WO2015037676A1 - メチン系色素及びそれを用いた色素増感光電変換素子 - Google Patents

メチン系色素及びそれを用いた色素増感光電変換素子 Download PDF

Info

Publication number
WO2015037676A1
WO2015037676A1 PCT/JP2014/074133 JP2014074133W WO2015037676A1 WO 2015037676 A1 WO2015037676 A1 WO 2015037676A1 JP 2014074133 W JP2014074133 W JP 2014074133W WO 2015037676 A1 WO2015037676 A1 WO 2015037676A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
atom
independently
Prior art date
Application number
PCT/JP2014/074133
Other languages
English (en)
French (fr)
Inventor
昌厳 金子
紫垣 晃一郎
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Publication of WO2015037676A1 publication Critical patent/WO2015037676A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/10The polymethine chain containing an even number of >CH- groups
    • C09B23/105The polymethine chain containing an even number of >CH- groups two >CH- groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a novel methine dye having a specific structure, a photoelectric conversion element having a thin film of semiconductor fine particles sensitized with the dye, and a solar cell including the element.
  • the present invention relates to a photoelectric conversion element carrying a methine compound (pigment) having a structure and a solar cell including the element.
  • Such a photoelectric conversion element is manufactured using a relatively inexpensive oxide semiconductor such as titanium oxide, and there is a possibility that a photoelectric conversion element having a lower cost than a conventional solar cell using silicon or the like may be obtained. It is attracting attention for its ability to produce colorful solar cells.
  • the ruthenium complex itself used as a sensitizing dye for obtaining an element with high conversion efficiency is expensive and has a problem in its stable supply.
  • attempts have been made to use organic dyes that can be stably supplied at low material costs as sensitizing dyes Patent Documents 2 and 3.
  • photoelectric conversion elements sensitized with organic dyes have not sufficiently solved problems such as low conversion efficiency, stability, and durability, and have not yet been put into practical use (Patent Literature). 2).
  • the present inventors have sensitized the thin film of semiconductor fine particles with a methine dye having a specific structure, thereby maintaining high stability and durability and maintaining high conversion efficiency.
  • the inventors have found that a photoelectric conversion element that can be obtained is obtained, and have completed the present invention. That is, the present invention (1) Methine dye represented by the following formula (1)
  • X 1 and Y 1 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, carboxyl group, phosphoric acid group, sulfonic acid group, cyano group, acyl group, amide group, alkoxycarbonyl group or benzenesulfonyl Represents a group.
  • X 1 and Y 1 may combine to form a ring.
  • Z 1 and Z 2 each independently represents an oxygen atom, a sulfur atom, a selenium atom or NR 11 .
  • R 11 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • each Z 1 and / or each Z 2 may be the same as or different from each other.
  • a 1 , A 2 , A 3 , A 5 and A 6 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, aryl An oxy group, an alkoxycarbonyl group, an arylcarbonyl group or an acyl group is represented.
  • a 2 , A 3 , A 5 and A 6 are the same as each other. Or may be different.
  • a 4 represents a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an amide group, an alkoxycarbonyl group or an acyl group.
  • m is 2 or more and a plurality of A 4 are present, each A 4 may be the same as or different from each other.
  • a 7 and A 8 each independently represents a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group or an acyl group.
  • R 1 is represented by the following formula (3002)
  • X 2 and Y 2 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, carboxyl group, phosphoric acid group, sulfonic acid group, cyano group, acyl group, amide group, alkoxycarbonyl group or benzenesulfonyl Represents a group.
  • X 2 and Y 2 may combine to form a ring.
  • Z 4 represents an oxygen atom, a sulfur atom, a selenium atom or NR 12 .
  • R 12 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • each Z 4 may be the same as or different from each other.
  • a 11 and A 12 each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group or an acyl group.
  • each A 11 and A 12 may be the same as or different from each other.
  • a 13 , A 14 and A 15 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, aryloxy group, alkoxycarbonyl group Represents an arylcarbonyl group or an acyl group.
  • each A 13 and A 14 may be the same as or different from each other.
  • any two or more of A 13 , A 14 and A 15 may form a ring.
  • R 2 represents the following formula (3001) or (3003)
  • R 12 , R 13 , R 14 and R 15 each independently represent a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • R 16 , R 17 , R 18 and R 19 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, acyl group, amide group, alkoxy group, alkoxycarbonyl group or benzenesulfonyl group. Represents.
  • One of X 1 and Y 1 in the formula (1) is a carboxyl group and the other is a carboxyl group, a cyano group or an acyl group, and / or one of X 2 and Y 2 in the formula (3002) is a carboxyl group. And the other is a carboxyl group, a cyano group or an acyl group, the methine dye according to any one of the above items (1) to (5), (7)
  • one of X 1 and Y 1 is a carboxyl group and the other is a cyano group
  • / or one of X 2 and Y 2 in formula (3002) is a carboxyl group and the other is a cyano group.
  • An aromatic residue having at least one and / or at least one of X 2 and Y 2 in formula (3002) is a carboxyl group, a hydroxyl group, a phosphate group, a sulfonate group, or a salt of these acidic groups
  • the methine dye according to item (8) which is any of the groups represented by: (10) X 1 and Y 1 in formula (1) are combined to form a ring structure, and / or X 2 and Y 2 in formula (3002) are combined to form a ring structure.
  • the methine dye according to any one of (5), (11) A ring structure formed by combining X 1 and Y 1 in Formula (1) and / or a ring structure formed by combining X 2 and Y 2 in Formula (3002) is represented by the following formula (2001). To (2044)
  • the methine dye according to item (11), selected from the ring structure having (13) A ring structure formed by combining X 1 and Y 1 in Formula (1) and / or a ring structure formed by combining X 2 and Y 2 in Formula (3002) is represented by Formula (2007) or ( The methine dye according to item (12), which is a ring structure represented by 2012), (14)
  • R 2 in the formula (1) is (I) a group represented by formula (3001), wherein R 12 and R 13 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, or (II) a group represented by formula (3003)
  • R 14 and R 15 are each independently a phenyl group or a group represented by the formula (3001)
  • R 16 to R 19 are each independently a hydrogen atom or an alkoxy group having 1
  • R 2 is a group represented by any one of the above formulas (3103), (3107) and (3111), one of X 1 and Y 1 is a carboxyl group and the other is a carboxyl group, a cyano group or Is an acyl group, or X 1 and Y 1 are combined to form a ring and the ring is a group represented by the above formula (2007), and A 1 to A 8 are independently a hydrogen atom, a chlorine atom , A cyano group or an alkyl group having 1 to 18 carbon atoms, wherein in formula (3002), q is 0, p is 1 to 3, and Z 4 is independently an oxygen atom, a sulfur atom or a selenium atom, a one carboxyl group of X 2 and Y 2 other is Carboxyl group, or a cyano group or an acyl group, or a ring to form a ring X 2 and Y 2 are bonded to is a group represented by the formula (2007), A 11
  • the methine dye according to the preceding item (1) represented by: (22) A photoelectric conversion element in which a methine dye represented by the formula (1) described in any one of (1) to (21) above is supported on a thin film of oxide semiconductor fine particles on a substrate, (23) A solar cell comprising the photoelectric conversion element according to (22) above, About.
  • a solar cell having high durability and capable of maintaining high conversion efficiency even after a light durability test is provided.
  • the methine dye of the present invention has the following formula (1):
  • R 1 at a specific site is a specific structure represented by the following formula (3002).
  • the photoelectric conversion element provided with the thin film of oxide semiconductor fine particles supporting the methine dye is a photoelectric conversion using a methine dye or other dyes whose R 1 is not a specific structure represented by the formula (3002). Compared to the element, it has excellent durability and maintains high conversion efficiency for a long time.
  • the methine dye represented by the formula (1) will be described.
  • M in Formula (1) represents an integer of 1 to 5, preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • L in Formula (1) represents an integer of 0 to 6, and is preferably 0.
  • N in Formula (1) represents an integer of 0 to 6, and is preferably 0.
  • J in Formula (1) represents an integer of 0 to 3, preferably 1 to 3, and more preferably 1 to 2.
  • X 1 and Y 1 in formula (1) are each independently a hydrogen atom, an aromatic residue, an aliphatic hydrocarbon residue, a carboxyl group, a phosphoric acid group, a sulfonic acid group, a cyano group, an acyl group, an amide group, Represents an alkoxycarbonyl group or a benzenesulfonyl group.
  • the aromatic residue represented by X 1 and Y 1 in formula (1) means an aromatic ring or a group obtained by removing one hydrogen atom from a condensed ring including an aromatic ring, and the aromatic residue has a substituent. You may have.
  • aromatic rings include aromatic hydrocarbon rings such as benzene, naphthalene, anthracene, phenanthrene, pyrene, perylene and terylene, indene, azulene, pyridine, pyrazine, pyrimidine, pyrazole, pyrazolidine, thiazolidine, oxazolidine, pyran, chromene, Pyrrole, pyrrolidine, benzimidazole, imidazoline, imidazolidine, imidazole, triazole, triazine, diazole, indoline, thiophene, thienothiophene, furan, oxazole, oxadiazole, thiazine,
  • the aromatic residue represented by X 1 and Y 1 may have, for example, sulfonic acid group, sulfamoyl group, cyano group, isocyano group, thiocyanato group, isothiocyanato group, nitro group , Nitrosyl group, halogen atom, hydroxyl group, phosphate group, phosphate ester group, amino group, mercapto group, amide group, alkoxy group, aryloxy group, carboxyl group, carbamoyl group, acyl group, aldehyde group, alkoxycarbonyl group And a substituted carbonyl group such as an arylcarbonyl group, an aromatic residue, and an aliphatic hydrocarbon residue.
  • Examples of the halogen atom as a substituent that the aromatic residue may have include fluorine, chlorine, bromine, iodine and the like, and a bromine atom or a chlorine atom is preferable.
  • Examples of the phosphate ester group as a substituent that the aromatic residue may have include an ester group of phosphoric acid and alkyl having 1 to 5 carbon atoms, and preferable examples include a methyl phosphate group, An ethyl phosphate group, an n-propyl phosphate group, and an n-butyl phosphate group.
  • Examples of the amino group as a substituent that the aromatic residue may have include an unsubstituted amino group; an alkyl-substituted amino group such as a mono- or dimethylamino group, a mono- or diethylamino group, a mono- or di-n-propylamino group
  • An aromatic substituted amino group such as a mono or diphenylamino group, a mono or dinaphthylamino group; an amino group substituted with an alkyl group such as a monoalkylmonophenylamino group and an aromatic residue one by one; a benzylamino group or the like;
  • Examples of the mercapto group as a substituent that the aromatic residue may have include an unsubstituted mercapto group, an alkyl mercapto group, and an aryl mercapto group.
  • Examples of the alkyl mercapto group include methyl mercapto group, ethyl mercapto group, n-propyl mercapto group, isopropyl mercapto group, n-butyl mercapto group, isobutyl mercapto group, sec-butyl mercapto group and t-butyl mercapto group.
  • alkyl mercapto groups, and aryl mercapto groups include phenyl mercapto groups.
  • Examples of the amide group as a substituent that the aromatic residue may have include an unsubstituted amide group, an acetamide group, an alkylamide group, an alkylacetamide group, and an arylacetamide group. Preferred examples are unsubstituted.
  • alkoxy group as a substituent that the aromatic residue may have include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and t- Examples thereof include an alkoxy group having 1 to 5 carbon atoms such as a butoxy group.
  • aryloxy group as a substituent that the aromatic residue may have include aryloxy groups having 5 to 20 carbon atoms such as a phenoxy group and a naphthoxy group.
  • acyl group as a substituent that the aromatic residue may have include, for example, an alkylcarbonyl group having 1 to 10 carbon atoms and an arylcarbonyl group, which are substituted with a halogen such as F or Cl. May be.
  • Specific examples include an acetyl group, a propionyl group, a trifluoromethylcarbonyl group, a pentafluoroethylcarbonyl group, a benzoyl group, a naphthoyl group and the like, and an unsubstituted or substituted alkylcarbonyl group having 1 to 4 carbon atoms. Is preferred.
  • alkoxycarbonyl group as a substituent that the aromatic residue may have examples include an alkoxycarbonyl group having 1 to 10 carbon atoms. Specific examples include methoxycarbonyl group, ethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, n-butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, t-butoxycarbonyl group, n-pentene. Examples thereof include a tooxycarbonyl group, an n-hexyloxycarbonyl group, an n-heptyloxycarbonyl group, an n-nonyloxycarbonyl group, and an n-decyloxycarbonyl group.
  • Examples of the arylcarbonyl group as a substituent that the aromatic residue may have include a group in which an aryl group having 5 to 20 carbon atoms such as benzophenone and naphthophenone and carbonyl are linked.
  • Examples of the aromatic residue as a substituent that the aromatic residue may have include the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • Examples of the aliphatic hydrocarbon residue as a substituent that the aromatic residue may have include a saturated or unsaturated, linear, branched or cyclic alkyl group, and the aliphatic hydrocarbon residue. The group may have a substituent.
  • the aliphatic hydrocarbon residue is preferably a saturated alkyl group, and more preferably a saturated linear alkyl group. Further, the aliphatic hydrocarbon residue has preferably 1 to 36 carbon atoms, more preferably 1 to 18 carbon atoms, and still more preferably 1 to 8 carbon atoms. Specific examples of these aliphatic hydrocarbon residues include methyl, ethyl, n-propyl, isopropyl, n-butyl, iso-butyl, sec-butyl, t-butyl, n-pentyl.
  • the aromatic residue, aliphatic hydrocarbon residue, amide group, acyl group, alkoxy group, aryloxy group, arylcarbonyl group and alkoxycarbonyl group as substituents that the aromatic residue may have are substituents.
  • substituents include the same as those described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in Formula (1) may have. .
  • the aromatic residue represented by X 1 and Y 1 in the formula (1) is a substituent containing a group selected from the group consisting of a carboxyl group, a hydroxyl group, a phosphate group, a sulfonate group, and a salt of these acidic groups
  • An aromatic residue having at least one group is preferable, and any of groups represented by the following formulas (1001) to (1033) is more preferable.
  • the aliphatic hydrocarbon residue represented by X 1 and Y 1 in the formula (1) is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. And the same aliphatic hydrocarbon residues.
  • the aliphatic hydrocarbon residue may have a substituent, and examples of the substituent include substituents that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. The same as mentioned in the section.
  • the acyl group represented by X 1 and Y 1 in the formula (1) the acyl group described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have and The same can be mentioned.
  • the acyl group may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have.
  • the same thing is mentioned.
  • the amide group represented by X 1 and Y 1 in the formula (1) is the same as that described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. Things.
  • the amide group may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. The same thing is mentioned.
  • the alkoxycarbonyl group represented by X 1 and Y 1 in the formula (1) is an alkoxycarbonyl described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have.
  • the same thing as a group is mentioned.
  • the alkoxycarbonyl group may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. The same thing is mentioned.
  • X 1 and Y 1 in formula (1) may be bonded to form a ring, and the ring structure is a 5-membered or 6-membered heterocyclic ring having at least one nitrogen atom as a ring component.
  • a structure is preferred.
  • These rings may have a substituent, and the substituent is described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in the formula (1) may have. The same thing is mentioned, The ring structure which has a carboxyl group as a substituent is preferable.
  • ring structure formed by combining X 1 and Y 1 include the ring structures represented by the following formulas (2001) to (2044), among which (2001) to (2007), (2009) to (2010), (2012) to (2015), (2017) to (2023) and (2025) to (2044) are preferred, more preferably (2007) or (2012).
  • the ring structure of (2007) is particularly preferred.
  • X 1 and Y 1 in the formula (1) are preferably any of the following (i) to (iii).
  • X 1 and Y 1 are preferably each independently a carboxyl group, a phosphate group, a cyano group or an acyl group, more preferably each independently a carboxyl group, a cyano group or an acyl group, Is more preferably a carboxyl group and the other is a carboxyl group, a cyano group or an acyl group, and it is particularly preferable that one is a carboxyl group and the other is a cyano group.
  • At least one of X 1 and Y 1 has at least one substituent containing a group selected from the group consisting of a carboxyl group, a hydroxyl group, a phosphate group, a sulfonate group, and a salt of these acidic groups. It is preferably an aromatic residue having at least one, and more preferably the aromatic residues are represented by the above formulas (1001) to (1033).
  • X 1 and Y 1 are preferably bonded to form a ring structure, and the ring structure is more preferably represented by the above formulas (2001) to (2044), and among these, at least one nitrogen or more
  • a ring structure having a 5- or 6-membered heterocyclic ring having an atom as a ring component and / or a ring structure having a carboxyl group as a substituent is more preferred, and the ring structure is represented by the formula (2007) or (2012) Is particularly preferred, and the formula (2007) is very particularly preferred.
  • Z 1 and Z 2 in formula (1) each independently represent an oxygen atom, a sulfur atom, a selenium atom or NR 11
  • R 11 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • the aromatic residue represented by R 11 include the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • the aliphatic hydrocarbon residue represented by R 11 include the aliphatic hydrocarbon residues described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in Formula (1) may have; The same can be mentioned.
  • the aromatic residue and aliphatic hydrocarbon residue represented by R 11 may have a substituent, and specific examples of the substituent include sulfamoyl group, cyano group, isocyano group, thiocyanato group, isothiocyanato group, Nitro group, nitrosyl group, halogen atom, phosphate ester group, amino group, amide group, alkoxy group, aryloxy group, carbamoyl group, acyl group, aldehyde group, alkoxycarbonyl group, arylcarbonyl group and other substituted carbonyl groups, aromatic Group residues, aliphatic hydrocarbon residues and the like.
  • a halogen atom, a phosphate ester group, an amino group, an amide group, an alkoxy group, an aryloxy group, an acyl group as a substituent that the aromatic residue and aliphatic hydrocarbon residue represented by R 11 may have,
  • the alkoxycarbonyl group, arylcarbonyl group and aliphatic hydrocarbon residue are the same as those described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in formula (1) may have. Things.
  • Examples of the aromatic residue as the substituent that the aromatic residue and the aliphatic hydrocarbon residue represented by R 11 may have include the aromatic residues represented by X 1 and Y 1 in the formula (1). The same as mentioned in the section.
  • m or j in the formula (1) is 2 or more, if Z 1 and / or Z 2 there are a plurality, each of Z 1 and / or Z 2 may be the same or different from each other.
  • Z 1 and Z 2 in formula (1) are each independently preferably an oxygen atom, a sulfur atom or a selenium atom, and more preferably a sulfur atom.
  • a 1 , A 2 , A 3 , A 5 and A 6 are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, Represents an aryloxy group, an alkoxycarbonyl group, an arylcarbonyl group or an acyl group;
  • Examples of the aromatic residue represented by A 1 , A 2 , A 3 , A 5 and A 6 include the same aromatic residues as those represented by X 1 and Y 1 in the formula (1).
  • X 1 and Y aromatic residues 1 represents of may be the same as those described in the section of the substituent which may have.
  • the aromatic residue, aliphatic hydrocarbon residue, amide group, alkoxy group, aryloxy group, alkoxycarbonyl group, arylcarbonyl group and acyl group represented by A 1 , A 2 , A 3 , A 5 and A 6 are substituted.
  • the substituent may have a group, and as the substituent, those described in the section of the substituent that the aromatic residue and the aliphatic hydrocarbon residue represented by R 11 in the formula (1) may have The same thing is mentioned.
  • each of A 2 , A 3 , A 5 and A 6 may be the same as or different from each other.
  • l is other than 0, at least two selected from A 1 , A 2 and A 3 may be bonded to form a ring. Examples of the ring formed by at least two of A 1 , A 2 and A 3 include an unsaturated hydrocarbon ring or a heterocyclic ring.
  • Examples of the unsaturated hydrocarbon ring include benzene, naphthalene, anthracene, phenanthrene, pyrene, indene, azulene, fluorene, cyclobutene, cyclohexene, cyclopentene, cyclohexadiene, cyclopentadiene, and examples of the heterocyclic ring include Examples include pyran, pyridine, pyrazine, piperidine, indoline, oxazole, thiazole, thiadiazole, oxadiazole, indole, benzothiazole, benzoxazole, quinoline, carbazole, benzopyran and the like.
  • These unsaturated hydrocarbon rings and heterocyclic rings may have a substituent, and the substituent includes an aromatic residue and an aliphatic hydrocarbon residue represented by R 11 in the formula (1). And the same as those described in the section of the good substituent.
  • the heterocyclic ring formed by at least two selected from A 1 , A 2 and A 3 has a substituent such as a carbonyl group or a thiocarbonyl group
  • these substituents are cyclic ketones or cyclic thioketones. These rings may further have a substituent.
  • substituents in that case include the same substituents as those described in the section of the substituent that the aromatic residue and the aliphatic hydrocarbon residue represented by R 11 in the formula (1) may have.
  • a 1 , A 2 , A 3 , A 5 and A 6 in formula (1) are each independently preferably a hydrogen atom or an aliphatic hydrocarbon residue, more preferably a hydrogen atom.
  • a 4 in Formula (1) represents a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an amide group, an alkoxycarbonyl group, or an acyl group.
  • the aromatic residue represented by X 1 and Y 1 in formula (1) has And the same as those described in the section of the good substituent.
  • the aliphatic hydrocarbon residue, alkoxy group, amide group, alkoxycarbonyl group and acyl group represented by A 4 may have a substituent, and examples of the substituent include an aromatic group represented by R 11 in the formula (1).
  • R 11 in the formula (1).
  • each A 4 may be the same as or different from each other.
  • the A 4 in the formula (1) preferably a hydrogen atom or an aliphatic hydrocarbon residue, more preferably a hydrogen atom.
  • a 7 and A 8 in Formula (1) each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group, or an acyl group.
  • the aromatic residue represented by X 1 and Y 1 in formula (1) has And the same as those described in the section of the good substituent.
  • the aliphatic hydrocarbon residue, alkoxy group, alkoxycarbonyl group and acyl group represented by A 7 and A 8 may have a substituent, and examples of the substituent include an aromatic group represented by R 11 in formula (1).
  • R 11 in formula (1) The same thing as what was mentioned in the term of the substituent which a group residue and an aliphatic hydrocarbon residue may have is mentioned.
  • each A 7 and A 8 may be the same or different from each other.
  • R 1 in the formula (1) is represented by the following formula (3002)
  • Represents a group represented by P in the formula (3002) represents an integer of 1 to 3, and preferably 1 to 2. Further, it is particularly preferable that p and the aforementioned j are the same integer.
  • Q in the formula (3002) represents an integer of 0 to 6, and is preferably 0.
  • q and the aforementioned l are the same integer. Therefore, it is most preferable that p and j are the same integer, and q and l are the same integer.
  • X 2 and Y 2 in formula (3002) each independently represent a hydrogen atom, an aromatic residue, an aliphatic hydrocarbon residue, a carboxyl group, a phosphate group, a sulfonic acid group, a cyano group, an acyl group, an amide group, It represents an alkoxycarbonyl group or a benzenesulfonyl group, and these definitions and preferred ones are the same as those for X 1 and Y 1 in the above formula (1).
  • the asterisks in the formulas (2001) to (2044) are the same as those in the formula (3002).
  • a carbon atom to which X 2 and Y 2 are bonded is shown.
  • Z 4 in the formula (3002) represents an oxygen atom, a sulfur atom, a selenium atom or NR 12
  • R 12 represents a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • the definitions and preferred examples of the aromatic residue and aliphatic hydrocarbon residue represented by R 12 are the same as those described in the section of R 11 in formula (1), and the definition and preferred examples of Z 4 are those of the formula This is the same as described in the Z 1 and Z 2 terms of (1).
  • a 11 and A 12 in formula (3002) each independently represent a hydrogen atom, an aliphatic hydrocarbon residue, a cyano group, a halogen atom, a carbonamido group, an alkoxy group, an alkoxycarbonyl group, or an acyl group, and these definitions
  • the preferable ones are the same as those described in the paragraphs A 7 and A 8 in the formula (1).
  • a 13 , A 14 and A 15 in formula (3002) are each independently a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, halogen atom, carbonamido group, amide group, alkoxy group, aryl Represents an oxy group, an alkoxycarbonyl group, an arylcarbonyl group or an acyl group, and these definitions and preferred ones are those described in the paragraphs A 1 , A 2 , A 3 , A 5 and A 6 of the formula (1). It is the same. When m is 2 or more and a plurality of R 1 are present, each R 1 may be the same as or different from each other.
  • R 2 in the formula (1) is the following formula (3001) or (3003)
  • R 12 , R 13 , R 14 and R 15 each independently represent a hydrogen atom, an aromatic residue or an aliphatic hydrocarbon residue.
  • R 16 , R 17 , R 18 and R 19 each independently represent a hydrogen atom, aromatic residue, aliphatic hydrocarbon residue, cyano group, acyl group, amide group, alkoxy group, alkoxycarbonyl group or benzenesulfonyl group.
  • Examples of the aromatic residue represented by R 12 , R 13 , R 14 and R 15 are the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • an aromatic residue represented by X 1 and Y 1 in the formula (1) may be substituted. The same thing as the aliphatic hydrocarbon residue mentioned is mentioned.
  • R 12 and R 13 in the formula (3001) are preferably each independently a hydrogen atom or an aliphatic hydrocarbon residue, more preferably each independently a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
  • An alkyl group having 1 to 8 carbon atoms is more preferable, and a linear alkyl group having 1 to 8 carbon atoms is particularly preferable.
  • R 14 and R 15 in formula (3003) are preferably each independently an aromatic residue, more preferably each independently a phenyl group or a group represented by formula (3001). More preferably, they are the same phenyl group or the same group represented by the same formula (3001).
  • R 14 and R 15 are a group represented by the formula (3001)
  • R 12 and R 13 of the group are the same as described above, and preferred substituents are also the same as described above.
  • Examples of the aromatic residue represented by R 16 , R 17 , R 18 and R 19 are the same as those described in the section of the aromatic residue represented by X 1 and Y 1 in the formula (1).
  • Examples of the aliphatic hydrocarbon residue, acyl group, amide group, alkoxy group and alkoxycarbonyl group represented by R 16 , R 17 , R 18 and R 19 include aromatic residues represented by X 1 and Y 1 in the formula (1). The same thing as what was mentioned in the term of the substituent which group may have is mentioned.
  • the aromatic residue, aliphatic hydrocarbon residue, acyl group, amide group, alkoxy group, alkoxycarbonyl group and benzenesulfonyl group represented by R 16 , R 17 , R 18 and R 19 may have a substituent.
  • substituents include the same as those described in the section of the substituent that the aromatic residue and the aliphatic hydrocarbon residue represented by R 11 in the formula (1) may have.
  • R 16 , R 17 , R 18 and R 19 in the formula (3003) are each independently preferably a hydrogen atom or an alkoxy group, more preferably a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms. And more preferably a hydrogen atom.
  • R 12 and R 13 are preferably hydrogen atoms or alkyl groups having 1 to 8 carbon atoms, and R 12 and R 13 are alkyl groups having 1 to 8 carbon atoms. It is more preferable.
  • R 14 and R 15 are a phenyl group or a group represented by the formula (3001), and R 12 and R 13 in the formula (3001) are a hydrogen atom or a carbon number. It is preferably an alkyl group having 1 to 8 and R 16 to R 19 are each independently a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms, R 14 and R 15 are phenyl groups, and R 16 More preferably, R 19 is a hydrogen atom.
  • Examples of the aliphatic hydrocarbon residue represented by R 2 include the aliphatic hydrocarbon residues described in the section of the substituent that the aromatic residue represented by X 1 and Y 1 in Formula (1) may have, The same can be mentioned.
  • n is other than 0, at least two selected from A 5 , A 6 and R 2 may be bonded to form a ring.
  • the ring formed by A 5 , A 6 and R 2 may have a substituent, and examples of the substituent include an aromatic residue and an aliphatic hydrocarbon residue represented by R 11 in formula (1). Examples thereof are the same as those described in the section of the substituent which may be included.
  • R 2 in Formula (1) is represented by Formula (3001), and R 12 and R 13 are a hydrogen atom or a group having 1 to 8 carbon atoms, or represented by Formula (3003).
  • R 14 and R 15 are a phenyl group or a group represented by the formula (3001)
  • R 12 and R 13 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 16 to R 19 are respectively A group which is independently a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms is more preferable.
  • R 14 and R 15 are phenyl groups, and R 16 to R 19 are each independently a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms;
  • R 14 and R 15 are groups represented by the formula (3001), and
  • R 12 and R 13 are a hydrogen atom or an alkyl group having 1 to 8 carbon atoms; More preferably, 16 to R 19 are each independently a hydrogen atom or an alkoxy group having 1 to 4 carbon atoms.
  • a group represented by any of the following formulas (3101) to (3114) is preferable, and the above formulas (3102), (3103), (3107), (3108), (3110) , (3111), (3113) or (3114) is more preferable, and a group represented by the formula (3103), (3107) or (3111) is more preferable.
  • a group represented by formula (3107) or (3111) is particularly preferable.
  • each may form a salt.
  • a salt with an alkali metal such as lithium, sodium or potassium, or an alkaline earth metal such as magnesium or calcium, or an organic base such as tetramethylammonium, tetrabutylammonium, pyridinium, imidazolium, piperazinium or piperidinium Mention may be made of salts such as ammonium salts.
  • the methine dye represented by the formula (1) can take a structural isomer such as a cis isomer, a trans isomer, a racemate and the like, but is not particularly limited, and any isomer is used as a photosensitizing dye in the present invention. It can be used satisfactorily.
  • Preferred combinations of m, l, n, j, p, q, X 1 to X 2 , Y 1 to Y 2 , Z 1 to Z 4 , A 1 to A 15 and R 1 to R 2 in the formula (1) are , M, l, n, j, p, q, X 1 to X 2 , Y 1 to Y 2 , Z 1 to Z 4 , A 1 to A 15, and R 1 to R 2. It is a combination of those, and a more preferable combination is as follows. That is, in formula (1), m is 1 to 3, l and n are 0, j is 1 to 3, and in formula (3002), q is 0 and p is 1 to 3.
  • Each of Z 1 , Z 2 and Z 4 in formula (1) or formula (3002) independently represents an oxygen atom, a sulfur atom, a selenium atom, an amino group, an N-methylamino group or an N-phenylamino group;
  • R 2 in formula (1) is a group represented by any of the above formulas (3101) to (3114), and
  • X 1 and Y 1 in formula (1) are each independently a carboxyl group, phosphorus An acid group, a cyano group or an acyl group, one of X 1 and Y 1 is a group represented by the above formulas (1001) to (1033), and the other is a hydrogen atom or a cyano group, or X 1 and forms a ring with Y 1, the ring consists of groups represented by the formula (2001) - (2044) Is a group selected from, X 2 and Y 2 are each independently a carboxyl group, a phosphoric acid group, or a cyano group or an acyl group
  • Z 1 , Z 2 , and Z 4 in formula (1) or formula (3002) are each independently an oxygen atom, sulfur atom, or selenium atom, and R 2 in formula (1) is the above formula (3103) ), (3107) and (3111), one of X 1 and Y 1 in formula (1) is a carboxyl group and the other is a carboxyl group, a cyano group or an acyl group Or X 1 and Y 1 are bonded to form a ring, and the ring is a group represented by the above formula (2007), one of X 2 and Y 2 is a carboxyl group and the other is a carboxyl group, cyano A group or an acyl group, or X 2 and Y 2 are combined to form a ring, and the ring is represented by the above formula (2007 More preferred are compounds in which A 1
  • m is 1 to 3
  • l and n are 0, j is 1 to 3
  • Z 1 and Z 2 are sulfur atoms
  • R 2 is the above formula (3103).
  • X 1 and Y 1 is a carboxyl group
  • the other is a carboxyl group or a cyano group
  • a 1 to A 8 are each independently Are a hydrogen atom or an alkyl group having 1 to 18 carbon atoms
  • q is 0 in formula (3002)
  • p is 1 to 3
  • Z 4 is a sulfur atom
  • one of X 2 and Y 2 More preferred is a compound wherein is a carboxyl group, the other is a carboxyl group or a cyano group
  • a 11 to A 15 are each independently a hydrogen atom or an alkyl group having 1 to 18 carbon atoms.
  • m is 1 to 2, more preferably 1, l and n are 0, j is 1 to 2, and in formula (3002), q is 0, p is 1 to 2, Z 1 , Z 2 , and Z 4 in formula (1) or formula (3002) are sulfur atoms, and R 2 in formula (1) is the formula (3107) or ( 3111), wherein one of X 1 and Y 1 in formula (1) is a carboxyl group and the other is a cyano group, or X 1 and Y 1 are bonded to form a ring.
  • the ring is a group represented by the above formula (2007), and one of X 2 and Y 2 is a carboxyl group and the other is a cyano group, or X 2 and Y 2 are combined to form a ring.
  • a compound in which the ring is a group represented by the above formula (2007) and A 1 to A 15 are hydrogen atoms is particularly preferable.
  • the counter ion for neutralizing the positive charge of the nitrogen atom may be formed either intermolecularly or intramolecularly.
  • Preferable counter ions between molecules include anions such as iodine, perchloric acid, bistrifluoromethylsulfonimide, tristrifluoromethylsulfonylmethane, hexafluoroantimonic acid, and tetrafluoroboric acid.
  • preferred counter ions in the molecule include anions of 2-yl acetate, 3-yl propionate, and sulfoethane-2-yl bonded to a positively charged nitrogen atom.
  • the methine dye represented by the formula (1) can be produced by, for example, the following reaction formula, but the present invention is not limited to these synthesis methods.
  • Compound (5) is obtained by reaction of compound (3) and boronic acids (4).
  • Compound (5) is treated with N-iodosuccinimide to obtain compound (6).
  • the compound (6) and the boronic acid (7) are reacted to derive the compound (8), and further, the carbonyl compound (10) is obtained by the reaction with the boronic acid (9).
  • a base such as caustic soda, sodium methylate, sodium acetate, diethylamine, triethylamine, piperidine, piperazine, diazabicycloundecene, etc.
  • this compound (10) and the compound having active methylene represented by formula (11) are required 20 ° C to 180 ° C in alcohols such as methanol, ethanol, isopropanol and butanol, aprotic polar solvents such as dimethylformamide and N-methylpyrrolidone, and solvents such as toluene, acetic anhydride and acetonitrile.
  • Alcohols such as methanol, ethanol, isopropanol and butanol
  • aprotic polar solvents such as dimethylformamide and N-methylpyrrolidone
  • solvents such as toluene, acetic anhydride and acetonitrile.
  • Non-Patent Document 3 the entire contents of which are incorporated herein by reference.
  • methine dyes represented by formula (1-1) metal dyes in which l and n in formula (1) and q in formula (3002) are 0
  • methine dyes represented by formula (1-1) metal dyes in which l and n in formula (1) and q in formula (3002) are 0
  • Tables 1 to 7 Specific examples of methine dyes represented by formula (1-1) (methine dyes in which l and n in formula (1) and q in formula (3002) are 0) are shown in Tables 1 to 7.
  • R 1 represents the following formula (3002-1).
  • Ph means a phenyl group.
  • Those described as (1001) to (1033) correspond to the above formulas (1001) to (1033).
  • Those expressed as (2001) to (2044) represent a ring formed by combining X 1 and Y 1 and / or X 2 and Y 2 , and in the above formulas (2001) to (2044), Correspond.
  • the notations (3101) to (3114) correspond to the above formulas (3101) to (3114).
  • a methine dye represented by the following formula (1-2) (in formula (1), A 1 , A 2 , A 3 , A 13 and A 14 are hydrogen atoms, 1 is 1, and formula (3002) Specific examples of methine dyes in which q is 1 are shown in Tables 9 to 21.
  • R 1 represents the following formula (3002-2).
  • Ph means a phenyl group.
  • the substituents represented as (1001) to (1033) correspond to the above formulas (1001) to (1033).
  • the substituents represented by (2001) to (2044) represent a ring formed by combining X 1 and Y 1 and / or X 2 and Y 2, and correspond to the above formulas (2001) to (2044).
  • the notations (3101) to (3114) correspond to the above formulas (3101) to (3114).
  • the photoelectric conversion element of the present invention has, for example, a thin film of oxide semiconductor fine particles on a substrate, and a dye compound represented by the formula (1) supported on the thin film.
  • a substrate on which a thin film of oxide semiconductor fine particles is provided a substrate having a conductive surface is preferable, but such a substrate is easily available in the market.
  • the surface of a transparent polymer material such as glass or polyethylene terephthalate or polyether sulfone is provided with a conductive metal oxide such as tin oxide doped with indium, fluorine or antimony, or a metal thin film such as copper, silver or gold.
  • the conductivity is usually 1000 ⁇ or less, preferably 100 ⁇ or less.
  • the oxide semiconductor is preferably a metal oxide, and specific examples thereof include oxides of titanium, tin, zinc, tungsten, zirconium, gallium, indium, yttrium, niobium, tantalum, vanadium, and the like. Of these, oxides such as titanium, tin, zinc, niobium or indium are preferred, and titanium oxide, zinc oxide and tin oxide are most preferred. These oxide semiconductors can be used alone, but two or more kinds can be mixed, or the surface of one oxide semiconductor can be coated with another oxide semiconductor.
  • the average particle size of the oxide semiconductor fine particles is usually 1 to 500 nm, preferably 1 to 100 nm.
  • the fine particles of the oxide semiconductor may be mixed with a large particle size and a small particle size, or may be used as a multilayer.
  • a thin film of oxide semiconductor fine particles is a method of directly forming a thin film of semiconductor fine particles by spraying the oxide semiconductor fine particles on the substrate by spraying, etc., a method of electrically depositing semiconductor fine particles into a thin film using the substrate as an electrode, It can be manufactured by applying a paste containing fine particles obtained by hydrolyzing a semiconductor fine particle slurry or a semiconductor fine particle precursor such as semiconductor alkoxide on a substrate, followed by drying, curing or baking. .
  • a method using a slurry is preferable. In the case of this method, the slurry is obtained by dispersing the oxide semiconductor fine particles, which are secondarily aggregated, in a dispersion medium so that the average primary particle diameter is 1 to 200 nm by a conventional method.
  • any medium can be used as long as it can disperse the semiconductor fine particles.
  • Water; alcohol such as ethanol; ketone such as acetone and acetylacetone; hydrocarbon such as hexane and the like are used. It may be used or mixed. Further, water is preferable in that the change in viscosity of the slurry is reduced.
  • a dispersion stabilizer can be used for the purpose of stabilizing the dispersion state of the oxide semiconductor fine particles.
  • the dispersion stabilizer include acids such as acetic acid, hydrochloric acid, and nitric acid, or organic solvents such as acetylacetone, acrylic acid, polyethylene glycol, and polyvinyl alcohol.
  • the substrate coated with the slurry may be fired, and the firing temperature is usually 100 ° C. or higher, preferably 200 ° C. or higher, and generally lower than the melting point (softening point) of the substrate material, usually 900 ° C. or lower. Preferably it is 600 degrees C or less.
  • the firing time is not particularly limited, but is preferably within 4 hours.
  • the thickness of the thin film on the substrate is usually 1 to 200 ⁇ m, preferably 1 to 50 ⁇ m.
  • Secondary treatment may be applied to the thin film of oxide semiconductor fine particles. That is, for example, the performance of the thin film of semiconductor fine particles is improved by immersing the thin film together with the substrate directly in a solution of the same metal alkoxide, chloride, nitride, sulfide, etc. as the semiconductor and drying or refiring. You can also.
  • the metal alkoxide include titanium ethoxide, titanium isopropoxide, titanium t-butoxide, n-dibutyl-diacetyltin, and alcohol solutions thereof are used.
  • the chloride include titanium tetrachloride, tin tetrachloride, zinc chloride and the like, and an aqueous solution thereof is used.
  • the oxide semiconductor thin film thus obtained is composed of fine particles of an oxide semiconductor.
  • a method for supporting a methine dye represented by the formula (1) of the present invention on a thin film of oxide semiconductor fine particles will be described.
  • a solution obtained by dissolving the dye in a solvent capable of dissolving the dye or a dispersion obtained by dispersing the dye in the case of a dye having low solubility is used.
  • substrate which has a thin film is mentioned.
  • the immersion temperature is generally from room temperature to the boiling point of the solvent, and the immersion time is about 1 minute to 48 hours.
  • THF tetrahydrofuran
  • DMSO dimethyl sulfoxide
  • DMF dimethylformamide
  • acetone n-butanol
  • t- Examples include butanol, water, n-hexane, chloroform, dichloromethane, toluene, and the like, and can be used alone or in combination according to the solubility of the dye.
  • the dye concentration of the solution or dispersion may be appropriately determined depending on the dye used, but is usually 1 ⁇ 10 ⁇ 6 M to 1M, and preferably 1 ⁇ 10 ⁇ 5 M to 1 ⁇ 10 ⁇ 1 M.
  • the solvent is removed by air drying or heating if necessary.
  • the methine dye represented by the formula (1) to be carried may be one kind or a mixture of several kinds. Further, the methine dye represented by the formula (1) of the present invention may be mixed with other dyes or metal complex dyes. In particular, by mixing dyes having different absorption wavelengths, a wide absorption wavelength can be used, and a solar cell with high conversion efficiency can be obtained. There are no particular restrictions on the metal complex dyes that can be mixed, but ruthenium complexes shown in Non-Patent Document 2 or their quaternary ammonium salt compounds, phthalocyanines, porphyrins, and the like are preferred.
  • Examples include phthalocyanine, porphyrin, cyanine, merocyanine, oxonol, triphenylmethane, methine dyes such as acrylic acid dyes disclosed in Patent Document 2, and dyes such as xanthene, azo, anthraquinone, and perylene. .
  • a ruthenium complex, a merocyanine, or a methine dye such as acrylic acid can be mixed.
  • the dyes may be sequentially adsorbed on the thin film of semiconductor fine particles, or the mixed and dissolved mixture may be adsorbed.
  • the ratio of the dye to be mixed there is no particular limitation on the ratio of the dye to be mixed, and optimization conditions can be appropriately selected for each dye.
  • the mixture is equimolar to about 10% mol or more per dye. preferable.
  • the total concentration of the dye in the solution may be the same as when only one kind is supported.
  • the solvent in the case of using a mixture of dyes the above-mentioned solvents can be used, and the solvents for the respective dyes to be used may be the same or different.
  • Inclusion compounds include steroidal compounds such as cholic acid, crown ethers, cyclodextrins, calixarene, polyethylene oxide, etc.
  • Preferred examples include deoxycholic acid, dehydrodeoxycholic acid, chenodeoxycholic acid, cholic acid methyl ester.
  • cholic acids such as sodium cholate, polyethylene oxide and the like.
  • the semiconductor fine film thin film may be treated with an amine compound such as 4-t-butylpyridine. Examples of the treatment method include a method of immersing a substrate having a thin film of semiconductor fine particles carrying a dye in an amine ethanol solution.
  • the solar cell of the present invention includes a photoelectric conversion element in which a dye is supported on a thin film of oxide semiconductor fine particles as one electrode, and further includes a counter electrode, a redox electrolyte, a hole transport material, or a p-type semiconductor.
  • a redox electrolyte a hole transport material
  • a p-type semiconductor examples include a liquid, a solidified body (gel and gel), a solid, and the like, and a known material can be used in each form.
  • liquids include redox electrolytes, molten salts, hole transport materials, p-type semiconductors, etc., dissolved in solvents, and room temperature molten salts.
  • Examples of the solidified body include those in which these are contained in a polymer matrix, a low-molecular gelling agent, or the like.
  • Examples of solid materials include redox electrolytes, molten salts, hole transport materials, p-type semiconductors, and the like.
  • Examples of the hole transport material include amine derivatives; conductive polymers such as polyacetylene, polyaniline, and polythiophene; triphenylene compounds.
  • CuI, CuSCN, etc. are mentioned as a p-type semiconductor.
  • the counter electrode is preferably one having conductivity and catalytically acting on the reduction reaction of the redox electrolyte.
  • a glass or polymer film deposited with platinum, carbon, rhodium, ruthenium or the like, or a film coated with conductive fine particles can be used.
  • the redox electrolyte used in the solar cell of the present invention includes a halogen redox electrolyte comprising a halogen compound and a halogen molecule having a halogen ion as a counter ion; ferrocyanate-ferricyanate or ferrocene-ferricinium ion, cobalt complex Metal redox electrolytes such as metal complexes such as: organic redox electrolytes such as alkylthiol-alkyldisulfides, viologen dyes, hydroquinone-quinones, and the like. Halogen redox electrolytes are preferred.
  • halogen molecule in the halogen redox electrolyte comprising a halogen compound-halogen molecule examples include an iodine molecule and a bromine molecule, and an iodine molecule is preferable.
  • the halogen compound having a halogen ion as a counter ion for example LiBr, NaBr, KBr, LiI, NaI, KI, CsI, CaI 2, MgI 2, CuI and halogenated metal salt or tetraalkylammonium iodide, and imidazolium iodide
  • organic quaternary ammonium salts of halogens such as id and pyridinium iodide, and salts having iodine ions as counter ions are preferred.
  • the electrolyte which uses imide ions, such as a bis (trifluoromethanesulfonyl) imide ion and a dicyano imide ion, as a counter ion other than the said iodine ion.
  • imide ions such as a bis (trifluoromethanesulfonyl) imide ion and a dicyano imide ion
  • an electrochemically inactive solvent is used.
  • an electrochemically inactive solvent for example, acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropionitrile, methoxyacetonitrile, ethylene glycol, propylene glycol, diethylene glycol, triethylene glycol, ⁇ -butyrolactone, dimethoxyethane, diethyl carbonate, diethyl ether, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, dimethylformamide, dimethylsulfoxide, 1,3-dioxolane, methyl formate, 2-methyltetrahydrofuran, 3-methyl-oxazolidin-2-one, sulfolane, tetrahydrofuran, water, etc.
  • acetonitrile, propylene carbonate, ethylene carbonate, 3-methoxypropylene are particularly preferred.
  • Nitrile, methoxy acetonitrile, ethylene glycol, 3-methyl - oxazolidin-2-one, .gamma.-butyrolactone and the like are preferable. These can be used alone or in combination of two or more.
  • examples include those in which an electrolyte or an electrolyte solution is contained in a matrix such as an oligomer and a polymer, and those in which a low-molecular gelling agent or the like is similarly contained in an electrolyte or an electrolyte solution.
  • the concentration of the redox electrolyte is usually 0.01 to 99% by mass, preferably about 0.1 to 90% by mass.
  • the counter electrode is disposed so as to sandwich the electrode of the photoelectric conversion element carrying the methine dye represented by the formula (1) of the present invention on the thin film of oxide semiconductor fine particles on the substrate. To do. In the meantime, it is obtained by filling a solution containing a redox electrolyte.
  • Synthesis example 1 20 parts 2,3-dibromothiophene, 31 parts 5-formyl-2-thiopheneboronic acid, 1.7 parts bis (tri-tert-butylphosphine) palladium (0), 50 parts cesium fluoride, 112 parts water , 4-Dioxane (516 parts) and reacted at 80 ° C. for 3 hours.
  • the reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane) to obtain 21 parts of a compound represented by the following formula (700) as a yellow solid.
  • Synthesis example 2 9 parts of N-iodosuccinimide is added to a solution obtained by dissolving 10 parts of the compound represented by the formula (700) obtained in Synthesis Example 1 in a mixed solution of 210 parts of acetic acid and 296 parts of chloroform, and the light is protected from light at 100 ° C. For 5 hours.
  • the reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane) to obtain 13 parts of a compound represented by the following formula (701) as a dark yellow solid.
  • Synthesis example 3 Add 1.6 parts of [1,1'-bis (diphenylphosphino) ferrocene] dichloropalladium (II) .dichloromethane adduct, 2 parts of potassium acetate and 2 parts of bis (pinacolato) diboron to 22 parts of dimethyl sulfoxide, and a nitrogen atmosphere Stirred under. A solution prepared by dissolving 5 parts of 9,9-dibutyl-N- (9,9-dibutylfluoren-2-yl) -N- (4-iodophenyl) fluoren-2-amine in 66 parts of dimethyl sulfoxide was added, and the mixture was added at 80 ° C. For 5 hours.
  • reaction mixture was extracted with toluene-water, the toluene phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 3.5 parts of a compound represented by the following formula (702) was obtained as a white solid.
  • Synthesis example 4 5.9 parts of the compound represented by the formula (701) obtained in Synthesis Example 2, 13 parts of the compound represented by the formula (702) obtained in Synthesis Example 3, tetrakis (triphenylphosphine) palladium (0) 0.47 part and 49 parts of a 20% aqueous sodium carbonate solution were added to 373 parts of 1,2-dimethoxyethane and reacted for 7 hours under reflux. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane) to obtain 9.3 parts of a compound represented by the following formula (703) as a red solid.
  • Example 1 In a solution obtained by dissolving 9.3 parts of the compound represented by the formula (703) obtained in Synthesis Example 4 and 5.0 parts of cyanoacetic acid in a mixed solution of 526 parts of ethanol and 289 parts of toluene, 0.02 part of anhydrous piperazine And reacted under reflux for 6 hours. 5.0 parts of cyanoacetic acid and 0.02 part of anhydrous piperazine were added, and the mixture was further reacted for 7 hours under reflux. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-methanol).
  • the reddish brown solid obtained after concentration was recrystallized from chloroform-hexane to obtain 3.1 parts of a compound represented by the following formula (705) (compound 1 of Table 1) as a reddish brown solid.
  • the maximum absorption wavelength of the compound represented by the formula (705) and the measured values of the nuclear magnetic resonance apparatus were as follows.
  • Synthesis example 7 To a solution obtained by dissolving 2.5 parts of the compound represented by the formula (706) obtained in Synthesis Example 6 in a mixed solution of 250 parts of acetic acid and 375 parts of chloroform, 1.6 parts of N-iodosuccinimide was added, The mixture was stirred for 5 hours at room temperature under light shielding. 0.8 part of N-iodosuccinimide was added, and the mixture was further stirred at room temperature for 19 hours under light shielding. After the reaction, the precipitate was filtered and washed with hexane to obtain 2.9 parts of a compound represented by the following formula (707) as a pale orange solid.
  • Synthesis example 8 2.1 parts of the compound represented by the formula (707) obtained in Synthesis Example 7, 4.1 parts of the compound represented by the formula (702) obtained in Synthesis Example 3, tetrakis (triphenylphosphine) palladium ( 0) 0.15 part and 16 parts of a 20% aqueous sodium carbonate solution were added to 300 parts of 1,2-dimethoxyethane and reacted under reflux for 4 hours. 2.0 parts of the compound represented by the formula (702) and 0.08 part of tetrakis (triphenylphosphine) palladium (0) were added, and the mixture was further reacted for 3 hours under reflux.
  • reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane, and toluene-hexane), and 1.2 parts of the compound represented by the following formula (708) was concentrated. Obtained as an orange solid.
  • Synthesis Example 9 0.43 part of the compound represented by the formula (708) obtained in Synthesis Example 8 and 0.16 part of 5′-formyl-2,2′-bithiophene-5-boronic acid, bis (tri-tert-butylphosphine) ) 0.004 part of palladium (0), 0.13 part of cesium fluoride and 0.6 part of water were added to 8 parts of 1,4-dioxane and reacted at 80 ° C. for 3 hours. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.36 parts of a compound represented by the following formula (709) was obtained as a vermilion solid.
  • Example 2 0.36 part of the compound represented by the formula (709) obtained in Synthesis Example 9 and 162 parts of cyanoacetic acid are dissolved in 67 parts of ethanol-toluene (2: 1) mixed solution, and 0.01 part of anhydrous piperazine is added. And reacted for 5 hours under reflux. The reaction mixture was extracted with toluene-water, and the toluene phase was concentrated, separated and purified by column chromatography (chloroform-acetic acid). The dark red solid obtained after concentration was recrystallized from chloroform-hexane to obtain 0.12 part of a compound represented by the following formula (710) (compound 249 of Table 5) as a dark red solid.
  • Synthesis Example 10 0.87 part of the compound represented by the formula (708) obtained in Synthesis Example 8, 0.34 part of 5-formyl-2-thiopheneboronic acid, bis (tri-tert-butylphosphine) palladium (0) 0. 017 parts, 0.53 part of cesium fluoride and 0.07 part of water were added to 13 parts of 1,4-dioxane, and reacted at 80 ° C. for 4 hours. 0.34 part of 5-formyl-2-thiopheneboronic acid and 0.017 part of bis (tri-tert-butylphosphine) palladium (0) were added and reacted at 80 ° C. for 2 hours.
  • Example 3 0.36 parts of the compound represented by the formula (711) obtained in Synthesis Example 10 and 162 parts of cyanoacetic acid are dissolved in 67 parts of an ethanol-toluene (2: 1) mixed solution, and 0.01 parts of anhydrous piperazine are added. And reacted for 5 hours under reflux. The reaction mixture was extracted with toluene-water, and the toluene phase was concentrated, separated and purified by column chromatography (chloroform-methanol). The dark red solid obtained after concentration was recrystallized from chloroform-hexane to obtain 0.12 part of a compound represented by the following formula (712) (compound 125 of Table 3) as a dark red solid.
  • a compound represented by the following formula (712) compound 125 of Table 3
  • Synthesis Example 12 To a solution obtained by dissolving 9.9 parts of the compound represented by the formula (713) obtained in Synthesis Example 11 in 210 parts of acetic acid, 17 parts of N-iodosuccinimide was added and stirred at 100 ° C. for 5 hours under light shielding. . The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 12 parts of a compound represented by the following formula (714) was obtained as a brown oil.
  • Synthesis Example 13 11 parts of the compound represented by the formula (714) obtained in Synthesis Example 12, 0.73 parts of [1,1′-bis (diphenylphosphino) ferrocene] dichloropalladium (II), 9.8 parts of potassium acetate, 17 parts of bis (pinacolato) diboron was added to 220 parts of dimethyl sulfoxide and stirred at 80 ° C. for 5 hours in a nitrogen atmosphere. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 3.5 parts of a compound represented by the following formula (715) was obtained as a yellow oil. .
  • Synthesis Example 14 3.7 parts of the compound represented by the formula (715) obtained in Synthesis Example 13, 1.1 parts of 2,3-dibromothiophene, 0.092 parts of bis (tri-tert-butylphosphine) palladium (0), 2.7 parts of cesium fluoride and 5.9 parts of water were added to 27 parts of 1,4-dioxane and reacted at 80 ° C. for 3 hours.
  • the reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.38 parts of a compound represented by the following formula (716) was obtained as a pale orange tar substance. It was.
  • Synthesis Example 15 N-iodosuccinimide 0.21 was added to a solution obtained by dissolving 0.38 parts of the compound represented by the formula (716) obtained in Synthesis Example 14 in a mixed solution of 5.2 parts of acetic acid and 7.4 parts of chloroform. The mixture was added and refluxed for 4 hours in the dark. The reaction mixture is extracted with chloroform-water, the chloroform phase is concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.47 parts of a compound represented by the following formula (717) is converted to a pale yellow tar-like substance. Got as.
  • Synthesis Example 16 0.47 parts of the compound represented by the formula (717) obtained in Synthesis Example 15, 0.73 parts of the compound represented by the formula (702) obtained in Synthesis Example 3, tetrakis (triphenylphosphine) palladium ( 0) 0.027 part and 2.8 parts of 20% aqueous sodium carbonate solution were added to 22 parts of 1,2-dimethoxyethane and reacted for 4 hours under reflux. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-hexane), and 0.30 part of a compound represented by the following formula (718) was obtained as an orange solid. .
  • Example 4 In a solution obtained by dissolving 0.30 part of the compound represented by the formula (718) obtained in Synthesis Example 16 and 0.14 part of cyanoacetic acid in a mixed solution of 11 parts of ethanol and 12 parts of toluene, 0.01 part of anhydrous piperazine was added. And reacted under reflux for 1.5 hours. 0.14 part of cyanoacetic acid was added, and the reaction was further continued for 7 hours under reflux. The reaction mixture was extracted with chloroform-water, the chloroform phase was concentrated, separated and purified by column chromatography (chloroform-acetic acid).
  • the orange solid obtained after concentration was recrystallized from chloroform-hexane to obtain 0.057 part of a compound represented by the following formula (719) (compound 1122 of Table 23) as an orange solid.
  • the measured value of the compound represented by the formula (719) by a nuclear magnetic resonance apparatus was as follows.
  • Examples 5-6 The methine dyes represented by the formulas (705) and (710) obtained in Examples 1 and 2 (compounds Nos. 1 and 249 shown in Tables 1 and 5 respectively) were converted to 1.6 ⁇ 10 ⁇ 4 M.
  • the cholic acid represented by the following formula (d) was dissolved in tetrahydrofuran (THF) and acetone so as to be 4 ⁇ 10 ⁇ 2 M and 1 ⁇ 10 ⁇ 2 M, respectively.
  • a porous substrate (a semiconductor thin film electrode obtained by sintering porous titanium oxide on a transparent conductive glass electrode for 30 minutes at 450 ° C. for 30 minutes) was immersed at 40 ° C. for 3 days to carry a dye, washed with a solvent, It was dried to obtain a dye sensitized semiconductor thin film treated with cholic acid.
  • a gap of 20 ⁇ m was provided facing the semiconductor thin film side of the porous substrate, the sputtering surface of the conductive glass sputtered with platinum was fixed, and a solution containing an electrolyte was injected into the gap.
  • the electrolyte was 3-methoxypropionitrile, iodine / lithium iodide / 1-methyl-3-n-propylimidazolium iodide / guanidine thiocyanate, 0.1 M / 0.2 M / 1.2 M / 0.05 M, respectively. Or dissolved in 3-methoxypropionitrile with 0.1M / iodine of iodine / lithium iodide / 1-methyl-3-n-propylimidazolium iodide / butylthiocholine iodide, respectively. What (B) melt
  • the size of the battery to be measured was 12 cm 2 at the effective part.
  • the light durability test was carried out at 1 SUN and 40 ° C. for 500 hours using a light resistance tester (ESC0405-F70, manufactured by Iwasaki Electric Co., Ltd.) with UV cut filters (UV400, manufactured by Bisou Co., Ltd.) attached to both surfaces of the battery.
  • the photoelectric conversion characteristic was set to 100 mW / cm 2 through an AM (atmosphere passing air amount) 1.5 filter using a 500 W xenon lamp as a light source.
  • Short-circuit current, release voltage, and conversion efficiency were measured using a potentio galvanostat. The measurement results are shown in Table 22.
  • Comparative Examples 1 and 2 As a comparative dye, the compound (160) described in International Patent Publication WO2007 / 100033 represented by the following formula (C) was used.
  • the comparative dyes were dissolved in acetone at 3.2 ⁇ 10 ⁇ 4 M and 1.6 ⁇ 10 ⁇ 4 M, respectively, and the cholic acid represented by the above formula (d) at 1 ⁇ 10 ⁇ 2 M.
  • Photoelectric conversion elements were produced in the same manner as in Examples 5 and 6, and a light durability test was performed. The measurement results are shown in Table 22.
  • Example 7 The methine dye (compound number 125 in Table 3) represented by the formula (712) obtained in Example 3 was 1.6 ⁇ 10 ⁇ 4 M, and the cholic acid represented by the following formula (e) was 5 ⁇ 10 ⁇ . It was dissolved in tetrahydrofuran (THF) to be 3M. In this solution, a porous substrate (a semiconductor thin film electrode obtained by sintering porous titanium oxide on a transparent conductive glass electrode for 30 minutes at 450 ° C. for 30 minutes) was immersed at 40 ° C. for 3 days to carry a dye, washed with a solvent, It was dried to obtain a dye sensitized semiconductor thin film treated with cholic acid.
  • THF tetrahydrofuran
  • a gap of 20 ⁇ m was provided facing the semiconductor thin film side of the porous substrate, the sputtering surface of the conductive glass sputtered with platinum was fixed, and a solution containing an electrolyte was injected into the gap.
  • the same electrolytic solution (B) used in Example 5 was used as the electrolytic solution.
  • the size of the battery to be measured was 12 cm 2 at the effective part.
  • the light durability test was carried out at 1 SUN and 40 ° C. for 500 hours using a light resistance tester (ESC0405-F70, manufactured by Iwasaki Electric Co., Ltd.) with UV cut filters (UV400, manufactured by Bisou Co., Ltd.) attached to both surfaces of the battery.
  • the photoelectric conversion characteristic was set to 100 mW / cm 2 through an AM (atmosphere passing air amount) 1.5 filter using a 500 W xenon lamp as a light source.
  • Short-circuit current, release voltage, and conversion efficiency were measured using a potentio galvanostat. The measurement results are shown in Table 23.
  • Example 8 The methine dye (compound number 381 in Table 8) represented by the formula (719) obtained in Example 4 was 1.6 ⁇ 10 ⁇ 4 M, and the cholic acid represented by the above formula (e) was 5 ⁇ 10. It was dissolved in ethanol so as to be ⁇ 3 M. In this solution, a porous substrate (a semiconductor thin film electrode obtained by sintering porous titanium oxide on a transparent conductive glass electrode for 30 minutes at 450 ° C. for 30 minutes) is immersed overnight at room temperature to carry a dye, washed with a solvent, and dried. Thus, a cholic acid-treated dye-sensitized semiconductor thin film was obtained.
  • a porous substrate a semiconductor thin film electrode obtained by sintering porous titanium oxide on a transparent conductive glass electrode for 30 minutes at 450 ° C. for 30 minutes
  • a gap of 20 ⁇ m was provided facing the semiconductor thin film side of the porous substrate, the sputtering surface of the conductive glass sputtered with platinum was fixed, and a solution containing an electrolyte was injected into the gap.
  • the electrolyte was 3-methoxypropionitrile, iodine / lithium iodide / 1,2-dimethyl-3-n-propylimidazolium iodide / t-butylpyridine, 0.1 M / 0.1 M / 0.6 M, respectively. / C dissolved in 1M (C) was used.
  • the size of the battery to be measured was an effective part of 0.25 cm 2 .
  • the light source was a 500 W xenon lamp, the AM (atmosphere passing air amount) 1.5 filter was set to 100 mW / cm 2, and the photoelectric conversion characteristics were measured using a potentio galvanostat.
  • the short circuit current was 11.3 mA / cm 2.
  • the release voltage was 0.72 V, and the conversion efficiency was 5.9%.
  • the dye-sensitized photoelectric conversion element of the present invention by using a dye having a specific partial structure, it is possible to provide a solar cell that has high light durability and can maintain high conversion efficiency.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 特定の構造を有する色素、該色素で増感した光耐久性の高い光電変換素子、及び該光電変換素子を備える高い変換効率を維持し得る太陽電池の開発。 下記式(1)で表されるメチン系色素 (式(1)中、mは1乃至5の整数を、l及びnは0乃至6の整数を、jは0乃至3の整数をそれぞれ表す。 X1及びY1はそれぞれ独立にカルボキシル基又はシアノ基等を表す。Z1及びZ2はそれぞれ独立に酸素原子又は硫黄原子等を表す。A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基又はシアノ基等を表す。A4は水素原子、脂肪族炭化水素残基又はシアノ基等を表す。A7及びA8はそれぞれ独立に水素原子、脂肪族炭化水素残基又はシアノ基等を表す。R1及びR2はそれぞれ独立に特定の芳香族残基又は複素環残基等を表す。)

Description

メチン系色素及びそれを用いた色素増感光電変換素子
 本発明は特定の構造を有する新規のメチン系色素、該色素で増感された半導体微粒子の薄膜を有する光電変換素子及び該素子を備える太陽電池に関し、詳しくは酸化物半導体微粒子の薄膜に特定の構造を有するメチン系化合物(色素)を担持させた光電変換素子及び該素子を備える太陽電池に関する。
 石油、石炭等の化石燃料に代わるエネルギー資源として太陽光を利用する太陽電池が注目されている。現在、結晶又はアモルファスのシリコンを用いたシリコン太陽電池、或いはガリウム、ヒ素等を用いた化合物半導体太陽電池等について、盛んに開発検討がなされている。しかし、それらは製造に要するエネルギー及びコストが高いため、汎用的に使用するのが困難であるという問題点がある。これに対して、色素で増感した半導体微粒子の薄膜を有する光電変換素子、及びこれを備える太陽電池も開発されており、これを製造するための材料及び方法が種々の文献で開示されている(特許文献1、非特許文献1、非特許文献2を参照)。このような光電変換素子は酸化チタン等の比較的安価な酸化物半導体を用いて製造され、従来のシリコン等を用いた太陽電池に比べコストの低い光電変換素子が得られる可能性があり、またカラフルな太陽電池が得られることなどから注目を集めている。しかしながら、変換効率の高い素子を得るために増感色素として用いられているルテニウム系の錯体自体が高価であり、またその安定供給にも問題がある。これに対して、増感色素として材料コストが低く安定供給が可能な有機色素を用いる試みが行われている(特許文献2、特許文献3)。しかし、有機色素で増感した光電変換素子は、変換効率、安定性、耐久性が低い等の問題を充分に解決できておらず、実用化には至っていないというのが現状である(特許文献2を参照)。
特許第2664194号公報 WO2002/011213号公報 WO2007/100033号公報
B.O'Regan and M.Graetzel Nature, 第353巻, 737頁 (1991年) M.K.Nazeeruddin, A.Kay, I.Rodicio, R.Humphry-Baker, E.Muller, P.Liska, N.Vlachopoulos, M.Graetzel, J.Am.Chem.Soc., 第115巻, 6382頁 (1993年) Norio Miyaura and Akira Suzuki, Chem. Rev., 第95巻,2457頁(1995)
 従って、有機色素で増感された酸化物半導体微粒子の薄膜を有する光電変換素子において、安定性及び耐久性が高く、高い変換効率を維持することができる光電変換素子が求められている。
 本発明者等は上記の課題を解決すべく鋭意努力した結果、特定の構造を有するメチン系色素で半導体微粒子の薄膜を増感することにより、安定性及び耐久性が高く、高い変換効率を維持することができる光電変換素子が得られることを見出し、本発明を完成させるに至った。
 すなわち本発明は、
(1)下記式(1)で表されるメチン系色素
Figure JPOXMLDOC01-appb-C000014
(式(1)中、mは1乃至5の整数を、l及びnはそれぞれ独立に0乃至6の整数を、jは0乃至3の整数をそれぞれ表す。
 X1及びY1はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。また、X1とY1は結合して、環を形成してもよい。
 Z1及びZ2はそれぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表す。R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。m及びjの少なくとも1つが2以上で、Z1及び/又はZ2が複数存在する場合、それぞれのZ1及び/又はそれぞれのZ2は互いに同じか又は異なっていてもよい。
 A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。また、l及びnの少なくとも一つが2以上でA2、A3、A5及びA6のいずれかが複数存在する場合には、それぞれのA2、A3、A5及びA6は互いに同じか又は異なってもよい。また、lが0以外の場合、A1、A2及びA3のいずれか2以上で環を形成してもよい。
 A4は水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アミド基、アルコキシカルボニル基又はアシル基を表す。mが2以上でA4が複数存在する場合、それぞれのA4は互いに同じか又は異なってもよい。
 A7及びA8はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。jが2以上でA7及びA8が複数存在する場合、それぞれのA7及びA8は互いに同じか又は異なってもよい。
 R1は下記式(3002)
Figure JPOXMLDOC01-appb-C000015
(式(3002)中、pは1乃至3の整数を、qは0乃至6の整数をそれぞれ表す。
 X2及びY2はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。また、X2とY2は結合して、環を形成してもよい。
 Z4は酸素原子、硫黄原子、セレン原子又はNR12を表す。R12は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。pが2以上で、Z4が複数存在する場合、それぞれのZ4は互いに同じか又は異なっていてもよい。
 A11及びA12はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。pが2以上でA11及びA12が複数存在する場合、それぞれのA11及びA12は互いに同じか又は異なってもよい。
 A13、A14及びA15はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。また、qが2以上でA13及びA14が複数存在する場合、それぞれのA13及びA14は互いに同じか又は異なってもよい。また、qが0以外の場合、A13、A14、及びA15のいずれか2以上で環を形成してもよい。)
で示される基を表す。mが2以上でR1が複数存在する場合、それぞれのR1は互いに同じか又は異なってもよい。
 R2は下記式(3001)又は(3003)
Figure JPOXMLDOC01-appb-C000016
(式(3001)又は(3003)中、R12、R13、R14及びR15は、それぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
 R16、R17、R18及びR19は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。)
で示される基、水素原子又は脂肪族炭化水素残基を表す。また、nが0以外の場合、A5、A6及びR2のいずれか2以上で環を形成してもよい。)、
(2)式(1)におけるl及びnが0であり、式(3002)におけるqが0である前項(1)に記載のメチン系色素、
(3)式(1)におけるmが1乃至3である前項(1)又は(2)に記載のメチン系色素、
(4)式(1)におけるjが1乃至3である前項(1)~(3)のいずれか1項に記載のメチン系色素、
(5)式(1)におけるZ1及びZが硫黄原子であり、式(3002)におけるZが硫黄原子である前項(1)~(4)のいずれか1項に記載のメチン系色素、
(6)式(1)におけるX1及びY1の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基であり、且つ/或いは式(3002)におけるX2及びY2の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基である前項(1)~(5)のいずれか1項に記載のメチン系色素、
(7)式(1)におけるX1及びY1の一方がカルボキシル基で他方がシアノ基であり、且つ/或いは式(3002)におけるX2及びY2の一方がカルボキシル基で他方がシアノ基である前項(6)に記載のメチン系色素、
(8)式(1)におけるX1及びY1の少なくとも1つがカルボキシル基、水酸基、リン酸基、スルホン酸基、及びこれらの酸性基の塩からなる群から選択される基を含む置換基を少なくとも1つ以上有する芳香族残基であり、且つ/或いは式(3002)におけるX2及びY2の少なくとも1つがカルボキシル基、水酸基、リン酸基、スルホン酸基、及びこれらの酸性基の塩からなる群から選択される基を含む置換基を少なくとも1つ以上有する芳香族残基である前項(1)~(5)のいずれか1項に記載のメチン系色素、
(9)式(1)におけるX1及びY1の少なくとも1つ、並びに/或いは式(3002)におけるX2及びY2の少なくとも1つが下記式(1001)~(1033)
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
で示される基のいずれかである前項(8)に記載のメチン系色素、
(10)式(1)におけるX1とY1が結合して環構造を形成し、且つ/或いは式(3002)におけるX2とY2が結合して環構造を形成する前項(1)~(5)のいずれか1項に記載のメチン系色素、
(11)式(1)におけるX1とY1が結合して形成する環構造、並びに/或いは式(3002)におけるX2とY2が結合して形成する環構造が、下記式(2001)~(2044)
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
(式(2001)~(2044)中、*は式(1)においてX1とY1が結合している炭素原子、並びに/或いは式(3002)においてX2とY2が結合している炭素原子を示す。)
で示される環構造のいずれかである前項(10)に記載のメチン系色素、
(12)式(1)におけるX1とY1が結合して形成する環構造、並びに/或いは式(3002)におけるX2とY2が結合して形成する環構造が、カルボキシル基を置換基として有する環構造から選択される、前項(11)に記載のメチン系色素、
(13)式(1)におけるX1とY1が結合して形成する環構造、並びに/或いは式(3002)におけるX2とY2が結合して形成する環構造が式(2007)又は(2012)で示される環構造である前項(12)に記載のメチン系色素、
(14)式(1)におけるA1~A8及び式(3002)におけるA11~A15が水素原子である前項(1)~(13)のいずれか1項に記載のメチン系色素、
(15)式(1)におけるR2が、
(I)式(3001)で示される基であり、R12及びR13がそれぞれ独立に水素原子又は炭素数1~8のアルキル基であるか、或いは
(II)式(3003)で示される基であり、R14及びR15がそれぞれ独立にフェニル基又は式(3001)で示される基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基であり、該式(3001)におけるR12及びR13がそれぞれ独立に水素原子又は炭素数1~8のアルキル基である
 前項(1)~(14)のいずれか1項に記載のメチン系色素、
(16)式(1)におけるR2が下記式(3101)~(3114)
Figure JPOXMLDOC01-appb-C000022
で示される基のいずれかである前項(15)に記載のメチン系色素、
(17)式(1)におけるR2が、式(3107)、(3108)、(3110)、(3111)、(3113)又は(3114)で示される基である前項(16)に記載のメチン系色素、
(18)式(1)におけるR2が、式(3107)又は(3111)で示される基である前項(17)に記載のメチン系色素、
(19)式(1)中、mが1乃至3であり、l及びnが0であり、jが1乃至3であり、Z1及びZがそれぞれ独立に酸素原子、イオウ原子又はセレン原子であり、R2が上記式(3103)、(3107)及び(3111)のいずれかで表される基であり、X1及びY1の一方がカルボキシル基であり他方がカルボキシル基、シアノ基又はアシル基であるか、或いはX1及びY1が結合して環を形成し該環が上記式(2007)で表される基であり、A1~Aがそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~18のアルキル基のいずれかであり、式(3002)中、qが0であり、pが1乃至3であり、Z4がそれぞれ独立に酸素原子、イオウ原子又はセレン原子であり、X2及びY2の一方がカルボキシル基であり他方がカルボキシル基、シアノ基又はアシル基であるか、或いはX2及びY2が結合して環を形成し該環が上記式(2007)で表される基であり、A11~A15がそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~18のアルキル基のいずれかである前項(1)に記載のメチン系色素、
(20)式(1)中、mが1乃至3であり、l及びnが0であり、jが1乃至3であり、Z1及びZがイオウ原子であり、R2が上記式(3103)、(3107)及び(3111)のいずれかで表される基であり、X1及びY1の一方がカルボキシル基であり他方がカルボキシル基又はシアノ基であり、A1~Aがそれぞれ独立に水素原子又は炭素数1~18のアルキル基であり、式(3002)中、qが0であり、pが1乃至3であり、Z4がイオウ原子であり、X2及びY2の一方がカルボキシル基であり他方がカルボキシル基又はシアノ基であり、A11~A15がそれぞれ独立に水素原子又は炭素数1~18のアルキル基である前項(1)に記載のメチン系色素、
(21)下記式(705)、(710)、(712)又は(719)
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
で表される前項(1)に記載のメチン系色素、
(22)基板上の酸化物半導体微粒子の薄膜に、前項(1)乃至(21)のいずれか1項に記載の式(1)で表されるメチン系色素を担持させた光電変換素子、
(23)前項(22)に記載の光電変換素子を備える太陽電池、
に関する。
 特定の構造を有するメチン色素を用いることにより、耐久性が高く、光耐久試験後においても高い変換効率を維持し得る太陽電池を提供する。
 以下に本発明を詳細に説明する。
 本発明のメチン系色素は、下記式(1):
Figure JPOXMLDOC01-appb-C000027
で表される構造を有すし、特定の部位にあるRが下記式(3002)で表される特定構造であることを特徴の1つとする。
Figure JPOXMLDOC01-appb-C000028
 当該メチン系色素を坦持させた酸化物半導体微粒子の薄膜を備えた光電変換素子は、Rが式(3002)で表される特定構造ではないメチン系色素やその他の色素を用いた光電変換素子に比べて、耐久性に優れ、高い変換効率を長期間維持する。以下、式(1)で表されるメチン系色素について説明する。
 式(1)におけるmは1乃至5の整数を表し、1乃至3であることが好ましく、1乃至2であることがより好ましく、1であることが更に好ましい。
 式(1)におけるlは、0乃至6の整数を表し、0であることが好ましい。
 式(1)におけるnは、0乃至6の整数を表し、0であることが好ましい。
 式(1)におけるjは、0乃至3の整数を表し、1乃至3であることが好ましく、1乃至2であることがより好ましい。
 式(1)におけるX1及びY1は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。
 式(1)のX1及びY1が表す芳香族残基とは、芳香環又は芳香環を含む縮合環から水素原子1個を除いた基を意味し、該芳香族残基は置換基を有していてもよい。芳香環の例としては、ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、ペリレン及びテリレン等の芳香族炭化水素環、インデン、アズレン、ピリジン、ピラジン、ピリミジン、ピラゾール、ピラゾリジン、チアゾリジン、オキサゾリジン、ピラン、クロメン、ピロール、ピロリジン、ベンゾイミダゾール、イミダゾリン、イミダゾリジン、イミダゾール、トリアゾール、トリアジン、ジアゾール、インドリン、チオフェン、チエノチオフェン、フラン、オキサゾール、オキサジアゾール、チアジン、チアゾール、インドール、ベンゾチアゾール、ベンゾチアジアゾール、ナフトチアゾール、ベンゾオキサゾール、ナフトオキサゾール、インドレニン、ベンゾインドレニン、キノリン及びキナゾリン等の複素芳香環、並びにフルオレン及びカルバゾール等の縮合型芳香環等が挙げられる。式(1)のX1及びY1が表す芳香族残基としては、炭素数4~20の芳香環又は芳香環を含む縮合環から水素原子1個を除いた基であることが好ましい。
 X1及びY1が表す芳香族残基が有していてもよい置換基に特に制限はないが、例えば、スルホン酸基、スルファモイル基、シアノ基、イソシアノ基、チオシアナト基、イソチオシアナト基、ニトロ基、ニトロシル基、ハロゲン原子、ヒドロキシル基、リン酸基、リン酸エステル基、アミノ基、メルカプト基、アミド基、アルコキシ基、アリールオキシ基、カルボキシル基、カルバモイル基、アシル基、アルデヒド基、アルコキシカルボニル基及びアリールカルボニル基等の置換カルボニル基、芳香族残基、並びに脂肪族炭化水素残基などが挙げられる。
 芳香族残基が有していてもよい置換基としてのハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等の原子が挙げられ、臭素原子又は塩素原子が好ましい。
 芳香族残基が有していてもよい置換基としてのリン酸エステル基としては、リン酸と炭素数1~5のアルキルとのエステル基等が挙げられ、好ましい例は、リン酸メチル基、リン酸エチル基、リン酸n-プロピル基、及びリン酸n-ブチル基である。
 芳香族残基が有していてもよい置換基としてのアミノ基としては、非置換アミノ基;モノ若しくはジメチルアミノ基、モノ若しくはジエチルアミノ基、モノ若しくはジn-プロピルアミノ基等のアルキル置換アミノ基;モノ若しくはジフェニルアミノ基、モノ若しくはジナフチルアミノ基等の芳香族置換アミノ基;モノアルキルモノフェニルアミノ基等のアルキル基と芳香族残基で一つずつ置換したアミノ基;ベンジルアミノ基等の炭素数1乃至5のアルキル置換芳香族残基で置換したアミノ基;アセチルアミノ基;又はフェニルアセチルアミノ基が挙げられる。
 芳香族残基が有していてもよい置換基としてのメルカプト基としては、非置換メルカプト基、アルキルメルカプト基、アリールメルカプト基等が挙げられる。アルキルメルカプト基としては、メチルメルカプト基、エチルメルカプト基、n-プロピルメルカプト基、イソプロピルメルカプト基、n-ブチルメルカプト基、イソブチルメルカプト基、sec-ブチルメルカプト基及びt-ブチルメルカプト基などの炭素数1~4のアルキルメルカプト基が挙げられ、アリールメルカプト基としてはフェニルメルカプト基等が挙げられる。
 芳香族残基が有していてもよい置換基としてのアミド基としては、非置換アミド基、アセトアミド基、アルキルアミド基、アルキルアセトアミド基、アリールアセトアミド基が挙げられ、好ましい例としては、非置換アミド基、アセトアミド基、N-メチルアミド基、N-エチルアミド基、N-(n-プロピル)アミド基、N-(n-ブチル)アミド基、N-イソブチルアミド基、N-(sec-ブチルアミド)基、N-(t-ブチル)アミド基、N,N-ジメチルアミド基、N,N-ジエチルアミド基、N,N-ジ(n-プロピル)アミド基、N,N-ジn-ブチルアミド基、N,N-ジイソブチルアミド基、N-メチルアセトアミド基、N-エチルアセトアミド基、N-(n-プロピル)アセトアミド基、N-(n-ブチル)アセトアミド基、N-イソブチルアセトアミド基、N-(sec-ブチル)アセトアミド基、N-(t-ブチル)アセトアミド基、N,N-ジメチルアセトアミド基、N,N-ジエチルアセトアミド基、N,N-ジn-プロピルアセトアミド基、N,N-ジn-ブチルアセトアミド基、N,N-ジイソブチルアセトアミド基が挙げられ、また、アリールアミド基、具体的に好ましくはフェニルアミド基、ナフチルアミド基、フェニルアセトアミド基、ナフチルアセトアミド基等も挙げられる。
 芳香族残基が有していてもよい置換基としてのアルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、t-ブトキシ基等の炭素数1~5のアルコキシ基が挙げられる。
 芳香族残基が有していてもよい置換基としてのアリールオキシ基としては、フェノキシ基、ナフトキシ基等の炭素数5~20のアリールオキシ基が挙げられる。
 芳香族残基が有していてもよい置換基としてのアシル基としては、例えば炭素数1~10のアルキルカルボニル基及びアリールカルボニル基等が挙げられ、これらはF、Cl等のハロゲンで置換されてもよい。具体例としては、アセチル基、プロピオニル基、トリフルオロメチルカルボニル基、ペンタフルオロエチルカルボニル基、ベンゾイル基、ナフトイル基等が挙げられ、非置換又はハロゲンで置換された炭素数1~4のアルキルカルボニル基が好ましい。
 芳香族残基が有していてもよい置換基としてのアルコキシカルボニル基としては、例えば炭素数1~10のアルコキシカルボニル基等が挙げられる。具体例としては、メトキシカルボニル基、エトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、t-ブトキシカルボニル基、n-ペントキシカルボニル基、n-ヘキシルオキシカルボニル基、n-ヘプチルオキシカルボニル基、n-ノニルオキシカルボニル基、及びn-デシルオキシカルボニル基が挙げられる。
 芳香族残基が有していてもよい置換基としてのアリールカルボニル基としては、例えばベンゾフェノン、ナフトフェノン等の炭素数5~20のアリール基とカルボニルが連結した基を挙げることができる。
 芳香族残基が有していてもよい置換基としての芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 芳香族残基が有していてもよい置換基としての脂肪族炭化水素残基としては、飽和又は不飽和の、直鎖、分岐鎖又は環状のアルキル基が挙げられ、該脂肪族炭化水素残基は置換基を有していてもよい。脂肪族炭化水素残基としては、飽和のアルキル基であることが好ましく、飽和の直鎖アルキル基であることがより好ましい。また、脂肪族炭化水素残基の有する炭素数は1~36であることが好ましく、1~18であることがより好ましく、1~8であることが更に好ましい。これら脂肪族炭化水素残基の具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、シクロヘキシル基、ビニル基、プロペニル基、ペンチニル基、ブテニル基、ヘキセニル基、ヘキサジエニル基、イソプロペニル基、イソへキセニル基、シクロへキセニル基、シクロペンタジエニル基、エチニル基、プロピニル基、ペンチニル基、へキシニル基、イソへキシニル基、シクロへキシニル基等が挙げられる。
好ましい環状のアルキル基としては、例えば炭素数3~8のシクロアルキル基などが挙げられる。炭素数が1~8の直鎖のアルキル基が特に好ましい。
 芳香族残基が有していてもよい置換基としての芳香族残基、脂肪族炭化水素残基、アミド基、アシル基、アルコキシ基、アリールオキシ基、アリールカルボニル基及びアルコキシカルボニル基は置換基を有していてもよく、該置換基としては式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表す芳香族残基としては、カルボキシル基、水酸基、リン酸基、スルホン酸基、およびこれらの酸性基の塩からなる群から選択される基を含む置換基を少なくとも一つ以上有する芳香族残基であることが好ましく、下記式(1001)~(1033)で示される基のいずれかであることがより好ましい。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
 式(1)のX1及びY1が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。該脂肪族炭化水素残基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表すアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたアシル基と同じものが挙げられる。該アシル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表すアミド基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。該アミド基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)のX1及びY1が表すアルコキシカルボニル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたアルコキシカルボニル基と同じものが挙げられる。該アルコキシカルボニル基は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 また、式(1)におけるX1とY1は結合して、環を形成してもよく、環構造としては、少なくとも1以上の窒素原子を環構成成分に有する5員又は6員の複素環構造が好ましい。これらの環は置換基を有していてもよく、該置換基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられ、カルボキシル基を置換基として有している環構造が好ましい。X1とY1が結合して形成する環構造の具体例としては、下記式(2001)~(2044)で示される環構造が挙げられ、中でも(2001)~(2007)、(2009)~(2010)、(2012)~(2015)、(2017)~(2023)及び(2025)~(2044)のいずれかの環構造が好ましく、(2007)又は(2012)の環構造がより好ましく、(2007)の環構造が特に好ましい。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000033
 上記式(2001)~(2044)中の*印は、式(1)においてX1とY1が結合している炭素原子を示す。
 式(1)におけるX1及びY1は、下記(i)~(iii)のいずれかであることが好ましい。
(i)X1及びY1が、それぞれ独立にカルボキシル基、リン酸基、シアノ基又はアシル基であることが好ましく、それぞれ独立にカルボキシル基、シアノ基又はアシル基であることがより好ましく、一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基であることが更に好ましく、一方がカルボキシル基で他方がシアノ基であることが特に好ましい。
(ii)X1及びY1の少なくとも一つ以上が、カルボキシル基、水酸基、リン酸基、スルホン酸基、及びこれらの酸性基の塩からなる群から選択される基を含む置換基を少なくとも一つ以上有する芳香族残基であることが好ましく、該芳香族残基が上記式(1001)~(1033)であることがより好ましい。
(iii)X1とY1が結合して環構造を形成することが好ましく、該環構造が上記式(2001)~(2044)であることがより好ましく、これらのうち、少なくとも1以上の窒素原子を環構成成分に有する5員又は6員の複素環を有する環構造及び/又はカルボキシル基を置換基として有している環構造が更に好ましく、該環構造が式(2007)又は(2012)であることが特に好ましく、式(2007)であることが極めて好ましい。
 式(1)におけるZ1及びZ2は、それぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表し、R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
 R11が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 R11が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。
 R11が表す芳香族残基及び脂肪族炭化水素残基は置換基を有していてもよく、該置換基の具体例としては、スルファモイル基、シアノ基、イソシアノ基、チオシアナト基、イソチオシアナト基、ニトロ基、ニトロシル基、ハロゲン原子、リン酸エステル基、アミノ基、アミド基、アルコキシ基、アリールオキシ基、カルバモイル基、アシル基、アルデヒド基、アルコキシカルボニル基及びアリールカルボニル基等の置換カルボニル基、芳香族残基、並びに脂肪族炭化水素残基等が挙げられる。
 R11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基としてのハロゲン原子、リン酸エステル基、アミノ基、アミド基、アルコキシ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アリールカルボニル基及び脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 R11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基としての芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 式(1)におけるm又はjの少なくとも一つが2以上で、Z1及び/又はZ2が複数存在する場合、それぞれのZ1及び/又はZ2は互いに同じか又は異なっていてもよい。
 式(1)におけるZ1及びZ2としては、それぞれ独立に酸素原子、硫黄原子又はセレン原子であることが好ましく、硫黄原子であることがより好ましい。
 A1、A2、A3、A5及びA6は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。
 A1、A2、A3、A5及びA6が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基と同じものが挙げられる。
 A1、A2、A3、A5及びA6が表す脂肪族炭化水素残基、ハロゲン原子、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基及びアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A1、A2、A3、A5及びA6が表す芳香族残基、脂肪族炭化水素残基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基及びアシル基は置換基を有していてもよく、該置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるl及びnの少なくとも一つ以上が2以上でA2、A3、A5及びA6のいずれかが複数存在する場合には、それぞれのA2、A3、A5及びA6は互いに同じか又は異なってもよい。
 lが0以外の場合、A1、A2及びA3から選ばれる少なくとも2つが結合して環を形成してもよい。
 A1、A2及びA3の少なくとも2つが形成する環としては、不飽和炭化水素環又は複素環等が挙げられる。
 上記不飽和炭化水素環の例としては、ベンゼン、ナフタレン、アントラセン、フェナンスレン、ピレン、インデン、アズレン、フルオレン、シクロブテン、シクロヘキセン、シクロペンテン、シクロヘキサジエン、シクロペンタジエン等が挙げられ、複素環の例としては、ピラン、ピリジン、ピラジン、ピペリジン、インドリン、オキサゾール、チアゾール、チアジアゾール、オキサジアゾール、インドール、ベンゾチアゾール、ベンゾオキサゾール、キノリン、カルバゾール、ベンゾピラン等が挙げられる。これらのうちベンゼン、シクロブテン、シクロペンテン又はシクロヘキセンが好ましい。
 これら不飽和炭化水素環及び複素環は置換基を有してもよく、該置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A1、A2及びA3から選ばれる少なくとも2つにより形成される複素環が、カルボニル基、チオカルボニル基等の置換基を有する場合には、これらの置換基は環状ケトン又は環状チオケトンであってもよく、これらの環は更に置換基を有してもよい。その場合の置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるA1、A2、A3、A5及びA6は、それぞれ独立に水素原子又は脂肪族炭化水素残基であることが好ましく、水素原子であることがより好ましい。
 式(1)におけるA4は、水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アミド基、アルコキシカルボニル基又はアシル基を表す。
 A4が表す脂肪族炭化水素残基、ハロゲン原子、アルコキシ基、アミド基、アルコキシカルボニル基及びアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A4が表す脂肪族炭化水素残基、アルコキシ基、アミド基、アルコキシカルボニル基及びアシル基は置換基を有していてもよく、該置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 mが2以上でA4が複数存在する場合には、それぞれのA4は互いに同じか又は異なってもよい。
 式(1)におけるA4としては、水素原子又は脂肪族炭化水素残基が好ましく、水素原子がより好ましい。
 式(1)におけるA7及びA8は、それぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。
 A7及びA8が表す脂肪族炭化水素残基、ハロゲン原子、アルコキシ基、アルコキシカルボニル基及びアシル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 A7及びA8が表す脂肪族炭化水素残基、アルコキシ基、アルコキシカルボニル基及びアシル基は置換基を有していてもよく、該置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるjが2以上でA7及びA8が複数存在する場合には、それぞれのA7及びA8は互いに同じか又は異なってもよい。
 式(1)におけるA7及びA8としては、それぞれ独立に水素原子又は脂肪族炭化水素残基が好ましく、それぞれ独立に水素原子又は炭素数が1~8の直鎖のアルキル基がよりこのましく、水素原子が更に好ましい。
 前述の通り、式(1)におけるR1は、下記式(3002)
Figure JPOXMLDOC01-appb-C000034
で示される基を表す。
 式(3002)におけるpは1乃至3の整数を表し、1乃至2であることが好ましい。また、pと前述のjが同じ整数であることが特に好ましい。
 式(3002)におけるqは0乃至6の整数を表し、0であることが好ましい。また、qと前述のlが同じ整数であることが特に好ましい。
 従って、pと前述のjが同じ整数であり、且つqと前述のlが同じ整数であることが最も好ましい。
 式(3002)におけるX2及びY2は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はベンゼンスルフォニル基を表し、これらの定義や好ましいものは、上記した式(1)におけるX1及びY1と同様である。
 尚、X2とY2が結合して、上記式(2001)~(2044)で示される環構造を形成する場合、式(2001)~(2044)中の*印は、式(3002)においてX2とY2が結合している炭素原子を示す。
 式(3002)におけるZ4は酸素原子、硫黄原子、セレン原子又はNR12を表し、R12は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。R12が表す芳香族残基及び脂肪族炭化水素残基の定義や好ましいものは、式(1)のR11の項で述べたものと同様であり、Z4の定義や好ましいものは、式(1)のZ1及びZ2の項で述べたものと同様である。
 式(3002)におけるA11及びA12は、それぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表し、これらの定義や好ましいものは、式(1)のA7及びA8の項で述べたものと同様である。
 式(3002)におけるA13、A14及びA15は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表し、これらの定義や好ましいものは、式(1)のA1、A2、A3、A5及びA6の項で述べたものと同様である。
 mが2以上でR1が複数存在する場合には、それぞれのR1は互いに同じか又は異なってもよい。
 式(1)におけるR2は、下記式(3001)又は(3003)
Figure JPOXMLDOC01-appb-C000035
で示される基、水素原子或いは脂肪族炭化水素基を表す。
 式(3001)又は(3003)中、R12、R13、R14及びR15はそれぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。R16、R17、R18及びR19はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。
 R12、R13、R14及びR15が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 R12、R13、R14及びR15が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。
 R12、R13、R14及びR15が表す芳香族残基及び脂肪族炭化水素残基は置換基を有していてもよく、該置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(3001)におけるR12及びR13としては、それぞれ独立に水素原子又は脂肪族炭化水素残基であることが好ましく、それぞれ独立に水素原子又は炭素数1~18のアルキル基であることがより好ましく、炭素数1~8のアルキル基であることが更に好ましく、炭素数1~8の直鎖アルキル基であることが特に好ましい。
 式(3003)におけるR14及びR15としては、それぞれ独立に芳香族残基であることが好ましく、それぞれ独立にフェニル基又は式(3001)で表される基であることがより好ましく、両者が同一のフェニル基又は同一の式(3001)で表される基であることが更に好ましい。尚、R14及びR15が式(3001)で表される基である場合、当該基のR12及びR13は前記と同様であり、好ましい置換基も前記と同様である。
 R16、R17、R18及びR19が表す芳香族残基としては、式(1)のX1及びY1が表す芳香族残基の項で述べたものと同じものが挙げられる。
 R16、R17、R18及びR19が表す脂肪族炭化水素残基、アシル基、アミド基、アルコキシ基及びアルコキシカルボニル基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 R16、R17、R18及びR19が表す芳香族残基、脂肪族炭化水素残基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基及びベンゼンスルフォニル基は置換基を有していてもよく、該置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(3003)におけるR16、R17、R18及びR19としては、それぞれ独立に水素原子又はアルコキシ基であることが好ましく、水素原子又は炭素数1~4のアルコキシ基であることがより好ましく、水素原子であることが更に好ましい。
 式(3001)で示される基としては、R12及びR13が水素原子又は炭素数1~8のアルキル基であることが好ましく、R12及びR13が炭素数1~8のアルキル基であることがより好ましい。
 式(3003)で示される基としては、R14及びR15がフェニル基又は式(3001)で示される基であって、該式(3001)中のR12及びR13が水素原子又は炭素数1~8のアルキル基であり、かつR16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基であることが好ましく、R14及びR15がフェニル基であり、かつR16乃至R19が水素原子であることがより好ましい。
 R2が表す脂肪族炭化水素残基としては、式(1)のX1及びY1が表す芳香族残基が有していてもよい置換基の項で述べた脂肪族炭化水素残基と同じものが挙げられる。
 nが0以外の場合、A5、A6及びR2から選ばれる少なくとも2つが結合して環を形成してもよい。
 A5、A6及びR2が形成する環は置換基を有していてもよく、該置換基としては、式(1)のR11が表す芳香族残基及び脂肪族炭化水素残基が有していてもよい置換基の項で述べたものと同じものが挙げられる。
 式(1)におけるR2としては、式(3001)で表され、R12及びR13が水素原子又は炭素数1~8のアルキル基である基であるか、或いは式(3003)で表され、R14及びR15がフェニル基又は式(3001)で表される基であって、R12及びR13が水素原子又は炭素数1~8のアルキル基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基である基がより好ましい。
 また、式(3003)で表され、R14及びR15がフェニル基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基である基であるか、或いは式(3003)で表され、R14及びR15が式(3001)で表される基であって、R12及びR13が水素原子又は炭素数1~8のアルキル基である基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基である基が更に好ましい。
 より具体的には、下記式(3101)~(3114)のいずれかで表される基であることが好ましく、前記式(3102)、(3103)、(3107)、(3108)、(3110)、(3111)、(3113)又は(3114)で表される基であることがより好ましく、前記式(3103)、(3107)又は(3111)で表される基であることが更に好ましく、前記式(3107)又は(3111)で表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000036
 式(1)で表されるメチン系色素がカルボキシル基、リン酸基、ヒドロキシル基及びスルホン酸基等の酸性基を置換基として有する場合は、それぞれ塩を形成してもよく、塩としては例えばリチウム、ナトリウム、カリウムなどのアルカリ金属、又はマグネシウム、カルシウムなどのアルカリ土類金属などとの塩、又は有機塩基、例えばテトラメチルアンモニウム、テトラブチルアンモニウム、ピリジニウム、イミダゾリウム、ピペラジニウム、ピペリジニウムなどの4級アンモニウム塩のような塩を挙げることができる。
 式(1)で表されるメチン系色素は、シス体、トランス体、ラセミ体等の構造異性体をとり得るが、特に限定されず、いずれの異性体も本発明における光増感用色素として良好に使用しうるものである。
 式(1)におけるm、l、n、j、p、q、X1~X2、Y1~Y2、Z1~Z4、A1~A15及びR1~R2の好ましい組合せは、上記のm、l、n、j、p、q、X1~X2、Y1~Y2、Z1~Z4、A1~A15及びR1~R2のそれぞれにおいて好ましいとされるもの同士の組み合わせであり、より好ましい組み合わせは以下の通りである。
 すなわち、式(1)中、mが1乃至3であり、l及びnが0であり、jが1乃至3であり、式(3002)中、qが0であり、pが1乃至3であり、式(1)又は式(3002)中のZ1、Z、及びZ4がそれぞれ独立に酸素原子、イオウ原子、セレン原子、アミノ基、N-メチルアミノ基又はN-フェニルアミノ基であり、式(1)中のR2が上記式(3101)~(3114)のいずれかで表される基であり、式(1)中のX1及びY1がそれぞれ独立にカルボキシル基、リン酸基、シアノ基又はアシル基であるか、X1及びY1の一方が上記式(1001)~(1033)で示される基であり、他方が水素原子又はシアノ基であるか、或いはX1及びY1で環を形成し、その環は上記式(2001)~(2044)で示される基よりなる群から選択される基であり、X2及びY2がそれぞれ独立にカルボキシル基、リン酸基、シアノ基又はアシル基であるか、X及びYの一方が上記式(1001)~(1033)で示される基であり、他方が水素原子又はシアノ基であるか、或いはX2及びY2で環を形成し、その環は上記式(2001)~(2044)で示される基よりなる群から選択される基であり、A1~A15がそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~36のアルキル基のいずれかである化合物がより好ましい。
 また、式(1)中、mが1乃至3であり、l及びnが0であり、jが1乃至3であり、式(3002)中、qが0であり、pが1乃至3であり、式(1)又は式(3002)中のZ1、Z、及びZ4がそれぞれ独立に酸素原子、イオウ原子又はセレン原子であり、式(1)中のR2が上記式(3103)、(3107)及び(3111)のいずれかで表される基であり、式(1)中のX1及びY1の一方がカルボキシル基であり他方がカルボキシル基、シアノ基又はアシル基であるか、或いはX1及びY1が結合して環を形成し該環が上記式(2007)で表される基であり、X2及びY2の一方がカルボキシル基であり他方がカルボキシル基、シアノ基又はアシル基であるか、或いはX2及びY2が結合して環を形成し該環が上記式(2007)で表される基であり、A1~A15がそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~18のアルキル基のいずれかである化合物が更に好ましい。
 更に、式(1)中、mが1乃至3であり、l及びnが0であり、jが1乃至3であり、Z1及びZがイオウ原子であり、R2が上記式(3103)、(3107)及び(3111)のいずれかで表される基であり、X1及びY1の一方がカルボキシル基であり他方がカルボキシル基又はシアノ基であり、A1~Aがそれぞれ独立に水素原子又は炭素数1~18のアルキル基であり、式(3002)中、qが0であり、pが1乃至3であり、Z4がイオウ原子であり、X2及びY2の一方がカルボキシル基であり他方がカルボキシル基又はシアノ基であり、A11~A15がそれぞれ独立に水素原子又は炭素数1~18のアルキル基である化合物が更に好ましい。
 更にまた、式(1)中、mが1乃至2、更に好ましくは1であり、l及びnが0であり、jが1乃至2であり、式(3002)中、qが0であり、pが1乃至2であり、式(1)又は式(3002)中のZ1、Z、及びZ4がイオウ原子であり、式(1)中のR2が上記式(3107)又は(3111)で表される基であり、式(1)中のX1及びY1の一方がカルボキシル基であり他方がシアノ基であるか、或いはX1及びY1が結合して環を形成し該環が上記式(2007)で表される基であり、X2及びY2の一方がカルボキシル基であり他方がシアノ基であるか、或いはX2及びY2が結合して環を形成し該環が上記式(2007)で表される基であり、A1~A15が水素原子である化合物が特に好ましい。
 上記式(1001)~(1017)、(1019)及び(1020)に示されるように、窒素原子の陽電荷を中和するための対イオンは分子間又は分子内のいずれで形成してもよい。分子間の好ましい対イオンとしてはヨウ素、過塩素酸、ビストリフルオロメチルスルホンイミド、トリストリフルオロメチルスルホニルメタン、6フッ化アンチモン酸、テトラフルオロホウ酸などの各アニオンが挙げられる。また分子内の好ましい対イオンとしては陽電荷を有する窒素原子に結合した酢酸-2-イル、プロピオン酸-3-イル、スルホエタン-2-イルの各アニオンなどが挙げられる。
 前記式(1)で表されるメチン系色素は、例えば、以下に示す反応式によって製造できるが、本発明はこれらの合成法に限定されるものではない。
Figure JPOXMLDOC01-appb-C000037
 化合物(3)とボロン酸類(4)の反応により化合物(5)を得る。化合物(5)をN-ヨードこはく酸イミドで処理し、化合物(6)を得る。そして、化合物(6)とボロン酸類(7)とを反応させ化合物(8)に誘導し、さらにボロン酸類(9)との反応によりカルボニル化合物(10)を得る。この化合物(10)と式(11)で表される活性メチレンを有する化合物とを必要であれば苛性ソーダ、ナトリウムメチラート、酢酸ナトリウム、ジエチルアミン、トリエチルアミン、ピペリジン、ピペラジン、ジアザビシクロウンデセンなどの塩基性触媒の存在下、メタノール、エタノール、イソプロパノール、ブタノールなどのアルコール類やジメチルホルムアミド、N-メチルピロリドンなどの非プロトン性極性溶媒やトルエン、無水酢酸、アセトニトリルなどの溶媒中、20℃~180℃好ましくは50℃~150℃で縮合することにより式(1)で表されるメチン系化合物(色素)が得られる。上記反応において、活性メチレンを有する化合物(11)がエステル基を有する場合、縮合反応後、加水分解等を行うことによりカルボン酸体を得ることも可能である。
 また、特に式(1)において、l=0のメチン系色素の場合には、化合物(3)とボロン酸類(4)との反応を行わず、化合物(5)の代わりに下記の化合物(5’)を使用する事で同様に合成できる。
Figure JPOXMLDOC01-appb-C000038
 また、特に式(1)において、n=0であり、かつR2が水素原子又は脂肪族炭化水素残基のメチン系色素の場合には、化合物(3)の代わりに下記の化合物(3’)を使用することで化合物(5’’)を合成することができ、さらにその化合物(5’’)を化合物(8)の代わりに使用する事で対応する化合物(1)を合成する事ができる。
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
 なお、上記のプロセスにおけるクロスカップリング反応に関するより詳細な説明は、非特許文献3に記載されており、その内容の全体を参照により本明細書に組み込む。
 式(1-1)で表されるメチン系色素(式(1)におけるl及びn並びに式(3002)におけるqが0であるメチン系色素)の具体例を、表1~表7に示す。
Figure JPOXMLDOC01-appb-C000041
式(1-1)中、R1は下記式(3002-1)を表す。
Figure JPOXMLDOC01-appb-C000042
 各表において、Phはフェニル基を意味する。(1001)~(1033)と表記したものは、上記式(1001)~(1033)に対応する。(2001)~(2044)と表記したものは、X1とY1及び/又はX2とY2が結合して形成する環を表したものであり、上記式(2001)~(2044)に対応する。また、(3101)~(3114)と表記したものは、上記式(3101)~(3114)に対応する。
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000044
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000046
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000048
Figure JPOXMLDOC01-appb-T000049
Figure JPOXMLDOC01-appb-T000050
 下記式(1-2)で表されるメチン系色素(式(1)におけるA1、A2、A3、A13及びA14が水素原子であり、lが1であり、式(3002)におけるqが1であるメチン系色素)の具体例を、表9~表21に示す。
Figure JPOXMLDOC01-appb-C000051
式(1-2)中、R1は下記式(3002-2)を表す。
Figure JPOXMLDOC01-appb-C000052
 各表において、Phはフェニル基を意味する。(1001)~(1033)と表記した置換基は、上記式(1001)~(1033)に対応する。(2001)~(2044)と表記した置換基は、X1とY1及び/又はX2とY2が結合して形成する環を表し、上記式(2001)~(2044)に対応する。また、(3101)~(3114)と表記したものは、上記式(3101)~(3114)に対応する。
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000056
Figure JPOXMLDOC01-appb-T000057
Figure JPOXMLDOC01-appb-T000058
Figure JPOXMLDOC01-appb-T000059
Figure JPOXMLDOC01-appb-T000060
Figure JPOXMLDOC01-appb-T000061
Figure JPOXMLDOC01-appb-T000062
Figure JPOXMLDOC01-appb-T000063
Figure JPOXMLDOC01-appb-T000064
Figure JPOXMLDOC01-appb-T000065
 本発明の光電変換素子は、例えば、基板上に酸化物半導体微粒子の薄膜を有し、この薄膜に式(1)で表される色素化合物を担持させたものである。
 酸化物半導体微粒子の薄膜を設ける基板としては、その表面が導電性であるものが好ましいが、そのような基板は市場にて容易に入手可能である。例えば、ガラス又はポリエチレンテレフタレート若しくはポリエーテルスルフォン等の透明な高分子材料の表面にインジウム、フッ素、アンチモンをドープした酸化スズなどの導電性金属酸化物又は銅、銀、金等の金属の薄膜を設けたものを基板として用いることが出来る。その導電性としては通常1000Ω以下であればよく、100Ω以下のものが好ましい。
 また、酸化物半導体としては金属酸化物が好ましく、その具体例としてはチタン、スズ、亜鉛、タングステン、ジルコニウム、ガリウム、インジウム、イットリウム、ニオブ、タンタル、バナジウム等の酸化物が挙げられる。これらのうちチタン、スズ、亜鉛、ニオブ又はインジウム等の酸化物が好ましく、酸化チタン、酸化亜鉛及び酸化スズが最も好ましい。これらの酸化物半導体は単一で使用することも出来るが、2種以上混合したり、1種の酸化物半導体の表面に他の酸化物半導体をコーティングさせて使用することも出来る。また酸化物半導体の微粒子の粒径は、平均粒径として通常1~500nm、好ましくは1~100nmである。この酸化物半導体の微粒子は大きな粒径のものと小さな粒径のものを混合したり、多層にして用いることも出来る。
 酸化物半導体微粒子の薄膜は、酸化物半導体微粒子をスプレイなどで前記基板上に噴霧して半導体微粒子の薄膜を直接形成する方法、基板を電極として電気的に半導体微粒子を薄膜状に析出させる方法、半導体微粒子のスラリー又は半導体アルコキサイド等の半導体微粒子の前駆体を加水分解することにより得られた微粒子を含有するペーストを基板上に塗布した後、乾燥、硬化又は焼成する方法などによって製造することが出来る。酸化物半導体を用いる電極の性能上、スラリーを用いる方法が好ましい。この方法の場合、スラリーは2次凝集している酸化物半導体微粒子を常法により分散媒中に平均1次粒子径が1~200nmになるように分散させることにより得られる。
 スラリーを分散させる分散媒としては、半導体微粒子を分散させ得るものであれば何でも良く、水;エタノール等のアルコール;アセトン、アセチルアセトン等のケトン;ヘキサン等の炭化水素等が用いられ、これらは単独で用いても混合してもよい。また、水はスラリーの粘度変化を少なくするという点で好ましい。また、酸化物半導体微粒子の分散状態を安定化させる目的で分散安定剤を用いることが出来る。分散安定剤の例としては、例えば酢酸、塩酸、硝酸等の酸、又はアセチルアセトン、アクリル酸、ポリエチレングリコール、ポリビニルアルコール等の有機溶媒等が挙げられる。
 スラリーを塗布した基板は焼成してもよく、その焼成温度は通常100℃以上、好ましくは200℃以上で、かつおおむね基板材料の融点(軟化点)以下であり、通常は900℃以下であり、好ましくは600℃以下である。また焼成時間は、特に限定はないが、概ね4時間以内が好ましい。基板上の薄膜の厚みは通常1~200μmで、好ましくは1~50μmである。
 酸化物半導体微粒子の薄膜に2次処理を施してもよい。すなわち、例えば半導体と同一の金属のアルコキサイド、塩化物、硝化物、硫化物等の溶液に直接、基板ごと薄膜を浸積させて乾燥又は再焼成することにより半導体微粒子の薄膜の性能を向上させることもできる。金属アルコキサイドとしては、チタンエトキサイド、チタンイソプロポキサイド、チタンt-ブトキサイド、n-ジブチル-ジアセチルスズ等が挙げられ、それらのアルコール溶液が用いられる。塩化物としては、例えば四塩化チタン、四塩化スズ、塩化亜鉛等が挙げられ、それらの水溶液が用いられる。このようにして得られた酸化物半導体薄膜は酸化物半導体の微粒子から成っている。
 次に、酸化物半導体微粒子の薄膜に、本発明の前記式(1)で表されるメチン系色素を担持させる方法について説明する。
 担持させる方法としては、該色素を溶解しうる溶媒にて色素を溶解して得た溶液、又は溶解性の低い色素にあっては色素を分散せしめて得た分散液に上記酸化物半導体微粒子の薄膜を有する基板を浸漬する方法が挙げられる。浸漬温度はおおむね常温から溶媒の沸点迄であり、また浸漬時間は1分間から48時間程度である。色素を溶解させるのに使用しうる溶媒の具体例として、例えば、メタノール、エタノール、イソプロパノール、テトラヒドロフラン(THF)、アセトニトリル、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、アセトン、n-ブタノール、t-ブタノール、水、n-ヘキサン、クロロホルム、ジクロロメタン、トルエン等が挙げられ、色素の溶解度等に応じて、単独又は複数を混合して用いることができる。溶液又は分散液の色素濃度は、用いる色素によって適宜決めればよいが、通常1×10-6M~1Mであり、好ましくは1×10-5M~1×10-1Mである。浸漬が終わったあと、風乾又は必要により加熱して溶媒を除去する。この様にして式(1)で表されるメチン系色素で増感された酸化物半導体微粒子の薄膜を有した本発明の光電変換素子が得られる。
 担持する前記式(1)で表されるメチン系色素は1種類でもよいし、数種類混合してもよい。また、本発明の式(1)で表されるメチン系色素を、他の色素や金属錯体色素を混合してもよい。特に吸収波長の異なる色素同士を混合することにより、幅広い吸収波長を利用することが出来、変換効率の高い太陽電池が得られる。混合しうる金属錯体色素としては特に制限は無いが、非特許文献2に示されているルテニウム錯体若しくはその4級アンモニウム塩化合物、フタロシアニン、ポルフィリンなどが好ましく、混合しうる有機色素としては無金属のフタロシアニン、ポルフィリン、シアニン、メロシアニン、オキソノール、トリフェニルメタン系、特許文献2に示されるアクリル酸系色素などのメチン系色素や、キサンテン系、アゾ系、アンスラキノン系、ペリレン系等の色素が挙げられる。好ましくはルテニウム錯体、メロシアニン、又はアクリル酸系等のメチン系色素を混合することができる。色素を2種以上用いる場合は、色素を半導体微粒子の薄膜に順次吸着させても、混合溶解した混合物を吸着させてもよい。
 混合する色素の比率に特に限定は無く、それぞれの色素について最適化条件を適宜選択しうるが、一般的には等モルずつの混合から、1つの色素につき、10%モル程度以上とするのが好ましい。2種以上の色素を溶解又は分散した溶液を用いて、酸化物半導体微粒子の薄膜に色素を吸着する場合、溶液中の色素合計の濃度は1種類のみ担持する場合と同様でよい。色素を混合して使用する場合の溶媒としては前記したような溶媒が使用可能であり、使用する各色素用の溶媒は同一でも異なっていてもよい。
 酸化物半導体微粒子の薄膜に色素を担持する際、色素同士の会合を防ぐために包摂化合物の共存下、色素を担持することが有利である。包摂化合物としてはコール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、好ましい具体例としてはデオキシコール酸、デヒドロデオキシコール酸、ケノデオキシコール酸、コール酸メチルエステル、コール酸ナトリウム等のコール酸類、ポリエチレンオキサイド等が挙げられる。また、色素を担持させた後、4-t-ブチルピリジン等のアミン化合物で半導体微粒子の薄膜を処理してもよい。処理の方法は、例えばアミンのエタノール溶液に色素を担持した半導体微粒子の薄膜を有する基板を浸す方法等が挙げられる。
 本発明の太陽電池は上記酸化物半導体微粒子の薄膜に色素を担持させた光電変換素子を一方の電極とし、更に対極、及びレドックス電解質、正孔輸送材料又はp型半導体等から構成される。
 レドックス電解質、正孔輸送材料及びp型半導体等の形態としては、液体、凝固体(ゲル及びゲル状)、固体等があり、それぞれの形態において公知の材料を利用出来る。液体のものとしてはレドックス電解質、溶融塩、正孔輸送材料、p型半導体等をそれぞれ溶媒に溶解させたものや常温溶融塩などがある。凝固体(ゲル及びゲル状)のものとしては、これらをポリマーマトリックスや低分子ゲル化剤等に含ませたもの等が挙げられる。固体のものとしては、レドックス電解質、溶融塩、正孔輸送材料、p型半導体等のそれ自体を挙げることができる。
 正孔輸送材料としては、アミン誘導体;ポリアセチレン、ポリアニリン、ポリチオフェン等の導電性高分子;トリフェニレン系化合物などが挙げられる。また、p型半導体としては、CuI、CuSCN等が挙げられる。対極としては、導電性を持っており、レドックス電解質の還元反応を触媒的に作用するものが好ましい。例えばガラス又は高分子フィルムに白金、カーボン、ロジウム、ルテニウム等を蒸着したものや、導電性微粒子を塗り付けたものを用いることができる。
 本発明の太陽電池に用いるレドックス電解質としては、ハロゲンイオンを対イオンとするハロゲン化合物及びハロゲン分子からなるハロゲン酸化還元系電解質;フェロシアン酸塩-フェリシアン酸塩若しくはフェロセン-フェリシニウムイオン、コバルト錯体等の金属錯体などの金属酸化還元系電解質;アルキルチオール-アルキルジスルフィド、ビオロゲン色素、ヒドロキノン-キノン等の有機酸化還元系電解質などを挙げることができるが、ハロゲン酸化還元系電解質が好ましい。ハロゲン化合物-ハロゲン分子からなるハロゲン酸化還元系電解質におけるハロゲン分子としては、例えばヨウ素分子、臭素分子などが挙げられ、ヨウ素分子が好ましい。ハロゲンイオンを対イオンとするハロゲン化合物としては、例えばLiBr、NaBr、KBr、LiI、NaI、KI、CsI、CaI2、MgI2、CuI等のハロゲン化金属塩あるいはテトラアルキルアンモニウムヨーダイド、イミダゾリウムヨーダイド、ピリジニウムヨーダイドなどのハロゲンの有機4級アンモニウム塩等があげられるが、ヨウ素イオンを対イオンとする塩類が好ましい。また、上記ヨウ素イオンの他にビス(トリフルオロメタンスルホニル)イミドイオン、ジシアノイミドイオン等のイミドイオンを対イオンとする電解質を用いることも好ましい。
 レドックス電解質はそれを含む溶液の形態の場合、その溶媒には電気化学的に不活性なものが用いられる。例えばアセトニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、γ-ブチロラクトン、ジメトキシエタン、ジエチルカーボネート、ジエチルエーテル、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、ジメチルホルムアミド、ジメチルスルホキサイド、1,3-ジオキソラン、メチルフォルメート、2-メチルテトラヒドロフラン、3-メチル-オキサゾリジン-2-オン、スルフォラン、テトラヒドロフラン、水等が挙げられ、これらの中でも、特に、アセトニトリル、プロピレンカーボネート、エチレンカーボネート、3-メトキシプロピオニトリル、メトキシアセトニトリル、エチレングリコール、3-メチル-オキサゾリジン-2-オン、γ-ブチロラクトン等が好ましい。これらは単独で若しくは2種以上組み合わせて用いることができる。ゲル状電解質の場合は、オリゴマー及びポリマー等のマトリックスに電解質又は電解質溶液を含有させたものや、低分子ゲル化剤等に同じく電解質又は電解質溶液を含有させたもの等が挙げられる。レドックス電解質の濃度は通常0.01~99質量%で、好ましくは0.1~90質量%程度である。
 本発明の太陽電池は、基板上の酸化物半導体微粒子の薄膜に、本発明の式(1)で表されるメチン系色素を担持した光電変換素子の電極に、それを挟むように対極を配置する。その間にレドックス電解質を含んだ溶液を充填することにより得られる。
 以下に実施例に基づき、本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。実施例中、部は特に指定しない限り質量部を表す。溶液の濃度を表すMは、mol/Lを表す。また、化合物番号は前記の具体例における化合物番号である。極大吸収波長は紫外可視分光光度計(UV-3100PC、島津製作所製)により測定した。核磁気共鳴は、JNM-ECS400(日本電子社製)により測定した。
合成例1
 2,3-ジブロモチオフェン20部、5-ホルミル-2-チオフェンボロン酸31部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)1.7部、フッ化セシウム50部、水112部を1,4-ジオキサン516部に加え、80℃で3時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(700)で表される化合物21部を黄色固体として得た。
Figure JPOXMLDOC01-appb-C000066
合成例2
 合成例1で得られた式(700)で表される化合物10部を酢酸210部とクロロホルム296部の混合液に溶解した溶液に、N-ヨードこはく酸イミド9部を加え、遮光下100℃で5時間攪拌した。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(701)で表される化合物13部を暗黄色固体として得た。
Figure JPOXMLDOC01-appb-C000067
合成例3
 [1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)・ジクロロメタン付加物1.6部、酢酸カリウム2部及びビス(ピナコラート)ジボロン2部をジメチルスルホキシド22部に加え、窒素雰囲気下攪拌した。9,9-ジブチル-N-(9,9-ジブチルフルオレン-2-イル)-N-(4-ヨードフェニル)フルオレン-2-アミン5部をジメチルスルホキシド66部に溶解した溶液を加え、80℃で5時間攪拌した。反応混合物を、トルエン-水で抽出、トルエン相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(702)で表される化合物3.5部を白色固体として得た。
Figure JPOXMLDOC01-appb-C000068
合成例4
 合成例2で得られた式(701)で表される化合物5.9部、合成例3で得られた式(702)で表される化合物13部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.47部及び20%炭酸ナトリウム水溶液49部を1,2-ジメトキシエタン373部に加え、還流下7時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(703)で表される化合物9.3部を赤色固体として得た。
Figure JPOXMLDOC01-appb-C000069
実施例1
 合成例4で得られた式(703)で表される化合物9.3部とシアノ酢酸5.0部をエタノール526部とトルエン289部の混合液に溶解した溶液に、無水ピペラジン0.02部を加え、還流下6時間反応させた。シアノ酢酸5.0部と無水ピペラジン0.02部を追加し、還流下さらに7時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-メタノール)で分離、精製した。濃縮後得られた赤褐色固体を、クロロホルム-ヘキサンから再結晶し、下記式(705)で表される化合物(表1の化合物1)3.1部を赤褐色固体として得た。
 この式(705)で表される化合物の極大吸収波長及び核磁気共鳴装置の測定値は次のとおりであった。
 極大吸収波長;λmax=368nm(1.6×10-5M、テトラヒドロフラン溶液)
核磁気共鳴の測定値;1H-NMR(PPM:DMSO-d6):0.53(m.8H),0.60(t.12H),0.96(m.8H), 1.84(m.8H),7.00(d.2H),7.02(dd.2H),7.16(d.2H),7.25(m.4H),7.33(d.1H),7.37(dd.2H),7.42(d.1H),7.62(d.2H),7.68(s.1H),7.69(d.2H),7.72(d.2H),7.78(d.1H),7.82(d.1H),8.22(s,1H),8.23(s,1H)
Figure JPOXMLDOC01-appb-C000070
合成例6
 2,3-ジブロモチオフェン5部、5’-ホルミル-2,2’-ビチオフェン-5-ボロン酸5.5部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.22部、フッ化セシウム6.4部、水28部を1,4-ジオキサン126部に加え、80℃で3時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(706)で表される化合物2.8部を黄色固体として得た。
Figure JPOXMLDOC01-appb-C000071
合成例7
 合成例6で得られた式(706)で表される化合物2.5部を酢酸250部とクロロホルム375部の混合液に溶解した溶液に、N-ヨードこはく酸イミド1.6部を加え、遮光下常温で5時間攪拌した。N-ヨードこはく酸イミド0.8部を加え、さらに遮光下常温で19時間攪拌した。反応後、析出物を濾過及びヘキサン洗浄し、下記式(707)で表される化合物2.9部を薄橙色固体として得た。
Figure JPOXMLDOC01-appb-C000072
合成例8
 合成例7で得られた式(707)で表される化合物2.1部、合成例3で得られた式(702)で表される化合物4.1部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.15部及び20%炭酸ナトリウム水溶液16部を1,2-ジメトキシエタン300部に加え、還流下4時間反応させた。式(702)で表される化合物2.0部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.08部を追加し、さらに還流下3時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン、およびトルエン-ヘキサン)で分離、精製し、下記式(708)で表される化合物1.2部を濃橙色固体として得た。
Figure JPOXMLDOC01-appb-C000073
合成例9
 合成例8で得られた式(708)で表される化合物0.43部、5’-ホルミル-2,2’-ビチオフェン-5-ボロン酸0.16部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.004部、フッ化セシウム0.13部、水0.6部を1,4-ジオキサン8部に加え、80℃で3時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(709)で表される化合物0.36部を朱色固体として得た。
Figure JPOXMLDOC01-appb-C000074
実施例2
 合成例9で得られた式(709)で表される化合物0.36部とシアノ酢酸162部をエタノール-トルエン(2:1)混合液67部に溶解させ、無水ピペラジン0.01部を加え、還流下5時間反応させた。反応混合物を、トルエン-水で抽出、トルエン相を濃縮後、カラムクロマト(クロロホルム-酢酸)で分離、精製した。濃縮後得られた暗赤色固体を、クロロホルム-ヘキサンから再結晶し、下記式(710)で表される化合物(表5の化合物249)0.12部を暗赤色固体として得た。
 この式(710)で表される化合物の極大吸収波長及び核磁気共鳴装置の測定値は次のとおりであった。
極大吸収波長;λmax=368nm(1.6×10-5M、テトラヒドロフラン溶液)
核磁気共鳴の測定値;1H-NMR(PPM:DMSO-d6):0.56(m.8H),0.66(t.12H),1.02(m.8H), 1.89(m.8H),7.05(d.2H),7.07(dd.2H),7.21(d.2H),7.31(m.6H),7.42(m.4H),7.46(m.2H),7.64(m.4H),7.69(s.1H),7.74(d.2H),7.76(d.2H),8.01(s.2H)
Figure JPOXMLDOC01-appb-C000075
合成例10
 合成例8で得られた式(708)で表される化合物0.87部、5-ホルミル-2-チオフェンボロン酸0.34部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.017部、フッ化セシウム0.53部、水0.07部を1,4-ジオキサン13部に加え、80℃で4時間反応させた。5-ホルミル-2-チオフェンボロン酸0.34部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.017部を追加し、80℃で2時間反応させた。さらに、5-ホルミル-2-チオフェンボロン酸0.34部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.017部を追加し、80℃で5時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(711)で表される化合物0.70部を赤橙色固体として得た。
Figure JPOXMLDOC01-appb-C000076
実施例3
 合成例10で得られた式(711)で表される化合物0.36部とシアノ酢酸162部をエタノール-トルエン(2:1)混合液67部に溶解させ、無水ピペラジン0.01部を加え、還流下5時間反応させた。反応混合物を、トルエン-水で抽出、トルエン相を濃縮後、カラムクロマト(クロロホルム-メタノール)で分離、精製した。濃縮後得られた暗赤色固体を、クロロホルム-ヘキサンから再結晶し、下記式(712)で表される化合物(表3の化合物125)0.12部を暗赤色固体として得た。
 この式(712)で表される化合物の極大吸収波長及び核磁気共鳴装置の測定値は次のとおりであった。
極大吸収波長;λmax=369nm(1.6×10-5M、THF溶液)
核磁気共鳴の測定値;1H-NMR(PPM:DMSO-d6):0.57(m.8H),0.67(t.12H),1.01(m.8H), 1.89(m.8H),7.04(d.2H),7.06(dd.2H),7.20(d.2H),7.29(m.5H),7.41(m.4H),7.45(d.1H),7.65(m.4H),7.71(d.1H),7.74(dd.2H),7.76(d.2H),8.06(s.1H),8.07(s.1H)
Figure JPOXMLDOC01-appb-C000077
合成例11
 窒素雰囲気中氷浴下、エチルマグネシウムクロリドのテトラヒドロフラン溶液(1.0M)240部に2,2,6,6-テトラメチルピペリジン2.1部と、3-ヘキシルチオフェン24部を滴下した。66℃で7時間撹拌した後、ジメチルホルムアミド12部とテトラヒドロフラン32部の混合液を滴下し、さらに1時間撹拌した。氷浴下、1M塩酸250部を加え、反応混合物をクロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(713)で表される化合物11部を無色オイルとして得た。
Figure JPOXMLDOC01-appb-C000078
合成例12
 合成例11で得られた式(713)で表される化合物9.9部を酢酸210部に溶解した溶液に、N-ヨードこはく酸イミド17部を加え、遮光下100℃で5時間攪拌した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(714)で表される化合物12部を褐色オイルとして得た。
Figure JPOXMLDOC01-appb-C000079
合成例13
 合成例12で得られた式(714)で表される化合物11部、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]ジクロロパラジウム(II)0.73部、酢酸カリウム9.8部及びビス(ピナコラート)ジボロン17部をジメチルスルホキシド220部に加え、窒素雰囲気下80℃で5時間攪拌した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(715)で表される化合物3.5部を黄色オイルとして得た。
Figure JPOXMLDOC01-appb-C000080
合成例14
 合成例13で得られた式(715)で表される化合物3.7部、2,3-ジブロモチオフェン1.1部、ビス(トリ-tert-ブチルホスフィン)パラジウム(0)0.092部、フッ化セシウム2.7部及び水5.9部を1,4-ジオキサン27部に加え、80℃で3時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(716)で表される化合物0.38部を淡橙色タール物質として得た。
Figure JPOXMLDOC01-appb-C000081
合成例15
 合成例14で得られた式(716)で表される化合物0.38部を酢酸5.2部とクロロホルム7.4部の混合液に溶解した溶液に、N-ヨードこはく酸イミド0.21部を加え、遮光下で4時間還流した。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(717)で表される化合物0.47部を淡黄色タール状物質として得た。
Figure JPOXMLDOC01-appb-C000082
合成例16
 合成例15で得られた式(717)で表される化合物0.47部、合成例3で得られた式(702)で表される化合物0.73部、テトラキス(トリフェニルホスフィン)パラジウム(0)0.027部及び20%炭酸ナトリウム水溶液2.8部を1,2-ジメトキシエタン22部に加え、還流下4時間反応させた。反応混合物を、クロロホルム-水で抽出し、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-ヘキサン)で分離、精製し、下記式(718)で表される化合物0.30部を橙色固体として得た。
Figure JPOXMLDOC01-appb-C000083
実施例4
 合成例16で得られた式(718)で表される化合物0.30部とシアノ酢酸0.14部をエタノール11部とトルエン12部の混合液に溶解した溶液に、無水ピペラジン0.01部を加え、還流下1.5時間反応させた。シアノ酢酸0.14部を追加し、還流下さらに7時間反応させた。反応混合物を、クロロホルム-水で抽出、クロロホルム相を濃縮後、カラムクロマト(クロロホルム-酢酸)で分離、精製した。濃縮後得られた橙色固体を、クロロホルム-ヘキサンから再結晶し、下記式(719)で表される化合物(表23の化合物1122)0.057部を橙色固体として得た。
 この式(719)で表される化合物の核磁気共鳴装置の測定値は次のとおりであった。
核磁気共鳴の測定値;1H-NMR(PPM:DMSO-d6):0.57(m.8H),0.65(t.12H),0.78(m.6H),1.01(m.8H),1.16(m.16H),1.88(m.8H),2.24(m.4H),7.04(d.2H),7.07(dd.2H),7.19(d.2H),7.30(m.4H),7.41(dd.2H),7.49(s.1H),7.51(s.1H),7.56(s.1H),7.66(d.2H),7.74(dd.2H),7.77(d.2H),7.91(s,1H),7.93(s,1H)
Figure JPOXMLDOC01-appb-C000084
実施例5~6
 実施例1及び2で得られた式(705)及び(710)で表わされるメチン系色素(それぞれ表1及び表5に示される化合物番号1及び249の化合物)を1.6×10-4M、下記式(d)で表わされるコール酸をそれぞれ4×10-2M及び1×10-2Mとなるようにそれぞれテトラヒドロフラン(THF)及びアセトンに溶解した。
Figure JPOXMLDOC01-appb-C000085
 この溶液中に多孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを450℃にて30分間焼結した半導体薄膜電極)を40℃で3日間浸漬し色素を担持せしめ、溶剤で洗浄、乾燥させ、コール酸類処理色素増感半導体薄膜を得た。多孔質基板の半導体薄膜側と対峙させて20μmの空隙を設けて、白金でスパッタした導電性ガラスのスパッタ面を固定し、その空隙に電解質を含む溶液を注入した。電解液は、3-メトキシプロピオニトリルにヨウ素/ヨウ化リチウム/1-メチル-3-n-プロピルイミダゾリウムアイオダイド/グアニジンチオシアネートをそれぞれ0.1M/0.2M/1.2M/0.05Mになるように溶解したもの(A)、または3-メトキシプロピオニトリルにヨウ素/ヨウ化リチウム/1-メチル-3-n-プロピルイミダゾリウムアイオダイド/ブチルチオコリンアイオダイドをそれぞれ0.1M/0.2M/1.2M/0.2Mになるように溶解したもの(B)を使用した。
 測定する電池の大きさは実効部分を12cm2とした。光耐久試験は、電池の両面にUVカットフィルタ(UV400、美装社製)を貼りつけ、耐光試験機(ESC0405-F70、岩崎電気社製)を用いて1SUN、40℃で500時間行った。光電変換特性は、500Wキセノンランプを光源に用いて、AM(大気圏通過空気量)1.5フィルターを通して100mW/cm2とした。短絡電流、解放電圧、変換効率はポテンシオ・ガルバノスタットを用いて測定した。測定結果を表22に示す。
比較例1~2
 比較用色素として、下記式(C)によって表わされる国際公開特許WO2007/100033記載の化合物(160)を用いた。
Figure JPOXMLDOC01-appb-C000086
 この比較例色素をそれぞれ3.2×10-4M及び1.6×10-4M、上記式(d)で表わされるコール酸を1×10-2Mとなるようにアセトンに溶解した。実施例5及び6と同様にして光電変換素子を作製し、光耐久性試験を行った。測定結果を表22に示す。
Figure JPOXMLDOC01-appb-T000087
実施例7
 実施例3で得られた式(712)で表わされるメチン系色素(表3の化合物番号125)を1.6×10-4M、下記式(e)で表わされるコール酸を5×10-3Mとなるようにテトラヒドロフラン(THF)に溶解した。この溶液中に多孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを450℃にて30分間焼結した半導体薄膜電極)を40℃で3日間浸漬し色素を担持せしめ、溶剤で洗浄、乾燥させ、コール酸類処理色素増感半導体薄膜を得た。多孔質基板の半導体薄膜側と対峙させて20μmの空隙を設けて、白金でスパッタした導電性ガラスのスパッタ面を固定し、その空隙に電解質を含む溶液を注入した。電解液は、実施例5で用いたのと同じ(B)を使用した。
 測定する電池の大きさは実効部分を12cm2とした。光耐久試験は、電池の両面にUVカットフィルタ(UV400、美装社製)を貼りつけ、耐光試験機(ESC0405-F70、岩崎電気社製)を用いて1SUN、40℃で500時間行った。光電変換特性は、500Wキセノンランプを光源に用いて、AM(大気圏通過空気量)1.5フィルターを通して100mW/cm2とした。短絡電流、解放電圧、変換効率はポテンシオ・ガルバノスタットを用いて測定した。測定結果を表23に示す。
Figure JPOXMLDOC01-appb-C000088
Figure JPOXMLDOC01-appb-T000089
 表22及び23に示す通り、一般式(1)で表されるメチン系の色素によって増感された光電変換素子を用いることにより、耐光性に優れた太陽電池が得られることが実証された。
実施例8
 実施例4で得られた式(719)で表されるメチン系色素(表8の化合物番号381)を1.6×10-4M、上記式(e)で表わされるコール酸類を5×10-3Mとなるようにエタノールに溶解した。この溶液中に多孔質基板(透明導電性ガラス電極上に多孔質酸化チタンを450℃にて30分間焼結した半導体薄膜電極)を室温で一晩浸漬し色素を担持せしめ、溶剤で洗浄、乾燥させ、コール酸類処理色素増感半導体薄膜を得た。多孔質基板の半導体薄膜側と対峙させて20μmの空隙を設けて、白金でスパッタした導電性ガラスのスパッタ面を固定し、その空隙に電解質を含む溶液を注入した。電解液は、3-メトキシプロピオニトリルにヨウ素/ヨウ化リチウム/1,2-ジメチル-3-n-プロピルイミダゾリウムアイオダイド/t-ブチルピリジンをそれぞれ0.1M/0.1M/0.6M/1Mになるように溶解したもの(C)を使用した。
 測定する電池の大きさは実効部分を0.25cm2とした。光源は500Wキセノンランプを用いて、AM(大気圏通過空気量)1.5フィルターを通して100mW/cm2とし、ポテンシオ・ガルバノスタットを用いて光電変換特性を測定したところ、短絡電流11.3mA/cm2、解放電圧0.72V、変換効率5.9%と良好な結果を示した。
 本発明の色素増感光電変換素子において、特定の部分構造を有する色素を用いることにより、光耐久性が高く、高い変換効率を維持することができる太陽電池を提供することができる。

Claims (23)

  1.  下記式(1)で表されるメチン系色素
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、mは1乃至5の整数を、l及びnはそれぞれ独立に0乃至6の整数を、jは0乃至3の整数をそれぞれ表す。
     X1及びY1はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。また、X1とY1は結合して、環を形成してもよい。
     Z1及びZ2はそれぞれ独立に酸素原子、硫黄原子、セレン原子又はNR11を表す。R11は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。m及びjの少なくとも1つが2以上で、Z1及び/又はZ2が複数存在する場合、それぞれのZ1及び/又はZ2は互いに同じか又は異なっていてもよい。
     A1、A2、A3、A5及びA6はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。また、l及びnの少なくとも一つが2以上でA2、A3、A5及びA6のいずれかが複数存在する場合には、それぞれのA2、A3、A5及びA6は互いに同じか又は異なってもよい。また、lが0以外の場合、A1、A2及びA3のいずれか複数個で環を形成してもよい。
     A4は水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アミド基、アルコキシカルボニル基又はアシル基を表す。mが2以上でA4が複数存在する場合、それぞれのA4は互いに同じか又は異なってもよい。
     A7及びA8はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。jが2以上でA7及びA8が複数存在する場合、それぞれのA7及びA8は互いに同じか又は異なってもよい。
     R1は下記式(3002)
    Figure JPOXMLDOC01-appb-C000002
    (式(3002)中、pは1乃至3の整数を、qは0乃至6の整数をそれぞれ表す。
     X2及びY2はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、カルボキシル基、リン酸基、スルホン酸基、シアノ基、アシル基、アミド基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。また、X2とY2は結合して、環を形成してもよい。
     Z4は酸素原子、硫黄原子、セレン原子又はNR12を表す。R12は水素原子、芳香族残基又は脂肪族炭化水素残基を表す。pが2以上で、Z4が複数存在する場合、それぞれのZ4は互いに同じか又は異なっていてもよい。
     A11及びA12はそれぞれ独立に水素原子、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アルコキシ基、アルコキシカルボニル基又はアシル基を表す。pが2以上でA11及びA12が複数存在する場合、それぞれのA11及びA12は互いに同じか又は異なってもよい。
     A13、A14及びA15はそれぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、ハロゲン原子、カルボンアミド基、アミド基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アリールカルボニル基又はアシル基を表す。また、qが2以上でA13及びA14が複数存在する場合、それぞれのA13及びA14は互いに同じか又は異なってもよい。また、qが0以外の場合、A13、A14、及びA15のいずれか複数個で環を形成してもよい。)
    で示される基を表す。mが2以上でR1が複数存在する場合、それぞれのR1は互いに同じか又は異なってもよい。
     R2は下記式(3001)又は(3003)
    Figure JPOXMLDOC01-appb-C000003
    (式(3001)又は(3003)中、R12、R13、R14及びR15は、それぞれ独立に水素原子、芳香族残基又は脂肪族炭化水素残基を表す。
     R16、R17、R18及びR19は、それぞれ独立に水素原子、芳香族残基、脂肪族炭化水素残基、シアノ基、アシル基、アミド基、アルコキシ基、アルコキシカルボニル基又はベンゼンスルフォニル基を表す。)
    で示される基、水素原子又は脂肪族炭化水素残基を表す。また、nが0以外の場合、A5、A6及びR2のいずれか複数個で環を形成してもよい。)。
  2.  式(1)におけるl、n及びqが0である請求項1に記載のメチン系色素。
  3.  式(1)におけるmが1乃至3である請求項1又は2に記載のメチン系色素。
  4.  式(1)におけるjが1乃至3である請求項1~3のいずれか1項に記載のメチン系色素。
  5.  式(1)におけるZ1~Z4が硫黄原子である請求項1~4のいずれか1項に記載のメチン系色素。
  6.  式(1)におけるX1及びY1の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基であり、且つ/或いは式(3002)におけるX2及びY2の一方がカルボキシル基で他方がカルボキシル基、シアノ基又はアシル基である請求項1~5のいずれか1項に記載のメチン系色素。
  7.  式(1)におけるX1及びY1の一方がカルボキシル基で他方がシアノ基であり、且つ/或いは式(3002)におけるX2及びY2の一方がカルボキシル基で他方がシアノ基である請求項6に記載のメチン系色素。
  8.  式(1)におけるX1及びY1の少なくとも1つがカルボキシル基、水酸基、リン酸基、スルホン酸基、及びこれらの酸性基の塩からなる群から選択される基を含む置換基を少なくとも1つ以上有する芳香族残基であり、且つ/或いは式(3002)におけるX2及びY2の少なくとも1つがカルボキシル基、水酸基、リン酸基、スルホン酸基、及びこれらの酸性基の塩からなる群から選択される基を含む置換基を少なくとも1つ以上有する芳香族残基である請求項1~5のいずれか1項に記載のメチン系色素。
  9.  式(1)におけるX1及びY1の少なくとも1つ、並びに/或いは式(3002)におけるX2及びY2の少なくとも1つが下記式(1001)~(1033)
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    で示される基のいずれかである請求項8に記載のメチン系色素。
  10.  式(1)におけるX1とY1が結合して、且つ/或いは式(3002)におけるX2とY2が結合して環構造を形成する請求項1に記載のメチン系色素。
  11. 式(1)におけるX1とY1が結合して、並びに/或いは式(3002)におけるX2とY2が結合して形成する環構造が下記式(2001)~(2044)
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    (式(2001)~(2044)中、*は式(1)においてX1とY1が結合している炭素原子、並びに/或いは式(3002)においてX2とY2が結合している炭素原子を示す。)
    で示される環構造のいずれかである請求項10に記載のメチン系色素。
  12.  式(1)におけるX1とY1が結合して形成する環構造、並びに/或いは式(3002)におけるX2とY2が結合して形成する環構造がカルボキシル基を置換基として有する請求項11に記載のメチン系色素。
  13.  式(1)におけるX1とY1が結合して形成する環構造、並びに/或いは式(3002)におけるX2とY2が結合して形成する環構造が式(2007)又は(2012)で示される環構造である請求項12に記載のメチン系色素。
  14.  式(1)におけるA1~A15が水素原子である請求項1~13のいずれか1項に記載のメチン系色素。
  15.  式(1)におけるR2が、
    (I)式(3001)で示される基であり、該式(3001)におけるR12及びR13がそれぞれ独立に水素原子又は炭素数1~8のアルキル基であるか、或いは
    (II)式(3003)で示される基であり、該式(3003)におけるR14及びR15がそれぞれ独立にフェニル基又は式(3001)で示される基であり、R16乃至R19がそれぞれ独立に水素原子又は炭素数1~4のアルコキシ基で、該式(3001)におけるR12及びR13がそれぞれ独立に水素原子又は炭素数1~8のアルキル基である
    請求項1に記載のメチン系色素。
  16.  式(1)におけるR2が下記式(3101)~(3114)
    Figure JPOXMLDOC01-appb-C000009
    で示される基のいずれかである請求項15に記載のメチン系色素。
  17.  式(1)におけるR2が、式(3107)、(3108)、(3110)、(3111)、(3113)又は(3114)で示される基である請求項16に記載のメチン系色素。
  18.  式(1)におけるR2が、式(3107)又は(3111)で示される基である請求項17に記載のメチン系色素。
  19.  式(1)中、mが1乃至3であり、l及びnが0であり、jが1乃至3であり、Z1及びZがそれぞれ独立に酸素原子、イオウ原子又はセレン原子であり、R2が上記式(3103)、(3107)及び(3111)のいずれかで表される基であり、X1及びY1の一方がカルボキシル基であり他方がカルボキシル基、シアノ基又はアシル基であるか、或いはX1及びY1が結合して環を形成し該環が上記式(2007)で表される基であり、A1~Aがそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~18のアルキル基のいずれかであり、式(3002)中、qが0であり、pが1乃至3であり、Z4がそれぞれ独立に酸素原子、イオウ原子又はセレン原子であり、X2及びY2の一方がカルボキシル基であり他方がカルボキシル基、シアノ基又はアシル基であるか、或いはX2及びY2が結合して環を形成し該環が上記式(2007)で表される基であり、A11~A15がそれぞれ独立に水素原子、塩素原子、シアノ基又は炭素数1~18のアルキル基のいずれかである請求項1に記載のメチン系色素。
  20.  式(1)中、mが1乃至3であり、l及びnが0であり、jが1乃至3であり、Z1及びZがイオウ原子であり、R2が上記式(3103)、(3107)及び(3111)のいずれかで表される基であり、X1及びY1の一方がカルボキシル基であり他方がカルボキシル基又はシアノ基であり、A1~Aがそれぞれ独立に水素原子又は炭素数1~18のアルキル基であり、式(3002)中、qが0であり、pが1乃至3であり、Z4がイオウ原子であり、X2及びY2の一方がカルボキシル基であり他方がカルボキシル基又はシアノ基であり、A11~A15がそれぞれ独立に水素原子又は炭素数1~18のアルキル基である請求項1に記載のメチン系色素。
  21.  下記式(705)、(710)、(712)又は(719)
    Figure JPOXMLDOC01-appb-C000010
    Figure JPOXMLDOC01-appb-C000011
    Figure JPOXMLDOC01-appb-C000012
    Figure JPOXMLDOC01-appb-C000013
    で表される請求項1に記載のメチン系色素。
  22.  基板上の酸化物半導体微粒子の薄膜に、請求項1~21のいずれか1項に記載の式(1)で表されるメチン系色素を担持させた光電変換素子。
  23.  請求項22に記載の光電変換素子を備える太陽電池。
PCT/JP2014/074133 2013-09-12 2014-09-11 メチン系色素及びそれを用いた色素増感光電変換素子 WO2015037676A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-189036 2013-09-12
JP2013189036A JP2016193954A (ja) 2013-09-12 2013-09-12 メチン系色素及びそれを用いた色素増感光電変換素子

Publications (1)

Publication Number Publication Date
WO2015037676A1 true WO2015037676A1 (ja) 2015-03-19

Family

ID=52665776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/074133 WO2015037676A1 (ja) 2013-09-12 2014-09-11 メチン系色素及びそれを用いた色素増感光電変換素子

Country Status (3)

Country Link
JP (1) JP2016193954A (ja)
TW (1) TW201534663A (ja)
WO (1) WO2015037676A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118963A1 (ja) * 2014-02-07 2015-08-13 公立大学法人首都大学東京 新規化合物及びそれを含む光電変換素子
WO2015137382A1 (ja) * 2014-03-12 2015-09-17 日本化薬株式会社 メチン系色素及びそれを用いた色素増感光電変換素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282165A (ja) * 2002-01-16 2003-10-03 Nippon Kayaku Co Ltd 色素増感光電変換素子
KR20100125717A (ko) * 2009-05-21 2010-12-01 고려대학교 산학협력단 엑스모양 공액형 유기 화합물, 이를 이용한 염료감응 광전변환소자 및 염료감응 태양전지
WO2010147427A2 (ko) * 2009-06-19 2010-12-23 주식회사 동진쎄미켐 신규한 유기염료 및 이의 제조방법
CN102675898A (zh) * 2012-04-18 2012-09-19 复旦大学 一种具有双推拉电子基团的有机染料及其制备方法和应用
JP2013041747A (ja) * 2011-08-16 2013-02-28 Konica Minolta Business Technologies Inc 光電変換素子、光電変換素子の製造方法、太陽電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282165A (ja) * 2002-01-16 2003-10-03 Nippon Kayaku Co Ltd 色素増感光電変換素子
KR20100125717A (ko) * 2009-05-21 2010-12-01 고려대학교 산학협력단 엑스모양 공액형 유기 화합물, 이를 이용한 염료감응 광전변환소자 및 염료감응 태양전지
WO2010147427A2 (ko) * 2009-06-19 2010-12-23 주식회사 동진쎄미켐 신규한 유기염료 및 이의 제조방법
JP2013041747A (ja) * 2011-08-16 2013-02-28 Konica Minolta Business Technologies Inc 光電変換素子、光電変換素子の製造方法、太陽電池
CN102675898A (zh) * 2012-04-18 2012-09-19 复旦大学 一种具有双推拉电子基团的有机染料及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
FISCHER, M. K. R. ET AL.: "D-n-A Sensitizers for Dye-Sensitized Solar Cells", LINEAR VS BRANCHED OLIGOTHIOPHENES, CHEMISTRY OF MATERIALS, vol. 22, no. 5, 2010, pages 1836 - 1845 *
LIN, R. Y.-Y. ET AL.: "Y-shaped metal-free D-n- (A)2 sensitizers for high-performance dye- sensitized solar cells, Journal of Materials Chemistry A", MATERIALS FOR ENERGY AND SUSTAINABILITY, vol. 2, no. 9, 2014, pages 3092 - 3101 *
THOMAS, K. R. J. ET AL.: "2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells", CHEMISTRY OF MATERIALS, vol. 20, no. 5, 2008, pages 1830 - 1840 *
ZHANG, W. ET AL.: "Synthesis and photovoltaic properties of functional dendritic oligothiophenes", JOURNAL OF POLYMER SCIENCE , PART A: POLYMER CHEMISTRY, vol. 49, no. 8, 2011, pages 1865 - 1873 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015118963A1 (ja) * 2014-02-07 2015-08-13 公立大学法人首都大学東京 新規化合物及びそれを含む光電変換素子
WO2015137382A1 (ja) * 2014-03-12 2015-09-17 日本化薬株式会社 メチン系色素及びそれを用いた色素増感光電変換素子

Also Published As

Publication number Publication date
TW201534663A (zh) 2015-09-16
JP2016193954A (ja) 2016-11-17

Similar Documents

Publication Publication Date Title
JP5106381B2 (ja) 色素増感光電変換素子
JP5466943B2 (ja) パイ電子共役系を拡張した色素増感型太陽電池用増感色素
JP5138371B2 (ja) 色素増感光電変換素子
JP4986205B2 (ja) 色素増感光電変換素子
JP5145037B2 (ja) 色素増感光電変換素子
JP5306354B2 (ja) 色素増感型光電変換素子
JP2008021496A (ja) 色素増感光電変換素子
JP6278504B2 (ja) 新規化合物及びそれを用いた光電変換素子
JP2009048925A (ja) 色素増感光電変換素子
JP2006294360A (ja) 色素増感光電変換素子
JP5957072B2 (ja) 色素増感光電変換素子
WO2015037676A1 (ja) メチン系色素及びそれを用いた色素増感光電変換素子
JP6440296B2 (ja) 色素増感太陽電池用増感剤としてのトリフェニルアミン結合型ジベンゾピロメテン系色素
WO2015137382A1 (ja) メチン系色素及びそれを用いた色素増感光電変換素子
JP2016196422A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−1
JP2016185911A (ja) 新規化合物及びそれを含む光電変換素子
JP2017149694A (ja) 新規化合物及びそれを用いた光電変換素子
WO2015118963A1 (ja) 新規化合物及びそれを含む光電変換素子
JP2016138175A (ja) 新規化合物及び該化合物を用いた色素増感光電変換素子
JP2016196558A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−4
JP2016196423A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−2
JP2016196424A (ja) 新規化合物及びそれを用いた色素増感光電変換素子−3
JP2017137382A (ja) 新規化合物及びそれを含む光電変換素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14843792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14843792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP