WO2015118963A1 - 新規化合物及びそれを含む光電変換素子 - Google Patents

新規化合物及びそれを含む光電変換素子 Download PDF

Info

Publication number
WO2015118963A1
WO2015118963A1 PCT/JP2015/051800 JP2015051800W WO2015118963A1 WO 2015118963 A1 WO2015118963 A1 WO 2015118963A1 JP 2015051800 W JP2015051800 W JP 2015051800W WO 2015118963 A1 WO2015118963 A1 WO 2015118963A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
ring
compound
Prior art date
Application number
PCT/JP2015/051800
Other languages
English (en)
French (fr)
Inventor
由治 久保
昌厳 金子
秀典 薬師寺
紫垣 晃一郎
Original Assignee
公立大学法人首都大学東京
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人首都大学東京, 日本化薬株式会社 filed Critical 公立大学法人首都大学東京
Publication of WO2015118963A1 publication Critical patent/WO2015118963A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a novel organic compound having a specific structure, a photoelectric conversion element containing the compound as a sensitizing dye, and a solar cell including the photoelectric conversion element.
  • This dye-sensitized photoelectric conversion element uses a relatively inexpensive oxide semiconductor such as titanium oxide, and a photoelectric conversion element that is less expensive than a conventional solar cell using silicon or the like may be obtained.
  • a photoelectric conversion element that is less expensive than a conventional solar cell using silicon or the like may be obtained.
  • colorful solar cells can be obtained.
  • the cost of the ruthenium complex itself used as a sensitizing dye for obtaining an element with high conversion efficiency is high, and there is still a problem in its stable supply. For this reason, attempts have been made to use organic dyes as sensitizing dyes, but they have not yet been put into practical use because problems such as low conversion efficiency, stability and durability have not been solved. Improvement of various characteristics such as efficiency is desired (see Patent Document 2).
  • the present inventors have disclosed organic dyes that can improve the conversion efficiency and the like of photoelectric conversion elements (Patent Documents 3 and 4).
  • X 1 and X 2 are each independently hydrogen. Represents an atom, a carboxyl group, a hydroxyl group, a phosphate group, a sulfonic acid group, a cyano group, an acyl group, an amide group, an alkoxycarbonyl group or a sulfonylbenzene group, and X 1 and X 2 may be linked together to form a ring.
  • Q 1 and Q 2 each independently represents an oxygen atom, a sulfur atom, a selenium atom or NR 11 , R 11 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue, and m is 2 or more.
  • each Q 1 may be the same or different from each other.
  • j is 2 or more and a plurality of Q 2 are present, each Q 2 is the same or different from each other.
  • each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxyl group, aryloxy group, alkoxycarbonyl group, arylcarbonyl group or acyl group represents the case where .l is a 2 and a 3 are a plurality exist in 2 or more, each of a 2 and a 3 may be the same or different from one another, a 5 and a 6, n is 2 or more When present, each A 5 and A 6 may be the same or different from each other, and when l is other than 0, any one of A 1 , A 2 and A 3 forms a ring.
  • a 4 represents a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxyl group, an amide group, an alkoxycarbonyl group or an acyl group, where m is 2 or more and A 4 to multiple presence When each of A 4 good be the same or different from each other .
  • a 7 and A 8 each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxyl group, alkoxycarbonyl group or when .j representing the acyl group a 7 and a 8 there are multiple with 2 or more, each of a 7 and a 8 may be the same or different from one another .
  • R 1 is the following formula ( 2)
  • M represents a metalloid atom.
  • Y 1 , Y 2 and Y 3 each independently represent a hydrogen atom or an aromatic residue.
  • Z 1 and Z 2 each independently represent a halogen atom.
  • Ar 1 and Ar 2 each independently represents an aromatic ring.
  • each R 1 may be the same as or different from each other.
  • R 2 represents the following formula (3003)
  • R 14 and R 15 each independently represent a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • R 16 , R 17 , R 18 and R 19 are each independently A hydrogen atom, an aromatic residue, an aliphatic hydrocarbon residue, a cyano group, an acyl group, an amide group, an alkoxyl group, an alkoxycarbonyl group, or a sulfonylbenzene group.
  • n is other than 0, any one of A 5 , A 6 and R 2 may form a ring.
  • Z 3 and Z 4 each independently represent a halogen atom.
  • a 23 and A 24 each independently represent a hydrogen atom, a halogen atom, an aliphatic hydrocarbon residue or an alkoxyl group).
  • the compound according to the above item (1) which is a residue obtained by removing one hydrogen atom from the benzene ring b 1 of the compound represented by the formula: (11)
  • the compound according to item (10), wherein Z 3 and Z 4 in formula (3) are fluorine atoms, and A 23 and A 24 are methoxy groups, (12) R 14 and R 15 in the formula (3003) are represented by the following formula (3001)
  • R 12 and R 13 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 16 to R 19 are each independently
  • R 2 in the formula (1) is represented by the following formulas (3109) to (3114)
  • the compound according to item (1) which is represented by: (17) A photoelectric conversion element in which one or more compounds represented by the formula (1) described in (1) above are supported on a thin film of oxide semiconductor fine particles provided on a substrate, (18) A sensitizing dye having a structure other than formula (1) and at least one compound represented by formula (1) described in (1) above on a thin film of oxide semiconductor fine particles provided on a substrate A photoelectric conversion element carrying a compound; (19) The photoelectric conversion element according to the above item (17) or (18), wherein the oxide semiconductor fine particles contain titanium dioxide, zinc oxide, or tin oxide. (20) A solar cell comprising the photoelectric conversion element according to any one of (17) to (19), About.
  • the compound of the present invention having the specific structure represented by the formula (1) (in this specification, simply referred to as “the compound of the present invention”) as a sensitizing dye, the conversion efficiency is higher.
  • the compound of the present invention having the specific structure represented by the formula (1) (in this specification, simply referred to as “the compound of the present invention”) as a sensitizing dye, the conversion efficiency is higher.
  • a highly practical dye-sensitized solar cell could be provided.
  • the present invention is described in detail below.
  • the compound of the present invention has a structure represented by the following formula (1).
  • M in Formula (1) represents an integer of 1 to 5, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • L in Formula (1) represents an integer of 0 to 6, and is preferably 0.
  • N in Formula (1) represents an integer of 0 to 6, and is preferably 0.
  • J in Formula (1) represents an integer of 0 to 3, preferably 1 to 3, more preferably 1 to 2, and still more preferably 2.
  • X 1 and X 2 in formula (1) are each independently a hydrogen atom, a carboxyl group, a hydroxyl group, a phosphoric acid group, a sulfonic acid group, a cyano group, an acyl group, an amide group, an alkoxycarbonyl group, or a sulfonylbenzene group. It represents an aromatic residue, or X 1 and X 2 may be bonded to each other to form a ring.
  • Examples of the acyl group represented by X 1 and X 2 in the formula (1) include an alkylcarbonyl group having 1 to 10 carbon atoms, an arylcarbonyl group (usually having a monocyclic, bicyclic or tricyclic aryl).
  • an alkylcarbonyl group having 1 to 4 carbon atoms and a monocyclic or bicyclic arylcarbonyl group examples include an acetyl group, a propionyl group, a trifluoromethylcarbonyl group, and a pentafluoroethylcarbonyl group.
  • Examples of the monocyclic or bicyclic arylcarbonyl group include a benzoyl group. And a naphthoyl group.
  • the acyl group represented by X 1 and X 2 in the formula (1) may have a substituent, and examples of the substituent which may be present include a sulfonic acid group, a sulfamoyl group, a cyano group, and isocyano.
  • thiocyanato group isothiocyanato group, nitro group, nitrosyl group, halogen atom, hydroxyl group, phosphate group, phosphate ester group, substituted or unsubstituted amino group, substituted or unsubstituted mercapto group, amide group, alkoxyl group, aryl
  • oxy groups carboxyl groups, carbamoyl groups, acyl groups, aldehyde groups, and substituted carbonyl groups such as alkoxycarbonyl groups and arylcarbonyl groups, aromatic residues, aliphatic hydrocarbon residues, and the like.
  • the halogen atom as the substituent that the acyl group represented by X 1 and X 2 in Formula (1) may have include fluorine, chlorine, bromine, iodine, and the like. preferable.
  • Examples of the phosphoric acid ester group as a substituent that the acyl group represented by X 1 and X 2 in the formula (1) may have include a phosphoric acid (C 1 to C 4) alkyl ester group, which is preferable. Specific examples are a methyl phosphate group, an ethyl phosphate group, a phosphoric acid (n-propyl) group and a phosphoric acid (n-butyl) group.
  • substituted or unsubstituted amino group as the substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have, an unsubstituted amino group, a mono or dimethylamino group, a mono or diethylamino group, C1-C4 alkyl-substituted amino group such as mono- or di (n-propyl) amino group, monocyclic, bicyclic or tricyclic aroma such as mono- or diphenylamino group, mono- or dinaphthylamino group Substituted amino groups, amino groups substituted with monocyclic, bicyclic or tricyclic aromatic residues one by one, and benzylamino Group, acetylamino group, phenylacetylamino group and the like.
  • the substituted or unsubstituted mercapto group as a substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have is an unsubstituted mercapto group, an alkyl mercapto group, specifically a methyl mercapto group.
  • Alkyl mercapto group having 1 to 4 carbon atoms such as ethyl mercapto group, n-propyl mercapto group, isopropyl mercapto group, n-butyl mercapto group, isobutyl mercapto group, sec-butyl mercapto group, t-butyl mercapto group, or the like.
  • a cyclic, bicyclic or tricyclic aromatic substituted mercapto group, specifically a phenyl mercapto group, and the like can be mentioned.
  • an amide group as a substituent that the acyl group represented by X 1 and X 2 in formula (1) may have, an amide group (NH 2 (CO) H) in a narrow sense; an acetamide group; an alkylamide group, Examples include alkylacetamido group, arylamido group, and arylacetamido group, and preferred are amido group (NH 2 (CO) H), acetamide group, N-methylamido group, N-ethylamido group, N- (n-propyl) Amide group, N- (n-butyl) amide group, N-isobutylamide group, N- (sec-butylamide) group, N- (t-butyl) amide group, N, N-dimethylamide group, N, N- Mono or di having 1 to 4 carbon
  • Examples of the alkoxyl group as a substituent that the acyl group represented by X 1 and X 2 in Formula (1) may have include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, Examples thereof include an alkoxyl group having 1 to 4 carbon atoms such as an isobutoxy group, a sec-butoxy group, and a t-butoxy group.
  • the aryloxy group as a substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have is monocyclic, bicyclic or tricyclic such as phenoxy group or naphthoxy group. An aryloxy group is mentioned.
  • As the acyl group as the substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have, those described in the item of the acyl group represented by X 1 and X 2 in the formula (1) The same thing is mentioned.
  • alkoxycarbonyl group as the substituent that the acyl group represented by X 1 and X 2 in Formula (1) may have include, for example, an alkoxycarbonyl group having 1 to 10 carbon atoms, and specific examples thereof are as follows.
  • Methoxycarbonyl group ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, t-butoxycarbonyl group, n-pentoxycarbonyl group, n -Hexyloxycarbonyl group, n-heptyloxycarbonyl group, n-nonyloxycarbonyl group, n-decyloxycarbonyl group.
  • Examples of the arylcarbonyl group as a substituent that the acyl group represented by X 1 and X 2 in formula (1) may have include monocyclic, bicyclic or tricyclic aryl such as benzophenone and naphthophenone. A group in which a group and carbonyl are linked is represented.
  • the aromatic residue as a substituent that the acyl group represented by X 1 and X 2 in formula (1) may have is one hydrogen atom from an aromatic ring (an aromatic ring and a condensed ring including an aromatic ring).
  • the aromatic residue may have a substituent.
  • aromatic ring examples include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a pyrene ring, a perylene ring and a terylene ring, and other monocyclic, bicyclic or tricyclic aromatic hydrocarbon rings; , Azulene ring, pyridine ring, pyrazine ring, pyrimidine ring, pyrazole ring, pyrazolidine ring, thiazolidine ring, oxazolidine ring, pyran ring, chromene ring, pyrrole ring, pyrrolidine ring, benzimidazole ring, imidazoline ring, imidazolidine ring, imidazole ring , Triazole ring, triazine ring, diazole ring, indoline ring, furan ring, oxazole ring, oxadiazole
  • Examples of the aliphatic hydrocarbon residue as a substituent that the acyl group represented by X 1 and X 2 in Formula (1) may have include a saturated or unsaturated linear or branched alkyl group, or cyclic And the aliphatic hydrocarbon residue may have a substituent.
  • the aliphatic hydrocarbon residue is preferably a saturated alkyl group, and more preferably a saturated linear alkyl group.
  • the aliphatic hydrocarbon residue has preferably 1 to 36 carbon atoms, more preferably 1 to 18 carbon atoms, and still more preferably 1 to 8 carbon atoms.
  • these aliphatic hydrocarbon residues include methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, n-pentyl.
  • amide group represented by X 1 and X 2 in the formula (1) those described in the section of the amide group as a substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have The same thing is mentioned.
  • the amide group represented by X 1 and X 2 in formula (1) may have a substituent, and examples of the substituent that may be present include acyl represented by X 1 and X 2 in formula (1). The same thing as what was mentioned in the term of the substituent which group may have is mentioned.
  • the alkoxycarbonyl group represented by X 1 and X 2 in the formula (1) is described in the section of the alkoxycarbonyl group as a substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have. The same thing is mentioned.
  • the alkoxycarbonyl group represented by X 1 and X 2 in formula (1) may have a substituent, and examples of the substituent that may be present include X 1 and X 2 in formula (1).
  • the same thing as what was mentioned in the term of the substituent which the acyl group may have is mentioned.
  • Aromatic residue, aliphatic hydrocarbon residue, amide group, acyl group as a substituent that the acyl group, amide group and alkoxycarbonyl group represented by X 1 and X 2 in formula (1) may have,
  • aromatic residue represented by X 1 and X 2 in the formula (1) include an aromatic residue as a substituent that the acyl group represented by X 1 and X 2 in the formula (1) may have. Examples are the same as those described in the group section.
  • the aromatic residue may have a substituent, and the substituent is described in the section of the substituent that the acyl group represented by X 1 and X 2 in Formula (1) may have. The same thing is mentioned.
  • As the aromatic residue represented by X 1 and X 2 at least one group selected from the group consisting of a carboxyl group, a hydroxyl group, a phosphoric acid group, a sulfonic acid group, and a salt of these acidic groups is used as a substituent.
  • the aromatic residue is preferably a group represented by any of the following formulas (1001) to (1033).
  • Examples of the ring formed by combining X 1 and X 2 with each other include an aromatic ring and a heterocyclic ring, and these rings may have a substituent.
  • Specific examples of the aromatic ring formed by combining X 1 and X 2 with each other include a specific description in the explanation of the aromatic residue as a substituent that the acyl group represented by X 1 and X 2 may have. The thing similar to the aromatic ring described as an example is mentioned.
  • As the X 1 and X 2 and a bond to substituent which may be ring have to be formed with each other may have acyl group represented by X 1 and X 2 in the formula (1) substituted Examples are the same as those described in the group section.
  • heterocyclic ring formed by combining X 1 and X 2 with each other examples include, for example, a heterocyclic ring containing a 4- to 7-membered hetero atom such as S, O, and N, and the following formulas (2001) to (2017) Is preferably a ring represented by formula (2007) or formula (2012), more preferably a ring represented by formula (2007). .
  • mark * in the formula (2001) to in (2017) represents a carbon atom to which both of X 1 and X 2 in the formula (1) is attached.
  • X 1 and X 2 in Formula (1) are each preferably independently a carboxyl group, a phosphate group, a cyano group, or an acyl group, and more preferably each independently a carboxyl group, a cyano group, or an acyl group. It is more preferable that one is a carboxyl group and the other is a carboxyl group, a cyano group or an acyl group, and it is particularly preferable that one is a carboxyl group and the other is a cyano group.
  • Q 1 and Q 2 in formula (1) each independently represent an oxygen atom, a sulfur atom, a selenium atom or NR 11
  • R 11 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • the aromatic residue represented by R 11 is the same as that described in the section of the aromatic residue as a substituent that the acyl group represented by X 1 and X 2 in the formula (1) may have.
  • As the aliphatic hydrocarbon residue represented by R 11 those described in the paragraph of the aliphatic hydrocarbon residue as a substituent that the acyl group represented by X 1 and X 2 in the formula (1) may have The same thing is mentioned.
  • the aromatic residue and aliphatic hydrocarbon residue represented by R 11 may have a substituent, and the substituent that may be present is represented by X 1 and X 2 in the formula (1).
  • each Q 1 may be the same or different from each other, and when j is 2 or more and a plurality of Q 2 are present, Each Q 2 may be the same as or different from each other.
  • Q 1 and Q 2 in Formula (1) are each independently preferably an oxygen atom, a sulfur atom or a selenium atom, and more preferably a sulfur atom.
  • a 1 , A 2 , A 3 , A 5 and A 6 in formula (1) are each independently a hydrogen atom, an aromatic residue, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an amide Represents a group, an alkoxyl group, an aryloxy group, an alkoxycarbonyl group, an arylcarbonyl group or an acyl group.
  • aromatic residues aliphatic hydrocarbon residues, halogen atoms, amide groups, alkoxyl groups, aryloxy groups, alkoxycarbonyl groups and arylcarbonyl groups represented by A 1 , A 2 , A 3 , A 5 and A 6
  • An aromatic residue, aliphatic hydrocarbon residue, halogen atom, amide group, alkoxyl group, aryloxy group as a substituent that the acyl group represented by X 1 and X 2 in formula (1) may have , The same as those described in the section of alkoxycarbonyl group and arylcarbonyl group.
  • Examples of the acyl group represented by A 1 , A 2 , A 3 , A 5 and A 6 include the same as those described in the section of the acyl group represented by X 1 and X 2 in the formula (1).
  • the aromatic residue, aliphatic hydrocarbon residue, amide group, alkoxyl group, aryloxy group, alkoxycarbonyl group, arylcarbonyl group and acyl group represented by A 1 , A 2 , A 3 , A 5 and A 6 are substituted.
  • the substituent which may have a group the substituent which may be included is the one described in the section of the substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have The same thing is mentioned.
  • each of A 2 and A 3 may be the same or different from each other, with n is 2 or more A 5 and A
  • each A 5 and A 6 may be the same as or different from each other.
  • any one of A 1 , A 2 and A 3 may form a ring. Examples of the ring formed by any one of A 1 , A 2 and A 3 include an unsaturated hydrocarbon ring or a heterocyclic ring.
  • Examples of the unsaturated hydrocarbon ring formed by any one of A 1 , A 2 and A 3 include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, pyrene ring, indene ring, azulene ring, fluorene ring, Examples include a cyclobutene ring, a cyclohexene ring, a cyclopentene ring, a cyclohexadiene ring, a cyclopentadiene ring, and examples of the heterocyclic ring include a pyran ring, a pyridine ring, a pyrazine ring, a piperidine ring, an indoline ring, an oxazole ring, a thiazole ring, and a thiadiazole.
  • a benzene ring, a cyclobutene ring, a cyclopentene ring, and a cyclohexene ring are preferable.
  • These unsaturated hydrocarbon rings and heterocycles may have a substituent, and the substituent that may be included is an acyl group represented by X 1 and X 2 in the formula (1). Examples thereof may be the same as those described in the section of the substituent which may be present.
  • the heterocyclic ring formed by any one of A 1 , A 2 and A 3 has a substituent such as a carbonyl group or a thiocarbonyl group, it may form a cyclic ketone or a cyclic thioketone.
  • the ring may further have a substituent. Examples of the substituent which may be present include the same as those described in the section of the substituent which the acyl group represented by X 1 and X 2 in Formula (1) may have.
  • a 1 , A 2 , A 3 , A 5 and A 6 in the formula (1) are preferably each independently a hydrogen atom or an aliphatic hydrocarbon residue, and each independently represents a hydrogen atom or a carbon number of 1 to More preferably, it is a linear alkyl group of 8, more preferably a hydrogen atom.
  • a 4 in Formula (1) represents a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxyl group, an amide group, an alkoxycarbonyl group, or an acyl group.
  • the substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have And the same as those described in the section of the aliphatic hydrocarbon residue, halogen atom, alkoxyl group, amide group and alkoxycarbonyl group.
  • Examples of the acyl group represented by A 4 include the same groups as those described in the section of the acyl group represented by X 1 and X 2 in the formula (1).
  • the aliphatic hydrocarbon residue, alkoxyl group, amide group, alkoxycarbonyl group, and acyl group represented by A 4 may have a substituent, and the substituent that may have is represented by the formula (1) acyl group represented by X 1 and X 2 of may be the same as those described in the section of the substituent which may have. When m is 2 or more and a plurality of A 4 are present, each A 4 may be the same as or different from each other.
  • a 4 in formula (1) is preferably a hydrogen atom or an aliphatic hydrocarbon residue, more preferably a hydrogen atom or a linear alkyl group having 1 to 8 carbon atoms, and a hydrogen atom. Is more preferable.
  • a 7 and A 8 in Formula (1) each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxyl group, an alkoxycarbonyl group, or an acyl group.
  • the aliphatic hydrocarbon residue, halogen atom, alkoxyl group and alkoxycarbonyl group represented by A 7 and A 8 as the substituent that the acyl group represented by X 1 and X 2 in formula (1) may have The same as those described in the section of the aliphatic hydrocarbon residue, halogen atom, alkoxyl group and alkoxycarbonyl group.
  • Examples of the acyl group represented by A 7 and A 8 include the same groups as those described in the section of the acyl group represented by X 1 and X 2 in the formula (1).
  • the aliphatic hydrocarbon residue, alkoxyl group, alkoxycarbonyl group, and acyl group represented by A 7 and A 8 may have a substituent, and the substituent that may be included is represented by the formula (1)
  • acyl group represented by X 1 and X 2 of may be the same as those described in the section of the substituent which may have.
  • each A 7 and A 8 may be the same as or different from each other.
  • a 7 and A 8 in formula (1) are each independently preferably a hydrogen atom or an aliphatic hydrocarbon residue, each independently a hydrogen atom or a linear alkyl group having 1 to 8 carbon atoms. Is more preferable, and a hydrogen atom is still more preferable. Thus, in a preferred embodiment of the invention, all of A 1 to A 8 are hydrogen.
  • R 1 in the formula (1) represents a residue obtained by removing one hydrogen atom from the aromatic ring Ar 1 of the compound represented by the following formula (2).
  • the position at which one hydrogen atom on the aromatic ring Ar 1 is removed is not particularly limited.
  • M represents a metalloid atom.
  • the metalloid in the present invention refers to a substance that exhibits an intermediate property between a metal and a nonmetal, and specifically includes a boron atom, a silicon atom, a germanium atom, and an antimony atom, and is preferably a boron atom.
  • Y 1 , Y 2 and Y 3 each independently represent a hydrogen atom or an aromatic residue, and the aromatic residue represented by Y 1 , Y 2 and Y 3 is represented by the formula (1) it may be the same as those acyl groups represented by X 1 and X 2 are described in the section of an aromatic residue as the substituent which may have.
  • the aromatic residue represented by Y 1 , Y 2 and Y 3 may have a substituent, and examples of the substituent which may be present include acyl represented by X 1 and X 2 in formula (1). The same thing as what was mentioned in the term of the substituent which group may have is mentioned.
  • an alkoxyl group is preferable.
  • Y 1 and Y 2 in Formula (2) are preferably each independently an aromatic residue, more preferably each independently a phenyl group or a naphthyl group, and even more preferably a phenyl group.
  • Y 3 in formula (1) is preferably a hydrogen atom.
  • Z 1 and Z 2 each independently represent a halogen atom.
  • the halogen atom represented by Z 1 and Z 2 include the same as those described in the section of the substituent which the acyl group represented by X 1 and X 2 in formula (1) may have, and a fluorine atom It is preferable that
  • Ar 1 and Ar 2 each independently represent an aromatic ring.
  • Specific examples of the aromatic ring represented by Z 1 and Z 2 include specific examples in the explanation part of the aromatic residue as a substituent which the acyl group represented by X 1 and X 2 in the formula (1) may have.
  • R 1 in the formula (1) is preferably a residue obtained by removing one hydrogen atom from the benzene ring b 1 of the compound represented by the following formula (3).
  • the position at which one hydrogen atom on the benzene ring b 1 is removed is not particularly limited, but the 6-position of the indole ring including the benzene ring b 1 in the formula (3) is preferable.
  • Z 3 and Z 4 each independently represent a halogen atom.
  • the halogen atom represented by Z 3 and Z 4 include the same as those described in the section of the halogen atom as a substituent that the acyl group represented by X 1 and X 2 in Formula (1) may have. And is preferably a fluorine atom.
  • a 23 and A 24 each independently represent a hydrogen atom, a halogen atom, an aliphatic hydrocarbon residue or an alkoxyl group.
  • halogen atom represented by A 23 and A 24 the aliphatic hydrocarbon residue and the alkoxyl group
  • a halogen atom as a substituent which the acyl group represented by X 1 and X 2 in Formula (1) may have, The same thing as what was mentioned by the term of the aliphatic hydrocarbon residue and the alkoxyl group is mentioned.
  • m is 2 or more and a plurality of R 1 are present, each R 1 may be the same as or different from each other.
  • an alkoxyl group is preferable, an alkoxyl group having 1 to 4 carbon atoms is more preferable, and a methoxy group is still more preferable.
  • R 2 in the formula (1) is a group represented by the following formula (3003).
  • R 14 and R 15 each independently represent a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • an aromatic residue as a substituent which the acyl group represented by X 1 and X 2 in formula (1) may have And the same as those described in the section of the aliphatic hydrocarbon residue.
  • the aromatic residue and aliphatic hydrocarbon residue represented by R 14 and R 15 may have a substituent, and examples of the substituent that may be present include X 1 and X in the formula (1)
  • R 14 and R 15 in the formula (3003) are preferably each independently an aromatic residue, more preferably each independently a group represented by the following formula (3001), and both are the same A group represented by the following formula (3001) is more preferable.
  • R 12 and R 13 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • R 12 and R 13 in the formula (3001) are preferably each independently an alkyl group having 1 to 8 carbon atoms, more preferably each independently a linear alkyl group having 1 to 8 carbon atoms, It is more preferable that both are linear alkyl groups having 1 to 8 carbon atoms, and it is particularly preferable that both are n-butyl groups.
  • R 16 , R 17 , R 18 and R 19 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, acyl group, amide group, alkoxyl group, alkoxycarbonyl Represents a group or a sulfonylbenzene group.
  • aromatic residue aliphatic hydrocarbon residue, amide group, alkoxyl group and alkoxycarbonyl group represented by R 16 , R 17 , R 18 and R 19 , acyl represented by X 1 and X 2 in the formula (1)
  • examples are the same as those described in the paragraphs of the aromatic residue, aliphatic hydrocarbon residue, amide group, alkoxyl group and alkoxycarbonyl group as the substituent that the group may have.
  • Examples of the acyl group represented by R 16 , R 17 , R 18 and R 19 include the same as those described in the section of the acyl group represented by X 1 and X 2 in formula (1).
  • R 16 , R 17 , R 18 and R 19 in the formula (3003) are preferably each independently a hydrogen atom or an alkoxyl group, and each independently a hydrogen atom or an alkoxyl group having 1 to 4 carbon atoms. Are more preferable, and all of them are more preferably hydrogen atoms.
  • any of A 5 , A 6 and R 2 may form a ring.
  • the ring formed by any one of A 5 , A 6 and R 2 may have a substituent, and examples of the substituent which may have include X 1 and X 2 in the formula (1). The same thing as what was mentioned in the term of the substituent which the acyl group which this represents may have is mentioned.
  • R 2 in formula (1) is particularly preferably a group represented by any of the following formulas (3109) to (3114).
  • R 2 in the formula (1) is preferably a group represented by any one of the formulas (3110), (3111), (3113), or (3114). Most preferably, it is group represented by these.
  • each may form a salt.
  • the salt include lithium, Salts with alkali metals such as sodium and potassium, or alkaline earth metals such as magnesium and calcium, or organic bases such as quaternary ammonium salts such as tetramethylammonium, tetrabutylammonium, pyridinium, imidazolium, piperazinium and piperidinium And salts such as
  • the compound represented by the formula (1) can take structural isomers such as a cis isomer, a trans isomer, and a racemate, but is not particularly limited, and any isomer is preferable as a photosensitizing dye in the present invention. It can be used.
  • Preferred combinations of m, l, n, j, X 1 to X 2 , Q 1 to Q 2 , A 1 to A 8 and R 1 to R 2 in formula (1) are the above-described m, l, n, j , X 1 to X 2 , Q 1 to Q 2 , A 1 to A 8, and R 1 to R 2 , which are preferable combinations, and more preferable combinations are as follows. That is, preferably l and n are 0, m and j are 1 to 3 (more preferably m is 1 and j is 1 to 3), and X 1 and X 2 are each independently a carboxyl group.
  • a phosphoric acid group, a cyano group or an acyl group, Q 1 and Q 2 are each independently an oxygen atom, a sulfur atom or a selenium atom, and A 1 to A 8 are each independently a hydrogen atom or an aliphatic hydrocarbon residue.
  • R 1 is a residue obtained by removing one hydrogen atom from the aromatic ring Ar 1 of the compound represented by the formula (2), and Y 1 and Y 2 are each independently a phenyl group or a naphthyl group.
  • Y 3 is a hydrogen atom
  • Ar 1 and Ar 2 are each independently a benzene ring or a naphthalene ring
  • R 2 is a group represented by any one of the above formulas (3109) to (3114) It is a certain combination.
  • l and n are 0, m and j are 1 to 2 (more preferably m is 1 and j is 1 to 2), and X 1 and X 2 are each independently a carboxyl group , A cyano group or an acyl group, Q 1 and Q 2 are each independently an oxygen atom, a sulfur atom or a selenium atom, and A 1 to A 8 are each independently a hydrogen atom or a linear alkyl having 1 to 8 carbon atoms.
  • R 1 is a residue obtained by removing one hydrogen atom from the aromatic ring Ar 1 of the compound represented by the formula (3)
  • R 2 is a group represented by the above formulas (3110), (3111), ( 3113) or (3114).
  • l and n are 0, m and j are 1 to 2 (more preferably m is 1 and j is 1 to 2), and one of X 1 and X 2 is a carboxyl group And the other is a carboxyl group, a cyano group or an acyl group, Q 1 and Q 2 are sulfur atoms, A 1 to A 8 are hydrogen atoms, and R 1 is the fragrance of the compound represented by formula (3) A residue obtained by removing one hydrogen atom from ring Ar 1 , wherein Z 3 and Z 4 are fluorine atoms, A 23 and A 24 are each independently an alkoxyl group having 1 to 4 carbon atoms, R A combination in which 2 is a group represented by the formula (3111).
  • the compound represented by the formula (1) can be produced, for example, according to the following reaction formula, but the present invention is not limited to these synthesis methods.
  • a method for synthesizing a compound represented by the formula (m), which is an intermediate material will be described.
  • the compound represented by the formula (a) as a raw material and the compound represented by the formula (b) are reacted in an appropriate solvent such as alcohol to obtain a compound represented by the formula (c).
  • the compound represented by the formula (c) is treated with lead tetraacetate in an appropriate solvent such as tetrahydrofuran to obtain the compound represented by the formula (d).
  • the compound represented by the formula (m) is obtained by bonding the compound represented by the formula (j) and the compound represented by the formula (k) by cross coupling or the like.
  • Y 3 can be substituted with a substituent other than a hydrogen atom by a Grignard reaction or the like as necessary.
  • a compound represented by formula (n) and a compound represented by formula (o) synthesized in advance by a known method, or a compound and formula represented by formula (p) synthesized in advance by a known method The compound represented by formula (i) obtained by reacting the compound represented by (q) with a solvent such as ethanol or tetrahydrofuran in the presence of an acid catalyst such as hydrobromic acid or hydrogen chloride.
  • the compound represented by the formula (m) can also be obtained by performing the same treatment as above.
  • a compound represented by the formula (t) is obtained by a reaction between the compound represented by the formula (r) and the boronic acid represented by the formula (s).
  • the compound represented by the formula (t) is treated with N-iodosuccinimide to obtain the compound represented by the formula (u).
  • This is reacted with a boronic acid represented by the formula (v) to derive a compound represented by the formula (w), and then reacted with the compound represented by the formula (m) obtained above to formula (
  • a carbonyl compound represented by x) is obtained.
  • this compound represented by the formula (x) and the compound having an active methylene represented by the formula (y) are converted into caustic soda, sodium methylate, sodium acetate, diethylamine, triethylamine, piperidine, piperazine, diazabicyclo.
  • alcohols such as methanol, ethanol, isopropanol and butanol
  • aprotic polar solvents such as dimethylformamide and N-methylpyrrolidone
  • solvents such as toluene, acetic anhydride and acetonitrile in the presence of basic catalysts such as undecene
  • the compound (dye) represented by the formula (1) of the present invention is obtained.
  • the compound having active methylene represented by the formula (y) has an ester group, it is also possible to obtain a carboxylic acid form by performing hydrolysis or the like after the condensation reaction.
  • a thin film of oxide semiconductor fine particles is provided on a substrate using oxide semiconductor fine particles, and then a compound (pigment) represented by formula (1) is supported on the thin film.
  • a substrate on which a thin film of oxide semiconductor fine particles is provided a substrate having a conductive surface is preferable, but such a substrate is easily available in the market.
  • conductive metal oxides such as tin oxide doped with indium, fluorine and antimony on the surface of transparent polymer materials such as glass or polyethylene terephthalate or polyether sulfone, and metals such as copper, silver and gold
  • a substrate provided with a thin film can be used as the substrate.
  • the conductivity is usually 1000 ⁇ or less, particularly preferably 100 ⁇ or less.
  • the oxide semiconductor fine particles are preferably metal oxides, and specific examples thereof include oxides of titanium, tin, zinc, tungsten, zirconium, gallium, indium, yttrium, niobium, tantalum, vanadium, and the like. Of these, oxides such as titanium, tin, zinc, niobium, and indium are preferable, and titanium oxide, zinc oxide, and tin oxide are most preferable. These oxide semiconductors can be used alone, but may be used as a mixture or may be used by coating the surface of the semiconductor.
  • the average particle diameter of the oxide semiconductor fine particles is usually 1 to 500 nm, preferably 1 to 100 nm.
  • the fine particles of the oxide semiconductor may be a mixture of a large particle size and a small particle size, or may be used in multiple layers.
  • the thin film of oxide semiconductor fine particles is a method of directly forming oxide semiconductor fine particles as a thin film of semiconductor fine particles on the substrate by spray spraying, a method of electrically depositing semiconductor fine particles into a thin film using the substrate as an electrode, It can be produced by applying a paste containing fine particles obtained by hydrolyzing a precursor of semiconductor fine particles such as slurry or semiconductor alkoxide on a substrate, followed by drying, curing or baking.
  • a method using a slurry is preferable.
  • the slurry can be obtained by dispersing secondary agglomerated oxide semiconductor fine particles in a dispersion medium by an ordinary method so that the average primary particle diameter is 1 to 200 nm.
  • the dispersion medium for dispersing the slurry may be anything as long as it can disperse the semiconductor fine particles.
  • Water alcohols such as ethanol, ketones such as acetone and acetylacetone, hydrocarbons such as hexane, and the like are used.
  • the use of water is preferable in that the viscosity change of the slurry is reduced.
  • a dispersion stabilizer can be used for the purpose of stabilizing the dispersion state of the oxide semiconductor fine particles. Examples of the dispersion stabilizer that can be used include acids such as acetic acid, hydrochloric acid, and nitric acid, and organic solvents such as acetylacetone, acrylic acid, polyethylene glycol, and polyvinyl alcohol.
  • the substrate coated with the slurry may be fired, and the firing temperature is usually 100 ° C. or higher, preferably 200 ° C. or higher, and the upper limit is generally lower than the melting point (softening point) of the substrate material. Yes, preferably 600 ° C. or lower.
  • the firing time is not particularly limited but is preferably within 4 hours.
  • the thickness of the thin film on the substrate is usually 1 to 200 ⁇ m, preferably 1 to 50 ⁇ m.
  • Secondary treatment may be applied to the thin film of oxide semiconductor fine particles. That is, improving the performance of the thin film of semiconductor fine particles by, for example, immersing the thin film together with the substrate directly in a solution of the same metal alkoxide, chloride, nitride, sulfide, etc. as the semiconductor and drying or refiring. You can also.
  • the metal alkoxide include titanium ethoxide, titanium isopropoxide, titanium t-butoxide, n-dibutyl-diacetyltin, and alcohol solutions thereof are used.
  • the chloride include titanium tetrachloride, tin tetrachloride, zinc chloride and the like, and an aqueous solution thereof is used.
  • the oxide semiconductor thin film thus obtained is composed of fine particles of an oxide semiconductor.
  • a method for supporting the compound represented by the formula (1) of the present invention on a thin film of oxide semiconductor fine particles will be described.
  • a solution obtained by dissolving the compound in a solvent capable of dissolving the compound, or a compound having low solubility is dispersed.
  • a method of immersing a substrate provided with a thin film of the oxide semiconductor fine particles in the obtained dispersion liquid may be mentioned.
  • the concentration in the solution or dispersion is appropriately determined depending on the compound.
  • a thin film of semiconductor fine particles formed on the substrate is immersed in the solution.
  • the immersion temperature is generally from room temperature to the boiling point of the solvent, and the immersion time is about 1 minute to 48 hours.
  • the solvent that can be used for dissolving the compound include, for example, methanol, ethanol, isopropanol, tetrahydrofuran (THF), acetonitrile, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), acetone, n-butanol, t- Examples include butanol, water, n-hexane, chloroform, dichloromethane, toluene, and the like, which can be used alone or in combination according to the solubility of the compound.
  • the compound concentration of the solution is usually 1 ⁇ 10 ⁇ 6 M to 1M, and preferably 1 ⁇ 10 ⁇ 5 M to 1 ⁇ 10 ⁇ 1 M. After the immersion, the solvent is removed by air drying or heating if necessary.
  • the photoelectric conversion element of the present invention having a thin film of oxide semiconductor fine particles sensitized with the compound (pigment) represented by the formula (1) is obtained.
  • the compound represented by the formula (1) to be supported may be one kind or a mixture of several kinds.
  • the compound (pigment) represented by Formula (1) of this invention may be mutually, and another pigment
  • dyes having different absorption wavelengths a wide absorption wavelength can be used, and a solar cell with high conversion efficiency can be obtained.
  • metal complex dyes that can be mixed are not particularly limited, but ruthenium complexes and their quaternary ammonium salt compounds, phthalocyanines, porphyrins, and the like shown in Non-Patent Document 2 are preferable, and there are no organic dyes that are mixed and used.
  • a ruthenium complex, a merocyanine, an acrylic acid-based methine dye, or the like is used.
  • the dyes may be adsorbed sequentially on the thin film of semiconductor fine particles or may be admixed and dissolved.
  • the ratio of the dye to be mixed is not particularly limited, and the optimization condition is appropriately selected for each dye. Generally, it is preferable to use about 10% mol or more per one dye from the mixing of equimolar amounts. .
  • the total concentration of the dye in the solution may be the same as when only one kind is supported.
  • the solvent in the case of using a mixture of dyes the above-mentioned solvents can be used, and the solvents for the respective dyes to be used may be the same or different.
  • the dye When the dye is supported on the thin film of oxide semiconductor fine particles, it is advantageous to support the dye in the presence of the inclusion compound in order to prevent the association between the dyes.
  • inclusion compounds include steroidal compounds such as cholic acid, crown ethers, cyclodextrins, calixarene, polyethylene oxide, and the like.
  • preferable compounds include deoxycholic acid, dehydrodeoxycholic acid, chenodeoxycholic acid, and cholic acid.
  • cholic acids such as acid methyl ester and sodium cholate, and polyethylene oxide.
  • the semiconductor fine film thin film may be treated with an amine compound such as 4-t-butylpyridine.
  • a treatment method for example, a method of immersing a substrate provided with a thin film of semiconductor fine particles carrying a dye in an ethanol solution of amine is employed.
  • the solar cell of the present invention comprises, as one electrode, a photoelectric conversion element in which the compound (dye) of the present invention is supported on a thin film of oxide semiconductor fine particles, and is composed of a counter electrode, a redox electrolyte, a hole transport material, a p-type semiconductor or the like Is done.
  • a redox electrolyte As the form of the redox electrolyte, the hole transport material, the p-type semiconductor, etc., those known per se such as liquid, solidified body (gel and gel) and solid can be used. Liquids such as redox electrolytes, molten salts, hole transport materials, p-type semiconductors, etc., dissolved in solvents and room temperature molten salts are solidified (gels and gels).
  • Examples include a matrix and a low molecular gelling agent.
  • a redox electrolyte, a molten salt, a hole transport material, a p-type semiconductor, or the like can be used.
  • the hole transport material include amine derivatives, conductive polymers such as polyacetylene, polyaniline, and polythiophene, and triphenylene compounds.
  • the p-type semiconductor include CuI and CuSCN.
  • the counter electrode is preferably conductive and has a catalytic action on the reduction reaction of the redox electrolyte.
  • a glass or polymer film deposited with platinum, carbon, rhodium, ruthenium or the like, or a film coated with conductive fine particles can be used.
  • Examples of the redox electrolyte used in the solar cell of the present invention include halogen redox electrolytes composed of halogen compounds and halogen molecules having halogen ions as counter ions, ferrocyanate-ferricyanate, ferrocene-ferricinium ions, cobalt complexes, etc.
  • Examples thereof include metal redox electrolytes such as metal complexes, and organic redox electrolytes such as alkylthiol-alkyldisulfides, viologen dyes, hydroquinone-quinones, and the like, but halogen redox electrolytes are preferred.
  • halogen molecule in the halogen redox electrolyte comprising a halogen compound-halogen molecule examples include iodine molecule and bromine molecule, and iodine molecule is preferable.
  • halogen compound having a halogen ion as a counter ion for example LiBr, NaBr, KBr, LiI, NaI, KI, CsI, CaI 2, MgI 2, CuI and halogenated metal salt or tetraalkylammonium iodide, and imidazolium
  • halogen organic quaternary ammonium salts such as rhodium iodide and pyridinium iodide, and salts having iodine ions as counter ions are preferred.
  • the electrolyte which uses imide ions, such as a bis (trifluoromethanesulfonyl) imide ion and a dicyano imide ion, as a counter ion other than the said iodine ion.
  • imide ions such as a bis (trifluoromethanesulfonyl) imide ion and a dicyano imide ion
  • an electrochemically inert solvent is used as the solvent.
  • acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropylene are particularly preferred.
  • Nitrile, methoxy acetonitrile, ethylene glycol, 3-methyl - oxazolidin-2-one, .gamma.-butyrolactone and the like are preferable. You may use these individually or in combination of 2 or more types.
  • examples include those in which an electrolyte or an electrolyte solution is contained in a matrix such as an oligomer and a polymer, and those in which a low-molecular gelling agent or the like is similarly contained in an electrolyte or an electrolyte solution.
  • the concentration of the redox electrolyte is usually 0.01 to 99% by mass, preferably about 0.1 to 90% by mass.
  • the solar cell of the present invention has a counter electrode so that a thin film of oxide semiconductor fine particles on a substrate is sandwiched between electrodes of a photoelectric conversion element carrying a compound (pigment) represented by the formula (1) of the present invention. Deploy. In the meantime, it is obtained by filling a solution containing a redox electrolyte.
  • Synthesis example 2 To a solution obtained by dissolving 2.5 parts of the compound represented by the formula (800) obtained in Synthesis Example 1 in a mixed solution of 250 parts of acetic acid and 375 parts of chloroform, 1.6 parts of N-iodosuccinimide is added, The mixture was stirred for 5 hours at room temperature under light shielding. 0.8 part of N-iodosuccinimide was added, and the mixture was further stirred at room temperature for 19 hours under light shielding. After the reaction, the precipitate was filtered and washed with hexane to obtain 2.9 parts of a compound represented by the following formula (801) as a pale orange solid.
  • Synthesis example 3 1.6 parts of [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) dichloromethane adduct, 2 parts of potassium acetate and 2 parts of bis (pinacolato) diboron are added to 22 parts of dimethyl sulfoxide, and under nitrogen atmosphere Stir. A solution prepared by dissolving 5 parts of 9,9-dibutyl-N- (9,9-dibutylfluoren-2-yl) -N- (4-iodophenyl) fluoren-2-amine in 66 parts of dimethyl sulfoxide was added. Stir at 5 ° C. for 5 hours.
  • reaction mixture was extracted with toluene-water, and the toluene phase was concentrated, then separated and purified by column chromatography (chloroform-hexane) to obtain 3.5 parts of a compound represented by the following formula (802) as a white solid.
  • Synthesis example 4 2.1 parts of the compound represented by Formula (801) obtained in Synthesis Example 2, 4.1 parts of the compound represented by Formula (802) obtained in Synthesis Example 3, tetrakis (triphenylphosphine) palladium ( 0) 0.15 part and 16 parts of a 20% aqueous sodium carbonate solution were added to 300 parts of 1,2-dimethoxyethane and reacted under reflux for 4 hours. 2.0 parts of the compound represented by the formula (802) and 0.08 part of tetrakis (triphenylphosphine) palladium (0) were added, and the mixture was further reacted for 3 hours under reflux.
  • reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane, and toluene-hexane), and 1.2 parts of the compound represented by the following formula (803) was concentrated. Obtained as an orange solid.
  • Synthesis example 5 A compound represented by the following formula (805) was obtained using 4-bromo-2-hydroxyacetophenone and 2-methoxybenzoylhydrazine according to the synthesis method described in Non-Patent Document 3.
  • Synthesis example 7 In 230 parts of tetrahydrofuran, 4.1 parts of the compound represented by the formula (806) obtained in Synthesis Example 6 was dissolved and ice-cooled. After adding 8.0 parts of lead tetraacetate little by little, it stirred at room temperature for about 5 hours. After completion of the reaction, the mixture was filtered through a Kiriyama funnel containing silica gel, and the filtrate was distilled off under reduced pressure to obtain 4.4 parts of a compound represented by the following formula (807) as an ocherous solid.
  • Synthesis example 8 In a mixed solution of 37 parts of methanol and 28 parts of acetic acid, 1.6 parts of the compound represented by the formula (805) obtained in Synthesis Example 5 and the compound 1 represented by the formula (807) obtained in Synthesis Example 7 2 parts were dissolved with stirring to obtain a homogeneous solution. This solution was ice-cooled, 19 parts of aqueous ammonia was added, and the mixture was stirred overnight at 45 ° C. Quenched with saturated aqueous sodium hydrogen carbonate solution, the precipitated solid was filtered off. The obtained solid was separated and purified by column chromatography (hexane-benzene) to obtain 0.31 part of a compound represented by the following formula (808) as a dark blue solid.
  • Synthesis Example 9 After 1.2 parts of the compound represented by the formula (808) obtained in Synthesis Example 8 was dissolved in 72 parts of anhydrous toluene under a nitrogen atmosphere, 0.58 parts of triethylamine was added and heated to 80 ° C. After slowly adding dropwise 3.4 parts of diethyl ether complex of trifluoroboron, the mixture was stirred at 100 ° C. overnight. The reaction mixture was quenched by adding 40 parts of water, extracted with 110 parts of ethyl acetate, washed with 300 parts of water, and then dried by adding sodium sulfate to the organic layer. Sodium sulfate was filtered off and concentrated. The obtained solid was separated and purified by column chromatography (hexane-benzene) to obtain 1.1 parts of a compound represented by the following formula (809) as a dark blue solid.
  • Synthesis Example 10 Under a nitrogen atmosphere, 1.1 parts of the compound represented by the formula (809) obtained in Synthesis Example 9 and 1.9 parts of potassium acetate were dissolved in 29 parts of anhydrous dimethoxyethane, and freeze degassing was performed three times. 1.3 parts of bis (pinacolato) diboron was added to the solution in the glove box. 29 parts of anhydrous dimethoxyethane was put in another container and freeze deaeration was performed three times. Then, 0.38 part of [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II) was added in the glove box. It was. This solution was added to the previous solution and stirred at 80 ° C.
  • Synthesis Example 11 0.084 parts of the compound represented by the formula (803) obtained in Synthesis Example 4, 0.19 parts of the compound represented by the formula (810) obtained in Synthesis Example 10, and bis (tri-tert-butylphosphine) ) 0.013 part of palladium (0), 0.026 part of cesium fluoride and 0.23 part of water were added to 2.7 parts of 1,4-dioxane and refluxed for 3.5 hours.
  • the reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.11 part of a compound represented by the following formula (811) was obtained as a black-green solid. .
  • Example 1 0.13 part of the compound represented by the formula (811) obtained in Synthesis Example 11 and 0.047 part of cyanoacetic acid are dissolved in 18 parts of ethanol-toluene (2: 1) mixed solution, and 0.005 part of anhydrous piperazine is dissolved. Was added and reacted under reflux for 1 hour. 0.047 parts of cyanoacetic acid was added, and the mixture was further reacted for 3 hours under reflux. Further, 0.047 part of cyanoacetic acid and 0.005 part of anhydrous piperazine were added and reacted under reflux for 3 hours.
  • the maximum absorption wavelength of the compound represented by the formula (812) and the measured values in the nuclear magnetic resonance apparatus are as follows.
  • Maximum absorption wavelength; ⁇ max 634 nm (1.6 ⁇ 10 ⁇ 5 M, tetrahydrofuran solution)
  • Example 2 The compound of the present invention represented by the formula (812) obtained in Example 1 (compound 1 of Table 1) and the cholic acid represented by the following formula (z) were respectively replaced with 3.2 ⁇ 10 ⁇ 4 M and It melt
  • a porous substrate semiconductor thin film electrode obtained by sintering porous titanium oxide for 30 minutes at 450 ° C. on a transparent conductive glass electrode
  • this solution is immersed overnight at room temperature, and then washed with a solvent and dried. A photoelectric conversion element was obtained.
  • the semiconductor thin film layer of the photoelectric conversion element obtained above and the platinum layer of conductive glass with platinum sputtered on the surface are arranged oppositely and fixed, and a solution containing an electrolyte is injected into and sealed in the gap.
  • An inventive solar cell was obtained.
  • the electrolytic solution used was an iodine / tetrapropylammonium iodide dissolved in acetonitrile: ethylene carbonate (2: 3) so as to have a concentration of 0.05M / 0.5M, respectively.
  • Comparative Example 1 Except that the compound of the present invention represented by the formula (812) obtained in Example 1 was changed to a comparative compound represented by the following formula (A) (compound (160) described in Patent Document 3). A solar cell for comparison was obtained according to Example 2.
  • IPCE measurement of solar cells The IPCE at 300 to 800 nm of the solar cells obtained in Example 2 and Comparative Example 1 was measured by DC method using SM-25YD manufactured by Spectrometer Co., Ltd., and the obtained IPCE spectrum is shown in FIG.
  • FIG. 1 “1” is the measurement result of the solar cell of the present invention obtained in Example 2
  • “A” is the comparison solar cell obtained using the compound represented by the above formula (A). Each measurement result is shown.
  • the solar cell using the compound of the present invention as a sensitizing dye can effectively convert visible light in a long wavelength region into electricity as compared with a comparative solar cell. From the results shown in Table 13, it is clear that the solar cell using the compound of the present invention as the sensitizing dye is superior in photoelectric conversion characteristics as compared with the comparative solar cell.
  • a compound of the present invention having a specific partial structure as a sensitizing dye, it is possible to provide a photoelectric conversion element and a solar cell exhibiting high conversion efficiency capable of effectively converting a wide range of visible light into electricity. done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)

Abstract

特定の構造を有する化合物、該化合物を用いた安価で変換効率の高い光電変換素子、及び該光電変換素子を用いた太陽電池の開発。 下記式(1)で表される化合物 (式(1)中、mは1乃至5の整数を、l及びnはそれぞれ独立に0乃至6の整数を、jは0乃至3の整数を表す。X1及びX2は水素原子、カルボキシル基、水酸基、リン酸基等を表す。Q1及びQ2は酸素原子、硫黄原子等を表す。A1乃至A8は水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子等を表す。R1は下記式(2)(式(2)中、Mは半金属原子を表す。Y1乃至Y3は水素原子又は芳香族残基を表す。Z1及びZ2はそれぞれ独立にハロゲン原子を表す。Ar1及びAr2は芳香環を表す。)で表される化合物の芳香環Ar1上から水素原子1個を除いた残基を表す。R2はアミノフェニル基を表す。)。

Description

新規化合物及びそれを含む光電変換素子
 本発明は特定の構造を有する新規有機化合物、該化合物を増感色素として含む光電変換素子及び該光電変換素子を備えてなる太陽電池に関する。
 石油、石炭等の化石燃料に代わるエネルギー資源として太陽光を利用する太陽電池が注目されている。現在、結晶又はアモルファスのシリコンを用いたシリコン太陽電池、あるいはガリウム、ヒ素等を用いた化合物半導体太陽電池等について、盛んに開発検討がなされている。しかしながら、それらの製造には多大なエネルギーが必要なため、結果として製造コストが未だ割高であるという問題点がある。その一方で、色素で増感した半導体微粒子を用いて作製される光電変換素子、あるいはこれを備える太陽電池が知られており、増感色素、半導体微粒子等の材料、および素子及び電池の製造技術について種々の開示がなされている(特許文献1、非特許文献1、非特許文献2を参照)。この色素増感光電変換素子には、酸化チタン等の比較的安価な酸化物半導体が用いられており、従来のシリコン等を用いた太陽電池に比べてコストの安い光電変換素子が得られる可能性があり、またカラフルな太陽電池が得られることなどから注目を集めている。しかしながら、変換効率の高い素子を得るために増感色素として用いられているルテニウム系の錯体自体のコストが高く、またその安定供給にも問題が残っている。そのため増感色素として有機色素を用いる試みも既に行われているが、変換効率、安定性、耐久性が低いなどの問題が解決されていないことから未だ実用化には至っておらず、更なる変換効率等の諸特性の向上が望まれている(特許文献2を参照)。
 これに対して、本発明者らは、光電変換素子の変換効率等を向上することができる有機色素について開示している(特許文献3及び4)
特開平01-220380号公報 国際公開特許WO2002/011213号公報 国際公開特許WO2007/100033号公報 国際公開特許WO2013/147145号公報
B.O'Regan and M.Graetzel Nature, 第353巻, 737頁 (1991年) M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, M.Graetzel, J.Am.Chem.Soc., 第115巻, 6382頁 (1993年) Yuji Kubo, Kazuki Watanabe, Ryuhei Nishiyabu, Reiko Hata, Akinori Murakami, Takayuki Shoda, and Hitoshi Ota, Org. Lett., Vol. 13, No.17,2011. 4574頁 W.Kubo, K.Murakoshi, T.Kitamura, K.Hanabusa, H.Shirai, and S.Yanagida, Chem.Lett., 1241頁(1998年)
 しかしながら、色素で増感された酸化物半導体微粒子を用いた、より変換効率が高く実用性の高い光電変換素子の開発が求められている。
 本発明者等は上記の課題を解決すべく鋭意努力した結果、特定の構造を有する新規化合物を用いて半導体微粒子の薄膜を増感し、光電変換素子を作成することにより、より変換効率の高い光電変換素子が得られることを見出し、本発明を完成させるに至った。
 すなわち本発明は、
(1)下記式(1)で表される化合物
Figure JPOXMLDOC01-appb-C000008
(式(1)中、mは1乃至5の整数を、l及びnはそれぞれ独立に0乃至6の整数を、jは0乃至3の整数を表す。X1及びX2はそれぞれ独立に水素原子、カルボキシル基、水酸基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はスルフォニルベンゼン基を表し、X1及びX2は互いに連結して環を形成してもよい。Q1及びQ2はそれぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表す。R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。mが2以上でQ1が複数存在する場合には、それぞれのQ1は互いに同じか又は異なっていてもよく、jが2以上でQ2が複数存在する場合には、それぞれのQ2は互いに同じか又は異なっていてもよい。A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシル基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。lが2以上でA2及びA3が複数存在する場合には、それぞれのA2及びA3は互いに同じか又は異なっていてもよく、nが2以上でA5及びA6が複数存在する場合には、それぞれのA5及びA6は互いに同じか又は異なってもよい。また、lが0以外の場合には、A1、A2及びA3のいずれか複数個で環を形成してもよい。A4は水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシル基、アミド基、アルコキシカルボニル基又はアシル基を表す。mが2以上でA4が複数存在する場合には、それぞれのA4は互いに同じか又は異なってもよい。A7及びA8はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシル基、アルコキシカルボニル基又はアシル基を表す。jが2以上でA7及びA8が複数存在する場合には、それぞれのA7及びA8は互いに同じか又は異なってもよい。R1は下記式(2)
Figure JPOXMLDOC01-appb-C000009
(式(2)中、Mは半金属原子を表す。Y1、Y2及びY3はそれぞれ独立に水素原子又は芳香族残基を表す。Z1及びZ2はそれぞれ独立にハロゲン原子を表す。Ar1及びAr2はそれぞれ独立に芳香環を表す。)で表される化合物の芳香環Ar1上から水素原子1個を除いた残基を表す。mが2以上でR1が複数存在する場合には、それぞれのR1は互いに同じか又は異なってもよい。R2は下記式(3003)
Figure JPOXMLDOC01-appb-C000010
(式(3003)中、R14及びR15は、それぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。R16、R17、R18及びR19は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシル基、アルコキシカルボニル基又はスルフォニルベンゼン基を表す。)で表される基である。又、nが0以外の場合には、A5、A6及びR2のいずれか複数個で環を形成してもよい。)、
(2)式(1)におけるmが1乃至3である前項(1)に記載の化合物、
(3)式(1)におけるmが1である前項(2)に記載の化合物、
(4)式(1)におけるQ1及びQ2が硫黄原子である前項(1)に記載の化合物、
(5)式(1)におけるl及びnが0である前項(1)に記載の化合物、
(6)式(1)におけるX1及びX2の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基である前項(1)に記載の化合物、
(7)式(1)におけるX1及びX2の一方がカルボキシル基で他方がシアノ基である前項(6)に記載の化合物、
(8)式(1)におけるX1とX2が結合して環構造を形成する前項(1)に記載の化合物、
(9)式(1)におけるA1乃至A8が水素原子である前項(1)に記載の化合物、
(10)式(1)におけるR1が、下記式(3)
Figure JPOXMLDOC01-appb-C000011
(式(3)中、Z3及びZ4はそれぞれ独立にハロゲン原子を表す。A23及びA24はそれぞれ独立に水素原子、ハロゲン原子、脂肪族炭化水素残基又はアルコキシル基を表す。)で表される化合物のベンゼン環b1上から水素原子1個を除いた残基である前項(1)に記載の化合物、
(11)式(3)におけるZ3及びZ4がフッ素原子であり、かつA23及びA24がメトキシ基である前項(10)に記載の化合物、
(12)式(3003)におけるR14及びR15が下記式(3001)
Figure JPOXMLDOC01-appb-C000012
(式(3001)中、R12及びR13は、それぞれ独立に水素原子または炭素数1乃至8のアルキル基を表す。)で表される基であり、かつR16乃至R19がそれぞれ独立に水素原子または炭素数1乃至4のアルコキシル基である前項(1)に記載の化合物、
(13)式(1)におけるR2が、下記式(3109)乃至(3114)
Figure JPOXMLDOC01-appb-C000013
のいずれかで表される基である前項(12)に記載の化合物、
(14)式(1)におけるR2が、式(3110)、(3111)、(3113)又は(3114)で表される基である前項(13)に記載の化合物、
(15)式(1)におけるR2が、式(3111)で表される基である前項(14)に記載の化合物、
(16)下記式(812)
Figure JPOXMLDOC01-appb-C000014
で表される前項(1)に記載の化合物、
(17)基板上に設けられた酸化物半導体微粒子の薄膜に、前項(1)に記載の式(1)で表される化合物の一種以上を担持させた光電変換素子、
(18)基板上に設けられた酸化物半導体微粒子の薄膜に、前項(1)に記載の式(1)で表される化合物の一種以上と、式(1)以外の構造を有する増感色素化合物を担持させた光電変換素子、
(19)酸化物半導体微粒子が、二酸化チタン、酸化亜鉛又は酸化スズを含有する前項(17)又は(18)に記載の光電変換素子、
(20)前項(17)乃至(19)のいずれか一項に記載の光電変換素子を備えてなる太陽電池、
に関する。
 式(1)で表される特定の構造を有する本発明の化合物(本明細書においては、単に「本発明の化合物」とも表記する。)を増感色素として用いることにより、より変換効率が高く実用性の高い色素増感太陽電池を提供することが出来た。
実施例2及び比較例1で得られた太陽電池のIPCEスペクトルである。
 以下に本発明を詳細に説明する。
 本発明の化合物は、下記式(1)で表される構造を有する。
Figure JPOXMLDOC01-appb-C000015
 式(1)におけるmは、1乃至5の整数を表し、1乃至3であることが好ましく、1乃至2であることがより好ましく、1であることが更に好ましい。
 式(1)におけるlは、0乃至6の整数を表し、0であることが好ましい。
 式(1)におけるnは、0乃至6の整数を表し、0であることが好ましい。
 式(1)におけるjは、0乃至3の整数を表し、1乃至3であることが好ましく、1乃至2であることがより好ましく、2であることが更に好ましい。
 式(1)におけるX1及びX2は、それぞれ独立に水素原子、カルボキシル基、水酸基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基、又はスルフォニルベンゼン基等の芳香族残基を表し、あるいはX1とX2とで互いに結合して環を形成してもよい。
 式(1)のX1及びX2が表すアシル基としては、例えば炭素数1乃至10のアルキルカルボニル基、アリールカルボニル基(通常、単環式、二環式もしくは三環式アリールを有する)等が挙げられ、好ましくは炭素数1乃至4のアルキルカルボニル基及び単環式もしくは二環式アリールカルボニル基である。炭素数1乃至4のアルキルカルボニル基としては、例えばアセチル基、プロピオニル基、トリフルオロメチルカルボニル基、ペンタフルオロエチルカルボニル基が挙げられ、単環式もしくは二環式アリールカルボニル基としては、例えばベンゾイル基、ナフトイル基等が挙げられる。
 式(1)のX1及びX2が表すアシル基は置換基を有していてもよく、該有していてもよい置換基としては、例えば、スルホン酸基、スルファモイル基、シアノ基、イソシアノ基、チオシアナト基、イソチオシアナト基、ニトロ基、ニトロシル基、ハロゲン原子、ヒドロキシル基、リン酸基、リン酸エステル基、置換もしくは非置換アミノ基、置換もしくは非置換メルカプト基、アミド基、アルコキシル基、アリールオキシ基、カルボキシル基、カルバモイル基、アシル基、アルデヒド基、並びにアルコキシカルボニル基及びアリールカルボニル基等の置換カルボニル基の他に芳香族残基、脂肪族炭化水素残基等が挙げられる。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等の原子が挙げられ、臭素原子及び塩素原子が好ましい。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのリン酸エステル基としては、リン酸(炭素数1乃至4)アルキルエステル基等が挙げられ、好ましい具体例としては、リン酸メチル基、リン酸エチル基、リン酸(n-プロピル)基及びリン酸(n-ブチル)基である。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての置換もしくは非置換アミノ基としては、非置換アミノ基、モノ又はジメチルアミノ基、モノ又はジエチルアミノ基、モノ又はジ(n-プロピル)アミノ基等の炭素数1乃至4のアルキル置換アミノ基、モノ又はジフェニルアミノ基、モノ又はジナフチルアミノ基等の単環式、二環式もしくは三環式の芳香族置換アミノ基、モノ炭素数1乃至4のアルキルモノフェニルアミノ基等のアルキル基と単環式、二環式もしくは三環式の芳香族残基が一つずつ置換したアミノ基、並びにベンジルアミノ基、アセチルアミノ基、及びフェニルアセチルアミノ基等が挙げられる。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての置換もしくは非置換メルカプト基としては、非置換メルカプト基、アルキルメルカプト基、具体的にはメチルメルカプト基、エチルメルカプト基、n-プロピルメルカプト基、イソプロピルメルカプト基、n-ブチルメルカプト基、イソブチルメルカプト基、sec-ブチルメルカプト基、t-ブチルメルカプト基などの炭素数1乃至4のアルキルメルカプト基、又は単環式、二環式もしくは三環式の芳香族置換メルカプト基、具体的にはフェニルメルカプト基等が挙げられる。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアミド基としては、狭義のアミド基(NH(CO)H);アセトアミド基;アルキルアミド基、アルキルアセトアミド基、アリールアミド基、アリールアセトアミド基が挙げられ、好ましいものとして、アミド基(NH(CO)H)、アセトアミド基、N-メチルアミド基、N-エチルアミド基、N-(n-プロピル)アミド基、N-(n-ブチル)アミド基、N-イソブチルアミド基、N-(sec-ブチルアミド)基、N-(t-ブチル)アミド基、N,N-ジメチルアミド基、N,N-ジエチルアミド基、N,N-ジ(n-プロピル)アミド基、N,N-ジ(n-ブチル)アミド基、N,N-ジイソブチルアミド基等の炭素数1乃至4のモノもしくはジアルキルアミド基;N-メチルアセトアミド基、N-エチルアセトアミド基、N-(n-プロピル)アセトアミド基、N-(n-ブチル)アセトアミド基、N-イソブチルアセトアミド基、N-(sec-ブチル)アセトアミド基、N-(t-ブチル)アセトアミド基、N,N-ジメチルアセトアミド基、N,N-ジエチルアセトアミド基、N,N-ジ(n-プロピル)アセトアミド基、N,N-ジ(n-ブチル)アセトアミド基、N,N-ジイソブチルアセトアミド基等の炭素数1乃至4のモノもしくはジアルキルアセトアミド基;フェニルアミド基、ナフチルアミド基等の単環式、二環式もしくは三環式のアリールアミド基;またはフェニルアセトアミド基、ナフチルアセトアミド基等の単環式、二環式もしくは三環式のアリールアセトアミド基が挙げられる。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアルコキシル基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基等の炭素数1乃至4のアルコキシル基が挙げられる。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアリールオキシ基としては、フェノキシ基、ナフトキシ基等の単環式、二環式もしくは三環式のアリールオキシ基が挙げられる。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアシル基としては、式(1)のX1及びX2が表すアシル基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアルコキシカルボニル基としては、例えば炭素数1乃至10のアルコキシカルボニル基等が挙げられ、その具体例はメトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、t-ブトキシカルボニル基、n-ペントキシカルボニル基、n-ヘキシルオキシカルボニル基、n-ヘプチルオキシカルボニル基、n-ノニルオキシカルボニル基、n-デシルオキシカルボニル基である。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアリールカルボニル基としては、例えばベンゾフェノン、ナフトフェノン等の単環式、二環式もしくは三環式のアリール基とカルボニルが連結した基を表す。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基とは、芳香環(芳香環及び芳香環を含む縮合環)から水素原子1個を除いた基を意味し、該芳香族残基は置換基を有していてもよい。芳香環の具体例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、ペリレン環及びテリレン環等の単環式、二環式もしくは三環式の芳香族炭化水素環;インデン環、アズレン環、ピリジン環、ピラジン環、ピリミジン環、ピラゾール環、ピラゾリジン環、チアゾリジン環、オキサゾリジン環、ピラン環、クロメン環、ピロール環、ピロリジン環、ベンゾイミダゾール環、イミダゾリン環、イミダゾリジン環、イミダゾール環、トリアゾール環、トリアジン環、ジアゾール環、インドリン環、フラン環、オキサゾール環、オキサジアゾール環、チアジン環、チアゾール環、インドール環、ベンゾチアゾール環、ベンゾチアジアゾール環、ナフトチアゾール環、ベンゾオキサゾール環、ナフトオキサゾール環、インドレニン環、ベンゾインドレニン環、キノリン環及びキナゾリン環等のN、O及びS等のヘテロ元素を含有し、4~7員の単環または二環式縮合型の複素芳香環;並びにフルオレン環及びカルバゾール環等のN、O及びS等のヘテロ元素を含有し、4~7員の三環式縮合型の縮合型複素芳香環等が挙げられ、炭素数4乃至20の芳香環が好ましい。
 式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての脂肪族炭化水素残基としては、飽和又は不飽和の直鎖又は分岐鎖のアルキル基、または環状のアルキル基が挙げられ、該脂肪族炭化水素残基は置換基を有していてもよい。脂肪族炭化水素残基としては、飽和のアルキル基であることが好ましく、飽和の直鎖アルキル基であることがより好ましい。また、脂肪族炭化水素残基の有する炭素数は1乃至36であることが好ましく、1乃至18であることがより好ましく、1乃至8であることが更に好ましい。これら脂肪族炭化水素残基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、シクロヘキシル基、ビニル基、プロペニル基、ペンチニル基、ブテニル基、ヘキセニル基、ヘキサジエニル基、イソプロペニル基、イソへキセニル基、シクロへキセニル基、シクロペンタジエニル基、エチニル基、プロピニル基、ペンチニル基、へキシニル基、イソへキシニル基、シクロへキシニル基等が挙げられる。また、環状のアルキル基としては、例えば炭素数3乃至8のシクロアルキル基などが挙げられる。
 特に好ましいのは、炭素数が1乃至8の直鎖のアルキル基である。
 式(1)のX1及びX2が表すアミド基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアミド基の項で述べたものと同じものが挙げられる。式(1)のX1及びX2が表すアミド基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びX2が表すアルコキシカルボニル基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのアルコキシカルボニル基の項で述べたものと同じものが挙げられる。式(1)のX1及びX2が表すアルコキシカルボニル基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びX2が表すアシル基、アミド基及びアルコキシカルボニル基が有していてもよい置換基としての芳香族残基、脂肪族炭化水素残基、アミド基、アシル基、アルコキシル基、アリールオキシ基、アリールカルボニル基及びアルコキシカルボニル基は置換基を有していてもよく、該有していてもよい置換基としては式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びX2が表す芳香族残基の具体例としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基の項で述べたものと同じものが挙げられる。該芳香族残基は置換基を有していてもよく、該置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 X1及びX2が表す芳香族残基としては、カルボキシル基、水酸基、リン酸基、スルホン酸基、およびこれらの酸性基の塩からなる群より選択される基を少なくとも1つ以上置換基として有する芳香族残基であることが好ましく、下記式(1001)乃至(1033)のいずれかで表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000016
 X1とX2とで互いに結合して形成する環としては、芳香環、複素環などが挙げられ、これらの環は置換基を有していてもよい。
 X1とX2とで互いに結合して形成する芳香環の具体例としては、X1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基の説明部分に具体例として記載した芳香環と同様のものが挙げられる。また、X1とX2とで互いに結合して形成する環が有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 X1とX2とで互いに結合して形成する複素環としては、例えば4乃至7員環のS、O及びN等のヘテロ原子を含む複素環であり、下記式(2001)乃至(2017)のいずれかで表される環であることが好ましく、式(2007)または式(2012)で表される環であることがより好ましく、式(2007)で表される環であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000017

 尚、上記式(2001)乃至(2017)中の*印は、式(1)においてX1及びX2の両者が結合している炭素原子を表す。
 式(1)におけるX1及びX2としては、それぞれ独立にカルボキシル基、リン酸基、シアノ基又はアシル基であることが好ましく、それぞれ独立にカルボキシル基、シアノ基又はアシル基であることがより好ましく、一方がカルボキシル基でかつ他方がカルボキシル基、シアノ基又はアシル基であることが更に好ましく、一方がカルボキシル基でかつ他方がシアノ基であることが特に好ましい。
 式(1)におけるQ1及びQ2は、それぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表し、R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
 R11が表す芳香族残基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基の項で述べたものと同じものが挙げられる。
 R11が表す脂肪族炭化水素残基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての脂肪族炭化水素残基の項で述べたものと同じものが挙げられる。
 R11が表す芳香族残基及び脂肪族炭化水素残基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるmが2以上でQ1が複数存在する場合には、それぞれのQ1は互いに同じか又は異なっていてもよく、jが2以上でQ2が複数存在する場合には、それぞれのQ2は互いに同じか又は異なっていてもよい。
 式(1)におけるQ1及びQ2としては、それぞれ独立に酸素原子、硫黄原子又はセレン原子であることが好ましく、硫黄原子であることがより好ましい。
 式(1)におけるA1、A2、A3、A5及びA6は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシル基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。
 A1、A2、A3、A5及びA6が表す芳香族残基、脂肪族炭化水素残基、ハロゲン原子、アミド基、アルコキシル基、アリールオキシ基、アルコキシカルボニル基及びアリールカルボニル基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基、脂肪族炭化水素残基、ハロゲン原子、アミド基、アルコキシル基、アリールオキシ基、アルコキシカルボニル基及びアリールカルボニル基の項で述べたものと同じものが挙げられる。
 A1、A2、A3、A5及びA6が表すアシル基としては、式(1)のX1及びX2が表すアシル基の項で述べたものと同じものが挙げられる。
 A1、A2、A3、A5及びA6が表す芳香族残基、脂肪族炭化水素残基、アミド基、アルコキシル基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基及びアシル基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるlが2以上でA2及びA3が複数存在する場合には、それぞれのA2及びA3は互いに同じか又は異なっていてもよく、nが2以上でA5及びA6が複数存在する場合には、それぞれのA5及びA6は互いに同じか又は異なってもよい。又、lが0以外の場合には、A1、A2及びA3のいずれか複数個で環を形成してもよい。
 A1、A2及びA3のいずれか複数個で形成する環としては、不飽和炭化水素環又は複素環等が挙げられる。
 A1、A2及びA3のいずれか複数個で形成する不飽和炭化水素環の例としては、ベンゼン環、ナフタレン環、アントラセン環、フェナンスレン環、ピレン環、インデン環、アズレン環、フルオレン環、シクロブテン環、シクロヘキセン環、シクロペンテン環、シクロヘキサジエン環、シクロペンタジエン環等が挙げられ、複素環の例としては、ピラン環、ピリジン環、ピラジン環、ピペリジン環、インドリン環、オキサゾール環、チアゾール環、チアジアゾール環、オキサジアゾール環、インドール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノリン環、カルバゾール環、ベンゾピラン環等が挙げられる。これらのうちベンゼン環、シクロブテン環、シクロペンテン環、シクロヘキセン環であることが好ましい。
 これら不飽和炭化水素環及び複素環等は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A1、A2及びA3のいずれか複数個で形成する複素環が、カルボニル基、チオカルボニル基等の置換基を有する場合には、環状ケトン又は環状チオケトンなどを形成してもよく、これらの環は更に置換基を有していてもよい。該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるA1、A2、A3、A5及びA6としては、それぞれ独立に水素原子又は脂肪族炭化水素残基であることが好ましく、それぞれ独立に水素原子又は炭素数1乃至8の直鎖アルキル基であることがより好ましく、水素原子であることが更に好ましい。
 式(1)におけるA4は、水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシル基、アミド基、アルコキシカルボニル基又はアシル基を表す。
 A4が表す脂肪族炭化水素残基、ハロゲン原子、アルコキシル基、アミド基及びアルコキシカルボニル基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての脂肪族炭化水素残基、ハロゲン原子、アルコキシル基、アミド基及びアルコキシカルボニル基の項で述べたものと同じものが挙げられる。
 A4が表すアシル基としては、式(1)のX1及びX2が表すアシル基の項で述べたものと同じものが挙げられる。
 A4が表す脂肪族炭化水素残基、アルコキシル基、アミド基、アルコキシカルボニル基及びアシル基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 mが2以上でA4が複数存在する場合には、それぞれのA4は互いに同じか又は異なってもよい。
 式(1)におけるA4としては、水素原子又は脂肪族炭化水素残基であることが好ましく、水素原子又は炭素数1乃至8の直鎖アルキル基であることがより好ましく、水素原子であることが更に好ましい。
 式(1)におけるA7及びA8は、それぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシル基、アルコキシカルボニル基又はアシル基を表す。
 A7及びA8が表す脂肪族炭化水素残基、ハロゲン原子、アルコキシル基及びアルコキシカルボニル基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての脂肪族炭化水素残基、ハロゲン原子、アルコキシル基及びアルコキシカルボニル基の項で述べたものと同じものが挙げられる。
 A7及びA8が表すアシル基としては、式(1)のX1及びX2が表すアシル基の項で述べたものと同じものが挙げられる。
 A7及びA8が表す脂肪族炭化水素残基、アルコキシル基、アルコキシカルボニル基及びアシル基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 jが2以上でA7及びA8が複数存在する場合には、それぞれのA7及びA8は互いに同じか又は異なってもよい。
 式(1)におけるA7及びA8としては、それぞれ独立に水素原子又は脂肪族炭化水素残基であることが好ましく、それぞれ独立に水素原子又は炭素数1乃至8の直鎖アルキル基であることがより好ましく、水素原子であることが更に好ましい。従って、本発明の好ましい実施形態では、A乃至A8の総てが水素である。
 式(1)におけるR1は、下記式(2)で表される化合物の芳香環Ar1上から水素原子1個を除いた残基を表す。尚、芳香環Ar1上の水素原子1個が除かれる位置は特に限定されない。
Figure JPOXMLDOC01-appb-C000018
 式(2)中、Mは半金属原子を表す。本発明における半金属とは、金属と非金属の中間の性質を示す物質を示し、具体的にはホウ素原子、ケイ素原子、ゲルマニウム原子及びアンチモン原子が挙げられ、ホウ素原子であることが好ましい。
 式(2)中、Y1、Y2及びY3はそれぞれ独立に水素原子又は芳香族残基を表し、Y1、Y2及びY3が表す芳香族残基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基の項で述べたものと同じものが挙げられる。
 Y1、Y2及びY3が表す芳香族残基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 Y1、Y2及びY3が表す芳香族残基が有していてもよい置換基としては、アルコキシル基が好ましい。
 式(2)におけるY1及びY2としては、それぞれ独立に芳香族残基であることが好ましく、それぞれ独立にフェニル基又はナフチル基であることがより好ましく、フェニル基であることが更に好ましい。また、式(1)におけるYとしては、水素原子であることが好ましい。
 式(2)中、Z1及びZ2はそれぞれ独立にハロゲン原子を表す。Z1及びZ2が表すハロゲン原子としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられ、フッ素原子であることが好ましい。
 式(2)中、Ar1及びAr2はそれぞれ独立に芳香環を表す。Z1及びZ2が表す芳香環の具体例としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基の説明部分に具体例として記載した芳香環と同様のものが挙げられ、それぞれ独立にベンゼン環又はナフタレン環であることが好ましく、ベンゼン環であることがより好ましい。
 即ち、式(1)におけるR1としては、下記式(3)で表される化合物のベンゼン環b1上から水素原子1個を除いた残基であることが好ましい。尚、ベンゼン環b1上の水素原子1個が除かれる位置は特に限定されないが、式(3)中のベンゼン環b1を含んでなるインドール環の6位であることが好ましい。
Figure JPOXMLDOC01-appb-C000019
 式(3)中、Z3及びZ4はそれぞれ独立にハロゲン原子を表す。Z3及びZ4が表すハロゲン原子としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのハロゲン原子の項で述べたものと同じものが挙げられ、フッ素原子であることが好ましい。
 式(3)中、A23及びA24はそれぞれ独立に水素原子、ハロゲン原子、脂肪族炭化水素残基又はアルコキシル基を表す。
 A23及びA24が表すハロゲン原子、脂肪族炭化水素残基及びアルコキシル基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としてのハロゲン原子、脂肪族炭化水素残基及びアルコキシル基の項で述べたものと同じものが挙げられる。
 mが2以上でR1が複数存在する場合には、それぞれのR1は互いに同じか又は異なっていてもよい。
 式(1)におけるA23及びA24としては、アルコキシル基であることが好ましく、炭素数1乃至4のアルコキシル基であることがより好ましく、メトキシ基であることが更に好ましい。
 式(1)におけるR2は、下記式(3003)で表される基である。
Figure JPOXMLDOC01-appb-C000020
 式(3003)中、R14及びR15はそれぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
 R14及びR15が表す芳香族残基及び脂肪族炭化水素残基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基及び脂肪族炭化水素残基の項で述べたものと同じものが挙げられる。
 R14及びR15が表す芳香族残基及び脂肪族炭化水素残基は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(3003)におけるR14及びR15としては、それぞれ独立に芳香族残基であることが好ましく、それぞれ独立に下記式(3001)で表される基であることがより好ましく、両者が同一の下記式(3001)で表される基であることが更に好ましい。
Figure JPOXMLDOC01-appb-C000021
 式(3001)中、R12及びR13は、それぞれ独立に水素原子または炭素数1乃至8のアルキル基を表す。
 式(3001)におけるR12及びR13としては、それぞれ独立に炭素数1乃至8のアルキル基であることが好ましく、それぞれ独立に炭素数1乃至8の直鎖アルキル基であることがより好ましく、両者が同一の炭素数1乃至8の直鎖アルキル基であることが更に好ましく、両者がn-ブチル基であることが特に好ましい。
 式(3003)中、R16、R17、R18及びR19はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシル基、アルコキシカルボニル基又はスルフォニルベンゼン基を表す。
 R16、R17、R18及びR19が表す芳香族残基、脂肪族炭化水素残基、アミド基、アルコキシル基及びアルコキシカルボニル基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基としての芳香族残基、脂肪族炭化水素残基、アミド基、アルコキシル基及びアルコキシカルボニル基の項で述べたものと同じものが挙げられる。
 R16、R17、R18及びR19が表すアシル基としては、式(1)のX1及びX2が表すアシル基の項で述べたものと同じものが挙げられる。
 式(3003)におけるR16、R17、R18及びR19としては、それぞれ独立に水素原子又はアルコキシル基であることが好ましく、それぞれ独立に水素原子又は炭素数1乃至4のアルコキシル基であることがより好ましく、全て水素原子であることが更に好ましい。
 式(1)におけるnが0以外の場合には、A5、A6及びR2のいずれか複数個で環を形成してもよい。
 A5、A6及びR2のいずれか複数個で形成する環は置換基を有していてもよく、該有していてもよい置換基としては、式(1)のX1及びX2が表すアシル基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 即ち、式(1)におけるR2としては、下記式(3109)乃至(3114)のいずれかで表される基であることが特に好ましい
Figure JPOXMLDOC01-appb-C000022
 これらの基の中でも、式(1)におけるR2としては、式(3110)、(3111)、(3113)又は(3114)のいずれかで表される基であることが好ましく、式(3111)で表される基であることが最も好ましい。
 式(1)で表される化合物がカルボキシル基、リン酸基、ヒドロキシル基及びスルホン酸基等の酸性基を置換基として有する場合は、それぞれ塩を形成してもよく、塩としては例えばリチウム、ナトリウム、カリウムなどのアルカリ金属、又はマグネシウム、カルシウムなどのアルカリ土類金属などとの塩、又は有機塩基、例えばテトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、イミダゾリウム、ピペラジニウム、ピペリジニウムなどの4級アンモニウム塩のような塩を挙げることができる。
 式(1)で表される化合物は、シス体、トランス体、ラセミ体等の構造異性体をとり得るが、特に限定されず、いずれの異性体も本発明における光増感用色素として良好に使用しうるものである。
 式(1)におけるm、l、n、j、X1乃至X2、Q1乃至Q2、A1乃至A8及びR1乃至R2の好ましい組合せは、上記したm、l、n、j、X1乃至X2、Q1乃至Q2、A1乃至A8及びR1乃至R2のそれぞれにおいて好ましいとされるもの同士の組み合わせであり、より好ましい組み合わせは以下の通りである。
 即ち、好ましくはl及びnが0であり、m及びjが1乃至3であり(更に好ましくはmが1でありjが1乃至3である)、X1とX2がそれぞれ独立にカルボキシル基、リン酸基、シアノ基又はアシル基であり、Q1及びQ2がそれぞれ独立に酸素原子、硫黄原子又はセレン原子であり、A1乃至A8がそれぞれ独立に水素原子または脂肪族炭化水素残基であり、R1が式(2)で表される化合物の芳香環Ar1上から水素原子1個を除いた残基であって、Y1及びY2がそれぞれ独立にフェニル基又はナフチル基であり、Y3が水素原子であり、Ar1及びAr2がそれぞれ独立にベンゼン環又はナフタレン環であり、かつR2が上記式(3109)乃至(3114)のいずれかで表される基である組み合わせである。
 より好ましくは、l及びnが0であり、m及びjが1乃至2であり(更に好ましくはmが1でありjが1乃至2である)、X1とX2がそれぞれ独立にカルボキシル基、シアノ基又はアシル基であり、Q1及びQ2がそれぞれ独立に酸素原子、硫黄原子又はセレン原子であり、A1乃至A8がそれぞれ独立に水素原子または炭素数1乃至8の直鎖アルキル基であり、R1が式(3)で表される化合物の芳香環Ar1上から水素原子1個を除いた残基であり、かつR2が上記式(3110)、(3111)、(3113)又は(3114)のいずれかで表される基である組み合わせである。
 特に好ましくは、l及びnが0であり、m及びjが1乃至2であり(更に好ましくはmが1でありjが1乃至2である)、X1とX2の一方がカルボキシル基でかつ他方がカルボキシル基、シアノ基又はアシル基であり、Q1及びQ2が硫黄原子であり、A1乃至A8が水素原子であり、R1が式(3)で表される化合物の芳香環Ar1上から水素原子1個を除いた残基であって、Z3及びZ4がフッ素原子であり、A23及びA24がそれぞれ独立に炭素数1乃至4のアルコキシル基であり、R2が式(3111)で表される基である組み合わせである。
 前記式(1)で表される化合物は、例えば、以下に示す反応式によって製造できるが、本発明はこれらの合成法に限定されるものではない。
 先ず中間原料である式(m)で表される化合物の合成方法について説明する。原料である式(a)で表される化合物と式(b)で表される化合物とを、例えばアルコール等の適当な溶媒中で反応させ、式(c)で表される化合物を得る。次に式(c)で表される化合物を、例えばテトラヒドロフラン等の適当な溶媒中で、四酢酸鉛で処理し、式(d)で表される化合物を得る。他方、前記と同様の手順で、原料である式(e)で表される化合物と式(f)で表される化合物との反応により得た式(g)で表される化合物から、式(h)で表される化合物を得る。次に式(d)で表される化合物と式(h)で表される化合物とを、例えば適当なアルコールと酢酸混合溶媒中、アンモニア水を加えて室温で反応させた後、分離、精製することで、式(i)で表される化合物を得る。次いで、式(i)で表される化合物を半金属Mのハロゲン化物(三ハロゲン化ホウ素又はアンチモン、若しくは四ハロゲン化ケイ素又はゲルマニウム等)類と反応させて、式(j)で表される化合物を得る。更に、この(j)で表される化合物と、式(k)で表される化合物をクロスカップリング等により結合させることにより式(m)で表される化合物を得る。尚、Y3は、必要に応じてグリニャール反応などにより水素原子以外の置換基を置換させることも可能である。
Figure JPOXMLDOC01-appb-C000023
 また、予め公知の方法で合成した式(n)で表される化合物と式(o)で表される化合物とを、若しくは予め公知の方法で合成した式(p)で表される化合物と式(q)で表される化合物とを、臭化水素酸や塩化水素等の酸触媒の存在下、エタノールやテトラヒドロフラン等の溶媒中で反応させて得られた式(i)で表される化合物に、上記と同様の処理を施すことにより式(m)で表される化合物を得ることもできる。
Figure JPOXMLDOC01-appb-C000024
 式(r)で表される化合物と式(s)で表されるボロン酸類との反応により式(t)で表される化合物を得る。この式(t)で表される化合物をN-ヨードこはく酸イミドで処理して式(u)で表される化合物を得る。これに式(v)で表されるボロン酸類を反応させて式(w)で表される化合物に誘導し、次いで上記で得られた式(m)で表される化合物との反応により式(x)で表されるカルボニル化合物を得る。この式(x)で表される化合物と式(y)で表される活性メチレンを有する化合物を、必要であれば苛性ソーダ、ナトリウムメチラート、酢酸ナトリウム、ジエチルアミン、トリエチルアミン、ピペリジン、ピペラジン、ジアザビシクロウンデセンなどの塩基性触媒の存在下、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類やジメチルホルムアミド、N-メチルピロリドンなどの非プロトン性極性溶媒やトルエン、無水酢酸、アセトニトリルなどの溶媒中、通常20℃乃至180℃、好ましくは50℃乃至150℃で縮合することにより、本発明の式(1)で表される化合物(色素)が得られる。上記反応において、式(y)で表される活性メチレンを有する化合物がエステル基を有する場合、縮合反応後、加水分解等を行うことによりカルボン酸体を得ることも可能である。
Figure JPOXMLDOC01-appb-C000025
 また、特に式(1)におけるlが0の化合物の場合には、式(r)で表される化合物と式(s)で表されるボロン酸類との反応を行わず、式(t)で表される化合物の代わりに式(t’)で表される化合物を使用することで同様に合成できる。
Figure JPOXMLDOC01-appb-C000026
 下記式(1-1)で表される化合物(式(1)におけるR1が式(3)で表される化合物の残基である化合物)の具体例を、表1乃至表19に示す。各表において、Phはフェニル基を意味する。(2001)~(2017)と表記したものは、X1とX2が結合して形成する環を表したものであり、上記式(2001)~(2017)に対応する。(3109)乃至(3114)との表記は、上記式(3109)乃至(3114)に対応する。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
 本発明の光電変換素子は、例えば、酸化物半導体微粒子を用いて基板上に酸化物半導体微粒子の薄膜を設け、次いでこの薄膜に式(1)で表される化合物(色素)を担持させたものである。
 酸化物半導体微粒子の薄膜を設ける基板としては、その表面が導電性であるものが好ましいが、そのような基板は市場にて容易に入手可能である。例えば、ガラス又はポリエチレンテレフタレート若しくはポリエーテルスルフォン等の透明性のある高分子材料等の表面にインジウム、フッ素、アンチモンをドープした酸化スズなどの導電性金属酸化物や銅、銀、金等の金属の薄膜を設けたものを基板として用いることが出来る。その導電性としては通常1000Ω以下であれば良く、特に100Ω以下のものが好ましい。
 また、酸化物半導体の微粒子としては金属酸化物が好ましく、その具体例としてはチタン、スズ、亜鉛、タングステン、ジルコニウム、ガリウム、インジウム、イットリウム、ニオブ、タンタル、バナジウムなどの酸化物が挙げられる。これらのうちチタン、スズ、亜鉛、ニオブ、インジウム等の酸化物が好ましく、酸化チタン、酸化亜鉛、酸化スズが最も好ましい。これらの酸化物半導体は単一で使用することも出来るが、混合して使用してもよく、また半導体の表面にコーティングさせて使用してもよい。酸化物半導体の微粒子の粒径は、平均粒径として通常1乃至500nm、好ましくは1乃至100nmである。またこの酸化物半導体の微粒子は大きな粒径のものと小さな粒径のものを混合して用いてもよく、多層にして用いてもよい。
 酸化物半導体微粒子の薄膜は酸化物半導体微粒子をスプレイ噴霧などで直接前記基板上に半導体微粒子の薄膜として形成する方法、基板を電極として電気的に半導体微粒子を薄膜状に析出させる方法、半導体微粒子のスラリー又は半導体アルコキサイド等の半導体微粒子の前駆体を加水分解することにより得られた微粒子を含有するペーストを基板上に塗布した後、乾燥、硬化もしくは焼成する等によって製造することが出来る。酸化物半導体を用いる電極の性能上、スラリーを用いる方法が好ましい。この方法の場合、スラリーは2次凝集している酸化物半導体微粒子を常法により分散媒中に平均1次粒子径が1乃至200nmになるように分散させることにより得られる。
 スラリーを分散させる分散媒としては、半導体微粒子を分散させ得るものであれば何でも良く、水、エタノール等のアルコール、アセトン及びアセチルアセトン等のケトン、ヘキサン等の炭化水素等が用いられ、これらは混合して用いても良く、また水を用いることはスラリーの粘度変化を少なくするという点で好ましい。また酸化物半導体微粒子の分散状態を安定化させる目的で分散安定剤を用いることが出来る。用いうる分散安定剤の例としては例えば酢酸、塩酸、硝酸等の酸、又はアセチルアセトン、アクリル酸、ポリエチレングリコール、ポリビニルアルコール等の有機溶媒等が挙げられる。
 スラリーを塗布した基板は焼成してもよく、その焼成温度は通常100℃以上、好ましくは200℃以上で、かつ上限はおおむね基板材料の融点(軟化点)以下であり、通常上限は900℃であり、好ましくは600℃以下である。また焼成時間には特に限定はないが、概ね4時間以内が好ましい。基板上の薄膜の厚みは通常1乃至200μm、好ましくは1乃至50μmである。
 酸化物半導体微粒子の薄膜に2次処理を施してもよい。すなわち、例えば半導体と同一の金属のアルコキサイド、塩化物、硝化物、硫化物等の溶液に直接、基板ごと薄膜を浸積させて乾燥もしくは再焼成することにより半導体微粒子の薄膜の性能を向上させることもできる。金属アルコキサイドとしてはチタンエトキサイド、チタンイソプロポキサイド、チタンt-ブトキサイド、n-ジブチル-ジアセチルスズ等が挙げられ、それらのアルコール溶液が用いられる。塩化物としては例えば四塩化チタン、四塩化スズ、塩化亜鉛等が挙げられ、その水溶液が用いられる。このようにして得られた酸化物半導体薄膜は酸化物半導体の微粒子から成っている。
 次に、酸化物半導体微粒子の薄膜に、本発明の前記式(1)で表される化合物を担持させる方法について説明する。
 前記式(1)で表される化合物を担持させる方法としては、該化合物を溶解しうる溶媒にて化合物を溶解して得た溶液、又は溶解性の低い化合物にあっては化合物を分散せしめて得た分散液に上記酸化物半導体微粒子の薄膜の設けられた基板を浸漬する方法が挙げられる。溶液又は分散液中の濃度は化合物によって適宜決める。その溶液中に基板上に作成した半導体微粒子の薄膜を浸す。浸漬温度はおおむね常温から溶媒の沸点迄であり、また浸漬時間は1分間から48時間程度である。化合物を溶解させるのに使用しうる溶媒の具体例として、例えば、メタノール、エタノール、イソプロパノール、テトラヒドロフラン(THF)、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、アセトン、n-ブタノール、t-ブタノール、水、n-ヘキサン、クロロホルム、ジクロロメタン、トルエン等が挙げられ、化合物の溶解度等に合わせて、単独または複数を混合して用いることができる。溶液の化合物濃度は通常1×10-6M乃至1Mであり、好ましくは1×10-5M乃至1×10-1Mである。
 浸漬が終わったあと、風乾又は必要により加熱して溶媒を除去する。この様にして式(1)で表される化合物(色素)で増感された酸化物半導体微粒子の薄膜を有した本発明の光電変換素子が得られる。
 担持する前記式(1)で表される化合物は1種類でも良いし、数種類混合しても良い。又、混合する場合は本発明の式(1)で表される化合物(色素)同士でも良いし、他の色素や金属錯体色素を混合しても良い。特に吸収波長の異なる色素同士を混合することにより、幅広い吸収波長を利用することが出来、変換効率の高い太陽電池が得られる。混合しうる金属錯体色素の例としては特に制限は無いが、非特許文献2に示されているルテニウム錯体やその4級アンモニウム塩化合物、フタロシアニン、ポルフィリンなどが好ましく、混合利用する有機色素としては無金属のフタロシアニン、ポルフィリンやシアニン、メロシアニン、オキソノール、トリフェニルメタン系、特許文献2に示されるアクリル酸系色素などのメチン系色素や、キサンテン系、アゾ系、アンスラキノン系、ペリレン系等の色素が挙げられる。好ましくはルテニウム錯体やメロシアニン、アクリル酸系等のメチン系色素が挙げられる。色素を2種以上用いる場合は色素を半導体微粒子の薄膜に順次吸着させても、混合溶解して吸着させても良い。
 混合する色素の比率に特に限定は無く、それぞれの色素について最適化条件が適宜選択されるが、一般的に等モルずつの混合から、1つの色素につき、10%モル程度以上使用するのが好ましい。2種以上の色素を溶解又は分散した溶液を用いて、酸化物半導体微粒子の薄膜に色素を吸着する場合、溶液中の色素合計の濃度は1種類のみ担持する場合と同様でよい。色素を混合して使用する場合の溶媒としては前記したような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なっていてもよい。
 酸化物半導体微粒子の薄膜に色素を担持する際、色素同士の会合を防ぐために包摂化合物の共存下、色素を担持することが有利である。ここで包摂化合物としてはコール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、好ましいものの具体例としてはデオキシコール酸、デヒドロデオキシコール酸、ケノデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム等のコール酸類、ポリエチレンオキサイド等が挙げられる。また、色素を担持させた後、4-t-ブチルピリジン等のアミン化合物で半導体微粒子の薄膜を処理しても良い。処理の方法は例えばアミンのエタノール溶液に色素を担持した半導体微粒子の薄膜の設けられた基板を浸す方法等が採られる。
 本発明の太陽電池は上記酸化物半導体微粒子の薄膜に本発明の化合物(色素)を担持させた光電変換素子を一方の電極とし、対極、レドックス電解質又は正孔輸送材料又はp型半導体等から構成される。レドックス電解質、正孔輸送材料、p型半導体等の形態としては、液体、凝固体(ゲル及びゲル状)、固体などそれ自体公知のものが使用出来る。液状のものとしてはレドックス電解質、溶融塩、正孔輸送材料、p型半導体等をそれぞれ溶媒に溶解させたものや常温溶融塩などが、凝固体(ゲル及びゲル状)の場合は、これらをポリマーマトリックスや低分子ゲル化剤等に含ませたもの等がそれぞれ挙げられる。固体のものとしてはレドックス電解質、溶融塩、正孔輸送材料、p型半導体等を用いることができる。正孔輸送材料としてはアミン誘導体やポリアセチレン、ポリアニリン、ポリチオフェンなどの導電性高分子、トリフェニレン系化合物などが挙げられる。又、p型半導体としてはCuI、CuSCN等が挙げられる。対極としては導電性を持っており、レドックス電解質の還元反応を触媒的に作用するものが好ましい。例えばガラス又は高分子フィルムに白金、カーボン、ロジウム、ルテニウム等を蒸着したものや、導電性微粒子を塗り付けたものが用いうる。
 本発明の太陽電池に用いるレドックス電解質としてはハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン酸化還元系電解質、フェロシアン酸塩-フェリシアン酸塩やフェロセン-フェリシニウムイオン、コバルト錯体などの金属錯体等の金属酸化還元系電解質、アルキルチオール-アルキルジスルフィド、ビオロゲン色素、ヒドロキノン-キノン等の有機酸化還元系電解質等をあげることができるが、ハロゲン酸化還元系電解質が好ましい。ハロゲン化合物-ハロゲン分子からなるハロゲン酸化還元系電解質におけるハロゲン分子としては、例えばヨウ素分子や臭素分子等があげられ、ヨウ素分子が好ましい。また、ハロゲンイオンを対イオンとするハロゲン化合物としては、例えばLiBr、NaBr、KBr、LiI、NaI、KI、CsI、CaI2、MgI2、CuI等のハロゲン化金属塩あるいはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、ピリジニウムヨーダイドなどのハロゲンの有機4級アンモニウム塩等があげられるが、ヨウ素イオンを対イオンとする塩類が好ましい。また、上記ヨウ素イオンの他にビス(トリフルオロメタンスルホニル)イミドイオン、ジシアノイミドイオン等のイミドイオンを対イオンとする電解質を用いることも好ましい。
 また、レドックス電解質はそれを含む溶液の形で構成されている場合、その溶媒には電気化学的に不活性なものが用いられる。例えばアセトニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、γ-ブチロラクトン、ジメトキシエタン、ジエチルカーボネート、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、ジメチルホルムアミド、ジメチルスルホキサイド、1,3-ジオキソラン、メチルフォルメート、2-メチルテトラヒドロフラン、3-メチル-オキサゾリジン-2-オン、スルフォラン、テトラヒドロフラン、水等が挙げられ、これらの中でも、特に、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3-メチル-オキサゾリジン-2-オン、γ-ブチロラクトン等が好ましい。これらは単独もしくは2種以上組み合わせて用いても良い。ゲル状電解質の場合は、オリゴマー及びポリマー等のマトリックスに電解質あるいは電解質溶液を含有させたものや、低分子ゲル化剤等に同じく電解質あるいは電解質溶液を含有させたもの等が挙げられる。レドックス電解質の濃度は通常0.01乃至99質量%で、好ましくは0.1乃至90質量%程度である。
 本発明の太陽電池は、基板上の酸化物半導体微粒子の薄膜に、本発明の式(1)で表される化合物(色素)を担持した光電変換素子の電極に、それを挟むように対極を配置する。その間にレドックス電解質を含んだ溶液を充填することにより得られる。
 以下に実施例に基づき、本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例中、部は特に指定しない限り質量部をあらわす。溶液の濃度を表すMは、mol/Lを表す。極大吸収波長は紫外可視分光光度計(UV-3100PC、島津製作所製)により測定した。核磁気共鳴は、JNM-ECS400(日本電子社製)により測定した。
合成例1
 2,3-ジブロモチオフェン5部、5’-ホルミル-2,2’-ビチオフェン-5-ボロン酸5.5部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.22部、フッ化セシウム6.4部、水28部を1,4-ジオキサン126部に加え、80℃で3時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(800)で表される化合物2.8部を黄色固体として得た。
Figure JPOXMLDOC01-appb-C000047
合成例2
 合成例1で得られた式(800)で表される化合物2.5部を酢酸250部とクロロホルム375部の混合液に溶解した溶液に、N-ヨードこはく酸イミド1.6部を加え、遮光下常温で5時間攪拌した。N-ヨードこはく酸イミド0.8部を加え、さらに遮光下常温で19時間攪拌した。反応後、析出物を濾過及びヘキサン洗浄し、下記式(801)で表される化合物2.9部を薄橙色固体として得た。
Figure JPOXMLDOC01-appb-C000048
合成例3
 [1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)ジクロロメタン付加物1.6部、酢酸カリウム2部及びビス(ピナコラート)ジボロン2部をジメチルスルホキシド22部に加え、窒素雰囲気下攪拌した。9,9-ジブチル-N-(9,9-ジブチルフルオレン-2-イル)-N-(4-ヨードフェニル)フルオレン-2-アミン5部をジメチルスルホキシド66部に溶解させた溶液を加え、80℃で5時間攪拌した。反応混合物を、トルエン-水で抽出、トルエン相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(802)で表される化合物3.5部を白色固体として得た。
Figure JPOXMLDOC01-appb-C000049
合成例4
合成例2で得られた式(801)で表される化合物2.1部、合成例3で得られた式(802)で表される化合物4.1部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.15部及び20%炭酸ナトリウム水溶液16部を1,2-ジメトキシエタン300部に加え、還流下4時間反応させた。式(802)で表される化合物2.0部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.08部を追加し、さらに還流下3時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン、およびトルエン-ヘキサン)で分離、精製し、下記式(803)で表される化合物1.2部を濃橙色固体として得た。
Figure JPOXMLDOC01-appb-C000050
合成例5
 4-ブロモ-2-ヒドロキシアセトフェノン及び2-メトキシベンゾイルヒドラジンを用いて、非特許文献3に記載の合成方法に準じて、下記式(805)で表される化合物を得た。
Figure JPOXMLDOC01-appb-C000051
合成例6
 2-ヒドロキシアセトフェノン2.3部、2-メトキシベンゾイルヒドラジン2.4部を無水エタノール24部に加え、窒素雰囲気下85℃で2日間反応させた。反応終了後、析出した固体を少量のエタノールで洗浄し、減圧乾燥させて下記式(806)で表される化合物4.1部を淡黄色固体として得た。
Figure JPOXMLDOC01-appb-C000052
合成例7
 テトラヒドロフラン230部に合成例6で得られた式(806)で表される化合物4.1部を溶解させて氷冷した。四酢酸鉛8.0部を少量ずつ加えた後、室温で約5時間撹拌した。反応終了後、シリカゲルを入れた桐山ロートでろ過し、ろ液を減圧留去して下記式(807)で表される化合物4.4部を黄土色固体として得た。
Figure JPOXMLDOC01-appb-C000053
合成例8
 メタノール37部と酢酸28部の混合液に、合成例5で得られた式(805)で表される化合物1.6部及び合成例7で得られた式(807)で表される化合物1.2部を撹拌しながら溶解させ、均一な溶液を得た。この溶液を氷冷し、アンモニア水19部を加えた後、45℃で一晩撹拌した。飽和炭酸水素ナトリウム水溶液でクエンチし、析出した固体をろ別した。得られた固体をカラムクロマト(ヘキサン-ベンゼン)で分離、精製し、下記式(808)で表される化合物0.31部を濃青色固体として得た。
Figure JPOXMLDOC01-appb-C000054
合成例9
 合成例8で得られた式(808)で表される化合物1.2部を、窒素雰囲気下で無水トルエン72部に溶解させた後、トリエチルアミン0.58部を加えて80℃に加熱した。トリフルオロホウ素のジエチルエーテル錯体3.4部をゆっくり滴下した後、100℃で一晩撹拌した。水40部を加えてクエンチし、酢酸エチル110部で抽出、水300部で洗浄した後、有機層に硫酸ナトリウムを加えて乾燥させた。硫酸ナトリウムをろ別し、濃縮した。得られた固体をカラムクロマト(ヘキサン-ベンゼン)で分離、精製し、下記式(809)で表される化合物1.1部を濃青色固体として得た。
Figure JPOXMLDOC01-appb-C000055
合成例10
 窒素雰囲気下、合成例9で得られた式(809)で表される化合物1.1部と酢酸カリウム1.9部を無水ジメトキシエタン29部に溶解させ、凍結脱気を3回行った。グローブボックス内でその溶液にビス(ピナコラート)ジボロン1.3部を加えた。別の容器に無水ジメトキシエタン29部を入れ凍結脱気を3回行った後、グローブボックス内で[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)0.38部を加えた。この溶液を先の溶液に加え、窒素雰囲気下80℃で10時間攪拌した。反応混合物を水10部でクエンチし、酢酸エチル90部で抽出、水200部で洗浄した後、有機層に硫酸ナトリウムを加えて乾燥させた。硫酸ナトリウムをろ別し、濃縮した。得られた固体をカラムクロマト(ヘキサン-ジクロロメタン)で分離、精製し、下記式(810)で表される化合物1.0部を濃青色固体として得た。
Figure JPOXMLDOC01-appb-C000056
合成例11
 合成例4で得られた式(803)で表される化合物0.084部、合成例10で得られた式(810)で表される化合物0.19部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.013部、フッ化セシウム0.026部、水0.23部を1,4-ジオキサン2.7部に加え、3.5時間還流させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(811)で表される化合物0.11部を黒緑色固体として得た。
Figure JPOXMLDOC01-appb-C000057
実施例1
 合成例11で得られた式(811)で表される化合物0.13部とシアノ酢酸0.047部をエタノール-トルエン(2:1)混合液18部に溶解させ、無水ピペラジン0.005部を加え、還流下1時間反応させた。シアノ酢酸0.047部を加え、還流下さらに3時間反応させた。さらにシアノ酢酸0.047部、無水ピペラジン0.005部を加え、還流下3時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-メタノール)で分離、精製し、下記式(812)で表される本発明の化合物(表1の化合物1)0.051部を黒緑色固体として得た。
Figure JPOXMLDOC01-appb-C000058
この式(812)で表される化合物の極大吸収波長及び核磁気共鳴装置における測定値は次のとおりである。
極大吸収波長;λmax=634nm(1.6×10-5M、テトラヒドロフラン溶液)
核磁気共鳴の測定値;1H-NMR(PPM:DMSO-d6):0.53(m.8H),0.61(m.12H),0.98(m.8H),1.85(m.8H),3.07(d.6H),6.90(m.1H),6.95(m.1H),7.01(m.5H),7.06(m.1H),7.14(d.2H),7.16(m.1H),7.28(m.9H),7.37(m.4H),7.45(m.2H),7.56(m.5H),7.72(m.5H),7.95(s,1H),8.14(d,1H),8.18(d,1H),8.63(s,1H)
実施例2
 実施例1で得られた式(812)で表される本発明の化合物(表1の化合物1)及び下記式(z)で表されるコール酸を、それぞれ3.2×10-4M及び4×10-2Mとなるようにエタノールに溶解した。この溶液に多孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを450℃で30分間焼結した半導体薄膜電極)を室温で一晩浸漬した後、溶剤で洗浄し乾燥することにより本発明の光電変換素子を得た。前記で得られた光電変換素子の半導体薄膜層と、表面に白金がスパッタされた導電性ガラスの白金層を対向配置して固定し、その空隙に電解質を含む溶液を注入、封止して本発明の太陽電池を得た。電解液は、アセトニトリル:エチレンカーボネート(2:3)にヨウ素/テトラプロピルアンモニウムヨージドをそれぞれ0.05M/0.5Mになるように溶解したものを使用した。
Figure JPOXMLDOC01-appb-C000059
比較例1
 実施例1で得られた式(812)で表される本発明の化合物を、下記式(A)で表される比較用化合物(特許文献3記載の化合物(160))に変更したこと以外は実施例2に準じて、比較用の太陽電池を得た。
Figure JPOXMLDOC01-appb-C000060
(太陽電池のIPCE測定)
 実施例2及び比較例1で得られた太陽電池の300乃至800nmにおけるIPCEを分光計器株式会社製 SM-25YDを用いてDC法で測定し、得られたIPCEスペクトルを図1に示した。図1中、「1」は実施例2で得られた本発明の太陽電池の測定結果を、「A」は上記式(A)で表される化合物を用いて得られた比較用太陽電池の測定結果をそれぞれ表す。
(太陽電池の光電変換特性評価)
 実施例2及び比較例1で得られた太陽電池の光電変換特性を評価した、測定する電池の大きさは実効部分を0.25cm2とした。光源は500Wキセノンランプを用いて、AM(大気圏通過空気量)1.5フィルターを通して100mW/cm2とした。ポテンシオ・ガルバノスタットを用いて測定した。結果を表13に示した。
Figure JPOXMLDOC01-appb-T000061
 図1の結果より、本発明の化合物を増感色素に用いた太陽電池は、比較用の太陽電池に比べて長波長領域の可視光を効果的に電気に変換できることは明らかである。
 また、表13の結果より、本発明の化合物を増感色素に用いた太陽電池は、比較用の太陽電池に比べて光電変換特性に優れていることは明らかである。
 特定の部分構造を有する本発明の化合物を増感色素に用いることにより、広範囲の可視光を効果的に電気に変換可能な、高い変換効率を発現する光電変換素子及び太陽電池を提供することが出来た。

Claims (20)

  1. 下記式(1)で表される化合物
    Figure JPOXMLDOC01-appb-C000001

    (式(1)中、mは1乃至5の整数を、l及びnはそれぞれ独立に0乃至6の整数を、jは0乃至3の整数を表す。X1及びX2はそれぞれ独立に水素原子、カルボキシル基、水酸基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はスルフォニルベンゼン基を表し、X1及びX2は互いに連結して環を形成してもよい。Q1及びQ2はそれぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表す。R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。mが2以上でQ1が複数存在する場合には、それぞれのQ1は互いに同じか又は異なっていてもよく、jが2以上でQ2が複数存在する場合には、それぞれのQ2は互いに同じか又は異なっていてもよい。A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシル基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。lが2以上でA2及びA3が複数存在する場合には、それぞれのA2及びA3は互いに同じか又は異なっていてもよく、nが2以上でA5及びA6が複数存在する場合には、それぞれのA5及びA6は互いに同じか又は異なってもよい。あるいは、lが0以外の場合には、A1、A2及びA3のいずれか複数個で環を形成してもよい。A4は水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシル基、アミド基、アルコキシカルボニル基又はアシル基を表す。mが2以上でA4が複数存在する場合には、それぞれのA4は互いに同じか又は異なってもよい。A7及びA8はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシル基、アルコキシカルボニル基又はアシル基を表す。jが2以上でA7及びA8が複数存在する場合には、それぞれのA7及びA8は互いに同じか又は異なってもよい。R1は下記式(2)
    Figure JPOXMLDOC01-appb-C000002

    (式(2)中、Mは半金属原子を表す。Y1、Y2及びY3はそれぞれ独立に水素原子又は芳香族残基を表す。Z1及びZ2はそれぞれ独立にハロゲン原子を表す。Ar1及びAr2はそれぞれ独立に芳香環を表す。)で表される化合物の芳香環Ar1上から水素原子1個を除いた残基を表す。mが2以上でR1が複数存在する場合には、それぞれのR1は互いに同じか又は異なってもよい。R2は下記式(3003)
    Figure JPOXMLDOC01-appb-C000003

    (式(3003)中、R14及びR15は、それぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。R16、R17、R18及びR19は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシル基、アルコキシカルボニル基又はスルフォニルベンゼン基を表す。)で表される基である。あるいは、nが0以外の場合には、A5、A6及びR2のいずれか複数個で環を形成してもよい。)。
  2. 式(1)におけるmが1乃至3である請求項1に記載の化合物。
  3. 式(1)におけるmが1である請求項2に記載の化合物。
  4. 式(1)におけるQ1及びQ2が硫黄原子である請求項1に記載の化合物。
  5. 式(1)におけるl及びnが0である請求項1に記載の化合物。
  6. 式(1)におけるX1及びX2の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基である請求項1に記載の化合物。
  7. 式(1)におけるX1及びX2の一方がカルボキシル基で他方がシアノ基である請求項6に記載の化合物。
  8. 式(1)におけるX1とX2が結合して環構造を形成する請求項1に記載の化合物。
  9. 式(1)におけるA1乃至A8が水素原子である請求項1に記載の化合物。
  10. 式(1)におけるR1が、下記式(3)
    Figure JPOXMLDOC01-appb-C000004

    (式(3)中、Z3及びZ4はそれぞれ独立にハロゲン原子を表す。A23及びA24はそれぞれ独立に水素原子、ハロゲン原子、脂肪族炭化水素残基又はアルコキシル基を表す。)で表される化合物のベンゼン環b1上から水素原子1個を除いた残基である請求項1に記載の化合物。
  11. 式(3)におけるZ3及びZ4がフッ素原子であり、かつA23及びA24がメトキシ基である請求項10に記載の化合物。
  12. 式(3003)におけるR14及びR15が下記式(3001)
    Figure JPOXMLDOC01-appb-C000005

    (式(3001)中、R12及びR13は、それぞれ独立に水素原子または炭素数1乃至8のアルキル基を表す。)で表される基であり、かつR16乃至R19がそれぞれ独立に水素原子または炭素数1乃至4のアルコキシル基である請求項1に記載の化合物。
  13. 式(1)におけるR2が、下記式(3109)乃至(3114)
    Figure JPOXMLDOC01-appb-C000006

    のいずれかで表される基である請求項12に記載の化合物。
  14. 式(1)におけるR2が、式(3110)、(3111)、(3113)又は(3114)で表される基である請求項13に記載の化合物。
  15. 式(1)におけるR2が、式(3111)で表される基である請求項14に記載の化合物。
  16. 下記式(812)
    Figure JPOXMLDOC01-appb-C000007

    で表される請求項1に記載の化合物。
  17. 基板上に設けられた酸化物半導体微粒子の薄膜に、請求項1に記載の式(1)で表される化合物の一種以上を担持させた光電変換素子。
  18. 基板上に設けられた酸化物半導体微粒子の薄膜に、請求項1に記載の式(1)で表される化合物の一種以上と、式(1)以外の構造を有する増感色素化合物を担持させた光電変換素子。
  19. 酸化物半導体微粒子が、二酸化チタン、酸化亜鉛又は酸化スズを含有する請求項17又は18に記載の光電変換素子。
  20. 請求項17乃至19のいずれか一項に記載の光電変換素子を備えてなる太陽電池。
PCT/JP2015/051800 2014-02-07 2015-01-23 新規化合物及びそれを含む光電変換素子 WO2015118963A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-022658 2014-02-07
JP2014022658A JP2015147902A (ja) 2014-02-07 2014-02-07 新規化合物及びそれを含む光電変換素子

Publications (1)

Publication Number Publication Date
WO2015118963A1 true WO2015118963A1 (ja) 2015-08-13

Family

ID=53777770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051800 WO2015118963A1 (ja) 2014-02-07 2015-01-23 新規化合物及びそれを含む光電変換素子

Country Status (3)

Country Link
JP (1) JP2015147902A (ja)
TW (1) TW201534603A (ja)
WO (1) WO2015118963A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199541A (ja) * 2011-03-10 2012-10-18 Mitsubishi Chemicals Corp 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール
WO2015037676A1 (ja) * 2013-09-12 2015-03-19 日本化薬株式会社 メチン系色素及びそれを用いた色素増感光電変換素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199541A (ja) * 2011-03-10 2012-10-18 Mitsubishi Chemicals Corp 有機薄膜太陽電池素子、太陽電池及び太陽電池モジュール
WO2015037676A1 (ja) * 2013-09-12 2015-03-19 日本化薬株式会社 メチン系色素及びそれを用いた色素増感光電変換素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN LY ET AL.: "Organic Dyes Containing Coplanar Diphenyl-Substituted Dithienosilole Core for Efficient Dye-Sensitized Solar Cells", JOURNAL OF ORGANIC CHEMISTRY, vol. 75, 2010, pages 4778 - 4785, XP055218244 *
POIREL A ET AL.: "Oligothienyl-BODIPYs: Red and Near-Infrared Emitters", ORGANIC LETTERS, vol. 14, 2012, pages 5696 - 5699, XP055218254 *

Also Published As

Publication number Publication date
JP2015147902A (ja) 2015-08-20
TW201534603A (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5106381B2 (ja) 色素増感光電変換素子
JP4841248B2 (ja) 色素増感光電変換素子
JP4963343B2 (ja) 色素増感光電変換素子
JP5138371B2 (ja) 色素増感光電変換素子
JP4986205B2 (ja) 色素増感光電変換素子
JP5145037B2 (ja) 色素増感光電変換素子
JP6278504B2 (ja) 新規化合物及びそれを用いた光電変換素子
JP5306354B2 (ja) 色素増感型光電変換素子
JP2008021496A (ja) 色素増感光電変換素子
JP2009048925A (ja) 色素増感光電変換素子
JP2006294360A (ja) 色素増感光電変換素子
JP5957072B2 (ja) 色素増感光電変換素子
JP2006134649A (ja) 光電変換素子
JP6440296B2 (ja) 色素増感太陽電池用増感剤としてのトリフェニルアミン結合型ジベンゾピロメテン系色素
WO2015037676A1 (ja) メチン系色素及びそれを用いた色素増感光電変換素子
JP2016185911A (ja) 新規化合物及びそれを含む光電変換素子
WO2015118963A1 (ja) 新規化合物及びそれを含む光電変換素子
JP2017149694A (ja) 新規化合物及びそれを用いた光電変換素子
JP2005019130A (ja) 色素増感光電変換素子
WO2015137382A1 (ja) メチン系色素及びそれを用いた色素増感光電変換素子
JP2016196422A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−1
JP2016138175A (ja) 新規化合物及び該化合物を用いた色素増感光電変換素子
JP2017137382A (ja) 新規化合物及びそれを含む光電変換素子
JP2016196423A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−2
JP2016196558A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−4

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15746446

Country of ref document: EP

Kind code of ref document: A1