WO2022209818A1 - 光学フィルム及びその製造方法 - Google Patents
光学フィルム及びその製造方法 Download PDFInfo
- Publication number
- WO2022209818A1 WO2022209818A1 PCT/JP2022/011307 JP2022011307W WO2022209818A1 WO 2022209818 A1 WO2022209818 A1 WO 2022209818A1 JP 2022011307 W JP2022011307 W JP 2022011307W WO 2022209818 A1 WO2022209818 A1 WO 2022209818A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical film
- resin
- polymer
- melting point
- film
- Prior art date
Links
- 239000012788 optical film Substances 0.000 title claims abstract description 179
- 238000004519 manufacturing process Methods 0.000 title claims description 35
- 229920000642 polymer Polymers 0.000 claims abstract description 171
- 229920005989 resin Polymers 0.000 claims abstract description 166
- 239000011347 resin Substances 0.000 claims abstract description 166
- 238000002844 melting Methods 0.000 claims abstract description 81
- 230000008018 melting Effects 0.000 claims abstract description 81
- 230000009477 glass transition Effects 0.000 claims abstract description 62
- 238000002425 crystallisation Methods 0.000 claims abstract description 41
- 230000008025 crystallization Effects 0.000 claims abstract description 41
- 239000010408 film Substances 0.000 claims description 116
- 229920006125 amorphous polymer Polymers 0.000 claims description 63
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 12
- 238000002156 mixing Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 10
- 239000002904 solvent Substances 0.000 description 57
- 238000000034 method Methods 0.000 description 34
- 230000008859 change Effects 0.000 description 32
- 229920006038 crystalline resin Polymers 0.000 description 29
- -1 polyethylene terephthalate Polymers 0.000 description 29
- 238000012360 testing method Methods 0.000 description 29
- 229920006127 amorphous resin Polymers 0.000 description 27
- 238000007142 ring opening reaction Methods 0.000 description 25
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 22
- 150000004678 hydrides Chemical class 0.000 description 21
- 239000000178 monomer Substances 0.000 description 21
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 19
- 125000002723 alicyclic group Chemical group 0.000 description 19
- 125000003518 norbornenyl group Chemical group C12(C=CC(CC1)C2)* 0.000 description 13
- 230000010287 polarization Effects 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 11
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 11
- 238000002834 transmittance Methods 0.000 description 11
- 238000007654 immersion Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 239000003963 antioxidant agent Substances 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 6
- 150000001924 cycloalkanes Chemical group 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000035515 penetration Effects 0.000 description 5
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 4
- 239000006096 absorbing agent Substances 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 235000011089 carbon dioxide Nutrition 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 150000001925 cycloalkenes Chemical group 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 2
- 241000209094 Oryza Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical class OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000003063 flame retardant Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 229920001519 homopolymer Polymers 0.000 description 2
- 238000009474 hot melt extrusion Methods 0.000 description 2
- 239000004611 light stabiliser Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 150000002848 norbornenes Chemical group 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- LCSLWNXVIDKVGD-KQQUZDAGSA-N (3e,7e)-deca-3,7-diene Chemical compound CC\C=C\CC\C=C\CC LCSLWNXVIDKVGD-KQQUZDAGSA-N 0.000 description 1
- TXVWTOBHDDIASC-UHFFFAOYSA-N 1,2-diphenylethene-1,2-diamine Chemical class C=1C=CC=CC=1C(N)=C(N)C1=CC=CC=C1 TXVWTOBHDDIASC-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- UPXNBKIXKLFISK-UHFFFAOYSA-N 1-(5-bicyclo[2.2.1]hept-2-enyl)naphthalene Chemical compound C1=CC=C2C(C3CC4CC3C=C4)=CC=CC2=C1 UPXNBKIXKLFISK-UHFFFAOYSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- WLTSXAIICPDFKI-UHFFFAOYSA-N 3-dodecene Chemical compound CCCCCCCCC=CCC WLTSXAIICPDFKI-UHFFFAOYSA-N 0.000 description 1
- XUFPYLQWLKKGDQ-UHFFFAOYSA-N 4,4a,9,9a-tetrahydro-1,4-methano-1h-fluorene Chemical compound C12CC3=CC=CC=C3C1C1C=CC2C1 XUFPYLQWLKKGDQ-UHFFFAOYSA-N 0.000 description 1
- QDIQZDCRECGYGO-UHFFFAOYSA-N 5-(4-methylphenyl)bicyclo[2.2.1]hept-2-ene Chemical compound C1=CC(C)=CC=C1C1C(C=C2)CC2C1 QDIQZDCRECGYGO-UHFFFAOYSA-N 0.000 description 1
- PGNNHYNYFLXKDZ-UHFFFAOYSA-N 5-phenylbicyclo[2.2.1]hept-2-ene Chemical compound C1=CC2CC1CC2C1=CC=CC=C1 PGNNHYNYFLXKDZ-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- XPBJOKKVDANCLK-UHFFFAOYSA-N 9-(5-bicyclo[2.2.1]hept-2-enyl)carbazole Chemical compound C12=CC=CC=C2C2=CC=CC=C2N1C1CC2CC1C=C2 XPBJOKKVDANCLK-UHFFFAOYSA-N 0.000 description 1
- NSJHCECELHSBTG-UHFFFAOYSA-N 9-azatetracyclo[9.2.1.02,10.03,8]tetradeca-3,5,7,12-tetraene Chemical compound C12NC3=CC=CC=C3C1C1C=CC2C1 NSJHCECELHSBTG-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- LNNZITRDBYGFKM-UHFFFAOYSA-N C12CCC3=CC=CC=C3C1C1C=CC2C1 Chemical compound C12CCC3=CC=CC=C3C1C1C=CC2C1 LNNZITRDBYGFKM-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- WZELXJBMMZFDDU-UHFFFAOYSA-N Imidazol-2-one Chemical class O=C1N=CC=N1 WZELXJBMMZFDDU-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000001118 alkylidene group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000007980 azole derivatives Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical class N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 150000001565 benzotriazoles Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 150000001716 carbazoles Chemical class 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 125000001309 chloro group Chemical group Cl* 0.000 description 1
- 238000004581 coalescence Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 150000001893 coumarin derivatives Chemical class 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- GCPCLEKQVMKXJM-UHFFFAOYSA-N ethoxy(diethyl)alumane Chemical compound CCO[Al](CC)CC GCPCLEKQVMKXJM-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- HRRDCWDFRIJIQZ-UHFFFAOYSA-N naphthalene-1,8-dicarboxylic acid Chemical class C1=CC(C(O)=O)=C2C(C(=O)O)=CC=CC2=C1 HRRDCWDFRIJIQZ-UHFFFAOYSA-N 0.000 description 1
- 125000002560 nitrile group Chemical group 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 239000012169 petroleum derived wax Substances 0.000 description 1
- 235000019381 petroleum wax Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920001195 polyisoprene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 125000001174 sulfone group Chemical group 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- XBFJAVXCNXDMBH-UHFFFAOYSA-N tetracyclo[6.2.1.1(3,6).0(2,7)]dodec-4-ene Chemical compound C1C(C23)C=CC1C3C1CC2CC1 XBFJAVXCNXDMBH-UHFFFAOYSA-N 0.000 description 1
- LARWSROPFKACET-UHFFFAOYSA-N tetracyclo[9.2.1.02,10.03,8]tetradeca-5,12-diene Chemical compound C12CC3CC=CCC3C1C1C=CC2C1 LARWSROPFKACET-UHFFFAOYSA-N 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/02—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
- C08G61/04—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
- C08G61/06—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
- C08G61/08—Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L101/00—Compositions of unspecified macromolecular compounds
- C08L101/12—Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
Definitions
- the present invention relates to an optical film and its manufacturing method.
- a film formed of a resin containing a combination of an amorphous polymer and a crystalline polymer tends to be inferior in heat resistance.
- conventional films tend to undergo retardation changes and haze increases in high-temperature environments.
- the polarization state of the transmitted light may vary. rice field.
- an optical fiber comprising a crystalline polymer with a melting point and an amorphous polymer without a melting point and made of a resin having a specific range of glass transition temperature and cold crystallization temperature.
- the film should be excellent in both solvent resistance and heat resistance, and a resin containing a crystalline polymer having a melting point and an amorphous polymer having no melting point and satisfying a specific relationship.
- the present inventors have found that an optical film made of a resin having a melting point and a glass transition temperature can suppress variations in the polarization state of transmitted light, and have completed the present invention. That is, the present invention includes the following.
- An optical film made of a resin containing a crystalline polymer having a melting point and an amorphous polymer having no melting point The optical film, wherein the resin has a glass transition temperature Tgd that satisfies the following formula (1) and a cold crystallization temperature Tcd that satisfies the following formula (2).
- Tgd glass transition temperature
- Tcd cold crystallization temperature
- a crystalline polymer having a melting point and an amorphous polymer having no melting point are mixed to obtain a glass transition temperature Tgd that satisfies the following formula (1) and a cold that satisfies the following formula (2): obtaining a resin having a crystallization temperature Tcd; and a step of molding the resin to obtain a resin film.
- Tgd glass transition temperature
- Tcd crystallization temperature
- a step of molding the resin to obtain a resin film 50°C ⁇ Tmd-Tgd ⁇ 160°C (3)
- an optical film that is excellent in both solvent resistance and heat resistance, and a method for producing the same. Further, according to the present invention, it is possible to provide an optical film capable of suppressing variations in the polarization state of transmitted light when linearly polarized light is transmitted through the optical film, and a method for producing the same.
- a polymer having positive intrinsic birefringence means a polymer whose refractive index in the stretching direction is higher than that in the direction perpendicular to it.
- a polymer having negative intrinsic birefringence means a polymer whose refractive index in the stretching direction is smaller than that in the direction perpendicular to it.
- a "long" film refers to a film having a length of 5 times or more, preferably 10 times or more, with respect to the width, specifically a roll A film that is long enough to be rolled up into a shape and stored or transported.
- the upper limit of the length of the film is not particularly limited, and can be, for example, 100,000 times or less the width.
- the birefringence ⁇ n is a value expressed by nx ⁇ ny, and therefore a value expressed by Re/d, unless otherwise specified.
- nx represents the refractive index in the direction (in-plane direction) perpendicular to the thickness direction that gives the maximum refractive index.
- ny represents the refractive index in the in-plane direction and in the direction orthogonal to the nx direction.
- nz represents the refractive index in the thickness direction.
- d represents the thickness.
- the measurement wavelength is 590 nm unless otherwise stated.
- An optical film according to one embodiment of the present invention is made of a resin containing a crystalline polymer having a melting point and an amorphous polymer having no melting point.
- Such resins containing crystalline and amorphous polymers are sometimes referred to hereinafter as "mixed resins". Since the optical film is made of a mixed resin, it usually contains the mixed resin, and preferably contains only the mixed resin.
- An optical film according to an embodiment of the present invention includes (1) a configuration in which the mixed resin has a specific range of glass transition temperature Tgd and a specific range of cold crystallization temperature Tcd, and (2) At least one of the configurations in which the mixed resin has a melting point Tmd and a glass transition temperature Tgd that satisfy a specific relationship is included.
- the case including the configuration of (1) is the first embodiment
- the case of including the configuration of (2) is the second embodiment
- the case of including both the configurations of (1) and (2) is the third embodiment. explain.
- the optical film according to the first embodiment is formed of a mixed resin containing a crystalline polymer having a melting point and an amorphous polymer having no melting point.
- the mixed resin has a specific range of glass transition temperature Tgd and a specific range of cold crystallization temperature Tcd.
- An optical film formed from this mixed resin can be excellent in both solvent resistance and heat resistance.
- a crystalline polymer refers to a polymer having crystallinity.
- a polymer having crystallinity means a polymer having a melting point. The melting point of the polymer can be measured by differential scanning calorimeter (DSC).
- DSC differential scanning calorimeter
- a crystalline polymer refers to a polymer whose melting point can be observed with a differential scanning calorimeter (DSC).
- the crystalline polymer may have positive intrinsic birefringence or may have negative intrinsic birefringence. Among them, a crystalline polymer having a positive intrinsic birefringence is preferred.
- crystalline polymers examples include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN); polyolefins such as polyethylene (PE) and polypropylene (PP); preferable. That is, the crystalline polymer is preferably a cyclic olefin polymer having a melting point.
- a cyclic olefin-based polymer having a melting point may be referred to as a "cyclic olefin-based crystalline polymer”.
- a cyclic olefin-based crystalline polymer can have an alicyclic structure in its molecule.
- Such a cyclic olefin-based crystalline polymer can be, for example, a polymer obtained by a polymerization reaction using a cyclic olefin as a monomer or a hydride thereof.
- a mixed resin containing a cyclic olefin-based crystalline polymer is used, the mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability and lightness of the optical film can be improved.
- Alicyclic structures include, for example, cycloalkane structures and cycloalkene structures. Among these, a cycloalkane structure is preferable because an optical film having excellent properties such as thermal stability can be easily obtained.
- the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms contained in one alicyclic structure is within the above range, mechanical strength, heat resistance and formability are highly balanced.
- the ratio of structural units having an alicyclic structure to all structural units is preferably 30% by weight or more, more preferably 50% by weight or more, and particularly preferably 70% by weight or more. .
- the proportion of structural units having an alicyclic structure is large as described above, the heat resistance can be enhanced.
- the ratio of structural units having an alicyclic structure to all structural units can be 100% by weight or less.
- the remainder other than the structural unit having an alicyclic structure is not particularly limited, and can be appropriately selected according to the purpose of use.
- Examples of the cyclic olefin-based crystalline polymer include the following polymers ( ⁇ ) to ( ⁇ ). Among these, the polymer ( ⁇ ) is preferable because an optical film having excellent heat resistance can be easily obtained.
- Polymer ( ⁇ ) A crystalline addition polymer of cyclic olefin monomers.
- Polymer ( ⁇ ) A hydride of polymer ( ⁇ ) having crystallinity.
- the crystalline polymer containing an alicyclic structure includes a ring-opening polymer of dicyclopentadiene having crystallinity, and a hydride of a ring-opening polymer of dicyclopentadiene. It is more preferable to have crystallinity. Among them, a hydrogenated ring-opening polymer of dicyclopentadiene having crystallinity is particularly preferable.
- the ring-opening polymer of dicyclopentadiene means that the ratio of structural units derived from dicyclopentadiene to all structural units is usually 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more, More preferably, it refers to 100% by weight of polymer.
- the hydride of the ring-opening polymer of dicyclopentadiene preferably has a high ratio of racemo dyads.
- the ratio of the racemo diad of repeating units in the hydrogenated ring-opening polymer of dicyclopentadiene is preferably 51% or more, more preferably 70% or more, and particularly preferably 85% or more.
- a high proportion of racemo dyads indicates high syndiotactic stereoregularity. Therefore, the melting point of the hydride of the ring-opening polymer of dicyclopentadiene tends to be higher as the ratio of the racemo diad is higher.
- the ratio of racemo dyads can be determined based on the 13 C-NMR spectrum analysis described in the Examples below.
- polymers ( ⁇ ) to polymer ( ⁇ ) polymers obtained by the production method disclosed in International Publication No. 2018/062067 can be used.
- the melting point Tma of the crystalline polymer is preferably 200°C or higher, more preferably 230°C or higher, and preferably 290°C or lower.
- Tma melting point
- a crystalline polymer usually has a glass transition temperature Tga.
- Tga glass transition temperature
- the specific glass transition temperature Tga of the crystalline polymer is not particularly limited, it is usually 85°C or higher and usually 170°C or lower.
- the glass transition temperature Tga of the crystalline polymer is preferably lower than the glass transition temperature Tgb of the amorphous polymer.
- the glass transition temperature Tga is lower than the glass transition temperature Tgb, the solvent resistance, heat resistance and flexibility of the optical film can be effectively improved.
- of the difference between the glass transition temperature Tga of the crystalline polymer and the glass transition temperature Tgb of the amorphous polymer is preferably within a specific range.
- is preferably 30° C. or higher, more preferably 40° C. or higher, particularly preferably 50° C. or higher, preferably 100° C. or lower, more preferably 90° C. or lower, especially Preferably, it is 80°C or less.
- is within the above range, the solvent resistance, heat resistance and flexibility of the optical film can be effectively enhanced.
- the glass transition temperature and melting point of the polymer can be measured by the following methods. First, the polymer is melted by heating, and the melted polymer is quenched with dry ice. Subsequently, using this polymer as a test sample, a differential scanning calorimeter (DSC) was used to measure the glass transition temperature and melting point of the polymer at a heating rate of 10° C./min (heating mode). sell.
- DSC differential scanning calorimeter
- the weight average molecular weight (Mw) of the crystalline polymer is preferably 1,000 or more, more preferably 2,000 or more, and preferably 1,000,000 or less, more preferably 500,000 or less.
- a crystalline polymer having such a weight-average molecular weight has an excellent balance between moldability and heat resistance.
- the molecular weight distribution (Mw/Mn) of the crystalline polymer is preferably 1.0 or more, more preferably 1.5 or more, and preferably 4.0 or less, more preferably 3.5 or less.
- Mn represents the number average molecular weight.
- a crystalline polymer having such a molecular weight distribution is excellent in moldability.
- the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) of the polymer can be measured as polystyrene equivalent values by gel permeation chromatography (GPC) using tetrahydrofuran as a developing solvent. If the polymer does not dissolve in cyclohexane, toluene can be used as a solvent and the weight average molecular weight (Mw) and molecular weight distribution (Mw/Mn) can be measured as polyisoprene equivalent values.
- the crystallinity of the crystalline polymer contained in the optical film is usually 0% or more, preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 5% or less. .
- the crystallinity of a crystalline polymer can be measured by an X-ray diffraction method.
- the crystalline polymer may be used singly or in combination of two or more at any ratio.
- the amount of the crystalline polymer contained in the mixed resin is preferably 30% by weight or more, more preferably 35% by weight or more, particularly preferably 40% by weight or more, and preferably 80% by weight with respect to 100% by weight of the mixed resin. % by weight or less, more preferably 75% by weight or less, particularly preferably 70% by weight or less. When the amount of the crystalline polymer is within the above range, the solvent resistance, heat resistance and flexibility of the optical film can be effectively improved.
- the weight ratio Wa/Wb of the amount Wa of the crystalline polymer and the amount Wb of the amorphous polymer contained in the mixed resin is preferably within a specific range. Specifically, the weight ratio Wa/Wb is preferably greater than 30/70, more preferably greater than 35/65, particularly preferably greater than 40/60, preferably less than 80/20, more preferably 75/ less than 25. When the weight ratio Wa/Wb is within the above range, the solvent resistance, heat resistance and flexibility of the optical film can be effectively enhanced.
- the total amount of the crystalline polymer and the amorphous polymer contained in the mixed resin is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, based on 100% by weight of the mixed resin. %, more preferably 80 wt % to 100 wt %, more preferably 90 wt % to 100 wt %, particularly preferably 95 wt % to 100 wt %.
- Amorphous polymer refers to a polymer that does not have crystallinity.
- a non-crystalline polymer refers to a polymer that does not have a melting point.
- an amorphous polymer refers to a polymer whose melting point cannot be observed with a differential scanning calorimeter (DSC).
- the amorphous polymer may have positive intrinsic birefringence or may have negative intrinsic birefringence. Among them, amorphous polymers having positive intrinsic birefringence are preferred.
- a cyclic olefin polymer is preferable as the amorphous polymer. That is, the amorphous polymer is preferably a cyclic olefin polymer that does not have a melting point.
- a cyclic olefin-based polymer having no melting point may be referred to as a "cyclic olefin-based amorphous polymer”. Cyclic olefin-based amorphous polymers are excellent in mechanical properties, heat resistance, transparency, low hygroscopicity, dimensional stability and lightness.
- a cyclic olefin-based amorphous polymer can have a cyclic structure in its molecule.
- a cyclic olefin-based amorphous polymer usually has an alicyclic structure as a structural unit of the polymer.
- the cyclic olefin-based amorphous polymer includes a polymer having an alicyclic structure in the main chain, a polymer having an alicyclic structure in the side chain, a polymer having an alicyclic structure in the main chain and side chains, and , a mixture of two or more of these in any ratio.
- the cyclic olefin-based amorphous polymer preferably has an alicyclic structure in the main chain from the viewpoint of mechanical strength and heat resistance.
- Alicyclic structures include, for example, saturated alicyclic hydrocarbon (cycloalkane) structures and unsaturated alicyclic hydrocarbon (cycloalkene, cycloalkyne) structures. Among them, from the viewpoint of mechanical strength and heat resistance, a cycloalkane structure and a cycloalkene structure are preferable, and a cycloalkane structure is particularly preferable.
- the number of carbon atoms contained in one alicyclic structure is preferably 4 or more, more preferably 5 or more, preferably 30 or less, more preferably 20 or less, and particularly preferably 15 or less. be. When the number of carbon atoms constituting the alicyclic structure is within this range, mechanical strength, heat resistance and formability are highly balanced.
- the ratio of structural units having an alicyclic structure to all structural units is preferably 55% by weight or more, more preferably 70% by weight or more, and particularly preferably 90% by weight or more. be. When the ratio of structural units having an alicyclic structure to all structural units is within this range, good transparency and heat resistance are obtained.
- Cyclic olefin-based amorphous polymers include, for example, norbornene-based polymers, monocyclic cyclic olefin-based polymers, cyclic conjugated diene-based polymers, vinyl alicyclic hydrocarbon-based polymers, and hydrides thereof. etc. Among these, norbornene-based polymers and their hydrides have good moldability.
- Examples of norbornene-based polymers and hydrides thereof include ring-opened polymers of monomers having a norbornene structure and hydrides thereof; addition polymers of monomers having a norbornene structure and hydrides thereof.
- Examples of ring-opening polymers of monomers having a norbornene structure include ring-opening homopolymers of one type of monomer having a norbornene structure, and ring-opening of two or more types of monomers having a norbornene structure. Examples include copolymers, and ring-opening copolymers of monomers having a norbornene structure and other monomers copolymerizable therewith.
- addition polymers of monomers having a norbornene structure include addition homopolymers of one type of monomer having a norbornene structure, and addition copolymers of two or more types of monomers having a norbornene structure. and addition copolymers of monomers having a norbornene structure and other monomers copolymerizable therewith.
- these polymers include the polymers disclosed in JP-A-2002-321302, International Publication No. 2017/145718, and the like.
- hydrides of ring-opening polymers of monomers having a norbornene structure are particularly preferred from the viewpoints of moldability, heat resistance, low hygroscopicity, dimensional stability and lightness.
- Examples of monomers having a norbornene structure include bicyclo[2.2.1]hept-2-ene (common name: norbornene), tricyclo[4.3.0.1 2,5 ]deca-3,7 - diene (common name: dicyclopentadiene), tetracyclo[4.4.0.1 2,5 .
- substituents include alkyl groups such as methyl group, ethyl group, propyl group and isopropyl group; alkylidene groups; alkenyl groups; polar groups; Polar groups include, for example, heteroatoms or atomic groups having heteroatoms. Heteroatoms include, for example, oxygen atoms, nitrogen atoms, sulfur atoms, silicon atoms, halogen atoms and the like.
- polar groups include halogen groups such as a fluoro group, a chloro group, a bromo group, and an iodine group; a carboxyl group; a carbonyloxycarbonyl group; an epoxy group; a hydroxy group; an oxy group; silyl group; amino group; nitrile group; sulfone group; cyano group; amide group;
- the number of substituents may be one, or two or more.
- the types of the two or more substituents may be the same or different.
- the norbornene-based monomer preferably has a small amount of polar groups, and more preferably does not have a polar group.
- cyclic olefin-based amorphous polymers examples include trade names such as "ZEONEX” manufactured by Nippon Zeon; “Arton” manufactured by JSR; “Appel” manufactured by Mitsui Chemicals; “TOPAS” manufactured by Polyplastics; is mentioned.
- the glass transition temperature Tgb of the amorphous polymer is preferably 90° C. or higher, more preferably 100° C. or higher, still more preferably 110° C. or higher, preferably 200° C. or lower, more preferably 190° C. or lower, and still more preferably 180° C. or less.
- the glass transition temperature Tgb of the amorphous polymer is within the above range, both solvent resistance and heat resistance of the optical film can be effectively enhanced.
- the stretching process can be performed smoothly in general.
- the weight average molecular weight (Mw) of the amorphous polymer is preferably 10,000 or more, more preferably 15,000 or more, particularly preferably 20,000 or more, and preferably 100,000 or less, more preferably 80. ,000 or less, particularly preferably 50,000 or less.
- Mw weight average molecular weight
- the molecular weight distribution (weight average molecular weight (Mw)/number average molecular weight (Mn)) of the amorphous polymer is preferably 1.2 or more, more preferably 1.5 or more, and particularly preferably 1.8 or more, It is preferably 3.5 or less, more preferably 3.0 or less, and particularly preferably 2.7 or less.
- Mw weight average molecular weight
- Mn number average molecular weight
- Amorphous polymers may be used singly or in combination of two or more at any ratio.
- the amount of the amorphous polymer contained in the mixed resin is preferably 20% by weight or more, more preferably 25% by weight or more, and particularly preferably 30% by weight or more, relative to 100% by weight of the mixed resin. It is 70% by weight or less, more preferably 65% by weight or less, and particularly preferably 60% by weight or less. When the amount of the amorphous polymer is within the above range, both solvent resistance and heat resistance of the optical film can be effectively enhanced.
- the mixed resin may further contain optional ingredients in combination with the crystalline polymer and the amorphous polymer.
- Optional components include, for example, antioxidants such as phenol antioxidants, phosphorus antioxidants, and sulfur antioxidants; light stabilizers such as hindered amine light stabilizers; petroleum waxes, Fischer-Tropsch waxes, Waxes such as polyalkylene waxes; nucleating agents such as sorbitol compounds, metal salts of organic phosphoric acid, metal salts of organic carboxylic acids, kaolin and talc; diaminostilbene derivatives, coumarin derivatives, azole derivatives (e.g., benzoxazole derivatives, Fluorescent whitening agents such as benzotriazole derivatives, benzimidazole derivatives, and benzothiazole derivatives), carbazole derivatives, pyridine derivatives, naphthalic acid derivatives, and imidazolone derivatives; benzophenone-based UV absorbers, salicylic acid
- One type of optional component may be used alone, or two or more types may be used in combination at any ratio.
- the amount of any component can be appropriately determined within a range that does not significantly impair the effects of the present invention.
- the amount of the optional component may be, for example, a range that allows the total light transmittance of the optical film to be maintained at 85% or higher.
- the mixed resin has a glass transition temperature Tgd that satisfies the following formula (1). 100°C ⁇ Tgd ⁇ 140°C (1) Specifically, the glass transition temperature Tgd of the mixed resin is generally higher than 100°C, preferably higher than 102°C, particularly preferably 104°C or higher, and generally lower than 140°C, preferably lower than 135°C, particularly preferably lower than 135°C. is below 130°C.
- the glass transition temperature Tgd of the mixed resin can be adjusted, for example, by adjusting the type and amount of the crystalline polymer and the type and amount of the amorphous polymer.
- the glass transition temperature Tgd of the mixed resin can be measured by the same method as the method for measuring the glass transition temperature of the polymer described above.
- the mixed resin has a cold crystallization temperature Tcd that satisfies the following formula (2). 170°C ⁇ Tcd ⁇ 225°C (2) Specifically, the cold crystallization temperature Tcd of the mixed resin is generally higher than 170°C, preferably higher than 175°C, particularly preferably 180°C or higher, and generally lower than 225°C, preferably lower than 210°C, particularly preferably less than 205°C.
- the cold crystallization temperature Tcd of the mixed resin can be adjusted, for example, by adjusting the type and amount of the crystalline polymer and the type and amount of the amorphous polymer.
- the cold crystallization temperature Tcd of the mixed resin can be measured by the following method. First, the mixed resin is melted by heating, and the melted mixed resin is rapidly cooled with dry ice. Subsequently, using this mixed resin as a test piece, a differential scanning calorimeter (DSC) was used to measure the cold crystallization temperature Tcd of the mixed resin at a heating rate of 10° C./min (heating mode). sell. In this measurement method, the cold crystallization temperature Tcd can be obtained as the peak top temperature of the exothermic peak in the heating process.
- DSC differential scanning calorimeter
- the optical film according to the first embodiment has both solvent resistance and heat resistance. can excel.
- of the difference between the glass transition temperature Tgd of the mixed resin and the glass transition temperature Tga of the crystalline polymer is preferably within a specific range.
- is preferably 3° C. or higher, more preferably 6° C. or higher, particularly preferably 10° C. or higher, preferably 45° C. or lower, more preferably 40° C. or lower, especially Preferably, it is 35°C or less.
- is within the above range, both the solvent resistance and heat resistance of the optical film can be effectively enhanced.
- of the difference between the glass transition temperature Tgd of the mixed resin and the glass transition temperature Tgb of the amorphous polymer is preferably within a specific range.
- is preferably 20° C. or higher, more preferably 30° C. or higher, particularly preferably 35° C. or higher, preferably 80° C. or lower, more preferably 70° C. or lower, especially It is preferably 60° C. or less.
- is within the above range, both the solvent resistance and heat resistance of the optical film can be effectively enhanced.
- a mixed resin usually has a melting point Tmd.
- the melting point Tmd of the mixed resin is preferably 200° C. or higher, more preferably 230° C. or higher, particularly preferably 240° C. or higher, and preferably 290° C. or lower.
- both solvent resistance and heat resistance of the optical film can be effectively improved.
- the melting point Tmd of the mixed resin can be measured, for example, by the same method as the method for measuring the melting point of the polymer described above.
- the optical film according to the first embodiment can have excellent solvent resistance.
- the film weight change rate can be a positive value.
- the film weight change rate is a ratio obtained by dividing the weight change amount of the optical film due to solvent immersion by the weight of the optical film before solvent immersion.
- the amount of change in weight of the optical film due to solvent immersion is a value obtained by subtracting the weight of the optical film before solvent immersion from the weight of the optical film after solvent immersion.
- the fact that the film weight change rate can be made a positive value as described above indicates that the weight reduction of the optical film due to dissolution in the solvent is suppressed. Normally, the penetration of the solvent causes the optical film to swell, resulting in an increase in the weight of the optical film, so the film weight change rate is a positive value.
- the optical film according to the first embodiment can have excellent solvent resistance, for example, the optical film is bent, and a drop of n-hexane as a solvent is dropped on the bent portion to allow the solvent to flow naturally. Cracks through the optical film can be prevented from occurring when dried.
- the optical film according to the first embodiment can have excellent heat resistance. Therefore, the optical film can suppress retardation change in a high-temperature environment. For example, when the optical film is subjected to a heat resistance test I in which the optical film is stored at 95° C. for 24 hours, the in-plane retardation change rate (retardation change rate) due to the heat resistance test I can be reduced. Specifically, the retardation change rate is preferably 2.5% or less, more preferably 2.0% or less, and particularly preferably 1.5% or less.
- the above heat resistance test I is usually performed with the optical film sandwiched between clean papers in order to prevent the optical film from sticking to the test table.
- the retardation change rate represents the absolute value of the ratio obtained by dividing the amount of change in the in-plane retardation of the optical film by the heat resistance test I by the in-plane retardation of the optical film before the heat resistance test I. . Furthermore, the amount of change in the in-plane retardation of the optical film represents the difference between the in-plane retardation of the optical film before the heat resistance test I and the in-plane retardation of the optical film after the heat resistance test I.
- the optical film according to the first embodiment can have excellent heat resistance, it is possible to suppress an increase in haze in a high-temperature environment.
- a heat resistance test II in which it is stored at 105° C. for 24 hours, it can have a small haze even after the heat resistance test II.
- the haze of the optical film after heat resistance test II is preferably 2.0% or less, more preferably 1.0% or less, and particularly preferably 0.5% or less.
- heat resistance test II is usually performed with the optical film sandwiched between clean paper sheets. Haze can be measured using NDH-7000 (manufactured by Nippon Denshoku) in accordance with JIS K7361-1997.
- the present inventor presumes that the mechanism by which the optical film is excellent in both solvent resistance and heat resistance as described above is as follows. However, the technical scope of the present invention is not limited to the mechanism shown below.
- the polymer molecules contained in the optical film can relax their orientation in a high-temperature environment.
- the orientation direction of the molecules of the polymer can change.
- the molecules of the crystalline polymer can change direction so that the regularity of their orientation increases.
- the orientation state of the molecules changes throughout the film, and as a result, the retardation of the film can change.
- spherulites may form in the film. These spherulites cause whitening of the film and increase the haze.
- the mixed resin has a high glass transition temperature Tgd in a specific range, so the relaxation of the orientation is suppressed.
- the mixed resin has a high cold crystallization temperature Tcd in a specific range, the progress of crystallization of the crystalline polymer is suppressed. Therefore, the optical film described above can suppress retardation change and haze increase in a high-temperature environment, and exhibit excellent heat resistance.
- a mixed resin having a glass transition temperature Tgd and a cold crystallization temperature Tcd in specific ranges that satisfy the formulas (1) and (2) can exhibit resistance to solvents while having the heat resistance described above. Improvements in both solvent resistance and heat resistance are possible.
- the optical film preferably has a large birefringence ⁇ n.
- a specific birefringence range of the optical film is preferably 0.00200 or more, more preferably 0.00205 or more, and particularly preferably 0.00210 or more. Crystalline polymers and amorphous polymers have conventionally tended to have poorer heat resistance as their birefringence increases. Therefore, from the viewpoint of effectively utilizing the effects of the present invention, it is preferable for the optical film to have a large birefringence ⁇ n as described above, which has been particularly difficult to solve in the past.
- the upper limit of the birefringence ⁇ n is not particularly limited, and can be, for example, 0.00400 or less, 0.00350 or less.
- the birefringence ⁇ n of the optical film can be obtained by dividing the in-plane retardation of the optical film by the thickness.
- An optical film can have an in-plane retardation suitable for its application.
- the in-plane retardation Re of the optical film at a measurement wavelength of 590 nm is preferably 30 nm or more, more preferably 40 nm or more, particularly preferably 50 nm or more, preferably 300 nm or less, more preferably 290 nm or less, and particularly preferably 280 nm. It is below.
- the optical film can have retardation in the thickness direction suitable for its application.
- the thickness direction retardation Rth of the optical film at a measurement wavelength of 590 nm is preferably 10 nm or more, more preferably 20 nm or more, particularly preferably 30 nm or more, preferably 300 nm or less, more preferably 250 nm or less, and particularly preferably 200 nm or less.
- the in-plane retardation and the retardation in the thickness direction of the optical film can be measured with a phase difference meter ("AxoScan OPMF-1" manufactured by AXOMETRICS).
- the optical film preferably has high transparency.
- the total light transmittance of the optical film is preferably 80% or higher, more preferably 85% or higher, and particularly preferably 88% or higher.
- the total light transmittance of the film can be measured in the wavelength range of 400 nm to 700 nm using a UV-visible spectrometer.
- the optical film preferably has a small haze.
- the haze of the optical film is preferably 2.0% or less, more preferably 1.0% or less, particularly preferably 0.5% or less, and ideally 0.0%.
- the optical film may be a sheet-fed film or a long film having a long shape.
- the optical film may have a single layer structure comprising only one layer formed of mixed resins having the same composition, or may have a multilayer structure comprising a plurality of layers formed of mixed resins having different compositions. may have.
- the thickness of the optical film can be appropriately set according to the application of the optical film, but it is usually desirable to have a thin thickness.
- the specific thickness of the optical film is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, particularly preferably 20 ⁇ m or more, and preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, and particularly preferably 100 ⁇ m or less.
- the optical film according to the second embodiment is formed of a mixed resin containing a crystalline polymer having a melting point and an amorphous polymer having no melting point.
- a mixed resin may have a melting point Tmd and a glass transition temperature Tgd that satisfy a particular relationship.
- An optical film formed of this mixed resin can suppress variations in the polarization state of transmitted light when linearly polarized light is transmitted through the optical film.
- the crystalline polymer, amorphous polymer, and optional components used in the optical film according to the second embodiment are the crystalline polymer and amorphous polymer used in the optical film according to the first embodiment. It can be used by appropriately selecting from those described as coalescence and optional components.
- the mixed resin has a melting point Tmd and a glass transition temperature Tgd that satisfy the following formula (3). 50°C ⁇ Tmd-Tgd ⁇ 160°C (3) Specifically, the difference between the melting point Tmd and the glass transition temperature Tgd of the mixed resin is usually 50° C. or higher, preferably 80° C. or higher, more preferably 100° C. or higher, particularly preferably 120° C. or higher, and usually 160° C. or lower. , preferably 155° C. or lower, more preferably 150° C. or lower.
- Mixed resins usually have a cold crystallization temperature Tcd.
- the mixed resin preferably has a cold crystallization temperature Tcd and a glass transition temperature Tgd that satisfy the following formula (4). 60°C ⁇ Tcd-Tgd ⁇ 110°C (4)
- the difference between the cold crystallization temperature Tcd and the glass transition temperature Tgd of the mixed resin is preferably 60° C. or higher, more preferably 70° C. or higher, preferably 110° C. or lower, and more preferably 105° C. or lower.
- the melting point Tmd, glass transition temperature Tgd, and cold crystallization temperature of the mixed resin can be adjusted, for example, by adjusting the type and amount of the crystalline polymer and the type and amount of the amorphous polymer.
- the melting point Tmd and glass transition temperature Tgd of the mixed resin can be measured, for example, by the same method as the method for measuring the melting point and glass transition temperature of the polymer described above. Also, the cold crystallization temperature of the mixed resin can be measured by the same method as the method for measuring the crystallization temperature of the mixed resin according to the first embodiment.
- the melting point Tmd, glass transition temperature Tgd, and cold crystallization temperature Tcd of the mixed resin the melting point Tmd, glass transition temperature Tgd, and cold crystallization temperature of the mixed resin according to the first embodiment. It can be the same as the possible range and preferred range of Tcd.
- the optical film according to the second embodiment can suppress variations in the polarization state of light transmitted through the film.
- the crossed Nicols transmittance Tx (%) of the optical film which is measured by crossed Nicols transmittance measurement with a spectrophotometer, can be set to a small value.
- the crossed Nicol transmittance Tx (%) of the optical film at a wavelength of 550 nm is preferably 0.04% or less, more preferably 0.03% or less, and particularly preferably 0.02% or less. and more preferably 0.01% or less.
- the crossed Nicol transmittance is ideally 0%, but can be, for example, 0.001% or more.
- Cross Nicols transmittance can be measured using two linear polarizers (polarizer and analyzer), a spectrophotometer “V7200” manufactured by JASCO Corporation, and an automatic polarizing film measuring device "VAP-7070S”.
- the inventors of the present invention speculate that the mechanism that can suppress variations in the polarization state of transmitted light when the optical film transmits linearly polarized light through the optical film as described above is as follows.
- the technical scope of the present invention is not limited to the mechanism shown below.
- a resin film containing a combination of a crystalline polymer and an amorphous polymer may have spherulites in the film due to the progress of crystallization of the crystalline polymer during the production process. Since the spherulites themselves have a phase difference different from that of the optical film, they scatter part of the light (polarized light) incident on the optical film, causing variations in the polarization state of the light transmitted through the optical film.
- the spherulite molecules in the optical film are more difficult to move than the uncrystallized resin molecules. Therefore, the uncrystallized resin molecules are oriented relatively large, and the spherulite molecules are oriented relatively small or not oriented. Therefore, the orientation state of the spherulite molecules and the uncrystallized resin molecules in the optical film varies, and as a result, the polarization state of the light transmitted through the optical film varies.
- the melting point Tmd and the glass transition temperature Tgd of the mixed resin satisfy a predetermined relationship, so that the progress of crystallization of the crystalline polymer in the manufacturing process of the optical film is suppressed.
- An optical film can be produced under the conditions that are available. Therefore, the optical film can suppress variations in the polarization state of transmitted light when linearly polarized light is transmitted through the optical film.
- the birefringence, retardation, transparency and haze of the optical film, the form (single sheet, long sheet), layer structure, and thickness are the same as those described in the item of the optical film according to the first embodiment. sell.
- the optical film according to the third embodiment is formed of a mixed resin containing a crystalline polymer having a melting point and an amorphous polymer having no melting point.
- the mixed resin has a glass transition temperature Tgd in a specific range and a cold crystallization temperature Tcd in a specific range, and has a melting point Tmd and a glass transition temperature Tgd of the mixed resin that satisfy a specific relationship.
- An optical film formed of this mixed resin is excellent in both solvent resistance and heat resistance, and can suppress variations in the polarization state of transmitted light when linearly polarized light is transmitted through the optical film.
- the mixed resin according to the third embodiment has both the characteristics of the mixed resin according to the first embodiment and the characteristics of the mixed resin according to the second embodiment.
- the mixed resin has a melting point Tmd, a glass transition temperature Tgd, and a cold crystallization temperature Tcd that satisfy the formulas (1) to (3) described above.
- the mixed resin preferably has a melting point Tmd and a glass transition temperature Tgd that satisfy the above formula (4).
- the properties of the mixed resin may be the same as those described as the properties of the mixed resin described in the items of the optical films according to the first embodiment and the second embodiment.
- the crystalline polymer, non-crystalline polymer, optional components, and properties of the optical film used in the optical film according to the third embodiment are the same as the optical film according to the first embodiment and the second embodiment described above. It can be the same as the content explained in the item of the film.
- the optical film described above is A step (1) of mixing a crystalline polymer and an amorphous polymer to obtain a mixed resin; A step (2) of molding the mixed resin to obtain a resin film; can be produced by a method comprising In this case, the resin film may be obtained as an optical film.
- the method for producing an optical film further comprises Step (3) of stretching the resin film may contain
- an optical film can be obtained as a stretched film obtained by stretching a resin film.
- step (1) a crystalline polymer and an amorphous polymer are mixed to obtain a mixed resin.
- a mixed resin may be obtained by kneading a crystalline polymer and an amorphous polymer in a molten state.
- a twin-screw extruder can be used.
- any one of the mixed resins described in the items of the optical films according to the first to third embodiments can be obtained.
- step (2) the mixed resin is molded to obtain a resin film.
- the molding method includes, for example, an extrusion molding method, a solution casting method, an inflation molding method and the like. Among them, the extrusion method and the solution casting method are preferred, and the extrusion method is particularly preferred.
- the extrusion molding method usually involves melt extruding a mixed resin. Manufacturing conditions in this extrusion molding method are preferably as follows.
- the cylinder temperature (molten resin temperature) is preferably Tmd or higher, preferably Tmd+100° C. or lower, more preferably Tmd+50° C. or lower.
- the cooling body with which the extruded molten resin in the form of a film first comes into contact is not particularly limited, but a cast roll is usually used.
- the cast roll temperature is preferably Tgd ⁇ 50° C. or higher, and preferably Tgd+70° C. or lower.
- step (3) the resin film is stretched.
- This stretching orients the polymer molecules in the resin film, so that an optical film having favorable optical properties can be obtained.
- This stretching is preferably performed at a stretching temperature lower than the cold crystallization temperature Tcd of the mixed resin.
- the specific stretching temperature is preferably Tgd ° C. or higher, more preferably Tgd + 10 ° C. or higher, particularly preferably Tgd + 15 ° C. or higher, preferably Tcd - 20 ° C. or lower, more preferably Tcd - 25 ° C. or lower, particularly preferably Tcd It is -30°C or lower, more preferably Tcd -50°C or lower.
- the stretching ratio for the stretching can be set according to the optical properties that the optical film should have.
- a specific draw ratio is preferably greater than 1 time, more preferably 1.1 times or more, particularly preferably 1.2 times or more, preferably 5 times or less, more preferably 4 times or less, and particularly preferably. is less than three times.
- the overall draw ratio which is the product of the draw ratio in one direction and the draw ratio in the other direction, preferably falls within the above range.
- the stretching mode may be, for example, uniaxial stretching in one direction or biaxial stretching in two non-parallel directions.
- the biaxial stretching may be simultaneous biaxial stretching in which stretching is performed in two directions simultaneously, or sequential biaxial stretching in which stretching is performed in one direction and then in the other direction.
- the method for producing an optical film may further include optional steps in combination with the above steps (1) to (3).
- the method for producing an optical film may include a step of preheating the resin film before stretching in step (3).
- the preheating temperature is preferably “stretching temperature ⁇ 40° C.” or higher, more preferably “stretching temperature ⁇ 30° C.” or higher, preferably “stretching temperature +20° C.” or lower, more preferably “stretching temperature +15° C.” or lower. be.
- optional steps include a step of trimming the optical film, a step of applying a surface treatment to the optical film, and the like.
- the glass transition temperatures Tga, Tgb and Tgd, the cold crystallization temperature Tcd, and the melting points Tma and Tmd of the samples were measured as follows. First, the sample was melted by heating. The melted samples were quenched with dry ice. Subsequently, this sample was measured using a differential scanning calorimeter (DSC) at a heating rate (heating mode) of 10 ° C./min, the glass transition temperature Tga, Tgb or Tgd, the cold crystallization temperature Tcd, and Melting points Tma and Tmd were determined.
- the cold crystallization temperature Tcd was taken as the peak top value of the exothermic peak during the temperature rising process.
- the thickness of the film was measured using a contact-type thickness gauge (Code No. 543-390 manufactured by MITUTOYO).
- Solvent resistance can be evaluated from the film weight change rate based on the following evaluation criteria. Solvent resistance "Good”: Film weight change rate is positive. This result indicates that the film sample was swollen in the solvent. Solvent resistance "Poor”: Negative film weight change rate. Alternatively, the film sample was punctured or damaged. This result indicates that the optical film dissolved in the solvent.
- Solvent resistance can be evaluated based on the following evaluation criteria based on the presence or absence of penetration due to cracks. Solvent resistance "good”: No penetration due to cracks. Or there was no crack itself. Solvent resistance "Poor”: Penetration due to cracks occurred.
- the heat resistance can be evaluated based on the following evaluation criteria from the Re change rate (%).
- Heat resistance "good” Re change rate (%) is 2.5% or less.
- Heat resistance "Poor” Re change rate (%) exceeds 2.5%.
- the heat resistance can be evaluated based on the following evaluation criteria from the haze Hz1 after the heat resistance test.
- Heat resistance "Good” Haze Hz1 after heat resistance test is 1% or less.
- Heat resistance "Poor” Haze Hz1 after heat resistance test exceeds 1%.
- a solution was prepared by dissolving 0.014 parts of a tetrachlorotungstenphenylimide (tetrahydrofuran) complex in 0.70 parts of toluene. To this solution, 0.061 part of a 19% diethylaluminum ethoxide/n-hexane solution was added and stirred for 10 minutes to prepare a catalyst solution. This catalyst solution was added to the pressure reactor to initiate the ring-opening polymerization reaction. Thereafter, the mixture was allowed to react for 4 hours while maintaining the temperature at 53° C. to obtain a solution of a ring-opening polymer of dicyclopentadiene. The obtained ring-opening polymer of dicyclopentadiene had a number average molecular weight (Mn) and a weight average molecular weight (Mw) of 8,750 and 28,100, respectively. was 3.21.
- Mn number average molecular weight
- Mw weight average molecular weight
- a filter aid ("Radiolite (registered trademark) #1500” manufactured by Showa Kagaku Kogyo Co., Ltd.) is added, and a PP pleated cartridge filter (“TCP-HX” manufactured by ADVANTEC Toyo Co., Ltd.) is used as an adsorbent.
- TCP-HX PP pleated cartridge filter
- the hydride contained in the reaction solution and the solution were separated using a centrifugal separator and dried under reduced pressure at 60° C. for 24 hours to obtain a crystalline hydride of a ring-opening polymer of dicyclopentadiene 28. 5 copies were obtained.
- This hydride is a crystalline cyclic olefin polymer with a degree of hydrogenation of 99% or more, a glass transition temperature Tg of 93°C, a melting point (Tm) of 266°C, and a ratio of racemo diads of 89%. rice field.
- An antioxidant tetrakis[methylene-3-(3′,5′-di-t-butyl-4′-hydroxyphenyl)propionate]methane was added to 100 parts of the hydride of the resulting ring-opening polymer of dicyclopentadiene. ; After mixing 1.1 parts of "Irganox (registered trademark) 1010" manufactured by BASF Japan Co., Ltd., a twin-screw extruder equipped with four die holes with an inner diameter of 3 mm ⁇ (product name "TEM-37B", manufactured by Toshiba Machine Co., Ltd. ).
- a mixture of a hydride of a ring-opening polymer of dicyclopentadiene and an antioxidant was formed into strands by hot-melt extrusion molding, and then chopped with a strand cutter to obtain a crystalline resin A in the form of pellets. .
- Norbornene ring-opening polymer hydride was produced according to the description of Production Example 1 of JP-A-2007-016102.
- This hydrogenated norbornene ring-opening polymer was a crystalline cyclic olefin polymer having a hydrogenation rate of 99% or more, a glass transition temperature Tg of -6°C, and a melting point (Tm) of 142°C.
- Norbornene ring-opening polymer hydride was produced according to the description of Production Example 3 of JP-A-2007-016102. This hydrogenated norbornene ring-opening polymer was an amorphous cyclic olefin polymer, and had a hydrogenation rate of 99% or more, a glass transition temperature Tg of 138° C., and no melting point (Tm).
- crystalline resin A and the amorphous resin B were kneaded in an extruder with a twin screw, they were extruded into strands from the extruder and cut into pieces using a strand cutter to obtain a mixed resin D in the form of pellets.
- the glass transition temperature Tgd, melting point Tmd and cold crystallization temperature Tcd of the obtained mixed resin D were measured by the methods described above.
- the mixed resin D produced in the step (1-1) was molded using a hot-melt extrusion film molding machine equipped with a T-die to obtain a long resin film (thickness: 75 ⁇ m) with a width of approximately 400 mm.
- the resulting resin film was wound into a roll.
- Comparative Example 2 The crystalline resin A was used instead of the mixed resin D without mixing the crystalline resin A and the amorphous resin B. Further, when stretching the resin film, the preheating temperature and the stretching temperature were changed to 160° C., and the stretching ratio was changed to 1.02 times. An optical film was produced and evaluated in the same manner as in Example 1 except for the above items. The present inventors have found that when the film of the crystalline resin A is stretched at the above stretching temperature, the film whitens and the haze increases greatly. Therefore, in Comparative Example 2, the draw ratio is made smaller than those of the other Examples and Comparative Examples.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
Description
すなわち、本発明は、下記のものを含む。
前記樹脂が、下記式(1)を満たすガラス転移温度Tgd、及び、下記式(2)を満たす冷結晶化温度Tcd、を有する、光学フィルム。
100℃<Tgd<140℃ (1)
170℃<Tcd<225℃ (2)
〔2〕 融点を有する結晶性重合体と、融点を有さない非晶性重合体と、を含む樹脂で形成された光学フィルムであって、
前記樹脂が、下記式(3)を満たす融点Tmd、及び、ガラス転移温度Tgd、を有する光学フィルム。
50℃≦Tmd-Tgd≦160℃ (3)
〔3〕 前記結晶性重合体が、融点を有する環状オレフィン系重合体である、〔1〕又は〔2〕に記載の光学フィルム。
〔4〕 前記非晶性重合体が、融点を有さない環状オレフィン系重合体である、〔1〕~〔3〕のいずれかに記載の光学フィルム。
〔5〕 融点を有する結晶性重合体と、融点を有さない非晶性重合体とを混合して、下記式(1)を満たすガラス転移温度Tgd、及び、下記式(2)を満たす冷結晶化温度Tcdを有する樹脂を得る工程と、
前記樹脂を成形して樹脂フィルムを得る工程と、を含む、光学フィルムの製造方法。
100℃<Tgd<140℃ (1)
170℃<Tcd<225℃ (2)
〔6〕 前記樹脂フィルムを延伸する工程を含む、〔5〕に記載の光学フィルムの製造方法。
〔7〕 前記樹脂フィルムを延伸する工程における延伸温度が、Tg以上、Tcd-30℃以下である、〔6〕に記載の光学フィルムの製造方法。
〔8〕 融点を有する結晶性重合体と、融点を有さない非晶性重合体とを混合して、下記式(3)を満たす融点Tmd、及び、ガラス転移温度Tgdを有する樹脂を得る工程と、
前記樹脂を成形して樹脂フィルムを得る工程と、を含む、光学フィルムの製造方法。
50℃≦Tmd-Tgd≦160℃ (3)
〔9〕 前記樹脂フィルムを延伸する工程を含む、〔8〕に記載の光学フィルムの製造方法。
本発明の一実施形態に係る光学フィルムは、融点を有する結晶性重合体と、融点を有さない非晶性重合体と、を含む樹脂で形成されている。結晶性重合体及び非晶性重合体を含む前記の樹脂を、以下「混合樹脂」と呼ぶことがある。光学フィルムは、混合樹脂で形成されているのであるから、通常は混合樹脂を含み、好ましくは混合樹脂のみを含む。
第一実施形態に係る光学フィルムは、融点を有する結晶性重合体と、融点を有さない非晶性重合体と、を含む混合樹脂で形成されている。
混合樹脂は、特定の範囲のガラス転移温度Tgd、及び、特定の範囲の冷結晶化温度Tcd、を有する。この混合樹脂で形成された光学フィルムは、耐溶媒性及び耐熱性の両方に優れることができる。
結晶性重合体は、結晶性を有する重合体を表す。結晶性を有する重合体とは、融点を有する重合体を表す。重合体の融点は、示差走査熱量計(DSC)によって測定できる。よって、結晶性重合体とは、示差走査熱量計(DSC)で融点を観測することができる重合体を表す。
重合体(α):環状オレフィン単量体の開環重合体であって、結晶性を有するもの。
重合体(β):重合体(α)の水素化物であって、結晶性を有するもの。
重合体(γ):環状オレフィン単量体の付加重合体であって、結晶性を有するもの。
重合体(δ):重合体(γ)の水素化物であって、結晶性を有するもの。
ラセモ・ダイアッドの割合は、後述する実施例に記載の13C-NMRスペクトル分析に基づいて決定できる。
非晶性重合体は、結晶性を有さない重合体を表す。結晶性を有さない重合体とは、融点を有さない重合体を表す。よって、非晶性重合体とは、示差走査熱量計(DSC)で融点を観測することができない重合体を表す。
混合樹脂は、結晶性重合体及び非晶性重合体に組み合わせて、更に任意の成分を含みうる。任意の成分としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤等の酸化防止剤;ヒンダードアミン系光安定剤等の光安定剤;石油系ワックス、フィッシャートロプシュワックス、ポリアルキレンワックス等のワックス;ソルビトール系化合物、有機リン酸の金属塩、有機カルボン酸の金属塩、カオリン及びタルク等の核剤;ジアミノスチルベン誘導体、クマリン誘導体、アゾール系誘導体(例えば、ベンゾオキサゾール誘導体、ベンゾトリアゾール誘導体、ベンゾイミダゾール誘導体、及びベンゾチアソール誘導体)、カルバゾール誘導体、ピリジン誘導体、ナフタル酸誘導体、及びイミダゾロン誘導体等の蛍光増白剤;ベンゾフェノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤等の紫外線吸収剤;着色剤;難燃剤;難燃助剤;帯電防止剤;可塑剤;近赤外線吸収剤;滑剤;タルク、シリカ、炭酸カルシウム、ガラス繊維等の無機充填材;などが挙げられる。任意の成分は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。任意の成分の量は、本発明の効果を著しく損なわない範囲で適宜定めうる。任意の成分の量は、例えば、光学フィルムの全光線透過率を85%以上に維持できる範囲でありうる。
混合樹脂は、下記式(1)を満たすガラス転移温度Tgdを有する。
100℃<Tgd<140℃ (1)
詳細には、混合樹脂のガラス転移温度Tgdは、通常100℃より高く、好ましくは102℃より高く、特に好ましくは104℃以上であり、また、通常140℃未満、好ましくは135℃未満、特に好ましくは130℃以下である。
170℃<Tcd<225℃ (2)
詳細には、混合樹脂の冷結晶化温度Tcdは、通常170℃より高く、好ましくは175℃より高く、特に好ましくは180℃以上であり、通常225℃未満、好ましくは210℃未満、特に好ましくは205℃未満である。
第一実施形態に係る光学フィルムは、優れた耐溶媒性を有することができる。例えば、光学フィルムを溶媒としてのトルエンに23℃で30秒浸漬した場合に、フィルム重量変化率を正の値にできる。前記のフィルム重量変化率は、溶媒浸漬による光学フィルムの重量変化量を、溶媒浸漬前の光学フィルムの重量で割り算して求められる比率である。また、溶媒浸漬による光学フィルムの重量変化量は、溶媒浸漬後の光学フィルムの重量から、溶媒浸漬前の光学フィルムの重量を引き算して求められる値である。前記のようにフィルム重量変化率を正の値にできることは、溶媒への溶解による光学フィルムの重量減少が抑制されたことを表す。通常は、溶媒の浸入によって光学フィルムが膨潤し、その結果、光学フィルムの重量が増えるので、フィルム重量変化率は正の値になる。
光学フィルムの複屈折Δnは、光学フィルムの面内レターデーションを厚みで割り算して求めうる。
第二実施形態に係る光学フィルムは、融点を有する結晶性重合体と、融点を有さない非晶性重合体と、を含む混合樹脂で形成されている。
混合樹脂は、特定の関係を満たす融点Tmd、及び、ガラス転移温度Tgd、を有しうる。この混合樹脂で形成された光学フィルムは、光学フィルムに対し直線偏光を透過させた場合における、透過光の偏光状態のバラツキを抑制しうる。
混合樹脂は、下記式(3)を満たす融点Tmd、及び、ガラス転移温度Tgd、を有する。
50℃≦Tmd-Tgd≦160℃ (3)
詳細には、混合樹脂の融点Tmdとガラス転移温度Tgdとの差は、通常50℃以上、好ましくは80℃以上、より好ましくは100℃以上、特に好ましくは120℃以上であり、通常160℃以下、好ましくは155℃以下、より好ましくは150℃以下である。
60℃≦Tcd-Tgd≦110℃ (4)
詳細には、混合樹脂の冷結晶化温度Tcdとガラス転移温度Tgdとの差は、好ましくは60℃以上、より好ましくは70℃以上、好ましくは110℃以下、より好ましくは105℃以下である。
第二実施形態に係る光学フィルムは、フィルムを透過した光の偏光状態のバラツキを抑制しうる。例えば、分光光度計でのクロスニコル透過率測定により測定される、光学フィルムのクロスニコル透過率Tx(%)を小さい値とすることができる。具体的には、波長550nmにおける光学フィルムのクロスニコル透過率Tx(%)は、好ましくは0.04%以下であり、より好ましくは0.03%以下であり、特に好ましくは0.02%以下であり、さらに好ましくは0.01%以下である。また、前記クロスニコル透過率は、理想的には0%であるが、例えば、0.001%以上でありえる。
第三実施形態に係る光学フィルムは、融点を有する結晶性重合体と、融点を有さない非晶性重合体と、を含む混合樹脂で形成されている。
混合樹脂は、特定の範囲のガラス転移温度Tgd、及び、特定の範囲の冷結晶化温度Tcd、を有し、且つ特定の関係を満たす混合樹脂の融点Tmd、及び、ガラス転移温度Tgd、を有する。この混合樹脂で形成された光学フィルムは、耐溶媒性及び耐熱性の両方に優れ、光学フィルムに対し直線偏光を透過させた場合における、透過光の偏光状態のバラツキを抑制しうる。
上述した光学フィルムは、例えば、
結晶性重合体及び非晶性重合体を混合して、混合樹脂を得る工程(1)と、
混合樹脂を成形して樹脂フィルムを得る工程(2)と、
を含む方法によって、製造しうる。この場合、前記の樹脂フィルムを、光学フィルムとして得てもよい。
樹脂フィルムを延伸する工程(3)
を含んでいてもよい。工程(3)を含む製造方法では、樹脂フィルムを延伸した延伸フィルムとして、光学フィルムを得ることができる。
工程(1)では、上述した第一実施形態~第三実施形態に係る光学フィルムの項目で説明した混合樹脂のいずれかの混合樹脂を得うる。
(重合体の重量平均分子量Mw及び数平均分子量Mnの測定方法)
重合体の重量平均分子量Mw及び数平均分子量Mnは、ゲル・パーミエーション・クロマトグラフィー(GPC)システム(東ソー社製「HLC-8320」)を用いて、ポリスチレン換算値として測定した。測定の際、カラムとしてはHタイプカラム(東ソー社製)を用い、溶媒としてはテトラヒドロフランを用いた。また、測定時の温度は、40℃であった。
重合体の水素化率は、オルトジクロロベンゼン-d4を溶媒として、145℃で、1H-NMRにより測定した。
試料(下記の実施例では、重合体又は樹脂)のガラス転移温度Tga、Tgb及びTgd、冷結晶化温度Tcd、並びに、融点Tma及びTmdの測定は、以下のようにして行った。
まず、試料を加熱によって融解させた。融解した試料を、ドライアイスで急冷した。続いて、この試料について、示差走査熱量計(DSC)を用いて、10℃/分の昇温速度(昇温モード)で、ガラス転移温度Tga、Tgb又はTgd、冷結晶化温度Tcd、並びに、融点Tma及びTmdを測定した。冷結晶化温度Tcdとは、昇温過程における発熱ピークのピークトップの値とした。
重合体のラセモ・ダイアッドの割合の測定は、以下のようにして行った。
オルトジクロロベンゼン-d4を溶媒として、200℃で、inverse-gated decoupling法を適用して、重合体の13C-NMR測定を行った。この13C-NMR測定の結果において、オルトジクロロベンゼン-d4の127.5ppmのピークを基準シフトとして、メソ・ダイアッド由来の43.35ppmのシグナルと、ラセモ・ダイアッド由来の43.43ppmのシグナルとを同定した。これらのシグナルの強度比に基づいて、重合体のラセモ・ダイアッドの割合を求めた。
フィルムの厚みは、接触式厚さ計(MITUTOYO社製 Code No.543 -390)を用いて測定した。
フィルムの面内レターデーションRe及び厚み方向のレターデーションRthは、位相差計(AXOMETRICS社製「AxoScan OPMF-1」)により測定した。この際、測定は、波長590nmで行った。更に、複屈折Δnは、面内レターデーションRe及び厚みdを用いて、下記式(X1)により算出した。
Δn[-]=Re[nm]/d[nm] (X1)
光学フィルムを4cm×4cmに切り出して、フィルム試料を得た。このフィルム試料の重量を測定して、溶媒浸漬前のフィルム重量を得た。
その後、溶媒としてのトルエンの中にフィルム試料の全体を30秒間浸漬し、取り出し、キムワイプでフィルム試料の表面の溶媒をふき取った。フィルム試料を30分間室温で乾燥させ、溶媒浸漬後のフィルム重量を測定した。フィルム重量変化率を、下記式(X2)により算出した。
フィルム重量変化率(%)={(溶媒浸漬後のフィルム重量-溶媒浸漬前のフィルム重量)/(溶媒浸漬前のフィルム重量)}×100 (X2)
耐溶媒性「良」:フィルム重量変化率がプラス。この結果は、フィルム試料が溶媒に膨潤したことを表す。
耐溶媒性「不良」:フィルム重量変化率がマイナス。または、フィルム試料に穴が開いたり破損したりした。この結果は、光学フィルムが溶媒に溶解したことを表す。
光学フィルムを5cm×2cmに切り出して、フィルム試料を得た。このフィルム試料を長辺の中央において折り目が短辺と平行になるように曲げて、短辺の端部をクリップで挟んで固定した。フィルム試料の曲げた箇所の曲率半径は2.5mmとした。次に、フィルム試料を、前記折り目が頂部、クリップが底部となるように机の上に設置した。その後、フィルム試料の曲げた箇所(頂部)に溶媒としてのn-ヘキサンをスポイトを用いて1滴(約1ml)垂らし、溶媒を自然乾燥させた後、クリップを外して、クラックによる貫通が生じているか否かを観察した。クラックによる貫通の有無から、下記の評価基準に基づいて、耐溶媒性を評価できる。
耐溶媒性「良」:クラックによる貫通が無かった。またはクラック自体が無かった。
耐溶媒性「不良」:クラックによる貫通が生じていた。
光学フィルムを50mm×50mmに切り出して、フィルム試料を得た。このフィルム試料の面内レターデーションを上述した方法で測定し、耐熱試験前の面内レターデーションRe0を得た。
その後、フィルム試料をクリーン紙に挟み、テープで固定することなく95℃の恒温槽に24時間入れる耐熱試験Iを行った。その後、フィルム試料の面内レターデーションを上述した方法で測定し、耐熱試験後の面内レターデーションRe1を得た。レターデーション変化率を、下記式(X3)により算出した。レターデーション変化率が小さいほど、光学フィルムが耐熱性に優れることを表し、例えばレターデーション変化率が2.5%以下である場合に耐熱性が良好と判定できる。
Re変化率(%)=|(Re1-Re0)/Re0|×100 (X3)
耐熱性「良」:Re変化率(%)が2.5%以下。
耐熱性「不良」:Re変化率(%)が2.5%超。
光学フィルムを50mm×50mmに切り出して、フィルム試料を得た。このフィルム試料のヘイズを測定し、耐熱試験前のヘイズHz0を得た。
その後、フィルム試料をクリーン紙に挟み、テープで固定することなく105℃の恒温槽に24時間入れる耐熱試験IIを行った。その後、フィルム試料のヘイズを測定し、耐熱試験後のヘイズHz1を得た。
前記のヘイズの測定は、JIS K7361-1997に準拠して、NDH-7000(日本電色製)を用いて行った。
ヘイズは、小さいほど好ましく、例えば、耐熱試験後のヘイズHz1が1%以下である場合に耐熱性が良好と判定できる。
耐熱性「良」:耐熱試験後のヘイズHz1が1%以下。
耐熱性「不良」:耐熱試験後のヘイズHz1が1%超。
光学フィルムを、4cm×4cmに切り出してフィルム試料を得た。得られたフィルム試料を2枚の直線偏光子(偏光子及び検光子)の間に置いた。この際、前記の直線偏光子は、厚み方向から見て、互いの偏光透過軸が垂直になるように、向きを設定した。日本分光製の分光光度計「V7200」及び自動偏光フィルム測定装置「VAP-7070S」を用いて、自動検出によりクロスニコル透過率を測定した。測定波長は550nmとした。
クロスニコル透過率が小さいほど、結晶性重合体の結晶化が抑制され、光学フィルムを透過した直線偏光の偏光状態のバラツキが抑制されていると判定できる。
金属製の耐圧反応器を、充分に乾燥した後、窒素置換した。この金属製耐圧反応器に、シクロヘキサン154.5部、ジシクロペンタジエン(エンド体含有率99%以上)の濃度70%シクロヘキサン溶液42.8部(ジシクロペンタジエンの量として30部)、及び1-ヘキセン1.9部を加え、53℃に加温した。
・バレル設定温度=270~280℃
・ダイ設定温度=250℃
・スクリュー回転数=145rpm
特開2007-016102号公報の製造例1の記載に従ってノルボルネン開環重合体水素化物を製造した。このノルボルネン開環重合体水素化物は結晶性の環状オレフィン系重合体であり、その水素化率は99%以上、ガラス転移温度Tgは-6℃、融点(Tm)は142℃であった。
特開2007-016102号公報の製造例3の記載に従ってノルボルネン開環重合体水素化物を製造した。このノルボルネン開環重合体水素化物は非晶性の環状オレフィン系重合体であり、その水素化率は99%以上、ガラス転移温度Tgは138℃、融点(Tm)は観測されなかった。
(1-1.混合樹脂Dの製造)
非晶性の環状オレフィン系重合体(ガラス転移温度163℃)を99重量%含むペレット状の非晶性樹脂B(日本ゼオン製「ZEONEX790R」)を用意した。結晶性樹脂Aと非晶性樹脂Bとを、重量比で結晶性樹脂A:非晶性樹脂B=7:3となるように混合し、2軸混錬押出機(スクリューの有効長さLとスクリューの直径Dとの比L/D=41、スクリューの直径=25mm)のホッパーに投入した。結晶性樹脂A及び非晶性樹脂Bを押出機内で2軸混練した後、その押出機からストランド状に押し出し、ストランドカッターを用いて細断して、ペレット状の混合樹脂Dを得た。前記の2軸混練押出機の運転条件は、以下のとおりであった。
・バレル設定温度=275~280℃
・ダイ設定温度=275℃
・スクリュー回転数=200rpm
前記の工程(1-1)で製造した混合樹脂Dを、Tダイを備える熱溶融押出しフィルム成形機を用いて成形し、およそ幅400mmの長尺の樹脂フィルム(厚み75μm)を得た。得られた樹脂フィルムを、巻き取ってロールの形態とした。前記のフィルム成形機の運転条件は、以下のとおりであった。
・バレル設定温度=280℃~300℃
・ダイ温度=270℃
・キャストロール温度=90℃
前記の工程(1-2)で製造した長尺の樹脂フィルムをロールから引き出し、切断して、縦100mm×横100mmの矩形の樹脂フィルムを得た。この樹脂フィルムを延伸機(エトー株式会社製)に供給し、樹脂フィルムの四辺それぞれを5つのクリップで把持した。その後、樹脂フィルムを予熱温度124℃で6分間加熱する予熱処理を行った。次いで、樹脂フィルムを、切断前の長尺の樹脂フィルムの長手方向に延伸温度124℃、30秒で延伸倍率2.5倍で固定一軸延伸して、光学フィルムを得た。
得られた光学フィルムについて、上述した方法で評価を行った。
混合する結晶性樹脂Aと非晶性樹脂Bとの重量比を、結晶性樹脂A:非晶性樹脂B=6:4に変更した。また、樹脂フィルムの延伸の際、予熱温度及び延伸温度を133℃に変更した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
混合する結晶性樹脂Aと非晶性樹脂Bとの重量比を、結晶性樹脂A:非晶性樹脂B=5:5に変更した。また、樹脂フィルムの延伸の際、予熱温度及び延伸温度を145℃に変更した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
混合する結晶性樹脂Aと非晶性樹脂Bとの重量比を、結晶性樹脂A:非晶性樹脂B=4:6に変更した。また、樹脂フィルムの延伸の際、予熱温度及び延伸温度を150℃に変更した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
混合する結晶性樹脂Aと非晶性樹脂Bとの重量比を、結晶性樹脂A:非晶性樹脂B=6:4に変更した。また、樹脂フィルムの延伸を行わず、延伸されていない樹脂フィルム自体を光学フィルムとして評価した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
混合する結晶性樹脂Aと非晶性樹脂Bとの重量比を、結晶性樹脂A:非晶性樹脂B=6:4に変更した。また、樹脂フィルムの延伸の際、予熱温度及び延伸温度を150℃に変更した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
結晶性樹脂Aと非晶性樹脂Bとの混合を行わずに、混合樹脂Dの代わりに結晶性樹脂Aを用いた。また、樹脂フィルムの延伸の際、予熱温度及び延伸温度を117℃に変更した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
結晶性樹脂Aと非晶性樹脂Bとの混合を行わずに、混合樹脂Dの代わりに結晶性樹脂Aを用いた。また、樹脂フィルムの延伸の際、予熱温度及び延伸温度を160℃に変更し、延伸倍率を1.02倍に変更した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
本発明者の検討では、結晶性樹脂Aのフィルムを前記の延伸温度で大きく延伸した場合、フィルムが白化してヘイズが大きく上昇することが判明している。よって、比較例2では、延伸倍率を他の実施例及び比較例よりも小さくしている。
混合する結晶性樹脂Aと非晶性樹脂Bとの重量比を、結晶性樹脂A:非晶性樹脂B=9:1に変更した。また、樹脂フィルムの延伸の際、予熱温度及び延伸温度を121℃に変更した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
結晶性樹脂Aと非晶性樹脂Bとの混合を行わずに、混合樹脂Dの代わりに非晶性樹脂Bを用いた。また、樹脂フィルムの延伸を行わず、延伸されていない樹脂フィルム自体を光学フィルムとして評価した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
結晶性樹脂A及び非晶性樹脂Bの代わりに、製造例2の結晶性樹脂A’と製造例3の非結晶性樹脂B’とを重量比で結晶性樹脂A’:非結晶性樹脂B’=2:8となるように混合した。また、樹脂フィルムの延伸を行わず、延伸されていない樹脂フィルム自体を光学フィルムとして評価した。以上の事項以外は、実施例1と同じ方法によって、光学フィルムの製造及び評価を行った。
上述した実施例及び比較例の結果を、下記の表に示す。下記の表において、略称の意味は、以下の通りである。
COP:環状オレフィン系重合体
混合比A/B(A’/B’):結晶性樹脂Aと非晶性樹脂Bとの重量比A/B。または、結晶性樹脂A’と非晶性樹脂B’との重量比A’/B’。
Claims (9)
- 融点を有する結晶性重合体と、融点を有さない非晶性重合体と、を含む樹脂で形成された光学フィルムであって、
前記樹脂が、下記式(1)を満たすガラス転移温度Tgd、及び、下記式(2)を満たす冷結晶化温度Tcd、を有する、光学フィルム。
100℃<Tgd<140℃ (1)
170℃<Tcd<225℃ (2) - 融点を有する結晶性重合体と、融点を有さない非晶性重合体と、を含む樹脂で形成された光学フィルムであって、
前記樹脂が、下記式(3)を満たす融点Tmd、及び、ガラス転移温度Tgd、を有する光学フィルム。
50℃≦Tmd-Tgd≦160℃ (3) - 前記結晶性重合体が、融点を有する環状オレフィン系重合体である、請求項1又は2に記載の光学フィルム。
- 前記非晶性重合体が、融点を有さない環状オレフィン系重合体である、請求項1~3までのいずれかに記載の光学フィルム。
- 融点を有する結晶性重合体と、融点を有さない非晶性重合体とを混合して、下記式(1)を満たすガラス転移温度Tgd、及び、下記式(2)を満たす冷結晶化温度Tcdを有する樹脂を得る工程と、
前記樹脂を成形して樹脂フィルムを得る工程と、を含む、光学フィルムの製造方法。
100℃<Tgd<140℃ (1)
170℃<Tcd<225℃ (2) - 前記樹脂フィルムを延伸する工程を含む、請求項5に記載の光学フィルムの製造方法。
- 前記樹脂フィルムを延伸する工程における延伸温度が、Tg以上、Tcd-30℃以下である、請求項6に記載の光学フィルムの製造方法。
- 融点を有する結晶性重合体と、融点を有さない非晶性重合体とを混合して、下記式(3)を満たす融点Tmd、及び、ガラス転移温度Tgdを有する樹脂を得る工程と、
前記樹脂を成形して樹脂フィルムを得る工程と、を含む、光学フィルムの製造方法。
50℃≦Tmd-Tgd≦160℃ (3) - 前記樹脂フィルムを延伸する工程を含む、請求項8に記載の光学フィルムの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237031478A KR20230161960A (ko) | 2021-04-01 | 2022-03-14 | 광학 필름 및 그 제조 방법 |
JP2023510871A JPWO2022209818A1 (ja) | 2021-04-01 | 2022-03-14 | |
CN202280021513.3A CN116997830A (zh) | 2021-04-01 | 2022-03-14 | 光学膜及其制造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021062635 | 2021-04-01 | ||
JP2021-062635 | 2021-04-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022209818A1 true WO2022209818A1 (ja) | 2022-10-06 |
Family
ID=83458979
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/011307 WO2022209818A1 (ja) | 2021-04-01 | 2022-03-14 | 光学フィルム及びその製造方法 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JPWO2022209818A1 (ja) |
KR (1) | KR20230161960A (ja) |
CN (1) | CN116997830A (ja) |
TW (1) | TW202248359A (ja) |
WO (1) | WO2022209818A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002249645A (ja) * | 2001-02-23 | 2002-09-06 | Nippon Zeon Co Ltd | 重合体組成物 |
JP2007016102A (ja) * | 2005-07-06 | 2007-01-25 | Nippon Zeon Co Ltd | 環状オレフィン系重合体組成物および成形材料 |
WO2009066511A1 (ja) * | 2007-11-21 | 2009-05-28 | Zeon Corporation | 重合体組成物およびその利用 |
JP2011118137A (ja) * | 2009-12-03 | 2011-06-16 | Nippon Zeon Co Ltd | 輝度向上フィルム、製造方法及び液晶表示装置 |
WO2015137434A1 (ja) * | 2014-03-14 | 2015-09-17 | 日本ゼオン株式会社 | テトラシクロドデセン系開環重合体水素化物及びその製造方法 |
-
2022
- 2022-03-14 KR KR1020237031478A patent/KR20230161960A/ko unknown
- 2022-03-14 CN CN202280021513.3A patent/CN116997830A/zh active Pending
- 2022-03-14 WO PCT/JP2022/011307 patent/WO2022209818A1/ja active Application Filing
- 2022-03-14 JP JP2023510871A patent/JPWO2022209818A1/ja active Pending
- 2022-03-23 TW TW111110771A patent/TW202248359A/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002249645A (ja) * | 2001-02-23 | 2002-09-06 | Nippon Zeon Co Ltd | 重合体組成物 |
JP2007016102A (ja) * | 2005-07-06 | 2007-01-25 | Nippon Zeon Co Ltd | 環状オレフィン系重合体組成物および成形材料 |
WO2009066511A1 (ja) * | 2007-11-21 | 2009-05-28 | Zeon Corporation | 重合体組成物およびその利用 |
JP2011118137A (ja) * | 2009-12-03 | 2011-06-16 | Nippon Zeon Co Ltd | 輝度向上フィルム、製造方法及び液晶表示装置 |
WO2015137434A1 (ja) * | 2014-03-14 | 2015-09-17 | 日本ゼオン株式会社 | テトラシクロドデセン系開環重合体水素化物及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022209818A1 (ja) | 2022-10-06 |
KR20230161960A (ko) | 2023-11-28 |
CN116997830A (zh) | 2023-11-03 |
TW202248359A (zh) | 2022-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101594339B1 (ko) | 광학 보상 필름, 위상차 필름 및 복합 편광판 | |
KR101088664B1 (ko) | 복굴절 필름의 제조방법, 및 그것을 사용한 광학 필름,액정 패널, 액정 표시 장치, 화상 표시 장치 | |
TWI445743B (zh) | 光學補償薄膜 | |
US8497959B2 (en) | Optical film and liquid crystal display | |
JP6977736B2 (ja) | 液晶表示装置 | |
JP4449533B2 (ja) | 広帯域1/4波長板の長尺巻状体、広帯域円偏光素子の長尺巻状体 | |
JP2024107102A (ja) | 位相差フィルム | |
JP5083286B2 (ja) | 広帯域1/4波長板の長尺巻状体、広帯域円偏光素子の長尺巻状体 | |
JP2005241965A (ja) | 光学積層体、光学素子、及び液晶表示装置 | |
KR101724791B1 (ko) | 역파장분산 특성을 갖는 위상차 필름 및 그 제조 방법 | |
JP4586326B2 (ja) | 光学積層体及びその製造方法 | |
WO2022209818A1 (ja) | 光学フィルム及びその製造方法 | |
JP7543904B2 (ja) | 光学フィルムの製造方法、及び延伸フィルムの製造方法 | |
WO2022163416A1 (ja) | 光学フィルム及びその製造方法、並びに偏光フィルム | |
JP7567514B2 (ja) | 光学フィルム及び複合光学フィルムの製造方法 | |
WO2021153695A1 (ja) | 位相差フィルムの製造方法 | |
WO2022145174A1 (ja) | 光学フィルム及びその製造方法 | |
JP7567473B2 (ja) | 光学フィルム及びその製造方法 | |
JP2023048619A (ja) | 多層光学フィルム及びその製造方法 | |
CN110651207A (zh) | 相位差膜及制造方法 | |
JP7543932B2 (ja) | 光学フィルムの製造方法 | |
WO2022145172A1 (ja) | 多層フィルム及びその製造方法 | |
TW202229430A (zh) | 多層薄膜、光學薄膜及此等之製造方法 | |
JP2024149703A (ja) | 光学フィルム | |
TW202122841A (zh) | 相位差薄膜及其製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22780039 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023510871 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280021513.3 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22780039 Country of ref document: EP Kind code of ref document: A1 |