165965A (ja) * 2001-11-28 2003-06-10 Kohjin Co Ltd 粘接着剤用組成物
WO2007139157A1 (ja) * 2006-05-31 2007-12-06 Nippon Shokubai Co., Ltd. 多価(メタ)アクリルアミド化合物及びこれを含有する水系硬化性樹脂組成物
JP2009244460A (ja) * 2008-03-31 2009-10-22 Tokai Rubber Ind Ltd 電子写真機器用材料および電子写真機器用導電性ロール
JP2010128417A (ja) * 2008-12-01 2010-06-10 Sumitomo Chemical Co Ltd 光学フィルム

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10676561B2 (en) 2015-09-16 2020-06-09 Kj Chemicals Corporation (Meth)acrylamide based urethane oligomer and active energy ray curable resin composition containing same
US20180244831A1 (en) * 2015-09-16 2018-08-30 Kj Chemicals Corporation (meth)acrylamide based urethane oligomer and active energy ray curable resin composition containing same
WO2017047615A1 (ja) * 2015-09-16 2017-03-23 Kjケミカルズ株式会社 (メタ)アクリルアミド系ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP2017101213A (ja) * 2015-12-04 2017-06-08 株式会社リコー 活性エネルギー線硬化型組成物、活性エネルギー線硬化型インク組成物、活性エネルギー線硬化型インクジェット用インク組成物、組成物収容容器、2次元又は3次元の像形成装置、及び2次元又は3次元の像形成方法
KR20180100415A (ko) * 2016-02-02 2018-09-10 반도 카가쿠 가부시키가이샤 광학투명점착시트, 광학투명점착시트의 제조방법, 적층체 및 터치패널을 구비한 표시장치
KR102135573B1 (ko) 2016-02-02 2020-07-20 반도 카가쿠 가부시키가이샤 광학투명점착시트, 광학투명점착시트의 제조방법, 적층체 및 터치패널을 구비한 표시장치
CN110114434A (zh) * 2016-12-29 2019-08-09 汉高股份有限及两合公司 可光固化的粘合剂组合物、固化产物及其用途
EP3562903A4 (en) * 2016-12-29 2020-09-16 Henkel AG & Co. KGaA PHOTO-CURING ADHESIVE COMPOSITION, CURED PRODUCT AND USES THEREOF
CN110114434B (zh) * 2016-12-29 2021-05-04 汉高股份有限及两合公司 可光固化的粘合剂组合物、固化产物及其用途
JP2019129280A (ja) * 2018-01-26 2019-08-01 協立化学産業株式会社 インプリント成型用光硬化性樹脂組成物
WO2019189566A1 (ja) * 2018-03-28 2019-10-03 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
US11365280B2 (en) 2018-03-28 2022-06-21 Kuraray Noritake Dental Inc. Photocurable resin composition
JP2019199448A (ja) * 2018-05-17 2019-11-21 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
JP7105102B2 (ja) 2018-05-17 2022-07-22 クラレノリタケデンタル株式会社 光硬化性樹脂組成物
JP2020019879A (ja) * 2018-07-31 2020-02-06 株式会社Adeka 組成物、その硬化物および硬化物の製造方法
JP7209486B2 (ja) 2018-07-31 2023-01-20 株式会社Adeka 組成物、その硬化物および硬化物の製造方法
JP7413648B2 (ja) 2018-10-25 2024-01-16 東ソー株式会社 ウレタン樹脂組成物、接着剤組成物、及び物品の製造方法
JP7391365B2 (ja) 2018-12-21 2023-12-05 Kjケミカルズ株式会社 自己修復性ウレタン(メタ)アクリルアミド及びそれを含有する樹脂組成物
JP2020193302A (ja) * 2019-05-30 2020-12-03 セーレン株式会社 インクジェット用インク、プリント物およびプリント物の製造方法
WO2024009593A1 (ja) * 2022-07-08 2024-01-11 株式会社レゾナック 粘着剤組成物及び保護シート

Also Published As

Publication number Publication date
US9738748B2 (en) 2017-08-22
EP3121209A1 (en) 2017-01-25
TW201538556A (zh) 2015-10-16
CN106029727A (zh) 2016-10-12
EP3121209B1 (en) 2018-10-17
EP3121209A4 (en) 2017-04-05
US20170009001A1 (en) 2017-01-12
KR20160113313A (ko) 2016-09-28
TWI643878B (zh) 2018-12-11
CN106029727B (zh) 2018-11-13
KR101770649B1 (ko) 2017-08-23
JPWO2015141537A1 (ja) 2017-04-06
JP5954556B2 (ja) 2016-07-20

Similar Documents

Publication Publication Date Title
JP5954556B2 (ja) ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP6277383B2 (ja) (メタ)アクリルアミド系ウレタンオリゴマー及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP6232599B2 (ja) ウレタン変性(メタ)アクリルアミド化合物及びそれを含有する活性エネルギー線硬化性樹脂組成物
JP6634556B2 (ja) N−置換(メタ)アクリルアミドを用いた重合性組成物、その重合物及びそれらからなる成形品
TWI612119B (zh) 透明黏著薄片用光硬化性組成物,使用該組成物之黏著薄片及其用途
JP2016181370A (ja) アルコキシアルキル(メタ)アクリルアミドを有するウレタンオリゴマー及びそれを含有する光硬化性樹脂組成物
JP7281218B2 (ja) ヒドロキシアルキル(メタ)アクリルアミドを用いた重合性組成物、その重合物及びそれらからなる成形品
JP2020033532A (ja) t−ブチルシクロヘキシル(メタ)アクリレートを用いた重合性樹脂組成物
JP7380577B2 (ja) 表面保護シート用粘着剤組成物及び表面保護シート
JP2021120437A (ja) 粘着シートおよび画像表示装置
JP2020007552A (ja) N−置換(メタ)アクリルアミドを用いた重合性組成物、その重合物及びそれらからなる成形品
TWI708792B (zh) 胺基甲酸乙酯改性(甲基)丙烯醯胺化合物及含有該化合物之活性能量射線硬化性樹脂組成物
TWI683832B (zh) (甲基)丙烯醯胺系胺基甲酸乙酯低聚物及含有該化合物之活性能量射線硬化性樹脂組成物
WO2023120067A1 (ja) 粘着剤組成物及び保護シート
WO2023276944A1 (ja) 粘着剤組成物及び保護シート

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015547581

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167025457

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15125892

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015764606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015764606

Country of ref document: EP