WO2015136986A1 - 抗菌性部材 - Google Patents

抗菌性部材 Download PDF

Info

Publication number
WO2015136986A1
WO2015136986A1 PCT/JP2015/051474 JP2015051474W WO2015136986A1 WO 2015136986 A1 WO2015136986 A1 WO 2015136986A1 JP 2015051474 W JP2015051474 W JP 2015051474W WO 2015136986 A1 WO2015136986 A1 WO 2015136986A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
antibacterial
antibacterial member
transparency
hydrogen
Prior art date
Application number
PCT/JP2015/051474
Other languages
English (en)
French (fr)
Inventor
玉垣 浩
栄治 吉田
中山 武典
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to CN201580013374.XA priority Critical patent/CN106068079B/zh
Priority to KR1020167018355A priority patent/KR102006528B1/ko
Publication of WO2015136986A1 publication Critical patent/WO2015136986A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/06Surface treatment of glass, not in the form of fibres or filaments, by coating with metals
    • C03C17/09Surface treatment of glass, not in the form of fibres or filaments, by coating with metals by deposition from the vapour phase
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/261Iron-group metals, i.e. Fe, Co or Ni
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/25Metals
    • C03C2217/27Mixtures of metals, alloys

Definitions

  • the present invention relates to an antibacterial member, particularly a member excellent in antibacterial property and transparency.
  • an antibacterial metal compound Ag
  • a transparent resin Patent Document 1
  • a glass material organic antibacterial agent
  • stirring and firing Known is a sphere (Patent Document 2) in which an antibacterial agent is dispersed in a transparent resin or glass material.
  • Patent Document 3 a layer mainly made of polypropylene containing an inorganic antibacterial agent (in which a metal complex represented by silver is supported on zeolite or porous silica) on at least one surface layer of the base material layer A laminated antibacterial polypropylene film has also been reported (Patent Document 3).
  • an antibacterial film provided with an antibacterial layer containing a binder resin and an antibacterial agent having a thickness of 0.05 to 3 ⁇ m on a base film, wherein an aluminosilicate film containing antibacterial metal ions is provided.
  • Antibacterial film characterized in that it is an antibacterial agent contained in silica gel (Patent Document 4) and antibacterial glass in which a film containing antibacterial metal (silver) ions is formed on the glass surface by a sol-gel method (Patent Document 5) There is also.
  • a polymer film, a titanium oxide vapor-deposited film (Patent Document 6), which is formed by sequentially laminating a metal thin film or a metal oxide thin film and a titanium oxide thin film on at least one surface thereof, and a plastic
  • An antibacterial member having a photocatalyst layer formed on the surface of a transparent resin or glass, such as a photocatalyst film (Patent Document 7) in which a thin film layer made of silicon oxide and / or aluminum oxide and a photocatalyst layer are sequentially laminated on the film Is also known.
  • the antibacterial member prepared by the methods described in Patent Documents 1 and 2 is not sufficiently effective, and the antibacterial agent is dispersed throughout the member. Part.
  • the antibacterial member prepared by the method described in Patent Document 3 does not have sufficient antibacterial effect.
  • the surface layer once dispersed with the antibacterial agent is formed thick, the ratio of the functioning antibacterial agent is small.
  • the antibacterial members prepared by the methods described in Patent Documents 4 and 5 have insufficient antibacterial effects. Furthermore, the antibacterial member formed with the photocatalyst layer disclosed in Patent Document 6 or 7 has a problem that it does not exhibit antibacterial properties in an environment where light is not applied.
  • Ni-P alloy films coated on metal materials have been reported as surface-treated metal materials with excellent durability, antibacterial properties, and algae-proof properties (patents) Reference 8)
  • a touch panel that has a much higher antibacterial effect than the antibacterial members shown above, but both the base metal and the Ni-P film as the surface coating layer are light-shielding and require transparency. There is a problem that it cannot be used as an antibacterial agent.
  • the present invention has been made in view of such problems, and an object thereof is to provide an antibacterial member having both excellent transparency and antibacterial properties.
  • the antibacterial member according to one aspect of the present invention is a gas phase formed on a transparent substrate made of at least one selected from Ni, Ni—P and Ni—Cr and having a thickness of 1 nm to 10 nm. It is formed by the method.
  • Ni-based alloy coatings which are generally considered to be limited to metal members, and coating them with a vapor phase method within a specific thickness range, maintaining antibacterial properties while maintaining adhesion as a coating It has been found that transparency can be secured while maintaining the property and soundness, and the present invention has been achieved.
  • the antibacterial member of the present invention is obtained by coating a Ni-based film on a transparent substrate, but a Ni-based film having high antibacterial properties as shown in Patent Document 8 is usually coated by electroplating or electroless plating. Therefore, it has been generally considered difficult to cover a transparent member such as glass or transparent resin. Further, even if coating is possible, it has been considered that the Ni film is opaque and it is difficult to maintain transparency.
  • the present inventors can coat on a transparent member such as glass or transparent resin when coating by a vapor phase method, particularly sputtering method, in forming a Ni-based film, and It has been found that transparency and antibacterial properties can both be achieved by setting the film thickness in the range of 1 nm to 10 nm.
  • the antibacterial member according to the present embodiment is formed by forming a film of at least one selected from Ni, Ni—P and Ni—Cr on a transparent substrate and having a thickness of 1 nm to 10 nm by a vapor phase method. It is characterized by. According to the present invention, it is considered that an antibacterial member having both excellent transparency and antibacterial properties can be provided.
  • the film is formed by at least one selected from Ni, Ni—P, and Ni—Cr.
  • Ni—P can be used as an antibacterial film without sticking to the P content in the film, which is limited to a range of 1 to 10%.
  • the amount of hydrogen in the film needs to be 0.005% or less by mass. It has been pointed out that cracking occurs. However, as long as coating is performed by the vapor phase method of the present embodiment, the film is further reduced because the film stress is reduced by having a thin film of 10 nm or less, and the film structure is unique to the vapor phase method. Even if it contains a lot of hydrogen, the problem of cracking of the film does not occur. On the other hand, from the viewpoint of productivity, since the restriction on the degree of vacuum before moving to film formation can be relaxed, a film containing a hydrogen content exceeding 0.005% (mass%) is more preferable.
  • the film when it contains hydrogen, in order to further enhance antibacterial properties, it is preferably 0.005% or more, and the upper limit is not particularly limited, but 1% or less from the viewpoint of securing the toughness of the film. It is preferable that
  • a sputtering method As the vapor phase method, it is particularly preferable to use a sputtering method. More specifically, for example, a sputtering method using a plasma CVD apparatus disclosed in Japanese Patent Application Laid-Open No. 2008-196001, a continuous film formation apparatus disclosed in Japanese Patent Application Laid-Open No. 2010-265527, etc. Ni-based film formation can be formed.
  • the coating is at least one selected from Ni, Ni—P, and Ni—Cr, and these coatings can exhibit very excellent antibacterial properties.
  • the P content in the Ni—P is not limited, but it is usually 2% or more, preferably 5% or more. This is from the viewpoint of simultaneously developing antibacterial, fungicidal and anti-algal properties. Moreover, although it does not specifically limit about an upper limit, it is 20% or less from a viewpoint of an alga-proof property, Preferably it is 10% or less.
  • the Cr content in the Ni—Cr is not limited, but it is usually 1% or more, preferably 10% or more. This is from the viewpoint of the electrochemical stability of the film. Moreover, although it does not specifically limit about an upper limit, From a viewpoint of the toughness of a film
  • the film thickness is 1 nm or more and 10 nm or less. If it is less than 1 nm, the antibacterial properties may be deteriorated. On the other hand, when the film thickness exceeds 10 nm, the transparency tends to decrease.
  • a more preferable film thickness is 1 nm or more and 5 nm or less, and further 1 nm or more and 3 nm or less. By adjusting to such a film thickness, it is thought that the antibacterial member excellent in the balance of transparency and antibacterial property can be obtained.
  • the hydrogen content in the film was limited to the range of 0.00001% to 0.005%, it contains 0.005% (50 ppm) or more of hydrogen. But antibacterial properties are not reduced. Antibacterial properties increase as the amount of hydrogen in the film increases, and from the viewpoint of antibacterial properties, it is considered that more hydrogen is preferable. However, the reason why the amount of hydrogen in the film is defined as 0.005% (50 ppm) or less in the prior art is that when this value is exceeded, the mechanical properties (toughness) of the plating film deteriorate. In short, it is considered that the film is easily broken by hydrogen embrittlement. On the other hand, the adverse effect of hydrogen on the deterioration of mechanical properties (toughness) decreases as the film thickness decreases. Therefore, in this embodiment, when the film thickness is in the range of 1 to 10 nm, it is considered that the antibacterial property is further improved without being affected by the decrease in film toughness due to hydrogen.
  • glass having transparency, sheet-like film, quartz, oxide crystal, transparent resin, and the like can be applied and are not limited at all, but are actually applied.
  • a large glass plate or a long plastic film (sheet-like film) is preferably used.
  • the plastic film is not particularly limited.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PC polycarbonate
  • CO cyclic olefin
  • CO cyclic olefin
  • PI polyimide
  • PS polystyrene
  • the antibacterial member of the present embodiment using a plastic film as a base material can be used as a transparent packaging material for packaging foods and medicines, and can improve hygiene.
  • the antibacterial member of this embodiment can also be applied to such a greenhouse or glass house.
  • the antibacterial member of this embodiment can also be applied to the inner surface of glass. That is, by applying the antibacterial member of the present embodiment to the surface of the insulating air layer side of the glass sandwiching an insulating air layer for the purpose of heat insulation, the antibacterial property is imparted, and the insulating air of the glass is used for a long time. It is possible to suppress the occurrence of spots (due to the growth of fungi and fungi) generated on the layer side surface.
  • the antibacterial member according to one aspect of the present invention is a gas phase formed on a transparent substrate made of at least one selected from Ni, Ni—P and Ni—Cr and having a thickness of 1 nm to 10 nm. It is formed by the method. By having such a configuration, a member having excellent antibacterial properties and transparency can be provided.
  • the transparent substrate is preferably a sheet-like film or a glass plate. Thereby, it is considered that a member more suitable for actual application can be provided.
  • the gas phase method is preferably a sputtering method.
  • the coating is preferably a coating made of Ni—Cr.
  • the Cr content with respect to the Ni—Cr film is preferably 20% or more. Thereby, it is considered that the above effect can be obtained more reliably.
  • the hydrogen content in the film is 0.005% by mass or more in order to develop an antibacterial action when placed on an extremely thin film of 10 nm or less. Even if the elemental content is 0.005% by mass or more, according to the present invention, a film can be formed and an antibacterial property equal to or higher than that can be expressed.
  • the antibacterial member exhibits an excellent effect when used as a packaging material, a greenhouse, or a display.
  • Example 1 In a 0.3 Pa Ar atmosphere, a sputtering method (device name: in-line sputtering device for R & D, manufactured by Kobe Steel Co., Ltd.) was used to produce a PEN film (raw material for the film to be sputtered). A Ni-P (P content 5%) coating was applied to a thickness of 3 nm on a T65 DuPont Q65FA (product name), thickness 100 ⁇ m).
  • the target material a target material obtained by electroless Ni-P plating on a copper plate is used, and hydrogen is not particularly added to the film.
  • the pressure in the chamber before film formation was at a level of 2 ⁇ 10 ⁇ 4 Pa.
  • the film thickness was obtained from a calculated value from the film formation speed obtained by calculating the film formation speed by performing a coating of about 200 nm in advance.
  • the film thicknesses in the following examples and comparative examples are calculated by this method.
  • the hydrogen content of the film was about 0.001%.
  • the hydrogen content was determined by applying a 200 nm thick film on a glass substrate formed under the same conditions to an atmospheric pressure ionization mass spectrometer (API-MS, literature by Iwata et al .: Kobe Steel Technical Report / vol. 47, No. 1, p.24, analyzed in accordance with Apr. 1997) and a calibration curve of both were prepared using the hydrogen analysis result by GDOES and the GDOED analysis result of the film of Comparative Example 1 described later. By comparison, it was estimated to be about 0.001%.
  • the hydrogen content in the following examples and comparative examples is also measured in the same manner. The reason why the film thickness was set to 200 nm in the hydrogen content measurement was that the film thickness was 3 nm and the effective analysis could not be performed.
  • Example 2 Except for adding 0.1 Pa of H 2 to 0.3 Pa of Ar, using the target material by the sputtering method in the same manner as in Example 1, 3 nm Ni—P (P content) on the PEN film 5%) Coating was performed to obtain an antibacterial member.
  • the resulting coating had a hydrogen content of about 0.001%. Although much H 2 was added to the atmosphere, it was found that there was no change in the amount of hydrogen contained in the resulting film.
  • Example 3 As in Example 1, except that Ni—P (P content 2%) containing 0.001% hydrogen was used as the target material and the Ni—P (P content 2%) film was coated. To obtain an antibacterial member.
  • Example 4 An antibacterial member was obtained in the same manner as in Example 1 except that a Ni—Cr (20%) alloy was used as a target material and the Ni—Cr (20%) alloy film was coated. The resulting coating had a hydrogen content of about 0.001%.
  • Example 5 An antibacterial member was obtained in the same manner as in Example 1 except that Ni was used as a target material and the Ni film was coated.
  • Example 6 An antibacterial member was obtained in the same manner as in Example 1 except that the transparent substrate was changed to a glass substrate (“MICRO SLIDE GLASS S9111” manufactured by Matsunami Glass Co., Ltd., thickness 0.8 to 1.0 mm).
  • MICRO SLIDE GLASS S9111 manufactured by Matsunami Glass Co., Ltd., thickness 0.8 to 1.0 mm.
  • Example 7 Antibacterial member in the same manner as in Example 6 except that the degassing treatment in the chamber of the glass substrate and the apparatus was performed for 1 to 2 hours, and a film was formed in a chamber atmosphere (high vacuum state) of 10 ⁇ 5 Pa. Got. The resulting coating had a hydrogen content of about 0.0005%.
  • Example 8 An antibacterial member was obtained in the same manner as in Example 1 except that the film was continuously formed on the PEN film using a roll coater. By using a roll coater, the film was continuously supplied to the film formation region, so that water vapor was brought in, and the chamber atmosphere before film formation was on the order of 10 ⁇ 3 Pa (low vacuum state). A 3 nm film was formed by adjusting the film transport speed. The resulting coating had a hydrogen content of about 0.007%. There were no cracks in the film.
  • Example 9 An antibacterial member was obtained in the same manner as in Example 8 except that Ni-P (P content 2%) was used as a target material and the Ni-P (P content 2%) film was coated. .
  • Example 10 An antibacterial member was obtained in the same manner as in Example 8 except that a Ni—Cr (20%) alloy was used as a target material and the Ni—Cr (20%) alloy film was coated.
  • Example 11 to 13 An antibacterial member was obtained in the same manner as in Example 1 except that the film formation time was adjusted and the thickness of the film was changed as shown in Table 1 below.
  • Example 14 to 18 An antibacterial member was obtained in the same manner as in Example 4 except that the film formation time was adjusted and the thickness of the film was changed as shown in Table 1 below.
  • Comparative Example 1 As an antibacterial standard, a sample was prepared by the method described in Patent Document 8 (Japanese Patent No. 3902329). Specifically, an antibacterial member was obtained by applying electroplating of about 3 ⁇ m of Ni—P (2%) on a SUS304 stainless steel substrate. The obtained plating film had a hydrogen content of 0.001%.
  • Comparative Example 2 Using the same method as in Comparative Example 1, an attempt was made to form a film on a transparent PEN film, but good coating could not be achieved.
  • Comparative Example 3 Using the same method as in Comparative Example 1, an attempt was made to form a film on a transparent glass substrate, but good coating could not be achieved.
  • Example 4 As an antibacterial standard, a 0.1 mm thick PEN substrate used as a transparent substrate in Example 1 was evaluated as a plastic film without a film.
  • the antibacterial property was evaluated based on JISZ2801 method by inoculating 1.8 to 2.8 ⁇ 10E5 Staphylococcus aureus, counting the number of viable cells after 24 hours, and evaluating according to the following criteria. ⁇ Viable count increases, ⁇ The viable count is 10% to 100% ⁇ The viable count is 1% to 10% ⁇ Viable count is 0.1% to 1% ⁇ The viable count is less than 0.1%
  • Transparency evaluation The evaluation of transparency was performed by aligning the coated substrate with the uncoated transparent substrate, and judging the transparency on the white paper surface on which the characters were printed and the visibility of the characters on the background.
  • the evaluation criteria are as follows: ⁇ Transparency that is indistinguishable visually from transparent substrates. ⁇ Although it can be recognized as transparent, some coloring is seen when compared with an untreated substrate. ⁇ Clear coloring is seen, but background characters are visible. ⁇ The background text is not visible.
  • Comparative Examples 1 to 3 in which the film was formed by electroplating, it was observed that transparency could not be secured and coating could not be performed. Further, in Comparative Examples 5 to 8 in which a film is formed using a vapor phase method, if the film thickness is too thin, antibacterial properties cannot be obtained (Comparative Example 5), and conversely, if it is too thick, transparency cannot be obtained. (Comparative Examples 6 to 8) was also confirmed.
  • the present invention provides an excellent antibacterial effect without intentionally controlling the amount of hydrogen as in the antibacterial member using a conventional Ni-based alloy film. It was found to show sex.
  • the film (Examples 1 and 3-7) in which the hydrogen content is equivalent to that of the prior art (Patent Document 8) and the film (Example 8) in which the hydrogen content is higher than that of the conventional technique (Example 8) have the same transparency and antibacterial properties.
  • antibacterial members containing more than 0.005% hydrogen are more antibacterial and produced. From the viewpoint of sex.
  • the knowledge of the prior art the above-mentioned Patent Document 8 indicated that the film became brittle, but in this test, there were no problems such as cracks in the film.
  • a film with a thickness of about 0.5 nm averages about one or two atoms. Since it is too thin to form a uniform continuous film, the transparency is good, but it is not desirable because it is highly possible that the antibacterial property cannot be sufficiently exhibited. Therefore, the thickness of the film is considered to be 1 nm or more.
  • the present invention has wide industrial applicability in the technical field of antibacterial members.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Toxicology (AREA)
  • Physical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

 本発明は、透明基材上に、Ni、Ni-PおよびNi-Crから選択される少なくとも1つからなり、厚みが1nm~10nmである皮膜を気相法で形成してなることを特徴とする抗菌性部材に関する。

Description

抗菌性部材
 本発明は抗菌性部材、特に抗菌性および透明性に優れた部材に関する。
 近年、食品加工業界や医療業界を始めとして、生活必需品に至るまで、様々な用途で衛生上の観点から細菌やカビなどの生育を阻害する目的で、抗菌性や防かび性を付与した金属材料の採用が検討されている。
 しかし、最近ではスマートホンやコンピュータ用ディスプレイ等様々な場面でタッチ式ディスプレイに直接触れる機会があり、それらディスプレイに触れることによる衛生面が問題となる場合も多い。従来の抗菌性金属材料では、透明性が必要とされるタッチパネルに適用することができなかった。
 これに対し、透明性と抗菌性を兼ね備えた部材としてこれまでに報告されているものを以下に挙げる。
 まず、透明な樹脂の内部に有機系の抗菌剤を混合した部材(特許文献1)またはガラス材料(有機ケイ素化合物)に抗菌性金属化合物(Ag)を添加して撹拌・焼成した抗菌性ガラス微小球(特許文献2)のように、透明な樹脂やガラスの材料に抗菌剤を分散させたものが知られている。
 次に、基材層の少なくとも一方の表層に、無機抗菌剤(銀を代表とする金属の錯体などをゼオライトや多孔質のシリカなどに担持させたもの)が含有された主としてポリプロピレンからなる層が積層された抗菌性ポリプロピレンフィルムも報告されている(特許文献3)。
 また、基材フィルム上に、厚さが0.05~3μmであるバインダー樹脂と抗菌剤を含有する抗菌層を設けた抗菌フィルムであって、抗菌性金属イオンを含有するアルミノ珪酸塩の皮膜をシリカゲルに含有させた抗菌剤であることを特徴とする抗菌フイルム(特許文献4)や、ガラス表面にゾルゲル法で抗菌性金属(銀)イオンを含む皮膜を形成した抗菌性ガラス(特許文献5)もある。
 さらに、高分子フィルムと、その少なくとも1面上に、金属薄膜または金属酸化物薄膜を、さらに酸化チタン薄膜を順次積層してなることを特徴とする酸化チタン蒸着フィルム(特許文献6)や、プラスチックフィルム上に、珪素酸化物及びまたはアルミニウム酸化物からなる薄膜層、及び光触媒層を順次積層してなる光触媒フィルム(特許文献7)など、透明な樹脂やガラスの表面に光触媒層を形成した抗菌部材も知られている。
 しかしながら、上述した先行技術にはそれぞれ以下の問題があると考えられる。
 特許文献1および2記載の方法で作成した抗菌部材は、効果が十分ではないことに加え、抗菌剤を部材全体に分散させているので、機能を発現している抗菌剤は配合したもののごく一部である。
 また、特許文献3記載の方法で作成した抗菌部材は、抗菌効果が十分ではない。加えて、一旦抗菌剤を分散した表面層を厚く形成するため、機能する抗菌剤の割合は小さい。
 特許文献4および5記載の方法で作成した抗菌部材は、抗菌効果が十分ではない。さらに、特許文献6または7に開示されている光触媒層を形成した抗菌部材は、光があたらない環境下では抗菌性を発現しないという問題がある。
 抗菌性に優れた抗菌性部材としては、耐久性、抗菌性、防藻性に優れた表面処理金属材料として、Ni-P系合金皮膜を金属材料上に被覆したものが報告されており(特許文献8)、上記に示した抗菌部材よりも遥かに高い抗菌作用があるが、基材たる金属も表面被覆層であるNi-P皮膜もいずれも遮光性であり、透明性を必要とするタッチパネル等の抗菌剤として使用できないという問題がある。
 また、透明性のあるレベルにまで薄膜にすると、抗菌性の作用が弱まるという問題も生じる。
 本発明はこのような課題に鑑みてなされたものであり、優れた透明性と抗菌性を併せ持つ抗菌性部材を提供することを目的とする。
特開平8-199002号公報 特開2006-76854号公報 特開平9-248883号公報 特開2002-36447号公報 特開2001-97735号公報 特開2000-103003号公報 特開2000-225663号公報 特許第3902329号公報
 前記課題を解決するために、本発明者は鋭意検討を重ね、下記構成によって上記課題が解決できることを見出した。
 すなわち、本発明の一局面に係る抗菌性部材は、透明基材上に、Ni、Ni-PおよびNi-Crから選択される少なくとも1つからなり、厚みが1nm~10nmである皮膜を気相法で形成してなることを特徴とする。
 本発明者らは、上記した従来技術における問題を解決するために様々な角度から検討を加えた。そして一般に適用が金属部材に限られると考えられたNi系合金皮膜に着目し、これを特定の厚みの範囲内で気相法により被覆することにより、抗菌性を維持しながら、皮膜としての密着性や健全性も維持しつつ、透明性を確保できることを見出し、本発明を達成するにいたった。
 本発明の抗菌性部材は透明性基材の上にNi系皮膜を被覆したものであるが、上記特許文献8に示すような抗菌性の高いNi系皮膜は通常電気メッキや無電解めっきで被覆するために、ガラスや透明樹脂のような透明部材への被覆は一般的には困難であると考えられてきた。また、仮に被覆が可能であるにしてもNiの皮膜は不透明で透明性を維持するのは困難であると考えられてきた。
 これに対し、本発明者らは、Ni系の皮膜の形成にあたり、気相法、特にスパッタリング法による被覆を行うとガラスや透明樹脂などの透明性部材上への被覆が可能であり、かつ、その膜厚を1nm~10nmの範囲とすることで透明性と抗菌性を両立しうることを見出した。
 以下、本発明に係る抗菌性部材の実施形態について具体的に説明するが、本発明は、これらに限定されるものではない。
 本実施形態に係る抗菌性部材は、透明基材上に、Ni、Ni-PおよびNi-Crから選択される少なくとも1つからなり、厚みが1nm~10nmである皮膜を気相法で形成してなることを特徴とする。本発明によれば、優れた透明性と抗菌性を併せ持つ抗菌性部材を提供することができると考えられる。
 本実施形態において皮膜を形成しているのは、Ni、Ni-PおよびNi-Crから選択される少なくとも1つであるが、これらNi系皮膜の被覆法を真空下で成膜を行う気相法を用いるため、抗菌性発現に影響する皮膜に含有する添加元素に対する含有量の制限範囲を拡大することができる。すなわち、上記特許文献8に例示される従来技術では、必須とされていた皮膜へのPの添加については、行っても行わなくても優れた抗菌性を発現することができる。また、スパッタプロセスを容易にするためにNiを非磁性化するために例えばCr等の元素を添加しても優れた抗菌性を発揮することができる。
 また、従来技術では、1~10%の範囲に限定されていた皮膜中のP含有量にこだわることなく、Ni-Pを抗菌性皮膜として使用することができる。
 さらには、従来技術では、0.00001%~0.005%の範囲に限定されていた皮膜中の水素含有量について、この範囲を超えると、皮膜の靭性が著しく低下して割れが生じやすくなるとともに、また密着性も低下する問題があったためにこの上限があった。しかし、本実施形態ではこの範囲を超えても、成膜することが出来、かつ同等以上の抗菌性が発現することができる。

 すなわち、本実施形態では、気相法で被覆を行うことにより、成膜にあたり意図的な水素添加を行っても、行わなくても、すぐれた抗菌性を発現させることができる。この理由は定かではないが、成膜を行うチャンバー中の残留ガスである水蒸気に含まれる水素が、H単独、あるいはOHの形で皮膜中に取り込まれるためと推定される。

 従来技術による、金属上へNi-P皮膜を形成した抗菌性部材では、皮膜中の水素量は質量で0.005%以下である必要があり、従来技術ではこの範囲を逸脱すると皮膜の靭性が低下し割れが発生すると指摘している。しかし、本実施形態の気相法によって被覆を行う限りにおいては、10nm以下の薄膜としたことで膜応力を低減させるとともに、気相法特有の皮膜組織形態を有するなどのために、皮膜はさらに多くの水素を含有しても皮膜の割れの問題は生じない。逆に、生産性の観点からは、成膜に移る前の真空度の制約をゆるく出来るため、0.005%(質量%)を超える水素量を含有する皮膜の方がより好適である。

 本実施形態において、皮膜が水素を含む場合、抗菌性をさらに高めるために、0.005%以上であることが好ましく、上限は特に制限はされないが、皮膜の靭性確保という観点からは1%以下であることが好ましい。

 気相法としては、特にスパッタリング法を用いることが好ましい。より具体的には、例えば、特開2008-196001号公報に開示されているプラズマCVD装置や、特開2010-265527号公報に開示されている連続成膜装置などを用いて、スパッタリング法によって、Ni系成膜を形成することができる。

 本実施形態において、皮膜はNi、Ni-PおよびNi-Crから選択される少なくとも1つであり、これらの皮膜であれば非常に優れた抗菌性を発揮することができる。なかでも好ましいのは、Ni-Crを用いてスパッタリング法によって皮膜を形成することであり、それにより非常に優れた透明性と抗菌性をあわせて得ることができる。

 皮膜としてNi-Pを用いる場合、該Ni-PにおけるP含有量は、限定はされないが、通常は2%以上、好ましくは5%以上であることが望ましい。抗菌性、防かび性、防藻性を同時に発現させるという観点からである。また、上限については特に限定はされないが、防藻性という観点から20%以下、好ましくは、10%以下である。

 皮膜としてNi-Crを用いる場合、該Ni-CrにおけるCr含有量は、限定はされないが、通常は1%以上、好ましくは10%以上であることが望ましい。皮膜の電気化学的安定性という観点からである。また、上限については特に限定はされないが、皮膜の靭性という観点から50%以下、好ましくは、30%以下である。

 上記皮膜の膜厚は1nm以上、かつ10nm以下である。1nm未満となると抗菌性が劣化するおそれがある。一方で膜厚が10nmを超えると透明性が減少する傾向が強い。より好ましい皮膜の膜厚は、1nm以上、5nm以下、さらには1nm以上、3nm以下である。そのような膜厚に調整することにより、透明性と抗菌性のバランスにより優れた抗菌性部材を得ることができると考えられる。

 なお、従来技術では、皮膜中の水素含有量が0.00001%~0.005%の範囲に限定されていたことについては既に述べているが、0.005%(50ppm)以上の水素を含んでも抗菌性は低下しない。抗菌性は皮膜中の水素量が多ければ多いほど増大し、抗菌性の観点からはむしろ水素が多いほうが好ましいと考えられる。しかし、従来技術において、皮膜中の水素量が0.005%(50ppm)以下と規定されているのは、この値を超えるとめっき皮膜の機械的性質(靭性)が低下するためである。要するに、水素脆化によって、皮膜が割れやすくなるためであると考えられる。一方で、機械的性質(靭性)劣化への水素の悪影響は、皮膜の厚さが薄いほど低減する。よって、本実施形態において、皮膜の膜厚が1~10nm範囲であれば、水素による皮膜靭性低下の影響が受けず、さらに抗菌性が向上すると考えられる。

 本実施形態で用いられる透明基材としては、透明性を有するガラス、シート状フィルム、石英、酸化物結晶、透明性樹脂等が適用可能であり、何ら制限されるものではないが、実際の適用を考慮すると、大型のガラス板や長尺のプラスチックフィルム(シート状フィルム)などが好適に用いられる。

 前記プラスチックフィルムとしては、特に限定はされないが、例えば、透明かつ光学特性に優れるポリエチレンテレフタレート(PET)フィルム、ポリエチレンナフタレート(PEN)フィルム、ポリカーボネイト(PC)、環状オレフィン(CO)フィルム、耐熱性の優れるポリイミド(PI)フィルム、バリア性の優れるポリスチレン(PS)フィルム等を用いることができる。

 本実施形態の抗菌性部材の好適な適用対象としては、例えば、以下のような用途が考えられる。

 スマートホン等のディスプレイ用保護フィルムとして使用することによって、タッチパネルのディスプレイ等に直接触れる際の衛生上の問題が改善される。

 あるいは、プラスチックフィルムを基材とした本実施形態の抗菌部材は、透明な包装材として、食品や薬品の包装に用いることができ、衛生面の改善を図ることができる。

 また、ビニールハウスやガラスハウスによる野菜栽培の分野において使用することも好ましい。特に、緯度の高い地域(例えば、ヨーロッパ)において、ビニールフィルムやガラスの藻などのバクテリアの発生による透明性低下、それによる遮光性低下、さらにそれによるハウス内の温度低下や野菜の光合成低下による野菜の生産性低下が問題となっている。よって、本実施形態の抗菌性部材をこのようなビニールハウスやガラスハウスに適用することもできる。

 また、本実施形態の抗菌性部材をあわせガラスの内表面に適用することもできる。すなわち、断熱を目的とした断熱空気層を間に挟むガラスの断熱空気層側表面へ、本実施形態の抗菌性部材を適用することによって、抗菌性の付与により、長期の使用でガラスの断熱空気層側表面に発生する汚点(菌やカビの繁殖による)の発生を抑制することが可能となる。 
 本明細書は上述したように様々な態様の技術を開示しており、以下のような態様で上述の課題を解決し得る。ただし、本発明は以下の解決方法に限定されず、本明細書に記載した全内容を参酌可能であることは言うまでもない。
 すなわち、本発明の一局面に係る抗菌性部材は、透明基材上に、Ni、Ni-PおよびNi-Crから選択される少なくとも1つからなり、厚みが1nm~10nmである皮膜を気相法で形成してなることを特徴とする。このような構成を有することによって、抗菌性および透明性に優れた部材を提供することができる。
 上述の抗菌性部材において、前記透明基材がシート状フィルムまたはガラス板であることが好ましい。それにより、実際の適用により適した部材を提供することができると考えられる。
 また、上述の抗菌性部材において、前記気相法がスパッタリング法であることが好ましい。それにより非常に優れた透明性と抗菌性をより確実に得ることができると考えられる。
 さらに、上述の抗菌性部材において、前記皮膜がNi-Crからなる皮膜であることが好ましい。それにより上記効果がより確実に得ることができると考えられる。
 また、上述の抗菌性部材において、前記Ni-Cr皮膜に対するCr含有量は20%以上であることが好ましい。それにより上記効果がより確実に得ることができると考えられる。
 また、上述の抗菌性部材において、10nm以下の極薄皮膜に置いて、抗菌性作用を発現させるため、前記皮膜中の水素含有量が0.005質量%以上であることが好ましい。素含有量が0.005質量%以上であっても、本発明によれば、成膜することが出来、かつ同等以上の抗菌性を発現させることができる。
 上記抗菌性部材は、包装材、ビニールハウス、またはディスプレイ用として使用されることにより、優れた効果を発揮する。
 以下に、実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらに限定されるものではない。
 (実施例1)
 0.3PaのAr雰囲気中で、スパッタ法(装置名:R&D向けインライン型スパッタ装置、(株)神戸製鋼所製)により、ターゲット材(スパッタ成膜する皮膜の原料)を用いて、PENフィルム(帝人デュポン社製、Q65FA(製品名)、厚み100μm)上に3nmの厚みでNi-P(P含有量5%)皮膜の被覆を行った。ターゲット材としては、銅板に無電解のNi-Pめっきを施したターゲット材を使用し、特に皮膜中に水素の添加は行っていない。成膜前のチャンバー内圧力は2×10-4Pa水準であった。
 なお、膜厚は、約200nmの被覆を事前に行って成膜速度を算出しておき、その成膜速度からの計算値により求めた。以下の実施例および比較例における膜厚はこの方法で算出している。
 実施例1で得られた抗菌性部材において、皮膜の水素含有量は約0.001%であった。水素含有量は、同一条件で成膜したガラス基板上の200nmの厚みの皮膜を大気圧イオン化質量分析計(API-MS、岩田らによる文献:神戸製鋼技報/vol.47、No.1、p.24、Apr.1997に従って分析)による水素の定量分析結果とGDOESによる水素の分析結果を用いて、双方の検量線を作成し、さらに、後述の比較例1の皮膜のGDOED分析結果との比較により、約0.001%と推定した。以下の実施例および比較例における水素含有量も同様にして計測している。なお、水素含有量測定において皮膜厚みを200nmとしたのは、3nmの膜厚では膜厚が薄く有効な分析ができなかったためである。
 (実施例2)
 0.3PaのArに0.1PaのHを添加した以外は、実施例1と同様の方法で、スパッタ法により、ターゲット材を用いて、PENフィルム上に3nmのNi-P(P含有量5%)皮膜の被覆を行い、抗菌性部材を得た。
 得られた皮膜の水素含有量は約0.001%であった。雰囲気中に多くのHを添加したが、結果として得られた皮膜に含まれる水素量には変化はないことがわかった。
 (実施例3)
 ターゲット材として、水素を0.001%含むNi-P(P含有量2%)を用いて、Ni-P(P含有量2%)皮膜の被覆を行った以外は、実施例1と同様にして抗菌性部材を得た。
 (実施例4)
 ターゲット材として、Ni-Cr(20%)合金を用いて、Ni-Cr(20%)合金皮膜の被覆を行った以外は、実施例1と同様にして抗菌性部材を得た。得られた皮膜の水素含有量は約0.001%であった。
 (実施例5)
 ターゲット材として、Niを用いて、Ni皮膜の被覆を行った以外は、実施例1と同様にして抗菌性部材を得た。
 (実施例6)
 透明基材を、ガラス基板(松浪硝子社製「MICRO SLIDE GLASS S9111」、厚み0.8~1.0mm)に変更した以外は、実施例1と同様にして抗菌性部材を得た。
 (実施例7)
 ガラス基材および装置のチャンバー内の脱ガス処理を1~2時間行い、10-5Pa台のチャンバー雰囲気(高真空状態)で皮膜を形成した以外は、実施例6と同様にして抗菌性部材を得た。得られた皮膜の水素含有量は約0.0005%であった。
 (実施例8)
 ロールコータを用いてPENフィルム上に連続的に成膜した以外は、実施例1と同様にして抗菌性部材を得た。ロールコータを用いることにより、成膜領域に連続的にフィルムが供給されるため水蒸気の持込があり、成膜前のチャンバー雰囲気は10-3Pa台(低真空状態)であった。フィルム搬送速度の調整によって3nmの皮膜を形成した。得られた皮膜の水素含有量は約0.007%であった。皮膜にクラック等の発生は無かった。
 (実施例9)
 ターゲット材として、Ni-P(P含有量2%)を用いて、Ni-P(P含有量2%)皮膜の被覆を行った以外は、実施例8と同様にして抗菌性部材を得た。
 (実施例10)
 ターゲット材として、Ni-Cr(20%)合金を用いて、Ni-Cr(20%)合金皮膜の被覆を行った以外は、実施例8と同様にして抗菌性部材を得た。
 (実施例11~13)
 成膜時間を調整し、皮膜の厚みを下記表1に示すように変更した以外は、実施例1と同様にして抗菌性部材を得た。
 (実施例14~18)
 成膜時間を調整し、皮膜の厚みを下記表1に示すように変更した以外は、実施例4と同様にして抗菌性部材を得た。
 (比較例1)
 抗菌性の基準として、上記特許文献8(特許第3902329号公報)記載の方法によってサンプルを作成した。具体的には、SUS304ステンレス基材上に約3μmのNi-P(2%)の電気めっきを付与することによって抗菌性部材を得た。得られためっき皮膜の水素含有量は0.001%であった。
 (比較例2)
 比較例1と同じ方法を用いて、透明なPENフィルムへ皮膜を形成しようとしたが、良好な被覆ができなかった。
 (比較例3)
 比較例1と同じ方法を用いて、透明なガラス基板へ皮膜を形成しようとしたが、良好な被覆ができなかった。
 (比較例4)
 抗菌性の基準として、皮膜なしのプラスチックフィルムとして、実施例1で透明基材として用いた0.1mm厚みのPEN基材を評価した。
 (比較例5~7)
 成膜時間を調整し、皮膜の厚みを下記表1に示すように変更した以外は、実施例1と同様にして抗菌性部材を得た。
 (比較例8)
 成膜時間を調整し、皮膜の厚みを下記表1に示すように変更した以外は、実施例4と同様にして抗菌性部材を得た。
Figure JPOXMLDOC01-appb-T000001
 (評価)
 上記実施例および比較例で得られたサンプルに対し、以下の評価を行った。
 (抗菌性評価)
 抗菌性の評価は、JISZ2801法に基づいて、黄色ぶどう球菌を1.8~2.8×10E5個植菌し、24時間経過後の生菌数を計数して以下の基準で評価した。
  ×生菌数が増加、
  ▲生菌数が10%~100%
  △生菌数が1%~10%
  ○生菌数が0.1%~1%
  ◎生菌数が0.1%未満
 (透明性評価)
 透明性の評価は、被覆を行った基材を被覆なしの透明性基材と並べ、文字を印字した白い紙面上において、目視での透明性の判断と背景の文字の視認性により評価した。評価の基準は以下の通りである:
  ◎透明性基材と目視上区別がつかない透明性を有する。
  ○透明と認識できるが、未処理の基板と並べ比較すると若干の着色が見られる。
  △明らかな着色が見られるが、背景の文字は視認できる。
  ×背景の文字が視認できない。
 (考察)
 表1の結果から、本発明に関する実施例1~18の抗菌性部材は、透明性と抗菌性の両方において優れていることが示された。
 これに対し、電気めっきにより成膜を行った比較例1~3では、透明性が確保できなかったり、被覆もできない結果も見受けられた。また、気相法を用いて皮膜を形成した比較例5~8においても、皮膜の厚みが薄すぎると抗菌性が得られず(比較例5)、逆に厚すぎると透明性が得られないこと(比較例6~8)も確認された。
 また、実施例1~3、7および8の結果によれば、本発明では、従来のNi系合金皮膜を用いた抗菌性部材のように、意図的に水素量を制御しなくとも優れた抗菌性を示すことがわかった。水素の含有量が、従来技術(上記特許文献8)と同等である皮膜(実施例1、3-7)も、従来より水素含有量が多い皮膜(実施例8)も同様の透明性と抗菌性を示すが、実施例8では実施例1、3-7のような長時間の真空排気が必要でないため、0.005%を超える水素を含有する抗菌性部材の方が、抗菌性と生産性の観点からより好適である。なお、実施例8の抗菌性部材では、従来技術(上記特許文献8)の知見では、皮膜が脆くなるとの指摘があったが、本試験では特に皮膜のクラック等の問題は無かった。
 なお、皮膜を形成する金属原子サイズ(半径が約0.3nmほど)から考えると、0.5nm程度の膜では、平均的に原子1個か2個程度となり、確率的な成膜現象において、均一に連続的な膜を形成するには薄すぎるため、透明性は良好だが、抗菌性を十分に発揮できない可能性が高いため望ましくない。したがって、皮膜の厚みは1nm以上であることが必要と考えられる。
 この出願は、2014年3月13日に出願された日本国特許出願特願2014-050029を基礎とするものであり、その内容は、本願に含まれるものである。
 本発明を表現するために、前述において具体的な実施形態を通して本発明を適切かつ十分に説明したが、当業者であれば前述の実施形態を変更及び/又は改良することは容易になし得ることであると認識すべきである。したがって、当業者が実施する変更形態又は改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態又は当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 本発明は、抗菌性部材の技術分野において、広範な産業上の利用可能性を有する。

Claims (7)

  1.  透明基材上に、Ni、Ni-PおよびNi-Crから選択される少なくとも1つからなり、厚みが1nm~10nmである皮膜を気相法で形成してなる抗菌性部材。
  2.  前記透明基材がシート状フィルムまたはガラス板である、請求項1に記載の抗菌性部材。
  3.  前記気相法がスパッタリング法である、請求項1に記載の抗菌性部材。
  4.  前記皮膜がNi-Crからなる皮膜である、請求項1に記載の抗菌性部材。
  5.  前記Ni-Cr皮膜全量に対するCr含有量が20%以上である、請求項4に記載の抗菌性部材。
  6.  前記皮膜中における水素含有量が0.005質量%以上である、請求項1に記載の抗菌性部材。
  7.  包装材、ビニールハウス、またはディスプレイ用である、請求項1~6のいずれかに記載の抗菌性部材。
PCT/JP2015/051474 2014-03-13 2015-01-21 抗菌性部材 WO2015136986A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580013374.XA CN106068079B (zh) 2014-03-13 2015-01-21 抗菌性构件
KR1020167018355A KR102006528B1 (ko) 2014-03-13 2015-01-21 항균성 부재

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-050029 2014-03-13
JP2014050029A JP6336789B2 (ja) 2014-03-13 2014-03-13 抗菌性部材

Publications (1)

Publication Number Publication Date
WO2015136986A1 true WO2015136986A1 (ja) 2015-09-17

Family

ID=54071440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051474 WO2015136986A1 (ja) 2014-03-13 2015-01-21 抗菌性部材

Country Status (4)

Country Link
JP (1) JP6336789B2 (ja)
KR (1) KR102006528B1 (ja)
CN (1) CN106068079B (ja)
WO (1) WO2015136986A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112462B (zh) * 2018-09-30 2020-08-25 中国科学院宁波材料技术与工程研究所 一种电热抗菌涂层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343592A (ja) * 1998-05-29 1999-12-14 Kobe Steel Ltd 耐久性、抗菌性、防藻性および抗黴性に優れた表面処理金属材料
JPH11349422A (ja) * 1998-06-08 1999-12-21 Toto Ltd 抗菌剤層を有する部材及びその製造方法
JP2003138386A (ja) * 2001-08-21 2003-05-14 Kobe Steel Ltd 抗菌性および/または防藻性に優れた部材、並びにその製造方法
WO2007132919A1 (ja) * 2006-05-17 2007-11-22 Ishida Co., Ltd. 抗菌性積層体
WO2007147842A2 (en) * 2006-06-21 2007-12-27 Agc Flat Glass Europe Sa Substrate with antimicrobial properties and process for the production of an antimicrobial substrate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08199002A (ja) 1995-01-30 1996-08-06 Unitika Ltd 抗菌性樹脂組成物
JPH09248883A (ja) 1996-03-14 1997-09-22 Toray Ind Inc 抗菌性ポリプロピレンフィルム
JP2000103003A (ja) 1998-09-30 2000-04-11 Oji Paper Co Ltd 酸化チタン蒸着フィルム
JP3695965B2 (ja) * 1998-11-06 2005-09-14 株式会社神戸製鋼所 表面処理用抗菌性粉末および抗菌性部材
JP4551516B2 (ja) * 1998-11-06 2010-09-29 株式会社神戸製鋼所 抗菌部材
JP2000225663A (ja) 1999-02-08 2000-08-15 Toyo Ink Mfg Co Ltd 光触媒フィルム
JP2001097735A (ja) 1999-10-01 2001-04-10 Nippon Electric Glass Co Ltd 抗菌性ガラス及びその製造方法
JP2002036447A (ja) 2000-07-24 2002-02-05 Oike Ind Co Ltd 抗菌フイルムおよび抗菌糸
JP2006076854A (ja) 2004-09-10 2006-03-23 Nippon Electric Glass Co Ltd 抗菌性ガラス微小球およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11343592A (ja) * 1998-05-29 1999-12-14 Kobe Steel Ltd 耐久性、抗菌性、防藻性および抗黴性に優れた表面処理金属材料
JPH11349422A (ja) * 1998-06-08 1999-12-21 Toto Ltd 抗菌剤層を有する部材及びその製造方法
JP2003138386A (ja) * 2001-08-21 2003-05-14 Kobe Steel Ltd 抗菌性および/または防藻性に優れた部材、並びにその製造方法
WO2007132919A1 (ja) * 2006-05-17 2007-11-22 Ishida Co., Ltd. 抗菌性積層体
WO2007147842A2 (en) * 2006-06-21 2007-12-27 Agc Flat Glass Europe Sa Substrate with antimicrobial properties and process for the production of an antimicrobial substrate

Also Published As

Publication number Publication date
KR102006528B1 (ko) 2019-08-01
KR20160096166A (ko) 2016-08-12
JP2015174827A (ja) 2015-10-05
CN106068079B (zh) 2019-11-29
JP6336789B2 (ja) 2018-06-06
CN106068079A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
US20150225287A1 (en) Antimicrobial glass articles and methods of making and using same
MX364186B (es) Substrato proporcionado con una pila que tiene propiedades termicas y que comprende cuatro capas de metal funcionales.
US9859033B2 (en) Conductive film and electronic device having conductive film
MX366324B (es) Sustrato provisto con una estructura de multicapa que tiene propiedades térmicas, en particular para producir un acristalamiento térmico.
WO2012013796A3 (fr) Substrat verrier a coloration interferentielle pour panneau de parement
MX2011008989A (es) Articulo revestido con recubrimiento conductivo transparente depositado por pulverizacion ionica capaz de resistir ambientes rigurosos y metodo para hacer el mismo.
Aissani et al. Magnetron sputtering of transition metal nitride thin films for environmental remediation
MY148663A (en) Glass article having a zinc oxide coating and method for making same
Agrawal et al. ZnO thin film deposition for TCO application in solar cell
JP6336789B2 (ja) 抗菌性部材
Zhu et al. Self‐healing of TiSiN/Ag coatings induced by Ag
KR101487309B1 (ko) 항균기능을 갖는 글라스 및 그 제조방법
MX359624B (es) Método para hacer un artículo revestido que tiene un recubrimiento anti-bacteriano y/o anti-fúngico y un producto resultante.
KR101472356B1 (ko) 항균기능을 갖는 글라스 및 그 제조방법
Depla Chemical stability of sputter deposited silver thin films
JP5776260B2 (ja) 水蒸気バリア膜
WO2012013787A3 (fr) Substrat verrier a coloration interferentielle pour panneau de parement
JP3163574U (ja) タッチパネル用表面保護フィルム
CN103613286A (zh) 一种金色薄膜的制备方法
WO2009098655A3 (en) Antibacterial films obtained by sputtering, and method for conferring antibacterial properties to a substrate
JP5239441B2 (ja) ガスバリアフィルム
JP2010152204A (ja) ディスプレイ基板用部材
JP5510348B2 (ja) 水蒸気バリア性の評価方法
Behrangi et al. An Assessment of the Bactericidal and Virucidal Properties of ZrN-Cu Nanostructured Coatings Deposited by an Industrial PVD System
JP6171419B2 (ja) ガスバリア性フィルムの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167018355

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761263

Country of ref document: EP

Kind code of ref document: A1