WO2015141435A1 - 曲管構造 - Google Patents

曲管構造 Download PDF

Info

Publication number
WO2015141435A1
WO2015141435A1 PCT/JP2015/055673 JP2015055673W WO2015141435A1 WO 2015141435 A1 WO2015141435 A1 WO 2015141435A1 JP 2015055673 W JP2015055673 W JP 2015055673W WO 2015141435 A1 WO2015141435 A1 WO 2015141435A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular body
bending
bent portion
less
axis
Prior art date
Application number
PCT/JP2015/055673
Other languages
English (en)
French (fr)
Inventor
洋平 相馬
中谷 浩之
義夫 友野
忠広 北村
義行 後藤
Original Assignee
株式会社ニフコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニフコ filed Critical 株式会社ニフコ
Priority to KR1020167025898A priority Critical patent/KR101833661B1/ko
Priority to US15/126,774 priority patent/US10400931B2/en
Priority to CN201580012501.4A priority patent/CN106104134B/zh
Priority to EP15764657.1A priority patent/EP3121502B1/en
Publication of WO2015141435A1 publication Critical patent/WO2015141435A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L43/00Bends; Siphons
    • F16L43/008Bends; Siphons made from plastic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/44Removing or ejecting moulded articles for undercut articles
    • B29C45/4421Removing or ejecting moulded articles for undercut articles using expansible or collapsible cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/24Pipe joints or couplings
    • B29L2031/243Elbows

Definitions

  • the present invention relates to a curved pipe structure used in a bent portion of a pipe constituting a fluid flow path.
  • the curved pipe molding die described in Patent Document 1 Japanese Patent Application Laid-Open No. 2001-219453 is composed of an outer mold and an inner mold, and the outer mold that forms the outer surface of the curved pipe has an outer surface of the curved pipe.
  • the structure is divided into two parts.
  • the inner mold forming the inner surface of the curved pipe has a structure that can be separated and combined with each other in a direction relatively approaching or separating from the direction of the axis of the curved pipe.
  • An object of the present invention is to suppress an increase in pressure loss with respect to a fluid flowing through the bent portion in the bent portion of the tubular body.
  • the tubular body having a bent portion and the bent portion on the inner peripheral surface on the inner side in the bending direction of the bent portion are formed in an arc shape, and the flow path of the tubular body
  • a cross-sectional area enlarging portion for enlarging the cross-sectional area of the tube, and the cross-sectional area enlarging portion includes a pair of side surface portions opposed in an orthogonal direction orthogonal to the axis of the tubular body, and a lower end of the side surface portion.
  • the curved shape is convex toward the outer peripheral side of the tubular body, the inner diameter of the tubular body is P [mm], and viewed from the axial direction.
  • the distance between the pair of side surfaces is H [mm] and the radius of the bent portion is R [mm]
  • the following relationship is satisfied.
  • the tubular body having a bent portion and the bent portion on the inner peripheral surface on the inner side in the bending direction of the bent portion are formed in an arc shape, and the flow path of the tubular body
  • a cross-sectional area enlarging portion for enlarging the cross-sectional area of the tube, and the cross-sectional area enlarging portion includes a pair of side surface portions opposed in an orthogonal direction orthogonal to the axis of the tubular body, and a lower end of the side surface portion.
  • the distance between the pair of side portions is H [mm] and the radius of the bent portion is R [mm] when viewed from the direction of the axis, the following relationship is satisfied: To do.
  • the part is formed.
  • the side surface portion is a straight line, and the bottom surface portion is curved so as to protrude toward the outer peripheral side of the tubular body.
  • the tube 12 of the curved tube 10 has a flow path having a circular cross section along the axis 13, and has a bent portion 14 in which the axis 13 is bent at a substantially right angle.
  • the axis 13 includes a first straight portion 13A that extends linearly on the entrance side of the tube body 12, a second straight portion 13B that extends linearly on the exit side of the tube body 12, the end of the first straight portion 13A, and the first straight portion 13A. It is comprised from the circular arc part 13C which connects the bilinear part 13B.
  • both ends 12B of the tube body 12 are opened, and a hose 18 is connected to each of the both ends 12B as an example.
  • the bent portion 14A on the inner peripheral surface 15 on the inner side in the bending direction of the bent portion 14 has an arc shape. And by making the bending part 14A into an arc shape, the cross-sectional area enlargement that expands the cross-sectional area of the flow path of the tubular body 12 along the direction of the axis line 13 on the inner peripheral surface 15 inside the bending part 14 in the bending direction.
  • a concave portion 16 is formed as an example of the portion.
  • the inner side in the bending direction is the side on which the tubular body 12 contracts in the bending direction (that is, the bending direction).
  • the concave portion 16 of the tubular body 12 will be described in comparison with the tubular body 102 of the curved pipe 100 of the comparative form (ie, the conventional form).
  • the tubular body 102 of the curved pipe 100 will be described.
  • the bent portion 104 ⁇ / b> A on the inner peripheral surface 105 on the inner side in the bending direction of the bent portion 104 has a pin angle (that is, State that is not arcuate). For this reason, the inner peripheral surface 105 on the inner side in the bending direction of the bent portion 104 of the bent tube 100 is not formed with a recess that enlarges the cross-sectional area of the flow path of the tube body 102.
  • the bending portion 104 is perpendicular to the direction of the axis 13 (the direction perpendicular to the first straight portion 13A and the second straight portion 13B and the depth direction in FIG. 2 and FIG.
  • the section of the bent portion 104 (that is, the line DD section in FIG. 14) cut as viewed from the “direction” is a shape as shown in FIG.
  • the flow path in the cross section of the bent portion 104 has an elliptical shape centered on the axis 13. In other words, when the flow path of the bent portion 104 is viewed from the direction of the axis 13, the flow path has an elliptical shape centered on the axis 13.
  • the bent portion 14A inside the bent portion 14 in the tubular body 12 of the bent tube 10 has an arc shape as described above.
  • the radius R shown in FIG. 2 is referred to as the bending R of the bending portion 14A.
  • the cross section of the bent portion 14 (section along line JJ in FIG. 2) cut as viewed from the direction perpendicular to the axis has a shape as shown in FIG.
  • the flow path is enlarged with respect to the elliptical shape centered on the axis line 13 by forming the above-described concave portion 16.
  • the concave portion 16 includes a pair of side surface portions 16B facing each other in the direction perpendicular to the axis (the arrow Y direction in FIG. 3), a bottom surface portion connected to the lower end of each side surface portion 16B, and 16A.
  • the curved shape is convex toward the outer peripheral surface of the tubular body 12. In other words, when the flow path of the bent portion 14 is viewed from the direction of the axis 13, the recessed portion 16 has a curved shape that protrudes toward the outer peripheral side of the tubular body 12.
  • the pair of side surface portions 16 ⁇ / b> B has a circular arc shape that is symmetrical, and the bottom surface portion 16 ⁇ / b> A is smooth with the pair of side surface portions 16 ⁇ / b> B. It has a connecting arc shape. 3 is referred to as the width (width H) of the recess 16.
  • the shape of the tube 102 according to the comparative form is indicated by a two-dot chain line.
  • the cross-sectional area of the flow path of the bent portion 14 is larger in the bent portion 14 of the pipe 12 than in the bent portion 104 of the tubular body 102 according to the comparative form. You can see that.
  • a curvature changes gradually so that it may become 0 [mm] at the edge part 16C of the recessed part 16 in an axis orthogonal direction.
  • the curved pipe forming mold 20 of this embodiment includes an outer mold 22 and an inner mold 24.
  • the outer mold 22 has a two-part split mold structure, and forms the outer peripheral surface of the synthetic resin tube 12 molded by injection molding.
  • the inner mold 24 is configured to mold the inner peripheral surface 15 of the tubular body 12.
  • the inner mold 24 has a pair of main cores 30 having the same shape and a hinge core 34 (sub core) as a pair of sub cores having the same shape.
  • Each main core 30 and each hinge core 34 are elongated along the direction of the axis 13 of the tube body 12.
  • each main core 30 and each hinge core 34 are pulled out and moved closer to each other in the direction of the axis 13 of the tube body 12, so that each of the main cores 30 and the hinge cores 34 in the direction of the axis 13 in the center of the bent portion 14. It can be separated and united.
  • each main core 30 has a shape that does not engage with the undercut portion of the concave portion 16 in the inner peripheral surface 15 on the inner side in the bending direction of the bent portion 14 of the tubular body 12.
  • Each hinge core 34 is inserted into the groove portion 32 of each main core 30 so as to be slidable relative to the main core 30 along the direction of the axis 13 of the tubular body 12.
  • the inner peripheral surface 15 of the tubular body 12 is formed by a curved molding surface 30B of the main core 30 and a curved molding surface 34A of the hinge core 34.
  • Each hinge core 34 has a base portion 36 on one side in the longitudinal direction and a swinging portion 38 on the other side in the longitudinal direction connected by a hinge portion 40.
  • the concave portion of the base portion 36 formed in a semicircular shape when viewed from the side perpendicular to the direction of the axis 13 and the convex portion of the swinging portion 38 are formed. Is engaged. Then, with the axis P1 of the hinge part 40 as the center, the swinging part 38 approaches the axis 13 with respect to the base part 36 (in the direction of arrow B in FIG. 5) and the direction away from the axis 13 (in FIG. 5). It swings in the direction opposite to arrow B).
  • the hinge part 40 incorporates the coil spring 41 as an urging
  • the tip 38 ⁇ / b> A of the swinging portion 38 of each hinge core 34 corresponds to the undercut portion of the recessed portion 16 formed on the inner peripheral surface 15 on the inner side in the bending direction of the bent portion 14 of the tube body 12. It has a curved shape.
  • the distal ends 38 ⁇ / b> A of the swinging portions 38 of the pair of hinge cores 34 are in positions where the concave portions 16 that are the inner peripheral surfaces 15 in the bending direction of the bending portions 14 of the tube body 12 are formed. .
  • the swinging portions 38 of the pair of hinge cores 34 are accommodated in the groove portions 32 of the main cores 30 at the molding position.
  • the tubular body 12 is molded by the curved pipe molding die 20 of the present embodiment, first, a synthetic resin is injected into the space formed by the outer mold 22 and the inner mold 24, and the recess 16 is formed. The curved pipe body 12 is formed. Thereafter, the outer mold 22 is removed and the inner mold 24 and the tube body 12 are separated.
  • the pair of main cores 30 are drawn and separated along the axis 13 from the molding position shown in FIG. 7 in the drawing direction (arrow A direction in FIG. 8). Further, when the pair of main cores 30 are separated and moved from the molding position toward the retracted position, the swinging portions 38 of the hinge cores 34 are moved by the hinge portions 40 and the main cores 30 are moved to spaces. It swings to the molding position of the core 30. For this reason, the rocking
  • each hinge core 34 moves to the arrow A direction of FIG. 9 with a pair of main core 30, respectively, and the inner metal mold
  • the following specifications were used as this embodiment.
  • the inner diameter of the tube body 12 was 6 [mm]
  • the width H of the recess 16 was 1 [mm]
  • the bending R of the bending portion 14A was 1 [mm].
  • the inner diameter of the tube 12 was 6 [mm]
  • the width H of the recess 16 was 2 [mm]
  • the bending R of the bending portion 14A was 1 [mm].
  • the inner diameter of the tube body 12 was 6 [mm]
  • the width H of the recess 16 was 3 [mm]
  • the bending R of the bending portion 14A was 1 [mm] or 2 [mm].
  • the inner diameter of the tubular body 12 was 6 [mm]
  • the width H of the recess 16 was 4 [mm]
  • the bending R of the bending portion 14A was 1 [mm].
  • the inner diameter of the tube body 12 was set to 16 [mm]
  • the width H of the recess 16 was set to 5 [mm]
  • the bending R of the bent portion 14A was set to 3 [mm] or 5 [mm].
  • the inner diameter of the tube body 12 was set to 16 [mm]
  • the width H of the recess 16 was set to 7 [mm]
  • the bending R of the bent portion 14A was set to 3 [mm] or 5 [mm].
  • the inner diameter of the tube body 12 was set to 16 [mm]
  • the width H of the recess 16 was set to 9 [mm]
  • the bending R of the bent portion 14A was set to 3 [mm], 5 [mm], or 7 [mm].
  • the inner diameter of the tube body 12 was set to 16 [mm]
  • the width H of the recess 16 was set to 11 [mm]
  • the bending R of the bent portion 14A was set to 3 [mm], 5 [mm], or 7 [mm].
  • the inner diameter of the tube body 12 was set to 16 [mm]
  • the width H of the recess 16 was set to 13 [mm]
  • the bending R of the bent portion 14A was set to 3 [mm] or 5 [mm].
  • the inner diameter of the tube 12 was 16 [mm], the width H of the recess 16 was 15 [mm], and the bending R of the bending portion 14A was 3 [mm].
  • the inner diameter of the tubular body 12 was 23 [mm], the width H of the recess 16 was 8 [mm], and the bending R of the bending portion 14A was 7 [mm].
  • the inner diameter of the tubular body 12 was 23 [mm], the width H of the recess 16 was 10 [mm], and the bending R of the bending portion 14A was 7 [mm].
  • the inner diameter of the tubular body 12 was 23 [mm]
  • the width H of the recess 16 was 12 [mm]
  • the bending R of the bending portion 14A was 7 [mm].
  • the inner diameter of the tube body 12 was 23 [mm], the width H of the recess 16 was 14 [mm], and the bending R of the bending portion 14A was 7 [mm].
  • the inner diameter of the tubular body 12 was 23 [mm]
  • the width H of the recess 16 was 16 [mm]
  • the bending R of the bending portion 14A was 7 [mm] or 10 [mm].
  • the inner diameter of the tubular body 12 was 23 [mm]
  • the width H of the recess 16 was 18 [mm]
  • the bending R of the bending portion 14A was 7 [mm].
  • the inner diameter of the tubular body 12 was 23 [mm]
  • the width H of the recess 16 was 20 [mm]
  • the bending R of the bending portion 14A was 7 [mm].
  • the inner diameter of the tube 102 was 6 [mm], and the bending R of the bending portion 104A was 0 [mm] (pin angle).
  • the inner diameter of the tube 102 was 16 [mm], and the bending R of the bending portion 104A was 0 [mm] (pin angle).
  • the inner diameter of the tube 102 was 23 [mm], and the bending R of the bending portion 104A was 0 [mm] (pin angle).
  • Evaluation item (1) The inflow pressure (in [Pa]) when the fluid flows into the tube body 12 and the outflow pressure (out [Pa]) when the fluid flows out from the tube body 12 were derived. (2) The difference between the inflow pressure and the outflow pressure was derived as the pressure loss (Pressure drop [kPa]). (3) With respect to the pressure loss of the tube body 102 according to the comparative embodiment, the pressure loss reduction rate (Pressure drop [%]) of the tube body 12 according to the embodiment was derived for the same inner diameter.
  • Evaluation Results (1) The table shown in FIG. 10A describes the evaluation results of the first embodiment when the inner diameter of the tube body 12 is 6 [mm], and the table shown in FIG. The evaluation result of the comparative form when the inner diameter of the sheet is 6 [mm] is described. (2) The table shown in FIG. 11A describes the evaluation results of the first embodiment when the inner diameter of the tube body 12 is 16 [mm], and the table shown in FIG. 11B shows the inner diameter of the tube body 102. The evaluation result of the comparative form when the value is 16 [mm] is described. (2) The table shown in FIG. 12A describes the evaluation results of the first embodiment when the inner diameter of the tube body 12 is 23 [mm], and the table shown in FIG. 12B shows the inner diameter of the tube body 102. The evaluation result of the comparative form when the value is 23 [mm] is described.
  • the rate of decrease in the pressure loss of the tubular body 12 is a positive value. That is, by forming the concave portion 16 having the bending R and the width H described in the evaluation specification in the tubular body 12, the pressure loss with respect to the fluid flowing through the bent portion 14 becomes larger than the tubular body 102 according to the comparative form. Can be suppressed.
  • the bent portion 64A on the inner peripheral surface 65 on the inner side in the bending direction of the bent portion 64 of the tubular body 62 of the bent tube 60 according to the second embodiment is formed in an arc shape. Yes. And by making the bending part 64A into an arc shape, the cross-sectional area enlargement that expands the cross-sectional area of the flow path of the tubular body 12 along the direction of the axis 13 on the inner peripheral surface 65 inside the bending part 64 in the bending direction.
  • a concave portion 66 is formed as an example of the portion.
  • the concave portion 66 is composed of a pair of side surface portions 66B that face each other in the direction perpendicular to the axis (the depth direction in FIG. 17), and a bottom surface portion 66A that connects the lower ends of the respective side surface portions 66B (see FIG. 18). ).
  • the side surface portion 66B has a planar shape
  • the bottom surface portion 66A has a curved surface shape.
  • the radius R shown in FIG. 17 is called the bending R of the bending part 64A.
  • the cross section of the bent portion 64 (the cross section taken along the line KK in FIG. 17) as viewed from the direction orthogonal to the axis has a shape as shown in FIG. The path is enlarged with respect to an elliptical shape centered on the axis 13.
  • the recess 66 is composed of the pair of side surface portions 66B and the bottom surface portion 66A described above.
  • the side surface portion 66 ⁇ / b> B is a straight line
  • the bottom surface portion 66 ⁇ / b> A has a curved shape that protrudes toward the outer peripheral side of the tubular body 62.
  • the side surface portion 66 ⁇ / b> B is a straight line
  • the bottom surface portion 66 ⁇ / b> A has a curved shape that protrudes toward the outer peripheral side of the tubular body 62.
  • the dimension H shown in FIG. 18 is referred to as the width (width H) of the recess 66.
  • Evaluation specifications (1) The following specifications were used as this embodiment.
  • the inner diameter of the tube body 62 was 6 [mm]
  • the width H of the recess 66 was 1 [mm]
  • the bending R of the bending portion 64A was 2 [mm] or 3 [mm].
  • the inner diameter of the tube body 62 was 6 [mm]
  • the width H of the recess 66 was 2 [mm]
  • the bending R of the bending portion 64A was 2 [mm].
  • the inner diameter of the tube body 62 was set to 16 [mm]
  • the width H of the recess 66 was set to 5 [mm]
  • the bending R of the bent portion 64A was set to 7 [mm], 9 [mm], or 11 [mm].
  • the inner diameter of the tube body 62 was set to 16 [mm]
  • the width H of the recess 66 was set to 7 [mm]
  • the bending R of the bent portion 64A was set to 7 [mm] or 9 [mm].
  • the inner diameter of the pipe body 62 is 23 [mm]
  • the width H of the recess 66 is 6 [mm]
  • the bending R of the bending portion 64A is 7 [mm], 10 [mm], 13 [mm], or 16 [ mm].
  • the inner diameter of the tube body 62 was 23 [mm]
  • the width H of the recess 66 was 8 [mm]
  • the bending R of the bending portion 64A was 10 [mm] or 13 [mm].
  • the inner diameter of the tube body 62 was 23 [mm]
  • the width H of the recess 66 was 10 [mm]
  • the bend R of the bent portion 64A was 10 [mm] or 13 [mm].
  • the inner diameter of the tube body 62 was 23 [mm]
  • the width H of the recess 66 was 12 [mm]
  • the bending R of the bending portion 64A was 10 [mm] or 13 [mm].
  • the inner diameter of the tube body 62 was set to 23 [mm]
  • the width H of the concave portion 66 was set to 14 [mm]
  • the bending R of the bending portion 64A was set to 10 [mm].
  • the inner diameter of the tube 102 was 6 [mm], and the bending R of the bending portion 104A was 0 [mm] (pin angle).
  • the inner diameter of the tube 102 was 16 [mm], and the bending R of the bending portion 104A was 0 [mm] (pin angle).
  • the inner diameter of the tube 102 was 23 [mm], and the bending R of the bending portion 104A was 0 [mm] (pin angle).
  • Evaluation Results (1) The table shown in FIG. 19A describes the evaluation results of the second embodiment when the inner diameter of the tube body 12 is 6 [mm], and the table shown in FIG. The evaluation result of the comparative form when the inner diameter of the sheet is 6 [mm] is described. (2) The table shown in FIG. 20A describes the evaluation results of the second embodiment when the inner diameter of the tube body 12 is 16 [mm], and the table shown in FIG. 20B shows the inner diameter of the tube body 102. The evaluation result of the comparative form when the value is 16 [mm] is described. (2) The table shown in FIG. 21A describes the evaluation results of the second embodiment when the inner diameter of the tube body 12 is 23 [mm], and the table shown in FIG. 20B shows the inner diameter of the tube body 102. The evaluation result of the comparative form when the value is 23 [mm] is described.
  • the rate of decrease in the pressure loss of the tube body 62 is a positive value. That is, by forming the concave portion 66 having the bending R and the width H described in the evaluation specification in the tube body 62, the pressure loss with respect to the fluid flowing through the bent portion 64 becomes larger than that of the tube body 102 according to the comparative form. Can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

 屈曲部(14)の屈曲方向内側の内周面(15)における曲げ部(14A)は円弧状とされている。曲げ部(14A)を円弧状とすることで、屈曲部(14)の屈曲方向内側の内周面(15)には、軸線(13)の方向に沿って管体(12)の流路の断面積を拡大する断面積拡大部の一例としての凹部(16)が形成されている。

Description

曲管構造
 本発明は、流体の流路を構成する配管の曲がり部分に用いられる曲管構造に関するものである。
 特許文献1(特開2001-219453号公報)に記載の曲管成形用金型は、外金型及び内金型からなり、曲管の外面を形成する外金型は、曲管の外面を二分割して成形する構造となっている。一方、曲管の内面を形成する内金型は、曲管の軸線の方向に相対的に接近又は離間する方向に互いに分離合体可能な構造となっている。
 しかしながら、特許文献1に記載の構成では、管体の屈曲部の屈曲方向内側の曲げ部は、円弧状とされず、ピン角(つまりR=0)とされる。このため、屈曲部を流れる流体に対する圧力損失が大きくなってしまう。
 本発明の課題は、管体の屈曲部おいて、屈曲部を流れる流体に対する圧力損失が大きくなるのを抑制することである。
 本発明の第1態様の曲管構造では、 屈曲部を有する管体と、前記屈曲部の屈曲方向内側の内周面における曲げ部を円弧状とすることで形成され、前記管体の流路の断面積を拡大する断面積拡大部と、を有し、前記断面積拡大部は、前記管体の軸線に対して直交する直交方向において対向する一対の側面部と、前記側面部の下端を連結させる底面部とを含み、前記軸線の方向から見ると、前記管体の外周側へ凸となる湾曲状とされ、前記管体の内径をP〔mm〕とし、前記軸線の方向から見て、一対の側面部の離間距離をH〔mm〕とし、前記曲げ部の半径をR〔mm〕とした場合に、下記関係を満たすことを特徴とする。
 P=6でH=1の場合に、R=1
 P=6でH=2の場合に、R=1
 P=6でH=3の場合に、R=1以上R=2以下
 P=6でH=4の場合に、R=1
 P=16でH=5の場合に、R=3以上R=5以下
 P=16でH=7の場合に、R=3以上R=5以下
 P=16でH=9の場合に、R=3以上R=7以下
 P=16でH=11の場合に、R=3以上R=7以下
 P=16でH=13の場合に、R=3以上R=5以下
 P=16でH=15の場合に、R=3
 P=23でH=8の場合に、R=7
 P=23でH=10の場合に、R=7
 P=23でH=12の場合に、R=7
 P=23でH=14の場合に、R=7
 P=23でH=16の場合に、R=7以上R=10以下
 P=23でH=18の場合に、R=7
 P=23でH=20の場合に、R=7
 上記構成によれば、管体の屈曲部において屈曲方向内側の内周面には、内周面における曲げ部を円弧状とすることで、管体の流路の断面積を拡大する断面積拡大部が形成されている。また、断面積拡大部は、軸線の方向から見ると、管体の外周側へ凸となる湾曲状とされている。
 そして、管体の内径をP〔mm〕とし、軸線の方向から見て、一対の側面部の離間距離をH〔mm〕とし、曲げ部の半径をR〔mm〕とした場合に、所定の関係が満たされている。
 これにより、管体の屈曲部において、屈曲部を流れる流体に対する圧力損失が大きくなるのを抑制することができる。
 本発明の第2態様の曲管構造では、屈曲部を有する管体と、前記屈曲部の屈曲方向内側の内周面における曲げ部を円弧状とすることで形成され、前記管体の流路の断面積を拡大する断面積拡大部と、を有し、前記断面積拡大部は、前記管体の軸線に対して直交する直交方向において対向する一対の側面部と、前記側面部の下端を連結させる底面部とを含み、前記軸線の方向から見ると、前記側面部は直線となり、前記底面部は、前記管体の外周側へ凸となる湾曲状とされ、前記管体の内径をP〔mm〕とし、前記軸線の方向から見て、一対の側面部の離間距離をH〔mm〕とし、前記曲げ部の半径をR〔mm〕とした場合に、下記関係を満たすことを特徴とする。
 P=6でH=1の場合に、R=2以上R=3以下
 P=6でH=2の場合に、R=2
 P=16でH=5の場合に、R=7以上R=11以下
 P=16でH=7の場合に、R=7以上R=9以下
 P=23でH=6の場合に、R=7以上R=16以下
 P=23でH=8の場合に、R=10以上R=13以下
 P=23でH=10の場合に、R=10以上R=13以下
 P=23でH=12の場合に、R=10以上R=13以下
 P=23でH=14の場合に、R=10
 上記構成によれば、管体の屈曲部において屈曲方向内側の内周面には、内周面における曲げ部を円弧状とすることで、管体の流路の断面積を拡大する断面積拡大部が形成されている。また、断面積拡大部は、軸線の方向から見ると、側面部は直線となり、底面部は、管体の外周側へ凸となる湾曲状とされている。
 そして、管体の内径をP〔mm〕とし、軸線の方向から見て、一対の側面部の離間距離をH〔mm〕とし、曲げ部の半径をR〔mm〕とした場合に、所定の関係が満たされている。
 これにより、管体の屈曲部において、屈曲部を流れる流体に対する圧力損失が大きくなるのを抑制することができる。
 本発明によれば、管体の屈曲部おいて、屈曲部を流れる流体に対する圧力損失が大きくなるのを抑制することができる。
本発明の第1実施形態に係る曲管構造を備えた管体を示した斜視断面図及び拡大斜視断面図である。 本発明の第1実施形態に係る曲管構造を備えた管体を示した斜視断面図及び拡大斜視断面図である。 本発明の第1実施形態に係る曲管構造を備えた管体を示した側方断面図である。 本発明の第1実施形態に係る曲管構造を備えた管体の屈曲部を示した断面図である。 本発明の第1実施形態に係る曲管構造を備えた管体を示した斜視図である。 本発明の第1実施形態に係る曲管構造を備えた管体を成形するために用いる金型を示した斜視図である。 本発明の第1実施形態に係る曲管構造を備えた管体を成形するために用いる金型を示した斜視図である。 本発明の第1実施形態に係る曲管構造を備えた管体を成形するために用いる金型を示した斜視図である。 本発明の第1実施形態に係る曲管構造を備えた管体を成形するために用いる金型を示した斜視図である。 本発明の第1実施形態に係る曲管構造を備えた管体を成形するために用いる金型を示した斜視図である。 本発明の第1実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第1実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第1実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第1実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第1実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第1実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第1実施形態に係る曲管構造に対する比較形態に係る曲管構造を備えた管体を示した斜視断面図及び拡大斜視断面図である。 本発明の第1実施形態に係る曲管構造に対する比較形態に係る曲管構造を備えた管体を示した斜視断面図及び拡大斜視断面図である。 本発明の第1実施形態に係る曲管構造に対する比較形態に係る曲管構造を備えた管体を示した側方断面図である。 本発明の第1実施形態に係る曲管構造対にする比較形態に係る曲管構造を備えた管体を示した断面図である。 本発明の第2実施形態に係る曲管構造を備えた管体を示した斜視断面図及び拡大斜視断面図である。 本発明の第2実施形態に係る曲管構造を備えた管体を示した斜視断面図及び拡大斜視断面図である。 本発明の第2実施形態に係る曲管構造を備えた管体を示した側方断面図である。 本発明の第2実施形態に係る曲管構造を備えた管体の屈曲部を示した断面図である。 本発明の第2実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第2実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第2実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第2実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第2実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。 本発明の第2実施形態に係る曲管構造を備えた管体の解析結果と、比較形態に係る管体の解析結果とを表で示した図面である。
 <第1実施形態>
 本発明の第1実施形態に係る曲管構造の一例について図1~図15に従って説明する。
 (曲管構造)
 図4に示されるように、曲管10の管体12は、軸線13に沿って断面円形の流路が形成されており、一部に軸線13が略直角に屈曲した屈曲部14を有している。つまり、軸線13は、管体12の入り口側で直線状に延びる第一直線部13Aと、管体12の出口側で直線状に延びる第二直線部13Bと、第一直線部13Aの端部と第二直線部13Bとを連結する円弧状の円弧部13Cとから構成されている。
 また、管体12の両端部12Bは開口されており、両端部12Bにはそれぞれ、一例としてホース18が連結されるようになっている。
 図1A、図1B、図2に示されるように、屈曲部14の屈曲方向内側の内周面15における曲げ部14Aは円弧状とされている。そして、曲げ部14Aを円弧状とすることで、屈曲部14の屈曲方向内側の内周面15には、軸線13の方向に沿って管体12の流路の断面積を拡大する断面積拡大部の一例としての凹部16が形成されている。
 この凹部16によって屈曲部14の流路の断面積が拡大されることで、屈曲部14の内部を液体等の流体(つまり、図1Aの矢印Wに流れる流体)が通過する際に、この凹部16において、流体に対する圧力損失が大きくなるのを抑制するようになっている。なお、屈曲方向内側とは、屈曲方向(つまり、曲げ方向)において管体12が縮む側である。
 以下比較形態(つまり従来形態)の曲管100の管体102と比較しながら管体12の凹部16について説明する。
 先ず、比較形態に係る曲管100の管体102について説明する。
 比較形態に係る曲管100の管体102は、図13A、図13B、図14に示されるように、屈曲部104の屈曲方向内側の内周面105における曲げ部104Aは、ピン角(つまり、円弧状とされていない状態)とされている。このため、曲管100の屈曲部104の屈曲方向内側の内周面105には、管体102の流路の断面積を拡大する凹部が形成されていない。
 そして、屈曲部104を、軸線13の方向に対して直交する直交方向(第一直線部13A及び第二直線部13Bに直交する方向であって図2、図14の紙面奥行方向:以下「軸直交方向」と記載する)から見て切断した屈曲部104の断面(つまり、図14の線D-D断面)は、図15に示されるような形状となる。図15に示されるように、屈曲部104の断面において流路は、軸線13を中心とする楕円形状とされている。換言すると、屈曲部104の流路を軸線13の方向から見ると、流路が、軸線13を中心とする楕円形状とされている。
 一方、図2に示されるように、曲管10の管体12において屈曲部14の内側の曲げ部14Aは、前述したように円弧状とされている。そして、図2に示す半径Rを、曲げ部14Aの曲げRと称する。
 さらに、軸直交方向から見て切断した屈曲部14の断面(図2の線J-J断面)は、図3に示されるような形状となる。図3に示されるように、屈曲部14においては、前述した凹部16が形成されることで、流路が、軸線13を中心とする楕円形状に対して拡大されている。
 具体的には、凹部16は、軸直交方向(図3の矢印Y方向)において対向する一対の側面部16Bと、夫々の側面部16Bの下端を連結される底面部と16Aとから構成され、管体12の外周面へ凸となる湾曲状とされている。換言すると、屈曲部14の流路を軸線13の方向から見ると、凹部16が、管体12の外周側へ凸となる湾曲状とされている。本実施形態では、屈曲部14の流路を軸線13の方向から見ると、一対の側面部16Bは、対称形状とされる円弧状とされ、底面部16Aは、一対の側面部16Bと滑らかにつながる円弧状とされている。そして、図3に示す寸法Hを、凹部16の幅(幅H)と称する。
 また、図1A、図1B、図2、図3では、比較形態に係る管体102の形状を二点鎖線で示している。これにより、屈曲部14に凹部16を形成することで、配管12の屈曲部14では、比較形態に係る管体102の屈曲部104に比して、屈曲部14の流路の断面積が拡大されていることが分かる。
 なお、前述した曲げRについては、図1Bに示すように、軸直交方向における凹部16の端部16Cで0〔mm〕となるように、曲率が徐々に変化するようになっている。
 (曲管成形用金型)
 次に、管体12を成形するのに用いる金型について説明する。
 図7に示されるように、本実施形態の曲管成形用金型20は、外金型22と内金型24とを備えている。外金型22は二分割の分割金型構造となっており、射出成形により成形する合成樹脂製の管体12の外周面を形成するようになっている。一方、内金型24は、管体12の内周面15を成形するようになっている。内金型24は同形状の一対の主コア30と、同形状の一対の副コアとしてのヒンジコア34(副コア)とを有している。各主コア30と各ヒンジコア34とは管体12の軸線13の方向に沿った長尺状となっている。また、各主コア30と各ヒンジコア34とは、管体12の軸線13の方向へ離反引抜及び接近移動することにより、屈曲部14における軸線13の方向の中央部において、軸線13の方向で互いに分離合体可能となっている。
 図5、図6に示されるように、各主コア30における屈曲部14の屈曲方向内側の内周面15(図1参照)に対応する部位には、管体12の軸線13の方向に沿って溝部32が形成されている。このため、各主コア30の先端部30Aは、管体12の屈曲部14の屈曲方向内側の内周面15における凹部16のアンダーカット部に係合しない形状となっている。
 各ヒンジコア34は、各主コア30の溝部32に、主コア30に対して管体12の軸線13の方向に沿って相対的に摺動可能に挿入されている。なお、管体12の内周面15は、主コア30の湾曲した成形面30Bとヒンジコア34の湾曲した成形面34Aとで成形されるようになっている。また、各ヒンジコア34は、長手方向の一方側の基部36と長手方向の他方側の揺動部38とがヒンジ部40によって連結されている。
 図7に示されるように、ヒンジコア34のヒンジ部40では、軸線13の方向に直交する側方から見て半円状に形成された基部36の凹部と、揺動部38の凸部とが係合している。そして、ヒンジ部40の軸心P1を中心にして、基部36に対して揺動部38が軸線13に接近する方向(図5の矢印B方向)と、軸線13から離間する方向(図5の矢印Bと反対方向)へ揺動するようになっている。また、ヒンジ部40は、付勢手段としてのコイルスプリング41を内蔵しており、コイルスプリング41の付勢力によって、基部36に対して揺動部38が軸線13に接近する方向(図5の矢印B方向)へ揺動するようになっている。即ち、揺動部38はヒンジ部40によって図5の矢印B方向へ付勢されており、溝部32の底部に押し付けられている。
 各ヒンジコア34の揺動部38の先端38Aは、管体12の屈曲部14の屈曲方向内側の内周面15に形成される凹部16のアンダーカット部に対応しており、凹部16に係合する湾曲形状となっている。
 即ち、図7に示す成形位置では、一対のヒンジコア34の揺動部38の先端38Aは、管体12の屈曲部14の屈曲方向内側の内周面15である凹部16を形成する位置にある。また、一対のヒンジコア34の揺動部38は、成形位置にある各主コア30の溝部32に収容されている。
 図8に示されるように、一対の主コア30が分離されそれぞれ成形位置から退避位置方向(図8の矢印A方向)へ移動すると、ヒンジ部40により各ヒンジコア34の揺動部38が、図8の矢印B方向へ揺動するようになっている。即ち、各ヒンジコア34の揺動部38が、図7に示す成形位置から、図8に示されるように、主コア30が移動して空間となった主コア30の成形位置(揺動部38の揺動位置)へ揺動するようになっている。
 図9に示されるように、一対の主コア30がさらに退避位置方向(図9の矢印A方向)へ移動すると、一対の主コア30の溝部32の先端に形成された係合部50が、各ヒンジコア34の基部36に形成された凸部52に係合するようになっている。そして、一対の主コア30とともに各ヒンジコア34がそれぞれ図9の矢印A方向へ移動し、内金型24が管体12から分離されるようになっている。
 本実施形態の曲管成形用金型20によって管体12を成形する場合には、先ず、外金型22と内金型24とで形成された空間内に合成樹脂を射出し、凹部16を有する曲管の管体12を成形する。その後、外金型22を外すと共に内金型24と管体12とを分離する。
 この際、各ヒンジコア34に対して、一対の主コア30をそれぞれ溝部32に沿って図7に示す成形位置から、軸線13に沿って引き抜き方向(図8の矢印A方向)へ引抜き分離する。また、一対の主コア30が分離され、それぞれ成形位置から退避位置方向へ移動すると、ヒンジ部40によって各ヒンジコア34の揺動部38が、各主コア30が移動して空間となった各主コア30の成形位置へ揺動する。このため、各ヒンジコア34の揺動部38が図8に示す揺動位置となる。次に、図9に示されるように、一対の主コア30をさらに退避位置方向(図9の矢印A方向)へ移動すると、一対の主コア30の各溝部32の先端に形成された係合部50が、各ヒンジコア34の基部36に形成された凸部52に係合する。そして、一対の主コア30とともに各ヒンジコア34がそれぞれ図9の矢印A方向へ移動し、管体12から内金型24を無理なく抜くことができる。
 (評価)
 次に、本第1実施形態に係る管体12と、比較形態に係る管体102とを解析を用いて評価した評価方法、評価仕様、評価項目、評価結果について説明する。
 1.評価方法
・解析には、アンシス・ジャパン株式会社製のANSYS FLUENTを用いた。
・管体の内部を流れる流体の流量を50〔L/min〕とした。
・管体内部を流れる流体を濃度30%の冷却水(LLC:Long Life Coolant)とするため、流体(媒体)の密度:1.046〔kg/m〕、 流体(媒体)の粘度:0.00191〔Pa・s〕とした。
 2.評価仕様
(1)本実施形態として下記仕様を用いた。
・管体12の内径を6〔mm〕とし、凹部16の幅Hを1〔mm〕とし、曲げ部14Aの曲げRを1〔mm〕とした。
・管体12の内径を6〔mm〕とし、凹部16の幅Hを2〔mm〕とし、曲げ部14Aの曲げRを1〔mm〕とした。
・管体12の内径を6〔mm〕とし、凹部16の幅Hを3〔mm〕とし、曲げ部14Aの曲げRを1〔mm〕、又は2〔mm〕とした。
・管体12の内径を6〔mm〕とし、凹部16の幅Hを4〔mm〕とし、曲げ部14Aの曲げRを1〔mm〕とした。
・管体12の内径を16〔mm〕とし、凹部16の幅Hを5〔mm〕とし、曲げ部14Aの曲げRを3〔mm〕、又は5〔mm〕とした。
・管体12の内径を16〔mm〕とし、凹部16の幅Hを7〔mm〕とし、曲げ部14Aの曲げRを3〔mm〕、又は5〔mm〕とした。
・管体12の内径を16〔mm〕とし、凹部16の幅Hを9〔mm〕とし、曲げ部14Aの曲げRを3〔mm〕、5〔mm〕、又は7〔mm〕とした。
・管体12の内径を16〔mm〕とし、凹部16の幅Hを11〔mm〕とし、曲げ部14Aの曲げRを3〔mm〕、5〔mm〕、又は7〔mm〕とした。
・管体12の内径を16〔mm〕とし、凹部16の幅Hを13〔mm〕とし、曲げ部14Aの曲げRを3〔mm〕、又は5〔mm〕とした。
・管体12の内径を16〔mm〕とし、凹部16の幅Hを15〔mm〕とし、曲げ部14Aの曲げRを3〔mm〕とした。
・管体12の内径を23〔mm〕とし、凹部16の幅Hを8〔mm〕とし、曲げ部14Aの曲げRを7〔mm〕とした。
・管体12の内径を23〔mm〕とし、凹部16の幅Hを10〔mm〕とし、曲げ部14Aの曲げRを7〔mm〕とした。
・管体12の内径を23〔mm〕とし、凹部16の幅Hを12〔mm〕とし、曲げ部14Aの曲げRを7〔mm〕とした。
・管体12の内径を23〔mm〕とし、凹部16の幅Hを14〔mm〕とし、曲げ部14Aの曲げRを7〔mm〕とした。
・管体12の内径を23〔mm〕とし、凹部16の幅Hを16〔mm〕とし、曲げ部14Aの曲げRを7〔mm〕、又は10〔mm〕とした。
・管体12の内径を23〔mm〕とし、凹部16の幅Hを18〔mm〕とし、曲げ部14Aの曲げRを7〔mm〕とした。
・管体12の内径を23〔mm〕とし、凹部16の幅Hを20〔mm〕とし、曲げ部14Aの曲げRを7〔mm〕とした。
(2)比較施形態として下記仕様を用いた。
・管体102の内径を6〔mm〕とし、曲げ部104Aの曲げRを0〔mm〕(ピン角)とした。
・管体102の内径を16〔mm〕とし、曲げ部104Aの曲げRを0〔mm〕(ピン角)とした。
・管体102の内径を23〔mm〕とし、曲げ部104Aの曲げRを0〔mm〕(ピン角)とした。
 3.評価項目
(1)流体が管体12に流入する際の流入圧力(in〔Pa〕)と、流体が管体12から流出する際の流出圧力(out〔Pa〕)とを導出した。
(2)圧力損失(Pressure drop〔kPa〕)として、流入圧力と流出圧力との差を導出した。
(3)同一の内径において、比較形態に係る管体102の圧力損失に対して、実施形態に係る管体12の圧力損失の低下率(Pressure drop〔%〕)を導出した。
 4.評価結果
(1)図10Aに示す表には、管体12の内径を6〔mm〕とした際の本第1実施形態の評価結果が記載され、図10Bに示す表には、管体102の内径を6〔mm〕とした際の比較形態の評価結果が記載されている。
(2)図11Aに示す表には、管体12の内径を16〔mm〕とした際の本第1実施形態の評価結果が記載され、図11Bに示す表には、管体102の内径を16〔mm〕とした際の比較形態の評価結果が記載されている。
(2)図12Aに示す表には、管体12の内径を23〔mm〕とした際の本第1実施形態の評価結果が記載され、図12Bに示す表には、管体102の内径を23〔mm〕とした際の比較形態の評価結果が記載されている。
 (まとめ)
 以上の評価結果から分かるように、管体12の圧力損失の低下率は、全てプラスの数値である。つまり、管体12に、評価仕様で説明した曲げR及び幅Hの凹部16を形成することで、比較形態に係る管体102と比して、屈曲部14を流れる流体に対する圧力損失が大きくなるのを抑制することができる。
 <第2実施形態>
 次に、本発明の第2実施形態に係る曲管構造の一例について図16~図21に従って説明する。なお、第1実施形態と同一部材については、同一符号を付してその説明を省略し、第1実施形態と異なる部分を主に説明する。
 (曲管構造)
 図16A、図16B、図17に示されるように、第2実施形態に係る曲管60の管体62における屈曲部64の屈曲方向内側の内周面65における曲げ部64Aは円弧状とされている。そして、曲げ部64Aを円弧状とすることで、屈曲部64の屈曲方向内側の内周面65には、軸線13の方向に沿って管体12の流路の断面積を拡大する断面積拡大部の一例としての凹部66が形成されている。この凹部66は、軸直交方向(図17の紙面奥行方向)に対向する一対の側面部66Bと、夫々の側面部66Bの下端を連結される底面部66Aとから構成されている(図18参照)。この側面部66Bは、平面状とされ、底面部66Aは曲面状とされている。そして、図17に示す半径Rを、曲げ部64Aの曲げRと称する。
 さらに、軸直交方向から見て切断した屈曲部64の断面(図17の線K-K断面)は、図18に示されるような形状となっており、凹部66が形成されることで、流路が、軸線13を中心とする楕円形状に対して拡大されている。
 具体的には、凹部66は、前述した一対の側面部66Bと、底面部66Aとから構成されている。そして、図18に示す断面では、側面部66Bは直線となり、底面部66Aは、管体62の外周側へ凸となる湾曲状とされている。換言すると、屈曲部64の流路を軸線13の方向から見ると、側面部66Bは直線となり、底面部66Aは、管体62の外周側へ凸となる湾曲状とされている。そして、図18に示す寸法Hを、凹部66の幅(幅H)と称する。
 (評価)
 次に、本第2実施形態に係る管体62と、比較例に係る管体102とを解析を用いて評価した評価仕様、評価結果について説明する。
 1.評価仕様
(1)本実施形態として下記仕様を用いた。
・管体62の内径を6〔mm〕とし、凹部66の幅Hを1〔mm〕とし、曲げ部64Aの曲げRを2〔mm〕、又は3〔mm〕とした。
・管体62の内径を6〔mm〕とし、凹部66の幅Hを2〔mm〕とし、曲げ部64Aの曲げRを2〔mm〕とした。
・管体62の内径を16〔mm〕とし、凹部66の幅Hを5〔mm〕とし、曲げ部64Aの曲げRを7〔mm〕、9〔mm〕、又は11〔mm〕とした。
・管体62の内径を16〔mm〕とし、凹部66の幅Hを7〔mm〕とし、曲げ部64Aの曲げRを7〔mm〕、又は9〔mm〕とした。
・管体62の内径を23〔mm〕とし、凹部66の幅Hを6〔mm〕とし、曲げ部64Aの曲げRを7〔mm〕、10〔mm〕、13〔mm〕、又は16〔mm〕とした。
・管体62の内径を23〔mm〕とし、凹部66の幅Hを8〔mm〕とし、曲げ部64Aの曲げRを10〔mm〕、又は13〔mm〕とした。
・管体62の内径を23〔mm〕とし、凹部66の幅Hを10〔mm〕とし、曲げ部64Aの曲げRを10〔mm〕、又は13〔mm〕とした。
・管体62の内径を23〔mm〕とし、凹部66の幅Hを12〔mm〕とし、曲げ部64Aの曲げRを10〔mm〕、又は13〔mm〕とした。
・管体62の内径を23〔mm〕とし、凹部66の幅Hを14〔mm〕とし、曲げ部64Aの曲げRを10〔mm〕とした。
(2)比較施形態として下記仕様を用いた(第1実施形態と同様である)。
・管体102の内径を6〔mm〕とし、曲げ部104Aの曲げRを0〔mm〕(ピン角)とした。
・管体102の内径を16〔mm〕とし、曲げ部104Aの曲げRを0〔mm〕(ピン角)とした。
・管体102の内径を23〔mm〕とし、曲げ部104Aの曲げRを0〔mm〕(ピン角)とした。
 2.評価結果
(1)図19Aに示す表には、管体12の内径を6〔mm〕とした際の本第2実施形態の評価結果が記載され、図19Bに示す表には、管体102の内径を6〔mm〕とした際の比較形態の評価結果が記載されている。
(2)図20Aに示す表には、管体12の内径を16〔mm〕とした際の本第2実施形態の評価結果が記載され、図20Bに示す表には、管体102の内径を16〔mm〕とした際の比較形態の評価結果が記載されている。
(2)図21Aに示す表には、管体12の内径を23〔mm〕とした際の本第2実施形態の評価結果が記載され、図20Bに示す表には、管体102の内径を23〔mm〕とした際の比較形態の評価結果が記載されている。
 (まとめ)
 以上の評価結果から分かるように、管体62の圧力損失の低下率は、全てプラスの数値である。つまり、管体62に、評価仕様で説明した曲げR及び幅Hの凹部66を形成することで、比較形態に係る管体102と比して、屈曲部64を流れる流体に対する圧力損失が大きくなるのを抑制することができる。
 なお、本発明を特定の実施形態について詳細に説明したが、本発明は係る実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかである。例えば、上記実施形態で説明した金型構成は一例であって、入れ子等を用いて、管体を成形してもよい。
(符号の説明)
12     管体
13     軸線
14     屈曲部
14A    曲げ部
15     内周面
16     凹部(断面拡大部の一例)
16A    底面部
16B    側面部
62     管体
64     屈曲部
64A    曲げ部
65     内周面
66     凹部(断面拡大部の一例)
66A   底面部
66B   側面部
102   管体
104   屈曲部
104A  曲げ部
105   内周面

Claims (2)

  1.  屈曲部を有する管体と、
     前記屈曲部の屈曲方向内側の内周面における曲げ部を円弧状とすることで形成され、前記管体の流路の断面積を拡大する断面積拡大部と、を有し、
     前記断面積拡大部は、前記管体の軸線に対して直交する直交方向において対向する一対の側面部と、前記側面部の下端を連結させる底面部とを含み、前記軸線の方向から見ると、前記管体の外周側へ凸となる湾曲状とされ、
     前記管体の内径をP〔mm〕とし、
     前記軸線の方向から見て、一対の側面部の離間距離をH〔mm〕とし、
     前記曲げ部の半径をR〔mm〕とした場合に、下記関係を満たす曲管構造。
     P=6でH=1の場合に、R=1
     P=6でH=2の場合に、R=1
     P=6でH=3の場合に、R=1以上R=2以下
     P=6でH=4の場合に、R=1
     P=16でH=5の場合に、R=3以上R=5以下
     P=16でH=7の場合に、R=3以上R=5以下
     P=16でH=9の場合に、R=3以上R=7以下
     P=16でH=11の場合に、R=3以上R=7以下
     P=16でH=13の場合に、R=3以上R=5以下
     P=16でH=15の場合に、R=3
     P=23でH=8の場合に、R=7
     P=23でH=10の場合に、R=7
     P=23でH=12の場合に、R=7
     P=23でH=14の場合に、R=7
     P=23でH=16の場合に、R=7以上R=10以下
     P=23でH=18の場合に、R=7
     P=23でH=20の場合に、R=7
  2.  屈曲部を有する管体と、
     前記屈曲部の屈曲方向内側の内周面における曲げ部を円弧状とすることで形成され、前記管体の流路の断面積を拡大する断面積拡大部と、を有し、
     前記断面積拡大部は、前記管体の軸線に対して直交する直交方向において対向する一対の側面部と、前記側面部の下端を連結させる底面部とを含み、前記軸線の方向から見ると、前記側面部は直線となり、前記底面部は、前記管体の外周側へ凸となる湾曲状とされ、
     前記管体の内径をP〔mm〕とし、
     前記軸線の方向から見て、一対の側面部の離間距離をH〔mm〕とし、
     前記曲げ部の半径をR〔mm〕とした場合に、下記関係を満たす曲管構造。
     P=6でH=1の場合に、R=2以上R=3以下
     P=6でH=2の場合に、R=2
     P=16でH=5の場合に、R=7以上R=11以下
     P=16でH=7の場合に、R=7以上R=9以下
     P=23でH=6の場合に、R=7以上R=16以下
     P=23でH=8の場合に、R=10以上R=13以下
     P=23でH=10の場合に、R=10以上R=13以下
     P=23でH=12の場合に、R=10以上R=13以下
     P=23でH=14の場合に、R=10
PCT/JP2015/055673 2014-03-18 2015-02-26 曲管構造 WO2015141435A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020167025898A KR101833661B1 (ko) 2014-03-18 2015-02-26 곡관 구조
US15/126,774 US10400931B2 (en) 2014-03-18 2015-02-26 Bent pipe structure
CN201580012501.4A CN106104134B (zh) 2014-03-18 2015-02-26 弯管结构
EP15764657.1A EP3121502B1 (en) 2014-03-18 2015-02-26 Bent pipe structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-055591 2014-03-18
JP2014055591A JP6152064B2 (ja) 2014-03-18 2014-03-18 曲管構造

Publications (1)

Publication Number Publication Date
WO2015141435A1 true WO2015141435A1 (ja) 2015-09-24

Family

ID=54144411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055673 WO2015141435A1 (ja) 2014-03-18 2015-02-26 曲管構造

Country Status (6)

Country Link
US (1) US10400931B2 (ja)
EP (1) EP3121502B1 (ja)
JP (1) JP6152064B2 (ja)
KR (1) KR101833661B1 (ja)
CN (1) CN106104134B (ja)
WO (1) WO2015141435A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6939194B2 (ja) * 2017-07-27 2021-09-22 株式会社オンダ製作所 樹脂製エルボ継手
JP7019988B2 (ja) * 2017-07-27 2022-02-16 株式会社オンダ製作所 樹脂製エルボ継手
EP3749498B1 (en) * 2018-02-06 2022-06-22 Uponor Innovation AB Mold assembly for injection molding of a plastic pipe fitting and injection molded pipe fitting made of plastics
JP7303991B2 (ja) * 2018-05-28 2023-07-06 株式会社オンダ製作所 樹脂製継手
DE102021124552A1 (de) 2021-09-22 2023-03-23 Norma Germany Gmbh Strömungsoptimierter Leitungsverbinder und Leitungsverbinderanordnung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303949A (en) * 1940-01-13 1942-12-01 Carl H Nordell Conduit bend
JPH0456200B2 (ja) * 1985-03-20 1992-09-07 Kyoyuki Horii
JPH04362394A (ja) * 1991-06-07 1992-12-15 Mitsui Constr Co Ltd ベント管
JP2003254490A (ja) * 2002-03-01 2003-09-10 Toyota Motor Corp 曲がり部を有する流体通路
US20050140060A1 (en) * 2000-01-19 2005-06-30 Evans David V. Molded plastic elbow
WO2008119628A1 (de) * 2007-04-02 2008-10-09 Voss Automotive Gmbh Anschlusselement für medienleitungen sowie spritzform-vorrichtung zum herstellen des anschlusselementes
JP2012516413A (ja) * 2009-01-28 2012-07-19 ドイグ、スコット スラリ搬送用の耐摩耗性管継手
WO2014046063A1 (ja) * 2012-09-18 2014-03-27 株式会社ニフコ 曲管構造及び曲管成形用金型

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0353119Y2 (ja) * 1985-07-10 1991-11-19
DE3704827A1 (de) * 1987-02-16 1988-08-25 Marquet & Cie Noel Rechtwinklig gekruemmte universal-isolationshalbschalen fuer rechtwinklige rohrkruemmungen mit unterschiedlichen kruemmungsradien und kruemmungsenden
US5054819A (en) * 1990-02-16 1991-10-08 Victaulic Company Of America Plumbing elbows or bends
JP2844857B2 (ja) 1990-06-21 1999-01-13 ソニー株式会社 混成集積回路の製造装置
US5230369A (en) * 1990-12-24 1993-07-27 United Technologies Corporation Structure to reduce turning losses in angled conduit
JP2000002371A (ja) 1998-06-15 2000-01-07 Hitachi Ltd エルボ配管,曲げ管及びその製造方法並びに曲げ管の製造装置
WO2000017562A1 (en) * 1998-09-21 2000-03-30 Dong Lim Industrial Co., Ltd. Anti-abrasion pipe fittings for high-speed particle-laden flow
JP2001219453A (ja) 2000-02-07 2001-08-14 Sekisui Chem Co Ltd 筒状成形品の成形方法および射出成形用金型
JP3893581B2 (ja) * 2000-05-25 2007-03-14 愛知機械工業株式会社 パイプフランジの製造方法
JP2004211873A (ja) 2003-01-08 2004-07-29 Inax Corp ホース
JP4362394B2 (ja) * 2003-03-28 2009-11-11 Ntn株式会社 コンプレッサ用軸受
AU2010356458B2 (en) * 2010-06-28 2015-09-10 Daido Die & Mold Steel Solutions Co. Ltd. Elbow formed by cutting and method for manufacturing same
JP6391987B2 (ja) * 2014-05-16 2018-09-19 山下ゴム株式会社 曲がり管及びその製法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2303949A (en) * 1940-01-13 1942-12-01 Carl H Nordell Conduit bend
JPH0456200B2 (ja) * 1985-03-20 1992-09-07 Kyoyuki Horii
JPH04362394A (ja) * 1991-06-07 1992-12-15 Mitsui Constr Co Ltd ベント管
US20050140060A1 (en) * 2000-01-19 2005-06-30 Evans David V. Molded plastic elbow
JP2003254490A (ja) * 2002-03-01 2003-09-10 Toyota Motor Corp 曲がり部を有する流体通路
WO2008119628A1 (de) * 2007-04-02 2008-10-09 Voss Automotive Gmbh Anschlusselement für medienleitungen sowie spritzform-vorrichtung zum herstellen des anschlusselementes
JP2012516413A (ja) * 2009-01-28 2012-07-19 ドイグ、スコット スラリ搬送用の耐摩耗性管継手
WO2014046063A1 (ja) * 2012-09-18 2014-03-27 株式会社ニフコ 曲管構造及び曲管成形用金型

Also Published As

Publication number Publication date
EP3121502B1 (en) 2019-10-30
CN106104134B (zh) 2017-11-17
KR101833661B1 (ko) 2018-02-28
EP3121502A1 (en) 2017-01-25
EP3121502A4 (en) 2017-12-27
JP2015178844A (ja) 2015-10-08
US10400931B2 (en) 2019-09-03
JP6152064B2 (ja) 2017-06-21
CN106104134A (zh) 2016-11-09
US20180128408A1 (en) 2018-05-10
KR20160123381A (ko) 2016-10-25

Similar Documents

Publication Publication Date Title
JP6388620B2 (ja) 曲管構造
WO2015141435A1 (ja) 曲管構造
JP2018123882A (ja) 樹脂製管継手
JP2006227348A (ja) 光学素子、光学素子成形用金型及び光学素子の成形方法
US11577436B2 (en) Mold assembly for injection molding of a plastic pipe fitting and injection molded pipe fitting made of plastics
JP2016074029A (ja) 管状部材
JP2021032275A (ja) 流路構造
JP6820699B2 (ja) フランジ付き管継手
JP6235547B2 (ja) 流体容器
JP2012065394A (ja) モータ用ケーシングの製造方法及びモータ用ケーシング
WO2015083428A1 (ja) ガスケットの成形型および製造方法
JP2015214996A (ja) 継手
JP6846289B2 (ja) 射出成形金型、樹脂部材、及び、樹脂製品の製造方法
JP2017071061A (ja) 成形型
JP5818179B2 (ja) 異形断面ガラス繊維
JP2021021416A (ja) 配管及びその製造方法
TH75505B (th) โครงสร้างท่อโค้งและแม่พิมพ์สำหรับขึ้นรูปท่อโค้ง
JP2014161513A (ja) ヘッドレストステーの製造方法
JP2018048707A (ja) ダストカバー及びその製造方法
TH155063A (th) โครงสร้างท่อโค้งและแม่พิมพ์สำหรับขึ้นรูปท่อโค้ง
JP2015127553A (ja) 配管接続金具
JP2011093579A (ja) プッシュプルキャップ及び、注出路用の成形金型

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764657

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15126774

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167025898

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015764657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015764657

Country of ref document: EP