WO2015137434A1 - テトラシクロドデセン系開環重合体水素化物及びその製造方法 - Google Patents

テトラシクロドデセン系開環重合体水素化物及びその製造方法 Download PDF

Info

Publication number
WO2015137434A1
WO2015137434A1 PCT/JP2015/057263 JP2015057263W WO2015137434A1 WO 2015137434 A1 WO2015137434 A1 WO 2015137434A1 JP 2015057263 W JP2015057263 W JP 2015057263W WO 2015137434 A1 WO2015137434 A1 WO 2015137434A1
Authority
WO
WIPO (PCT)
Prior art keywords
ring
tetracyclododecene
opening polymer
polymer hydride
repeating unit
Prior art date
Application number
PCT/JP2015/057263
Other languages
English (en)
French (fr)
Inventor
重孝 早野
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to EP15760910.8A priority Critical patent/EP3118239B1/en
Priority to US15/125,777 priority patent/US10253137B2/en
Priority to CN201580012226.6A priority patent/CN106103535B/zh
Priority to JP2016507816A priority patent/JP6428760B2/ja
Publication of WO2015137434A1 publication Critical patent/WO2015137434A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F32/00Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F32/08Homopolymers and copolymers of cyclic compounds having no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having two condensed rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/21Stereochemical aspects
    • C08G2261/212Regioregularity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3325Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from other polycyclic systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/59Stability
    • C08G2261/592Stability against heat
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/62Mechanical aspects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/72Derivatisation
    • C08G2261/724Hydrogenation

Definitions

  • the present invention relates to a tetracyclododecene ring-opening polymer hydride having crystallinity and excellent heat resistance and workability even after undergoing a thermal history such as melt molding, and a method for producing the same.
  • Ring-opening polymer hydride such as dicyclopentadiene is a kind of so-called cycloolefin polymer, and is excellent in transparency, low birefringence, molding processability, etc., so it can be applied to various applications including optical applications. It is used as a material that can be used.
  • ring-opening polymer hydrides such as dicyclopentadiene are usually obtained as amorphous polymers with random atacticity and an atactic structure.
  • heat resistance mechanical strength
  • the solvent resistance may be insufficient.
  • Patent Document 1 discloses that a ring-opening polymer having crystallinity is obtained by ring-opening polymerization of dicyclopentadiene using a polymerization catalyst mainly composed of a Group 6 transition metal compound having a specific substituent. Furthermore, it is disclosed that a hydrogenated ring-opening polymer can be obtained by hydrogenating a carbon-carbon double bond in the ring-opening polymer using a hydrogenation catalyst. ing.
  • Patent Document 2 has syndiotactic stereoregularity when ring-opening polymerization of dicyclopentadiene using a polymerization catalyst mainly composed of a transition metal compound of Group 6 of the periodic table having an imide ligand.
  • a ring-opened polymer is obtained, and a carbon-carbon double bond in the ring-opened polymer is hydrogenated using a hydrogenation catalyst, whereby the ratio of racemo dyad is 51% or more. It is disclosed that a syndiotactic ring-opening polymer hydride having properties can be obtained.
  • the melting point of these crystalline dicyclopentadiene ring-opening polymer hydrides is 260 to 290 ° C., but the glass transition point of the dicyclopentadiene ring-opening polymer hydride does not depend on whether it is crystalline or amorphous. It is around 100 ° C. Therefore, even in a crystalline dicyclopentadiene ring-opened polymer hydride, when heated to 100 ° C. or higher, thermal relaxation of the amorphous domain out of the crystalline / amorphous domain of the resin occurs. Therefore, in the molded product of crystalline dicyclopentadiene ring-opening polymer hydride, mechanical strength and heat resistance change around 100 ° C., the linear expansion coefficient increases, and load deflection occurs even at low loads. Such problems occur.
  • Patent Document 3 discloses that when cyclocyclodedecene is subjected to ring-opening polymerization using a specific ring-opening polymerization catalyst mainly containing a transition metal compound of Group 6 of the periodic table having an imide ligand, syndiotactic A ring-opening polymer having stereoregularity is obtained, and an amorphous hydrogenated tetracyclododecene ring-opening polymer is obtained by hydrogenating a carbon-carbon double bond in the ring-opening polymer. Is disclosed.
  • the resulting tetracyclododecene ring-opened polymer hydride has a melting point (280 ° C.), but has a semi-crystalline property in which no glass transition point is observed. It is also disclosed that it is a resin.
  • the present inventor examined the semi-crystalline tetracyclododecene ring-opened polymer hydride described in Patent Document 3. Then, after this resin is melted once, the melt is rapidly cooled and solidified to form a resin molded body. When the obtained resin is measured for thermal characteristics with a differential scanning calorimeter, the glass transition point and the cooling temperature are measured. An exotherm of crystallization was observed. Moreover, when the wide angle X-ray-diffraction measurement of the obtained resin molding was performed, only the halo based on an amorphous was observed, the peak derived from a crystal
  • the atactic tetracyclododecene ring-opening polymer hydride has a crystallizing rate that is very slow once the crystal melts into a melt, and cannot be crystallized when cooled to room temperature. Become. Therefore, this has a problem that heat resistance and workability are low, and industrial value as a material is small.
  • the present invention has been made in order to solve the above-described problems, and has both a high melting point and a glass transition point, and has crystallinity even after undergoing a thermal history such as melt molding, and has heat resistance and processing.
  • An object of the present invention is to provide a tetracyclododecene ring-opening polymer hydride having excellent properties and a method for producing the same.
  • the present inventor has intensively studied to solve the above problems.
  • the tetracyclododecene-derived repeating unit (A) is contained in an amount of 40% by weight or more based on the total repeating units, and the proportion of meso-dyad in the repeating unit (A) is 65% or more.
  • the ring-opened polymer hydride has both a high melting point and a glass transition point, has crystallinity, and has excellent heat resistance and workability even after undergoing a thermal history accompanied by rapid cooling by melt molding or the like. I found it.
  • the tetracyclododecene ring-opening polymer hydride is a copolymer, if it is crystalline, it is a repeating unit derived from a monomer other than tetracyclododecene and a repeating unit derived from tetracyclododecene.
  • the repeating unit (A) derived from tetracyclododecene is contained in an amount of 40% by weight or more based on the total repeating units, and the proportion of meso-dyad in the repeating unit (A) is 65% or more.
  • a tetracyclododecene-based ring-opening polymer hydride is provided.
  • the ring-opened polymer hydride preferably contains a repeating unit derived from dicyclopentadiene.
  • the ring-opening polymer hydride preferably contains a repeating unit derived from norbornene.
  • the ring-opened polymer hydride preferably has a number average molecular weight (Mn) of 2000 to 400,000.
  • the ring-opening polymer hydride preferably has a melting point of 300 ° C. or higher.
  • the ring-opened polymer hydride preferably has a glass transition point of 130 ° C. or higher.
  • M represents a transition metal atom of Group 6 of the periodic table, and L is substituted with (an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms which may have a substituent)]
  • R 1 to R 5 may each independently have a hydrogen atom, an alkyl group having 1 to 12 carbon atoms or a substituent.
  • X represents a halogen atom
  • n represents an integer of 1 to 4
  • m represents (4-n).
  • R 6 to R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an optionally substituted carbon.
  • p represents 1 or 2
  • q represents (4-2p)
  • r represents 0 or 1.
  • a tetracyclododecene-based monomer containing 40% by weight or more of tetracyclododecene based on the total amount of the monomers, and ring-opening polymerization of the tetracyclododecene-based monomer.
  • the tetracyclododecene ring-opening polymer hydride of the present invention has both a high melting point and a glass transition point, and has excellent crystallinity even after undergoing a heat history accompanied by rapid cooling by melt molding or the like. It has heat resistance and workability. Further, since this has an isotactic structure and a high crystallization speed, it can be suitably used as a molding material, fiber material, or film material for various applications.
  • the tetracyclododecene ring-opening polymer hydride of the present invention can be obtained by appropriately selecting a weight ratio of a repeating unit derived from tetracyclododecene and a repeating unit derived from a monomer other than tetracyclododecene.
  • the melting point and glass transition point can be designed so that the mechanical strength can be maintained up to a desired temperature. According to the production method of the present invention, the hydrogenated tetracyclododecene ring-opening polymer of the present invention can be efficiently produced.
  • Tetracyclododecene ring-opening polymer hydride contains 40 wt.% Of repeating units (A) derived from tetracyclododecene based on all repeating units. % Or more, preferably 50% by weight or more, more preferably 60% by weight or more, and the meso-dyad ratio in the repeating unit (A) is 65% or more.
  • the repeating unit (A) derived from tetracyclododecene is a repeating unit represented by the following formula (3). This is obtained by hydrogenating a main chain carbon-carbon double bond in a tetracyclododecene unit obtained by ring-opening polymerization of tetracyclododecene represented by the following formula (4).
  • the other repeating units include monocyclic cycloalkenes.
  • -Derived repeating units, norbornene-derived repeating units, dicyclopentadiene-derived repeating units, tetracyclododecene-derived repeating units (excluding tetracyclododecene-derived repeating units), hexacycloheptadecenes-derived Examples include repeating units.
  • repeating units other than these repeating units derived from tetracyclododecene are main chains in the monomer units obtained by ring-opening polymerization of other monomers capable of ring-opening copolymerization with tetracyclododecene. It is obtained by hydrogenating a carbon-carbon double bond.
  • a repeating unit derived from dicyclopentadiene and a repeating unit derived from norbornene are preferable, and a repeating unit derived from dicyclopentadiene and a repeating unit derived from norbornene are more preferable.
  • the repeating unit derived from tetracyclododecene is 50% by weight or more and derived from dicyclopentadiene.
  • the repeating unit is preferably 50% by weight or less, the repeating unit derived from tetracyclododecene is 55% by weight or more, and the repeating unit derived from dicyclopentadiene is more preferably 45% by weight or less.
  • the repeating unit derived from cyclododecene is 60% by weight or more and the repeating unit derived from dicyclopentadiene is 40% by weight or less.
  • the proportion of repeating units derived from tetracyclododecene is small and the proportion of repeating units derived from dicyclopentadiene is increased, a hydrogenated tetracyclododecene ring-opening polymer having a high melting point and a glass transition point is obtained. There is a risk of disappearing.
  • the repeating unit derived from tetracyclododecene is 60% by weight or more, and the repeating unit derived from norbornenes is 40% by weight or less. It is preferable that the repeating unit derived from tetracyclododecene is 65% by weight or more, the repeating unit derived from norbornenes is more preferably 35% by weight or less, and the repeating unit derived from tetracyclododecene is 70% by weight.
  • the content is not less than wt% and the repeating unit derived from norbornene is not more than 30 wt%.
  • the proportion of repeating units derived from tetracyclododecene decreases and the proportion of repeating units derived from norbornenes increases, a hydride of a tetracyclododecene ring-opening polymer having a high melting point and a glass transition point cannot be obtained. There is a fear.
  • the tetracyclododecene ring-opening polymer hydride of the present invention has stereoregularity (tacticity) because the carbon represented by (1,4) in the formula (3) is an asymmetric carbon. To do.
  • the tetracyclododecene ring-opening polymer hydride of the present invention has isotactic stereoregularity, and the proportion of meso-dyad is 65% or more, preferably 67% or more, more preferably 70% or more. Is an isotactic polymer.
  • the proportion of meso-dyad is less than 65%, the crystallinity of the tetracyclododecene ring-opening polymer hydride is greatly lowered, and characteristics such as a high melting point and workability may be impaired.
  • the proportion of meso-dyad can be calculated by 13 C-NMR spectrum analysis of tetracyclododecene ring-opening polymer hydride. Specifically, it can be measured by quantifying the spectrum of the carbon atom represented by (5, 10) in the formula (3) of the tetracyclododecene ring-opening polymer hydride of the present invention. That is, the carbon atom of the repeating unit (5, 10) represented by the formula (3) was subjected to 13 C-NMR spectrum measurement at 210 ° C.
  • the ratio of meso dyad to racemo dyad can be determined based on the intensity ratio of 51.40 ppm signal from dyad and 51.53 ppm signal from racemo dyad.
  • the number average molecular weight (Mn) of the tetracyclododecene ring-opening polymer hydride of the present invention is 500 to 1,000,000, preferably 1000 to 600,000, more preferably 2000 to 400,000. If Mn is too low, the mechanical strength may decrease, and if Mn is too high, molding becomes difficult. In addition, the number average molecular weight of the tetracyclododecene ring-opening polymer hydride is substantially equal to the number average molecular weight of the tetracyclododecene ring-opening polymer before the hydrogenation step.
  • the melting point of the tetracyclododecene ring-opening polymer hydride of the present invention is preferably 300 ° C. or higher, more preferably 305 ° C. or higher. When the melting point is lower than 300 ° C., the crystallinity of the resin is lowered at the same time, so that the workability may be lowered.
  • the upper limit of the melting point is not particularly limited, but is generally 360 ° C.
  • the glass transition point of the tetracyclododecene ring-opening polymer hydride of the present invention is preferably 130 ° C. or higher, more preferably 135 ° C. or higher.
  • the upper limit of the glass transition temperature is not particularly limited, but is generally 200 ° C.
  • the production method of the tetracyclododecene ring-opening polymer hydride of the present invention is not particularly limited, but the production method of the present invention described later can be preferably exemplified.
  • the production method of the tetracyclododecene ring-opening polymer hydride of the present invention may be referred to as a compound represented by the above formula (1) (hereinafter referred to as “compound (1)”) as a polymerization catalyst.
  • compound (2) a compound represented by the above formula (2) (hereinafter sometimes referred to as “compound (2)”) by ring-opening polymerization of a tetracyclododecene monomer, Step (I) for obtaining a cyclododecene ring-opening polymer, and hydrogenation of the main chain carbon-carbon double bond of the obtained tetracyclododecene ring-opening polymer using hydrogen and a hydrogenation catalyst Step (II).
  • Step (I) In the step (I), the compound (1) or the compound (2) is used as a polymerization catalyst, and tetracyclododecene is added in an amount of 40% by weight or more, preferably 50% by weight or more, based on the total monomers.
  • the step is a step of ring-opening polymerization of a tetracyclododecene monomer containing 60% by weight or more to obtain a tetracyclododecene ring-opening polymer.
  • Tetracyclododecene used as a monomer may consist of four stereoisomers: (endo, anti), (endo, syn), (exo, anti), and (exo, syn).
  • (endo, anti) isomer and (exo, syn) isomer are the main components, and the abundance of the (endo, syn) isomer and (exo, anti) isomer is below the measurement limit by spectroscopic analysis.
  • tetracyclododecene preferably has a high optical purity, and particularly preferably has a high ratio of (endo, anti) isomers.
  • the content of (endo, anti) isomer is preferably 80% or more, and more preferably 90% or more.
  • the content of (endo, anti) isomer is less than 80%, the crystallinity of the resulting tetracyclododecene ring-opening polymer hydride is greatly reduced, and characteristics such as a high melting point and a high glass transition point are impaired. There is a fear.
  • the monomer other than tetracyclododecene in the tetracyclododecene monomer is not particularly limited as long as it does not inhibit the object of the present invention.
  • Examples include cycloalkenes, dicyclopentadiene, norbornenes, tetracyclododecenes (excluding tetracyclododecene), hexacycloheptadecenes, and the like.
  • dicyclopentadiene and norbornene are preferable, and dicyclopentadiene and norbornene are more preferable.
  • These monomers can be used individually by 1 type or in combination of 2 or more types.
  • Examples of cycloalkenes include cyclopentene, cyclohexene, cycloheptane and the like.
  • Examples of dicyclopentadiene include tricyclo [4.3.1 2,5 . Dicyclopentadiene or dicyclopentadiene in which a double bond of a 5-membered ring portion is saturated. 0] dec-3-ene, tricyclo [4.4.1 2,5 . 0] Under-3-ene and the like.
  • Norbornenes include unsubstituted or alkyl groups such as norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, and 5-cyclopentylnorbornene.
  • Norbornenes having a substituent Norbornenes having an alkenyl group as a substituent, such as 5-ethylidene norbornene, 5-vinyl norbornene, 5-propenyl norbornene, 5-cyclohexenyl norbornene, 5-cyclopentenyl norbornene; Norbornenes having an aromatic ring as a substituent, such as 5-phenylnorbornene;
  • tetracyclododecenes other than tetracyclododecene include alkyl groups such as 8-methyltetracyclododecene, 8-ethyltetracyclododecene, 8-cyclohexyltetracyclododecene, and 8-cyclopentyltetracyclododecene.
  • Tetracyclododecenes having an aromatic ring such as 8-phenyltetracyclododecene; 8-methoxycarbonyltetracyclododecene, 8-methyl-8-methoxycarbonyltetracyclododecene, 8-hydroxymethyltetracyclododecene, 8-carboxytetracyclododecene, tetracyclododecene-8,9-dicarboxylic acid Tetracyclododecenes having a substituent containing an oxygen atom, such as tetracyclododecene-8,9-dicarboxylic acid anhydride;
  • Tetracyclododecenes having a substituent containing a nitrogen atom such as 8-cyanotetracyclododecene, tetracyclododecene-8,9-dicarboxylic imide; Tetracyclododecenes having a halogen-containing substituent, such as 8-chlorotetracyclododecene; And tetracyclododecenes having a substituent containing a silicon atom, such as 8-trimethoxysilyltetracyclododecene.
  • Hexacycloheptadecenes include unsubstituted or non-substituted hexacycloheptadecene, 12-methylhexacycloheptadecene, 12-ethylhexacycloheptadecene, 12-cyclohexylhexacycloheptadecene, 12-cyclopentylhexacycloheptadecene, etc.
  • Hexacycloheptadecenes having an alkyl group as a substituent 12-methylidenehexacycloheptadecene, 12-ethylidenehexacycloheptadecene, 12-vinylhexacycloheptadecene, 12-propenylhexacycloheptadecene, 12-cyclohexenylhexacycloheptadecene, 12-cyclopentenylhexacycloheptadecene Hexacycloheptadecenes having a double bond outside the ring, etc .; Hexacycloheptadecenes having an aromatic ring as a substituent, such as 12-phenylhexacycloheptadecene;
  • the compound (1) or the compound (2) is used as a polymerization catalyst.
  • M is a periodic table group 6 transition metal atom.
  • L represents an imide ligand or an oxo ligand which may be substituted with (an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms which may have a substituent).
  • the alkyl group having 1 to 12 carbon atoms as the substituent of the imide ligand may be linear, branched or cyclic.
  • a linear or branched alkyl group having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, or a pentyl group; a cyclohexyl group, an adamantyl group And the like, and the like.
  • Examples of the aryl group having 6 to 12 carbon atoms which may have a substituent of the imide ligand include a phenyl group and 1 to 1 having a substituent in at least one of the 2, 3, 4, 5, and 6 positions.
  • a pentasubstituted phenyl group can be mentioned.
  • the substituent that the aryl group has is not particularly limited.
  • an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group or an isopropyl group; an aryl group such as a phenyl group; a halogen atom such as a fluorine atom, a chlorine atom or a bromine atom; a carbon number such as a methoxy group or an ethoxy group 1-6 alkoxy groups; amino groups; imino groups; and the like.
  • R 1 to R 13 each independently represents a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or an aryl group having 6 to 12 carbon atoms which may have a substituent.
  • Examples of the alkyl group having 1 to 12 carbon atoms and the aryl group having 6 to 12 carbon atoms which may have a substituent include those exemplified as the imide ligand.
  • R 1 to R 5 and R 6 to R 13 may be bonded to each other to form a ring.
  • X represents a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom. When there are a plurality of X, Xs may be the same or different. Especially, it is preferable that all X is a chlorine atom.
  • n represents an integer of 1 to 4. From the viewpoint of controlling the stereoregularity of the repeating unit obtained by hydrogenating the main chain double bond of a ring-opening polymer obtained by ring-opening polymerization of tetracyclododecene or the like, n is 3 or 4. Is preferable, and 4 is more preferable.
  • m represents (4-n).
  • p represents 1 or 2, and 2 is preferable.
  • q represents (4-2p).
  • r represents 0 or 1, and 0 is preferable.
  • Examples of the compound (1) and compound (2) used in the present invention include, for example, tetraphenoxyoxymolybdenum (VI), tetrakis (2, 6-dimethylphenoxy) oxymolybdenum (VI), tetrakis (2,6-diisopropylphenoxy) oxymolybdenum (VI), bis ⁇ 2,2'-methylenebis- (4-methyl-6-t-butylphenoxy) ⁇ oxymolybdenum (VI), bis (1,1′-binaphthyl-2,2′-dioxy) oxymolybdenum (VI), bis ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6′- Tetramethyl-2,2′-biphenoxy ⁇ oxymolybdenum (VI), bis ⁇ 3,3′-diphenyl-1,1′-binaphthyl-2,2′-di
  • Tetraphenoxyoxytungsten (VI), tetrakis (2,6-dimethylphenoxy) oxytungsten (VI), tetrakis (2,6-diisopropylphenoxy) oxytungsten (VI), bis ⁇ 2,2'-methylenebis- (4- Methyl-6-t-butylphenoxy) ⁇ oxytungsten (VI), bis (1,1′-binaphthyl-2,2′-dioxy) oxytungsten (VI), bis ⁇ 3,3′-di (t-butyl) ) -5,5 ′, 6,6′-tetramethyl-2,2′-biphenoxy ⁇ oxytungsten (VI), bis ⁇ 3,3′-diphenyl-1,1′-binaphthyl-2,2′-dioxy ⁇ Oxytungsten (VI), ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6′-tetramethyl-2,2′-biphenoxy Ox
  • the method for synthesizing the periodic table Group 6 transition metal compound used in the present invention is not particularly limited.
  • the compound in which L is an imide ligand is a periodic table group 6 transition metal oxyhalide or a periodic table group 6 transition metal imide halide, and is unsubstituted. Or it can obtain by making it react with the metal salt (phenol metal salt) of substituted phenol.
  • the periodic table group 6 transition metal oxyhalide or periodic table group 6 transition metal oxyhalide is a periodic table group 6 transition metal oxychloride or periodic table group 6 transition.
  • Metal imide chloride is preferred.
  • Group 6 transition metal oxychlorides of the periodic table include oxymolybdenum tetrachloride and oxytungsten tetrachloride.
  • Periodic table Group 6 transition metal imide chlorides include phenylimide molybdenum tetrachloride, 2,6-diisopropylphenylimide molybdenum tetrachloride, cyclohexylimide molybdenum tetrachloride, adamantylimide molybdenum tetrachloride, and phenylimide tungsten tetrachloride.
  • Examples include chloride, 2,6-diisopropylphenylimide tungsten tetrachloride, cyclohexylimide tungsten tetrachloride, ethylimide tungsten tetrachloride, adamantylimide tungsten tetrachloride, and the like.
  • the periodic table group 6 transition metal imide halide is, for example, in the case where the metal atom M is tungsten, by reacting an oxy tetrahalide with a substituted isocyanate, and in the case where the metal atom M is molybdenum, the halogen It can be obtained by reacting a compound with a substituted azide.
  • Group 6 transition metal oxyhalides and Group 6 transition metal imide halides of the periodic table may be coordinated with one equivalent of an electron-donating base.
  • the electron donating base include diethyl ether, dibutyl ether, tetrahydrofuran, pyridine, 2,6-lutidine, and triethylamine.
  • the phenol metal salt an alkali metal salt is preferable.
  • the phenol metal salt include phenoxy lithium, 2,6-dimethylphenoxy lithium, 2,6-diisopropylphenoxy lithium, 2,2′-methylenebis- (4-methyl-6-t-butylphenoxy) lithium, ( 1,1′-binaphthyl-2,2′-dioxy) dilithium, 3,3′-di (t-butyl) -5,5 ′, 6,6′-tetramethyl-2,2′-biphenoxydilithium 3,3′-diphenyl-1,1′-binaphthyl-2,2′-dioxylithium and the like.
  • the polymerization catalyst may contain other components in addition to the periodic table group 6 transition metal compound. It is particularly preferable that the polymerization catalyst contains an organic metal compound other than the Group 6 transition metal compound of the periodic table as a cocatalyst because the activity of the polymerization catalyst is increased.
  • the organometallic compound is preferably an organometallic compound of any one of Groups 1, 2, 12, 13 and 14 of the periodic table having a hydrocarbon group having 1 to 20 carbon atoms, such as an organolithium compound, organomagnesium compound, organic Zinc compounds, organoaluminum compounds, and organotin compounds are more preferred, and organolithium compounds and organoaluminum compounds are particularly preferred.
  • Examples of the organic lithium compound include n-butyllithium, methyllithium, phenyllithium, neopentyllithium, neophyllithium and the like.
  • Examples of the organomagnesium compound include butylethylmagnesium, butyloctylmagnesium, dihexylmagnesium, ethylmagnesium chloride, n-butylmagnesium chloride, allylmagnesium bromide, neopentylmagnesium chloride, neophyllmagnesium chloride and the like.
  • Examples of the organic zinc compound include dimethyl zinc, diethyl zinc, and diphenyl zinc.
  • organoaluminum compound examples include trimethylaluminum, triethylaluminum, triisobutylaluminum, diethylaluminum chloride, diethylaluminum ethoxide, ethylaluminum dichloride, ethylaluminum diethoxide and the like.
  • organic tin compound examples include tetramethyltin, tetra (n-butyl) tin, and tetraphenyltin.
  • the amount of these organometallic compounds added is usually 0.1 to 100 times mol, preferably 0.2 to 50 times mol, more preferably the central metal of the Group 6 transition metal compound of the periodic table. Is 0.5 to 20 mole times. If the amount added is too small, the polymerization activity may not be sufficiently improved, and if it is too much, side reactions may easily occur.
  • the use amount of the Group 6 transition metal compound of the periodic table is not particularly limited, but the molar ratio of the transition metal of the Group 6 transition metal compound to the tetracyclododecene monomer is 1:10.
  • a range of ⁇ 1: 2,000,000 is preferred, a range of 1: 200 to 1: 1,000,000 is more preferred, and a range of 1: 500 to 1: 500,000 is particularly preferred. If the amount of the polymerization catalyst used is too large, it may be difficult to remove the polymerization catalyst, and if it is too small, sufficient polymerization activity may not be obtained.
  • the polymerization reaction can be carried out in a solventless system, it is preferably carried out in an organic solvent from the viewpoint that the reaction can be well controlled.
  • the organic solvent to be used is not particularly limited as long as it can dissolve or disperse the obtained ring-opening polymer and is inert to the polymerization reaction.
  • aliphatic hydrocarbon solvents such as pentane, hexane, heptane; cyclopentane, cyclohexane, methylcyclohexane, dimethylcyclohexane, trimethylcyclohexane, ethylcyclohexane, diethylcyclohexane, decahydronaphthalene, bicycloheptane, tricyclodecane, Hexahydroindenecyclohexane, cyclooctane and other alicyclic hydrocarbon solvents; benzene, toluene, xylene and other aromatic hydrocarbon solvents; dichloromethane, chloroform, 1,2-dichloroethane and other halogenated aliphatic hydrocarbon solvents Halogenated aromatic hydrocarbon solvents such as chlorobenzene and dichlorobenzene; nitrogen-containing hydrocarbon solvents such as nitromethane, nitrobenzene and ace
  • the concentration of the tetracyclododecene monomer in the reaction system is not particularly limited, but is preferably 1 to 50% by weight, and preferably 2 to 45% by weight. % Is more preferable, and 3 to 40% by weight is particularly preferable. If the concentration of the monomer is too low, the productivity may be deteriorated. If it is too high, the viscosity of the reaction solution after the polymerization reaction becomes too high, and the subsequent hydrogenation reaction may be difficult.
  • the polymerization temperature is not particularly limited, but is usually ⁇ 30 ° C. to + 200 ° C., preferably 0 ° C. to 180 ° C. Although the polymerization time depends on the reaction scale, it is usually selected in the range of 1 minute to 100 hours.
  • a vinyl compound or a diene compound may be added to the polymerization reaction system for the purpose of adjusting the molecular weight of the resulting ring-opening polymer.
  • the vinyl compound is not particularly limited as long as it is an organic compound having a vinyl group.
  • ⁇ -olefins such as 1-butene, 1-pentene, 1-hexene and 1-octene
  • styrenes such as styrene and vinyltoluene
  • ethers such as ethyl vinyl ether, i-butyl vinyl ether and allyl glycidyl ether
  • allyl Halogen-containing vinyl compounds such as chloride
  • oxygen-containing vinyl compounds such as allyl acetate, allyl alcohol and glycidyl methacrylate
  • nitrogen-containing vinyl compounds such as acrylamide
  • silicon-containing vinyl compounds such as vinyltrimethylsilane and vinyltrimethoxysilane
  • diene compound examples include 1,4-pentadiene, 1,4-hexadiene, 1,5-hexadiene, 1,6-heptadiene, 2-methyl-1,4-pentadiene, 2,5-dimethyl-1,5.
  • -Non-conjugated dienes such as hexadiene; conjugates such as 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene Diene; and the like.
  • the addition amount of the vinyl compound or diene compound is selected within a range in which a ring-opening polymer having the target molecular weight can be obtained, but is usually 0.1 to 10 mol with respect to the tetracyclododecene monomer. %.
  • a tetracyclododecene monomer is subjected to a ring-opening (co) polymerization reaction using the Group 6 transition metal compound of the periodic table as a polymerization catalyst, so that tetra-isotetrameric tetraregularity is obtained.
  • a cyclododecene ring-opening polymer can be obtained.
  • this tetracyclododecene ring-opening polymer having isotactic stereoregularity does not change the tacticity of the polymer if the hydrogenation reaction described below is performed, the isotactic stereoregularity remains as it is. Furthermore, a tetracyclododecene ring-opening polymer hydride having crystallinity can be obtained.
  • the tetracyclododecene ring-opening polymer may be recovered from the reaction solution and subjected to a hydrogenation reaction, but the reaction solution containing the tetracyclododecene ring-opening polymer is directly subjected to a hydrogenation reaction. You can also
  • the number average molecular weight (Mn) measured by 1 H-NMR of the resulting tetracyclododecene ring-opening polymer is not particularly limited, but is 500 to 1,000,000, preferably 1000 to 600,000, Preferably, it is 2000 to 400,000. More specifically, the number average molecular weight (Mn) of the tetracyclododecene ring-opening polymer is determined by the hydrogen atom present at the end of the polymer chain by 1 H-NMR measurement of the tetracyclododecene ring-opening polymer. The ratio of the number of hydrogen atoms to the number of hydrogen atoms present in the polymer chain other than the terminal can be obtained and calculated based on the ratio.
  • Step (II) In the step (II), the main chain carbon-carbon double bond of the tetracyclododecene ring-opened polymer obtained in the step (I) is hydrogenated using hydrogen and a hydrogenation catalyst, and the tetracyclodode of the present invention is subjected to hydrogenation. This is a step of obtaining a hydrogenated dodecene ring-opening polymer.
  • a hydrogenation catalyst comprising dicyclopentadienyl titanium halide, nickel organic carboxylate, cobalt organic carboxylate, etc. and an organometallic compound of Groups 1 to 3 of the periodic table; supported by carbon, silica, diatomaceous earth, etc.
  • metal catalysts such as nickel, platinum, palladium, ruthenium, rhenium, rhodium metal catalysts, cobalt, nickel, rhodium and ruthenium complexes; hydrogenated compounds such as lithium aluminum hydride and p-toluenesulfonyl hydrazide.
  • a ruthenium compound is preferable from the viewpoint of obtaining the target product with high yield without isomerization.
  • Examples of the ruthenium compound include RuHCl (CO) (PPh 3 ) 3 , RuHCl (CO) [P (p-Me-Ph) 3 ] 3 , RuHCl (CO) (PCy 3 ) 2 , RuHCl (CO) [P (N-Bu) 3 ] 3 , RuHCl (CO) [P (i-Pr) 3 ] 2 , RuH 2 (CO) (PPh 3 ) 3 , RuH 2 (CO) [P (p-Me-Ph) 3 ] 3 , RuH 2 (CO) (PCy 3 ) 3 , RuH 2 (CO) [P (n-Bu) 3 ] 3 RuH (OCOCH 3 ) (CO) (PPh 3 ) 2 , RuH (OCOPh) (CO) (PPh 3 ) 2 , RuH (OCOPh-CH 3 ) (CO) (PPh 3 ) 2 , RuH (OCOPh-OCH 3 ) (CO) (PPh 3
  • the hydrogenation reaction is usually performed in an inert organic solvent.
  • the inert organic solvent include aromatic hydrocarbons such as benzene, toluene, and xylene; aliphatic hydrocarbon solvents such as pentane and hexane; alicyclic hydrocarbon solvents such as cyclohexane and decahydronaphthalene; tetrahydrofuran, ethylene glycol And ether solvents such as dimethyl ether.
  • step (II) hydrogen is added to a system in which the tetracyclododecene ring-opening polymer and the hydrogenation catalyst are present, so that the carbon-carbon dimer present in the tetracyclododecene ring-opening polymer is present.
  • the temperature of the hydrogenation reaction varies depending on the hydrogenation catalyst used, but is usually ⁇ 20 ° C. to + 250 ° C., preferably ⁇ 10 ° C. to + 220 ° C., more preferably 0 ° C. to 200 ° C. If the hydrogenation temperature is too low, the reaction rate may be too slow, and if it is too high, side reactions may occur.
  • the hydrogen pressure is usually from 0.01 to 20 MPa, preferably from 0.05 to 15 MPa, more preferably from 0.1 to 10 MPa. If the hydrogen pressure is too low, the hydrogenation rate may be too slow, and if it is too high, there will be restrictions on the apparatus in that a high pressure reactor is required. Although the reaction time depends on the reaction scale, it is usually 0.1 to 10 hours. After the hydrogenation reaction, the tetracyclododecene ring-opening polymer hydride may be recovered according to a conventional method, and in recovering the polymer, the catalyst residue can be removed by a technique such as filtration.
  • the hydrogenation rate (ratio of hydrogenated main chain double bonds) in the hydrogenation reaction of the ring-opening polymer is not particularly limited, but is preferably 98% or more, more preferably 99% or more, and particularly preferably 99.99. 5% or more.
  • the presence or absence of stereoregularity of the tetracyclododecene ring-opening polymer hydride is that the polymer has crystallinity (that is, a polymer having a melting point), and meso-dyad is 65% or more.
  • crystallinity that is, a polymer having a melting point
  • meso-dyad is 65% or more.
  • a hydrogenated tetracyclododecene ring-opening polymer having an isotactic regularity is usually obtained.
  • the tetracyclododecene ring-opening polymer hydride obtained by the production method of the present invention has a high melting point and glass transition point, and has a high crystallinity that hardly causes a decrease in the melting point after a thermal history exceeding the melting point. Is a molecule. Therefore, this crystalline tetracyclododecene ring-opening polymer hydride exhibits excellent heat resistance even after being molded by melt molding, and has excellent heat resistance and workability. It can be particularly suitably used as a required molding material.
  • the use of the molded body is not particularly limited, and examples thereof include light reflectors, insulating materials, optical films, connectors, food packaging materials, bottles, pipes, gears, fibers and nonwoven fabrics, and the like. .
  • the melting point is a differential scanning calorimeter (DSC; X-DSC7000, manufactured by SII Nano Technology Co., Ltd.) regardless of the thermal history of the resin.
  • DSC differential scanning calorimeter
  • the melting point is the temperature point at which the endothermic heat is greatest at the primary phase transition peak of crystal melting.
  • the glass transition point is obtained by melting the resin at a high temperature, and then instantly putting it into liquid nitrogen in the molten state and rapidly cooling it to make an amorphous sample, which is obtained using a differential scanning calorimeter (DSC). The temperature was measured by raising the temperature at a rate of 10 ° C./min.
  • Solder immersion evaluation of tetracyclododecene ring-opening polymer hydride Solder ring-opening polymer hydride as a sample was melt-molded by a hot press method using a metal mold having a shape of 10 mm ⁇ 100 mm ⁇ 1 mm. After molding, a sample piece (hereinafter referred to as “melt molded sample”) prepared by cooling at a rate of 10 ° C./min was immersed in 260 ° C. solder for 20 seconds, and visually observed for deformation. did. Those in which deformation was not recognized (excellent in heat resistance) were evaluated as “good”, and those in which deformation was observed were evaluated as “bad”.
  • Example 1 A glass reactor equipped with a stirrer was charged with 0.0338 g of tetrakis (2,6-dimethylphenoxy) oxymolybdenum (VI) obtained in Synthesis Example 1 and 5 ml of toluene, and cooled to -78 ° C. To this was added a solution obtained by dissolving 0.00726 g of n-butyllithium in 1 ml of n-hexane, and this was returned to room temperature and reacted at the same temperature for 15 minutes.
  • VI tetrakis (2,6-dimethylphenoxy) oxymolybdenum
  • the ring-opening polymer hydride 1 was heated at a rate of 10 ° C./min by DSC and the melting point was measured.
  • the melting point measured from the state without thermal history was 315 ° C.
  • a sample heated to 340 ° C. in a DSC apparatus and completely melted is poured into liquid nitrogen in a molten state to produce an amorphous sample that is not crystallized.
  • a glass transition point was observed at 166 ° C. Further, the sample was heated to 340 ° C.
  • the ring-opening polymer hydride 1 was melt-molded with a predetermined metal mold while being sufficiently melted by heating at 330 ° C. for 10 minutes. This was cooled at a rate of 10 ° C./min, cooled to room temperature, and a solidified melt-molded sample was produced.
  • a wide-angle X-ray diffraction measurement was performed on the melt-molded sample, a sharp peak derived from crystal diffraction was observed, clearly indicating that it was crystalline.
  • Example 2 Into a glass reactor equipped with a stirrer, bis ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6′-tetramethyl-2,2′-biphenoxy ⁇ phenylimide tungsten obtained in Synthesis Example 2 (VI) 0.0556 g and 4 ml of toluene were added and cooled to -78 ° C. To this, a solution obtained by dissolving 0.00726 g of n-butyllithium in 1 ml of hexane was added, and this was returned to room temperature and reacted at the same temperature for 15 minutes.
  • TCD tetracyclododecene
  • DCP dicyclopentadiene
  • 27 g of cyclohexane and 0.32 g of 1-hexene were added to the resulting reaction mixture, and a polymerization reaction was performed at 80 ° C. It was. After the polymerization reaction started, the viscosity of the mixture gradually increased and became slightly cloudy. After reacting for 2 hours, a large amount of acetone was poured into the polymerization reaction solution to aggregate the precipitate, washed by filtration, and dried under reduced pressure at 40 ° C. for 24 hours.
  • the yield of the obtained ring-opening polymer was 9.7 g, and the copolymer composition ratio (weight ratio) of tetracyclododecene and dicyclopentadiene calculated from 1 H-NMR spectrum data was 69:31.
  • the number average molecular weight was 22,600.
  • the hydrogenation rate of the obtained ring-opened polymer hydride 2 was 99.5% or more, and the ratio of meso dyad to racemo dyad for the repeating unit of tetracyclododecene was 95: 5.
  • the melting point measured from the state without thermal history was 338 ° C.
  • a sample that was completely melted by heating to 345 ° C. in a DSC apparatus was put into liquid nitrogen in a molten state to produce an amorphous sample that was not crystallized.
  • the temperature was raised at a rate of / min and DSC measurement was performed, a glass transition point was observed at 142 ° C. Further, the sample was heated to 345 ° C.
  • the ring-opened polymer hydride 2 dried under reduced pressure was melt-molded in a metal molding die while being sufficiently melted by heating at 345 ° C. for 10 minutes, and then it was melted at a rate of 10 ° C./min. The temperature was lowered and cooled to room temperature to produce a solidified melt-molded sample.
  • a wide-angle X-ray diffraction measurement was performed on the melt-molded sample, a sharp peak derived from crystal diffraction was observed, clearly indicating that it was crystalline.
  • Example 3 Into a glass reactor equipped with a stirrer, bis ⁇ 3,3′-di (t-butyl) -5,5 ′, 6,6′-tetramethyl-2,2′-biphenoxy ⁇ phenylimide tungsten obtained in Synthesis Example 2 (VI) 0.0556 g and 4 ml of toluene were added and cooled to -78 ° C. Further, a solution obtained by dissolving 0.00726 g of n-butyllithium in 1 ml of hexane was added, and this was returned to room temperature (25 ° C.) and reacted for 15 minutes.
  • TCD tetracyclododecene
  • NB norbornene
  • 27 g of cyclohexane and 0.32 g of 1-hexene were added to the obtained reaction mixture, and a polymerization reaction was performed at 80 ° C. After the polymerization reaction started, the viscosity of the reaction mixture gradually increased. After reacting for 2 hours, a large amount of acetone was poured into the polymerization reaction solution to aggregate the precipitate, and the aggregate was collected by filtration. The filtered product was washed with methanol and dried under reduced pressure at 40 ° C. for 24 hours.
  • the yield of the obtained ring-opening polymer was 9.6 g, the copolymer composition ratio (weight ratio) of tetracyclododecene and norbornene calculated from 1 H-NMR spectrum data was 92: 8, and the number average molecular weight was 19,500.
  • the hydrogenation rate of the obtained ring-opening polymer hydride 3 was 99.5% or more, and the ratio of meso dyad to racemo dyad for the repeating unit of tetracyclododecene was 95: 5.
  • the melting point of the ring-opening polymer hydride 3 was measured by DSC at a rate of 10 ° C./min and the melting point was measured, the melting point was 335 ° C. measured from the state without thermal history.
  • a sample heated to 340 ° C. in a DSC apparatus and completely melted is poured into liquid nitrogen in a molten state to produce an amorphous sample that is not crystallized.
  • the temperature was raised at a rate of minutes and DSC measurement was conducted, a glass transition point was observed at 141 ° C. Further, the sample was heated to 340 ° C.
  • the ring-opened polymer hydride 3 dried under reduced pressure was melt-molded with a predetermined metal mold while being sufficiently melted by heating at 340 ° C. for 10 minutes. This was cooled at a rate of 10 ° C./min, cooled to room temperature, and a solidified melt-molded sample was produced.
  • a wide-angle X-ray diffraction measurement was performed on the melt-molded sample, a sharp peak derived from crystal diffraction was observed, clearly indicating that it was crystalline.
  • Example 1 As a polymerization catalyst, instead of a reaction product of tetrakis (2,6-dimethylphenoxy) oxymolybdenum (VI) and n-butyllithium, 0.028 g of phenylimidotungsten (VI) tetrachloride diethyl ether and A ring-opened polymer hydride 1r was obtained in the same manner as in Example 1 except that 0.022 g of diethylaluminum ethoxide was used. The hydrogenation rate of the obtained ring-opening polymer hydride 1r was 99.5% or more, and the ratio of meso dyad to racemo dyad was 18:82, which was syndiotactic.
  • the glass transition point measured for the ring-opening polymer hydride 1r was 162 ° C., and the temperature was raised to 345 ° C., but no melting point was observed.
  • a sample heated to 345 ° C. in a DSC apparatus and completely melted was poured into liquid nitrogen in a molten state to produce an amorphous sample that was not crystallized.
  • the temperature was raised at a rate of minutes and DSC measurement was conducted, a glass transition point was observed at 162 ° C., and no melting point was observed. Further, the sample was heated to 345 ° C.
  • the ring-opened polymer hydride 1r dried under reduced pressure was melt-molded with a predetermined metal mold while being sufficiently melted by heating at 300 ° C. for 10 minutes. This was cooled at a rate of 10 ° C./min, cooled to room temperature, and a solidified melt-molded sample was produced.
  • a wide-angle X-ray diffraction measurement was performed on the melt-formed sample, no peak derived from crystal diffraction was observed, and only a halo derived from amorphous was observed. That is, the crystallinity by the weight ratio of the melt-molded sample was 0%.
  • Example 2 In Example 1, 0.022 g of tungsten hexachloride (VI) and diethylalumonium ethoxy were used as a polymerization catalyst instead of the reaction product of tetrakis (2,6-dimethylphenoxy) oxymolybdenum (VI) and n-butyllithium. A ring-opened polymer hydride 2r was obtained in the same manner as in Example 1 except that 0.022 g of the reactant was used. The hydrogenation rate of the obtained ring-opened polymer hydride 2r was 99.5% or more, and the ratio of meso dyad to racemo dyad was 56:44, which was atactic.
  • the melting point was measured by heating at DSC at a rate of 10 ° C./min.
  • the melting point measured from the state without thermal history was 280 ° C.
  • a sample heated to 340 ° C. and completely melted in the DSC apparatus was poured into liquid nitrogen in a molten state to produce an amorphous sample that was not crystallized.
  • a glass transition point was observed at 161 ° C., and an exothermic peak derived from the phase transition was observed at 245 ° C. when the temperature was further increased. Crystallization was supported. Further, the sample was heated to 340 ° C.
  • the ring-opened polymer hydride dried under reduced pressure was melt-molded with a predetermined metal mold while being sufficiently melted by heating at 340 ° C. for 10 minutes. This was cooled at a rate of 10 ° C./min, cooled to room temperature, and a solidified melt-molded sample was produced.
  • the obtained sample was subjected to wide-angle X-ray diffraction measurement, no peak derived from crystal diffraction was observed, and only halo derived from amorphous was observed. That is, the crystallinity by the weight ratio of the melt-molded sample was 0%.
  • DSC measurement was performed on the melt-formed sample, a glass transition point was observed at 161 ° C.
  • Example 3 In Example 1, instead of a reaction product of tetrakis (2,6-dimethylphenoxy) oxymolybdenum (VI) and n-butyllithium as a polymerization catalyst, 2,6-diisopropylphenylimidotungsten (VI) tetrachloride diethyl ether A ring-opening polymer hydride 3r was obtained in the same manner as in Example 1 except that a reaction product of 0.033 g and diethylalumonium ethoxide 0.022 g was used. The hydrogenation rate of the obtained ring-opening polymer hydride 3r was 99.5% or more, and the ratio of meso dyad to racemo dyad was 60:40, which was atactic.
  • the melting point of the ring-opening polymer hydride 3r was measured by DSC at a rate of 10 ° C./min and the melting point was measured, the melting point measured from the state without thermal history was 295 ° C.
  • a sample heated to 340 ° C. in a DSC apparatus and completely melted is poured into liquid nitrogen in a molten state to produce an amorphous sample that is not crystallized.
  • the temperature was raised at a rate of minutes and DSC measurement was performed, a glass transition point was observed at 161 ° C., and an exothermic peak derived from the phase transition was observed at 250 ° C. when the temperature was further raised, suggesting cold crystallization. Further, the sample was heated to 340 ° C.
  • the ring-opening polymer hydride 3r was melt-molded with a predetermined metal mold while being sufficiently melted by heating at 340 ° C. for 10 minutes. This was cooled at a rate of 10 ° C./min, cooled to room temperature, and a solidified melt-molded sample was produced.
  • the obtained sample was subjected to wide-angle X-ray diffraction measurement, no peak derived from crystal diffraction was observed, and only halo derived from amorphous was observed. That is, the crystallinity by the weight ratio of the melt-molded sample was 0%.
  • DSC measurement was performed on the melt-formed sample, a glass transition point was observed at 161 ° C.
  • the hydride of tetracyclododecene ring-opening polymer having a meso-dyad ratio of 65% or more in Examples 1 to 3 has both a high melting point and a glass transition point after melting. It can be seen that the crystallization rate is high and the heat resistance after melting is excellent.
  • the syndiotactic tetracyclododecene ring-opening polymer hydride of Comparative Example 1 having a meso-dyad ratio of less than 65% is essentially amorphous, and therefore has a heat resistance after melting. Inferior to sex.
  • the atactic tetracyclododecene ring-opening polymer hydride of Comparative Examples 2 and 3 has a slow crystallization rate of the melt, and therefore cannot exhibit crystallinity after melting under normal molding conditions. Inferior in heat resistance. Therefore, it can be said that the tetracyclododecene ring-opening polymer hydride of the present invention has properties of excellent heat resistance and workability, having a high melting point and a glass transition point after melting and a high crystallization speed of the melt.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 本発明は、テトラシクロドデセン由来の繰り返し単位(A)を、全繰り返し単位に対し、40重量%以上含有し、前記繰り返し単位(A)におけるメソ・ダイアッドの割合が65%以上であることを特徴とするテトラシクロドデセン系開環重合体水素化物、及びその製造方法である。本発明によれば、融点とガラス転移点が高く、しかも溶融成形により成形を行った後も優れた耐熱性と加工性を示す、結晶性のテトラシクロドデセン系開環重合体水素化物、及びその製造方法が提供される。

Description

テトラシクロドデセン系開環重合体水素化物及びその製造方法
 本発明は、溶融成形等による熱履歴を経た後であっても結晶性を有し、耐熱性と加工性に優れるテトラシクロドデセン系開環重合体水素化物、及び、その製造方法に関する。
 ジシクロペンタジエン等の開環重合体水素化物は、いわゆるシクロオレフィンポリマーの一種であり、透明性、低複屈折性、成形加工性等に優れることから、光学用途をはじめとして、種々の用途に適用できる材料として用いられている。
 しかし、ジシクロペンタジエン等の開環重合体水素化物は、通常、立体規則性がランダムな、アタクティックな構造を有する非晶性の重合体として得られ、その用途によっては、耐熱性、機械強度、耐溶剤性等が不十分となる場合がある。
 そこで、これらの性能を改良する手法として、ジシクロペンタジエン等の開環重合体水素化物に結晶性を付与することが提案されている。
 例えば、特許文献1には、特定の置換基を有する周期表第6族遷移金属化合物を主成分とする重合触媒を用いて、ジシクロペンタジエンを開環重合すると、結晶性を有する開環重合体が得られ、さらに、その開環重合体中の炭素-炭素二重結合を、水素化触媒を用いて水素化することによって、結晶性を有する開環重合体水素化物が得られることが開示されている。特許文献2には、イミド配位子を有する周期表第6族の遷移金属化合物を主成分とする重合触媒を用いて、ジシクロペンタジエンを開環重合すると、シンジオタクティックの立体規則性を有する開環重合体が得られ、さらに、その開環重合体中の炭素-炭素二重結合を、水素化触媒を用いて水素化することによって、ラセモ・ダイアッドの割合が51%以上である、結晶性を有するシンジオタクティック開環重合体水素化物が得られることが開示されている。
 これらの結晶性ジシクロペンタジエン開環重合体水素化物の融点は、260~290℃であるが、ジシクロペンタジエン開環重合体水素化物のガラス転移点は、結晶性か非晶性かによらず100℃前後である。そのため、結晶性ジシクロペンタジエン開環重合体水素化物においても、100℃以上に加熱されると、樹脂の結晶・非晶ドメインのうち非晶ドメインの熱緩和が起こる。そのため、結晶性ジシクロペンタジエン開環重合体水素化物の成形物においては、100℃前後で機械強度や耐熱性が変化し、線膨張係数が大きくなったり、低い荷重でも荷重たわみが発生したりする等の不具合が生じる。
 また、特許文献3には、イミド配位子を有する周期表第6族の遷移金属化合物を主成分とする特定の開環重合触媒を用いてテトラシクロドデセンを開環重合すると、シンジオタクティック立体規則性を有する開環重合体が得られ、開環重合体中の炭素-炭素二重結合を水素化することで、非晶質なテトラシクロドデセン開環重合体水素化物が得られることが開示されている。また、この文献には、重合触媒として六塩化タングステンを用いると、得られるテトラシクロドデセン開環重合体水素化物は、融点(280℃)は有するが、ガラス転移点が観測されない半結晶性の樹脂であることも開示されている。
国際公開第01/014446号パンフレット 特開2005-89744号公報(US2007/0185290 A1) 特開2007-137935号公報
 本発明者は、特許文献3に記載された半結晶性のテトラシクロドデセン開環重合体水素化物について検討した。すると、この樹脂を一度溶融させた後、融液を急速に冷却して固化させて樹脂成形体とした場合、得られた樹脂を示差走査熱量計により熱特性を測定すると、ガラス転移点と冷結晶化の発熱が観測された。また、得られた樹脂成形体の広角X線回折測定を行うと、非晶質に基づくハローのみが観測され、結晶に由来するピークは観測されず、結晶性が消失していることがわかった。すなわち、アタクティックなテトラシクロドデセン開環重合体水素化物は、一旦結晶が融解し融液となると、結晶化速度が非常に遅くなり、室温まで冷却した段階で結晶化できず非晶質となる。そのため、このものは耐熱性と加工性が低く、材料としての産業上の価値が小さいという問題があった。
 本発明は、上記した問題を解決するためになされたものであり、融点とガラス転移点が共に高く、溶融成形等による熱履歴を経た後であっても結晶性を有し、耐熱性と加工性に優れた、テトラシクロドデセン系開環重合体水素化物、及び、その製造方法を提供することを目的とする。
 本発明者は、上記課題を解決すべく鋭意研究した。その結果、テトラシクロドデセン由来の繰り返し単位(A)を、全繰り返し単位に対し40重量%以上含有し、前記繰り返し単位(A)におけるメソ・ダイアッドの割合が65%以上であるテトラシクロドデセン系開環重合体水素化物は、融点とガラス転移点が共に高く、溶融成形等による急冷を伴う熱履歴を経た後であっても、結晶性を有し、耐熱性と加工性に優れることを見出した。さらに、テトラシクロドデセン系開環重合体水素化物は、共重合体である場合も、結晶性であれば、テトラシクロドデセン由来の繰り返し単位とテトラシクロドデセン以外の単量体由来の繰り返し単位との重量比を適宜選定することで、融点及びガラス転移点を所望の値にすることができ、機械強度を所望の温度まで維持することができることを見出し、本発明を完成するに至った。
 かくして、本発明によれば、テトラシクロドデセン由来の繰り返し単位(A)を、全繰り返し単位に対し、40重量%以上含有し、前記繰り返し単位(A)におけるメソ・ダイアッドの割合が65%以上であることを特徴とするテトラシクロドデセン系開環重合体水素化物が提供される。
上記開環重合体水素化物は、ジシクロペンタジエン由来の繰り返し単位を含有するものであることが好ましい。
上記開環重合体水素化物は、ノルボルネン由来の繰り返し単位を含有するものであることが好ましい。
上記開環重合体水素化物は、数平均分子量(Mn)が2000~400,000であることが好ましい。
上記開環重合体水素化物は、融点が300℃以上であることが好ましい。
上記開環重合体水素化物は、ガラス転移点が130℃以上であることが好ましい。
 また、本発明によれば、重合触媒として、下記式(1)
Figure JPOXMLDOC01-appb-C000003
〔式中、Mは周期表第6族遷移金属原子を表し、Lは、(炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基)で置換されていてもよいイミド配位子、又は、オキソ配位子を表し、R~Rは、それぞれ独立に、水素原子、炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基を表し、R~Rは互いに結合して環を形成していてもよい。Xはハロゲン原子を表し、nは1~4のいずれかの整数を表し、mは(4-n)を表す。〕で示される化合物、又は、下記式(2)
Figure JPOXMLDOC01-appb-C000004
〔式中、M、L及びXは前記と同じ意味を表し、R~R13は、それぞれ独立に、水素原子、炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基を表し、R~R13は互いに結合して環を形成していてもよい。pは1又は2を表し、qは(4-2p)を表し、rは0又は1を表す。〕で表される化合物を用いて、テトラシクロドデセンを全単量体に対し40重量%以上含有する、テトラシクロドデセン系単量体を開環重合して、テトラシクロドデセン系開環重合体を得る工程、及び、
得られたテトラシクロドデセン系開環重合体の主鎖炭素-炭素二重結合を、水素と水素化触媒を用いて水素化する工程を有する、上記開環重合体水素化物の製造方法が提供される。
 本発明のテトラシクロドデセン系開環重合体水素化物は、融点とガラス転移点が共に高く、溶融成形等による急冷を伴う熱履歴を経た後であっても、結晶性を有し、優れた耐熱性、加工性を有するものである。
 また、このものは、アイソタクティック構造を有し結晶化速度も速いため、各種用途の成形材料、繊維材料、フィルム用材料として好適に用いることができる。
 本発明のテトラシクロドデセン系開環重合体水素化物は、テトラシクロドデセン由来の繰り返し単位とテトラシクロドデセン以外の単量体由来の繰り返し単位との重量比を適宜選定することにより、所望の融点及びガラス転移点となるよう設計し、機械強度を所望の温度まで維持できるようにすることができる。
 本発明の製造方法によれば、本発明のテトラシクロドデセン系開環重合体水素化物を効率よく製造することができる。
 以下、本発明を、1)テトラシクロドデセン系開環重合体水素化物、及び、2)製造方法、に項分けして、詳細に説明する。
1)テトラシクロドデセン系開環重合体水素化物
 本発明のテトラシクロドデセン系開環重合体水素化物は、テトラシクロドデセン由来の繰り返し単位(A)を、全繰り返し単位に対し、40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上含有し、前記繰り返し単位(A)におけるメソ・ダイアッドの割合が65%以上であることを特徴とする。
 テトラシクロドデセン由来の繰り返し単位(A)は、下記式(3)で表される繰り返し単位である。このものは、下記式(4)で示すテトラシクロドデセンを開環重合して得られるテトラシクロドデセン単位中の、主鎖炭素-炭素二重結合を水素化して得られる。
Figure JPOXMLDOC01-appb-C000005
 本発明のテトラシクロドデセン系開環重合体水素化物が、テトラシクロドデセン由来の繰り返し単位(A)以外に他の繰り返し単位を有する場合、他の繰り返し単位としては、単環のシクロアルケン類由来の繰り返し単位、ノルボルネン類由来の繰り返し単位、ジシクロペンタジエン類由来の繰り返し単位、テトラシクロドデセン類由来の繰り返し単位(テトラシクロドデセン由来の繰り返し単位を除く)、ヘキサシクロヘプタデセン類由来の繰り返し単位等が挙げられる。これらのテトラシクロドデセン由来の繰り返し単位以外の他の繰り返し単位は、テトラシクロドデセンと開環共重合し得る他の単量体を開環重合して得られる単量体単位中の主鎖炭素-炭素二重結合を水素化して得られるものである。
 これらの中でも、本発明においては、他の繰り返し単位として、ジシクロペンタジエン類由来の繰り返し単位、ノルボルネン類由来の繰り返し単位が好ましく、ジシクロペンタジエン由来の繰り返し単位、ノルボルネン由来の繰り返し単位がより好ましい。
 本発明のテトラシクロドデセン系開環重合体水素化物が、ジシクロペンタジエン類由来の繰り返し単位を有する場合、テトラシクロドデセン由来の繰り返し単位が50重量%以上であり、ジシクロペンタジエン類由来の繰り返し単位が50重量%以下であることが好ましく、テトラシクロドデセン由来の繰り返し単位が55重量%以上であり、ジシクロペンタジエン類由来の繰り返し単位が45重量%以下であることがより好ましく、テトラシクロドデセン由来の繰り返し単位が60重量%以上であり、ジシクロペンタジエン類由来の繰り返し単位が40重量%以下であることが特に好ましい。テトラシクロドデセン由来の繰り返し単位の割合が少なく、ジシクロペンタジエン類由来の繰り返し単位の割合が多くなると、高い融点とガラス転移点を有する、テトラシクロドデセン系開環重合体水素化物が得られなくなるおそれがある。
 テトラシクロドデセン系開環重合体水素化物が、ノルボルネン類由来の繰り返し単位を有する場合、テトラシクロドデセン由来の繰り返し単位が60重量%以上であり、ノルボルネン類由来の繰り返し単位が40重量%以下であることが好ましく、テトラシクロドデセン由来の繰り返し単位が65重量%以上であり、ノルボルネン類由来の繰り返し単位が35重量%以下であることがより好ましく、テトラシクロドデセン由来の繰り返し単位が70重量%以上であり、ノルボルネン類由来の繰り返し単位が30重量%以下であることが特に好ましい。テトラシクロドデセン由来の繰り返し単位の割合が少なくなり、ノルボルネン類由来の繰り返し単位の割合が多くなると、高い融点とガラス転移点を有する、テトラシクロドデセン系開環重合体水素化物が得られなくなるおそれがある。
 本発明のテトラシクロドデセン系開環重合体水素化物は、前記式(3)において、(1,4)で表される炭素が不斉炭素であるため、立体規則性(タクティシティー)が存在する。
 本発明のテトラシクロドデセン系開環重合体水素化物は、アイソタクティックな立体規則性を有し、メソ・ダイアッドの割合が、65%以上、好ましくは67%以上、より好ましくは70%以上であるアイソタクティックな重合体である。
 メソ・ダイアッドの割合が65%未満になると、テトラシクロドデセン系開環重合体水素化物の結晶性が大きく低下し、高い融点と加工性等の特徴が損なわれるおそれがある。
 メソ・ダイアッドの割合は、テトラシクロドデセン系開環重合体水素化物の13C-NMRスペクトル分析により算出することができる。具体的には、本発明のテトラシクロドデセン系開環重合体水素化物の前記式(3)における(5,10)で表される炭素原子のスペクトルを定量することで測定できる。すなわち、前記式(3)で表される繰り返し単位の(5,10)の炭素原子について、オルトジクロロベンゼン-d/トリクロロベンゼン混合溶媒として、210℃で13C-NMRスペクトル測定を行い、メソ・ダイアッド由来の51.40ppmのシグナルと、ラセモ・ダイアッド由来の51.53ppmのシグナルの強度比に基づいて、メソ・ダイアッドとラセモ・ダイアッドの割合を決定することができる。
 本発明のテトラシクロドデセン系開環重合体水素化物の数平均分子量(Mn)は、500~1,000,000、好ましくは1000~600,000、より好ましくは2000~400,000である。Mnが低すぎると機械強度が低下する場合があり、Mnが高すぎると成形が困難となる。なお、テトラシクロドデセン系開環重合体水素化物の数平均分子量は、水素化工程前のテトラシクロドデセン系開環重合体の数平均分子量とほぼ等しい。
 本発明のテトラシクロドデセン系開環重合体水素化物の融点は、300℃以上が好ましく、305℃以上がより好ましい。融点が300℃より低い場合には、同時に樹脂の結晶性が低下しているため、加工性が低下するおそれがある。融点の上限は、特に限定されないが、概ね360℃である。
 本発明のテトラシクロドデセン系開環重合体水素化物のガラス転移点は、130℃以上が好ましく、135℃以上がより好ましい。ガラス転移点が130℃より低いと、樹脂の耐熱性が低下し、例えば荷重たわみ温度が低下するおそれがある。ガラス転移温度の上限は、特に限定されないが、概ね200℃である。
 本発明のテトラシクロドデセン系開環重合体水素化物の製造方法としては、特に限定されないが、後述する本発明の製造方法を好ましく例示することができる。
2)製造方法
 本発明のテトラシクロドデセン系開環重合体水素化物の製造方法は、重合触媒として、前記式(1)で表される化合物(以下、「化合物(1)」ということがある。)、又は、前記式(2)で表される化合物(以下、「化合物(2)」ということがある。)を用いて、テトラシクロドデセン系単量体を開環重合して、テトラシクロドデセン系開環重合体を得る工程(I)、及び、得られたテトラシクロドデセン系開環重合体の主鎖炭素-炭素二重結合を、水素と水素化触媒を用いて水素化する工程(II)を有する。
〔工程(I)〕
 工程(I)は、重合触媒として、前記化合物(1)又は前記化合物(2)を用いて、テトラシクロドデセンを、全単量体に対し40重量%以上、好ましくは50重量%以上、より好ましくは60重量%以上含有するテトラシクロドデセン系単量体を開環重合して、テトラシクロドデセン系開環重合体を得る工程である。
 単量体として用いるテトラシクロドデセンは、(エンド,アンチ)体、(エンド,シン)体、(エキソ,アンチ)体、(エキソ,シン)体の、4種類の立体異性体からなることが知られている。通常は、(エンド,アンチ)体、(エキソ,シン)体が主たる成分であり、(エンド,シン)体、(エキソ,アンチ)体の存在量は、分光分析で測定限界以下である。
 本発明の目的を達成するため、テトラシクロドデセンは、光学純度の高いことが好ましく、特に(エンド,アンチ)体の比率が高いものであることが好ましい。特に、(エンド,アンチ)体の含有率は、80%以上が好ましく、90%以上がより好ましい。(エンド,アンチ)体の含有率が80%未満になると、得られるテトラシクロドデセン系開環重合体水素化物の結晶性が大きく低下し、高い融点と高いガラス転移点等の特徴が損なわれるおそれがある。
 テトラシクロドデセン系単量体の、テトラシクロドデセン以外の単量体としては、本発明の目的を阻害しないものであれば特に限定されない。例えば、シクロアルケン類、ジシクロペンタジエン類、ノルボルネン類、テトラシクロドデセン類(テトラシクロドデセンを除く)、ヘキサシクロヘプタデセン類等が挙げられる。これらの中でも、ジシクロペンタジエン類、ノルボルネン類が好ましく、ジシクロペンタジエン、ノルボルネンがより好ましい。
 これらの単量体は、一種単独で、或いは、二種以上を組み合わせて用いることができる。
 シクロアルケン類としては、シクロペンテン、シクロヘキセン、シクロへプタン等が挙げられる。
 ジシクロペンタジエン類としては、ジシクロペンタジエン又はジシクロペンタジエンの5員環部分の二重結合を飽和させたトリシクロ[4.3.12,5.0]デカ-3-エン、トリシクロ[4.4.12,5.0]ウンダ-3-エン等が挙げられる。
 ノルボルネン類としては、ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の、無置換又はアルキル基を置換基として有するノルボルネン類;
5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等の、アルケニル基を置換基として有するノルボルネン類;
5-フェニルノルボルネン等の、芳香環を置換基として有するノルボルネン類;
5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネイト、ノルボルネニル-2-メチルオクタネイト、ノルボルネン-5,6-ジカルボン酸無水物、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン等の、酸素原子を含む極性基を有するノルボルネン類;
5-シアノノルボルネン、ノルボルネン-5,6-ジカルボン酸イミド等の、窒素原子を含む極性基を有するノルボルネン類;
テトラシクロ[6.5.12,5.01,6.08,13]トリデカ-3,8,10,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロフルオレンともいう)、テトラシクロ[6.6.12,5.01,6.08,13]テトラデカ-3,8,10,12-テトラエン(1,4-メタノ-1,4,4a,5,10,10a-ヘキサヒドロアントラセンともいう)等が挙げられる。
 テトラシクロドデセン以外のテトラシクロドデセン類としては、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン等の、アルキル基を置換基として有するテトラシクロドデセン類;
8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の、環外に二重結合を有するテトラシクロドデセン類;
8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の、酸素原子を含む置換基を有するテトラシクロドデセン類;
8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
8-クロロテトラシクロドデセン等の、ハロゲンを原子を含む置換基を有するテトラシクロドデセン類;
8-トリメトキシシリルテトラシクロドデセン等の、ケイ素原子を含む置換基を有するテトラシクロドデセン類等が挙げられる。
 ヘキサシクロヘプタデセン類としては、ヘキサシクロヘプタデセン、12-メチルヘキサシクロヘプタデセン、12-エチルヘキサシクロヘプタデセン、12-シクロヘキシルヘキサシクロヘプタデセン、12-シクロペンチルヘキサシクロヘプタデセン等の、無置換又はアルキル基を置換基として有するヘキサシクロヘプタデセン類;
12-メチリデンヘキサシクロヘプタデセン、12-エチリデンヘキサシクロヘプタデセン、12-ビニルヘキサシクロヘプタデセン、12-プロペニルヘキサシクロヘプタデセン、12-シクロヘキセニルヘキサシクロヘプタデセン、12-シクロペンテニルヘキサシクロヘプタデセン等の環外に二重結合を有するヘキサシクロヘプタデセン類;
12-フェニルヘキサシクロヘプタデセン等の、芳香環を置換基として有するヘキサシクロヘプタデセン類;
12-メトキシカルボニルヘキサシクロヘプタデセン、12-メチル-12-メトキシカルボニルヘキサシクロヘプタデセン、12-ヒドロキシメチルヘキサシクロヘプタデセン、12-カルボキシヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13-ジカルボン酸、ヘキサシクロヘプタデセン12,13-ジカルボン酸無水物等の、酸素原子を含む置換基を有するヘキサシクロヘプタデセン類;
12-シアノヘキサシクロヘプタデセン、ヘキサシクロヘプタデセン12,13-ジカルボン酸イミド等の窒素原子を含む置換基を有するヘキサシクロヘプタデセン類;
12-クロロヘキサシクロヘプタデセン等の、ハロゲン原子を含む置換基を有するヘキサシクロヘプタデセン類;
12-トリメトキシシリルヘキサシクロヘプタデセン等の、ケイ素原子を含む置換基を有するヘキサシクロヘプタデセン類等が挙げられる。
 本発明の製造方法においては、重合触媒として前記化合物(1)又は化合物(2)を用いる。
 前記式(1)及び式(2)中、Mは、周期表第6族遷移金属原子である。重合触媒の活性を高める観点からは、タングステン原子又はモリブデン原子が好ましい。
 Lは、(炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基)で置換されていてもよいイミド配位子、又は、オキソ配位子を表す。
 イミド配位子の置換基としての炭素数1~12のアルキル基は、直鎖状、分岐状、環状のいずれのものであってもよい。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基等の炭素数1~12の直鎖状又は分岐状のアルキル基;シクロヘキシル基、アダマンチル基等の炭素数3~12のシクロアルキル基;等が挙げられる。
 イミド配位子の置換基を有していてもよい炭素数6~12のアリール基としては、フェニル基や、2、3、4、5、6位の少なくとも1つに置換基を有する1~5置換のフェニル基が挙げられる。アリール基が有する置換基は特に限定されない。例えば、メチル基、エチル基、イソプロピル基等の炭素数1~6のアルキル基;フェニル基等のアリール基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;メトキシ基、エトキシ基等の炭素数1~6のアルコキシ基;アミノ基;イミノ基;等が挙げられる。
 R~R13は、それぞれ独立に、水素原子、炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基を表す。
 炭素数1~12のアルキル基、置換基を有していてもよい炭素数6~12のアリール基としては、前記イミド配位子として例示したのと同様のものが挙げられる。
 また、R~R、R~R13は互いに結合して環を形成していてもよい。
 Xは、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子を表す。Xが複数ある場合、X同士は、同じであっても相異なっていてもよい。なかでも、Xは、すべて塩素原子であるのが好ましい。
 nは1~4のいずれかの整数を表す。テトラシクロドデセン等を開環重合して得られる開環重合体の主鎖二重結合を水素化して得られる繰返し単位の立体規則性の制御の観点から、nは、3又は4であることが好ましく、4であることがより好ましい。
 mは(4-n)を表す。
 pは1又は2を表し、2が好ましい。
 qは(4-2p)を表す。
 rは0又は1を表し、0が好ましい。
 本発明で用いる化合物(1)、及び化合物(2)(以下、「周期表第6族遷移金属化合物」ということがある。)としては、例えば、テトラフェノキシオキシモリブデン(VI)、テトラキス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)、テトラキス(2,6-ジイソプロピルフェノキシ)オキシモリブデン(VI)、ビス{2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノキシ)}オキシモリブデン(VI)、ビス(1,1’-ビナフチル-2,2’-ジオキシ)オキシモリブデン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}オキシモリブデン(VI)、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}オキシモリブデン(VI)、{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}オキシモリブデン(VI)ジクロリド、ビス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)ジクロリド、ビス(2,6-ジイソプロピルフェノキシ)オキシモリブデン(VI)ジクロリド、(1,1’-ビナフチル-2,2’-ジオキシ)オキシモリブデン(VI)ジクロリド、トリス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)クロリド、トリスキス(2,6-ジイソプロピルフェノキシ)オキシモリブデン(VI)クロリド;等のオキシモリブデン化合物、
テトラフェノキシ(フェニルイミド)モリブデン(VI)、テトラキス(2,6-ジメチルフェノキシ)(フェニルイミド)モリブデン(VI)、テトラキス(2,6-ジイソプロピルフェノキシ)(フェニルイミド)モリブデン(VI)、ビス{2,2‘-メチレンビス-(4-メチル-6-t-ブチルフェノキシ)}(フェニルイミド)モリブデン(VI)、ビス(1,1’-ビナフチル-2,2’-ジオキシ)(フェニルイミド)モリブデン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(フェニルイミド)モリブデン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(2,6-ジイソプロピルフェニルイミド)モリブデン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(シクロヘキシルイミド)モリブデン(VI)、{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(フェニルイミド)モリブデン(VI)ジクロリド、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(フェニルイミド)モリブデン(VI)、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(2,6-ジイソプロピルフェニルイミド)モリブデン(VI)、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(アダマンチルイミド)モリブデン(VI)、{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(フェニルイミド)モリブデン(VI)ジクロリド;等のイミドモリブデン化合物、
テトラフェノキシオキシタングステン(VI)、テトラキス(2,6-ジメチルフェノキシ)オキシタングステン(VI)、テトラキス(2,6-ジイソプロピルフェノキシ)オキシタングステン(VI)、ビス{2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノキシ)}オキシタングステン(VI)、ビス(1,1’-ビナフチル-2,2’-ジオキシ)オキシタングステン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}オキシタングステン(VI)、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}オキシタングステン(VI)、{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}オキシタングステン(VI)ジクロリド、ビス(2,6-ジメチルフェノキシ)オキシタングステン(VI)ジクロリド、(1,1’-ビナフチル-2,2’-ジオキシ)オキシタングステン(VI)ジクロリド;等のオキシタングステン化合物、
テトラフェノキシ(フェニルイミド)タングステン(VI)、テトラキス(2,6-ジメチルフェノキシ)(フェニルイミド)タングステン(VI)、テトラキス(2,6-ジイソプロピルフェノキシ)(フェニルイミド)タングステン(VI)、ビス{2,2‘-メチレンビス-(4-メチル-6-t-ブチルフェノキシ)}(フェニルイミド)タングステン(VI)、ビス(1,1’-ビナフチル-2,2’-ジオキシ)(フェニルイミド)タングステン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(フェニルイミド)タングステン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(2,6-ジイソプロピルフェニルイミド)タングステン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(シクロヘキシルイミド)タングステン(VI)、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(エチルイミド)タングステン(VI)、{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}(フェニルイミド)タングステン(VI)ジクロリド、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(フェニルイミド)タングステン(VI)、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(2,6-ジイソプロピルフェニルイミド)タングステン(VI)、ビス{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(アダマンチルイミド)タングステン(VI)、{3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシ}(フェニルイミド)タングステン(VI)ジクロリド、ビスフェノキシ(フェニルイミド)タングステン(VI)ジクロリド、ビス(2,6-ジメチルフェノキシ)(フェニルイミド)タングステン(VI)、ビス(2,6-ジイソプロピルフェノキシ)(フェニルイミド)タングステン(VI)ジクロリド(VI)、トリスフェノキシ(フェニルイミド)タングステン(VI)クロリド、トリス(2,6-ジメチルフェノキシ)(フェニルイミド)タングステン(VI)クロリド、トリス(2,6-ジイソプロピルフェノキシ)(フェニルイミド)タングステン(VI)クロリド(VI);等のイミドタングステン化合物
等が挙げられる。
 本発明で用いる周期表第6族遷移金属化合物の合成方法は、特に限定されない。例えば、前記式(1)で表される化合物において、Lがイミド配位子である化合物は、周期表第6族遷移金属オキシハロゲン化物又は周期表第6族遷移金属イミドハロゲン化物と、無置換又は置換フェノールの金属塩(フェノール金属塩)とを反応させることにより得ることができる。前記周期表第6族遷移金属オキシハロゲン化物又は周期表第6族遷移金属イミドハロゲン化物は、反応性や汎用性の観点から、周期表第6族遷移金属オキシ塩化物又は周期表第6族遷移金属イミド塩化物であるのが好ましい。
 周期表第6族遷移金属オキシ塩化物としては、オキシモリブデン四塩化物、オキシタングステン四塩化物等が挙げられる。
 周期表第6族遷移金属イミド塩化物としては、フェニルイミドモリブデン四塩化物、2,6-ジイソプロピルフェニルイミドモリブデン四塩化物、シクロヘキシルイミドモリブデン四塩化物、アダマンチルイミドモリブデン四塩化物、フェニルイミドタングステン四塩化物、2,6-ジイソプロピルフェニルイミドタングステン四塩化物、シクロヘキシルイミドタングステン四塩化物、エチルイミドタングステン四塩化物、アダマンチルイミドタングステン四塩化物等が挙げられる。
 なお、周期表第6族遷移金属イミドハロゲン化物は、例えば、金属原子Mがタングステンである場合、オキシ4ハロゲン化物と置換イソシアナートを反応させることで、金属原子Mがモリブデンである場合、4ハロゲン化物と置換アジドを反応させることで得ることができる。
 また、これらの周期表第6族遷移金属オキシハロゲン化物、周期表第6族遷移金属イミドハロゲン化物は、1当量の電子供与性の塩基が配位したものであってもよい。この電子供与性の塩基としては、ジエチルエーテル、ジブチルエーテル、テトラヒドロフラン、ピリジン、2,6-ルチジン、トリエチルアミンを例示することができる。
 フェノール金属塩としては、アルカリ金属塩が好ましい。フェノール金属塩の具体例としては、フェノキシリチウム、2,6-ジメチルフェノキシリチウム、2,6-ジイソプロピルフェノキシリチウム、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノキシ)リチウム、(1,1’-ビナフチル-2,2’-ジオキシ)ジリチウム、3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシジリチウム、3,3’-ジフェニル-1,1’-ビナフチル-2,2’-ジオキシリチウム等が挙げられる。
 本発明においては、重合触媒として、周期表第6族遷移金属化合物以外に他の成分を含んでいてもよい。重合触媒が、周期表第6族遷移金属化合物以外の有機金属化合物を共触媒として含むものは、重合触媒の活性が高くなるので、特に好ましい。
 前記有機金属化合物としては、炭素数1~20の炭化水素基を有する、周期表第1、2、12、13及び14族いずれかの有機金属化合物が好ましく、有機リチウム化合物、有機マグネシウム化合物、有機亜鉛化合物、有機アルミニウム化合物、有機スズ化合物がより好ましく、有機リチウム化合物、有機アルミニウム化合物が特に好ましい。
 有機リチウム化合物としては、n-ブチルリチウム、メチルリチウム、フェニルリチウム、ネオペンチルリチウム、ネオフィルリチウム等が挙げられる。
 有機マグネシウム化合物としては、ブチルエチルマグネシウム、ブチルオクチルマグネシウム、ジヘキシルマグネシウム、エチルマグネシウムクロリド、n-ブチルマグネシウムクロリド、アリルマグネシウムブロミド、ネオペンチルマグネシウムクロリド、ネオフィルマグネシウムクロリド等が挙げられる。
 有機亜鉛化合物としては、ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛が挙げられる。有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムクロリド、ジエチルアルミニウムエトキシド、エチルアルミニウムジクロリド、エチルアルミニウムジエトキシド等が挙げられる。
 有機スズ化合物としては、テトラメチルスズ、テトラ(n-ブチル)スズ、テトラフェニルスズ等が挙げられる。
 これらの有機金属化合物の添加量は、周期表第6族遷移金属化合物の中心金属に対して、通常0.1~100倍モルであり、好ましくは0.2~50倍モルであり、より好ましくは0.5~20モル倍である。添加量が少なすぎると重合活性が十分に向上しないおそれがあり、多すぎると副反応が起こりやすくなるおそれがある。
 周期表第6族遷移金属化合物の使用量は、特に限定されるものではないが、周期表第6族遷移金属化合物の遷移金属とテトラシクロドデセン系単量体のモル比が、1:10~1:2,000,000である範囲が好ましく、1:200~1:1,000,000である範囲がより好ましく、1:500~1:500,000である範囲が特に好ましい。重合触媒の使用量が多すぎると、重合触媒の除去が困難となるおそれがあり、少なすぎると十分な重合活性が得られないおそれがある。
 重合反応は無溶媒系で行うこともできるが、反応を良好に制御することができる観点から、有機溶媒中で行うことが好ましい。
 用いる有機溶媒としては、得られる開環重合体を溶解又は分散させることができ、重合反応に不活性なものであれば、特に限定されない。具体的には、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;シクロペンタン、シクロヘキサン、メチルシクロヘキサン、ジメチルシクロヘキサン、トリメチルシクロヘキサン、エチルシクロヘキサン、ジエチルシクロヘキサン、デカヒドロナフタレン、ビシクロヘプタン、トリシクロデカン、ヘキサヒドロインデンシクロヘキサン、シクロオクタン等の脂環族炭化水素系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン等のハロゲン系脂肪族炭化水素系溶媒;クロロベンゼン、ジクロロベンゼン等のハロゲン系芳香族炭化水素系溶媒;ニトロメタン、ニトロベンゼン、アセトニトリル等の含窒素炭化水素系溶媒;ジエチルエ-テル、テトラヒドロフラン等のエ-テル系溶媒;アニソール、フェネトール等の芳香族エーテル系溶媒;等が挙げられる。これらの中でも、芳香族炭化水素系溶媒、脂肪族炭化水素系溶媒、脂環族炭化水素系溶媒、エーテル系溶媒、又は芳香族エーテル系溶媒が特に好ましい。
 重合反応を有機溶媒中で行う場合、反応系中のテトラシクロドデセン系単量体の濃度は、特に限定されるものではないが、1~50重量%であることが好ましく、2~45重量%であることがより好ましく、3~40重量%であることが特に好ましい。単量体の濃度が低すぎると生産性が悪くなるおそれがあり、高すぎると重合反応後の反応溶液の粘度が高くなりすぎて、その後の水素化反応が困難となるおそれがある。
 重合温度は特に限定されないが、通常、-30℃~+200℃、好ましくは0℃~180℃である。重合時間は、反応規模にもよるが、通常、1分間から100時間の範囲で選択される。
 重合反応を行うにあたり、得られる開環重合体の分子量を調整する目的で、重合反応系に、ビニル化合物又はジエン化合物を添加してもよい。
 ビニル化合物は、ビニル基を有する有機化合物であれば特に限定されない。例えば、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィン類;スチレン、ビニルトルエン等のスチレン類;エチルビニルエーテル、i-ブチルビニルエーテル、アリルグリシジルエーテル等のエーテル類;アリルクロライド等のハロゲン含有ビニル化合物;酢酸アリル、アリルアルコール、グリシジルメタクリレート等酸素含有ビニル化合物;アクリルアミド等の窒素含有ビニル化合物;ビニルトリメチルシラン、ビニルトリメトキシシラン等のケイ素含有ビニル化合物;等が挙げられる。
 ジエン化合物としては、例えば、1,4-ペンタジエン、1,4-ヘキサジエン、1,5-ヘキサジエン、1,6-ヘプタジエン、2-メチル-1,4-ペンタジエン、2,5-ジメチル-1,5-ヘキサジエン等の非共役ジエン;1,3-ブタジエン、2-メチル-1,3-ブタジエン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン;等が挙げられる。
 ビニル化合物又はジエン化合物の添加量は、目的とする分子量を有する開環重合体が得られる範囲で選択されるが、通常、テトラシクロデドセン系単量体に対して、0.1~10モル%である。
 本発明では、前記周期表第6族遷移金属化合物を重合触媒として用いて、テトラシクロドデセン系単量体の開環(共)重合反応を行うことにより、アイソタティック立体規則性を有するテトラシクロドデセン系開環重合体を得ることができる。
 このアイソタクティック立体規則性を有するテトラシクロドデセン系開環重合体は、次に述べる水素化反応を行えば、重合体のタクティシティーが変化することはないので、アイソタクティック立体規則性そのままに、結晶性を有するテトラシクロドデセン系開環重合体水素化物を得ることができる。なお、テトラシクロドデセン系開環重合体は、反応液中から回収して水素化反応に供してもよいが、テトラシクロドデセン系開環重合体を含む反応液をそのまま水素化反応に供することもできる。
 得られるテトラシクロドデセン系開環重合体のH-NMRによって測定される数平均分子量(Mn)は、特に限定されないが、500~1,000,000、好ましくは1000~600,000、より好ましくは2000~400,000である。テトラシクロドデセン系開環重合体の数平均分子量(Mn)は、より具体的には、テトラシクロドデセン系開環重合体のH-NMR測定により、重合体鎖末端に存在する水素原子の数と末端以外の重合体鎖中に存在する水素原子の数の比を求め、それに基づいて算出することができる。このような数平均分子量を有するテトラシクロドデセン系開環重合体を水素化反応に供することによって、特に耐熱性と加工性とに優れたテトラシクロドデセン系開環重合体水素化物を得ることができる。
〔工程(II)〕
 工程(II)は、工程(I)で得られたテトラシクロドデセン系開環重合体の主鎖炭素-炭素二重結合を、水素と水素化触媒を用いて水素化し、本発明のテトラシクロドデセン系開環重合体水素化物を得る工程である。
 用いる水素化触媒としては、オレフィン化合物の水素化に使用されている従来公知のものが挙げられる。例えば、ジシクロペンタジエニルチタンハライド、有機カルボン酸ニッケル、有機カルボン酸コバルト等と周期律表第1~3族の有機金属化合物とからなる水素化触媒;カーボン、シリカ、ケイソウ土等で担持されたニッケル、白金、パラジウム、ルテニウム、レニウム、ロジウム金属触媒、コバルト、ニッケル、ロジウム、ルテニウム錯体等の金属触媒;リチウムアルミニウムハイドライド、p-トルエンスルホニルヒドラジド等の水素化化合物;等が挙げられる。本発明においては、これらの中でも、異性化がなく収率よく目的物が得られる観点から、ルテニウム化合物が好ましい。
 ルテニウム化合物としては、例えば、RuHCl(CO)(PPh、RuHCl(CO)[P(p-Me-Ph)、RuHCl(CO)(PCy、RuHCl(CO)[P(n-Bu)、RuHCl(CO)[P(i-Pr)、RuH(CO)(PPh、RuH(CO)[P(p-Me-Ph)、RuH(CO)(PCy、RuH(CO)[P(n-Bu)RuH(OCOCH)(CO)(PPh、RuH(OCOPh)(CO)(PPh、RuH(OCOPh-CH)(CO)(PPh、RuH(OCOPh-OCH)(CO)(PPh、RuH(OCOPh)(CO)(PCy)等が挙げられる。
 水素化反応は、通常、不活性有機溶媒中で行う。不活性有機溶媒としては、ベンゼン、トルエン、キシレン等の芳香族炭化水素;ペンタン、ヘキサン等の脂肪族炭化水素系溶媒;シクロヘキサン、デカヒドロナフタレン等の脂環族炭化水素系溶媒;テトラヒドロフラン、エチレングリコールジメチルエーテル等のエーテル系溶媒;等が挙げられる。
 工程(II)では、テトラシクロドデセン系開環重合体及び水素化触媒が存在している系に、水素を添加することにより、テトラシクロドデセン系開環重合体に存在する炭素-炭素二重結合を水素化する。
 水素化反応の温度は、使用する水素化触媒によって異なるが、通常、-20℃~+250℃、好ましくは-10℃~+220℃、より好ましくは0℃~200℃である。水素化温度が低すぎると反応速度が遅くなりすぎる場合があり、高すぎると副反応が起こる場合がある。
 水素圧力は、通常0.01~20MPa、好ましくは0.05~15MPa、より好ましくは0.1~10MPaである。水素圧力が低すぎると水素化速度が遅くなりすぎる場合があり、高すぎると高耐圧反応装置が必要となる点において装置上の制約が生じる。
 反応時間は反応規模にもよるが、通常、0.1~10時間である。
 水素化反応後は、常法に従って、テトラシクロドデセン系開環重合体水素化物を回収すればよく、重合体の回収にあたっては、ろ過等の手法により、触媒残渣を除去することができる。
 開環重合体の水素化反応における水素化率(水素化された主鎖二重結合の割合)は、特に限定されないが、好ましくは98%以上、より好ましくは99%以上、特に好ましくは99.5%以上である。水素化率が高くなるほど、最終的に得られるテトラシクロドデセン系開環重合体水素化物の耐熱性と加工性が良好なものとなる。
 また、テトラシクロドデセン系開環重合体水素化物の立体規則性の有無は、重合体が結晶性を有するもの(すなわち、融点を有するもの)であり、メソ・ダイアッドが65%以上となる限りにおいて特に限定されるものではないが、本発明の製造方法では、通常、アイソタクティック規則性を有するテトラシクロドデセン系開環重合体水素化物が得られる。
 本発明の製造方法で得られるテトラシクロドデセン系開環重合体水素化物は、融点とガラス転移点が高く、しかも、融点を超える熱履歴を経た後の融点の低下を殆ど生じさせない結晶性高分子である。したがって、この結晶性のテトラシクロドデセン系開環重合体水素化物は、溶融成形により成形を行った後も優れた耐熱性を示す、耐熱性と加工性に優れたものであり、耐熱性が要求される成形体の材料として特に好適に使用することができる。成形体の用途は、特に限定されるものではないが、例えば、光反射体、絶縁材料、光学フィルム、コネクター、食品包装材、ボトル、パイプ、ギヤー類、繊維・不織布等を例示することができる。
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
 なお、各例における測定や評価は、以下の方法により行った。
(1)テトラシクロドデセン系開環重合体の数平均分子量
 H-NMR測定に基づき、重合体鎖末端に存在する水素原子の数と末端以外の重合体鎖中に存在する水素原子の数の比を求め、その比に基づいてテトラシクロドデセン系開環重合体の数平均分子量を算出した。
(2)テトラシクロドデセン系開環重合体の共重合組成比
 H-NMR測定に基づき、テトラシクロドデセン単位に由来する水素原子の数と、テトラシクロドデセン単位以外の単量体単位に由来する水素原子の数の比を求め、その比に基づいてテトラシクロドデセン系開環重合体の共重合組成比を算出し、重量%で示す。
(3)テトラシクロドデセン系開環重合体の水素化反応における水素化率
 H-NMR測定に基づいて求めた。
(4)テトラシクロドデセン系開環重合体水素化物のメソ・ダイアッドとラセモ・ダイアッドの割合
 オルトジクロロベンゼン-d/トリクロロベンゼン混合溶媒を測定溶媒として用いて、210℃で13C-NMR測定を行い、メソ・ダイアッド由来の51.40ppmのシグナルと、ラセモ・ダイアッド由来の51.53ppmのシグナルの強度比に基づいて決定した。
(5)テトラシクロドデセン系開環重合体水素化物の融点とガラス転移点
 融点は、樹脂の熱履歴の有無にかかわらず、示差走査熱量計(DSC;X-DSC7000、エスアイアイナノテクノロジー社製)を用いて、10℃/分の速度で昇温して測定し、結晶の融解の一次相転移ピークにおいて吸熱熱量の最も大きな温度点を融点とした。ガラス転移点は、樹脂を高温で融解したのちに、溶融状態のまま液体窒素に瞬時に投入し急激に冷却することで非晶質のサンプルとし、これを示差走査熱量計(DSC)を用いて、10℃/分の速度で昇温して測定することにより測定した。
(6)テトラシクロドデセン系開環重合体水素化物の結晶化度
 試料となる(7)に記載の溶融成形試料を、広角X線回折装置(RINT 2000、RIGAKU)を用いて、結晶のピークと非晶のハローを測定し、それらの強度比を算出することで、重量比に基づく結晶化度を決定した。
(7)テトラシクロドデセン系開環重合体水素化物のハンダ浸漬評価
 試料となる開環重合体水素化物を、10mm×100mm×1mmの形状の金属製金型にて熱プレス法により溶融成形し、成形後、10℃/分の速度にて冷却することにより作製したサンプル片(以下、「溶融成形試料」という。)を、260℃のハンダに20秒間浸漬し、その変形の有無を目視観察した。変形が認められないもの(耐熱性に優れるもの)を「良好」、変形が認められるものを「不良」と評価した。
(8)テトラシクロドデセン系開環重合体水素化物のカール値
 ハンダ浸漬評価を行った溶融成形試料の端面を水平面に設置し、このサンプル片の長軸方向の逆側の端面と水平面との距離を測定し、その値をカール値(mm)とした。カール値が小さいものほど耐熱性に優れるといえる。
〔合成例1〕テトラキス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)の合成
 攪拌機付きガラス反応器に、オキシ四塩化モリブデン錯体(Mo(=O)Cl)2.54g及びトルエン50mlを入れ、これを-78℃に冷却した。ここに、2,6-ジメチルフェノキシリチウム5.12gをトルエン50mlに溶解させた溶液を-78℃に冷却したものを添加した。得られた混合物を100℃まで昇温し、同温度で18時間反応を行った。反応終了後、反応混合物にn-ヘキサンをトルエンとの重量比1/1となるように添加し、析出した白色沈殿物をセライトにより濾別した。ろ液から溶媒を全て留去することにより、青色固体を93%の収率で得た。これをトルエン/n-ヘキサン(重量比1/1)に溶解させた。この溶液を-30℃に冷却し、静置して再結晶させることにより、青色針状結晶の固形物を得た。得られた固形物の収量は3.28g(収率55%)であった。この固形物は、H-NMR、13C-NMR及び元素分析により、テトラキス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)と同定された。
〔合成例2〕ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}フェニルイミドタングステン(VI)の合成
 攪拌機付きガラス反応器に、タングステンフェニルイミドテトラクロリドジエチルエーテル錯体(W(=NPh)Cl(EtO))2.90g及びジエチルエーテル30mlを添加し、これを-78℃に冷却した。ここに、3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシリチウム4.19gをジエチルエーテル30mlに溶解した溶液を添加した。得られた混合物を徐々に室温(25℃、以下にて同じ)に戻し、同温度で18時間反応を行った。反応終了後、反応混合物よりジエチルエーテルを留去して、得られた残留物を、トルエン/n-ヘキサンの重量比1/3混合溶媒に溶解させ、析出した白色沈殿物をセライトにより濾別した。得られたろ液から溶媒を全て留去することにより、赤色固体を96%の収率で得た。これを-30℃に冷却して静置し、再結晶させることにより、赤色針状微結晶の固形物を得た。得られた固形物の収量は4.63g(収率80%)であった。この固形物は、H-NMR、13C-NMR及び元素分析により、ビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}フェニルイミドタングステン(VI)と同定された。
〔実施例1〕
 攪拌機付きガラス反応器に、合成例1で得たテトラキス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)0.0338g及びトルエン5mlを入れ、これを-78℃に冷却した。ここに、n-ブチルリチウム0.00726gをn-ヘキサン1mlに溶解したものを添加し、これを室温まで戻し、同温度で15分間反応させた。次いで、得られた反応混合物に、テトラシクロドデセン(TCD)7.5g、シクロヘキサン27g及び1-ヘキセン0.26gを添加し、80℃において重合反応を行った。重合反応開始後、徐々に反応混合物の粘度が上昇した。2時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、凝集物をろ取した。ろ取物をメタノールで洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体の収量は7.4gであり、開環重合体の数平均分子量は22,000であった。
 次に、攪拌機付きオートクレーブに、上記で得た開環重合体3.0g及びシクロヘキサン47gを加えた。そして、シクロヘキサン10mlにRuHCl(CO)(PPh0.00157gを分散させたものをさらに添加し、水素圧4.0MPa、160℃で8時間水素化反応を行った。得られた水素化反応液を多量のアセトンに注いで生成した開環重合体水素化物を完全に析出させ、析出物をろ取した。ろ取物をメタノールで洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体水素化物1は、水素化率が99.5%以上であり、メソ・ダイアッドとラセモ・ダイアッドの比が70:30であり、アイソタクティックであった。
 開環重合体水素化物1を、DSCにて10℃/分の速度で昇温し、融点を測定したところ、熱履歴のない状態から測定された融点は315℃であった。
 DSC装置内で340℃まで加熱され完全に溶融させた試料を、溶融状態のまま液体窒素に投入し、結晶化していない非晶質の試料を作製し、この非晶質の試料を10℃/分の速度で昇温してDSC測定したところ、166℃にガラス転移点が観測された。
 さらにDSC装置で340℃まで加熱し、完全に溶融させた試料を10℃/分の速度で降温して室温まで冷却し、凝固させ、さらに試料を10℃/分の速度で昇温してDSC測定したところ、昇温途中に冷結晶化に由来するピークはほとんど観測されず、312℃に融点が観測された。
 次に、開環重合体水素化物1を330℃で10分間加熱して十分に溶融させながら金属製の所定の成形用金型にて溶融成形した。これを10℃/分の速度で降温して室温まで冷却させ、凝固させた溶融成形試料を作製した。溶融成形試料について広角X線回折測定を行ったところ、結晶の回折に由来する鋭いピークが観測され、結晶性となっていることを明確に示した。結晶の回折に由来する鋭いピークと非晶質に由来するハローとを波形分離することにより、溶融成形試料の、重量比による結晶化度を28%と算出できた。
 次に溶融成形試料のDSC測定をしたところ、昇温途中の冷結晶化に由来するピークはほとんど観測されず、312℃に吸熱ピークが観測され、溶融成形試料に存在する結晶の融点は312℃と確認した。このことから、10℃/分の速度で金属製の所定の成形用金型で降温して室温まで冷却する過程で、十分に結晶化が進み、結晶性の樹脂となっていることが分かる。また、この溶融成形試料について、ハンダ浸漬評価及びカール値の測定を行った。結果を下記表1に示す。
〔実施例2〕
 攪拌機付きガラス反応器に、合成例2で得たビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}フェニルイミドタングステン(VI)0.0556g及びトルエン4mlを添加し、これを-78℃に冷却した。ここに、n-ブチルリチウム0.00726gをヘキサン1mlに溶解したものを添加して、これを室温まで戻し、同温度で15分間反応させた。次いで、得られた反応混合物に、テトラシクロドデセン(TCD)7.0g、ジシクロペンタジエン(DCP)3.0g、シクロヘキサン27g及び1-ヘキセン0.32gを添加し、80℃において重合反応を行った。重合反応開始後、徐々に混合物の粘度が上昇し、若干白濁した。2時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、濾別洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体の収量は9.7gであり、H-NMRスペクトルデータより算出した、テトラシクロドデセンとジシクロペンタジエンの共重合組成比(重量比)は69:31であり、数平均分子量は22,600であった。
 次に、攪拌機付きオートクレーブに、得られた開環重合体3.0g及びシクロヘキサン47gを加えた。そして、シクロヘキサン10mlに、RuHCl(CO)(PPh0.00157gを分散させたものをさらに添加し、水素圧4.0MPa、160℃で8時間水素化反応を行った。得られた水素化反応液を多量のアセトンに注いで生成した開環重合体水素化物を完全に析出させ、析出物をろ取した。ろ取物をメタノールで洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体水素化物2の水素化率は99.5%以上であり、テトラシクロドデセンの繰り返し単位についてのメソ・ダイアッドとラセモ・ダイアッドの比は、95:5であった。
 開環重合体水素化物2を、DSCにて10℃/分の速度で昇温して融点を測定したところ、熱履歴のない状態から測定された融点は338℃であった。
 DSC装置内で345℃まで加熱して完全に溶融させた試料を、溶融状態のまま液体窒素に投入し、結晶化していない非晶質の試料を作製し、この非晶質の試料を10℃/分の速度で昇温してDSC測定したところ、142℃にガラス転移点が観測された。
 さらにDSC装置で345℃まで加熱し、完全に溶融させた試料を10℃/分の速度で降温して室温まで冷却し、凝固させた試料を、さらに10℃/分の速度で昇温して、DSC測定したところ、昇温途中に冷結晶化に由来するピークはほとんど観測されず、342℃に融点が観測された。
 次に、減圧乾燥した開環重合体水素化物2を345℃で10分間加熱して十分に溶融させながら金属製の成形用金型にて溶融成形した後に、それを10℃/分の速度で降温して室温まで冷却させ、凝固させた溶融成形試料を作製した。溶融成形試料について広角X線回折測定を行ったところ、結晶の回折に由来する鋭いピークが観測され、結晶性となっていることを明確に示した。結晶の回折に由来する鋭いピークと非晶質に由来するハローとを波形分離することにより、溶融成形試料の、重量比による結晶化度を21%と算出できた。
 次に、溶融成形試料のDSC測定をしたところ、昇温途中の冷結晶化に由来するピークはほとんど観測されず、342℃に吸熱ピークが観測され、溶融成形試料に存在する結晶の融点は342℃と確認した。このことから、10℃/分の速度で金属製の所定の成形用金型で降温して室温まで冷却する過程で、十分に結晶化が進み、結晶性の樹脂となっていることが分かる。また、この溶融成形試料について、ハンダ浸漬評価及びカール値の測定を行った。結果を下記表1に示す。
〔実施例3〕
 攪拌機付きガラス反応器に、合成例2で得たビス{3,3’-ジ(t-ブチル)-5,5’,6,6’-テトラメチル-2,2’-ビフェノキシ}フェニルイミドタングステン(VI)0.0556g及びトルエン4mlを添加し、これを-78℃に冷却した。そして、さらにn-ブチルリチウム0.00726gをヘキサン1mlに溶解したものを添加して、これを室温(25℃)まで戻し、15分間反応させた。次いで、得られた反応混合物に、テトラシクロドデセン(TCD)9.0g、ノルボルネン(NB)1.0g、シクロヘキサン27g及び1-ヘキセン0.32gを添加し、80℃において重合反応を行った。重合反応開始後、徐々に反応混合物の粘度が上昇した。2時間反応させた後、重合反応液に大量のアセトンを注いで沈殿物を凝集させ、凝集物をろ取した。ろ取物をメタノールで洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体の収量は9.6gであり、H-NMRスペクトルデータより算出したテトラシクロドデセンとノルボルネンの共重合組成比(重量比)は92:8であり、数平均分子量は19,500であった。
 次に、攪拌機付きオートクレーブに、得られた開環重合体3.0g及びシクロヘキサン47gを加えた。そして、シクロヘキサン10mlにRuHCl(CO)(PPh0.00157gを分散させたものをさらに添加し、水素圧4.0MPa、160℃で8時間水素化反応を行った。この水素化反応液を多量のアセトンに注いで生成した開環重合体水素化物を完全に析出させ、析出物をろ取した。ろ取物をメタノールで洗浄後、40℃で24時間減圧乾燥した。得られた開環重合体水素化物3の水素化率は99.5%以上であり、テトラシクロドデセンの繰り返し単位についてのメソ・ダイアッドとラセモ・ダイアッドの比は、95:5であった。
 開環重合体水素化物3を、DSCにて10℃/分の速度で昇温して融点を測定したところ、熱履歴のない状態から測定された融点は335℃であった。DSC装置内で340℃まで加熱され完全に溶融させた試料を、溶融状態のまま液体窒素に投入し、結晶化していない非晶質の試料を作製し、この非晶質の試料を10℃/分の速度で昇温してDSC測定したところ、141℃にガラス転移点が観測された。さらにDSC装置で340℃まで加熱し、完全に溶融させた試料を10℃/分の速度で降温して室温まで冷却し凝固させた試料を、さらに10℃/分の速度で昇温してDSC測定したところ、昇温途中に冷結晶化に由来するピークはほとんど観測されず、335℃に融点が観測された。
 次に、減圧乾燥した開環重合体水素化物3を340℃で10分間加熱して十分に溶融させながら金属製の所定の成形用金型にて溶融成形した。これを10℃/分の速度で降温して室温まで冷却させ、凝固させた溶融成形試料を作製した。溶融成形試料について広角X線回折測定を行ったところ、結晶の回折に由来する鋭いピークが観測され、結晶性となっていることを明確に示した。結晶の回折に由来する鋭いピークと非晶質に由来するハローとを波形分離することにより、溶融成形試料の、重量比による結晶化度を20%と算出できた。
 次に溶融成形試料のDSC測定をしたところ、昇温途中の冷結晶化に由来するピークはほとんど観測されず、336℃に吸熱ピークが観測され、溶融成形試料に存在する結晶の融点は336℃と確認した。このことから、金属製の所定の成形用金型で、10℃/分の速度で室温まで冷却する過程で、十分に結晶化が進み、結晶性の樹脂となっていることが分かる。また、この溶融成形試料について、ハンダ浸漬評価及びカール値の測定を行った。結果を下記表1に示す。
〔比較例1〕
 実施例1において、重合触媒として、テトラキス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)とn-ブチルリチウムとの反応物に代えて、フェニルイミドタングステン(VI)テトラクロリドジエチルエーテル0.028gとジエチルアルミニウムエトキシド0.022gの反応物を用いた以外は、実施例1と同様にして、開環重合体水素化物1rを得た。得られた開環重合体水素化物1rの水素化率は99.5%以上であり、メソ・ダイアッドとラセモ・ダイアッドの比は18:82であり、シンジオタクティックであった。
 開環重合体水素化物1rについて測定されたガラス転移点は162℃で、345℃まで昇温したが融点は観測されなかった。DSC装置内で345℃まで加熱され完全に溶融させた試料を、溶融状態のまま液体窒素に投入し、結晶化していない非晶質の試料を作製し、この非晶質の試料を10℃/分の速度で昇温してDSC測定したところ、162℃にガラス転移点が観測され、融点は観測されなかった。さらにDSC装置で345℃まで加熱し、完全に溶融させた試料を10℃/分の速度で降温して室温まで冷却し凝固させた試料をさらに10℃/分の速度で昇温してDSC測定したところ、昇温途中に162℃にガラス転移点が観測され、融点は観測されなかった。
 次に、減圧乾燥した開環重合体水素化物1rを300℃で10分間加熱して十分に溶融させながら金属製の所定の成形用金型にて溶融成形した。これを10℃/分の速度で降温して室温まで冷却させ、凝固させた溶融成形試料を作製した。溶融成形試料について広角X線回折測定を行ったところ、結晶の回折に由来するピークは観測されず、非晶質に由来するハローのみ観測された。すなわち溶融成形試料の、重量比による結晶化度は0%であった。次に、溶融成形試料のDSC測定をしたところ、昇温途中の冷結晶化や結晶融解に由来するピークは観測されず、162℃にガラス転移点が観測されたのみであった。このことから、メソ・ダイアッドの18%であるシンジオタクティックのテトラシクロドデセン系開環重合体水素化物は、熱履歴・成形条件によらず、非晶質となっていることが分かる。また、この溶融成形試料について、ハンダ浸漬評価及びカール値の測定を行った。結果を1に示す。なお、カール値(mm)は、変形が大きく、測定不能であった。
〔比較例2〕
 実施例1において、重合触媒として、テトラキス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)とn-ブチルリチウムとの反応物に代えて、六塩化タングステン(VI)0.022gとジエチルアルムニウムエトキシド0.022gの反応物を用いたこと以外は、実施例1と同様にして、開環重合体水素化物2rを得た。得られた開環重合体水素化物2rの水素化率は99.5%以上であり、メソ・ダイアッドとラセモ・ダイアッドの比は56:44であり、アタクティックであった。
 開環重合体水素化物2rについて、DSCにて10℃/分の速度で昇温して融点を測定したところ、熱履歴のない状態から測定された融点は280℃であった。DSC装置内で340℃まで加熱され完全に溶融させた試料を、溶融状態のまま液体窒素に投入し、結晶化していない非晶質の試料を作製した。この試料を10℃/分の速度で昇温してDSC測定したところ、161℃にガラス転移点が観測され、さらに昇温することで245℃に相転移に由来する発熱ピークが観測され、冷結晶化を支持した。さらにDSC装置で340℃まで加熱し、完全に溶融させた試料を10℃/分の速度で降温して室温まで冷却し凝固させた試料をさらに10℃/分の速度で昇温してDSC測定したところ、161℃にガラス転移点が観測された。次いで、245℃に冷結晶化に由来する発熱ピークと289℃に結晶融解に由来する吸熱ピークが、ともに絶対値で同じ熱量にて観測された。
 次に、減圧乾燥した開環重合体水素化物を340℃で10分間加熱して十分に溶融させながら金属製の所定の成形用金型にて溶融成形した。これを10℃/分の速度で降温して室温まで冷却させ、凝固させた溶融成形試料を作製した。得られた試料について広角X線回折測定を行ったところ、結晶の回折に由来するピークは観測されず、非晶質に由来するハローのみ観測された。すなわち溶融成形試料の、重量比による結晶化度は0%であった。
 次に、溶融成形試料のDSC測定をしたところ、昇温途中に161℃にガラス転移点が観測され、ついで245℃に冷結晶化に由来するピークが観測され、さらに、289℃に結晶融解に由来するピークが、ともに絶対値で同じ熱量にて観測された。このことから、メソ・ダイアッドの56%であるアタクティックのテトラシクロドデセン系開環重合体水素化物は、10℃/分の速度で金属製の所定の成形用金型で降温して室温まで冷却する本成形条件の場合、結晶化が進まず、溶融成形試料は非晶質となっていることが分かる。したがって、本溶融成形試料に融点は存在しないことが分かる。また、この溶融成形試料について、ハンダ浸漬評価及びカール値の測定を行った。結果を下記表1に示す。
〔比較例3〕
 実施例1において、重合触媒としてテトラキス(2,6-ジメチルフェノキシ)オキシモリブデン(VI)とn-ブチルリチウムとの反応物に代えて、2,6-ジイソプロピルフェニルイミドタングステン(VI)テトラクロリドジエチルエーテル0.033gとジエチルアルムニウムエトキシド0.022gの反応物を用いたこと以外は、実施例1と同様にして、開環重合体水素化物3rを得た。得られた開環重合体水素化物3rの水素化率は99.5%以上であり、メソ・ダイアッドとラセモ・ダイアッドの比は60:40であり、アタクティックであった。
 開環重合体水素化物3rについて、DSCにて10℃/分の速度で昇温して融点を測定したところ、熱履歴のない状態から測定された融点は295℃であった。DSC装置内で340℃まで加熱され完全に溶融させた試料を、溶融状態のまま液体窒素に投入し、結晶化していない非晶質の試料を作製し、この非晶質の試料を10℃/分の速度で昇温してDSC測定したところ、161℃にガラス転移点が観測され、さらに昇温することで250℃に相転移に由来する発熱ピークが観測され、冷結晶化を示唆した。さらにDSC装置で340℃まで加熱し、完全に溶融させた試料を10℃/分の速度で降温して室温まで冷却し凝固させた試料をさらに10℃/分の速度で昇温してDSC測定したところ、161℃にガラス転移点が観測され、次いで250℃に冷結晶化に由来する発熱ピークと288℃に結晶融解に由来する吸熱ピークが、ともに絶対値で同じ熱量にて観測された。
 次に、開環重合体水素化物3rを340℃で10分間加熱して十分に溶融させながら金属製の所定の成形用金型にて溶融成形した。これを10℃/分の速度で降温して室温まで冷却させ、凝固させた溶融成形試料を作製した。得られた試料について広角X線回折測定を行ったところ、結晶の回折に由来するピークは観測されず、非晶質に由来するハローのみ観測された。すなわち溶融成形試料の、重量比による結晶化度は0%であった。
 次に溶融成形試料のDSC測定をしたところ、昇温途中に161℃にガラス転移点が観測され、ついで250℃に冷結晶化に由来するピークが観測され、さらに、288℃に結晶融解に由来するピークが、ともに絶対値で同じ熱量にて観測された。このことから、メソ・ダイアッドの60%であるアタクティックのテトラシクロドデセン系開環重合体水素化物は、10℃/分の速度で金属製の所定の成形用金型で降温して室温まで冷却する本成形条件の場合、結晶化が進まず、溶融成形試料は非晶質となっていることが分かる。したがって、本溶融成形試料に融点は存在しないことが分かる。また、この溶融成形試料について、ハンダ浸漬評価及びカール値の測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000006
 表1から、実施例1~3の、メソ・ダイアッドの割合が65%以上である、テトラシクロドデセン系開環重合体水素化物は、溶融後融点及びガラス転移点が共に高く、融液の結晶化速度が高く、溶融後の耐熱性にも優れることがわかる。
 一方、比較例1の、メソ・ダイアッドの割合が65%未満である、シンジオタクティックのテトラシクロドデセン系開環重合体水素化物は、本質的に非晶質であるため、溶融後の耐熱性に劣る。比較例2、3の、アタクティックのテトラシクロドデセン系開環重合体水素化物は、融液の結晶化速度が遅いため、通常の成形条件では溶融後に結晶性を発現できず、溶融後の耐熱性に劣る。
 したがって、本発明のテトラシクロドデセン系開環重合体水素化物は、溶融後融点とガラス転移点が高く融液の結晶化速度も高い、耐熱性と加工性に優れる性質を示すといえる。

Claims (7)

  1.  テトラシクロドデセン由来の繰り返し単位(A)を、全繰り返し単位に対し、40重量%以上含有し、前記繰り返し単位(A)におけるメソ・ダイアッドの割合が65%以上であることを特徴とするテトラシクロドデセン系開環重合体水素化物。
  2.  ジシクロペンタジエン由来の繰り返し単位を含有するものである、請求項1に記載の開環重合体水素化物。
  3.  ノルボルネン由来の繰り返し単位を含有するものである、請求項1に記載の開環重合体水素化物。
  4.  数平均分子量(Mn)が2000~400,000である、請求項1~3のいずれかに記載の開環重合体水素化物。
  5.  融点が300℃以上である、請求項1~4のいずれかに記載の開環重合体水素化物。
  6.  ガラス転移点が130℃以上である、請求項1~5のいずれかに記載の開環重合体水素化物。
  7.  重合触媒として、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Mは周期表第6族遷移金属原子を表し、Lは、(炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基)で置換されていてもよいイミド配位子、又は、オキソ配位子を表し、R~Rは、それぞれ独立に、水素原子、炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基を表し、R~Rは互いに結合して環を形成していてもよい。Xはハロゲン原子を表し、nは1~4のいずれかの整数を表し、mは(4-n)を表す。〕、または、下記式(2)
    Figure JPOXMLDOC01-appb-C000002

    〔式中、M、LおよびXは前記と同じ意味を表し、R~R13は、それぞれ独立に、水素原子、炭素数1~12のアルキル基又は置換基を有していてもよい炭素数6~12のアリール基を表し、R~R13は互いに結合して環を形成していてもよい。pは1または2を表し、qは(4-2p)を表し、rは0または1を表す。〕で表される化合物を用いて、テトラシクロドデセンを全単量体に対し40重量%以上含有するテトラシクロドデセン系単量体を開環重合して、テトラシクロドデセン系開環重合体を得る工程、及び、得られたテトラシクロドデセン系開環重合体の主鎖炭素-炭素二重結合を、水素と水素化触媒を用いて水素化する工程を有する、請求項1~6のいずれかに記載の開環重合体水素化物の製造方法。
PCT/JP2015/057263 2014-03-14 2015-03-12 テトラシクロドデセン系開環重合体水素化物及びその製造方法 WO2015137434A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15760910.8A EP3118239B1 (en) 2014-03-14 2015-03-12 Tetracyclododecene ring-opened polymer hydride and method for producing same
US15/125,777 US10253137B2 (en) 2014-03-14 2015-03-12 Hydrogenated tetracyclododecene-based ring-opening polymer and method for producing same
CN201580012226.6A CN106103535B (zh) 2014-03-14 2015-03-12 四环十二碳烯系开环聚合物氢化物及其制造方法
JP2016507816A JP6428760B2 (ja) 2014-03-14 2015-03-12 テトラシクロドデセン系開環重合体水素化物及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014051621 2014-03-14
JP2014-051621 2014-03-14

Publications (1)

Publication Number Publication Date
WO2015137434A1 true WO2015137434A1 (ja) 2015-09-17

Family

ID=54071873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057263 WO2015137434A1 (ja) 2014-03-14 2015-03-12 テトラシクロドデセン系開環重合体水素化物及びその製造方法

Country Status (5)

Country Link
US (1) US10253137B2 (ja)
EP (1) EP3118239B1 (ja)
JP (2) JP6428760B2 (ja)
CN (1) CN106103535B (ja)
WO (1) WO2015137434A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112565A (ja) * 2017-12-25 2019-07-11 日本ゼオン株式会社 環状オレフィン開環重合体水素化物、医療用樹脂材料、容器、及びフィルム
WO2019188720A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
WO2022209818A1 (ja) * 2021-04-01 2022-10-06 日本ゼオン株式会社 光学フィルム及びその製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7247704B2 (ja) * 2019-03-27 2023-03-29 日本ゼオン株式会社 開環重合体水素化物、樹脂組成物、および成形体
CN113557258B (zh) * 2019-03-27 2023-09-05 日本瑞翁株式会社 开环聚合物氢化物、树脂组合物以及成型体
WO2020218043A1 (ja) * 2019-04-26 2020-10-29 日本ゼオン株式会社 光学フィルム
CN116970148A (zh) * 2023-06-15 2023-10-31 天津大学 一种高性能宽加工窗口的环烯烃共聚物及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089744A (ja) * 2003-08-13 2005-04-07 Nippon Zeon Co Ltd 開環重合体、開環重合体水素化物およびそれらの製造方法、並びに重合触媒組成物
JP2006052333A (ja) * 2004-08-12 2006-02-23 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素化物の製造方法およびノルボルネン系開環重合体水素化物
JP2007137935A (ja) * 2005-11-15 2007-06-07 Nippon Zeon Co Ltd テトラシクロドデセン開環重合体水素化物、その製造方法及び光学材料
JP2008013604A (ja) * 2006-07-03 2008-01-24 Nippon Zeon Co Ltd テトラシクロドデセン含有開環重合体水素化物、光学樹脂材料および光学成形体
JP2013139513A (ja) * 2011-12-29 2013-07-18 Nippon Zeon Co Ltd 結晶性ノルボルネン系開環重合体水素化物の製造方法
JP2013184925A (ja) * 2012-03-08 2013-09-19 Osaka Univ タングステン錯体、メタセシス反応用触媒および環状オレフィン開環重合体の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2534086B2 (ja) * 1987-12-25 1996-09-11 日本ゼオン株式会社 開環共重合体水素添加物およびその製造方法
DE60015600T2 (de) 1999-08-25 2005-11-10 Zeon Corp. Geöffnete norbornenringpolymere, deren hydrierungsprodukte sowie verfahren zur herstellung beider produkte
JP4352620B2 (ja) * 2001-02-26 2009-10-28 日本ゼオン株式会社 ノルボルネン系開環重合体水素化物の製造方法
EP1655320B1 (en) 2003-08-13 2012-07-25 Zeon Corporation Dicyclopentadien ring-opening polymer hydrogenation product and process for producing the same
TW200621470A (en) * 2004-09-30 2006-07-01 Zeon Corp Injection Molding
JP5440170B2 (ja) 2007-09-28 2014-03-12 日本ゼオン株式会社 プラズマエッチング方法
JP5477290B2 (ja) 2008-07-18 2014-04-23 日本ゼオン株式会社 含水素フルオロオレフィン化合物の製造方法
JP2011105625A (ja) 2009-11-16 2011-06-02 Nippon Zeon Co Ltd ヘプタフルオロシクロペンテンの異性化方法及びその利用
JP5862268B2 (ja) * 2011-12-16 2016-02-16 日本ゼオン株式会社 重合体、成形体及び重合体の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005089744A (ja) * 2003-08-13 2005-04-07 Nippon Zeon Co Ltd 開環重合体、開環重合体水素化物およびそれらの製造方法、並びに重合触媒組成物
JP2006052333A (ja) * 2004-08-12 2006-02-23 Nippon Zeon Co Ltd ノルボルネン系開環重合体水素化物の製造方法およびノルボルネン系開環重合体水素化物
JP2007137935A (ja) * 2005-11-15 2007-06-07 Nippon Zeon Co Ltd テトラシクロドデセン開環重合体水素化物、その製造方法及び光学材料
JP2008013604A (ja) * 2006-07-03 2008-01-24 Nippon Zeon Co Ltd テトラシクロドデセン含有開環重合体水素化物、光学樹脂材料および光学成形体
JP2013139513A (ja) * 2011-12-29 2013-07-18 Nippon Zeon Co Ltd 結晶性ノルボルネン系開環重合体水素化物の製造方法
JP2013184925A (ja) * 2012-03-08 2013-09-19 Osaka Univ タングステン錯体、メタセシス反応用触媒および環状オレフィン開環重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3118239A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019112565A (ja) * 2017-12-25 2019-07-11 日本ゼオン株式会社 環状オレフィン開環重合体水素化物、医療用樹脂材料、容器、及びフィルム
JP7073712B2 (ja) 2017-12-25 2022-05-24 日本ゼオン株式会社 環状オレフィン開環重合体水素化物、医療用樹脂材料、容器、及びフィルム
WO2019188720A1 (ja) * 2018-03-28 2019-10-03 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
JPWO2019188720A1 (ja) * 2018-03-28 2021-03-11 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
JP7207403B2 (ja) 2018-03-28 2023-01-18 日本ゼオン株式会社 ノルボルネン開環重合体水素化物およびその製造方法
WO2022209818A1 (ja) * 2021-04-01 2022-10-06 日本ゼオン株式会社 光学フィルム及びその製造方法

Also Published As

Publication number Publication date
JP2019007028A (ja) 2019-01-17
EP3118239A1 (en) 2017-01-18
JP6428760B2 (ja) 2018-11-28
US10253137B2 (en) 2019-04-09
EP3118239B1 (en) 2024-09-18
US20170002133A1 (en) 2017-01-05
JPWO2015137434A1 (ja) 2017-04-06
EP3118239A4 (en) 2017-10-11
JP6674156B2 (ja) 2020-04-01
CN106103535B (zh) 2019-04-23
CN106103535A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
JP6674156B2 (ja) テトラシクロドデセン系開環重合体水素化物及びその製造方法
JP4466272B2 (ja) ノルボルネン系開環重合体水素化物の製造方法およびノルボルネン系開環重合体水素化物
JP6590156B2 (ja) 環状オレフィン開環重合体水素化物、樹脂成形体、および光学部材
WO2001014446A1 (fr) Polymeres de norbornene par ouverture de cycle, produits de leur hydrogenation et procedes de productions de ces deux types de polymeres
JP5862268B2 (ja) 重合体、成形体及び重合体の製造方法
JP2013010309A (ja) フィルムの製造方法
JP5862299B2 (ja) 結晶性ノルボルネン系開環重合体水素化物の製造方法
JP4466273B2 (ja) 開環重合体、開環重合体水素化物およびそれらの製造方法、並びに重合触媒組成物
WO2005016990A1 (ja) ノルボルネン系開環重合体水素化物およびその製造方法
JPWO2016143795A1 (ja) 樹脂成形体、樹脂フィルム、及び射出成形品
EP3269751B1 (en) Syndiotactic crystalline dicyclopentadiene ring-opening polymer hydride, syndiotactic dicyclopentadiene ring-opening polymer, and production method for these
JP2013184925A (ja) タングステン錯体、メタセシス反応用触媒および環状オレフィン開環重合体の製造方法
JP7207403B2 (ja) ノルボルネン開環重合体水素化物およびその製造方法
JP5791418B2 (ja) 新規化合物、重合体、その架橋体、及びそれを有する光学素子
JP5239180B2 (ja) スピロ環含有ノルボルネン誘導体、ノルボルネン系重合体、ノルボルネン系開環重合体水素化物、光学樹脂材料及び光学成形体
US11325287B2 (en) Shaping material, resin shaped product, cosmetic container, semiconductor container, and method of producing semiconductor container
JP2017066270A (ja) 成形材料、成形体、及び成形材料の製造方法
JPWO2016143796A1 (ja) 樹脂成形体の製造方法、樹脂フィルムの製造方法、及び射出成形品の製造方法
JP2010132600A (ja) 含フッ素環状オレフィン化合物とその製造方法、含フッ素環状オレフィン開環重合体、および含フッ素環状オレフィン開環重合体水素化物
JP7416050B2 (ja) 開環重合体水素化物、樹脂組成物、および成形体
JP2017124520A (ja) 成形材料の溶融方法、及び樹脂成形体の製造方法
JP2003301032A (ja) ノルボルネン系開環重合体、ノルボルネン系開環重合体水素化物およびそれらの製造方法
TW202244090A (zh) 環烯烴共聚物及其氫化物以及光學元件
JP2005248081A (ja) 含フッ素脂環式構造含有重合体、その製造方法及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507816

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15125777

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015760910

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015760910

Country of ref document: EP