WO2015141253A1 - 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置 - Google Patents

電動パワーステアリング装置及び電動パワーステアリング装置の制御装置 Download PDF

Info

Publication number
WO2015141253A1
WO2015141253A1 PCT/JP2015/050745 JP2015050745W WO2015141253A1 WO 2015141253 A1 WO2015141253 A1 WO 2015141253A1 JP 2015050745 W JP2015050745 W JP 2015050745W WO 2015141253 A1 WO2015141253 A1 WO 2015141253A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation angle
angle signal
electric power
power steering
phase
Prior art date
Application number
PCT/JP2015/050745
Other languages
English (en)
French (fr)
Inventor
泰仁 中岫
雅樹 古田土
山野 和也
杉山 吉隆
宮島 司
雅彦 牛村
Original Assignee
日立オートモティブシステムズステアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズステアリング株式会社 filed Critical 日立オートモティブシステムズステアリング株式会社
Priority to CN201580012999.4A priority Critical patent/CN106458253B/zh
Priority to JP2016508556A priority patent/JP6151849B2/ja
Priority to KR1020167019403A priority patent/KR101784643B1/ko
Priority to US15/121,193 priority patent/US9862408B2/en
Priority to DE112015001321.0T priority patent/DE112015001321T5/de
Publication of WO2015141253A1 publication Critical patent/WO2015141253A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0409Electric motor acting on the steering column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
    • B62D6/04Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits responsive only to forces disturbing the intended course of the vehicle, e.g. forces acting transversely to the direction of vehicle travel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/20Steering systems

Definitions

  • the present invention relates to an electric power steering device applied to, for example, an automobile and a control device used therefor.
  • the electric power steering device described in this patent document is provided with vehicle body flow control means for preventing vehicle body flow (skew) during traveling on a cant road, and the electric motor is driven and controlled by the control means. Therefore, the burden on the driver related to the steering for preventing skewing on the cant road is reduced.
  • the skew state based on the disturbance is determined based on the relationship between the yaw rate signal and the steering angle signal, and the skew state based on the disturbance is determined only by the steering angle signal. It was not possible to judge this, resulting in complicated control.
  • the present invention has been devised in view of such technical problems, and provides an electric power steering device and the like that can determine a skew state based on a disturbance with high accuracy only by a rotation angle signal of an input / output shaft.
  • the purpose is to do.
  • the present invention includes, among other things, a basic assist current calculation unit that calculates a basic assist current that is a command current to the electric motor based on a steering torque by a driver, a rotation direction of the input shaft, and a rotation direction of the output shaft.
  • a direction coincidence determining unit that determines whether or not they match, a preceding phase determining unit that determines which phase of the first rotation angle signal and the second rotation angle signal precedes, and the direction
  • the coincidence determining unit determines that the direction is coincident and the preceding phase determining unit determines that the phase of the first rotation angle signal precedes, the torsion bar twist is due to a positive input from the input shaft side.
  • the toe A torsion bar torsion direction based on a forward / reverse input determination unit for determining that the torsion of the torsion bar is due to reverse input from the output shaft side, and the phase of the first rotation angle signal and the phase of the second rotation angle signal
  • the phase change determining unit has not reversed the twist direction of the torsion bar.
  • An electronic control unit having a disturbance countercurrent calculation unit that calculates a disturbance countercurrent larger than the basic assist current when it is determined that the state continues is provided.
  • the driver's steering load can be appropriately reduced.
  • FIG. 1 is a system configuration diagram of an electric power steering apparatus according to the present invention.
  • FIG. 2 is an enlarged longitudinal sectional view in the vicinity of a connecting portion between an input shaft and an output shaft shown in FIG. 1.
  • It is a control block diagram of the control unit shown in FIG.
  • FIG. 4 is a map used for current calculation in the cross gradient current calculation unit shown in FIG. 3 and shows the relationship between the vehicle speed V and the gain G;
  • FIG. 4 is a map used for current calculation in the cross gradient current calculation section shown in FIG. 3 and shows the relationship between the relative angle difference ⁇ between the first and second rotation angle signals ⁇ 1 and ⁇ 2 and the gain G;
  • FIG. 4 is a map used for current calculation in the cross gradient current calculation unit shown in FIG.
  • the electric power steering apparatus according to the present invention is applied to an electric power steering apparatus for an automobile as in the conventional case, and traveling on a cross slope is taken as an example of the cause of disturbance. .
  • FIG. 1 is a schematic view of an apparatus for explaining an outline of a system configuration of an electric power steering apparatus according to the present invention.
  • the illustrated electric power steering apparatus has an input shaft 2 whose one end is linked to the steering wheel 1 so as to be integrally rotatable, and one end is relatively rotatable to the other end of the input shaft 2 via a torsion bar 4 (see FIG. 2). And the other end side of the output shaft 3 linked to the steered wheels WL and WR via a rack and pinion mechanism RP that is a conversion mechanism, and the input shaft 2
  • a torque sensor TS for detecting a steering input torque based on the relative rotational displacement amount of the output shaft 3, and the steering torque of the driver based on the detection results of the torque sensor TS, a steering angle sensor and a vehicle speed sensor (not shown), etc.
  • the electric motor 5 applies a steering assist torque corresponding to the output shaft 3 to the output shaft 3, and the electronic control unit 6 controls the drive of the electric motor 5.
  • the input shaft 2, the output shaft 3, and the rack and pinion mechanism RP constitute a steering mechanism according to the present invention.
  • the rack and pinion mechanism RP includes an unillustrated pinion tooth formed on the outer periphery of the other end portion of the output shaft 3 and an axial direction of the rack shaft 7 arranged in a form substantially orthogonal to the other end portion of the output shaft 3.
  • a rack tooth (not shown) formed in a predetermined range meshes with each other, and the rack shaft 7 moves in the axial direction in accordance with the rotation direction of the output shaft 3.
  • the end portions of the rack shaft 7 are linked to the steered wheels WR and WL via tie rods 8 and 8 and knuckle arms 9 and 9, respectively, and the rack shaft 7 moves in the axial direction so that the tie rods 8 and 8 By pulling the knuckle arms 9 and 9 through 8, the directions of the steered wheels WR and WL are changed.
  • FIG. 2 is a longitudinal sectional view of the vicinity of the connecting portion between the input shaft 2 and the output shaft 3 including the torque sensor TS.
  • the torque sensor TS is disposed between the casing CS and the input shaft 2 provided so as to surround the overlapping portion of the input shaft 2 and the output shaft 3, and detects the rotational displacement of the input shaft 2.
  • a second rotation angle sensor S2 that is interposed between the casing CS and the output shaft 3 and detects the rotational displacement of the output shaft 3, and the torsion bar 4 is twisted.
  • the first and second rotation angle sensors S1 and S2 are both constituted by a known variable reluctance (VR) type resolver.
  • the first rotation angle sensor S1 is fixed to the casing CS and the annular first rotor S1r that is externally fitted to the outer peripheral surface of the input shaft 2 so as to rotate integrally therewith, on the outer peripheral side of the first rotor S1r.
  • a first stator S1s that is arranged in such a manner as to overlap in a radial direction through a predetermined gap.
  • the second rotation angle sensor S2 is also an annular second rotor S2r that is externally fitted to the outer peripheral surface of the output shaft 3 so as to be integrally rotatable, and is fixed to the casing CS, and the outer peripheral side of the second rotor S2r.
  • the second stator S2s is arranged in such a manner that it is superposed in the radial direction through a predetermined gap.
  • FIG. 3 is a control block diagram showing a configuration of an arithmetic circuit in the electronic control unit 6.
  • the electronic control unit 6 includes a basic assist current calculation unit 10 that calculates a basic assist current Ib that is a normal steering assist torque, and a direction coincidence determination unit that determines whether the rotation directions of the input shaft 2 and the output shaft 3 coincide with each other.
  • 11 and a preceding phase determination unit 12 that determines which phase of first and second rotation angle signals ⁇ 1 and ⁇ 2 to be described later precedes, and a determination in the direction coincidence determination unit 11 and the preceding phase determination unit 12
  • a forward / reverse input determination unit 13 for determining a normal input or a reverse input, which will be described later, based on the result, a phase change determination unit 14 for determining whether or not a twist direction of the torsion bar 4 has been reversed, and the forward / reverse input determination
  • the disturbance countercurrent is larger than the basic assist current Ib.
  • a cross gradient current calculation unit 15 as a disturbance counter current calculation unit for calculating a certain
  • reference numeral 16 in FIG. 3 indicates that the offset amount from the neutral position of the first rotation angle sensor S1 is zero based on the vehicle speed signal V from the vehicle speed sensor (not shown) and the yaw rate signal Y from the yaw rate sensor (not shown).
  • This is a steering angle correction unit for correction. Even if the first rotation angle sensor S1 detects the first rotation angle ⁇ 1, the steering angle correction unit 16 is traveling straight on a crossing gradient road if the vehicle speed signal V is greater than or equal to a threshold value Vx as described later. As a result, the first rotation angle ⁇ 1 detected earlier is corrected to zero.
  • the basic assist current calculation unit 10 is the vehicle driving state, that is, the output signal Tr of the torque sensor TS, and the output signal of the first rotation angle sensor S1 received via the first rotation angle signal receiving unit (not shown). Based on the first rotation angle signal ⁇ 1, the second rotation angle signal ⁇ 2 that is the output signal of the second rotation angle sensor S2 received via the second rotation angle signal receiver (not shown), the output signal V of the vehicle speed sensor, etc.
  • a basic assist current Ib that is a command current to the electric motor 5 and serves as a base of the steering assist torque is calculated.
  • the direction coincidence determination unit 11 obtains a first rotational angular velocity signal ⁇ 1 obtained by time-differentiating the first rotational angle signal ⁇ 1 and a second rotational angular velocity obtained by time-differentiating the second rotational angle signal ⁇ 2. Based on the signal ⁇ 2, it is determined whether or not the rotation direction of the input shaft 2 and the rotation direction of the output shaft 3 coincide with each other.
  • the preceding phase determination unit 12 determines which phase of the first and second rotation angle signals ⁇ 1 and ⁇ 2 is ahead based on the amount of change in each of the first and second rotation angle signals ⁇ 1 and ⁇ 2. . Specifically, by estimating each phase of the first and second rotation angle signals ⁇ 1 and ⁇ 2 based on the amount of change in each of the first and second rotation angle signals ⁇ 1 and ⁇ 2, and comparing these two phases, The phase advance judgment of the first and second rotation angle signals ⁇ 1 and ⁇ 2 is performed.
  • torsion bar 4 is twisted by intentional input from the input shaft 2 side, that is, whether it is due to a positive input (hereinafter simply referred to as “positive input”). Or a reverse input (hereinafter simply referred to as “reverse input”) generated by an unintended input from the output shaft 3 side.
  • positive input hereinafter simply referred to as “positive input”.
  • reverse input hereinafter simply referred to as “reverse input”
  • the forward / reverse input determination unit 13 is based on the rotation angle signals ⁇ 1 and ⁇ 2 that have passed through the low-pass filters F1 and F2. Thus, it is determined whether the torsion bar 4 is twisted by a positive input or a reverse input.
  • the phase change determination unit 14 includes a first rotation angle change amount ⁇ 1 obtained based on the first rotation angle signal ⁇ 1, a second rotation angle change amount ⁇ 2 obtained based on the second rotation angle signal ⁇ 2, and Based on the above, it is determined whether or not the phase leading of the second rotation angle signal ⁇ 2 is continued by the phase leading determination as described above, that is, whether or not the twist direction of the torsion bar 4 has been reversed.
  • the cross-gradient current Ic is calculated based on the maps shown in FIGS. Specifically, the cross-gradient current Ic is obtained by multiplying the basic assist current Ib by a gain G obtained on the basis of maps shown in FIGS.
  • the transverse gradient current Ic is set to a magnitude that does not reverse the twist direction of the torsion bar 4.
  • FIG. 4 is a map used for the current calculation in the cross gradient current calculation unit 15 and shows the relationship between the vehicle speed V and the gain G.
  • the gain G is set to be smaller as the vehicle signal V is higher, so that the cross gradient current Ic is smaller as the vehicle speed indicated by the vehicle signal V is higher. It is calculated as follows. That is, since the steering load is reduced as the vehicle speed is higher, the assist control according to the vehicle speed is possible by using this setting.
  • FIG. 5 is a map used for current calculation in the cross gradient current calculation unit 15, and shows the relationship between the relative angle difference ⁇ between the first and second rotation angle signals ⁇ 1 and ⁇ 2 and the gain G.
  • the gain G is set to increase as the relative angle difference ⁇ (
  • the cross gradient current Ic increases as the relative angle difference ⁇ increases. That is, as the relative angle difference ⁇ is larger, the torsion bar 4 is twisted and the steering load becomes larger, so that the assist control according to the steering load is possible by setting this setting.
  • FIG. 6 is a map used for current calculation in the current calculating unit 15 for cross gradient, and shows the relationship between the yaw rate Y and the gain G.
  • the gain G is set to increase as the yaw rate signal Y increases, so that the cross gradient current Ic increases as the vehicle yaw moment indicated by the yaw rate signal Y increases. It is calculated so as to increase. This makes it possible to reduce the driver's steering load due to an increase in the yaw moment, such as the influence of cross wind.
  • FIG. 7 is a flowchart showing the control contents of the assist control for cross gradient according to the first embodiment of the present invention.
  • step S101 it is determined whether or not the cross slope assist control is continuing (step S101), and if it is determined that the control is continuing, the process proceeds to step S108 described later.
  • step S102 the first and second rotation angle signals ⁇ 1 and ⁇ 2 are read (step S102), and the first and second After calculating the first and second rotational angular velocity signals ⁇ 1 and ⁇ 2 based on the rotational angle signals ⁇ 1 and ⁇ 2 (step S103), the direction coincidence determining unit 11 is based on the first and second rotational angular velocity signals ⁇ 1 and ⁇ 2.
  • step S104 it is determined whether or not the rotation directions of the first rotation angle signal ⁇ 1 and the second rotation angle signal ⁇ 2 match.
  • step S104 when it is determined that the rotation directions of the first and second rotation angle signals ⁇ 1 and ⁇ 2 do not coincide with each other, the basic assist current calculation unit 10 calculates the basic assist current Ib. Is output to the motor drive unit as a current command value Io, and this program ends. (Step S105). On the other hand, if it is determined that the rotation directions of the first and second rotation angle signals ⁇ 1 and ⁇ 2 match, the preceding phase determination unit 12 determines the amount of change in the first and second rotation angle signals ⁇ 1 and ⁇ 2. After the calculation (step S106), based on this, it is determined whether or not the second rotation angle signal ⁇ 2 is equal to or greater than the threshold ⁇ x2 and the phase of the second rotation angle signal ⁇ 2 is ahead (step S107).
  • step S107 normal assist control based on the basic assist current Ib is performed (step S105).
  • the forward / reverse input determination unit 13 determines that the input is due to reverse input. After reading the vehicle speed signal V (step S108), based on this, it is determined whether the vehicle speed signal V is equal to or greater than the threshold value Vx and the first rotation angle signal ⁇ 1 is equal to or less than the threshold value ⁇ x1 (step S109). ).
  • step S109 normal assist control based on the basic assist current Ib is performed (step S105).
  • Yes the vehicle speed signal V is equal to or greater than the threshold value Vx and the first rotation angle signal ⁇ 1 is equal to or less than the threshold value ⁇ x1
  • the phase change determination unit 14 determines that the phase leading of the second rotation angle signal ⁇ 2 is present. It is determined whether or not it continues (step S110).
  • the cross gradient current calculation section 15 calculates a cross gradient current Ic larger than the basic assist current Ib, and outputs this to the motor drive section as a current command value Io (step S111). This program ends.
  • FIG. 8 is a time chart of the output signal Tr of the torque sensor TS and the first and second rotation angle signals ⁇ 1 and ⁇ 2.
  • the positive (upper half side) region is set to the left steering
  • the negative (lower half side) region is set to the right steering.
  • the thin solid line in the drawing indicates the output signal Tr of the torque sensor TS and the thick broken line. Represents the first rotation angle signal ⁇ 1, and the thick solid line represents the second rotation angle signal ⁇ 2.
  • the direction coincidence determining unit 11 determines that both the rotation directions of the first and second rotation angle signals ⁇ 1 and ⁇ 2 coincide with each other, and the preceding phase determining unit 12 performs the first operation.
  • the phase change determination unit determines that the phase advance state of the second rotation angle signal ⁇ 2 continues, a transverse gradient greater than the basic assist current Ib.
  • the current Ic is output to the motor drive unit as the current command value Io, so that the skew state based on the cross slope traveling can be determined with high accuracy only by the first and second rotation angle signals ⁇ 1 and ⁇ 2. Assistance is enabled, and the driver's steering load can be reduced appropriately.
  • the transverse gradient current Ic is set to a magnitude that does not reverse the torsion direction of the torsion bar 4, so that the above-described transverse gradient assist control is not canceled, and the driver can appropriately steer. Assist control can be performed.
  • the cross slope assist control is performed only when the vehicle speed signal V is equal to or higher than the threshold value Vx. There is no risk of excessive assist in a state where the influence is small, and it is possible to realize good steering assist control.
  • the forward / reverse input determination unit 13 determines whether the torsion bar 4 is twisted by a positive input or a reverse input based on the first and second rotation angle signals ⁇ 1 and ⁇ 2 that have passed through the low-pass filters F1 and F2. Since it is configured to determine whether or not the vehicle is traveling, it is possible to suppress erroneous determination in the forward / reverse input determination unit 13 even when the rotation angle signals ⁇ 1 and ⁇ 2 are accompanied by large noise, particularly when traveling on a rough road. High assist control can be performed.
  • the steering angle correction unit 16 even when the first rotation angle ⁇ 1 is detected by the first rotation angle sensor S1, if the vehicle speed (vehicle speed signal V) is equal to or higher than the threshold value Vx, the crossing gradient road is used. Since it is assumed that the vehicle is traveling straight ahead, the first gradient angle ⁇ 1 detected previously is corrected to zero and the assist control for the transverse gradient is performed. Therefore, the accuracy of the first rotation angle signal ⁇ 1 is improved, and the transverse gradient is improved. This is used to suppress misjudgment of the assist control.
  • FIG. 9 is a flowchart showing the control content of the assist control for cross gradient according to the second embodiment of the present invention, and a method for continuously determining the assist control for cross gradient in the assist control flow for cross gradient according to the first embodiment. Is a change.
  • step S211 the same processing as in steps S101 to S109 is performed in steps S201 to S209, and in step S210, the first rotation angle signal ⁇ 1 is changed from the second rotation angle signal ⁇ 2. If the vehicle is traveling straight on a cross-gradient road or is traveling on a road surface whose outside of the turning radius is lower than the inside, Assist control is to be executed (step S211).
  • FIG. 10 is a flowchart showing the control content of the assist control for cross gradient according to the third embodiment of the present invention, and a method for continuously determining assist control for cross gradient in the assist control flow for cross gradient according to the first embodiment. Is a change.
  • step S301 after performing the same processing as steps S101 to S109 of the control flow according to the first embodiment, the phase change determination unit 14 Then, after reading the yaw rate signal Y (step S310), it is determined whether or not the yaw rate signal Y is equal to or less than the threshold value Yx (step S311).
  • step S310 it is determined that the vehicle is traveling on a road surface in which the outside of the turning radius is formed lower than the inside, and normal assist control is performed (step S305). It is determined that the vehicle is traveling straight on a gradient road, and the assist control for crossing gradient is executed (step S312).
  • the two running states can be determined based on the yaw rate signal Y (the yaw moment generated in the vehicle), and appropriate steering assist according to the running state can be performed.
  • the effect similar to a form is show
  • the present invention is not limited to the configuration of each of the embodiments described above, and can be freely changed in accordance with the specifications of the electric power steering device to be applied without departing from the spirit of the present invention.
  • the skew due to the cross gradient road is exemplified.
  • the present invention can also be applied to a skew caused by a continuous disturbance on another road surface and a skew caused by a cross wind that is a disturbance other than the road surface.
  • the calculation of the current Ic for cross gradient also takes the form of multiplying the basic assist current Ib by the gain G in each of the above embodiments.
  • Any correction method may be used such as another correction method such as adding the current Ic for use, or a method of switching the assist characteristic map itself instead of the correction.
  • the forward / reverse input determination unit determines whether the torsion bar twist is due to the positive input or the reverse input based on the first rotation angle signal and the second rotation angle signal that have passed through a low-pass filter.
  • the phase change determination unit is configured such that the vehicle is traveling straight on a road surface with a cross gradient or the outside of the turning radius is lower than the inside. Judging that the road is running, The electric disturbance steering current correction unit corrects the disturbance resistance current based on a determination result of the phase change determination unit.
  • Such a configuration makes it possible to perform steering assist according to the condition of the road surface.
  • the two traveling states can be determined based on the yaw moment, and appropriate steering assist according to the traveling state can be performed.
  • the correction circuit unit can improve the accuracy of the first and second rotation angle sensors, and can be used to suppress erroneous determination.
  • the forward / reverse input determination unit determines whether the torsion bar twist is due to the positive input or the reverse input based on the first rotation angle signal and the second rotation angle signal that have passed through a low-pass filter.
  • the phase change determination unit is configured such that the vehicle is traveling straight on a road surface with a cross gradient or the outside of the turning radius is lower than the inside. Judging that the road is running, The control apparatus for an electric power steering apparatus, wherein the disturbance countercurrent calculation unit corrects the disturbance countercurrent based on a determination result of the phase change determination unit.
  • Such a configuration makes it possible to perform steering assist according to the condition of the road surface.
  • (M) In the control device for the electric power steering device according to (l), When the yaw moment of the vehicle is less than or equal to a predetermined value, the phase change determination unit determines that the vehicle is traveling straight on the road surface with a cross slope, and when the yaw moment is greater than the predetermined value, the turning radius It is judged that it is drive
  • the two traveling states can be determined based on the yaw moment, and appropriate steering assist according to the traveling state can be performed.
  • control unit for an electric power steering apparatus wherein the electronic control unit includes a correction circuit unit that corrects an offset amount from a neutral position of the first rotation angle sensor and the second rotation angle sensor.
  • the correction circuit unit can improve the accuracy of the first and second rotation angle sensors, and can be used to suppress erroneous determination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

 方向一致判断部11において第1、第2回転角信号θ1,θ2の両回転方向が一致すると判断され、かつ先行位相判断部12によって第2回転角信号の位相が先行すると判断され、さらに位相変化判断部14において前記第2回転角信号θ2の位相先行状態が継続していると判断された場合に、基本アシスト電流Ibよりも大きな横断勾配用電流Icを電流指令値としてモータ駆動部へと出力する構成とした。

Description

電動パワーステアリング装置及び電動パワーステアリング装置の制御装置
 本発明は、例えば自動車に適用される電動パワーステアリング装置及びこれに用いる制御装置に関する。
 従来の電動パワーステアリング装置としては、例えば以下の特許文献に記載されたものが知られている。
 すなわち、この特許文献に記載の電動パワーステアリング装置では、カント路走行時における車体流れ(斜行)阻止に供する車体流れ制御手段が設けられていて、該制御手段をもって電動モータを駆動制御することで、前記カント路における斜行阻止のための保舵に係る運転者の負担軽減を図っている。
特開2010-137621号公報
 しかしながら、前記従来の電動パワーステアリング装置の場合、ヨーレイト信号と操舵角信号等との関係でもって外乱に基づく斜行状態を判断する構成となっていて、操舵角信号のみでは外乱に基づく斜行状態を判断できず、制御の複雑化を招来していた。
 本発明は、かかる技術的課題に鑑みて案出されたものであって、入・出力軸の回転角信号のみで外乱に基づく斜行状態を高い精度で判断し得る電動パワーステアリング装置等を提供することを目的としている。
 本発明は、とりわけ、運転者による操舵トルクに基づいた前記電動モータへの指令電流である基本アシスト電流を演算する基本アシスト電流演算部と、前記入力軸の回転方向と前記出力軸の回転方向とが一致しているか否かを判断する方向一致判断部と、前記第1回転角信号と前記第2回転角信号のうち、いずれの位相が先行するかを判断する先行位相判断部と、前記方向一致判断部によって方向一致と判断され、かつ前記先行位相判断部によって前記第1回転角信号の位相が先行すると判断されたときは、前記トーションバーの捩れが前記入力軸側からの正入力によるものと判断し、前記方向一致判断部によって方向一致と判断され、かつ前記先行位相判断部によって前記第2回転角信号の位相が先行すると判断されたときは、前記トーションバーの捩れが前記出力軸側からの逆入力によるものと判断する正逆入力判断部と、前記第1回転角信号の位相と前記第2回転角信号の位相とに基づき前記トーションバーの捩れ方向の反転が生じたか否かを判断する位相変化判断部と、前記正逆入力判断部によって逆入力と判断された後、前記位相変化判断部によって前記トーションバーの捩れ方向の反転が発生していない状態が継続していると判断されたときに、前記基本アシスト電流よりも大きな外乱対抗電流を演算する外乱対抗電流演算部と、を有する電子コントロールユニットを備えたことを特徴としている。
 本発明によれば、操舵角信号のみで外乱に基づく斜行状態を高い精度で判断し、補助可能となるため、運転者の操舵負荷を適切に軽減することができる。
本発明に係る電動パワーステアリング装置のシステム構成図である。 図1に示す入力軸と出力軸の連結部近傍の拡大縦断面図である。 図1に示すコントロールユニットの制御ブロック図である。 図3に示す横断勾配用電流演算部における電流演算に供するマップであり、車両速度VとゲインGとの関係を表したものである。 図3に示す横断勾配用電流演算部における電流演算に供するマップであり、第1、第2回転角信号θ1,θ2の相対角度差ΔθとゲインGとの関係を表したものである。 図3に示す横断勾配用電流演算部における電流演算に供するマップであり、ヨーレイトYとゲインGとの関係を表したものである。 本発明の第1実施形態に係る横断勾配用アシスト制御の制御内容を示すフローチャートである。 トルクセンサ出力信号及び第1、第2回転角信号のタイムチャートである。 本発明の第2実施形態に係る横断勾配用アシスト制御の制御内容を示すフローチャートである。 本発明の第3実施形態に係る横断勾配用アシスト制御の制御内容を示すフローチャートである。
 
 以下、本発明に係る電動パワーステアリング装置等の実施形態を図面に基づいて説明する。なお、下記の各実施形態では、本発明に係る電動パワーステアリング装置等を、従来と同様に、自動車の電動パワーステアリング装置に適用すると共に、外乱の原因として横断勾配路の走行を例に説明する。
 図1は、本発明に係る電動パワーステアリング装置のシステム構成の概略を説明するための当該装置の概略図である。
 図示の電動パワーステアリング装置は、一端側がステアリングホイール1と一体回転可能に連係された入力軸2と、一端側がトーションバー4(図2参照)を介して入力軸2の他端側に相対回転可能に連結されると共に、他端側が変換機構であるラック・ピニオン機構RPを介して転舵輪WL,WRに連係される出力軸3と、入力軸2の外周側に配置され、該入力軸2と出力軸3の相対回転変位量を基に操舵入力トルクを検出するトルクセンサTSと、該トルクセンサTSや、図示外の操舵角センサ及び車速センサ等の各検出結果に基づいて運転者の操舵トルクに応じた操舵アシストトルクを前記出力軸3へと付与する電動モータ5と、該電動モータ5を駆動制御する電子コントロールユニット6と、から主として構成されている。ここで、前記入力軸2、出力軸3及びラック・ピニオン機構RPによって、本発明に係る操舵機構が構成されている。
 前記ラック・ピニオン機構RPは、出力軸3の他端部外周に形成された図示外のピニオン歯と、当該出力軸3の他端部にほぼ直交するかたちで配置されるラック軸7の軸方向所定範囲に形成される図示外のラック歯とが噛合してなるもので、出力軸3の回転方向に応じてラック軸7が軸方向へと移動するようになっている。そして、前記ラック軸7の各端部はそれぞれタイロッド8,8及びナックルアーム9,9を介して転舵輪WR,WLに連係され、当該ラック軸7が軸方向に移動して前記各タイロッド8,8を介して前記各ナックルアーム9,9が引っ張られることにより、転舵輪WR,WLの向きが変更されるようになっている。
 図2は、前記トルクセンサTSを含む前記入力軸2と出力軸3の連結部近傍に係る縦断面図である。
 前記トルクセンサTSは、入力軸2と出力軸3の重合部を包囲するかたちで設けられたケーシングCSと、該ケーシングCSと入力軸2の間に介装され、入力軸2の回転変位を検出する第1回転角センサS1と、前記ケーシングCSと出力軸3の間に介装され、出力軸3の回転変位を検出する第2回転角センサS2と、から主として構成され、トーションバー4の捩れ変形に基づく入力軸2と出力軸3との相対回転変位量を前記第1、第2回転角センサS1,S2で検出することにより、運転者の操舵操作によって入力される操舵トルクを検出するようになっている。
 前記第1、第2回転角センサS1,S2は、ともに周知の可変リラクタンス(VR)型のレゾルバにより構成される。すなわち、第1回転角センサS1は、入力軸2の外周面に一体回転可能に外嵌された円環状の第1ロータS1rと、前記ケーシングCSに固定され、前記第1ロータS1rの外周側に所定隙間を介して径方向に重合するかたちで配設される第1ステータS1sと、から構成される。同様に、第2回転角センサS2も、出力軸3の外周面に一体回転可能に外嵌された円環状の第2ロータS2rと、前記ケーシングCSに固定され、前記第2ロータS2rの外周側に所定隙間を介して径方向に重合するかたちで配設される第2ステータS2sと、から構成される。
 図3は、前記電子コントロールユニット6内の演算回路構成を示す制御ブロック図である。
 前記電子コントロールユニット6は、通常の操舵アシストトルクである基本アシスト電流Ibを演算する基本アシスト電流演算部10と、入力軸2と出力軸3の回転方向の一致又は不一致を判断する方向一致判断部11と、後述する第1、第2回転角信号θ1,θ2のいずれの位相が先行しているかを判断する先行位相判断部12と、前記方向一致判断部11と前記先行位相判断部12における判断結果に基づいて後述する正入力又は逆入力を判断する正逆入力判断部13と、トーションバー4の捩れ方向の反転が生じたか否かを判断する位相変化判断部14と、前記正逆入力判断部13及び位相変化判断部14における判断結果から横断勾配路を走行している状態と判断された場合に前記基本アシスト電流Ibよりも大きな外乱対抗電流である横断勾配用電流Icを演算する外乱対抗電流演算部としての横断勾配用電流演算部15と、を備えている。
 なお、図3中における符号16は、車速センサ(図示外)による車速信号V及びヨーレイトセンサ(図示外)によるヨーレイト信号Yを基づき、第1回転角センサS1の中立位置からのオフセット量をゼロに補正する操舵角補正部である。この操舵角補正部16では、第1回転角センサS1によって第1回転角θ1が検出されても、後述のように車速信号Vが閾値Vx以上である場合には、横断勾配路を直進走行中であるとして、先に検出した第1回転角θ1をゼロに補正する。
 前記基本アシスト電流演算部10は、車両運転状態、すなわちトルクセンサTSの出力信号Tr、第1回転角信号受信部(図示外)を介して受信した第1回転角センサS1の出力信号である第1回転角信号θ1、第2回転角信号受信部(図示外)を介して受信した第2回転角センサS2の出力信号である第2回転角信号θ2及び車速センサの出力信号V等に基づき、電動モータ5への指令電流であって前記操舵アシストトルクのベースとなる基本アシスト電流Ibを演算する。
 前記方向一致判断部11は、第1回転角信号θ1を時間微分演算することにより得られる第1回転角速度信号ω1と、第2回転角信号θ2を時間微分演算することにより得られる第2回転角速度信号ω2と、に基づいて、入力軸2の回転方向と出力軸3の回転方向とが一致しているか否かを判断する。
 前記先行位相判断部12は、第1、第2回転角信号θ1,θ2の各変化量に基づいて、第1、第2回転角信号θ1,θ2のいずれの位相が先行しているかを判断する。具体的には、第1、第2回転角信号θ1,θ2の各変化量を基に第1、第2回転角信号θ1,θ2の各位相を推定し、これら両位相を比較することにより、当該第1、第2回転角信号θ1,θ2の位相先行判断を行う。
 前記正逆入力判断部13は、トーションバー4の捩れが、入力軸2側からの意図的な入力によって発生した、すなわち正入力(以下、単に「正入力」と称する。)によるものであるか、又は出力軸3側からの意図しない入力によって発生した、逆入力(以下、単に「逆入力」と称する。)によるものであるかを判断する。
 なお、図3中の符号F1,F2は、いずれも周知のローパスフィルタであり、前記正逆入力判断部13では、当該各ローパスフィルタF1,F2を通過した前記各回転角信号θ1,θ2に基づいて、トーションバー4の捩れが正入力によるものか逆入力によるものかを判断している。
 前記位相変化判断部14は、第1回転角信号θ1を基に得られた第1回転角変化量Δθ1と、第2回転角信号θ2を基に得られた第2回転角変化量Δθ2と、に基づいて、前述したような位相先行判断をもって第2回転角信号θ2の位相先行が継続しているか否か、すなわちトーションバー4の捩れ方向の反転が発生したか否かを判断する。
 前記横断勾配用電流演算部15は、前記正逆入力判断部13によって逆入力と判断され、かつ、前記位相変化判断部14によってトーションバー4の捩れ方向の反転が発生していない状態が継続していると判断された際に、後述する図4~図6に示すマップに基づいて、前記基本アシスト電流Ibよりも大きな横断勾配用電流Icを演算する。具体的には、前記基本アシスト電流Ibに、後述する図4~図6に示すマップに基づいて得られるゲインGを乗算することで、当該横断勾配用電流Icが求められる。なお、この横断勾配用電流Icについては、トーションバー4の捩れ方向が反転しない大きさに設定されている。
 図4は、横断勾配用電流演算部15における電流演算に供するマップであり、車両速度VとゲインGとの関係を表したものである。
 図示のように、前記電動パワーステアリング装置においては、車両信号Vが高いほどゲインGが小さくなるように設定されることによって、該車両信号Vが示す車両速度が高いほど横断勾配用電流Icが小さくなるように演算される。すなわち、車両速度が高いほど操舵負荷は低減することになるため、当該設定とすることによって、車両速度に応じたアシスト制御が可能となっている。
 図5は、横断勾配用電流演算部15における電流演算に供するマップであり、第1、第2回転角信号θ1,θ2の相対角度差ΔθとゲインGとの関係を表したものである。
 図示のように、前記電動パワーステアリング装置では、第1回転角信号θ1と第2回転角信号θ2の相対角度差Δθ(|θ2-θ1|)が高いほどゲインGが大きくなるように設定されることによって、該相対角度差Δθが高いほど横断勾配用電流Icが大きくなるように演算される。すなわち、相対角度差Δθが大きいほど、トーションバー4が捩られ、操舵負荷が大きくなることから、当該設定とすることによって、操舵負荷に応じたアシスト制御が可能となっている。
 図6は、横断勾配用電流演算部15における電流演算に供するマップであり、ヨーレイトYとゲインGとの関係を表したものである。
 図示のように、前記電動パワーステアリング装置では、ヨーレイト信号Yが高いほどゲインGが大きくなるように設定されることによって、該ヨーレイト信号Yが示す車両のヨーモーメントが大きいほど横断勾配用電流Icが大きくなるように演算される。これによって、例えば横風の影響など、当該ヨーモーメントの増大による運転者の操舵負荷を軽減することが可能となっている。
 図7は、本発明の第1実施形態に係る横断勾配用アシスト制御の制御内容を示すフローチャートである。
 すなわち、まず、前記横断勾配用アシスト制御が継続中であるか否かを判断して(ステップS101)、当該制御継続中と判断された場合には、後述するステップS108へと移行する。一方、前記ステップS101において、横断勾配用アシスト制御は継続していないと判断された場合は、続いて第1、第2回転角信号θ1,θ2を読み込み(ステップS102)、該第1、第2回転角信号θ1,θ2に基づいて第1、第2回転角速度信号ω1,ω2を演算した後(ステップS103)、該第1、第2回転角速度信号ω1,ω2を基に、方向一致判断部11において第1回転角信号θ1と第2回転角信号θ2の回転方向が一致するか否かを判断する(ステップS104)。
 前記ステップS104において、前記第1、第2回転角信号θ1,θ2の両回転方向が一致しないと判断された場合には、基本アシスト電流演算部10にて基本アシスト電流Ibを演算して、これを電流指令値Ioとしてモータ駆動部へと出力することによって、本プログラムが終了する。(ステップS105)。一方、前記第1、第2回転角信号θ1,θ2の両回転方向が一致と判断された場合には、先行位相判断部12において、第1、第2回転角信号θ1,θ2の変化量を演算した後(ステップS106)、これを基に、第2回転角信号θ2が閾値θx2以上、かつ、第2回転角信号θ2の位相が先行しているか否かを判断する(ステップS107)。
 前記ステップS107において、Noと判断された場合には、前記基本アシスト電流Ibに基づく通常のアシスト制御が行われる(ステップS105)。一方、Yes(第2回転角信号θ2が閾値θx2以上、かつ、第2回転角信号θ2の位相が先行)と判断された場合には、正逆入力判断部13にて逆入力によるものと判断され、車速信号Vを読み込んだ後(ステップS108)、これを基に、車速信号Vが閾値Vx以上、かつ、第1回転角信号θ1が閾値θx1以下であるか否かを判断する(ステップS109)。
 前記ステップS109において、Noと判断された場合には、前記基本アシスト電流Ibに基づく通常のアシスト制御が行われる(ステップS105)。一方、Yes(車速信号Vが閾値Vx以上、かつ、第1回転角信号θ1が閾値θx1以下)と判断された場合には、位相変化判断部14で、第2回転角信号θ2の位相先行が継続しているか否かを判断する(ステップS110)。ここで、Noと判断された場合には前記基本アシスト電流Ibに基づく通常のアシスト制御が行われ(ステップS105)、Yes(第2回転角信号θ2の位相先行が継続中)と判断された場合には、横断勾配用電流演算部15において、前記基本アシスト電流Ibよりも大きな横断勾配用電流Icを演算して、これを電流指令値Ioとしてモータ駆動部へと出力することによって(ステップS111)、本プログラムが終了する。
 図8は、トルクセンサTSの出力信号Tr及び第1、第2回転角信号θ1,θ2のタイムチャートである。なお、図中では、正(上半側)の領域を左操舵とし、負(下半側)の領域を右操舵としており、図中の細実線がトルクセンサTSの出力信号Trを、太破線が第1回転角信号θ1を、太実線が第2回転角信号θ2を、それぞれ表している。
 まず、区間T1では、第2回転角信号θ2が左方向に変化することに伴って第1回転角信号θ1も左方向に変化するといった逆入力による左方向の転舵が発生するが、かかる逆入力に対抗する右方向の操舵力を加えることでほぼ中立状態に戻っている。これは、段差など路面側からの一時的な逆入力が発生したものであり、かかる状態では、第1、第2回転角信号θ1,θ2の両回転方向が一致し、かつ、第2回転角信号θ2の位相が先行した状態となるものの、該第2回転角信号θ2の位相先行状態は継続されないことから、通常のアシスト制御が行われることになる。
 続いて、区間T2では、前述したように第2回転角信号θ2が左方向に先行して変化する逆入力が発生するものの、該逆入力に対して第1回転角信号θ1は追従せず、両回転角信号θ1,θ2の回転方向は一致しないことから、前記通常のアシスト制御が継続され、区間T3では、先行して右方向へと変化する第2回転角信号θ2に第1回転角信号θ1が追従して右方向に変化することで、第1、第2回転角信号θ1,θ2の両回転方向は一致することになるが、第2回転角信号θ2が閾値θx2よりも小さい状態となっていることで、同制御がさらに継続されることとなる。
 一方、区間T4では、第2回転角信号θ2が右方向に大きく変化することに伴って第1回転角信号θ1も右方向に大きく変化するといった逆入力に基づく右方向転舵が行われて、その後、かかる逆入力転舵に対抗する左方向の操舵力を加えることで、該左方向の操舵状態のまま維持されることとなる。これは、右側(路肩側)に傾斜した横断勾配路の走行が始まったことで、該横断勾配路を走行している間は前記横断勾配に基づく意図しない転舵を相殺するために反転舵方向(左方向)の操舵状態を維持したものである。かかる状態では、第1、第2回転角信号θ1,θ2の両回転方向が一致し、第2回転角信号θ2が閾値θx2よりも大きく、かつ、第2回転角信号θ2の位相が先行した状態にあると共に、車速信号Vが閾値Vx以上(図示外)、かつ、第1回転角信号θ1が閾値θx1以下となることにより、前記横断勾配用アシスト制御が実行されることとなる。
 その後、区間T5では、前記第1回転角信号θ1に基づいて第2回転角信号θ2が左方向に変化するといった正入力に基づく左方向転舵が発生し、第1、第2回転角信号θ1,θ2の位相が逆転する、すなわち第1回転角信号θ1の位相が先行することになる。これは、前記横断勾配が終了したことによって、該横断勾配に対抗する前記左方向操舵に転舵輪が追従したものであり、かかる状態では、第2回転角信号θ2の位相先行が継続されないことから、前記横断勾配用アシスト制御が終了し、通常のアシスト制御へと移行することとなる。
 以上のように、前記電動パワーステアリング装置によれば、方向一致判断部11において第1、第2回転角信号θ1,θ2の両回転方向が一致すると判断され、かつ、先行位相判断部12によって第2回転角信号の位相が先行すると判断され、位相変化判断部において前記第2回転角信号θ2の位相先行状態が継続していると判断された場合には、基本アシスト電流Ibよりも大きな横断勾配用電流Icを電流指令値Ioとしてモータ駆動部へと出力する構成としたことで、第1、第2回転角信号θ1,θ2のみで横断勾配路走行に基づく斜行状態を高い精度で判断し、補助可能となって、運転者の操舵負荷を適切に軽減することができる。
 なお、この際、前記横断勾配用電流Icについて、トーションバー4の捩れ方向が反転しない大きさに設定したことで、前述した横断勾配用アシスト制御がキャンセルされることなく、運転者に対する適度な操舵アシスト制御を行うことが可能となっている。
 さらに、前記横断勾配用アシスト制御の実行判断に際して、前記条件に加え、車速信号Vが閾値Vx以上のときにのみ当該横断勾配用アシスト制御を行う構成としたことから、車両速度が低く横断勾配による影響が小さい状態においてアシスト過多となってしまうおそれもなく、良好な操舵アシスト制御の実現に供される。
 また、前記正逆入力判断部13では、前記各ローパスフィルタF1,F2を通過した第1、第2回転角信号θ1,θ2を基に、トーションバー4の捩れが正入力によるものか逆入力によるものかを判断する構成としたことから、特に悪路走行時など各回転角信号θ1,θ2に大きなノイズを伴うような場合でも、当該正逆入力判断部13における誤判断が抑制され、安定性の高いアシスト制御を行うことができる。
 さらに、前記操舵角補正部16では、第1回転角センサS1により第1回転角θ1が検出される場合でも、車両速度(車速信号V)が閾値Vx以上である場合には、横断勾配路を直進走行中であるとして、先に検出した前記第1回転角θ1をゼロに補正したうえで横断勾配用アシスト制御が行われることから、第1回転角信号θ1の精度を向上させ、前記横断勾配用アシスト制御の誤判断の抑制に供される。
 図9は、本発明の第2実施形態に係る横断勾配用アシスト制御の制御内容を示すフローチャートであって、前記第1実施形態の横断勾配用アシスト制御フローにおける横断勾配用アシスト制御の継続判断方法を変更したものである。
 すなわち、本実施形態に係る横断勾配用アシスト制御フローでは、ステップS201~S209では前記ステップS101~S109と同一の処理を行い、ステップS210において、第1回転角信号θ1が第2回転角信号θ2よりも大きいものとなっているとき、車両が横断勾配路を直進走行中であるか、又は旋回半径の外側が内側よりも低く形成された路面を走行中であると判断して、前記横断勾配用アシスト制御を実行することとしている(ステップS211)。
 以上のことから、本実施形態によっても、走行中の路面の状況に応じた適切な操舵アシストを行うことが可能となり、前記第1実施形態と同様の作用効果が奏せられる。
 図10は、本発明の第3実施形態に係る横断勾配用アシスト制御の制御内容を示すフローチャートであって、前記第1実施形態の横断勾配用アシスト制御フローにおける横断勾配用アシスト制御の継続判断方法を変更したものである。
 すなわち、本実施形態に係る横断勾配用アシスト制御フローでは、ステップS301~S309においては前記第1実施形態に係る制御フローのステップS101~S109と同一の処理を行った後、位相変化判断部14において、ヨーレイト信号Yを読み込んだ後(ステップS310)、該ヨーレイト信号Yが閾値Yx以下であるか否かを判断する(ステップS311)。ここで、Noの場合は、旋回半径の外側が内側よりも低く形成された路面を走行中であると判断して通常のアシスト制御が行われる一方(ステップS305)、Yesの場合には、横断勾配路を直進走行中であると判断して前記横断勾配用アシスト制御を実行することとしている(ステップS312)。
 以上のことから、本実施形態では、ヨーレイト信号Y(車両に発生したヨーモーメント)によって2つの走行状態を判断でき、該走行状態に応じた適切な操舵アシストが可能となる結果、前記第1実施形態と同様の作用効果が奏せられる。
 本発明は、前記各実施形態の構成に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で、適用対象たる電動パワーステアリング装置の仕様等に応じて自由に変更することができる。
 特に、前記各実施形態では、外乱による斜行の原因の一例として横断勾配路による斜行を例示したが、前記横断勾配用アシスト制御は、前記横断勾配路による斜行のほか、例えばカント路など他の路面の継続的な外乱による斜行や、路面以外の外乱である横風による斜行に対しても適用可能である。
 さらには、前記横断勾配用電流Icの演算についても、前記各実施形態では基本アシスト電流Ibに前記ゲインGを乗算する形態をとっているが、かかる形態のほか、例えば基本アシスト電流Ibに横断勾配用電流Icを加算する等の他の補正方法や、補正ではなくアシスト特性マップ自体を切り替える方法等、いかなる方法であってもよい。
 以下、前記各実施形態から把握される特許請求の範囲に記載した以外の技術的思想について説明する。
 (a)請求項2に記載の電動パワーステアリング装置において、
 前記外乱対抗電流は、車両のヨーモーメントが大きいほど大きくなるように演算されることを特徴とする電動パワーステアリング装置。
 かかる構成とすることで、ヨーモーメントに対するアシスト量の付加が可能となって、運転者の操舵負荷の軽減に供される。
 (b)請求項1に記載の電動パワーステアリング装置において、
 前記正逆入力判断部は、ローパスフィルタを通過した前記第1回転角信号と前記第2回転角信号とに基づいて、前記トーションバーの捩れが前記正入力によるものか前記逆入力によるものかを判断することを特徴とする電動パワーステアリング装置。
 このように、ローパスフィルタでもって高周波成分を除去することにより、悪路走行時の誤判断を抑制し、安定性の高いアシスト制御が可能となる。
 (c)請求項1に記載の電動パワーステアリング装置において、
 前記位相変化判断部は、前記第1回転角信号が前記第2回転角信号よりも大きいとき、車両が横断勾配付き路面を直進走行中であるか、又は旋回半径の外側が内側よりも低く形成された路面を走行中であると判断し、
 前記外乱対抗電流演算部は、前記位相変化判断部の判断結果に基づき、前記外乱対抗電流を補正することを特徴とする電動パワーステアリング装置。
 かかる構成とすることで、走行路面の状況に応じた操舵アシストを行うことが可能となる。
 (d)前記(c)に記載の電動パワーステアリング装置において、
 前記位相変化判断部は、車両のヨーモーメントが所定値以下の場合には、前記横断勾配付き路面を直進走行中であると判断し、前記ヨーモーメントが前記所定値より大きい場合には、旋回半径の外側が内側よりも低く形成された路面を走行中であると判断することを特徴とする電動パワーステアリング装置。
 かかる構成によれば、ヨーモーメントに基づいて前記2つの走行状態を判断でき、該走行状態に応じた適切な操舵アシストが可能となる。
 (e)請求項1に記載の電動パワーステアリング装置において、
 前記電子コントロールユニットは、前記第1回転角センサ及び前記第2回転角センサの中立位置からのオフセット量を補正する補正回路部を有することを特徴とする電動パワーステアリング装置。
 かかる構成によれば、前記補正回路部により第1、第2回転角センサの精度の向上が図れ、誤判断の抑制に供される。
 (f)請求項6に記載の電動パワーステアリング装置の制御装置において、
 前記外乱対抗電流は、前記トーションバーの捩れ方向が反転しない大きさに設定されていることを特徴とする電動パワーステアリング装置の制御装置。
 かかる構成とすることで、外乱対抗アシスト制御がキャンセルされることなく、運転者に対する適度な操舵アシスト制御が可能となる。
 (g)前記(f)に記載の電動パワーステアリング装置の制御装置において、
 前記外乱対抗電流は、車両速度が高いほど小さくなるように演算されることを特徴とする電動パワーステアリング装置の制御装置。
 車両速度が高いほど操舵負荷は低減することになるため、当該構成により、車両速度に応じたアシスト制御が可能となる。
 (h)前記(f)に記載の電動パワーステアリング装置の制御装置において、
 前記外乱対抗電流は、前記第1回転角信号と前記第2回転角信号との差が大きいほど大きくなるように演算されることを特徴とする電動パワーステアリング装置の制御装置。
 相対角度差が大きいほどトーションバーが捩れ、操舵負荷が大きくなることから、当該操舵負荷に応じたアシスト制御が可能になる。
 (i)前記(f)に記載の電動パワーステアリング装置の制御装置において、
 前記電子コントロールユニットは、車両速度が所定値以上のときにのみ前記外乱対抗電流を出力することを特徴とする電動パワーステアリング装置の制御装置。
 かかる構成とすることで、車両速度が低く横断勾配による影響が小さい状態においてアシスト過多となってしまう不都合を抑制することができる。
 (j)前記(f)に記載の電動パワーステアリング装置の制御装置において、
 前記外乱対抗電流は、車両のヨーモーメントが大きいほど大きくなるように演算されることを特徴とする電動パワーステアリング装置の制御装置。
 かかる構成とすることで、ヨーモーメントに対するアシスト量の付加が可能となって、運転者の操舵負荷の軽減に供される。
 (k)請求項6に記載の電動パワーステアリング装置の制御装置において、
 前記正逆入力判断部は、ローパスフィルタを通過した前記第1回転角信号と前記第2回転角信号とに基づいて、前記トーションバーの捩れが前記正入力によるものか前記逆入力によるものかを判断することを特徴とする電動パワーステアリング装置の制御装置。
 このように、ローパスフィルタでもって高周波成分を除去することにより、悪路走行時の誤判断を抑制し、安定性の高いアシスト制御が可能となる。
 (l)請求項6に記載の電動パワーステアリング装置の制御装置において、
 前記位相変化判断部は、前記第1回転角信号が前記第2回転角信号よりも大きいとき、車両が横断勾配付き路面を直進走行中であるか、又は旋回半径の外側が内側よりも低く形成された路面を走行中であると判断し、
 前記外乱対抗電流演算部は、前記位相変化判断部の判断結果に基づき、前記外乱対抗電流を補正することを特徴とする電動パワーステアリング装置の制御装置。
 かかる構成とすることで、走行路面の状況に応じた操舵アシストを行うことが可能となる。
 (m)前記(l)に記載の電動パワーステアリング装置の制御装置において、
 前記位相変化判断部は、車両のヨーモーメントが所定値以下の場合には、前記横断勾配付き路面を直進走行中であると判断し、前記ヨーモーメントが前記所定値より大きい場合には、旋回半径の外側が内側よりも低く形成された路面を走行中であると判断することを特徴とする電動パワーステアリング装置の制御装置。
 かかる構成によれば、ヨーモーメントに基づいて前記2つの走行状態を判断でき、該走行状態に応じた適切な操舵アシストが可能となる。
 (n)請求項6に記載の電動パワーステアリング装置の制御装置において、
 前記電子コントロールユニットは、前記第1回転角センサ及び前記第2回転角センサの中立位置からのオフセット量を補正する補正回路部を有することを特徴とする電動パワーステアリング装置の制御装置。
 かかる構成によれば、前記補正回路部により第1、第2回転角センサの精度の向上が図れ、誤判断の抑制に供される。
1…ステアリングホイール
2…入力軸
3…出力軸
5…電動モータ
6…電子コントロールユニット
10…基本アシスト電流演算部
11…方向一致判断部
12…先行位相判断部
13…正逆入力判断部
14…位相変化判断部
15…横断勾配用電流演算部(外乱対抗電流演算部)
RP…ラック・ピニオン機構(変換機構)
S1…第1回転角センサ
S2…第2回転角センサ
θ1…第1回転角信号
θ2…第2回転角信号
Ib…基本アシスト電流
Ic…横断勾配用電流(外乱対抗電流)

Claims (20)

  1.  ステアリングホイールの操舵操作に伴い回転する入力軸と、該入力軸とトーションバーを介して接続される出力軸と、該出力軸の回転を転舵輪の転舵動作に変換する変換機構とから構成される操舵機構と、
     前記入力軸側に設けられ、該入力軸の回転角を検出して第1回転角信号として出力する第1回転角センサと、
     前記出力軸側に設けられ、該出力軸の回転角を検出又は推定して第2回転角信号として出力する第2回転角センサと、
     前記操舵機構に操舵アシスト力を付与する電動モータと、
     車両の運転状態に基づいて前記電動モータを駆動制御する電子コントロールユニットと、を備え、
     前記電子コントロールユニットは、
     運転者による操舵トルクに基づいた前記電動モータへの指令電流である基本アシスト電流を演算する基本アシスト電流演算部と、
     前記入力軸の回転方向と前記出力軸の回転方向とが一致しているか否かを判断する方向一致判断部と、
     前記第1回転角信号と前記第2回転角信号のうち、いずれの位相が先行するかを判断する先行位相判断部と、
     前記方向一致判断部によって方向一致と判断され、かつ前記先行位相判断部によって前記第1回転角信号の位相が先行すると判断されたときは、前記トーションバーの捩れが前記入力軸側からの正入力によるものと判断し、前記方向一致判断部によって方向一致と判断され、かつ前記先行位相判断部によって前記第2回転角信号の位相が先行すると判断されたときは、前記トーションバーの捩れが前記出力軸側からの逆入力によるものと判断する正逆入力判断部と、
     前記第1回転角信号の位相と前記第2回転角信号の位相とに基づき前記トーションバーの捩れ方向の反転が生じたか否かを判断する位相変化判断部と、
     前記正逆入力判断部によって逆入力と判断された後、前記位相変化判断部によって前記トーションバーの捩れ方向の反転が発生していない状態が継続していると判断されたときに、前記基本アシスト電流よりも大きな外乱対抗電流を演算する外乱対抗電流演算部と、
     を有することを特徴とする電動パワーステアリング装置。
  2.  前記外乱対抗電流は、前記トーションバーの捩れ方向が反転しない大きさに設定されていることを特徴とする請求項1に記載の電動パワーステアリング装置。
  3.  前記外乱対抗電流は、車両速度が高いほど小さくなるように演算されることを特徴とする請求項2に記載の電動パワーステアリング装置。
  4.  前記外乱対抗電流は、前記第1回転角信号と前記第2回転角信号との差が大きいほど大きくなるように演算されることを特徴とする請求項2に記載の電動パワーステアリング装置。
  5.  前記電子コントロールユニットは、車両速度が所定値以上のときにのみ前記外乱対抗電流を出力することを特徴とする請求項2に記載の電動パワーステアリング装置。
  6.  前記外乱対抗電流は、車両のヨーモーメントが大きいほど大きくなるように演算されることを特徴とする請求項2に記載の電動パワーステアリング装置。
  7.  前記正逆入力判断部は、ローパスフィルタを通過した前記第1回転角信号と前記第2回転角信号とに基づいて、前記トーションバーの捩れが前記正入力によるものか前記逆入力によるものかを判断することを特徴とする請求項1に記載の電動パワーステアリング装置。
  8.  前記位相変化判断部は、前記第1回転角信号が前記第2回転角信号よりも大きいとき、車両が横断勾配付き路面を直進走行中であるか、又は旋回半径の外側が内側よりも低く形成された路面を走行中であると判断し、
     前記外乱対抗電流演算部は、前記位相変化判断部の判断結果に基づき、前記外乱対抗電流を補正することを特徴とする請求項1に記載の電動パワーステアリング装置。
  9.  前記位相変化判断部は、車両のヨーモーメントが所定値以下の場合には、前記横断勾配付き路面を直進走行中であると判断し、前記ヨーモーメントが前記所定値より大きい場合には、旋回半径の外側が内側よりも低く形成された路面を走行中であると判断することを特徴とする請求項8に記載の電動パワーステアリング装置。
  10.  前記電子コントロールユニットは、前記第1回転角センサ及び前記第2回転角センサの中立位置からのオフセット量を補正する補正回路部を有することを特徴とする請求項1に記載の電動パワーステアリング装置。
  11.  電動モータを駆動制御することによって運転者の操舵アシストに供する電動パワーステアリング装置の制御装置であって、
     ステアリングホイールの操舵操作に伴い回転する入力軸の回転角を検出する第1回転角センサから出力された第1回転角信号を受信する第1回転角受信部と、
     前記入力軸とトーションバーを介して接続される出力軸の回転角を検出する第2回転角センサから出力された第2回転角信号を受信する第2回転角受信部と、
     運転者による操舵トルクに基づいた前記電動モータへの指令電流である基本アシスト電流を演算する基本アシスト電流演算部と、
     前記入力軸の回転方向と前記出力軸の回転方向とが一致しているか否かを判断する方向一致判断部と、
     前記第1回転角信号と前記第2回転角信号のうち、いずれの位相が先行するかを判断する先行位相判断部と、
     前記方向一致判断部によって方向一致と判断され、かつ前記先行位相判断部によって前記第1回転角信号の位相が先行すると判断されたときは、前記トーションバーの捩れが前記入力軸側からの正入力によるものと判断し、前記方向一致判断部によって方向一致と判断され、かつ前記先行位相判断部によって前記第2回転角信号の位相が先行すると判断されたときは、前記トーションバーの捩れが前記出力軸側からの逆入力によるものと判断する正逆入力判断部と、
     前記第1回転角信号の位相と前記第2回転角信号の位相とに基づき前記トーションバーの捩れ方向の反転が生じたか否かを判断する位相変化判断部と、
     前記正逆入力判断部によって逆入力と判断された後、前記位相変化判断部によって前記トーションバーの捩れ方向の反転が発生していない状態が継続していると判断されたときに、前記基本アシスト電流よりも大きな外乱対抗電流を演算する外乱対抗電流演算部と、
     を有することを特徴とする電動パワーステアリング装置の制御装置。
  12.  前記外乱対抗電流は、前記トーションバーの捩れ方向が反転しない大きさに設定されていることを特徴とする請求項11に記載の電動パワーステアリング装置の制御装置。
  13.  前記外乱対抗電流は、車両速度が高いほど小さくなるように演算されることを特徴とする請求項12に記載の電動パワーステアリング装置の制御装置。
  14.  前記外乱対抗電流は、前記第1回転角信号と前記第2回転角信号との差が大きいほど大きくなるように演算されることを特徴とする請求項12に記載の電動パワーステアリング装置の制御装置。
  15.  前記電子コントロールユニットは、車両速度が所定値以上のときにのみ前記外乱対抗電流を出力することを特徴とする請求項12に記載の電動パワーステアリング装置の制御装置。
  16.  前記外乱対抗電流は、車両のヨーモーメントが大きいほど大きくなるように演算されることを特徴とする請求項12に記載の電動パワーステアリング装置の制御装置。
  17.  前記正逆入力判断部は、ローパスフィルタを通過した前記第1回転角信号と前記第2回転角信号とに基づいて、前記トーションバーの捩れが前記正入力によるものか前記逆入力によるものかを判断することを特徴とする請求項11に記載の電動パワーステアリング装置の制御装置。
  18.  前記位相変化判断部は、前記第1回転角信号が前記第2回転角信号よりも大きいとき、車両が横断勾配付き路面を直進走行中であるか、又は旋回半径の外側が内側よりも低く形成された路面を走行中であると判断し、
     前記外乱対抗電流演算部は、前記位相変化判断部の判断結果に基づき、前記外乱対抗電流を補正することを特徴とする請求項11に記載の電動パワーステアリング装置の制御装置。
  19.  前記位相変化判断部は、車両のヨーモーメントが所定値以下の場合には、前記横断勾配付き路面を直進走行中であると判断し、前記ヨーモーメントが前記所定値より大きい場合には、旋回半径の外側が内側よりも低く形成された路面を走行中であると判断することを特徴とする請求項18に記載の電動パワーステアリング装置の制御装置。
  20.  前記電子コントロールユニットは、前記第1回転角センサ及び前記第2回転角センサの中立位置からのオフセット量を補正する補正回路部を有することを特徴とする請求項11に記載の電動パワーステアリング装置の制御装置。
PCT/JP2015/050745 2014-03-19 2015-01-14 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置 WO2015141253A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580012999.4A CN106458253B (zh) 2014-03-19 2015-01-14 电动动力转向装置以及电动动力转向装置的控制装置
JP2016508556A JP6151849B2 (ja) 2014-03-19 2015-01-14 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置
KR1020167019403A KR101784643B1 (ko) 2014-03-19 2015-01-14 전동 파워 스티어링 장치 및 전동 파워 스티어링 장치의 제어 장치
US15/121,193 US9862408B2 (en) 2014-03-19 2015-01-14 Electric power steering device and electric power steering device control device
DE112015001321.0T DE112015001321T5 (de) 2014-03-19 2015-01-14 Elektrische Servolenkungsvorrichtung und Steuervorrichtung für eine elektrische Servolenkungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014055857 2014-03-19
JP2014-055857 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141253A1 true WO2015141253A1 (ja) 2015-09-24

Family

ID=54144233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050745 WO2015141253A1 (ja) 2014-03-19 2015-01-14 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置

Country Status (6)

Country Link
US (1) US9862408B2 (ja)
JP (1) JP6151849B2 (ja)
KR (1) KR101784643B1 (ja)
CN (1) CN106458253B (ja)
DE (1) DE112015001321T5 (ja)
WO (1) WO2015141253A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106741139A (zh) * 2016-12-16 2017-05-31 吉林大学 双转子电机线控转向系统及其失效防护装置和控制方法
KR20210060881A (ko) 2019-11-19 2021-05-27 현대자동차주식회사 외란 보상 조향제어 방법 및 전동조향장치

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6876242B2 (ja) * 2015-12-24 2021-05-26 株式会社ジェイテクト ハンドル操作状態判定装置
CN109229099B (zh) * 2017-07-06 2023-02-21 罗伯特·博世有限公司 计入了车辆横向加速度的坡道辅助控制模块和系统
EP3831694B1 (en) * 2018-07-31 2022-06-08 Mitsubishi Electric Corporation Steering control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295172A (ja) * 1985-06-20 1986-12-25 Toyoda Mach Works Ltd 動力舵取り装置
JP2007320429A (ja) * 2006-05-31 2007-12-13 Nsk Ltd 電動パワーステアリング装置
JP2012225679A (ja) * 2011-04-15 2012-11-15 Hitachi Automotive Systems Steering Ltd トルクセンサおよびパワーステアリング装置
JP2013184622A (ja) * 2012-03-09 2013-09-19 Hitachi Automotive Systems Steering Ltd 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置
JP2014004920A (ja) * 2012-06-25 2014-01-16 Toyota Motor Corp 車両の電動パワーステアリング装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4639759B2 (ja) * 2004-11-09 2011-02-23 株式会社ジェイテクト 電動パワーステアリング装置
KR100764198B1 (ko) * 2006-01-12 2007-10-05 주식회사 만도 조향각 센서를 구비한 전동식 조향장치
US20090240389A1 (en) 2006-05-31 2009-09-24 Nsk Ltd Electric power steering apparatus
JP5123835B2 (ja) 2008-12-10 2013-01-23 本田技研工業株式会社 電動パワーステアリング装置
JP5436654B2 (ja) * 2010-02-19 2014-03-05 三菱電機株式会社 操舵制御装置
JP5570401B2 (ja) * 2010-12-01 2014-08-13 本田技研工業株式会社 電動パワーステアリング装置
EP2662266B1 (en) * 2011-01-07 2015-11-25 Honda Motor Co., Ltd. Electric power steering device
JP5880574B2 (ja) * 2011-12-12 2016-03-09 トヨタ自動車株式会社 操舵装置
EP2907727B1 (en) * 2012-10-10 2017-05-31 NSK Ltd. Device for detecting physical quantities and electromotive power steering device using same
EP3015344B1 (en) * 2013-10-01 2017-09-06 NSK Ltd. Electric power steering device
JP6220687B2 (ja) * 2014-02-04 2017-10-25 Kyb株式会社 電動パワーステアリング装置
EP3020615B1 (en) * 2014-09-17 2019-04-17 NSK Ltd. Electric power steering device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61295172A (ja) * 1985-06-20 1986-12-25 Toyoda Mach Works Ltd 動力舵取り装置
JP2007320429A (ja) * 2006-05-31 2007-12-13 Nsk Ltd 電動パワーステアリング装置
JP2012225679A (ja) * 2011-04-15 2012-11-15 Hitachi Automotive Systems Steering Ltd トルクセンサおよびパワーステアリング装置
JP2013184622A (ja) * 2012-03-09 2013-09-19 Hitachi Automotive Systems Steering Ltd 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置
JP2014004920A (ja) * 2012-06-25 2014-01-16 Toyota Motor Corp 車両の電動パワーステアリング装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106741139A (zh) * 2016-12-16 2017-05-31 吉林大学 双转子电机线控转向系统及其失效防护装置和控制方法
KR20210060881A (ko) 2019-11-19 2021-05-27 현대자동차주식회사 외란 보상 조향제어 방법 및 전동조향장치
US11541929B2 (en) 2019-11-19 2023-01-03 Hyundai Motor Company Disturbance compensation steering control method and motor driven power steering system thereof

Also Published As

Publication number Publication date
US9862408B2 (en) 2018-01-09
US20160368531A1 (en) 2016-12-22
CN106458253A (zh) 2017-02-22
JP6151849B2 (ja) 2017-06-21
JPWO2015141253A1 (ja) 2017-04-06
DE112015001321T5 (de) 2016-12-15
CN106458253B (zh) 2018-11-30
KR20160101101A (ko) 2016-08-24
KR101784643B1 (ko) 2017-10-11

Similar Documents

Publication Publication Date Title
EP2900542B1 (en) Steering control system for vehicle and steering control method for vehicle
JP6151849B2 (ja) 電動パワーステアリング装置及び電動パワーステアリング装置の制御装置
JP5327331B2 (ja) 車両の電動パワーステアリング装置
WO2017068895A1 (ja) 電動パワーステアリング装置
JP5860568B2 (ja) パワーステアリング装置及びこれに用いる制御装置
JP5708572B2 (ja) 車両の電動パワーステアリング装置
JP2003175850A (ja) 電動パワーステアリング装置の制御装置
CN107176201B (zh) 转向操纵控制装置
US8838340B2 (en) Electric power steering system
US20180086372A1 (en) Steering control device
US10106191B2 (en) Electric power steering device
JP5780229B2 (ja) 電動パワーステアリング装置
JP2009096325A (ja) ステアリング装置の故障検知装置
US20170066474A1 (en) Steering control apparatus
JP6256319B2 (ja) パワーステアリング制御装置
JP6413589B2 (ja) 車両用操舵装置
JP5867287B2 (ja) 車両用舵角検出装置及び電動パワーステアリング装置
JP2016107764A (ja) パワーステアリング装置
JP5025686B2 (ja) 車両挙動制御装置
JP2008062686A (ja) 電動パワーステアリング制御装置及びその制御方法
JP2004289925A (ja) 車両のスリップ検出方法及び装置
JP5739085B2 (ja) 電動パワーステアリング装置
JP2017077831A (ja) 電動パワーステアリング装置
JP2013244802A (ja) 車両制御装置
JP2011110975A (ja) 電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508556

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167019403

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15121193

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015001321

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765840

Country of ref document: EP

Kind code of ref document: A1