WO2015137382A1 - メチン系色素及びそれを用いた色素増感光電変換素子 - Google Patents

メチン系色素及びそれを用いた色素増感光電変換素子 Download PDF

Info

Publication number
WO2015137382A1
WO2015137382A1 PCT/JP2015/057118 JP2015057118W WO2015137382A1 WO 2015137382 A1 WO2015137382 A1 WO 2015137382A1 JP 2015057118 W JP2015057118 W JP 2015057118W WO 2015137382 A1 WO2015137382 A1 WO 2015137382A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
hydrogen atom
independently
Prior art date
Application number
PCT/JP2015/057118
Other languages
English (en)
French (fr)
Inventor
昌厳 金子
紫垣 晃一郎
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2015137382A1 publication Critical patent/WO2015137382A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/0008Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain
    • C09B23/005Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof
    • C09B23/0058Methine or polymethine dyes, e.g. cyanine dyes substituted on the polymethine chain the substituent being a COOH and/or a functional derivative thereof the substituent being CN
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel methine dye having a specific structure, a photoelectric conversion element having a thin film of semiconductor fine particles sensitized with the dye, and a solar cell having the element.
  • the present invention relates to a photoelectric conversion element carrying a methine compound (pigment) having a structure and a solar cell having the element.
  • Such a photoelectric conversion element is manufactured using a relatively inexpensive oxide semiconductor such as titanium oxide, and there is a possibility that a photoelectric conversion element having a lower cost than a conventional solar cell using silicon or the like may be obtained. More attention has been paid to the fact that colorful solar cells can be obtained.
  • the ruthenium complex itself used as a sensitizing dye for obtaining an element with high conversion efficiency is expensive and has a problem in its stable supply.
  • the photoelectric conversion element sensitized with an organic dye has problems such as low conversion efficiency and durability, and has not yet been put into practical use (see Patent Document 2).
  • the present inventors can obtain a photoelectric conversion element having high durability and high conversion efficiency by sensitizing a thin film of semiconductor fine particles with a methine dye having a specific structure. As a result, the present invention has been completed. That is, the present invention (1) Methine dye represented by the following formula (1)
  • X 1 and Y 1 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, carboxyl group or salt thereof, phosphoric acid group or salt thereof, sulfonic acid group or salt thereof, cyano group, acyl group, Represents an amide group, an alkoxycarbonyl group or a phenylsulfonyl group.
  • X 1 and Y 1 may combine to form a ring.
  • Z 1 , Z 2 and Z 3 each independently represent an oxygen atom, a sulfur atom, a selenium atom or NR 11 .
  • R 11 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • m at least one of j and k is 2 or more, Z 1, if any of Z 2 and Z 3 there are a plurality, each of Z 1, Z 2 and Z 3 may be the same or different from each other .
  • a 1 , A 2 , A 3 , A 5 and A 6 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, aryl An oxy group, an alkoxycarbonyl group, an arylcarbonyl group or an acyl group is represented. Further, when at least one of l and n is 2 or more and any one of A 2 , A 3 , A 5 and A 6 exists, A 2 , A 3 , A 5 and A 6 are the same as each other. Or may be different. When l is other than 0, any one of A 1 , A 2 and A 3 may form a ring.
  • a 4 represents a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an amide group, an alkoxycarbonyl group or an acyl group.
  • each A 4 may be the same as or different from each other.
  • a 7 , A 8 , A 9 and A 10 each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group or an acyl group.
  • each A 7 , A 8 , A 9 and A 10 is the same as or different from each other. Also good.
  • R 1 is represented by the following formula (3002)
  • p represents an integer of 0 to 3
  • q represents an integer of 0 to 6, respectively.
  • X 1 and Y 1 represent the same meaning as X 1 and Y 1 in formula (1).
  • Z 4 represents an oxygen atom, a sulfur atom, a selenium atom or NR 12 .
  • R 12 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • p is 2 or more and a plurality of Z 4 are present, each Z 4 may be the same as or different from each other.
  • a 11 and A 12 each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group or an acyl group.
  • a 13 , A 14 and A 15 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, aryloxy group, alkoxycarbonyl group Represents an arylcarbonyl group or an acyl group.
  • each A 13 and A 14 may be the same as or different from each other.
  • any one of A 13 , A 14 and A 15 may form a ring.
  • R 2 represents the following formula (3001) or (3003)
  • R 12 , R 13 , R 14 and R 15 each independently represent a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • R 16 , R 17 , R 18 and R 19 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, acyl group, amide group, alkoxy group, alkoxycarbonyl group or benzenesulfonyl group. Represents.
  • R 12 and R 13 each independently represent a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue
  • at least one of R 14 and R 15 preferably both independently represent formula (3001)
  • R 16 , R 17 , R 18 and R 19 are each independently a hydrogen atom, aromatic
  • the methine dye according to item (1) which represents a group residue, an aliphatic hydrocarbon residue, a cyano group, an acyl group, an amide group, an alkoxy group, an alkoxycarbonyl group, or a benzenesulfonyl group; (3) l and n in formula (1), and q in formula (3002) q is 0, the methine dye according to item (1) or (2), (4) The methine dye according to any one of (1) to (3) above, wherein k in the formula (1) is an integer of 1 to 2.
  • X 1 and Y 1 in the formula (1) is a carboxyl group and the other is a cyano group
  • / or one of X 1 and Y 1 in the formula (3002) is a carboxyl group and the other is a cyano group.
  • the methine dye according to any one of (1) to (11), (13) R 2 in the formula (1) is represented by the following formulas (3109) to (3114)
  • the methine dye represented by the formula (1) is represented by the following formulas (706), (710) and (720).
  • the methine dye according to item (1) which is a compound represented by the formula: (16) A photoelectric conversion element in which a methine dye represented by the formula (1) according to any one of (1) to (13) is supported on a thin film of oxide semiconductor fine particles on a substrate, and (17 ) A solar cell comprising the photoelectric conversion element as described in (16) above, About.
  • the methine dye of the present invention it is possible to provide a solar cell that has high durability and can maintain high conversion efficiency even after a light durability test.
  • the methine dye of the present invention has a structure represented by the following formula (1).
  • R 1 at a specific site has a specific structure represented by the formula (3002).
  • the photoelectric conversion element provided with the thin film of oxide semiconductor fine particles supporting the methine dye is a photoelectric conversion using a methine dye or other dyes whose R 1 is not a specific structure represented by the formula (3002). Compared to the element, it has excellent durability and maintains high conversion efficiency for a long time.
  • the methine dye represented by the formula (1) will be described.
  • M in Formula (1) represents an integer of 1 to 5, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • L in Formula (1) represents an integer of 0 to 6, and is preferably 0.
  • N in Formula (1) represents an integer of 0 to 6, and is preferably 0.
  • J in Formula (1) represents an integer of 0 to 3, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • k represents an integer of 1 to 3, and when l, n and q described below are 0, it is preferably 1 to 2, and more preferably 1.
  • X 1 and Y 1 in formula (1) are each independently a hydrogen atom, an aromatic residue, an aliphatic hydrocarbon residue, a carboxyl group (—COOH) or a salt thereof, a phosphate group (—PO 3 H) or A salt thereof, a sulfonic acid group (—SO 3 H) or a salt thereof, a cyano group, an acyl group, an amide group, an alkoxycarbonyl group, or a phenylsulfonyl group (—SO 2 Ph) is represented.
  • the aromatic residue represented by X 1 and Y 1 in formula (1) means an aromatic ring or a group obtained by removing one hydrogen atom from a condensed ring including an aromatic ring, and the aromatic residue has a substituent. You may have.
  • Specific examples of the aromatic ring include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, phenanthrene, pyrene, perylene and terylene; indene, azulene, pyridine, pyrazine, pyrimidine, pyrazole, pyrazolidine, thiazolidine, oxazolidine, pyran, chromene , Pyrrole, pyrrolidine, benzimidazole, imidazoline, imidazolidine, imidazole, triazole, triazine, diazole, indoline, thiophene, thienothiophene, furan, oxazole, oxadiazole,
  • the substituent that the aromatic residue represented by X 1 and Y 1 may have is not particularly limited, and examples thereof include a sulfonic acid group or a salt thereof, a sulfamoyl group, a cyano group, an isocyano group, a thiocyanato group, and an isothiocyanato group.
  • the halogen atom as a substituent that the aromatic residue may have include fluorine, chlorine, bromine, iodine and the like, and a bromine atom and a chlorine atom are preferable.
  • Examples of the phosphate ester group as a substituent that the aromatic residue may have include an ester group of phosphoric acid and alkyl having 1 to 5 carbon atoms, and preferable examples include a methyl phosphate group, An ethyl phosphate group, an n-propyl phosphate group, and an n-butyl phosphate group.
  • Examples of the amino group as a substituent that the aromatic residue may have include an unsubstituted amino group; an alkyl-substituted amino group such as a mono- or dimethylamino group, a mono- or diethylamino group, a mono- or di-n-propylamino group
  • An aromatic substituted amino group such as a mono- or diphenylamino group, a mono- or dinaphthylamino group; an amino group substituted with an alkyl group such as a monoalkylmonophenylamino group and an aromatic residue; benzylamino group, etc.
  • Examples of the mercapto group as a substituent that the aromatic residue may have include an unsubstituted mercapto group, an alkyl mercapto group, and an aryl mercapto group.
  • Examples of the alkyl mercapto group include methyl mercapto group, ethyl mercapto group, n-propyl mercapto group, isopropyl mercapto group, n-butyl mercapto group, isobutyl mercapto group, sec-butyl mercapto group and t-butyl mercapto group.
  • alkyl mercapto groups, and aryl mercapto groups include phenyl mercapto groups.
  • Examples of the amide group as a substituent that the aromatic residue may have include an unsubstituted amide group, an acetamide group, an alkylamide group, an alkylacetamide group, and an arylacetamide group. Preferred examples are unsubstituted.
  • alkoxy group as a substituent that the aromatic residue may have include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and t- Examples thereof include an alkoxy group having 1 to 5 carbon atoms such as a butoxy group.
  • aryloxy group as a substituent that the aromatic residue may have include a phenoxy group and a naphthoxy group.
  • acyl group as a substituent that the aromatic residue may have include an alkylcarbonyl group having 1 to 10 carbon atoms, an arylcarbonyl group, and the like, and these are substituted with a halogen such as F or Cl. May be. Specific examples include an acetyl group, a propionyl group, a trifluoromethylcarbonyl group, a pentafluoroethylcarbonyl group, a benzoyl group, a naphthoyl group, and the like. An unsubstituted or halogen-substituted alkylcarbonyl group having 1 to 4 carbon atoms is preferable.
  • alkoxycarbonyl group as a substituent that the aromatic residue may have include an alkoxycarbonyl group having 1 to 10 carbon atoms. Specific examples thereof include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, t-butoxycarbonyl group, n-pentene.
  • Examples thereof include a tooxycarbonyl group, an n-hexyloxycarbonyl group, an n-heptyloxycarbonyl group, an n-nonyloxycarbonyl group, and an n-decyloxycarbonyl group.
  • the arylcarbonyl group as a substituent that the aromatic residue may have represents, for example, a group in which an aryl group having 5 to 20 carbon atoms such as benzophenone or naphthophenone and carbonyl are linked.
  • Examples of the aromatic residue as a substituent that the aromatic residue may have include the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • Examples of the aliphatic hydrocarbon residue as a substituent that the aromatic residue may have include a saturated or unsaturated, linear, branched or cyclic alkyl group, and the aliphatic hydrocarbon residue.
  • the group may have a substituent.
  • the aliphatic hydrocarbon residue is preferably a saturated alkyl group, and more preferably a saturated linear alkyl group. Further, the aliphatic hydrocarbon residue has preferably 1 to 36 carbon atoms, more preferably 1 to 18 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of these aliphatic hydrocarbon residues include methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, n-pentyl.
  • the aromatic residue, aliphatic hydrocarbon residue, amide group, acyl group, alkoxy group, aryloxy group, arylcarbonyl group and alkoxycarbonyl group as substituents that the aromatic residue may have are substituents.
  • substituents include the same as those described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in formula (1) may have. It is done.
  • the aromatic residue represented by X 1 and Y 1 in the formula (1) is at least one group selected from the group consisting of a carboxyl group, a hydroxyl group, a phosphate group, a sulfonate group, and a salt of these acidic groups. It is preferably an aromatic residue having at least one substituent, and more preferably any one of groups represented by the following formulas (1001) to (1033).
  • the aliphatic hydrocarbon residue represented by X 1 and Y 1 in the formula (1) is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. And the same aliphatic hydrocarbon residues.
  • the aliphatic hydrocarbon residue may have a substituent, and examples of the substituent include substituents that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. The same as mentioned in the section.
  • the acyl group represented by X 1 and Y 1 in the formula (1) the acyl group described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have and The same can be mentioned.
  • the acyl group may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have.
  • the same thing is mentioned.
  • the amide group represented by X 1 and Y 1 in the formula (1) is the same as that described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. Things.
  • the amide group may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. The same thing is mentioned.
  • the alkoxycarbonyl group represented by X 1 and Y 1 in the formula (1) is an alkoxycarbonyl described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have.
  • the same thing as a group is mentioned.
  • the alkoxycarbonyl group may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have.
  • the same thing is mentioned.
  • the phenylsulfonyl group represented by X 1 and Y 1 in formula (1) may have a substituent, and the substituent includes an aromatic residue represented by X 1 and Y 1 in formula (1). The same as those described in the section of the substituent which may be used.
  • X 1 and Y 1 in formula (1) may be bonded to form a ring, and the ring structure is a 5-membered or 6-membered heterocyclic ring having at least one nitrogen atom as a ring component.
  • a structure is preferred.
  • These rings may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. The same thing is mentioned, The ring structure which has a carboxyl group as a substituent is preferable.
  • ring structure formed by combining X 1 and Y 1 include the ring structures represented by the following formulas (2001) to (2044), among which (2001) to (2007), (2009) to (2010), (2012) to (2015), (2017) to (2023) and (2025) to (2044) are preferred, more preferably (2007) or (2012).
  • the ring structure of (2007) is particularly preferred.
  • X 1 and Y 1 in the formula (1) are preferably any of the following (i) to (iii).
  • X 1 and Y 1 are preferably each independently a carboxyl group or a salt thereof, a phosphate group or a salt thereof, a cyano group or an acyl group, and each independently a carboxyl group or a salt thereof, a cyano group or an acyl More preferably, one is a carboxyl group or a salt thereof and the other is a carboxyl group or a salt thereof, a cyano group or an acyl group, and one is a carboxyl group or a salt thereof and the other is a cyano group. It is particularly preferred.
  • At least one of X 1 and Y 1 is at least one substituent selected from the group consisting of a carboxyl group, a hydroxyl group, a phosphoric acid group, a sulfonic acid group, and a salt of these acidic groups.
  • X 1 and Y 1 are preferably bonded to form a ring structure, and the ring structure is more preferably any of the above formulas (2001) to (2044), and the ring structure is a carboxyl group or a salt thereof Are more preferable, the ring structure is particularly preferably the formula (2007) or (2012), and the formula (2007) is very particularly preferable. Among the above (i) to (iii), (i) is most preferable.
  • Z 1 , Z 2 and Z 3 in formula (1) each independently represent an oxygen atom, a sulfur atom, a selenium atom or NR 11
  • R 11 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • the aromatic residue represented by R 11 include the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • the aliphatic hydrocarbon residue represented by R 11 include the aliphatic hydrocarbon residues described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in Formula (1) may have; The same can be mentioned.
  • the aromatic residue and aliphatic hydrocarbon residue represented by R 11 may have a substituent, and the substituent includes the aromatic residue represented by X 1 and Y 1 in the formula (1). The same as those described in the section of the substituent which may be used.
  • Z 1 , Z 2 and Z 3 in formula (1) are each independently preferably an oxygen atom, a sulfur atom or a selenium atom, and more preferably a sulfur atom.
  • a 1 , A 2 , A 3 , A 5 and A 6 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, Represents an aryloxy group, an alkoxycarbonyl group, an arylcarbonyl group or an acyl group;
  • Examples of the aromatic residue represented by A 1 , A 2 , A 3 , A 5 and A 6 include the same aromatic residues as those represented by X 1 and Y 1 in the formula (1).
  • X 1 and Y aromatic residues 1 may be the same as those described in the section of the substituent which may have.
  • the aromatic residue, aliphatic hydrocarbon residue, amide group, alkoxy group, aryloxy group, alkoxycarbonyl group, arylcarbonyl group and acyl group represented by A 1 , A 2 , A 3 , A 5 and A 6 are substituted.
  • the substituent may be the same as described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. Can be mentioned.
  • each of A 2 , A 3 , A 5 and A 6 may be the same as or different from each other.
  • l is other than 0, at least two selected from A 1 , A 2 and A 3 may be bonded to form a ring. Examples of the ring formed by at least two of A 1 , A 2 and A 3 include an unsaturated hydrocarbon ring or a heterocyclic ring.
  • Examples of the unsaturated hydrocarbon ring include benzene, naphthalene, anthracene, phenanthrene, pyrene, indene, azulene, fluorene, cyclobutene, cyclohexene, cyclopentene, cyclohexadiene, cyclopentadiene, and examples of the heterocyclic ring include Examples include pyran, pyridine, pyrazine, piperidine, indoline, oxazole, thiazole, thiadiazole, oxadiazole, indole, benzothiazole, benzoxazole, quinoline, carbazole, benzopyran and the like.
  • benzene, cyclobutene, cyclopentene and cyclohexene are preferable.
  • These unsaturated hydrocarbon rings and heterocycles may have a substituent, and the substituent may be a substituent that the aromatic residue represented by X 1 and Y 1 in formula (1) may have. Examples are the same as those described in the group section.
  • the heterocyclic ring formed by at least two selected from A 1 , A 2 and A 3 has a substituent such as a carbonyl group or a thiocarbonyl group
  • these substituents are cyclic ketones or cyclic thioketones, etc. These rings may further have a substituent.
  • Examples of the substituent in that case include the same substituents as those described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in Formula (1) may have.
  • a 1 , A 2 , A 3 , A 5 and A 6 in the formula (1) are each independently preferably a hydrogen atom or an aliphatic hydrocarbon residue, and more preferably a hydrogen atom.
  • a 4 in Formula (1) represents a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an amide group, an alkoxycarbonyl group, or an acyl group.
  • the aromatic residue represented by X 1 and Y 1 in formula (1) has And the same as those described in the section of the good substituent.
  • the aliphatic hydrocarbon residue, alkoxy group, amide group, alkoxycarbonyl group and acyl group represented by A 4 may have a substituent, and examples of the substituent include X 1 and Y 1 in the formula (1).
  • substituents include X 1 and Y 1 in the formula (1).
  • m is 2 or more and a plurality of A 4 are present, each A 4 may be the same as or different from each other.
  • a 4 in formula (1) is preferably a hydrogen atom or an aliphatic hydrocarbon residue, more preferably a hydrogen atom or a linear alkyl group having 1 to 8 carbon atoms.
  • a 7 , A 8 , A 9 and A 10 in formula (1) are each independently a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group or an acyl group.
  • the aromatic residue represented by X 1 and Y 1 in formula (1) is used. The same thing as what was mentioned in the term of the substituent which group may have is mentioned.
  • the aliphatic hydrocarbon residue, alkoxy group, alkoxycarbonyl group and acyl group represented by A 7 , A 8 , A 9 and A 10 may have a substituent, and the substituent may be represented by the formula (1)
  • X 1 and Y 1 is an aromatic residue represented by may be the same as those described in the section of the substituent which may have a.
  • each A 7 , A 8 , A 9 and A 10 May be the same or different from each other.
  • a 7 , A 8 , A 9 and A 10 in the formula (1) are each independently preferably a hydrogen atom or an aliphatic hydrocarbon residue, and are a hydrogen atom or a linear alkyl group having 1 to 8 carbon atoms. It is more preferable that
  • R 1 in the formula (1) is represented by the following formula (3002)
  • Represents a group represented by P in the formula (3002) represents an integer of 0 to 3, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1. Further, it is particularly preferable that p and the aforementioned j are the same integer.
  • Q in the formula (3002) represents an integer of 0 to 6, and is preferably 0.
  • q and the aforementioned l are the same integer. That is, it is most preferable that p and j are the same integer, and q and l are the same integer.
  • X 1 and Y 1 in formula (3002) represent the same meaning as X 1 and Y 1 in formula (1), These definitions and preferred ones are the same as X 1 and Y 1 in the formula (1).
  • Z 4 in the formula (3002) represents an oxygen atom, a sulfur atom, a selenium atom or NR 12
  • R 12 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • the definitions and preferred examples of the aromatic residue and aliphatic hydrocarbon residue represented by R 12 are the same as those described in the section of R 11 in formula (1), and the definition and preferred examples of Z 4 are those of the formula This is the same as that described in the items of Z 1 , Z 2 and Z 3 in (1).
  • a 11 and A 12 in formula (3002) each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group, or an acyl group, and these definitions
  • the preferable ones are the same as those described in the paragraphs A 7 , A 8 , A 9 and A 10 of the formula (1).
  • a 13 , A 14 and A 15 in formula (3002) are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, aryl Represents an oxy group, an alkoxycarbonyl group, an arylcarbonyl group or an acyl group, and these definitions and preferred ones are those described in the paragraphs A 1 , A 2 , A 3 , A 5 and A 6 of the formula (1). It is the same. When m is 2 or more and a plurality of R 1 are present, each R 1 may be the same as or different from each other.
  • R 2 in the formula (1) is the following formula (3001) or (3003)
  • R 12 , R 13 , R 14 and R 15 each independently represent a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • R 16 , R 17 , R 18 and R 19 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, acyl group, amide group, alkoxy group, alkoxycarbonyl Represents a group or a phenylsulfonyl group.
  • Examples of the aromatic residue represented by R 12 , R 13 , R 14 and R 15 are the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • an aromatic residue represented by X 1 and Y 1 in the formula (1) may be substituted. The same thing as the aliphatic hydrocarbon residue mentioned is mentioned.
  • the aromatic residue and aliphatic hydrocarbon residue represented by R 12 , R 13 , R 14 and R 15 may have a substituent, and examples of the substituent include X 1 and Y in the formula (1). Examples thereof include the same as those described in the section of the substituent that the aromatic residue represented by 1 may have.
  • R 12 and R 13 in formula (3001) are each independently preferably a hydrogen atom or an aliphatic hydrocarbon residue, more preferably each independently a hydrogen atom or an alkyl group having 1 to 18 carbon atoms. Further, an alkyl group having 1 to 8 carbon atoms is more preferable, and a linear alkyl group having 1 to 8 carbon atoms is particularly preferable.
  • At least one of R 14 and R 15 in formula (3003) is preferably an aromatic residue, and more preferably both are aromatic residues.
  • at least one of R 14 and R 15 is preferably a phenyl group or a group represented by the formula (3001), and both R 14 and R 15 are a phenyl group or a group represented by the formula (3001). It is more preferable that both are the same phenyl group or the group represented by the same formula (3001), and it is particularly preferable that both are the groups represented by the same formula (3001).
  • R 12 and R 13 in the group represented by the formula (3001) represented by R 14 and R 15 are the same as those described above, and preferable ones are also the same as described above.
  • Examples of the aromatic residue represented by R 16 , R 17 , R 18 and R 19 are the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • Examples of the aliphatic hydrocarbon residue, acyl group, amide group, alkoxy group and alkoxycarbonyl group represented by R 16 , R 17 , R 18 and R 19 include aromatic residues represented by X 1 and Y 1 in the formula (1). The same thing as what was mentioned in the term of the substituent which group may have is mentioned.
  • the aromatic residue, aliphatic hydrocarbon residue, acyl group, amide group, alkoxy group, alkoxycarbonyl group and phenylsulfonyl group represented by R 16 , R 17 , R 18 and R 19 may have a substituent.
  • substituents include the same as those described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in Formula (1) may have.
  • R 16 , R 17 , R 18 and R 19 in the formula (3003) are each independently preferably a hydrogen atom or an alkoxy group, more preferably a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms. And more preferably a hydrogen atom.
  • R 12 and R 13 are preferably hydrogen atoms or alkyl groups having 1 to 8 carbon atoms, and R 12 and R 13 are alkyl groups having 1 to 8 carbon atoms. It is more preferable.
  • R 14 and R 15 are groups represented by the formula (3001), and R 12 and R 13 in the formula (3001) are A hydrogen atom or an alkyl group having 1 to 8 carbon atoms, wherein R 16 to R 19 are each independently a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, and R 14 and R 15 are preferably represented by the formula (3001) In which R 16 to R 19 are hydrogen atoms.
  • Examples of the aliphatic hydrocarbon residue represented by R 2 include the aliphatic hydrocarbon residues described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in Formula (1) may have, The same can be mentioned.
  • n is other than 0, at least two selected from A 5 , A 6 and R 2 may be bonded to form a ring.
  • the ring formed by A 5 , A 6 and R 2 may have a substituent, and the substituent has an aromatic residue represented by X 1 and Y 1 in the formula (1). And the same as those described in the section of the good substituent.
  • R 2 in Formula (1) is represented by Formula (3001), and R 12 and R 13 are a hydrogen atom or a group having 1 to 8 carbon atoms, or represented by Formula (3003).
  • R 14 and R 15 are groups represented by the formula (3001), wherein R 12 and R 13 in the formula (3001) are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 16 to R A group in which 19 is independently a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms is more preferable.
  • R 14 and R 15 are represented by the formula (3001), wherein R 12 and R 13 in the formula (3001) are a hydrogen atom or an alkyl group having 1 to 5 carbon atoms; More preferably, R 16 to R 19 are each independently a hydrogen atom or an alkoxy group having 1 to 3 carbon atoms. More specifically, the group represented by the formula (3001) is preferably a group represented by any of the following formulas (3101) to (3103), and in the following formula (3102) or (3103) The group represented by the following formula (3103) is more preferable.
  • the group represented by the formula (3003) is preferably a group represented by any of the following formulas (3109) to (3114), and the following formulas (3110), (3111), (3113) or (3114) ), More preferably a group represented by the following formula (3111) or (3114), and particularly preferably a group represented by the following formula (3111). .
  • a salt may be formed respectively.
  • the salt include salts with alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, or 4 such as tetramethylammonium, tetrabutylammonium, pyridinium, imidazolium, piperazinium and piperidinium. Mention may be made of salts with organic bases such as quaternary ammonium.
  • the methine dye represented by the formula (1) can take a structural isomer such as a cis isomer, a trans isomer, a racemate and the like, but is not particularly limited, and any isomer is used as a photosensitizing dye in the present invention. It can be used satisfactorily.
  • Preferred combinations of m, l, n, j, k, p, q, X 1 , Y 1 , Z 1 to Z 4 , A 1 to A 15 and R 1 to R 2 in formula (1) and formula (3002) are preferable in each of the above m, l, n, j, k, p, q, X 1 , Y 1 , Z 1 to Z 4 , A 1 to A 15 and R 1 to R 2. More preferred combinations are as follows.
  • m is 1 to 3
  • l, n, and q are 0, j is 1 to 3
  • k is 1 to 2
  • p is 1 to 3
  • Z 1 to Z 4 are each independently an oxygen atom, sulfur atom, selenium atom, amino group, N-methylamino group or N-phenylamino group
  • R 2 is any one of the above formulas (3109) to (3114)
  • X 1 and Y 1 in formula (1) are each independently a carboxyl group, a phosphate group, a cyano group, or an acyl group, or one of X 1 and Y 1 is the above formula (1001) Or a group represented by the above formulas (2001) to (2044), wherein the other is a hydrogen atom or a cyano group, or X 1 and Y 1 form a ring.
  • Y 1 are each independently a carboxyl group, a phosphoric acid group, or a cyano group or an acyl group, a group in which one of X 1 and Y 1 are represented by the formula (1001) - (1033), the other is a hydrogen atom Or a cyano group, or X 1 and Y 1 form a ring, and the ring is a group selected from the group consisting of the groups represented by the above formulas (2001) to (2044), and A 1 to A Each of 15 is independently a hydrogen atom, a chlorine atom, a cyano group or an alkyl group having 1 to 36 carbon atoms.
  • m is 1 to 3
  • l is 1 to 3
  • k is 1 to 2
  • Z 1 to Z 4 are independent of each other.
  • R 2 is a group represented by any one of the above formulas (3111) or (3114)
  • one of X 1 and Y 1 in formula (1) is a carboxyl group
  • the other is a carboxyl group, a cyano group or an acyl group, or the ring formed by combining X 1 and Y 1 is a group represented by the above formula (2007), and X 1 in the formula (3002)
  • Y 1 is a carboxyl group and the other is a carboxyl group, a cyano group or an acyl group, or a ring formed by combining X 1 and Y 1 is a group represented by the above formula (2007).
  • a 1 ⁇ a 15 are each independently a hydrogen atom, a chlorine atom, a cyano Or or an alkyl group having 1 to 18 carbon atoms.
  • m is 1 to 2
  • l, n and q are 0, j, p and k are 1
  • Z 1 to Z 4 are sulfur atoms
  • R 2 is the above formula.
  • the ring is a group represented by the above formula (2007), and A 1 to A 15 are hydrogen atoms.
  • the counter ion for neutralizing the positive charge of the nitrogen atom may be formed either intermolecularly or intramolecularly.
  • Preferable counter ions between molecules include anions such as iodine, perchloric acid, bistrifluoromethylsulfonimide, tristrifluoromethylsulfonylmethane, hexafluoroantimonic acid, and tetrafluoroboric acid.
  • preferred counter ions in the molecule include anions of 2-yl acetate, 3-yl propionate, and sulfoethane-2-yl bonded to a positively charged nitrogen atom.
  • the compound represented by the formula (1) can be produced, for example, according to the following reaction formula, but the present invention is not limited to these synthesis methods.
  • a compound represented by the formula (4) is obtained by reacting the compound represented by the formula (2) with the boronic acid represented by the formula (3). Next, the compound represented by the formula (4) is treated with N-iodosuccinimide, and further reacted with a boronic acid represented by the formula (5) to obtain a compound represented by the formula (6).
  • the formula (7) is obtained using the compound represented by Formula (8).
  • the compound represented by Formula (12) is obtained by making the compound represented.
  • the method represented by first reacting the compound represented by the formula (6) with the compound represented by the formula (10) and then reacting the compound represented by the formula (9) is described, By using a compound having a different combination of halogen atoms in the compound represented by 10), the compound represented by formula (9) is reacted first, and then the compound represented by formula (6) is reacted. You can also.
  • a compound represented by the formula (15) is obtained by reacting the compound represented by the formula (14) with the compound represented by the formula (13) obtained above. Next, the compound represented by the formula (15) is treated with N-iodosuccinimide to obtain the compound represented by the formula (16).
  • the compound represented by Formula (18) is obtained by the reaction of the compound represented by Formula (16) obtained above and the compound represented by Formula (17).
  • the compound having the active methylene represented by the formula (19) is added to the compound represented by the formula (18), if necessary, by caustic soda, sodium methylate, sodium acetate, diethylamine, triethylamine, piperidine, piperazine, dia
  • a basic catalyst such as zabicycloundecene
  • alcohols such as methanol, ethanol, isopropanol and butanol
  • aprotic polar solvents such as dimethylformamide and N-methylpyrrolidone
  • solvents such as toluene, acetic anhydride and acetonitrile
  • the compound (dye) represented by the formula (1) of the present invention is obtained by condensation at 20 ° C.
  • methine dyes represented by formula (1-1) metal dyes in which l and n in formula (1) are 0, m is 1, and q in formula (3002) is 0
  • Tables 1 to 7 show.
  • Ph means a phenyl group.
  • Those expressed as (2001) to (2044) represent a ring formed by combining X 1 and Y 1 , and correspond to the above formulas (2001) to (2044).
  • the notations (3101) to (3114) correspond to the above formulas (3101) to (3114).
  • a methine dye represented by the following formula (1-2) (j, m and k in formula (1) are 1, p in formula (3002) is 1, and A 2 , A 3 , A 5, Specific examples of methine dyes in which A 6, A 13, and A 14 are hydrogen atoms are shown in Tables 8 to 12.
  • Ph means a phenyl group.
  • the substituents represented by (2001) to (2044) represent a ring formed by combining X 1 and Y 1 and correspond to the above formulas (2001) to (2044). Further, the notations (3101) to (3114) correspond to the above formulas (3101) to (3114).
  • a thin film of oxide semiconductor fine particles is provided on a substrate using oxide semiconductor fine particles, and then the compound represented by the formula (1) is supported on the thin film.
  • a substrate on which a thin film of oxide semiconductor fine particles is provided a substrate having a conductive surface is preferable, but such a substrate is easily available in the market.
  • conductive metal oxides such as tin oxide doped with indium, fluorine and antimony on the surface of transparent polymer materials such as glass or polyethylene terephthalate or polyether sulfone, and metals such as copper, silver and gold
  • a substrate provided with a thin film can be used as the substrate.
  • the conductivity is usually 1000 ⁇ or less, and particularly preferably 100 ⁇ or less.
  • the oxide semiconductor fine particles are preferably metal oxides, and specific examples thereof include oxides of titanium, tin, zinc, tungsten, zirconium, gallium, indium, yttrium, niobium, tantalum, vanadium, and the like. Of these, oxides such as titanium, tin, zinc, niobium or indium are preferred, and titanium oxide, zinc oxide and tin oxide are most preferred. These oxide semiconductors can be used alone, but can also be used by mixing or coating the surface of the semiconductor.
  • the average particle size of the oxide semiconductor fine particles is usually 1 to 500 nm, preferably 1 to 100 nm.
  • the oxide semiconductor fine particles may be mixed with a large particle size and a small particle size, or may be used in multiple layers.
  • the thin film of oxide semiconductor fine particles is a method of directly forming oxide semiconductor fine particles as a thin film of semiconductor fine particles on the substrate by spray spraying, a method of electrically depositing semiconductor fine particles into a thin film using the substrate as an electrode, It can be produced by applying a paste containing fine particles obtained by hydrolyzing a precursor of semiconductor fine particles such as slurry or semiconductor alkoxide on a substrate, followed by drying, curing or baking.
  • a method using a slurry is preferable.
  • the slurry is obtained by dispersing the oxide semiconductor fine particles, which are secondarily aggregated, in a dispersion medium so that the average primary particle diameter is 1 to 200 nm by a conventional method.
  • the dispersion medium for dispersing the slurry may be anything as long as it can disperse the semiconductor fine particles.
  • Water alcohols such as ethanol, ketones such as acetone and acetylacetone, hydrocarbons such as hexane, and the like are used.
  • the use of water is preferable in that the viscosity change of the slurry is reduced.
  • a dispersion stabilizer can be used for the purpose of stabilizing the dispersion state of the oxide semiconductor fine particles. Examples of the dispersion stabilizer that can be used include acids such as acetic acid, hydrochloric acid, and nitric acid, and organic solvents such as acetylacetone, acrylic acid, polyethylene glycol, and polyvinyl alcohol.
  • the substrate coated with the slurry may be fired, and the firing temperature is usually 100 ° C. or higher, preferably 200 ° C. or higher, and the upper limit is generally lower than the melting point (softening point) of the substrate material. Yes, preferably 600 ° C. or lower.
  • the firing time is not particularly limited but is preferably within 4 hours.
  • the thickness of the thin film on the substrate is usually 1 to 200 ⁇ m, preferably 1 to 50 ⁇ m.
  • Secondary treatment may be applied to the thin film of oxide semiconductor fine particles. That is, improving the performance of the thin film of semiconductor fine particles by, for example, immersing the thin film together with the substrate directly in a solution of the same metal alkoxide, chloride, nitride, sulfide, etc. as the semiconductor and drying or refiring. You can also.
  • the metal alkoxide include titanium ethoxide, titanium isopropoxide, titanium t-butoxide, n-dibutyl-diacetyltin, and alcohol solutions thereof are used.
  • the chloride include titanium tetrachloride, tin tetrachloride, zinc chloride and the like, and an aqueous solution thereof is used.
  • the oxide semiconductor thin film thus obtained is composed of fine particles of an oxide semiconductor.
  • a method for supporting the compound (dye) represented by the formula (1) of the present invention on a thin film of oxide semiconductor fine particles will be described.
  • a solution obtained by dissolving the compound in a solvent capable of dissolving the compound, or a compound having low solubility is dispersed.
  • a method of immersing a substrate provided with a thin film of the oxide semiconductor fine particles in the obtained dispersion liquid may be mentioned.
  • the concentration in the solution or dispersion is appropriately determined depending on the compound.
  • a thin film of semiconductor fine particles formed on the substrate is immersed in the solution or dispersion.
  • the immersion temperature is generally from room temperature to the boiling point of the solvent, and the immersion time is about 1 minute to 48 hours.
  • the compound concentration of the solution is usually 1 ⁇ 10 ⁇ 6 M to 1M, preferably 1 ⁇ 10 ⁇ 5 M to 1 ⁇ 10 ⁇ 1 M. After the immersion, the solvent is removed by air drying or heating if necessary.
  • the photoelectric conversion element of the present invention having a thin film of oxide semiconductor fine particles sensitized with the compound represented by the formula (1) is obtained.
  • the compound (pigment) represented by the formula (1) to be supported may be one kind or a mixture of several kinds. Moreover, when mixing, the compounds represented by Formula (1) of this invention may be sufficient, and another pigment
  • metal complex dyes that can be mixed are not particularly limited, but ruthenium complexes and their quaternary ammonium salt compounds, phthalocyanines, porphyrins, and the like shown in Non-Patent Document 2 are preferable, and there are no organic dyes that are mixed and used.
  • a ruthenium complex, a merocyanine, an acrylic acid-based methine dye, or the like is used.
  • the dyes may be adsorbed sequentially on the thin film of semiconductor fine particles, or may be admixed and dissolved.
  • the ratio of the dye to be mixed is not particularly limited, and the optimization condition is appropriately selected for each dye. Generally, it is preferable to use about 10% mol or more per one dye from the mixing of equimolar amounts. .
  • the total concentration of the dye in the solution may be the same as when only one kind is supported.
  • the solvent in the case of using a mixture of dyes the above-mentioned solvents can be used, and the solvents for the respective dyes to be used may be the same or different.
  • the dye When the dye is supported on the thin film of oxide semiconductor fine particles, it is advantageous to support the dye in the presence of the inclusion compound in order to prevent the association between the dyes.
  • inclusion compounds include steroidal compounds such as cholic acid, crown ethers, cyclodextrins, calixarene, polyethylene oxide, and the like.
  • preferable compounds include deoxycholic acid, dehydrodeoxycholic acid, chenodeoxycholic acid, and cholic acid.
  • cholic acids such as acid methyl ester and sodium cholate, and polyethylene oxide.
  • the semiconductor fine film thin film may be treated with an amine compound such as 4-t-butylpyridine.
  • a treatment method for example, a method of immersing a substrate provided with a thin film of semiconductor fine particles carrying a dye in an ethanol solution of amine is employed.
  • the solar cell of the present invention is composed of a counter electrode, a redox electrolyte, a hole transport material, a p-type semiconductor, or the like, with a photoelectric conversion element in which a dye is supported on a thin film of oxide semiconductor fine particles as one electrode.
  • a redox electrolyte As the form of the redox electrolyte, the hole transport material, the p-type semiconductor, etc., those known per se such as liquid, solidified body (gel and gel) and solid can be used. Liquids such as redox electrolytes, molten salts, hole transport materials, p-type semiconductors, etc., dissolved in solvents and room temperature molten salts are solidified (gels and gels).
  • Examples include a matrix and a low molecular gelling agent.
  • a redox electrolyte, a molten salt, a hole transport material, a p-type semiconductor, or the like can be used.
  • the hole transport material include amine derivatives, conductive polymers such as polyacetylene, polyaniline, and polythiophene, and triphenylene compounds.
  • the p-type semiconductor include CuI and CuSCN.
  • the counter electrode is preferably conductive and has a catalytic action on the reduction reaction of the redox electrolyte.
  • a glass or polymer film deposited with platinum, carbon, rhodium, ruthenium or the like, or a film coated with conductive fine particles can be used.
  • Examples of the redox electrolyte used in the solar cell of the present invention include halogen redox electrolytes composed of halogen compounds and halogen molecules having halogen ions as counter ions, ferrocyanate-ferricyanate, ferrocene-ferricinium ions, cobalt complexes, etc.
  • Examples thereof include metal redox electrolytes such as metal complexes, and organic redox electrolytes such as alkylthiol-alkyldisulfides, viologen dyes, hydroquinone-quinones, and the like, but halogen redox electrolytes are preferred.
  • halogen molecule in the halogen redox electrolyte comprising a halogen compound-halogen molecule examples include iodine molecule and bromine molecule, and iodine molecule is preferable.
  • a counter ion for example LiBr, NaBr, KBr, LiI, NaI, KI, CsI, CaI 2, MgI 2, CuI and halogenated metal salt or tetraalkylammonium iodide
  • examples include halogen organic quaternary ammonium salts such as imidazolium iodide and pyridinium iodide, and salts having iodine ions as counter ions are preferred.
  • the electrolyte which uses imide ions, such as a bis (trifluoromethanesulfonyl) imide ion and a dicyano imide ion, as a counter ion other than the said iodine ion.
  • imide ions such as a bis (trifluoromethanesulfonyl) imide ion and a dicyano imide ion
  • an electrochemically inert solvent is used as the solvent.
  • acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropylene are particularly preferred.
  • Nitrile, methoxy acetonitrile, ethylene glycol, 3-methyl - oxazolidin-2-one, .gamma.-butyrolactone and the like are preferable. You may use these individually or in combination of 2 or more types.
  • examples include those in which an electrolyte or an electrolyte solution is contained in a matrix such as an oligomer and a polymer, and those in which a low-molecular gelling agent is also contained in the same electrolyte or electrolyte solution.
  • the concentration of the redox electrolyte is usually 0.01 to 99% by mass, preferably about 0.1 to 90% by mass.
  • the solar cell of the present invention has a counter electrode so that a thin film of oxide semiconductor fine particles on a substrate is sandwiched between electrodes of a photoelectric conversion element carrying a compound (pigment) represented by the formula (1) of the present invention. Deploy. In the meantime, it is obtained by filling a solution containing a redox electrolyte.
  • Synthesis example 1 20 parts 2,3-dibromothiophene, 31 parts 5-formyl-2-thiopheneboronic acid, 1.7 parts bis (tri-tert-butylphosphine) palladium (0), 50 parts cesium fluoride, and 112 parts water
  • the mixture was reacted at 80 ° C. for 3 hours.
  • the reaction mixture was extracted with chloroform-water, and the chloroform phase was concentrated and then separated and purified by column chromatography (chloroform-hexane) to obtain 21 parts of a compound represented by the following formula (700) as a yellow solid.
  • Synthesis example 2 9 parts of N-iodosuccinimide is added to a solution obtained by dissolving 10 parts of the compound represented by the formula (700) obtained in Synthesis Example 1 in a mixed solution of 210 parts of acetic acid and 296 parts of chloroform, and the light is protected from light at 100 ° C. For 5 hours.
  • the reaction mixture was extracted with chloroform-water, and the chloroform phase was concentrated and then separated and purified by column chromatography (chloroform-hexane) to obtain 13 parts of a compound represented by the following formula (701) as a dark yellow solid.
  • Synthesis example 3 2.6 parts of the compound represented by formula (701) obtained in Synthesis Example 2, 1.5 parts of 2-thiopheneboronic acid, 0.21 part of tetrakis (triphenylphosphine) palladium (0), and 20% carbonic acid 16 parts of an aqueous sodium solution was added to 26 parts of 1,2-dimethoxyethane and refluxed for 2 hours. 1.5 parts of 2-thiopheneboronic acid and 0.21 part of tetrakis (triphenylphosphine) palladium (0) were added, and the mixture was further refluxed for 4 hours.
  • reaction mixture was extracted with toluene / water, the toluene phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 1.9 parts of the following compound (702) was obtained as a yellow solid.
  • Synthesis example 4 To a solution obtained by dissolving 1.9 parts of the compound represented by the formula (702) obtained in Synthesis Example 3 in a mixed solution of 53 parts of acetic acid and 74 parts of chloroform, 1.3 parts of N-iodosuccinimide was added, Refluxed for 3 hours in the dark. The reaction mixture is extracted with chloroform-water, the chloroform phase is concentrated, separated and purified by column chromatography (chloroform-hexane), and 2.5 parts of the compound represented by the following formula (703) is obtained as a tan solid. It was.
  • Synthesis example 5 Add 1.6 parts of [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II) .dichloromethane adduct, 2 parts of potassium acetate and 2 parts of bis (pinacolato) diboron to 22 parts of dimethyl sulfoxide, and a nitrogen atmosphere Stirred under. A solution prepared by dissolving 5 parts of 9,9-dibutyl-N- (9,9-dibutylfluoren-2-yl) -N- (4-iodophenyl) fluoren-2-amine in 66 parts of dimethyl sulfoxide was added. Stir at 5 ° C. for 5 hours.
  • reaction mixture was extracted with toluene-water, and the toluene phase was concentrated, then separated and purified by column chromatography (chloroform-hexane) to obtain 3.5 parts of a compound represented by the following formula (704) as a white solid. .
  • Synthesis Example 6 2.5 parts of the compound represented by the formula (703) obtained in Synthesis Example 4; 4.2 parts of the compound represented by the formula (704) obtained in Synthesis Example 5; tetrakis (triphenylphosphine) palladium ( 0) 0.17 parts and 17 parts of a 20% aqueous sodium carbonate solution were added to 130 parts of 1,2-dimethoxyethane and reacted under reflux for 6 hours. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 2.4 parts of a compound represented by the following formula (705) was obtained as an orange solid. .
  • Example 1 In a solution obtained by dissolving 1.7 parts of the compound represented by the formula (705) obtained in Synthesis Example 6 and 0.85 part of cyanoacetic acid in a mixed solution of 133 parts of ethanol and 73 parts of toluene, 0.02 part of anhydrous piperazine was added and reacted under reflux for 1 hour. 0.85 part of cyanoacetic acid was added, and the mixture was further reacted for 6 hours under reflux. The reaction mixture was extracted with chloroform-water, and the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-acetic acid).
  • the black-red solid obtained after concentration was recrystallized from chloroform-hexane to obtain 0.78 part of a compound represented by the following formula (706) (Compound 1 in Table 1) as a black-red solid.
  • the maximum absorption wavelength of the compound represented by the formula (706) and the measured values of the nuclear magnetic resonance apparatus were as follows.
  • Example 2 The methine dye of Compound No. 1 shown in Table 1 was dissolved in ethanol so that 1.6 ⁇ 10 ⁇ 4 M and the following cholic acid (formula (a)) would be 1 ⁇ 10 ⁇ 2 M.
  • a porous substrate semiconductor thin film electrode obtained by sintering porous titanium oxide on a transparent conductive glass electrode for 60 minutes at 500 ° C.
  • a porous substrate was immersed at 25 ° C. for 3 days to carry a dye, washed with a solvent, It was dried to obtain a dye sensitized semiconductor thin film treated with cholic acid.
  • a gap of 20 ⁇ m was provided facing the semiconductor thin film side of the porous substrate, the sputtering surface of the conductive glass sputtered with platinum was fixed, and a solution containing an electrolyte was injected into the gap.
  • the electrolyte was 3-methoxypropionitrile, iodine / lithium iodide / 1,2-dimethyl-3-n-propylimidazolium iodide / t-butylpyridine, 0.1 M / 0.1 M / 0.6 M, respectively. /1.0 M dissolved was used.
  • the size of the battery to be measured was an effective part of 0.25 cm 2 .
  • the photoelectric conversion characteristics were measured as 100 mW / cm 2 through an AM (atmosphere passing air amount) 1.5 filter using a 500 W xenon lamp as a light source. Short-circuit current, release voltage, and conversion efficiency were measured using a source measure unit. Table 15 shows the measurement results.
  • Comparative Example 1 As a comparative dye, the compound (249) described in Japanese Patent Application No. 2013-189036 represented by the following formula (A) was used.
  • the comparative dye was dissolved in acetone to 1.6 ⁇ 10 ⁇ 4 M and cholic acid represented by the above formula (a) to 1 ⁇ 10 ⁇ 2 M.
  • a photoelectric conversion element was produced in the same manner as in Example 2, and a light durability test was performed. Table 15 shows the measurement results.
  • Synthesis example 7 7.3 parts of the compound represented by the formula (701) obtained in Synthesis Example 2, 10 parts of 3-hexyl-2-thiopheneboronic acid pinacol ester, 0.59 parts of tetrakis (triphenylphosphine) palladium (0), And 45 parts of 20% aqueous sodium carbonate solution was added to 74 parts of 1,2-dimethoxyethane and refluxed for 7.5 hours.
  • the reaction mixture was extracted with toluene / water, the toluene phase was concentrated, separated and purified by column chromatography (chloroform), and 2.4 parts of the following compound (707) was obtained as a yellow tar-like substance.
  • Synthesis example 8 To a solution obtained by dissolving 2.4 parts of the compound represented by the formula (707) obtained in Synthesis Example 7 in a mixed solution of 34 parts of acetic acid and 47 parts of chloroform, 1.4 parts of N-iodosuccinimide was added. Refluxed for 4 hours under light shielding. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 2.6 parts of the compound represented by the following formula (708) was obtained as a yellow tar-like substance. It was.
  • Synthesis Example 9 2.6 parts of the compound represented by the formula (708) obtained in Synthesis Example 8, 4.1 parts of the compound represented by the formula (704) obtained in Synthesis Example 5, tetrakis (triphenylphosphine) palladium ( 0) 0.15 part and 15 parts of a 20% aqueous sodium carbonate solution were added to 113 parts of 1,2-dimethoxyethane and reacted under reflux for 7 hours. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 2.1 parts of the compound represented by the following formula (709) was obtained as a red solid.
  • Example 3 In a solution obtained by dissolving 2.1 parts of the compound represented by the formula (709) obtained in Synthesis Example 9 and 0.94 part of cyanoacetic acid in a mixed solution of 147 parts of ethanol and 81 parts of toluene, 0.01 part of anhydrous piperazine And reacted under reflux for 2 hours. 0.94 part of cyanoacetic acid was added, and the reaction was further continued for 5 hours under reflux. The reaction mixture was extracted with chloroform-water, and the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-acetic acid).
  • the obtained black-red solid was recrystallized from chloroform-hexane to obtain 0.93 part of a compound represented by the following formula (710) (Compound 66 of Table 1) as a black-red solid.
  • the maximum absorption wavelength of the compound represented by the formula (710) and the measured values of the nuclear magnetic resonance apparatus were as follows.
  • Synthesis Example 11 To a solution obtained by dissolving 9.9 parts of the compound represented by the formula (711) obtained in Synthesis Example 10 in 210 parts of acetic acid, 17 parts of N-iodosuccinimide was added and stirred at 100 ° C. for 5 hours under light shielding. . The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 12 parts of a compound represented by the following formula (712) was obtained as a brown oily substance. .
  • Synthesis Example 12 11 parts of the compound represented by the formula (712) obtained in Synthesis Example 11, [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) 0.73 part, potassium acetate 9.8 parts, 17 parts of bis (pinacolato) diboron was added to 220 parts of dimethyl sulfoxide and stirred at 80 ° C. for 5 hours in a nitrogen atmosphere. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 3.5 parts of the compound represented by the following formula (713) was converted into a yellow oily substance. Obtained.
  • Synthesis Example 13 3.7 parts of the compound represented by the formula (713) obtained in Synthesis Example 12, 1.1 parts of 2,3-dibromothiophene, 0.092 parts of bis (tri-tert-butylphosphine) palladium (0), 2.7 parts of cesium fluoride and 5.9 parts of water were added to 27 parts of 1,4-dioxane and reacted at 80 ° C. for 3 hours.
  • the reaction mixture is extracted with chloroform-water, the chloroform phase is concentrated, separated and purified by column chromatography (chloroform-hexane), and 12 parts of a compound represented by the following formula (714) are obtained as a pale orange tar-like substance. It was.
  • Synthesis Example 14 1.2 parts of the compound represented by the formula (714) obtained in Synthesis Example 13, 0.8 parts of 5-formyl-2-thiopheneboronic acid, bis (tri-tert-butylphosphine) palladium (0) 0. 035 parts, 1 part of cesium fluoride and 4.9 parts of water were added to 20 parts of 1,4-dioxane and refluxed for 4.5 hours. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.96 parts of the compound represented by the following formula (715) was used as a yellow tar-like substance. Obtained.
  • Synthesis Example 15 To a solution obtained by dissolving 0.96 part of the compound represented by the formula (715) obtained in Synthesis Example 14 in a mixed solution of 16 parts of acetic acid and 22 parts of chloroform, 0.68 part of N-iodosuccinimide was added, The mixture was stirred at 100 ° C. for 4 hours under light shielding. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.84 parts of the compound represented by the following formula (716) was used as a pale yellow tar-like substance. Obtained.
  • Synthesis Example 16 0.84 part of the compound represented by formula (716) obtained in Synthesis Example 15, 0.41 part of 2-thiopheneboronic acid, 0.055 part of tetrakis (triphenylphosphine) palladium (0), and 20% carbonic acid 4.5 parts of an aqueous sodium solution was added to 6.9 parts of 1,2-dimethoxyethane and refluxed for 1 hour. 0.41 part of 2-thiopheneboronic acid and 0.055 part of tetrakis (triphenylphosphine) palladium (0) were added, and the mixture was further refluxed for 4.5 hours.
  • reaction mixture was extracted with toluene / water, the toluene phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.67 parts of the following compound (717) was obtained as a yellow tar-like substance.
  • Synthesis Example 17 To a solution obtained by dissolving 0.67 part of the compound represented by the formula (717) obtained in Synthesis Example 16 in a mixed solution of 10 parts of acetic acid and 15 parts of chloroform, 0.38 part of N-iodosuccinimide was added, Refluxed for 4 hours in the dark. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.73 parts of the compound represented by the following formula (718) was used as a yellow tar-like substance. Obtained.
  • Synthesis Example 18 0.73 parts of the compound represented by the formula (718) obtained in Synthesis Example 17, 1.1 parts of the compound represented by the formula (704) obtained in Synthesis Example 5, tetrakis (triphenylphosphine) palladium ( 0) 0.035 parts and 4.1 parts of a 20% aqueous sodium carbonate solution were added to 30 parts of 1,2-dimethoxyethane and reacted for 6 hours under reflux. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.93 parts of a compound represented by the following formula (719) was obtained as an orange solid. .
  • Example 4 In a solution obtained by dissolving 0.93 part of the compound represented by the formula (719) obtained in Synthesis Example 18 and 0.43 part of cyanoacetic acid in a mixed solution of 79 parts of ethanol and 43 parts of toluene, 0.005 part of anhydrous piperazine And reacted under reflux for 2 hours. 0.43 part of cyanoacetic acid was added, and the mixture was further reacted for 5 hours under reflux. The reaction mixture was extracted with chloroform-water, and the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-acetic acid).
  • the black-red solid obtained after concentration was recrystallized from chloroform-hexane to obtain 0.39 part of a compound represented by the following formula (720) (compound 339 in Table 6) as a reddish brown solid.
  • the maximum absorption wavelength of the compound represented by the formula (720) and the measured values of the nuclear magnetic resonance apparatus were as follows.
  • Examples 5 and 6 Dissolve the methine dyes of Compound No. 66 and Compound No. 339 shown in Table 1 in chloroform to 1.6 ⁇ 10 ⁇ 4 M and the following cholic acid (formula (b)) to 5 ⁇ 10 ⁇ 3 M, respectively. did.
  • a porous substrate semiconductor thin film electrode obtained by sintering porous titanium oxide on a transparent conductive glass electrode for 60 minutes at 500 ° C.
  • a porous substrate was immersed at 25 ° C. for 3 days to carry a dye, washed with a solvent, It was dried to obtain a dye sensitized semiconductor thin film treated with cholic acid.
  • a gap of 20 ⁇ m was provided facing the semiconductor thin film side of the porous substrate, the sputtering surface of the conductive glass sputtered with platinum was fixed, and a solution containing an electrolyte was injected into the gap.
  • the electrolyte was 3-methoxypropionitrile, iodine / lithium iodide / 1,2-dimethyl-3-n-propylimidazolium iodide / t-butylpyridine, 0.1 M / 0.1 M / 0.6 M, respectively. /1.0 M dissolved was used.
  • the size of the battery to be measured was an effective part of 0.25 cm 2 .
  • the photoelectric conversion characteristics were measured as 100 mW / cm 2 through an AM (atmosphere passing air amount) 1.5 filter using a 500 W xenon lamp as a light source. Short-circuit current, release voltage, and conversion efficiency were measured using a source measure unit. The measurement results are shown in Table 16.
  • Examples 7-9 A methine dye of Compound No. 1 shown in Table 1 was dissolved in ethanol so that 1.6 ⁇ 10 ⁇ 4 M and cholic acid represented by the following formula (d) would be 1 ⁇ 10 ⁇ 2 M. Similarly, a methine dye of Compound No. 66 shown in Table 1 is dissolved in acetone to 1.6 ⁇ 10 ⁇ 4 M and cholic acid represented by the following formula (b) to 1 ⁇ 10 ⁇ 2 M. The methine dye of Compound No. 339 shown in Table 1 was dissolved in acetone to 1.6 ⁇ 10 ⁇ 4 M and cholic acid represented by the following formula (b) to 1 ⁇ 10 ⁇ 2 M.
  • a porous substrate (semiconductor thin film electrode obtained by sintering porous titanium oxide on a transparent conductive glass electrode for 30 minutes at 450 ° C. for 30 minutes) is immersed in these solutions at 40 ° C. for 3 days to support the dye, and washed with a solvent. And dried to obtain a cholic acid-treated dye-sensitized semiconductor thin film.
  • a gap of 20 ⁇ m was provided facing the semiconductor thin film side of the porous substrate, the sputtering surface of the conductive glass sputtered with platinum was fixed, and a solution containing an electrolyte was injected into the gap.
  • the electrolyte was 3-methoxypropionitrile, iodine / lithium iodide / 1-methyl-3-n-propylimidazolium iodide / butyrylthiocholine iodide, 0.1M / 0.2M / 1.2M / What was melt
  • the size of the battery to be measured was 12 cm 2 at the effective part.
  • the light durability test was carried out at 1 SUN and 40 ° C. for 500 hours using a light resistance tester (ESC0405-F70, manufactured by Iwasaki Electric Co., Ltd.) with UV cut filters (UV400, manufactured by Bisou Co., Ltd.) attached to both surfaces of the battery.
  • a light resistance tester ESC0405-F70, manufactured by Iwasaki Electric Co., Ltd.
  • UV cut filters UV400, manufactured by Bisou Co., Ltd.
  • the photoelectric conversion characteristics were measured as 100 mW / cm 2 through an AM (atmosphere passing air amount) 1.5 filter using a 500 W xenon lamp as a light source. Conversion efficiency was measured using a source measure unit. Table 17 shows the measurement results.
  • Comparative Example 2 As a comparative dye, the compound (160) described in International Patent Publication WO2007 / 100033 represented by the following formula (C) was used.
  • This comparative example dye was dissolved in acetone so that 3.2 ⁇ 10 ⁇ 4 M and cholic acid represented by the above formula (d) would be 1 ⁇ 10 ⁇ 2 M.
  • Photoelectric conversion elements were produced in the same manner as in Examples 7 to 9, and a light durability test was performed. Table 17 shows the measurement results.
  • a solar cell having high conversion efficiency and durability can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Hybrid Cells (AREA)

Abstract

 下記式(1)で表されるメチン系色素。 (式(1)中、mは1乃至5の整数を、l及びnは0乃至6の整数を、jは0乃至3の整数を、kは1乃至3の整数をそれぞれ表す。X1及びY1はそれぞれ独立にカルボキシル基又はシアノ基等を表す。Z1、Z2及びZ3はそれぞれ独立に酸素原子又は硫黄原子等を表す。A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基又はシアノ基等を表す。A4は水素原子、脂肪族炭化水素残基又はシアノ基等を表す。A7、A8、A9及びA10はそれぞれ独立に水素原子、脂肪族炭化水素残基又はシアノ基等を表す。R1及びR2はそれぞれ独立に特定の芳香族残基又は複素環残基等を表す。

Description

メチン系色素及びそれを用いた色素増感光電変換素子
 本発明は特定の構造を有する新規のメチン系色素、該色素で増感された半導体微粒子の薄膜を有する光電変換素子及び該素子を有する太陽電池に関し、詳しくは酸化物半導体微粒子の薄膜に特定の構造を有するメチン系化合物(色素)を担持させた光電変換素子及び該素子を有する太陽電池に関する。
 石油、石炭等の化石燃料に代わるエネルギー資源として太陽光を利用する太陽電池が注目されている。現在、結晶又はアモルファスのシリコンを用いたシリコン太陽電池、及びガリウム、ヒ素等を用いた化合物半導体太陽電池等について、盛んに開発検討がなされている。しかし、それらは製造に要するエネルギー及びコストが高いため、汎用的に使用するのが困難であるという問題点がある。色素で増感した半導体微粒子の薄膜を有する光電変換素子、及びこれを用いた太陽電池も開発されており、これを作成する材料、製造技術が開示されている(特許文献1、非特許文献1、非特許文献2を参照)。このような光電変換素子は酸化チタン等の比較的安価な酸化物半導体を用いて製造され、従来のシリコン等を用いた太陽電池に比べコストの低い光電変換素子が得られる可能性があり、またカラフルな太陽電池が得られることなどより注目を集めている。しかしながら、変換効率の高い素子を得るために増感色素として用いられているルテニウム系の錯体自体が高価であり、またその安定供給にも問題がある。これに対して、増感色素として材料コストが低く安定供給が可能な有機色素を用いる試みも既に行われている。しかし、有機色素で増感した光電変換素子は、変換効率、耐久性が低い等の問題があり、実用化には至っていないというのが現状である(特許文献2を参照)。
特許第2664194号公報 WO2002/011213号公報
B.O'Regan and M.Graetzel Nature, 第353巻, 737頁 (1991年) M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, M.Graetzel, J.Am.Chem.Soc., 第115巻, 6382頁 (1993年)
 従って、有機色素で増感された酸化物半導体微粒子の薄膜を有する光電変換素子において、安価で耐久性及び変換効率が高い光電変換素子の開発が求められている。
 本発明者等は上記の課題を解決すべく鋭意努力した結果、特定の構造を有するメチン系色素で半導体微粒子の薄膜を増感することにより、耐久性及び変換効率の高い光電変換素子が得られることを見出し、本発明を完成させるに至った。
 すなわち本発明は、
(1)下記式(1)で表されるメチン系色素
Figure JPOXMLDOC01-appb-C000006
(式(1)中、mは1乃至5の整数を、l及びnはそれぞれ独立に0乃至6の整数を表わし、jは0乃至3の整数を表わし、kは1乃至3の整数をそれぞれ表す。
 X1及びY1はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基若しくはその塩、リン酸基若しくはその塩、スルホン酸基若しくはその塩、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はフェニルスルホニル基を表す。また、X1とY1は結合して、環を形成してもよい。
 Z1、Z2及びZ3はそれぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表す。R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。m、j及びkの少なくとも一つが2以上で、Z1、Z2及びZ3のいずれかが複数存在する場合、それぞれのZ1、Z2及びZ3は互いに同じか又は異なっていてもよい。
 A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。また、l及びnの少なくとも一つが2以上でA2、A3、A5及びA6のいずれかが複数存在する場合には、それぞれのA2、A3、A5及びA6は互いに同じか又は異なってもよい。又、lが0以外の場合、A1、A2及びA3のいずれか複数個で環を形成してもよい。
 A4は水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アミド基、アルコキシカルボニル基又はアシル基を表す。mが2以上でA4が複数存在する場合、それぞれのA4は互いに同じか又は異なってもよい。
 A7、A8、A9及びA10はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。j及びkの少なくとも一つが2以上でA7、A8、A9及びA10のいずれかが複数存在する場合、それぞれのA7、A8、A9及びA10は互いに同じか又は異なってもよい。
 R1は下記式(3002)
Figure JPOXMLDOC01-appb-C000007
(式(3002)中、pは0乃至3の整数を、qは0乃至6の整数をそれぞれ表す。
 X1及びY1は、式(1)におけるX1及びY1と同じ意味を表す。
 Z4は酸素原子、硫黄原子、セレン原子又はNR12を表す。R12は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。pが2以上で、Z4が複数存在する場合、それぞれのZ4は互いに同じか又は異なっていてもよい。
 A11及びA12はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。pが2以上でA11及びA12が複数存在する場合、それぞれのA11及びA12は互いに同じか又は異なってもよい。
 A13、A14及びA15はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。qが2以上でA13及びA14が複数存在する場合には、それぞれのA13及びA14は互いに同じか又は異なってもよい。また、qが0以外の場合、A13、A14、及びA15のいずれか複数個で環を形成してもよい。)
で示される基を表す。mが2以上でR1が複数存在する場合、それぞれのR1は互いに同じか又は異なってもよい。
 R2は下記式(3001)又は(3003)
Figure JPOXMLDOC01-appb-C000008
(式(3001)又は(3003)中、R12、R13、R14及びR15は、それぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
 R16、R17、R18及びR19は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。)
で示される基、水素原子又は脂肪族炭化水素残基を表す。また、nが0以外の場合、A5、A6及びR2のいずれか複数個で環を形成してもよい。
(2)式(3001)中、R12及びR13はそれぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表し、
 式(3003)中、R14及びR15の少なくとも1つ、好ましくはそれぞれ独立に両方が式(3001)を表し、R16、R17、R18及びR19は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す前項(1)に記載のメチン系色素、
(3)式(1)におけるl及びn、並びに式(3002)におけるqが0である前項(1)又は(2)に記載のメチン系色素、
(4)式(1)におけるkが1乃至2の整数である前項(1)~(3)の何れかに記載のメチン系色素、
(5)式(1)におけるmが1乃至3の整数である前項(1))~(4)の何れかに記載のメチン系色素、
(6)式(1)におけるj及び式(3002)におけるpがぞれぞれ独立に1乃至3の整数である前項(1)~(5)の何れかに記載のメチン系色素、
(7)式(1)におけるZ1~Z3、並びに式(3002)におけるZ4が硫黄原子である前項(1)~(6)の何れかに記載のメチン系色素、
(8)式(1)におけるX1及びY1の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基であり、且つ/或いは式(3002)におけるX1及びY1の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基である前項(1)~(7)の何れかに記載のメチン系色素、
(9)式(1)におけるX1及びY1の一方がカルボキシル基で他方がシアノ基であり、且つ/或いは式(3002)におけるX1及びY1の一方がカルボキシル基で他方がシアノ基である前項(8)に記載のメチン系色素、
(10)式(1)におけるA1~A15が水素原子である前項(1)~(9)の何れかに記載のメチン系色素、
(11)式(1)におけるA7、A8、A9及びA10のいずれかが、脂肪族炭化水素残基である前項(1)~(9)の何れかに記載のメチン系色素、
(12)式(1)におけるR2が式(3003)で示される基であって、該式(3003)におけるR14及びR15がそれぞれ独立に式(3001)で示される基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基であり、該式(3001)におけるR12及びR13がそれぞれ独立に水素原子又は炭素数1~8のアルキル基である前項(1)~(11)の何れかに記載のメチン系色素、
(13)式(1)におけるR2が下記式(3109)~(3114)
Figure JPOXMLDOC01-appb-C000009
で示される基のいずれかである前項(12)に記載のメチン系色素、
(14)式(1)におけるR2が、式(3111)で示される基である前項(13)に記載のメチン系色素、
(15)式(1)で表されるメチン系色素が、下記式(706)、(710)及び(720)
Figure JPOXMLDOC01-appb-C000010
で示される化合物である前項(1)に記載のメチン系色素、
(16)基板上の酸化物半導体微粒子の薄膜に、前項(1)~(13)の何れかに記載の式(1)で表されるメチン系色素を担持させた光電変換素子、並びに
(17)前項(16)に記載の光電変換素子を備える太陽電池、
に関する。
 本発明のメチン系色素によれば、耐久性が高く、光耐久試験後においても高い変換効率を維持し得る太陽電池を提供することができる。
 以下に本発明を詳細に説明する。
 本発明のメチン系色素は、下記式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000011

 式(1)で表されるメチン系色素の特徴の一つは、特定の部位にあるRが式(3002)で表される特定構造であることである。
Figure JPOXMLDOC01-appb-C000012
 当該メチン系色素を坦持させた酸化物半導体微粒子の薄膜を備えた光電変換素子は、Rが式(3002)で表される特定構造ではないメチン系色素やその他の色素を用いた光電変換素子に比べて、耐久性に優れ、高い変換効率を長期間維持する。以下、式(1)で表されるメチン系色素について説明する。
 式(1)におけるmは1乃至5の整数を表し、1乃至3であることが好ましく、1乃至2であることがより好ましく、1であることが更に好ましい。
 式(1)におけるlは、0乃至6の整数を表し、0であることが好ましい。
 式(1)におけるnは、0乃至6の整数を表し、0であることが好ましい。
 式(1)におけるjは、0乃至3の整数を表し、1乃至3であることが好ましく、1乃至2であることがより好ましく、1であることが更に好ましい。
 式(1)におけるkは1乃至3の整数を表し、l、n及び後述するqが0の場合、1乃至2であることが好ましく、1であることがより好ましい。
 式(1)におけるX1及びY1は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基(-COOH)若しくはその塩、リン酸基(-POH)若しくはその塩、スルホン酸基(-SOH)若しくはその塩、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はフェニルスルホニル基(-SOPh)を表す。
 式(1)のX1及びY1が表す芳香族残基とは、芳香環又は芳香環を含む縮合環から水素原子1個を除いた基を意味し、該芳香族残基は置換基を有していてもよい。芳香環の具体例としては、ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、ペリレン及びテリレン等の芳香族炭化水素環;インデン、アズレン、ピリジン、ピラジン、ピリミジン、ピラゾール、ピラゾリジン、チアゾリジン、オキサゾリジン、ピラン、クロメン、ピロール、ピロリジン、ベンゾイミダゾール、イミダゾリン、イミダゾリジン、イミダゾール、トリアゾール、トリアジン、ジアゾール、インドリン、チオフェン、チエノチオフェン、フラン、オキサゾール、オキサジアゾール、チアジン、チアゾール、インドール、ベンゾチアゾール、ベンゾチアジアゾール、ナフトチアゾール、ベンゾオキサゾール、ナフトオキサゾール、インドレニン、ベンゾインドレニン、キノリン及びキナゾリン等の複素芳香環;並びにフルオレン及びカルバゾール等の縮合型芳香環等が挙げられる。式(1)のX1及びY1が表す芳香族残基としては、炭素数4~20の芳香環又は芳香環を含む縮合環から水素原子1個を除いた基であることが好ましい。
 X1及びY1が表す芳香族残基が有していてもよい置換基に特に制限はないが、例えば、スルホン酸基若しくはその塩、スルファモイル基、シアノ基、イソシアノ基、チオシアナト基、イソチオシアナト基、ニトロ基、ニトロシル基、ハロゲン原子、ヒドロキシル基若しくはその塩、リン酸基若しくはその塩、リン酸エステル基、アミノ基、メルカプト基、アミド基、アルコキシ基、アリールオキシ基、カルボキシル基、カルバモイル基、アシル基、アルデヒド基、アルコキシカルボニル基及びアリールカルボニル基等の置換カルボニル基、芳香族残基、並びに脂肪族炭化水素残基等が挙げられる。
 芳香族残基が有していてもよい置換基としてのハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等の原子が挙げられ、臭素原子及び塩素原子が好ましい。
 芳香族残基が有していてもよい置換基としてのリン酸エステル基としては、リン酸と炭素数1~5のアルキルとのエステル基等が挙げられ、好ましい例は、リン酸メチル基、リン酸エチル基、リン酸n-プロピル基、及びリン酸n-ブチル基である。
 芳香族残基が有していてもよい置換基としてのアミノ基としては、非置換アミノ基;モノ若しくはジメチルアミノ基、モノ若しくはジエチルアミノ基、モノ若しくはジn-プロピルアミノ基等のアルキル置換アミノ基;モノ若しくはジフェニルアミノ基、モノ若しくはジナフチルアミノ基等の芳香族置換アミノ基;モノアルキルモノフェニルアミノ基等のアルキル基と芳香族残基の一つずつで置換したアミノ基;ベンジルアミノ基等の炭素数1乃至5のアルキル置換芳香族残基で置換したアミノ基;アセチルアミノ基;又はフェニルアセチルアミノ基が挙げられる。
 芳香族残基が有していてもよい置換基としてのメルカプト基としては、非置換メルカプト基、アルキルメルカプト基、アリールメルカプト基等が挙げられる。アルキルメルカプト基としては、メチルメルカプト基、エチルメルカプト基、n-プロピルメルカプト基、イソプロピルメルカプト基、n-ブチルメルカプト基、イソブチルメルカプト基、sec-ブチルメルカプト基及びt-ブチルメルカプト基などの炭素数1~4のアルキルメルカプト基が挙げられ、アリールメルカプト基としてはフェニルメルカプト基等が挙げられる。
 芳香族残基が有していてもよい置換基としてのアミド基としては、非置換アミド基、アセトアミド基、アルキルアミド基、アルキルアセトアミド基、アリールアセトアミド基が挙げられ、好ましい例としては、非置換アミド基、アセトアミド基、N-メチルアミド基、N-エチルアミド基、N-(n-プロピル)アミド基、N-(n-ブチル)アミド基、N-イソブチルアミド基、N-(sec-ブチルアミド)基、N-(t-ブチル)アミド基、N,N-ジメチルアミド基、N,N-ジエチルアミド基、N,N-ジn-プロピルアミド基、N,N-ジn-ブチルアミド基、N,N-ジイソブチルアミド基、N-メチルアセトアミド基、N-エチルアセトアミド基、N-(n-プロピル)アセトアミド基、N-(n-ブチル)アセトアミド基、N-イソブチルアセトアミド基、N-(sec-ブチル)アセトアミド基、N-(t-ブチル)アセトアミド基、N,N-ジメチルアセトアミド基、N,N-ジエチルアセトアミド基、N,N-ジn-プロピルアセトアミド基、N,N-ジn-ブチルアセトアミド基、N,N-ジイソブチルアセトアミド基が挙げられる。また、アリールアミド基、具体的にはフェニルアミド基、ナフチルアミド基、フェニルアセトアミド基、ナフチルアセトアミド基等も挙げられる。
 芳香族残基が有していてもよい置換基としてのアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基等の炭素数1~5のアルコキシ基が挙げられる。
 芳香族残基が有していてもよい置換基としてのアリールオキシ基としては、フェノキシ基、ナフトキシ基等が挙げられる。
 芳香族残基が有していてもよい置換基としてのアシル基としては、例えば炭素数1~10のアルキルカルボニル基、アリールカルボニル基等が挙げられ、これらはF、Cl等のハロゲンで置換されてもよい。具体的にはアセチル基、プロピオニル基、トリフルオロメチルカルボニル基、ペンタフルオロエチルカルボニル基、ベンゾイル基、ナフトイル基等が挙げられ、非置換又はハロゲンで置換された炭素数1~4のアルキルカルボニル基が好ましい。
 芳香族残基が有していてもよい置換基としてのアルコキシカルボニル基としては、例えば炭素数1~10のアルコキシカルボニル基等が挙げられる。その具体例としてはメトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、t-ブトキシカルボニル基、n-ペントキシカルボニル基、n-ヘキシルオキシカルボニル基、n-ヘプチルオキシカルボニル基、n-ノニルオキシカルボニル基、及びn-デシルオキシカルボニル基が挙げられる。
 芳香族残基が有していてもよい置換基としてのアリールカルボニル基としては、例えばベンゾフェノン、ナフトフェノン等の炭素数5~20のアリール基とカルボニルが連結した基を表す。
 芳香族残基が有していてもよい置換基としての芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 芳香族残基が有していてもよい置換基としての脂肪族炭化水素残基としては、飽和又は不飽和の、直鎖、分岐鎖又は環状のアルキル基が挙げられ、該脂肪族炭化水素残基は置換基を有していてもよい。脂肪族炭化水素残基としては、飽和のアルキル基であることが好ましく、飽和の直鎖アルキル基であることがより好ましい。また、脂肪族炭化水素残基の有する炭素数は1~36であることが好ましく、1~18であることがより好ましく、1~8であることが更に好ましい。これら脂肪族炭化水素残基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、シクロヘキシル基、ビニル基、プロペニル基、ペンチニル基、ブテニル基、ヘキセニル基、ヘキサジエニル基、イソプロペニル基、イソへキセニル基、シクロへキセニル基、シクロペンタジエニル基、エチニル基、プロピニル基、ペンチニル基、へキシニル基、イソへキシニル基、シクロへキシニル基等が挙げられる。好ましい環状のアルキル基としては、例えば炭素数3~8のシクロアルキル基などが挙げられる。特に好ましくは上記炭素数が1~8の直鎖のアルキル基である。
 芳香族残基が有していてもよい置換基としての芳香族残基、脂肪族炭化水素残基、アミド基、アシル基、アルコキシ基、アリールオキシ基、アリールカルボニル基及びアルコキシカルボニル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表す芳香族残基としては、カルボキシル基、水酸基、リン酸基、スルホン酸基、およびこれらの酸性基の塩からなる群から選択される基を少なくとも一つ以上置換基として有する芳香族残基であることが好ましく、下記式(1001)~(1033)で示される基のいずれかであることがより好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(1)のX1及びY1が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。該脂肪族炭化水素残基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表すアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたアシル基と同じものが挙げられる。該アシル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表すアミド基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。該アミド基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表すアルコキシカルボニル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたアルコキシカルボニル基と同じものが挙げられる。該アルコキシカルボニル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表すフェニルスルホニル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 また、式(1)におけるX1とY1は結合して、環を形成してもよく、環構造としては、少なくとも1以上の窒素原子を環構成成分に有する5員又は6員の複素環構造が好ましい。これらの環は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられ、カルボキシル基を置換基として有している環構造が好ましい。X1とY1が結合して形成する環構造の具体例としては、下記式(2001)~(2044)で示される環構造が挙げられ、中でも(2001)~(2007)、(2009)~(2010)、(2012)~(2015)、(2017)~(2023)及び(2025)~(2044)のいずれかの環構造が好ましく、(2007)又は(2012)の環構造がより好ましく、(2007)の環構造が特に好ましい。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
 上記式(2001)~(2044)中の*印は、式(1)においてX1とY1が結合している炭素原子を示す。
 式(1)におけるX1及びY1は、下記(i)~(iii)のいずれかであることが好ましい。
(i)X1及びY1が、それぞれ独立にカルボキシル基若しくはその塩、リン酸基若しくはその塩、シアノ基又はアシル基であることが好ましく、それぞれ独立にカルボキシル基若しくはその塩、シアノ基又はアシル基であることがより好ましく、一方がカルボキシル基若しくはその塩で他方がカルボキシル基若しくはその塩、シアノ基又はアシル基であることが更に好ましく、一方がカルボキシル基若しくはその塩で他方がシアノ基であることが特に好ましい。
(ii)X1及びY1の少なくとも一つ以上が、カルボキシル基、水酸基、リン酸基、スルホン酸基、及びこれらの酸性基の塩からなる群から選択される基を少なくとも一つ以上置換基として有する芳香族残基であることが好ましく、該芳香族残基が上記式(1001)~(1033)であることがより好ましい。
(iii)X1とY1が結合して環構造を形成することが好ましく、該環構造が上記式(2001)~(2044)であることがより好ましく、該環構造がカルボキシル基若しくはその塩を置換基として有しているものが更に好ましく、該環構造が式(2007)又は(2012)であることが特に好ましく、式(2007)であることが極めて好ましい。
 上記(i)~(iii)の中でも、(i)であることが最も好ましい。
 式(1)におけるZ1、Z2及びZ3は、それぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表し、R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
 R11が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 R11が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。
 R11が表す芳香族残基及び脂肪族炭化水素残基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるm、j及びkの少なくとも一つが2以上で、Z1、Z2及びZ3のいずれかが複数存在する場合、それぞれのZ1、Z2及びZ3は互いに同じか又は異なっていてもよい。
 式(1)におけるZ1、Z2及びZ3としては、それぞれ独立に酸素原子、硫黄原子又はセレン原子であることが好ましく、硫黄原子であることがより好ましい。
 A1、A2、A3、A5及びA6は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。
 A1、A2、A3、A5及びA6が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基と同じものが挙げられる。
 A1、A2、A3、A5及びA6が表す脂肪族炭化水素残基、ハロゲン原子、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基及びアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A1、A2、A3、A5及びA6が表す芳香族残基、脂肪族炭化水素残基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基及びアシル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるl及びnの少なくとも一つ以上が2以上でA2、A3、A5及びA6のいずれかが複数存在する場合には、それぞれのA2、A3、A5及びA6は互いに同じか又は異なってもよい。
 lが0以外の場合、A1、A2及びA3のから選ばれる少なくとも2つが結合して環を形成してもよい。
 A1、A2及びA3の少なくとも2つが形成する環としては、不飽和炭化水素環又は複素環等が挙げられる。
 上記不飽和炭化水素環の例としては、ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、インデン、アズレン、フルオレン、シクロブテン、シクロヘキセン、シクロペンテン、シクロヘキサジエン、シクロペンタジエン等が挙げられ、複素環の例としては、ピラン、ピリジン、ピラジン、ピペリジン、インドリン、オキサゾール、チアゾール、チアジアゾール、オキサジアゾール、インドール、ベンゾチアゾール、ベンゾオキサゾール、キノリン、カルバゾール、ベンゾピラン等が挙げられる。これらの中でも、ベンゼン、シクロブテン、シクロペンテン及びシクロヘキセンが好ましい。
 これら不飽和炭化水素環及び複素環等は置換基を有してもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A1、A2及びA3のから選ばれる少なくとも2つにより形成する複素環が、カルボニル基、チオカルボニル基等の置換基を有する場合には、これらの置換基は環状ケトン又は環状チオケトンなどであってもよく、これらの環は更に置換基を有してもよい。その場合の置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるA1、A2、A3、A5及びA6としては、それぞれ独立に水素原子又は脂肪族炭化水素残基であることが好ましく、水素原子であることがより好ましい。
 式(1)におけるA4は、水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アミド基、アルコキシカルボニル基又はアシル基を表す。
 A4が表す脂肪族炭化水素残基、ハロゲン原子、アルコキシ基、アミド基、アルコキシカルボニル基及びアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A4が表す脂肪族炭化水素残基、アルコキシ基、アミド基、アルコキシカルボニル基及びアシル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 mが2以上でA4が複数存在する場合には、それぞれのA4は互いに同じか又は異なってもよい。
 式(1)におけるA4としては、水素原子又は脂肪族炭化水素残基であることが好ましく、水素原子又は炭素数1~8の直鎖アルキル基であることがより好ましい。
 式(1)におけるA7、A8、A9及びA10は、それぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。
 A7、A8、A9及びA10が表す脂肪族炭化水素残基、ハロゲン原子、アルコキシ基、アルコキシカルボニル基及びアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A7、A8、A9及びA10が表す脂肪族炭化水素残基、アルコキシ基、アルコキシカルボニル基及びアシル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるj及びkの少なくとも一つが2以上でA7、A8、A9及びA10のいずれかが複数存在する場合には、それぞれのA7、A8、A9及びA10は互いに同じか又は異なってもよい。
 式(1)におけるA7、A8、A9及びA10としては、それぞれ独立に水素原子又は脂肪族炭化水素残基であることが好ましく、水素原子又は炭素数1~8の直鎖アルキル基であることがより好ましい。
 前述の通り、式(1)におけるR1は、下記式(3002)
Figure JPOXMLDOC01-appb-C000018
で示される基を表す。
 式(3002)におけるpは0乃至3の整数を表し、1乃至3であることが好ましく、1乃至2であることがより好ましく、1であることが更に好ましい。また、pと前述のjが同じ整数であることが特に好ましい。
 式(3002)におけるqは0乃至6の整数を表し、0であることが好ましい。また、qと前述のlが同じ整数であることが特に好ましい。
 即ち、pと前述のjが同じ整数であり、かつqと前述のlが同じ整数であることが最も好ましい。
 式(3002)におけるX1及びY1は、式(1)におけるX1及びY1と同じ意味を表し、
これらの定義や好ましいものは、式(1)におけるX1及びY1と同様である。
 式(3002)におけるZ4は酸素原子、硫黄原子、セレン原子又はNR12を表し、R12は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。R12が表す芳香族残基及び脂肪族炭化水素残基の定義や好ましいものは、式(1)のR11の項で述べたものと同様であり、Z4の定義や好ましいものは、式(1)のZ1、Z2及びZ3の項で述べたものと同様である。
 式(3002)におけるA11及びA12は、それぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表し、これらの定義や好ましいものは、式(1)のA7、A8、A9及びA10の項で述べたものと同様である。
 式(3002)におけるA13、A14及びA15は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表し、これらの定義や好ましいものは、式(1)のA1、A2、A3、A5及びA6の項で述べたものと同様である。
 mが2以上でR1が複数存在する場合には、それぞれのR1は互いに同じか又は異なってもよい。
 式(1)におけるR2は、下記式(3001)又は(3003)
Figure JPOXMLDOC01-appb-C000019
で示される基、水素原子或いは脂肪族炭化水素基を表し、上記式(3001)又は(3003)で示される基が好ましく、上記式(3003)で示される基がより好ましい。
 式(3001)又は(3003)中、R12、R13、R14及びR15はそれぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。式(3003)中、R16、R17、R18及びR19はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基又はフェニルスルホニル基を表す。
 R12、R13、R14及びR15が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 R12、R13、R14及びR15が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。
 R12、R13、R14及びR15が表す芳香族残基及び脂肪族炭化水素残基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(3001)におけるR12及びR13は、それぞれ独立に水素原子又は脂肪族炭化水素残基であることが好ましく、それぞれ独立に水素原子又は炭素数1~18のアルキル基であることがより好ましく、炭素数1~8のアルキル基であることが更に好ましく、炭素数1~8の直鎖アルキル基であることが特に好ましい。
 式(3003)におけるR14及びR15は、少なくとも何れか一方が、芳香族残基であることが好ましく、両方が、芳香族残基であることがより好ましい。特に、R14及びR15の少なくとも1つがフェニル基又は式(3001)で示される基であることが好ましく、R14及びR15の両方がフェニル基又は式(3001)で示される基であることがより好ましく、両者が同一のフェニル基又は同一の式(3001)で表される基であることが更に好ましく、両者が同一の式(3001)で表される基であることが特に好ましい。尚、R14及びR15が表す式(3001)で表される基中のR12及びR13は前記と同様であり、また好ましいものも前記と同様である。
 R16、R17、R18及びR19が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 R16、R17、R18及びR19が表す脂肪族炭化水素残基、アシル基、アミド基、アルコキシ基及びアルコキシカルボニル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 R16、R17、R18及びR19が表す芳香族残基、脂肪族炭化水素残基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基及びフェニルスルホニル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(3003)におけるR16、R17、R18及びR19としては、それぞれ独立に水素原子又はアルコキシ基であることが好ましく、水素原子又は炭素数1~4のアルコキシ基であることがより好ましく、水素原子であることが更に好ましい。
 式(3001)で示される基としては、R12及びR13が水素原子又は炭素数1~8のアルキル基であることが好ましく、R12及びR13が炭素数1~8のアルキル基であることがより好ましい。
 式(3003)で示される基としては、R14及びR15の少なくとも1つ、好ましくは両方が式(3001)で示される基であって、該式(3001)中のR12及びR13が水素原子又は炭素数1~8のアルキル基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基である基が好ましく、R14及びR15が式(3001)で示される基であって、R16乃至R19が水素原子である基がより好ましい。
 R2が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。
 nが0以外の場合、A5、A6及びR2から選ばれる少なくとも2つが結合して環を形成してもよい。
 A5、A6及びR2が形成する環は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるR2としては、式(3001)で表され、R12及びR13が水素原子又は炭素数1~8のアルキル基である基であるか、或いは式(3003)で表され、R14及びR15が式(3001)で表される基であって、該式(3001)におけるR12及びR13が水素原子又は炭素数1~8のアルキル基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基である基がより好ましい。
 式(3003)で表され、R14及びR15が式(3001)で表される基であって、該式(3001)におけるR12及びR13が水素原子又は炭素数1~5のアルキル基である基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~3のアルコキシ基である基が更に好ましい。
 より具体的には、式(3001)で示される基としては、下記式(3101)~(3103)のいずれかで表される基であることが好ましく、下記式(3102)又は(3103)で表される基であることがより好ましく、下記式(3103)で表される基であることが更に好ましい。
 式(3003)で示される基としては、下記式(3109)~(3114)のいずれかで表される基であることが好ましく、下記式(3110)、(3111)、(3113)又は(3114)で表される基であることがより好ましく、下記式(3111)又は(3114)で表される基であることが更に好ましく、下記式(3111)で表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(1)で表されるメチン系色素がカルボキシル基、リン酸基、ヒドロキシル基及びスルホン酸基等の酸性基を置換基として有する場合は、それぞれ塩を形成してもよい。塩としては、例えばリチウム、ナトリウム、カリウムなどのアルカリ金属、マグネシウム、カルシウムなどのアルカリ土類金属などとの塩、又は例えばテトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、イミダゾリウム、ピペラジニウム、ピペリジニウムなどの4級アンモニウムのような有機塩基との塩を挙げることができる。
 式(1)で表されるメチン系色素は、シス体、トランス体、ラセミ体等の構造異性体をとり得るが、特に限定されず、いずれの異性体も本発明における光増感用色素として良好に使用しうるものである。
 式(1)及び式(3002)におけるm、l、n、j、k、p、q、X1、Y1、Z1~Z4、A1~A15及びR1~R2の好ましい組合せは、上記のm、l、n、j、k、p、q、X1、Y1、Z1~Z4、A1~A15及びR1~R2のそれぞれにおいて好ましいとされるもの同士の組み合わせであり、より好ましい組み合わせは以下の通りである。
 すなわち、好ましい組み合わせとしては、mが1乃至3であり、l、n及びqが0であり、jが1乃至3であり、kが1乃至2であり、pが1乃至3であり、Z1~Z4がそれぞれ独立に酸素原子、硫黄原子、セレン原子、アミノ基、N-メチルアミノ基又はN-フェニルアミノ基であり、R2が上記式(3109)~(3114)のいずれかで表される基であり、式(1)のX1及びY1がそれぞれ独立にカルボキシル基、リン酸基、シアノ基又はアシル基であるか、X1及びY1の一方が上記式(1001)~(1033)で示される基であり、他方が水素原子又はシアノ基であるか、もしくはX1及びY1で環を形成し、その環は上記式(2001)~(2044)で示される基よりなる群から選択される基であり、式(3002)のX1及びY1がそれぞれ独立にカルボキシル基、リン酸基、シアノ基又はアシル基であるか、X1及びY1の一方が上記式(1001)~(1033)で示される基であり、他方が水素原子又はシアノ基であるか、もしくはX1及びY1で環を形成し、その環は上記式(2001)~(2044)で示される基よりなる群から選択される基であり、A1~A15がそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~36のアルキル基のいずれかである。
 特に好ましい組み合わせとしては、mが1乃至3であり、l、n及びqが0であり、j及びpが1乃至3であり、kが1乃至2であり、Z1~Z4がそれぞれ独立に酸素原子、硫黄原子又はセレン原子であり、R2が上記式(3111)又は(3114)のいずれかで表される基であり、式(1)のX1及びY1の一方がカルボキシル基でかつ他方がカルボキシル基、シアノ基又はアシル基であるか、又はX1及びY1が結合して形成する環が上記式(2007)で表される基であり、式(3002)のX1及びY1の一方がカルボキシル基でかつ他方がカルボキシル基、シアノ基又はアシル基であるか、又はX1及びY1が結合して形成する環が上記式(2007)で表される基であり、A1~A15がそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~18のアルキル基のいずれかである。
 最も好ましい組み合わせとしては、mが1乃至2であり、l、n及びqが0であり、j、p及びkが1であり、Z1~Z4が硫黄原子であり、R2が上記式(3111)で表される基であり、式(1)のX1及びY1の一方がカルボキシル基でかつ他方がシアノ基であるか、又はX1及びY1が結合して形成する環が上記式(2007)で表される基であり、式(3002)のX1及びY1の一方がカルボキシル基でかつ他方がシアノ基であるか、又はX1及びY1が結合して形成する環が上記式(2007)で表される基であり、A1~A15が水素原子である。
 上記式(1001)~(1017)、(1019)及び(1020)に示されるように、窒素原子の陽電荷を中和するための対イオンは分子間又は分子内のいずれで形成してもよい。分子間の好ましい対イオンとしてはヨウ素、過塩素酸、ビストリフルオロメチルスルホンイミド、トリストリフルオロメチルスルホニルメタン、6フッ化アンチモン酸、テトラフルオロホウ酸などの各アニオンが挙げられる。また分子内の好ましい対イオンとしては陽電荷を有する窒素原子に結合した酢酸-2-イル、プロピオン酸-3-イル、スルホエタン-2-イルの各アニオンなどが挙げられる。
 前記式(1)で表される化合物は、例えば、以下に示す反応式によって製造できるが、本発明はこれらの合成法に限定されるものではない。
 式(2)で表される化合物と式(3)で表されるボロン酸類との反応により式(4)で表される化合物を得る。次いで式(4)で表される化合物を、N-ヨードこはく酸イミドで処理し、更に式(5)で表されるボロン酸類と反応させて式(6)で表される化合物を得る。
 他方、前記の式(2)で表される化合物と式(3)で表される化合物を用いて式(6)で表される化合物を得たのと同様の手法で、式(7)で表される化合物と式(8)で表される化合物を用いて式(9)で表される化合物を得る。
Figure JPOXMLDOC01-appb-C000021
 前記で得た式(6)で表される化合物と式(10)で表される化合物との反応により得られる式(11)で表される化合物に、更に前記で得た式(9)で表される化合物を反応させて式(12)で表される化合物を得る。尚、ここでは式(10)で表される化合物に、先ず式(6)で表される化合物を反応させ、次いで式(9)で表される化合物を反応させる手法を記載したが、式(10)で表される化合物中のハロゲン原子の組合せの異なる化合物を用いることにより、先に式(9)で表される化合物を反応させ、次いで式(6)で表される化合物を反応させることも出来る。また、式(6)で表される化合物と式(9)で表される化合物が同一の場合には、式(10)で表される化合物中のハロゲン原子が同一の化合物を用いて、式(6)で表される化合物と式(9)で表される化合物を同時に反応させることも出来る。
 次いで、式(12)で表される化合物を、N-ヨードコハク酸イミドで処理することにより、式(13)で表される化合物を得る。
Figure JPOXMLDOC01-appb-C000022
 式(14)で表される化合物と前記で得た式(13)で表される化合物との反応により
式(15)で表される化合物を得る。次いで式(15)で表される化合物を、N-ヨードこはく酸イミドで処理して式(16)で表される化合物を得る。
 前記で得た式(16)で表される化合物と式(17)で表される化合物との反応により式(18)で表される化合物を得る。最後に式(18)で表される化合物に、式(19)で表される活性メチレンを有する化合物を、必要であれば苛性ソーダ、ナトリウムメチラート、酢酸ナトリウム、ジエチルアミン、トリエチルアミン、ピペリジン、ピペラジン、ジアザビシクロウンデセンなどの塩基性触媒の存在下、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類やジメチルホルムアミド、N-メチルピロリドンなどの非プロトン性極性溶媒やトルエン、無水酢酸、アセトニトリルなどの溶媒中、20℃乃至180℃好ましくは50℃乃至150℃で縮合することにより本発明の式(1)で表される化合物(色素)が得られる。
 尚、上記反応において、式(19)で表される活性メチレンを有する化合物がエステル基を有する場合、縮合反応後、加水分解等を行うことによりカルボン酸体を得ることも可能である。
Figure JPOXMLDOC01-appb-C000023
 式(1-1)で表されるメチン系色素(式(1)におけるl及びnが0、mが1であり、式(3002)におけるqが0であるメチン系色素)の具体例を、表1~表7に示す。各表において、Phはフェニル基を意味する。(2001)~(2044)と表記したものは、X1とY1が結合して形成する環を表したものであり、上記式(2001)~(2044)に対応する。また、(3101)~(3114)と表記したものは、上記式(3101)~(3114)に対応する。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
 下記式(1-2)で表されるメチン系色素(式(1)におけるj、m及びkが1であり、式(3002)におけるpが1であり、A2、A3、A5、6、13及びA14が水素原子であるメチン系色素)の具体例を、表8~表12に示す。各表において、Phはフェニル基を意味する。(2001)~(2044)と表記した置換基は、X1とY1が結合して形成する環を表し、上記式(2001)~(2044)に対応する。また、(3101)~(3114)と表記したものは、上記式(3101)~(3114)に対応する。
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
 本発明の光電変換素子は、例えば、酸化物半導体微粒子を用いて基板上に酸化物半導体微粒子の薄膜を設け、次いでこの薄膜に式(1)で表される化合物を担持させたものである。
 酸化物半導体微粒子の薄膜を設ける基板としては、その表面が導電性であるものが好ましいが、そのような基板は市場にて容易に入手可能である。例えば、ガラス又はポリエチレンテレフタレート若しくはポリエーテルスルフォン等の透明性のある高分子材料等の表面にインジウム、フッ素、アンチモンをドープした酸化スズなどの導電性金属酸化物や銅、銀、金等の金属の薄膜を設けたものを基板として用いることが出来る。その導電性としては通常1000Ω以下であればよく、特に100Ω以下のものが好ましい。
 また、酸化物半導体の微粒子としては金属酸化物が好ましく、その具体例としてはチタン、スズ、亜鉛、タングステン、ジルコニウム、ガリウム、インジウム、イットリウム、ニオブ、タンタル、バナジウムなどの酸化物が挙げられる。これらのうちチタン、スズ、亜鉛、ニオブ又はインジウム等の酸化物が好ましく、酸化チタン、酸化亜鉛及び酸化スズが最も好ましい。これらの酸化物半導体は単一で使用することも出来るが、混合したり、半導体の表面にコーティングさせて使用することも出来る。また酸化物半導体の微粒子の粒径は、平均粒径として通常1~500nm、好ましくは1~100nmである。またこの酸化物半導体の微粒子は大きな粒径のものと小さな粒径のものを混合したり、多層にして用いることも出来る。
 酸化物半導体微粒子の薄膜は酸化物半導体微粒子をスプレイ噴霧などで直接前記基板上に半導体微粒子の薄膜として形成する方法、基板を電極として電気的に半導体微粒子を薄膜状に析出させる方法、半導体微粒子のスラリー又は半導体アルコキサイド等の半導体微粒子の前駆体を加水分解することにより得られた微粒子を含有するペーストを基板上に塗布した後、乾燥、硬化もしくは焼成する等によって製造することが出来る。酸化物半導体を用いる電極の性能上、スラリーを用いる方法が好ましい。この方法の場合、スラリーは2次凝集している酸化物半導体微粒子を常法により分散媒中に平均1次粒子径が1~200nmになるように分散させることにより得られる。
 スラリーを分散させる分散媒としては、半導体微粒子を分散させ得るものであれば何でも良く、水、エタノール等のアルコール、アセトン及びアセチルアセトン等のケトン、ヘキサン等の炭化水素等が用いられ、これらは混合して用いてもよく、また水を用いることはスラリーの粘度変化を少なくするという点で好ましい。また酸化物半導体微粒子の分散状態を安定化させる目的で分散安定剤を用いることが出来る。用いうる分散安定剤の例としては例えば酢酸、塩酸、硝酸等の酸、又はアセチルアセトン、アクリル酸、ポリエチレングリコール、ポリビニルアルコール等の有機溶媒等が挙げられる。
 スラリーを塗布した基板は焼成してもよく、その焼成温度は通常100℃以上、好ましくは200℃以上で、かつ上限はおおむね基板材料の融点(軟化点)以下であり、通常上限は900℃であり、好ましくは600℃以下である。また焼成時間には特に限定はないが、概ね4時間以内が好ましい。基板上の薄膜の厚みは通常1~200μmで、好ましくは1~50μmである。
 酸化物半導体微粒子の薄膜に2次処理を施してもよい。すなわち、例えば半導体と同一の金属のアルコキサイド、塩化物、硝化物、硫化物等の溶液に直接、基板ごと薄膜を浸積させて乾燥もしくは再焼成することにより半導体微粒子の薄膜の性能を向上させることもできる。金属アルコキサイドとしてはチタンエトキサイド、チタンイソプロポキサイド、チタンt-ブトキサイド、n-ジブチル-ジアセチルスズ等が挙げられ、それらのアルコール溶液が用いられる。塩化物としては例えば四塩化チタン、四塩化スズ、塩化亜鉛等が挙げられ、その水溶液が用いられる。このようにして得られた酸化物半導体薄膜は酸化物半導体の微粒子から成っている。
 次に、酸化物半導体微粒子の薄膜に、本発明の前記式(1)で表される化合物(色素)を担持させる方法について説明する。
 前記式(1)で表される化合物を担持させる方法としては、該化合物を溶解しうる溶媒にて化合物を溶解して得た溶液、又は溶解性の低い化合物にあっては化合物を分散せしめて得た分散液に上記酸化物半導体微粒子の薄膜の設けられた基板を浸漬する方法が挙げられる。溶液又は分散液中の濃度は化合物によって適宜決める。その溶液又は分散液中に基板上に作成した半導体微粒子の薄膜を浸す。浸漬温度はおおむね常温から溶媒の沸点迄であり、また浸漬時間は1分間から48時間程度である。化合物を溶解させるのに使用しうる溶媒の具体例として、例えば、メタノール、エタノール、イソプロパノール、テトラヒドロフラン(THF)、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、アセトン、n-ブタノール、t-ブタノール、水、n-ヘキサン、クロロホルム、ジクロロメタン、トルエン等が挙げられ、化合物の溶解度等に合わせて、単独又は複数を混合して用いることができる。溶液の化合物濃度は通常1×10-6M~1Mであり、好ましくは1×10-5M~1×10-1Mである。
 浸漬が終わったあと、風乾又は必要により加熱して溶媒を除去する。この様にして式(1)で表される化合物で増感された酸化物半導体微粒子の薄膜を有した本発明の光電変換素子が得られる。
 担持する前記式(1)で表される化合物(色素)は1種類でもよいし、数種類混合してもよい。また、混合する場合は本発明の式(1)で表される化合物同士でもよいし、他の色素や金属錯体色素を混合してもよい。特に吸収波長の異なる色素と混合することにより、幅広い吸収波長を利用することが出来、変換効率の高い太陽電池が得られる。混合しうる金属錯体色素の例としては特に制限は無いが、非特許文献2に示されているルテニウム錯体やその4級アンモニウム塩化合物、フタロシアニン、ポルフィリンなどが好ましく、混合利用する有機色素としては無金属のフタロシアニン、ポルフィリンやシアニン、メロシアニン、オキソノール、トリフェニルメタン系、特許文献2に示されるアクリル酸系色素などのメチン系色素や、キサンテン系、アゾ系、アンスラキノン系、ペリレン系等の色素が挙げられる。好ましくはルテニウム錯体やメロシアニン、アクリル酸系等のメチン系色素が挙げられる。色素を2種以上用いる場合は色素を半導体微粒子の薄膜に順次吸着させても、混合溶解して吸着させてもよい。
 混合する色素の比率に特に限定は無く、それぞれの色素について最適化条件が適宜選択されるが、一般的に等モルずつの混合から、1つの色素につき、10%モル程度以上使用するのが好ましい。2種以上の色素を溶解又は分散した溶液を用いて、酸化物半導体微粒子の薄膜に色素を吸着する場合、溶液中の色素合計の濃度は1種類のみ担持する場合と同様でよい。色素を混合して使用する場合の溶媒としては前記したような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なっていてもよい。
 酸化物半導体微粒子の薄膜に色素を担持する際、色素同士の会合を防ぐために包摂化合物の共存下、色素を担持することが有利である。ここで包摂化合物としてはコール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、好ましいものの具体例としてはデオキシコール酸、デヒドロデオキシコール酸、ケノデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム等のコール酸類、ポリエチレンオキサイド等が挙げられる。また、色素を担持させた後、4-t-ブチルピリジン等のアミン化合物で半導体微粒子の薄膜を処理してもよい。処理の方法は例えばアミンのエタノール溶液に色素を担持した半導体微粒子の薄膜の設けられた基板を浸す方法等が採られる。
 本発明の太陽電池は上記酸化物半導体微粒子の薄膜に色素を担持させた光電変換素子を一方の電極とし、対極、レドックス電解質又は正孔輸送材料又はp型半導体等から構成される。レドックス電解質、正孔輸送材料、p型半導体等の形態としては、液体、凝固体(ゲル及びゲル状)、固体などそれ自体公知のものが使用出来る。液状のものとしてはレドックス電解質、溶融塩、正孔輸送材料、p型半導体等をそれぞれ溶媒に溶解させたものや常温溶融塩などが、凝固体(ゲル及びゲル状)の場合は、これらをポリマーマトリックスや低分子ゲル化剤等に含ませたもの等がそれぞれ挙げられる。固体のものとしてはレドックス電解質、溶融塩、正孔輸送材料、p型半導体等を用いることができる。正孔輸送材料としてはアミン誘導体やポリアセチレン、ポリアニリン、ポリチオフェンなどの導電性高分子、トリフェニレン系化合物などが挙げられる。また、p型半導体としてはCuI、CuSCN等が挙げられる。対極としては導電性を持っており、レドックス電解質の還元反応を触媒的に作用するものが好ましい。例えばガラス又は高分子フィルムに白金、カーボン、ロジウム、ルテニウム等を蒸着したものや、導電性微粒子を塗り付けたものを用いることができる。
 本発明の太陽電池に用いるレドックス電解質としてはハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン酸化還元系電解質、フェロシアン酸塩-フェリシアン酸塩やフェロセン-フェリシニウムイオン、コバルト錯体などの金属錯体等の金属酸化還元系電解質、アルキルチオール-アルキルジスルフィド、ビオロゲン色素、ヒドロキノン-キノン等の有機酸化還元系電解質等をあげることができるが、ハロゲン酸化還元系電解質が好ましい。ハロゲン化合物-ハロゲン分子からなるハロゲン酸化還元系電解質におけるハロゲン分子としては、例えばヨウ素分子や臭素分子等があげられ、ヨウ素分子が好ましい。上記の、ハロゲンイオンを対イオンとするハロゲン化合物としては、例えばLiBr、NaBr、KBr、LiI、NaI、KI、CsI、CaI2、MgI2、CuI等のハロゲン化金属塩あるいはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、ピリジニウムヨーダイドなどのハロゲンの有機4級アンモニウム塩等があげられるが、ヨウ素イオンを対イオンとする塩類が好ましい。また、上記ヨウ素イオンの他にビス(トリフルオロメタンスルホニル)イミドイオン、ジシアノイミドイオン等のイミドイオンを対イオンとする電解質を用いることも好ましい。
 レドックス電解質はそれを含む溶液の形で構成されている場合、その溶媒には電気化学的に不活性なものが用いられる。例えばアセトニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、γ-ブチロラクトン、ジメトキシエタン、ジエチルカーボネート、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、ジメチルホルムアミド、ジメチルスルホキサイド、1,3-ジオキソラン、メチルフォルメート、2-メチルテトラヒドロフラン、3-メチル-オキサゾリジン-2-オン、スルフォラン、テトラヒドロフラン、水等が挙げられ、これらの中でも、特に、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3-メチル-オキサゾリジン-2-オン、γ-ブチロラクトン等が好ましい。これらは単独もしくは2種以上組み合わせて用いてもよい。ゲル状電解質の場合は、オリゴマ-及びポリマー等のマトリックスに電解質あるいは電解質溶液を含有させたものや、低分子ゲル化剤等に同じく電解質あるいは電解質溶液を含有させたもの等が挙げられる。レドックス電解質の濃度は通常0.01~99質量%で、好ましくは0.1~90質量%程度である。
 本発明の太陽電池は、基板上の酸化物半導体微粒子の薄膜に、本発明の式(1)で表される化合物(色素)を担持した光電変換素子の電極に、それを挟むように対極を配置する。その間にレドックス電解質を含んだ溶液を充填することにより得られる。
 以下に実施例に基づき、本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例中、部は特に指定しない限り質量部を表す。溶液の濃度を表すMは、mol/Lを表す。また、化合物番号は前記の具体例における化合物番号である。極大吸収波長は紫外可視分光光度計(UV-3100PC、島津製作所製)により測定した。核磁気共鳴は、JNM-ECS400(日本電子社製)により測定した。
合成例1
 2,3-ジブロモチオフェン20部、5-ホルミル-2-チオフェンボロン酸31部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)1.7部、フッ化セシウム50部、及び水112部を1,4-ジオキサン516部に加え、80℃で3時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(700)で表される化合物21部を黄色固体として得た。
Figure JPOXMLDOC01-appb-C000040
合成例2
 合成例1で得られた式(700)で表される化合物10部を酢酸210部とクロロホルム296部の混合液に溶解した溶液に、N-ヨードこはく酸イミド9部を加え、遮光下100℃で5時間攪拌した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(701)で表される化合物13部を暗黄色固体として得た。
Figure JPOXMLDOC01-appb-C000041
合成例3
 合成例2で得られた式(701)で表される化合物2.6部、2-チオフェンボロン酸1.5部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.21部、及び20%炭酸ナトリウム水溶液16部を1,2-ジメトキシエタン26部に加え、2時間還流させた。2-チオフェンボロン酸1.5部、及びテトラキス(トリフェニルホスフィン)パラジウム(0)0.21部を追加し、さらに4時間還流させた。反応混合物を、トルエン/水で抽出し、トルエン相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記化合物(702)1.9部を黄色固体として得た。
Figure JPOXMLDOC01-appb-C000042
合成例4
 合成例3で得られた式(702)で表される化合物1.9部を酢酸53部とクロロホルム74部の混合液に溶解した溶液に、N-ヨードこはく酸イミド1.3部を加え、遮光下3時間還流した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(703)で表される化合物2.5部を黄褐色固体として得た。
Figure JPOXMLDOC01-appb-C000043
合成例5
 [1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)・ジクロロメタン付加物1.6部、酢酸カリウム2部及びビス(ピナコラート)ジボロン2部をジメチルスルホキシド22部に加え、窒素雰囲気下攪拌した。9,9-ジブチル-N-(9,9-ジブチルフルオレン-2-イル)-N-(4-ヨードフェニル)フルオレン-2-アミン5部をジメチルスルホキシド66部に溶解させた溶液を加え、80℃で5時間攪拌した。反応混合物を、トルエン-水で抽出し、トルエン相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(704)で表される化合物3.5部を白色固体として得た。
Figure JPOXMLDOC01-appb-C000044
合成例6
 合成例4で得られた式(703)で表される化合物2.5部、合成例5で得られた式(704)で表される化合物4.2部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.17部及び20%炭酸ナトリウム水溶液17部を1,2-ジメトキシエタン130部に加え、還流下6時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(705)で表される化合物2.4部を橙色固体として得た。
Figure JPOXMLDOC01-appb-C000045
実施例1
 合成例6で得られた式(705)で表される化合物1.7部とシアノ酢酸0.85部をエタノール133部とトルエン73部の混合液に溶解した溶液に、無水ピペラジン0.02部を加え、還流下1時間反応させた。シアノ酢酸0.85部を追加し、還流下さらに6時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-酢酸)で分離、精製した。濃縮後得られた黒赤色固体を、クロロホルム-ヘキサンから再結晶し、下記式(706)で表される化合物(表1の化合物1)0.78部を黒赤色固体として得た。
 この式(706)で表される化合物の極大吸収波長及び核磁気共鳴装置の測定値は次のとおりであった。
 極大吸収波長;λmax=408nm(1.6×10-5M、テトラヒドロフラン溶液)
 核磁気共鳴の測定値;
1H-NMR(PPM:DMSO-d6):0.57(m.8H),0.66(t.12H),1.02(m.8H),1.90(m.8H),7.05(m.4H),7.20(d.2H),7.30(m.6H),7.41(dd.2H),7.45(d.1H),7.51(d.1H),7.57(s.1H),7.61(m.4H),7.75(m.4H),7.96(s.1H),7.98(s,1H)
Figure JPOXMLDOC01-appb-C000046
実施例2
 表1に示される化合物番号1のメチン系色素を1.6×10-4M、下記コール酸(式(a))を1×10-2Mとなるようにエタノールに溶解した。
Figure JPOXMLDOC01-appb-C000047

 この溶液中に多孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを500℃にて60分間焼結した半導体薄膜電極)を25℃で3日間浸漬し色素を担持せしめ、溶剤で洗浄、乾燥させ、コール酸類処理色素増感半導体薄膜を得た。多孔質基板の半導体薄膜側と対峙させて20μmの空隙を設けて、白金でスパッタした導電性ガラスのスパッタ面を固定し、その空隙に電解質を含む溶液を注入した。電解液は、3-メトキシプロピオニトリルにヨウ素/ヨウ化リチウム/1,2-ジメチル-3-n-プロピルイミダゾリウムアイオダイド/t-ブチルピリジンをそれぞれ0.1M/0.1M/0.6M/1.0Mになるように溶解したものを使用した。
 測定する電池の大きさは実効部分を0.25cm2とした。光電変換特性は、500Wキセノンランプを光源に用いて、AM(大気圏通過空気量)1.5フィルターを通して100mW/cm2として測定した。短絡電流、解放電圧及び変換効率はソースメジャーユニットを用いて測定した。測定結果を表15に示す。
比較例1
 比較用色素として、下記式(A)によって表わされる特願2013-189036記載の化合物(249)を用いた。
Figure JPOXMLDOC01-appb-C000048
 この比較例色素を1.6×10-4M、上記式(a)で表わされるコール酸を1×10-2Mとなるようにアセトンに溶解した。実施例2と同様にして光電変換素子を作製し、光耐久性試験を行った。測定結果を表15に示す。
Figure JPOXMLDOC01-appb-T000049
合成例7
 合成例2で得られた式(701)で表される化合物7.3部、3-ヘキシル-2-チオフェンボロン酸ピナコールエステル10部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.59部、及び20%炭酸ナトリウム水溶液45部を1,2-ジメトキシエタン74部に加え、7.5時間還流させた。反応混合物を、トルエン/水で抽出、トルエン相を濃縮後、カラムクロマト(クロロホルム)で分離、精製し、下記化合物(707)2.4部を黄色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000050
合成例8
 合成例7で得られた式(707)で表される化合物2.4部を、酢酸34部とクロロホルム47部の混合液に溶解した溶液に、N-ヨードこはく酸イミド1.4部を加え、遮光下4時間還流した。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(708)で表される化合物2.6部を黄色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000051
合成例9
 合成例8で得られた式(708)で表される化合物2.6部、合成例5で得られた式(704)で表される化合物4.1部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.15部及び20%炭酸ナトリウム水溶液15部を1,2-ジメトキシエタン113部に加え、還流下7時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(709)で表される化合物2.1部を赤色固体として得た。
Figure JPOXMLDOC01-appb-C000052
実施例3
 合成例9で得られた式(709)で表される化合物2.1部とシアノ酢酸0.94部をエタノール147部とトルエン81部の混合液に溶解した溶液に、無水ピペラジン0.01部を加え、還流下2時間反応させた。シアノ酢酸0.94部を追加し、還流下さらに5時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-酢酸)で分離、精製した。濃縮後、得られた黒赤色固体を、クロロホルム-ヘキサンから再結晶し、下記式(710)で表される化合物(表1の化合物66)0.93部を黒赤色固体として得た。
 この式(710)で表される化合物の極大吸収波長及び核磁気共鳴装置の測定値は次のとおりであった。
 極大吸収波長;λmax=371nm(1.6×10-5M、テトラヒドロフラン溶液)
 核磁気共鳴の測定値;
1H-NMR(PPM:DMSO-d6):0.56(m.8H),0.65(t.12H),0.85(t.3H),1.02(m.8H),1.29(m.4H),1.38(m.2H),1.67(m.2H),1.89(m.8H),2.79(m.2H),7.03(m.4H),7.19(d.2H),7.30(m.5H),7.40(m.5H),7.56(d.2H),7.67(m.2H),7.73(m.4H),8.03(s.1H),8.04(s,1H)
Figure JPOXMLDOC01-appb-C000053
合成例10
 窒素雰囲気中氷浴下、エチルマグネシウムクロリドのテトラヒドロフラン溶液(1.0M)240部に2,2,6,6-テトラメチルピペリジン2.1部と、3-ヘキシルチオフェン24部を滴下した。66℃で7時間撹拌した後、ジメチルホルムアミド12部とテトラヒドロフラン32部の混合液を滴下し、さらに1時間撹拌した。氷浴下、1M塩酸250部を加え、反応混合物をクロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(711)で表される化合物11部を無色オイル状物質として得た。
Figure JPOXMLDOC01-appb-C000054
合成例11
 合成例10で得られた式(711)で表される化合物9.9部を酢酸210部に溶解した溶液に、N-ヨードこはく酸イミド17部を加え、遮光下100℃で5時間攪拌した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(712)で表される化合物12部を褐色オイル状物質として得た。
Figure JPOXMLDOC01-appb-C000055
合成例12
 合成例11で得られた式(712)で表される化合物11部、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)0.73部、酢酸カリウム9.8部及びビス(ピナコラート)ジボロン17部をジメチルスルホキシド220部に加え、窒素雰囲気下80℃で5時間攪拌した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(713)で表される化合物3.5部を黄色オイル状物質として得た。
Figure JPOXMLDOC01-appb-C000056
合成例13
 合成例12で得られた式(713)で表される化合物3.7部、2,3-ジブロモチオフェン1.1部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.092部、フッ化セシウム2.7部及び水5.9部を1,4-ジオキサン27部に加え、80℃で3時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(714)で表される化合物12部を淡橙色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000057
合成例14
 合成例13で得られた式(714)で表される化合物1.2部、5-ホルミル-2-チオフェンボロン酸0.8部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.035部、フッ化セシウム1部、及び水4.9部を1,4-ジオキサン20部に加え、4.5時間還流させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(715)で表される化合物0.96部を黄色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000058
合成例15
 合成例14で得られた式(715)で表される化合物0.96部を酢酸16部とクロロホルム22部の混合液に溶解した溶液に、N-ヨードこはく酸イミド0.68部を加え、遮光下100℃で4時間攪拌した。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(716)で表される化合物0.84部を淡黄色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000059
合成例16
 合成例15で得られた式(716)で表される化合物0.84部、2-チオフェンボロン酸0.41部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.055部、及び20%炭酸ナトリウム水溶液4.5部を1,2-ジメトキシエタン6.9部に加え、1時間還流させた。2-チオフェンボロン酸0.41部、及びテトラキス(トリフェニルホスフィン)パラジウム(0)0.055部を追加し、さらに4.5時間還流させた。反応混合物を、トルエン/水で抽出し、トルエン相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記化合物(717)0.67部を黄色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000060
合成例17
 合成例16で得られた式(717)で表される化合物0.67部を酢酸10部とクロロホルム15部の混合液に溶解した溶液に、N-ヨードこはく酸イミド0.38部を加え、遮光下4時間還流した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(718)で表される化合物0.73部を黄色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000061
合成例18
 合成例17で得られた式(718)で表される化合物0.73部、合成例5で得られた式(704)で表される化合物1.1部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.035部及び20%炭酸ナトリウム水溶液4.1部を1,2-ジメトキシエタン30部に加え、還流下6時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(719)で表される化合物0.93部を橙色固体として得た。
Figure JPOXMLDOC01-appb-C000062
実施例4
 合成例18で得られた式(719)で表される化合物0.93部とシアノ酢酸0.43部をエタノール79部とトルエン43部の混合液に溶解した溶液に、無水ピペラジン0.005部を加え、還流下2時間反応させた。シアノ酢酸0.43部を追加し、還流下さらに5時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-酢酸)で分離、精製した。濃縮後得られた黒赤色固体を、クロロホルム-ヘキサンから再結晶し、下記式(720)で表される化合物(表6の化合物339)0.39部を赤褐色固体として得た。
 この式(720)で表される化合物の極大吸収波長及び核磁気共鳴装置の測定値は次のとおりであった。
 極大吸収波長;λmax=406nm(1.6×10-5M、テトラヒドロフラン溶液)
 核磁気共鳴の測定値;
1H-NMR(PPM:DMSO-d6):0.56(m.8H),0.66(t.12H),0.77(t.3H),1.08(m.14H),1.39(m.2H), 1.89(m.8H),2.33(m.2H),7.05(m.4H),7.20(d.2H),7.30(m.5H),7.41(m.2H),7.46(d.1H),7.49(d.1H),7.61(d.2H),7.64(d.1H),7.66(s.1H),7.75(m.5H),8.01(s.1H),8.05(s,1H)
Figure JPOXMLDOC01-appb-C000063
実施例5及び6
 表1に示される化合物番号66及び化合物番号339のメチン系色素をそれぞれ1.6×10-4M、下記コール酸(式(b))を5×10-3Mとなるようにクロロホルムに溶解した。
Figure JPOXMLDOC01-appb-C000064
 この溶液中に多孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを500℃にて60分間焼結した半導体薄膜電極)を25℃で3日間浸漬し色素を担持せしめ、溶剤で洗浄、乾燥させ、コール酸類処理色素増感半導体薄膜を得た。多孔質基板の半導体薄膜側と対峙させて20μmの空隙を設けて、白金でスパッタした導電性ガラスのスパッタ面を固定し、その空隙に電解質を含む溶液を注入した。電解液は、3-メトキシプロピオニトリルにヨウ素/ヨウ化リチウム/1,2-ジメチル-3-n-プロピルイミダゾリウムアイオダイド/t-ブチルピリジンをそれぞれ0.1M/0.1M/0.6M/1.0Mになるように溶解したものを使用した。
 測定する電池の大きさは実効部分を0.25cm2とした。光電変換特性は、500Wキセノンランプを光源に用いて、AM(大気圏通過空気量)1.5フィルターを通して100mW/cm2として測定した。短絡電流、解放電圧及び変換効率はソースメジャーユニットを用いて測定した。測定結果を表16に示す。
Figure JPOXMLDOC01-appb-T000065
実施例7~9
 表1に示される化合物番号1のメチン系色素を1.6×10-4Mと下記式(d)で表わされるコール酸を1×10-2Mとなるようにエタノールに溶解した。同様に、表1に示される化合物番号66のメチン系色素を1.6×10-4Mと下記式(b)で表わされるコール酸を1×10-2Mとなるようにアセトンに溶解し、表1に示される化合物番号339のメチン系色素を1.6×10-4Mと下記式(b)で表わされるコール酸を1×10-2Mとなるようにアセトンに溶解した。
Figure JPOXMLDOC01-appb-C000066
 これらの溶液中に多孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを450℃にて30分間焼結した半導体薄膜電極)を40℃で3日間浸漬し色素を担持せしめ、溶剤で洗浄、乾燥させ、コール酸類処理色素増感半導体薄膜を得た。多孔質基板の半導体薄膜側と対峙させて20μmの空隙を設けて、白金でスパッタした導電性ガラスのスパッタ面を固定し、その空隙に電解質を含む溶液を注入した。電解液は、3-メトキシプロピオニトリルにヨウ素/ヨウ化リチウム/1-メチル-3-n-プロピルイミダゾリウムアイオダイド/ブチリルチオコリンアイオダイドをそれぞれ0.1M/0.2M/1.2M/0.2Mになるように溶解したものを使用した。
 測定する電池の大きさは実効部分を12cm2とした。光耐久試験は、電池の両面にUVカットフィルタ(UV400、美装社製)を貼りつけ、耐光試験機(ESC0405-F70、岩崎電気社製)を用いて1SUN、40℃で500時間行った。光電変換特性は、500Wキセノンランプを光源に用いて、AM(大気圏通過空気量)1.5フィルターを通して100mW/cm2として測定した。変換効率はソースメジャーユニットを用いて測定した。測定結果を表17に示す。
比較例2
 比較用色素として、下記式(C)によって表わされる国際公開特許WO2007/100033記載の化合物(160)を用いた。
Figure JPOXMLDOC01-appb-C000067
 この比較例色素を3.2×10-4M、上記式(d)で表わされるコール酸を1×10-2Mとなるようにアセトンに溶解した。実施例7~9と同様にして光電変換素子を作製し、光耐久性試験を行った。測定結果を表17に示す。
Figure JPOXMLDOC01-appb-T000068

 表15及び表16に示す結果から、一般式(1)で表されるメチン系の色素によって増感された光電変換素子では、可視光を効率的に電気に変換できることがわかる。 
 また、表17に示す結果から、一般式(1)で表されるメチン系の色素によって増感された光電変換素子を用いることにより、耐光性に優れた太陽電池が得られることが実証された。
 本発明の色素増感光電変換素子によれば、変換効率及び耐久性の高い太陽電池を提供することができる。
 

Claims (15)

  1.  下記式(1)で表されるメチン系色素
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、mは1乃至5の整数を表し、l及びnはそれぞれ独立に0乃至6の整数を表し、jは0乃至3の整数を表し、kは1乃至3の整数をそれぞれ表す。
     X1及びY1はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基若しくはその塩、リン酸基若しくはその塩、スルホン酸基若しくはその塩、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はフェニルスルホニル基を表す。或いは、X1とY1は結合して、環を形成してもよい。
     Z1、Z2及びZ3はそれぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表す。R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。m、j及びkの少なくとも一つが2以上で、Z1、Z2及びZ3のいずれかが複数存在する場合、それぞれのZ1、Z2及びZ3は互いに同じか又は異なっていてもよい。
     A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。l及びnの少なくとも一つが2以上でA2、A3、A5及びA6のいずれかが複数存在する場合には、それぞれのA2、A3、A5及びA6は互いに同じか又は異なってもよい。lが0以外の場合、A1、A2及びA3のいずれか複数個で環を形成してもよい。
     A4は水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アミド基、アルコキシカルボニル基又はアシル基を表す。mが2以上でA4が複数存在する場合、それぞれのA4は互いに同じか又は異なってもよい。
     A7、A8、A9及びA10はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。j及びkの少なくとも一つが2以上でA7、A8、A9及びA10のいずれかが複数存在する場合、それぞれのA7、A8、A9及びA10は互いに同じか又は異なってもよい。
     R1は下記式(3002)
    Figure JPOXMLDOC01-appb-C000002

    (式(3002)中、pは0乃至3の整数を表し、qは0乃至6の整数をそれぞれ表す。
     X1及びY1は、式(1)におけるX1及びY1と同じ意味を表す。
     Z4は酸素原子、硫黄原子、セレン原子又はNR12を表す。R12は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。pが2以上で、Z4が複数存在する場合、それぞれのZ4は互いに同じか又は異なっていてもよい。
     A11及びA12はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。pが2以上でA11及びA12が複数存在する場合、それぞれのA11及びA12は互いに同じか又は異なってもよい。
     A13、A14及びA15はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。qが2以上でA13及びA14が複数存在する場合には、それぞれのA13及びA14は互いに同じか又は異なってもよい。或いは、qが0以外の場合、A13、A14、及びA15のいずれか複数個で環を形成してもよい。)
    で示される基を表す。mが2以上でR1が複数存在する場合、それぞれのR1は互いに同じか又は異なってもよい。
     R2は下記式(3001)又は(3003)
    Figure JPOXMLDOC01-appb-C000003

    (式(3001)中、R12及びR13はそれぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
     式(3003)中、R14及びR15の少なくとも1つは式(3001)を表し、R16、R17、R18及びR19は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。)
    で示される基を表す。nが0以外の場合、A5、A6及びR2のいずれか複数個で環を形成してもよい。)。
  2.  式(1)におけるl及びn、並びに式(3002)におけるqが0である請求項1に記載のメチン系色素。
  3.  式(1)におけるkが1乃至2の整数である請求項1又は2に記載のメチン系色素。
  4.  式(1)におけるmが1乃至3の整数である請求項1~3の何れか1項に記載のメチン系色素。
  5.  式(1)におけるj及び式(3002)におけるpがそれぞれ独立に1乃至3の整数である請求項1~4の何れか1項に記載のメチン系色素。
  6.  式(1)におけるZ1~Z3、並びに式(3002)におけるZ4が硫黄原子である請求項1~5の何れか1項に記載のメチン系色素。
  7.  式(1)におけるX1及びY1の一方がカルボキシル基若しくはその塩で他方がカルボキシル基若しくはその塩、シアノ基又はアシル基であり、且つ/或いは式(3002)におけるX1及びY1の一方がカルボキシル基若しくはその塩で他方がカルボキシル基若しくはその塩、シアノ基又はアシル基である請求項1~6の何れか1項に記載のメチン系色素。
  8.  式(1)におけるX1及びY1の一方がカルボキシル基若しくはその塩で他方がシアノ基であり、且つ/或いは式(3002)におけるX1及びY1の一方がカルボキシル基若しくはその塩で他方がシアノ基である請求項7に記載のメチン系色素。
  9.  式(1)におけるA1~A15が水素原子である請求項1~8の何れか1項に記載のメチン系色素。
  10.  式(1)におけるR2が式(3003)で示される基であって、該式(3003)におけるR14及びR15がそれぞれ独立に式(3001)で示される基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基であり、該式(3001)におけるR12及びR13がそれぞれ独立に水素原子又は炭素数1~8のアルキル基である請求項1~9の何れか1項に記載のメチン系色素。
  11.  式(1)におけるR2が下記式(3109)~(3114)
    Figure JPOXMLDOC01-appb-C000004

    で示される基のいずれかである請求項10に記載のメチン系色素。
  12.  式(1)におけるR2が、式(3111)で示される基である請求項11に記載のメチン系色素。
  13.  式(1)で表されるメチン系色素が、下記式(706)、(710)又は(720)
    Figure JPOXMLDOC01-appb-C000005

    で示される化合物である請求項1に記載のメチン系色素。
  14.  基板上の酸化物半導体微粒子の薄膜に、請求項1~13の何れか1項に記載のメチン系色素を担持させた光電変換素子。
  15.  請求項14に記載の光電変換素子を備える太陽電池。
     
PCT/JP2015/057118 2014-03-12 2015-03-11 メチン系色素及びそれを用いた色素増感光電変換素子 WO2015137382A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014049016A JP2017078091A (ja) 2014-03-12 2014-03-12 メチン系色素及びそれを用いた色素増感光電変換素子
JP2014-049016 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015137382A1 true WO2015137382A1 (ja) 2015-09-17

Family

ID=54071824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057118 WO2015137382A1 (ja) 2014-03-12 2015-03-11 メチン系色素及びそれを用いた色素増感光電変換素子

Country Status (3)

Country Link
JP (1) JP2017078091A (ja)
TW (1) TW201602251A (ja)
WO (1) WO2015137382A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166067A (ja) * 2016-03-09 2017-09-21 公立大学法人首都大学東京 水分解光電気化学セル、並びにそれを用いた水素製造装置及び過酸化水素製造装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008147070A2 (en) * 2007-05-28 2008-12-04 Dongjin Semichem Co., Ltd. Novel organic dye and method of preparing the same
WO2015037676A1 (ja) * 2013-09-12 2015-03-19 日本化薬株式会社 メチン系色素及びそれを用いた色素増感光電変換素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008147070A2 (en) * 2007-05-28 2008-12-04 Dongjin Semichem Co., Ltd. Novel organic dye and method of preparing the same
WO2015037676A1 (ja) * 2013-09-12 2015-03-19 日本化薬株式会社 メチン系色素及びそれを用いた色素増感光電変換素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KIM S ET AL.: "Molecular Engineering of Organic Sensitizers for Solar Cell Applications", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, 2006, pages 16701 - 16707, XP003016863 *
LIN RYY ET AL.: "Y-shaped metal-free D-n-(A)2 sensitizers for high-performance dye-sensitized solar cells", JOURNAL OF MATERIALS CHEMISTRY A: MATERIALS FOR ENERGY AND SUSTAINABILITY, vol. 2, no. 9, pages 3092 - 3101, XP055223382 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017166067A (ja) * 2016-03-09 2017-09-21 公立大学法人首都大学東京 水分解光電気化学セル、並びにそれを用いた水素製造装置及び過酸化水素製造装置

Also Published As

Publication number Publication date
TW201602251A (zh) 2016-01-16
JP2017078091A (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5106381B2 (ja) 色素増感光電変換素子
JP4841248B2 (ja) 色素増感光電変換素子
JP4963343B2 (ja) 色素増感光電変換素子
JP5466943B2 (ja) パイ電子共役系を拡張した色素増感型太陽電池用増感色素
JP5138371B2 (ja) 色素増感光電変換素子
JP5145037B2 (ja) 色素増感光電変換素子
JP4986205B2 (ja) 色素増感光電変換素子
JP5306354B2 (ja) 色素増感型光電変換素子
JP6278504B2 (ja) 新規化合物及びそれを用いた光電変換素子
JP2008021496A (ja) 色素増感光電変換素子
JP2009048925A (ja) 色素増感光電変換素子
JP5590552B2 (ja) 色素増感型光電変換素子
JP5300454B2 (ja) 色素増感光電変換素子
JP2006294360A (ja) 色素増感光電変換素子
JP2005005026A (ja) 色素増感光電変換素子
JP5957072B2 (ja) 色素増感光電変換素子
JP6440296B2 (ja) 色素増感太陽電池用増感剤としてのトリフェニルアミン結合型ジベンゾピロメテン系色素
WO2015037676A1 (ja) メチン系色素及びそれを用いた色素増感光電変換素子
WO2015137382A1 (ja) メチン系色素及びそれを用いた色素増感光電変換素子
JP2016196422A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−1
JP2016185911A (ja) 新規化合物及びそれを含む光電変換素子
JP2017149694A (ja) 新規化合物及びそれを用いた光電変換素子
JP2016138175A (ja) 新規化合物及び該化合物を用いた色素増感光電変換素子
WO2015118963A1 (ja) 新規化合物及びそれを含む光電変換素子
JP2016196558A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15761378

Country of ref document: EP

Kind code of ref document: A1