WO2015133570A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2015133570A1
WO2015133570A1 PCT/JP2015/056490 JP2015056490W WO2015133570A1 WO 2015133570 A1 WO2015133570 A1 WO 2015133570A1 JP 2015056490 W JP2015056490 W JP 2015056490W WO 2015133570 A1 WO2015133570 A1 WO 2015133570A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement
rotational speed
engagement device
speed difference
control unit
Prior art date
Application number
PCT/JP2015/056490
Other languages
English (en)
French (fr)
Inventor
田島陽一
津田耕平
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to CN201580007970.7A priority Critical patent/CN105980226B/zh
Priority to DE112015000308.8T priority patent/DE112015000308B4/de
Priority to US15/118,282 priority patent/US9919698B2/en
Priority to JP2016506549A priority patent/JP6265261B2/ja
Publication of WO2015133570A1 publication Critical patent/WO2015133570A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/025Clutch slip, i.e. difference between input and output speeds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0644Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/105Output torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/19Improvement of gear change, e.g. synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/72Continous variable transmissions [CVT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the present invention provides a control device that controls a vehicle drive device in which a specific engagement device, a rotating electrical machine, and a transmission device are provided in order from the side of the internal combustion engine on a power transmission path that connects the internal combustion engine and wheels. About.
  • Patent Document 1 Regarding the control device as described above, for example, the technique described in Patent Document 1 below is already known.
  • the upshift control on-upshift control and on-upshift control is performed while maintaining the specific engagement device in the direct engagement state. It is comprised so that it may call.
  • a vehicle drive device in which a specific engagement device, a rotating electrical machine, and a transmission device are provided in order from the side of the internal combustion engine in a power transmission path connecting the internal combustion engine and wheels is a control target
  • the transmission includes a plurality of engagement devices, and a plurality of shift stages having different gear ratios are selectively formed according to the engagement state of the plurality of engagement devices.
  • the engagement and release of the plurality of engagement devices are controlled to switch to a gear stage having a small gear ratio.
  • a shift control unit that performs upshift control is provided, and the shift control unit is an engagement-side engagement that is the engagement device that is engaged to switch the shift stage during the execution of the on-upshift control.
  • the rotation between the pair of engaging members of the device When reducing the speed difference and controls the specific engagement device in the slipping engagement state, it lies in reducing the rotational speed of the rotating electrical machine with respect to the rotational speed of the internal combustion engine.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
  • the specific engagement device when the difference in rotational speed of the engagement side engagement device is reduced, the specific engagement device is controlled to be in the sliding engagement state, so that the internal combustion engine and the rotating electrical machine rotate integrally. Therefore, the inertial system of the internal combustion engine can be separated from the inertial system of the rotating electrical machine. Therefore, the moment of inertia of the rotating member that rotates integrally with the rotating electrical machine can be greatly reduced by the amount of inertia of the internal combustion engine, and the rotational speed of the rotating electrical machine can be reduced to reduce the rotational speed difference of the engagement side engagement device. It is possible to shorten the period for reducing the.
  • the specific engagement device when the rotational speed difference of the engagement side engagement device is reduced, the specific engagement device is controlled to the slip engagement state, and the rotational speed of the internal combustion engine is controlled. Since the rotational speed of the rotating electrical machine is reduced, a reduction in the rotational speed of the internal combustion engine is suppressed. Accordingly, it is possible to suppress the driving force used for reducing the rotational speed of the internal combustion engine, and to reduce the driving force used for reducing the rotational speed of the rotating electrical machine. Also from this point, it is possible to shorten the period during which the rotational speed difference of the engagement side engagement device is reduced.
  • the shift control unit controls both the engagement-side engagement device and the specific engagement device to be in a sliding engagement state when reducing the difference in rotational speed between the engagement-side engagement devices. It is.
  • the output torque of the internal combustion engine is passed through the specific engagement device and the engagement side engagement device that are controlled to be in the sliding engagement state. Therefore, it is possible to suppress a decrease in driving force during the on-upshift control. Further, since the engagement side engagement device is controlled to the slip engagement state during the on-up shift control, the engagement side engagement device generates heat due to friction. However, since the period during which the rotational speed difference of the engagement side engagement device is reduced is shortened and the period during which the engagement side engagement device is in the sliding engagement state is shortened, the heat generation of the engagement side engagement device is reduced. It can suppress and improve durability.
  • the speed change control unit reduces the rotational speed difference of the engagement side engaging device by reducing the rotational speed of the rotating electrical machine by reducing the output torque of the rotating electrical machine. .
  • the rotational speed of the rotating electrical machine can be accurately reduced by the output torque of the rotating electrical machine having good controllability.
  • the driving force transmitted to the wheels via the engagement side engagement device varies. This can be suppressed.
  • the speed change control unit reduces the rotational speed difference of the engagement-side engagement device to a predetermined rotational speed difference, and then determines the rotational speed difference between the pair of engagement members of the specific engagement device. Preferably it is reduced.
  • the driving force of the driving force source can be used in preference to the decrease in the rotational speed difference of the engagement side engagement device over the decrease in the rotational speed difference of the specific engagement device.
  • the period during which the rotational speed difference of the engagement side engagement device is reduced can be shortened.
  • the shift control unit reduces the rotational speed difference of the specific engagement device to zero after reducing the rotational speed difference of the engagement side engagement device to zero.
  • the driving force of the driving force source can be used with the highest priority in reducing the rotational speed difference of the engagement side engaging device.
  • the shift control unit reduces the rotational speed difference of the specific engagement device to zero after reducing the rotational speed difference of the engagement-side engagement device to a value larger than zero to a predetermined target rotational speed difference. It is preferable that the rotational speed difference of the engagement side engagement device is reduced to zero after that.
  • the engagement-side engagement device since the engagement-side engagement device is maintained in the sliding engagement state while the rotation speed difference of the specific engagement device is decreasing, the torque generated with the decrease in the rotation speed difference of the specific engagement device It can suppress that a fluctuation
  • the rotational speed difference of the engagement side engagement device is reduced to the target rotation speed difference, when the engagement side engagement device is controlled to be in the sliding engagement state, the engagement side engagement device generates heat. Can be reduced to zero, but can be greatly reduced by the reduction in the rotational speed difference, and the durability of the engagement-side engagement device can be improved.
  • the shift control unit reduces the rotational speed difference of the engagement side engaging device to the target rotational speed difference, and then the rotational speed difference of the engagement side engaging device becomes the target rotational speed difference. It is preferable to execute the rotational speed control for changing the output torque of the rotating electrical machine so as to be maintained at.
  • the rotational speed control based on the output torque of the rotating electrical machine with good controllability maintains the rotational speed difference of the engagement side engagement device more reliably at the target rotational speed difference, and the slip engagement state is achieved. Can be maintained.
  • the shift control unit changes the rotation speed of the internal combustion engine to the rotation speed of the internal combustion engine before the start of the on-upshift control while increasing the rotation speed difference of the specific engagement device. While maintaining the corresponding rotational speed and reducing the rotational speed difference of the specific engagement device, the rotational speed of the internal combustion engine corresponds to the rotational speed of the internal combustion engine before the start of the on-upshift control. It is preferable that the rotation speed is reduced.
  • the shift control unit decreases the rotational speed difference of the specific engagement device by increasing the transmission torque capacity of the specific engagement device, and responds to an increase in the transmission torque capacity of the specific engagement device. Thus, it is preferable to reduce the output torque of the rotating electrical machine.
  • the rotational speed of the internal combustion engine can be reduced. Further, due to the increase in the transmission torque capacity of the specific engagement device, the transmission torque of the specific engagement device transmitted from the internal combustion engine side to the wheel side increases. Since the output torque of the rotating electrical machine is reduced according to the increase in the transmission torque capacity of the specific engagement device, the increase in the transmission torque of the specific engagement device is offset by the decrease in the output torque of the rotating electrical machine. Therefore, it can suppress that the torque transmitted to the wheel side via the engagement side engaging device which became the direct connection engagement state fluctuates.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle drive device 1 and a control device 30 according to the present embodiment.
  • the solid line indicates the driving force transmission path
  • the broken line indicates the hydraulic oil supply path
  • the alternate long and short dash line indicates the signal transmission path.
  • the vehicle drive device 1 is provided with a specific engagement device SSC, a rotating electrical machine MG, and a transmission device TM in order from the internal combustion engine ENG side in a power transmission path 2 that connects the internal combustion engine ENG and the wheels W. .
  • the specific engagement device SSC is in a state where the internal combustion engine ENG and the rotating electrical machine MG are selectively connected or separated depending on the engagement state.
  • the transmission TM includes a plurality of engagement devices C1, B1,..., And a plurality of shift stages having different gear ratios are selected according to the engagement state of the plurality of engagement devices C1, B1,. Formed.
  • the hybrid vehicle includes a control device 30 that controls the vehicle drive device 1.
  • the control device 30 according to the present embodiment includes a rotating electrical machine control unit 32 that controls the rotating electrical machine MG, a power transmission control unit 33 that controls the transmission TM and the specific engagement device SSC, and these control devices. And a vehicle control unit 34 that integrally controls the vehicle drive device 1.
  • the hybrid vehicle is also provided with an internal combustion engine control device 31 that controls the internal combustion engine ENG.
  • the control device 30 includes functional units such as a shift control unit 43.
  • the shift control unit 43 controls the engagement and disengagement of the plurality of engagement devices C1, B1,..., And performs shift control for switching the shift speed formed in the transmission device TM.
  • the shift control unit 43 according to the present embodiment has a plurality of engagement devices C1, B1,... From the state in which the specific engagement device SSC transmits torque in the forward acceleration direction to the wheels W in the direct connection engagement state. On-up shift control for controlling engagement and disengagement to switch to a gear position having a small gear ratio is executed. In such a configuration, the shift control unit 43 is between the pair of engagement members of the engagement-side engagement device that is an engagement device that is engaged for shifting the gear position during the on-up shift control.
  • Specific engagement slip control for controlling the specific engagement device SSC to the slip engagement state and reducing the rotation speed of the rotating electrical machine MG relative to the rotation speed of the internal combustion engine ENG when the rotation speed difference ⁇ W1 is reduced. It is characterized in that it is performed.
  • the vehicle drive device 1 and the control device 30 according to the present embodiment will be described in detail.
  • the hybrid vehicle includes an internal combustion engine ENG and a rotating electrical machine MG as drive power sources of the vehicle, and a parallel hybrid vehicle in which the internal combustion engine ENG and the rotating electrical machine MG are connected in series. It has become.
  • the hybrid vehicle includes a transmission TM, and the transmission TM shifts the rotational speed of the internal combustion engine ENG and the rotating electrical machine MG transmitted to the input shaft I and converts the torque to transmit to the output shaft O. .
  • the internal combustion engine ENG is a heat engine that is driven by the combustion of fuel.
  • various known internal combustion engines such as a gasoline engine and a diesel engine can be used.
  • an internal combustion engine output shaft Eo such as a crankshaft of the internal combustion engine ENG is selectively drive-coupled to an input shaft I that is drive-coupled to the rotating electrical machine MG via a specific engagement device SSC. That is, the internal combustion engine ENG is selectively connected to the rotating electrical machine MG via the specific engagement device SSC that is a friction engagement device.
  • the internal combustion engine output shaft Eo is provided with a damper (not shown), which is configured to attenuate output torque and rotational speed fluctuations caused by intermittent combustion of the internal combustion engine ENG and transmit them to the wheel W side. Yes.
  • the rotating electrical machine MG includes a stator St fixed to a case CS that accommodates the vehicle drive device 1, and a rotor Ro that is rotatably supported radially inward at a position corresponding to the stator ( (See FIG. 3).
  • the rotor Ro of the rotating electrical machine MG is drivingly connected so as to rotate integrally with the input shaft I.
  • the rotating electrical machine MG is electrically connected to a battery as a power storage device via an inverter that performs direct current to alternating current conversion.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. It is possible.
  • the rotating electrical machine MG is powered by receiving power supply from the battery via the inverter, or generates power by the rotational driving force transmitted from the internal combustion engine ENG or the wheel W, and the generated power is transmitted via the inverter. It is stored in the battery.
  • the transmission TM is drivingly connected to the input shaft I to which the driving force source is drivingly connected.
  • the transmission apparatus TM is a stepped automatic transmission apparatus having a plurality of shift stages having different speed ratios.
  • the transmission device TM includes a gear mechanism such as a planetary gear mechanism and a plurality of engagement devices C1, B1,.
  • the transmission TM shifts the rotational speed of the input shaft I at the gear ratio of each gear, converts the torque, and transmits the torque to the output shaft O.
  • Torque transmitted from the transmission TM to the output shaft O is distributed and transmitted to the left and right axles AX via the output differential gear unit DF, and is transmitted to the wheels W that are drivingly connected to the respective axles AX. .
  • the gear ratio is the ratio of the rotational speed of the input shaft I to the rotational speed of the output shaft O when each gear stage is formed in the transmission apparatus TM.
  • the rotational speed of the input shaft I is defined as the output shaft.
  • the value divided by the rotation speed of O That is, the rotational speed obtained by dividing the rotational speed of the input shaft I by the gear ratio becomes the rotational speed of the output shaft O.
  • torque obtained by multiplying the torque transmitted from the input shaft I to the transmission device TM by the transmission ratio becomes the torque transmitted from the transmission device TM to the output shaft O.
  • the transmission apparatus TM has six speeds (first speed 1st, second speed 2nd, third speed 3rd, and fourth speed) having different speed ratios (reduction ratios). 4th, 5th stage 5th, and 6th stage 6th) as forward stages.
  • the transmission TM includes a gear mechanism including a first planetary gear mechanism PG1 and a second planetary gear mechanism PG2, and six engagement devices C1, C2, C3, B1, B2, OWC.
  • the rotation state of each rotation element of the first planetary gear mechanism PG1 and the second planetary gear mechanism PG2 is switched.
  • the transmission device TM includes a reverse gear Rev in addition to the above six gears.
  • “ ⁇ ” indicates that each engaging device is in an engaged state
  • “no mark” indicates that each engaging device is in a released state
  • “( ⁇ )” indicates that the engagement device is brought into an engaged state, for example, when engine braking is performed.
  • “ ⁇ ” indicates that when it rotates in one direction, it is in a released state, and when it rotates in the other direction, it is in an engaged state.
  • the first stage (1st) is formed by engaging the first clutch C1 and the one-way clutch OWC.
  • the first stage is formed by engaging the first clutch C1 and the second brake B2.
  • the second stage (2nd) is formed by engaging the first clutch C1 and the first brake B1.
  • the third stage (3rd) is formed by engaging the first clutch C1 and the third clutch C3.
  • the fourth stage (4th) is formed by engaging the first clutch C1 and the second clutch C2.
  • the fifth stage (5th) is formed by engaging the second clutch C2 and the third clutch C3.
  • the sixth stage (6th) is formed by engaging the second clutch C2 and the first brake B1.
  • the reverse speed (Rev) is formed by engaging the third clutch C3 and the second brake B2.
  • Each of these shift speeds is in the descending order of the gear ratio (reduction ratio) between the input shaft I (internal combustion engine E) and the output shaft O. 5th and 6th stages.
  • the first planetary gear mechanism PG1 is a single pinion type having three rotating elements: a carrier CA1 that supports a plurality of pinion gears P1, and a sun gear S1 and a ring gear R1 that respectively mesh with the pinion gears P1. It is a planetary gear mechanism.
  • the second planetary gear mechanism PG2 includes a first sun gear S2 and a second sun gear S3, a ring gear R2, a long pinion gear P2 that meshes with both the first sun gear S2 and the ring gear R2, and the long pinion gear P2 and the second sun gear.
  • It is a Ravigneaux type planetary gear mechanism having four rotating elements, that is, a common carrier CA2 that supports a short pinion gear P3 meshing with S3.
  • the sun gear S1 of the first planetary gear mechanism PG1 is fixed to a case CS as a non-rotating member.
  • the carrier CA1 is drivingly connected so as to selectively rotate integrally with the second sun gear S3 of the second planetary gear mechanism PG2 by the third clutch C3, and the first sun gear of the second planetary gear mechanism PG2 by the first clutch C1. It is drive-coupled so as to selectively rotate integrally with S2, and is selectively fixed to the case CS by the first brake B1.
  • the ring gear R1 is drivingly connected so as to rotate integrally with the input shaft I.
  • the first sun gear S2 of the second planetary gear mechanism PG2 is drivingly connected to the carrier CA1 of the first planetary gear mechanism PG1 so as to selectively rotate integrally with the first clutch C1.
  • the carrier CA2 is drivingly connected so as to selectively rotate integrally with the input shaft I by the second clutch C2, and is selectively fixed to the case CS as a non-rotating member by the second brake B2 or the one-way clutch OWC. .
  • the one-way clutch OWC selectively fixes the carrier CA2 to the case CS by preventing only rotation in one direction.
  • the ring gear R2 is drivingly connected so as to rotate integrally with the output shaft O.
  • the second sun gear S3 is drivingly connected so as to selectively rotate integrally with the carrier CA1 of the first planetary gear mechanism PG1 by the third clutch C3, and is selectively fixed to the case CS by the first brake B1.
  • the plurality of engagement devices C1, C2, C3, B1, and B2 other than the one-way clutch OWC included in the transmission device TM are all friction engagement devices. Specifically, these are constituted by a multi-plate clutch or a multi-plate brake operated by hydraulic pressure. These engagement devices C1, C2, C3, B1, and B2 are controlled in their engagement states by the hydraulic pressure supplied from the hydraulic control device PC.
  • the specific engagement device SSC is also a friction engagement device.
  • the friction engagement device transmits torque between the engagement members by friction between the pair of engagement members.
  • torque slip torque
  • torque slip torque
  • the friction engagement device acts between the engagement members of the friction engagement device by static friction up to the size of the transmission torque capacity. Torque is transmitted.
  • the transmission torque capacity is the maximum torque that the friction engagement device can transmit by friction. The magnitude of the transmission torque capacity changes in proportion to the engagement pressure of the friction engagement device.
  • the engagement pressure is a pressure that presses the input side engagement member (friction plate) and the output side engagement member (friction plate) against each other.
  • the engagement pressure changes in proportion to the magnitude of the supplied hydraulic pressure. That is, in this embodiment, the magnitude of the transmission torque capacity changes in proportion to the magnitude of the hydraulic pressure supplied to the friction engagement device.
  • Each friction engagement device is provided with a return spring and is urged to the release side by the reaction force of the spring.
  • a transmission torque capacity starts to be generated in each friction engagement device, and each friction engagement device is released from the released state. Change to engaged state.
  • the hydraulic pressure at which this transmission torque capacity begins to occur is called the stroke end pressure.
  • Each friction engagement device is configured such that, after the supplied hydraulic pressure exceeds the stroke end pressure, the transmission torque capacity increases in proportion to the increase in the hydraulic pressure.
  • the friction engagement device may not be provided with a return spring, and may be configured to be controlled by a differential pressure of the hydraulic pressure applied to both sides of the piston of the hydraulic cylinder.
  • the engagement state is a state in which a transmission torque capacity is generated in the engagement device, and includes a slip engagement state and a direct engagement state.
  • the released state is a state where no transmission torque capacity is generated in the engagement device.
  • the slip engagement state is an engagement state in which there is a difference in rotational speed (slip) between the engagement members of the engagement device, and the direct engagement state is the rotation speed between the engagement members of the engagement device.
  • the engaged state has no difference (slip).
  • the non-directly coupled state is an engaged state other than the directly coupled state, and includes a released state and a sliding engaged state.
  • the transmission torque capacity is generated by dragging the engagement members (friction members) even when the command for generating the transmission torque capacity is not issued by the control device 30.
  • the friction members may be in contact with each other, and the transmission torque capacity may be generated by dragging the friction members. Therefore, the “released state” includes a state in which the transmission torque capacity is generated by dragging between the friction members when the control device 30 does not issue a command to generate the transmission torque capacity to the friction engagement device.
  • the hydraulic control system of the vehicle drive device 1 is a hydraulic control device for adjusting the hydraulic pressure of hydraulic fluid supplied from a hydraulic pump driven by a vehicle driving force source or a dedicated motor to a predetermined pressure.
  • a PC is provided.
  • the hydraulic control device PC includes hydraulic control valves such as a plurality of linear solenoid valves for adjusting the hydraulic pressure supplied to the engagement devices C1, B1,.
  • the hydraulic control valve adjusts the opening degree of the valve according to the signal value of the hydraulic pressure command supplied from the control device 30, thereby supplying the hydraulic fluid corresponding to the signal value to each of the engagement devices C 1, B 1. ⁇ Supply to SSC.
  • the signal value supplied from the control device 30 to each linear solenoid valve is a current value.
  • the hydraulic pressure output from each linear solenoid valve is basically proportional to the current value supplied from the control device 30.
  • the hydraulic control device PC adjusts the opening degree of one or two or more regulating valves based on the hydraulic pressure (signal pressure) output from the linear solenoid valve for regulating hydraulic pressure, and thereby the amount of hydraulic oil drained from the regulating valve To adjust the hydraulic oil pressure to one or more predetermined pressures.
  • the hydraulic oil adjusted to a predetermined pressure is supplied to a plurality of engagement devices C1, B1,.
  • the control units 32 to 34 and the internal combustion engine control device 31 of the control device 30 include an arithmetic processing unit such as a CPU as a core member, and a RAM (random / random configuration) configured to be able to read and write data from the arithmetic processing unit. (Access memory) and a storage device such as a ROM (Read Only Memory) configured to be able to read data from the arithmetic processing unit.
  • Each functional unit 41 to 45 of the control device 30 is configured by software (program) stored in the ROM or the like of the control device, hardware such as a separately provided arithmetic circuit, or both.
  • the control units 32 to 34 and the internal combustion engine control device 31 of the control device 30 are configured to communicate with each other, share various information such as sensor detection information and control parameters, and perform cooperative control.
  • the functions of the function units 41 to 45 are realized.
  • the vehicle drive device 1 includes sensors such as sensors Se1 to Se3, and electrical signals output from the sensors are input to the control device 30 and the internal combustion engine control device 31.
  • the control device 30 and the internal combustion engine control device 31 calculate detection information of each sensor based on the input electric signal.
  • the input rotation speed sensor Se1 is a sensor for detecting the rotation speed of the input shaft I. Since the rotor Ro of the rotating electrical machine MG is integrally connected to the input shaft I, the rotating electrical machine control unit 32 determines the rotational speed (angular speed) of the rotating electrical machine MG based on the input signal of the input rotational speed sensor Se1. In addition, the rotational speed of the input shaft I is detected.
  • the output rotation speed sensor Se2 is a sensor for detecting the rotation speed of the output shaft O.
  • the power transmission control unit 33 detects the rotational speed (angular speed) of the output shaft O based on the input signal of the output rotational speed sensor Se2. Further, since the rotational speed of the output shaft O is proportional to the vehicle speed, the power transmission control unit 33 calculates the vehicle speed based on the input signal of the output rotational speed sensor Se2.
  • the engine rotation speed sensor Se3 is a sensor for detecting the rotation speed of the internal combustion engine output shaft Eo (internal combustion engine ENG).
  • the internal combustion engine control device 31 detects the rotational speed (angular speed) of the internal combustion engine ENG based on the input signal of the engine rotational speed sensor Se3.
  • Vehicle control unit 34 The vehicle control unit 34 includes an integrated control unit 45.
  • the integrated control unit 45 integrates various torque controls performed on the internal combustion engine ENG, the rotating electrical machine MG, the transmission TM, the specific engagement device SSC, etc., and the engagement control of each engagement device as a whole vehicle. Take control.
  • the integrated control unit 45 is a torque required for driving the wheel W according to the accelerator opening, the vehicle speed, the battery charge amount, and the like, and is transmitted from the input shaft I side to the output shaft O side.
  • the vehicle request torque Trq which is a target driving force, is calculated, and the operation modes of the internal combustion engine ENG and the rotating electrical machine MG are determined.
  • the operation mode includes an electric mode in which only the rotating electrical machine MG is used as a driving force source and a parallel mode in which at least the internal combustion engine ENG is used as a driving force source.
  • the electric mode is determined as the operation mode, and in other cases, that is, when the accelerator opening is large or the battery charge is small, the operation mode is determined.
  • the parallel mode is determined as follows. Then, the integrated control unit 45 requests the internal combustion engine required torque, which is the output torque required for the internal combustion engine ENG, based on the vehicle required torque Trq, the operation mode, the battery charge amount, etc., and the rotating electrical machine MG.
  • the internal combustion engine control device 31 includes an internal combustion engine control unit 41 that controls the operation of the internal combustion engine ENG.
  • the internal combustion engine control unit 41 controls the internal combustion engine ENG to output the internal combustion engine required torque when the internal control engine required torque is commanded from the integrated control unit 45 or the shift control unit 43. Take control.
  • Rotating electrical machine control unit 32 The rotating electrical machine control unit 32 includes a rotating electrical machine control unit 42 that controls the operation of the rotating electrical machine MG.
  • the rotating electrical machine control unit 42 controls the rotating electrical machine MG to output the rotating electrical machine required torque when the rotating electrical machine required torque is commanded from the integrated control unit 45 or the shift control unit 43.
  • the rotating electrical machine control unit 42 controls the output torque of the rotating electrical machine MG by performing on / off control of a plurality of switching elements included in the inverter.
  • the power transmission control unit 33 includes a shift control unit 43 that controls the transmission device TM and a specific engagement control unit 44 that controls the specific engagement device SSC.
  • Specific engagement control unit 44 The specific engagement control unit 44 controls the engagement state of the specific engagement device SSC.
  • the specific engagement control unit 44 causes the hydraulic pressure supplied to the specific engagement device SSC to match the hydraulic command of the specific engagement device SSC commanded from the integrated control unit 45 or the shift control unit 43.
  • the signal value supplied to each linear solenoid valve provided in the hydraulic control device PC is controlled.
  • Shift control unit 43 The shift control unit 43 controls the engagement and disengagement of the plurality of engagement devices C1, B1,..., And performs shift control for switching the shift speed formed in the transmission device TM.
  • the shift control unit 43 determines a target shift stage to be formed in the transmission apparatus TM based on sensor detection information such as the vehicle speed, the accelerator opening, and the shift position. Then, the shift control unit 43 controls the hydraulic pressure supplied to the plurality of engagement devices C1, B1,... Provided in the transmission device TM via the hydraulic control device PC, whereby each engagement device C1, B1... Is engaged or released, and the target gear stage is formed in the transmission apparatus TM.
  • the shift control unit 43 instructs the target hydraulic pressure (hydraulic pressure command) of each engagement device to the hydraulic pressure control device PC, and the hydraulic pressure control device PC determines the hydraulic pressure according to the commanded target hydraulic pressure (hydraulic pressure command). Is supplied to each engaging device.
  • the shift control unit 43 is configured to control the hydraulic pressure supplied to each engagement device by controlling the signal value supplied to each linear solenoid valve provided in the hydraulic control device PC. ing.
  • the shift control unit 43 refers to a shift map stored in a memory (not shown) and determines a target shift stage.
  • the shift map is a map that defines the relationship between the accelerator opening and the vehicle speed and the target shift stage in the transmission apparatus TM.
  • a plurality of upshift lines and a plurality of downshift lines are set in the shift map.
  • the shift control unit 43 Determines to change the gear position by determining a new target gear position in the transmission apparatus TM.
  • the shift control unit 43 may change the target shift stage when there is an upshift request or a downshift request due to a change in the shift lever selection position (shift position) by the driver.
  • downshift means a change from a gear stage having a small gear ratio to a gear stage having a large gear ratio
  • upshift means a change from a gear stage having a high gear ratio to a gear stage having a small gear ratio.
  • the shift control unit 43 controls the hydraulic command of each engagement device C1, B1,... To engage or release each engagement device C1, B1,. To change the gear stage to be formed in the transmission apparatus TM to the target gear stage. At this time, the shift control unit 43 includes a disengagement-side engagement device that is an engagement device that is released for shifting the gear position, and an engagement side that is an engagement device that is engaged for switching the gear position. Set the engagement device. Then, the shift control unit 43 performs a so-called transition shift in which the disengagement-side engagement device is released and the engagement-side engagement device is engaged according to a previously planned shift control sequence.
  • the shift control unit 43 is an engagement that is not common among the plurality of engagement devices that form the gear stage before the shift and the plurality of engagement devices that form the gear stage after the shift.
  • the shift control unit 43 engages an engagement device that is not common among the plurality of engagement devices that form the gear stage after the shift among the plurality of engagement devices that form the gear stage before the gear shift.
  • Set to engagement device For example, when the shift stage before the shift is the second stage 2nd and the shift stage after the shift is the third stage 3rd, as shown in FIG. 4, the first brake B1 is set to the disengagement side engagement device, The third clutch C3 is set as the engagement side engagement device.
  • the engagement-side engagement device is an engagement device that is released before the start of the shift control and is engaged by the shift control.
  • the disengagement side engagement device is an engagement device that is engaged before the start of the shift control and released by the shift control.
  • On-up shift control The speed change control unit 43 is engaged with a plurality of engagement devices C1, B1,... From the state where the specific engagement device SSC is transmitting the torque in the forward acceleration direction to the wheels W in the direct engagement state.
  • On-up shift control is performed in which up-shifting is performed by controlling engagement and disengagement and switching to a gear stage having a small gear ratio.
  • the engagement side engagement device In the on-up shift control performed from the state in which the torque in the forward acceleration direction is transmitted to the wheel W, the engagement side engagement device is controlled to the slip engagement state in the inertia phase of the engagement side engagement device, It is desirable that the driving force of the driving force source be transmitted to the wheel W side.
  • the inertia phase period of the engagement-side engagement device becomes long, the amount of heat generated by the engagement-side engagement device increases, and the durability of the engagement-side engagement device may deteriorate. Therefore, in order to improve the durability of the engagement side engagement device, it is desired to shorten the period of the inertia phase (hereinafter, also simply referred to as inertia phase) of the engagement side engagement device as much as possible.
  • the specific engagement device SSC is maintained in the direct engagement state during the execution of the on-up shift control. Therefore, in the inertia phase, the internal combustion engine ENG rotates integrally with the input shaft I, and the moment of inertia of the rotating member that rotates integrally with the input shaft I increases. In the inertia phase, there is a limit to the magnitude of torque that can be used to reduce the rotation of the input shaft I. Therefore, when the specific engagement device SSC is controlled to be in the direct engagement state as in the comparative example, there is a limit to shorten the period of the inertia phase, and the durability of the engagement side engagement device is improved. There were limits.
  • the inertia phase is controlled during the period from time T03 to time T04.
  • the rotational speed of the input shaft I is decreased from the synchronous rotational speed Wbf before the shift to the synchronous rotational speed Waf after the shift, and the rotational speed difference ⁇ W1 of the engagement side engaging device is decreased to zero.
  • the output torque Tmg of the rotating electrical machine MG is reduced to the minimum torque Tmg_min that can be output by the rotating electrical machine MG.
  • the internal combustion engine ENG rotates integrally with the input shaft I and rotates with the input shaft I as described above. The moment of inertia is increasing. Therefore, in the comparative example, there is a limit to shorten the period of the inertia phase, and there is a limit to improve the durability of the engagement side engagement device.
  • the shift control unit 43 engages for shifting the gear position during the on-up shift control.
  • the specific engagement device SSC is controlled to be in a sliding engagement state, and the rotation speed of the internal combustion engine ENG is controlled.
  • the specific engagement slip control for reducing the rotation speed of the rotating electrical machine MG is performed.
  • the specific engagement device SSC is controlled to be in the sliding engagement state in the inertia phase in which the rotational speed difference ⁇ W1 of the engagement side engagement device is reduced, so that the internal combustion engine ENG and the input shaft I are integrated.
  • the inertial system of the internal combustion engine ENG can be disconnected from the inertial system of the input shaft I. Therefore, the inertia moment of the rotating member that rotates integrally with the input shaft I can be significantly reduced by the amount of inertia moment of the internal combustion engine ENG, and the inertia phase period can be shortened.
  • the specific engagement device SSC is controlled to be in the slip engagement state, and the rotation of the rotating electrical machine MG with respect to the rotation speed of the internal combustion engine ENG. Since the speed is reduced, a reduction in the rotational speed of the internal combustion engine ENG in the inertia phase is suppressed. Therefore, it is possible to suppress the driving force used for decreasing the rotational speed of the internal combustion engine ENG, and it is possible to suppress the driving force used for decreasing the rotational speed of the input shaft I from decreasing. Also from this point, the inertia phase period can be shortened. Accordingly, it is possible to improve the durability of the engagement side engagement device.
  • the shift control unit 43 controls both the engagement side engagement device and the specific engagement device SSC to be in the slip engagement state when reducing the rotational speed difference ⁇ W1 of the engagement side engagement device. It is configured as follows. According to this configuration, in the inertia phase in which the rotational speed difference ⁇ W1 of the engagement side engagement device is reduced, the output torque Ten of the internal combustion engine is applied to the wheel W via the specific engagement device SSC and the engagement side engagement device. Therefore, it is possible to suppress a decrease in driving force during gear shifting.
  • the shift control unit 43 reduces the rotational speed difference ⁇ W1 of the engagement side engagement device to a predetermined rotational speed difference, and then the pair of specific engagement devices SSC.
  • the rotational speed difference ⁇ W2 between the engaging members is reduced.
  • each configuration example will be described.
  • the shift control unit 43 decreases the rotational speed difference ⁇ W1 of the engagement device on the engagement side to zero and then decreases the rotational speed difference ⁇ W2 of the specific engagement device SSC to zero. Configured to decrease. This will be described with reference to the time chart of FIG.
  • the operation mode is determined to be the parallel mode
  • the specific engagement device SSC is controlled to be in the direct engagement state
  • the vehicle required torque Trq is set to be greater than zero
  • the forward acceleration direction is applied to the wheels W.
  • the target gear position is changed, for example, when the vehicle shifts over the upshift line due to an increase in the vehicle speed or when the shift position is changed.
  • the shift control unit 43 performs pre-phase control during the period from time T11 to time T12, and changes the engagement pressures of the disengagement side engagement device and the engagement side engagement device in advance.
  • the speed change control unit 43 decreases the engagement pressure (hydraulic pressure command) of the disengagement side engagement device from the complete engagement pressure to the disengagement side preliminary pressure larger than the direct coupling limit engagement pressure during the period from time T11 to time T12,
  • the engagement pressure (hydraulic pressure command) of the engagement side engagement device is increased from zero to an engagement side preliminary pressure that is smaller than the stroke end pressure by a predetermined pressure.
  • the complete engagement pressure is the maximum engagement pressure (supply oil pressure, set to maintain an engagement state without slipping even if the torque transmitted from the driving force source to each engagement device fluctuates.
  • the direct coupling limit engagement pressure is an engagement pressure (supply hydraulic pressure, hydraulic pressure command) at which the engagement device starts to slide.
  • the shift control unit 43 reduces the engagement pressure (hydraulic pressure command) of the specific engagement device SSC from the complete engagement pressure to the direct coupling limit engagement pressure in order to place the specific engagement device SSC in the sliding engagement state. (Time T11).
  • the shift control unit 43 maintains the engagement pressure (hydraulic pressure command) of the specific engagement device SSC at the direct coupling limit engagement pressure until the inertia phase ends (until time T14).
  • the shift control unit 43 sets the required torque of the internal combustion engine corresponding to the output torque Ten of the internal combustion engine ENG to the transmission torque capacity of the specific engagement device SSC, and realizes the set transmission torque capacity. Is calculated. Note that when the transmission torque capacity of the specific engagement device SSC falls below the output torque Ten of the internal combustion engine ENG, the specific engagement device SSC starts to slip.
  • the shift control unit 43 transmits the calculated hydraulic command of the specific engagement device SSC to the specific engagement control unit 44.
  • the integrated control unit 45 sets the internal combustion engine required torque to a torque corresponding to the vehicle required torque Trq (equal in this example) even during the shift control from time T11 to time T15. Yes.
  • the speed change control unit 43 reduces the rotation speed of the input shaft I with respect to the rotation speed of the internal combustion engine ENG until the rotation speed difference of the specific engagement device SSC becomes equal to or greater than a predetermined determination speed difference.
  • the engagement pressure (hydraulic pressure command) of the combined device SSC may be reduced.
  • the shift control unit 43 controls the torque phase in the period from time T12 to time T13 after the pre-phase. Specifically, the shift control unit 43 gradually increases the engagement pressure (hydraulic pressure command) of the engagement-side engagement device to the engagement pressure corresponding to the vehicle required torque Trq during the period from time T12 to time T13. Then, the engagement side engagement device is brought into the sliding engagement state, and the engagement pressure (hydraulic pressure command) of the release side engagement device is gradually decreased to less than the stroke end pressure to cause the release side engagement device to be in the release state. ing.
  • the torque Ttm transmitted from the input shaft I side to the output shaft O side by the transmission device TM via the engagement-side engagement device in the slip engagement state becomes a torque corresponding to the vehicle request torque Trq.
  • the increased engagement pressure (hydraulic pressure command) of the engagement side engagement device is determined.
  • the shift control unit 43 calculates the transmission torque capacity of the engagement side engagement device by multiplying the vehicle request torque Trq by the gear ratio of the gear acting on the engagement side engagement device.
  • the hydraulic pressure command for realizing the transmitted torque capacity is calculated. Note that the shift control unit 43 calculates a hydraulic pressure command for the engagement-side engagement device so that the engagement-side engagement device transmits torque corresponding to the vehicle request torque Trq continuously during the inertia phase. .
  • the speed change control unit 43 controls the inertia phase in the period from time T13 to time T14 after the torque phase. Specifically, the shift control unit 43 reduces the rotational speed of the input shaft I from the pre-shift synchronous rotational speed Wbf to the post-shift synchronous rotational speed Waf during the period from time T13 to time T14, and engages the engagement side engagement. The rotational speed difference ⁇ W1 of the device is reduced to zero.
  • the post-shift synchronous rotation speed Waf is the rotation speed of the input shaft I in the state where the rotation speed difference (slip) of the engagement side engagement device is eliminated, and the shift control unit 43 rotates the output shaft O.
  • the post-shift synchronous rotation speed Waf is calculated by multiplying the speed by the gear ratio of the post-shift gear stage. Since the rotational speed difference between the rotational speed of the input shaft I (the rotating electrical machine MG) and the post-shift synchronous rotational speed Waf is proportional to the rotational speed difference ⁇ W1 between the pair of engagement members of the engagement side engagement device, the shift control is performed.
  • the unit 43 is configured to determine the rotational speed difference ⁇ W1 of the engagement side engagement device based on the rotational speed difference between the rotational speed of the input shaft I and the post-shift synchronous rotational speed Waf.
  • the rotational speed of the input shaft I corresponds to the rotational speed of the input-side engagement member of the engagement-side engagement device
  • the post-shift synchronous rotation speed Waf is the engagement-side engagement device. This corresponds to the rotational speed of the engagement member on the output side.
  • the synchronous rotation speed Wbf before the shift is a rotation speed of the input shaft I in a state where there is no difference in the rotation speed of the disengagement side engagement device. By multiplying the gear ratio of the gear, the pre-shift synchronous rotation speed Wbf is calculated.
  • the shift control unit 43 reduces the rotational speed of the input shaft I (the rotating electrical machine MG) by reducing the output torque Tmg of the rotating electrical machine MG, so that the rotational speed difference of the engagement side engaging device is reduced. It is comprised so that (DELTA) W1 may be decreased.
  • the shift control unit 43 reduces the rotational speed of the rotating electrical machine MG as fast as possible, so that the rotating electrical machine required torque is the minimum torque that the rotating electrical machine MG can output from the torque determined by the integrated control unit 45. It is lowered by ⁇ T1 to Tmg_min.
  • the shift control unit 43 transmits the reduced rotating electrical machine required torque to the rotating electrical machine control unit 42. In the example shown in FIG.
  • the integrated control unit 45 has determined that the required rotating electrical machine torque is zero, and the amount of decrease ⁇ T1 in the output torque Tmg of the rotating electrical machine MG during the inertia phase is equal to the torque of the minimum torque Tmg_min. It has become.
  • the decrease speed (rotational acceleration) at which the rotation speed of the input shaft I decreases is a value obtained by dividing the moment of inertia of the rotating member that rotates integrally with the input shaft I by the decrease amount ⁇ T1 of the output torque Tmg of the rotating electrical machine MG. become. Since the specific engagement device SSC is controlled to be in a sliding engagement state and the inertial system of the internal combustion engine ENG is disconnected from the inertial system of the input shaft I, the inertia moment of the input shaft I is the comparative example of FIG. Compared to the case, it is significantly lower. Therefore, the magnitude of the decrease speed of the rotation speed of the input shaft I is significantly larger than that in the comparative example of FIG. Therefore, the period required for reducing the rotational speed of the input shaft I from the pre-shift synchronous rotational speed Wbf to the post-shift synchronous rotational speed Waf can be significantly reduced as compared with the comparative example of FIG. .
  • the shift control unit 43 controls the specific engagement device SSC to be in the slip engagement state while reducing the rotational speed difference ⁇ W1 of the engagement side engagement device (from time T13 to time T14), and also at the internal combustion engine ENG.
  • the rotational speed of the rotating electrical machine MG is reduced with respect to the rotational speed of the motor.
  • the rotation speed of the rotating electrical machine MG is reduced with respect to the rotation speed of the internal combustion engine ENG, and therefore the rotation speed difference ⁇ W2 of the specific engagement device SSC is reduced. It has increased. Both the engagement side engagement device and the specific engagement device SSC are controlled to the sliding engagement state.
  • the rotational speed difference ⁇ W2 between the pair of engaging members of the specific engagement device SSC corresponds to the rotational speed difference between the rotational speed of the internal combustion engine ENG and the rotational speed of the input shaft I (the rotating electrical machine MG).
  • the rotational speed of the internal combustion engine ENG corresponds to the rotational speed of the engagement member on the input side of the specific engagement device SSC
  • the rotational speed of the input shaft I is the output of the specific engagement device SSC. This corresponds to the rotational speed of the engaging member on the side.
  • the shift control unit 43 increases the rotational speed of the internal combustion engine ENG while starting the on-upshift control while increasing the rotational speed difference ⁇ W2 of the specific engagement device SSC (from time T13 to time T14). It is configured to maintain a rotational speed corresponding to the rotational speed of the previous internal combustion engine ENG. Specifically, the shift control unit 43 determines that the rotation speed of the internal combustion engine ENG is near the pre-shift synchronous rotation speed Wbf at the start of the inertia phase (time T13) (eg, the pre-shift synchronous rotation speed at the start of the inertia phase).
  • the output torque Ten of the internal combustion engine ENG and the torque Tssc that transmits the specific engagement device SSC are controlled so as to be maintained at 80% to 120% of Wbf. As a result, a change in the rotational speed of the internal combustion engine ENG is suppressed, and is maintained near the pre-shift synchronous rotational speed Wbf.
  • the internal combustion engine required torque is determined to be a torque corresponding to the vehicle required torque Trq (equal in this example) by the integrated control unit 45 as described above.
  • the shift control unit 43 calculates the hydraulic pressure command for the specific engagement device SSC so that the transmission torque capacity of the specific engagement device SSC matches the output torque Ten of the internal combustion engine ENG. Yes.
  • the shift control unit 43 determines that the rotation speed difference ⁇ W1 of the engagement side engagement device (in this embodiment, the rotation speed difference between the rotation speed of the input shaft I and the synchronized rotation speed Waf after shifting) is a predetermined determination speed difference.
  • the engagement pressure (hydraulic pressure command) of the engagement side engagement device is increased from the engagement pressure corresponding to the vehicle required torque Trq to the full engagement pressure, The mating side engagement device is shifted to the direct engagement state.
  • the shift control unit 43 is configured to reduce the rotation speed difference ⁇ W2 of the specific engagement device SSC to zero after reducing the rotation speed difference ⁇ W1 of the engagement side engagement device to zero. (From time T14 to time T15).
  • the shift control unit 43 sets the rotational speed of the internal combustion engine ENG to the rotational speed of the internal combustion engine ENG before the start of the on-upshift control while reducing the rotational speed difference ⁇ W2 of the specific engagement device SSC.
  • the rotational speed is reduced from the rotational speed corresponding to the speed (in this example, the rotational speed in the vicinity of the synchronous rotational speed Wbf before shifting at the start of the inertia phase).
  • the shift control unit 43 increases the transmission torque capacity (engagement pressure) of the specific engagement device SSC, thereby reducing the rotational speed difference ⁇ W2 of the specific engagement device SSC and the transmission torque capacity ( The output torque Tmg of the rotating electrical machine MG is reduced as the engagement pressure increases.
  • the rotational speed of the internal combustion engine ENG decreases.
  • the transmission torque (slip torque) of the specific engagement device SSC transmitted from the internal combustion engine ENG side to the input shaft I side increases.
  • the shift control unit 43 reduces the required rotating electrical machine torque from the torque determined by the integrated control unit 45 (zero in this example) to the minimum torque Tmg_min that can be output by the rotating electrical machine MG.
  • the reduction amount ⁇ T2 of the output torque Tmg of the rotating electrical machine MG is set to the maximum settable amount, and the transmission torque capacity of the specific engagement device SSC is determined from the torque capacity corresponding to the internal combustion engine required torque,
  • the engagement pressure (hydraulic pressure command) of the specific engagement device SSC is increased so as to increase by the magnitude of the decrease amount ⁇ T2.
  • the rotational speed of the internal combustion engine ENG can be reduced as fast as possible while suppressing fluctuations in the torque transmitted to the output shaft O side.
  • the shift control unit 43 determines that the rotation speed difference ⁇ W2 of the specific engagement device SSC (in this embodiment, the rotation speed difference between the rotation speed of the internal combustion engine ENG and the rotation speed of the input shaft I) is equal to or less than a predetermined determination speed difference.
  • the engagement pressure (hydraulic pressure command) of the specific engagement device SSC is increased to the full engagement pressure, and the specific engagement device SSC is shifted to the direct engagement state. Yes.
  • the specific engagement device SSC enters the direct engagement state, the output torque Ten of the internal combustion engine ENG is transmitted to the specific engagement device SSC.
  • the shift control unit 43 determines that the rotational speed difference ⁇ W2 of the specific engagement device SSC is equal to or less than a predetermined determination speed difference (time T15), the shift control unit 43 increases the engagement pressure of the specific engagement device SSC. Accordingly, the control to decrease the output torque Tmg of the rotating electrical machine MG is terminated, and the rotating electrical machine required torque is set to the torque (zero in this example) determined by the integrated control unit 45.
  • shift control unit 43 determines whether or not a condition for starting on-up shift control is satisfied (step # 01).
  • step # 01: Yes the shift control unit 43 sets the specific engagement device SSC to the slip engagement state so that the engagement pressure ( Control for decreasing the hydraulic pressure command is executed (step # 02).
  • step # 02 the shift control unit 43 executes the above-described pre-phase control (step # 03).
  • step # 04 The shift control unit 43 executes the torque phase control described above after the pre-phase control is completed (step # 04).
  • the shift control unit 43 executes the inertia phase control described above after the torque phase control is completed (step # 05). Specifically, the shift control unit 43 controls the specific engagement device SSC to the slip engagement state and reduces the rotation speed of the internal combustion engine ENG when the rotation speed difference ⁇ W1 of the engagement side engagement device is decreased. On the other hand, the rotational speed of the rotating electrical machine MG is reduced.
  • the transmission control unit 43 determines whether or not the rotational speed difference ⁇ W1 of the engagement side engagement device has been reduced to zero (step # 06). When it is determined that the rotational speed difference ⁇ W1 of the engagement side engaging device has decreased to zero (step # 06: Yes), the shift control unit 43 decreases the rotational speed difference ⁇ W2 of the specific engagement device SSC to zero. Control is executed (step # 07). When it is determined that the rotational speed difference ⁇ W2 of the specific engagement device SSC has decreased to zero (step # 08: Yes), the shift control unit 43 ends the on-upshift control process.
  • Second Configuration Example In the second configuration example, the shift control unit 43 reduces the rotation speed difference ⁇ W1 of the engagement side engagement device to a value larger than zero to a predetermined target rotation speed difference ⁇ Wo, and then The rotation speed difference ⁇ W2 of the specific engagement device SSC is reduced to zero, and then the rotation speed difference ⁇ W1 of the engagement side engagement device is reduced to zero. This will be described with reference to the time chart of FIG. The process up to immediately before time T24 in FIG. 8 is the same as that immediately before time T14 in FIG.
  • the shift control unit 43 determines that the rotation speed difference ⁇ W1 of the engagement-side engagement device is equal to or less than the target rotation speed difference ⁇ Wo (time T24), and the rotation speed of the specific engagement device SSC.
  • the decrease of the difference ⁇ W2 has started.
  • the shift control unit 43 decreases the rotational speed difference ⁇ W2 of the specific engagement device SSC to zero (after time T25), and then decreases the rotational speed difference ⁇ W1 of the engagement side engagement device to zero (time T26). ). While the rotation speed difference ⁇ W2 of the specific engagement device SSC is decreasing (from time T24 to time T25), the engagement-side engagement device is maintained in the sliding engagement state, so the rotation speed difference ⁇ W2 of the specific engagement device SSC is decreased.
  • the rotation speed difference ⁇ W1 of the engagement side engagement device is reduced to the target rotation speed difference ⁇ Wo, the heat generation amount per unit time of the engagement side engagement device is reduced to zero as in the first configuration example.
  • the amount of heat generated per unit time of the engagement device is proportional to a value obtained by multiplying the transmission torque of the engagement device and the rotational speed difference of the engagement device.
  • the speed change control unit 43 reduces the rotational speed difference ⁇ W2 of the specific engagement device SSC (from time T24 to time T25).
  • the rotational speed of ENG is the rotational speed corresponding to the rotational speed of internal combustion engine ENG before the start of on-upshift control (in this example, the rotational speed near the synchronous rotational speed Wbf before the shift at the start of the inertia phase (time T23). ).
  • the shift control unit 43 increases the engagement pressure of the specific engagement device SSC, thereby causing the rotational speed difference ⁇ W2 of the specific engagement device SSC.
  • the output torque Tmg of the rotating electrical machine MG is reduced by ⁇ T2 in accordance with the increase in the engagement pressure of the specific engagement device SSC (from time T24 to time T25).
  • the shift control unit 43 reduces the rotation speed difference ⁇ W1 of the engagement side engagement device to the target rotation speed difference ⁇ Wo, and then the rotation speed difference ⁇ W1 of the engagement side engagement device becomes the target rotation speed.
  • Rotational speed control is performed to change the output torque Tmg of the rotating electrical machine MG so as to be maintained at the difference ⁇ Wo (from time T24 to time T25).
  • the shift control unit 43 sets the rotation speed obtained by adding the target rotation speed difference ⁇ Wo to the post-shift synchronous rotation speed Waf as the target rotation speed so that the rotation speed of the rotating electrical machine MG approaches the target rotation speed.
  • the rotation speed control for changing the required torque of the rotating electrical machine is performed.
  • the output torque Tmg of the rotating electrical machine MG is automatically reduced according to the increase in the engagement pressure of the specific engagement device SSC.
  • the rotation speed difference ⁇ W1 of the engagement side engagement device can be more reliably maintained at the target rotation speed difference ⁇ Wo and maintained in the slip engagement state.
  • the shift control unit 43 engages the engagement pressure (hydraulic command) of the specific engagement device SSC. Is increased to the full engagement pressure, and the specific engagement device SSC is shifted to the direct engagement state.
  • the output torque Ten of the internal combustion engine ENG is transmitted to the specific engagement device SSC (after time T25).
  • the shift control unit 43 increases the engagement pressure of the specific engagement device SSC when it is determined that the rotational speed difference ⁇ W2 of the specific engagement device SSC is equal to or smaller than a predetermined determination speed difference (time T25). Accordingly, the control to reduce the output torque Tmg of the rotating electrical machine MG is finished, and the rotating electrical machine required torque is set to the torque determined by the integrated control unit 45 (zero in this example).
  • the shift control unit 43 sets the rotation speed difference ⁇ W1 of the engagement side engagement device to zero. It is configured to execute control to decrease to (time T25 to time T26).
  • the shift control unit 43 is configured to reduce the output torque Tmg of the rotating electrical machine MG by ⁇ T1 and reduce the rotational speed difference ⁇ W1 of the engagement side engaging device to zero, similarly to the time T23 to time T24. ing.
  • the rotational speed control of the rotating electrical machine MG may be continued, and the target rotational speed difference ⁇ Wo may be gradually reduced to zero, thereby reducing the rotational speed difference ⁇ W1 of the engagement side engaging device to zero. .
  • the shift control unit 43 engages the engagement pressure (hydraulic pressure) of the engagement side engagement device.
  • Command is increased from the engagement pressure corresponding to the vehicle required torque Trq to the complete engagement pressure, and the engagement side engagement device is shifted to the direct engagement state.
  • shift control unit 43 determines whether or not a condition for starting on-up shift control is satisfied (step # 11).
  • step # 11: Yes the shift control unit 43 places the specific engagement device SSC in the slip engagement state so that the engagement pressure ( Control for reducing the hydraulic pressure command is executed (step # 12).
  • step # 13 the shift control unit 43 executes the above-described pre-phase control (step # 13).
  • step # 14 The shift control unit 43 executes the torque phase control described above after the pre-phase control is completed (step # 14).
  • the shift control unit 43 executes the inertia phase control described above after the torque phase control is completed (step # 15). Specifically, the shift control unit 43 controls the specific engagement device SSC to the slip engagement state and reduces the rotation speed of the internal combustion engine ENG when the rotation speed difference ⁇ W1 of the engagement side engagement device is decreased. On the other hand, the rotational speed of the rotating electrical machine MG is reduced.
  • the shift control unit 43 determines whether or not the rotational speed difference ⁇ W1 of the engagement side engaging device has been reduced to the target rotational speed difference ⁇ Wo (step # 16). If it is determined that the rotational speed difference ⁇ W1 of the engagement side engaging device has decreased to the target rotational speed difference ⁇ Wo (step # 16: Yes), the shift control unit 43 sets the rotational speed difference ⁇ W2 of the specific engagement device SSC. Control to decrease to zero is executed (step # 17). When it is determined that the rotational speed difference ⁇ W2 of the specific engagement device SSC has decreased to zero (step # 18: Yes), the shift control unit 43 decreases the rotational speed difference ⁇ W1 of the engagement side engagement device to zero. Control is executed (step # 19). When it is determined that the rotational speed difference ⁇ W1 of the engagement side engaging device has decreased to zero (step # 20: Yes), the shift control unit 43 ends the on-upshift control process.
  • the control device 30 includes a plurality of control units 32 to 34, and a case where the plurality of control units 32 to 34 share a plurality of function units 41 to 45 will be described as an example. did.
  • the embodiment of the present invention is not limited to this. That is, the control device 30 may be provided as a control device in which the above-described plurality of control units 32 to 34 are integrated or separated in any combination, and the sharing of the plurality of functional units 41 to 45 is also arbitrarily set. Can do.
  • the transmission TM has two planetary gear mechanisms, has six engagement devices, has six forward gears, and each gear has two engagements.
  • the case where the device is formed by being engaged has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the transmission apparatus TM may have any configuration as long as it has two or more shift stages formed by engagement of at least one engagement device.
  • the transmission TM may have two or more or one planetary gear mechanism, may have two or more engagement devices, and may have two or more forward gears.
  • Each shift stage may be formed by engaging one engaging device or by engaging three or more engaging devices.
  • the shift control unit 43 slips both the engagement side engagement device and the specific engagement device SSC when reducing the rotational speed difference ⁇ W1 of the engagement side engagement device.
  • the case where it was comprised so that it might control to a common state was demonstrated as an example.
  • the embodiment of the present invention is not limited to this. That is, the shift control unit 43 may control at least the specific engagement device SSC to the sliding engagement state when reducing the rotational speed difference ⁇ W1 of the engagement side engagement device, and the engagement side engagement device is released. It may be configured to be controlled by the state.
  • the shift control unit 43 reduces the rotational speed of the rotating electrical machine MG by reducing the output torque Tmg of the rotating electrical machine MG, so that the rotational speed difference of the engagement side engaging device is reduced.
  • Tmg the output torque
  • the specific engagement device SSC is controlled to be in a sliding engagement state, and the rotation speed of the rotating electrical machine MG is reduced with respect to the rotation speed of the internal combustion engine ENG has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the shift control unit 43 reduces the engagement pressure of the specific engagement device SSC below the direct coupling limit engagement pressure, or engages the engagement pressure of the engagement side engagement device according to the vehicle request torque Trq.
  • the rotational speed of the rotating electrical machine MG is decreased, the rotational speed difference ⁇ W1 of the engagement side engagement device is decreased, and the specific engagement device SSC is controlled to be in the sliding engagement state.
  • the rotational speed of the rotating electrical machine MG may be reduced with respect to the rotational speed of the internal combustion engine ENG.
  • the shift control unit 43 reduces the rotational speed difference ⁇ W1 of the engagement-side engagement device to zero and then the rotational speed difference of the specific engagement device SSC.
  • ⁇ W2 is configured to decrease to zero
  • the embodiment of the present invention is not limited to this. That is, the shift control unit 43 may be configured to start the decrease in the rotation speed difference ⁇ W2 of the specific engagement device SSC before the rotation speed difference ⁇ W1 of the engagement side engagement device decreases to zero.
  • the decrease period of the rotation speed difference ⁇ W1 of the engagement side engagement device may be configured to overlap with the decrease period of the rotation speed difference ⁇ W2 of the specific engagement device SSC.
  • the shift control unit 43 reduces the rotation speed difference ⁇ W1 of the engagement side engagement device to the target rotation speed difference ⁇ Wo, and then the specific engagement device SSC.
  • the case where the rotational speed difference ⁇ W2 is configured to be reduced to zero has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the speed change control unit 43 is configured to start reducing the rotational speed difference ⁇ W2 of the specific engagement device SSC before the rotational speed difference ⁇ W1 of the engagement side engaging device decreases to the target rotational speed difference ⁇ Wo. May be.
  • the decrease period of the rotation speed difference ⁇ W1 of the engagement side engagement device may be configured to overlap with the decrease period of the rotation speed difference ⁇ W2 of the specific engagement device SSC.
  • the shift control unit 43 controls the rotating electrical machine MG so that the rotational speed difference ⁇ W1 of the engagement-side engagement device is maintained at the target rotational speed difference ⁇ Wo.
  • the case where it was comprised so that rotational speed control which changes output torque Tmg was performed was demonstrated as an example.
  • the embodiment of the present invention is not limited to this.
  • the shift control unit 43 is configured so that the engagement pressure of the specific engagement device SSC or the engagement-side engagement device is adjusted so that the rotation speed difference ⁇ W1 of the engagement-side engagement device is maintained at the target rotation speed difference ⁇ Wo. You may comprise so that rotational speed control which changes an engagement pressure may be performed.
  • the shift control unit 43 controls the specific engagement device SSC to be in a slipping engagement state, and reduces the rotation speed of the rotating electrical machine MG with respect to the rotation speed of the internal combustion engine ENG.
  • the engine is configured to maintain the rotational speed of the internal combustion engine ENG at a rotational speed corresponding to the rotational speed of the internal combustion engine ENG before the start of the on-upshift control, the example has been described.
  • the embodiment of the present invention is not limited to this. That is, the speed change control unit 43 controls the specific engagement device SSC to be in a slipping engagement state and rotates the internal combustion engine ENG while reducing the rotation speed of the rotating electrical machine MG with respect to the rotation speed of the internal combustion engine ENG.
  • the speed may be configured to increase or decrease from a rotation speed corresponding to the rotation speed of the internal combustion engine ENG before the start of the on-upshift control.
  • the shift control unit 43 increases the engagement pressure of the specific engagement device SSC, thereby reducing the rotational speed difference ⁇ W2 of the specific engagement device SSC, and the specific engagement device SSC.
  • a case has been described as an example in which the output torque Tmg of the rotating electrical machine MG is reduced in accordance with an increase in the engagement pressure.
  • the embodiment of the present invention is not limited to this. That is, the shift control unit 43 may be configured to reduce the rotational speed difference ⁇ W2 of the specific engagement device SSC by reducing the output torque Ten (internal combustion engine required torque) of the internal combustion engine ENG.
  • the specific engagement device SSC has been described as an example in which the transmission torque capacity (engagement pressure) is reduced by reducing the supply hydraulic pressure (hydraulic pressure command).
  • the embodiment of the present invention is not limited to this. That is, the specific engagement device SSC may be configured such that the transmission torque capacity (engagement pressure) decreases by increasing the supply oil pressure (hydraulic pressure command).
  • the return spring is biased toward the engagement side, and the supply hydraulic pressure to the specific engagement device SSC is pressed toward the release side.
  • the present invention provides a control device that controls a vehicle drive device in which a specific engagement device, a rotating electrical machine, and a transmission device are provided in order from the side of the internal combustion engine on a power transmission path that connects the internal combustion engine and wheels. Can be suitably used.

Abstract

 オンアップシフト制御において、回転電機の回転速度を低下させて、変速装置の係合側係合装置の回転速度差を減少させる期間を短縮することができる制御装置が求められる。オンアップシフト制御の実行中において、係合側係合装置の回転速度差(ΔW1)を減少させる場合に、特定係合装置(SSC)を滑り係合状態に制御すると共に、内燃機関(ENG)の回転速度に対して回転電機(MG)の回転速度を低下させる車両用駆動装置の制御装置。

Description

車両用駆動装置の制御装置
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、特定係合装置、回転電機、及び変速装置が設けられた車両用駆動装置を制御対象とする制御装置に関する。
 上記のような制御装置に関して、例えば下記の特許文献1に記載された技術が既に知られている。特許文献1に記載されている技術では、車輪に前進加速方向のトルクを伝達している状態から、特定係合装置を直結係合状態に維持したままで、アップシフト制御(オンアップシフト制御と称す)を行うように構成されている。
特開平9-331602号公報
 しかしながら、特許文献1のように、特定係合装置が直結係合状態に維持されていると、内燃機関が回転電機と一体回転し、回転電機と一体回転する回転部材の慣性モーメントが大きくなる。このため、オンアップシフト制御中に、回転電機の回転速度を低下させて、変速装置の係合側係合装置の回転速度差を減少させる期間を短縮するには限界があった。
 そこで、オンアップシフト制御において、回転電機の回転速度を低下させて、変速装置の係合側係合装置の回転速度差を減少させる期間を短縮することができる制御装置が求められる。
 本発明に係る、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、特定係合装置、回転電機、及び変速装置が設けられた車両用駆動装置を制御対象とする制御装置の特徴構成は、前記変速装置は、複数の係合装置を備えると共に、当該複数の係合装置の係合の状態に応じて変速比の異なる複数の変速段が選択的に形成され、前記特定係合装置が直結係合状態で前記車輪に前進加速方向のトルクを伝達している状態から、前記複数の係合装置の係合及び解放を制御して変速比が小さい変速段に切り替えるオンアップシフト制御を実行する変速制御部を備え、前記変速制御部は、前記オンアップシフト制御の実行中において、変速段の切り替えのために係合される前記係合装置である係合側係合装置の一対の係合部材間の回転速度差を減少させる場合に、前記特定係合装置を滑り係合状態に制御すると共に、前記内燃機関の回転速度に対して前記回転電機の回転速度を低下させる点にある。
 なお、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 上記の特徴構成によれば、係合側係合装置の回転速度差を減少させる場合に、特定係合装置が滑り係合状態に制御されるので、内燃機関と回転電機とが一体的に回転しなくなり、内燃機関の慣性系を、回転電機の慣性系から切り離すことができる。よって、内燃機関の慣性モーメントの分、回転電機と一体回転する回転部材の慣性モーメントを大幅に低下させることができ、回転電機の回転速度を低下させて、係合側係合装置の回転速度差を減少させる期間を短縮することができる。
 また、上記の特徴構成によれば、係合側係合装置の回転速度差が減少される場合に、特定係合装置が滑り係合状態に制御されると共に、内燃機関の回転速度に対して回転電機の回転速度が低下されるので、内燃機関の回転速度の低下が抑制される。よって、内燃機関の回転速度の低下のために用いられる駆動力を少なく抑えることができ、回転電機の回転速度の低下のために用いられる駆動力が減少することを抑制できる。この点からも、係合側係合装置の回転速度差を減少させる期間を短縮することができる。
 ここで、前記変速制御部は、前記係合側係合装置の回転速度差を減少させる際に、前記係合側係合装置及び前記特定係合装置の双方を滑り係合状態に制御すると好適である。
 この構成によれば、係合側係合装置の回転速度差を減少させる際に、内燃機関の出力トルクを、滑り係合状態に制御された特定係合装置及び係合側係合装置を介して車輪に伝達させることができ、オンアップシフト制御中に駆動力の低下が生じることを抑制できる。
 また、オンアップシフト制御中に係合側係合装置が滑り係合状態に制御されるので、係合側係合装置が摩擦により発熱する。しかし、係合側係合装置の回転速度差を減少させる期間が短縮され、係合側係合装置が滑り係合状態にされる期間が短縮されるため、係合側係合装置の発熱を抑制し、耐久性を向上することできる。
 ここで、前記変速制御部は、前記回転電機の出力トルクを低下させることで、前記回転電機の回転速度を低下させて、前記係合側係合装置の回転速度差を減少させると好適である。
 この構成によれば、制御性のよい回転電機の出力トルクにより、回転電機の回転速度を精度よく低下させることができる。また、回転電機の回転速度を低下させるために、係合側係合装置の係合圧を変化させる必要がないため、係合側係合装置を介して車輪に伝達される駆動力が変動することを抑制できる。
 ここで、前記変速制御部は、前記係合側係合装置の回転速度差を予め定めた回転速度差まで減少させた後、前記特定係合装置の一対の係合部材間の回転速度差を減少させると好適である。
 この構成によれば、駆動力源の駆動力を、特定係合装置の回転速度差の減少よりも、係合側係合装置の回転速度差の減少に、優先して用いることができるため、係合側係合装置の回転速度差を減少させる期間を短縮することができる。
 ここで、前記変速制御部は、前記係合側係合装置の回転速度差をゼロまで減少させた後、前記特定係合装置の回転速度差をゼロまで減少させると好適である。
 この構成によれば、駆動力源の駆動力を、係合側係合装置の回転速度差の減少に、最優先に用いることができる。
 ここで、前記変速制御部は、前記係合側係合装置の回転速度差をゼロより大きい値に予め定めた目標回転速度差まで減少させた後、前記特定係合装置の回転速度差をゼロまで減少させ、その後、前記係合側係合装置の回転速度差をゼロまで減少させると好適である。
 この構成によれば、特定係合装置の回転速度差の減少中、係合側係合装置が滑り係合状態に維持されるので、特定係合装置の回転速度差の減少に伴って生じるトルク変動が、変速装置を介して車輪に伝達されることを抑制できる。
 また、係合側係合装置の回転速度差が、目標回転速度差まで減少されるので、係合側係合装置が滑り係合状態に制御された場合において、係合側係合装置の発熱をゼロまで減少できないものの、回転速度差の減少分だけ大幅に減少させることができ、係合側係合装置の耐久性を向上させることができる。
 ここで、前記変速制御部は、前記係合側係合装置の回転速度差を前記目標回転速度差まで減少させた後、前記係合側係合装置の回転速度差が、前記目標回転速度差に維持されるように前記回転電機の出力トルクを変化させる回転速度制御を実行すると好適である。
 この構成によれば、制御性のよい回転電機の出力トルクによる回転速度制御により、係合側係合装置の回転速度差を、より確実に目標回転速度差に維持して、滑り係合状態に維持することができる。
 ここで、前記変速制御部は、前記特定係合装置の回転速度差を増加させている間は、前記内燃機関の回転速度を、前記オンアップシフト制御の開始前の前記内燃機関の回転速度に対応した回転速度に維持し、前記特定係合装置の回転速度差を減少させている間は、前記内燃機関の回転速度を、前記オンアップシフト制御の開始前の前記内燃機関の回転速度に対応した回転速度から低下させると好適である。
 この構成によれば、特定係合装置の回転速度差が減少されている間に、駆動力源の駆動力が、内燃機関の回転速度の低下のために用いられないようにすることができる。
 ここで、前記変速制御部は、前記特定係合装置の伝達トルク容量を増加させることで、前記特定係合装置の回転速度差を減少させ、前記特定係合装置の伝達トルク容量の増加に応じて、前記回転電機の出力トルクを低下させると好適である。
 この構成によれば、特定係合装置の伝達トルク容量の増加により、内燃機関の慣性系に作用する合計トルクを負にすることができるため、内燃機関の回転速度を低下させることができる。また、特定係合装置の伝達トルク容量の増加により、内燃機関側から車輪側に伝達される特定係合装置の伝達トルクが増加する。特定係合装置の伝達トルク容量の増加に応じて、回転電機の出力トルクが低下されるので、特定係合装置の伝達トルクの増加が、回転電機の出力トルクの低下により相殺される。よって、直結係合状態になった係合側係合装置を介して車輪側に伝達されるトルクが変動することを抑制できる。
本発明の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。 本発明の実施形態に係る制御装置の概略構成を示すブロック図である。 本発明の実施形態に係る車両用駆動装置のスケルトン図である。 本発明の実施形態に係る変速装置の作動表である。 本発明の実施形態とは異なる比較例に係るタイムチャートである。 本発明の実施形態の第1の構成例に係るタイムチャートである。 本発明の実施形態の第1の構成例に係るフローチャートである。 本発明の実施形態の第2の構成例に係るタイムチャートである。 本発明の実施形態の第2の構成例に係るフローチャートである。
 本発明に係る車両用駆動装置1の制御装置30(以下、単に制御装置30と称す)の実施形態について図面を参照して説明する。図1は、本実施形態に係る車両用駆動装置1及び制御装置30の概略構成を示す模式図である。この図において、実線は駆動力の伝達経路を示し、破線は作動油の供給経路を示し、一点鎖線は信号の伝達経路を示している。
 車両用駆動装置1には、内燃機関ENGと車輪Wとを結ぶ動力伝達経路2に、内燃機関ENGの側から順に、特定係合装置SSC、回転電機MG、及び変速装置TMが設けられている。特定係合装置SSCは、その係合状態に応じて、内燃機関ENGと回転電機MGとの間を選択的に連結した状態又は分離した状態とする。変速装置TMは、複数の係合装置C1、B1、・・を備えると共に、当該複数の係合装置C1、B1、・・の係合の状態に応じて変速比の異なる複数の変速段が選択的に形成される。
 ハイブリッド車両には、車両用駆動装置1を制御対象とする制御装置30が備えられている。本実施形態に係わる制御装置30は、回転電機MGの制御を行う回転電機制御ユニット32と、変速装置TM、及び特定係合装置SSCの制御を行う動力伝達制御ユニット33と、これらの制御装置を統合して車両用駆動装置1の制御を行う車両制御ユニット34と、を有している。また、ハイブリッド車両には、内燃機関ENGの制御を行う内燃機関制御装置31も備えられている。
 制御装置30は、図2に示すように、変速制御部43などの機能部を備えている。
 変速制御部43は、複数の係合装置C1、B1、・・の係合及び解放を制御して、変速装置TMに形成する変速段を切り替える変速制御を行う。本実施形態に係る変速制御部43は、特定係合装置SSCが直結係合状態で車輪Wに前進加速方向のトルクを伝達している状態から、複数の係合装置C1、B1、・・の係合及び解放を制御して変速比が小さい変速段に切り替えるオンアップシフト制御を実行するように構成されている。
 このような構成において、変速制御部43は、オンアップシフト制御の実行中において、変速段の切り替えのために係合される係合装置である係合側係合装置の一対の係合部材間の回転速度差ΔW1を減少させる場合に、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させる特定係合スリップ制御を行う点に特徴を有している。
 以下、本実施形態に係る車両用駆動装置1及び制御装置30について、詳細に説明する。
1.車両用駆動装置1の構成
 まず、本実施形態に係るハイブリッド車両の車両用駆動装置1の構成について説明する。図1に示すように、ハイブリッド車両は、車両の駆動力源として内燃機関ENG及び回転電機MGを備え、これらの内燃機関ENGと回転電機MGとが直列に駆動連結されるパラレル方式のハイブリッド車両となっている。ハイブリッド車両は、変速装置TMを備えており、当該変速装置TMにより、入力軸Iに伝達された内燃機関ENG及び回転電機MGの回転速度を変速すると共にトルクを変換して出力軸Oに伝達する。
 内燃機関ENGは、燃料の燃焼により駆動される熱機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種内燃機関を用いることができる。本例では、内燃機関ENGのクランクシャフト等の内燃機関出力軸Eoが、特定係合装置SSCを介して、回転電機MGに駆動連結された入力軸Iと選択的に駆動連結される。すなわち、内燃機関ENGは、摩擦係合装置である特定係合装置SSCを介して回転電機MGに選択的に駆動連結される。また、内燃機関出力軸Eoには、図示しないダンパが備えられており、内燃機関ENGの間欠的な燃焼による出力トルク及び回転速度の変動を減衰して、車輪W側に伝達可能に構成されている。
 回転電機MGは、車両用駆動装置1を収容するケースCSに固定されたステータStと、このステータと対応する位置で径方向内側に回転自在に支持されたロータRoと、を有している(図3参照)。この回転電機MGのロータRoは、入力軸Iと一体回転するように駆動連結されている。回転電機MGは、直流交流変換を行うインバータを介して蓄電装置としてのバッテリに電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機MGは、インバータを介してバッテリからの電力供給を受けて力行し、或いは内燃機関ENGや車輪Wから伝達される回転駆動力により発電し、発電された電力は、インバータを介してバッテリに蓄電される。
 駆動力源が駆動連結される入力軸Iには、変速装置TMが駆動連結されている。本実施形態では、変速装置TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速装置TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と複数の係合装置C1、B1・・・とを備えている。変速装置TMは、各変速段の変速比で、入力軸Iの回転速度を変速するとともにトルクを変換して、出力軸Oへ伝達する。変速装置TMから出力軸Oへ伝達されたトルクは、出力用差動歯車装置DFを介して左右二つの車軸AXに分配されて伝達され、各車軸AXに駆動連結された車輪Wに伝達される。ここで、変速比は、変速装置TMにおいて各変速段が形成された場合の、出力軸Oの回転速度に対する入力軸Iの回転速度の比であり、本願では入力軸Iの回転速度を出力軸Oの回転速度で除算した値である。すなわち、入力軸Iの回転速度を変速比で除算した回転速度が、出力軸Oの回転速度になる。また、入力軸Iから変速装置TMに伝達されるトルクに、変速比を乗算したトルクが、変速装置TMから出力軸Oに伝達されるトルクになる。
 本実施形態では、図4の作動表に示すように、変速装置TMは変速比(減速比)の異なる6つの変速段(第一段1st、第二段2nd、第三段3rd、第四段4th、第五段5th、及び第六段6th)を前進段として備えている。これらの変速段を構成するため、変速装置TMは、第一遊星歯車機構PG1及び第二遊星歯車機構PG2を備えてなる歯車機構と、6つの係合装置C1、C2、C3、B1、B2、OWCと、を備えて構成されている。ワンウェイクラッチOWCを除くこれら複数の係合装置C1、B1・・・の係合及び解放を制御して、第一遊星歯車機構PG1及び第二遊星歯車機構PG2の各回転要素の回転状態を切り替え、複数の係合装置C1、B1・・・を選択的に係合することにより、6つの変速段が切り替えられる。なお、変速装置TMは、上記6つの変速段のほかに、一段の後進段Revも備えている。
 図4において、「○」は各係合装置が係合状態にあることを示しており、「無印」は、各係合装置が解放状態にあることを示している。「(○)」は、エンジンブレーキを行う場合などにおいて、係合装置が係合した状態にされることを示している。また、「△」は、一方向に回転する場合には解放した状態となり、他方向に回転する場合には係合した状態となることを示している。
 第一段(1st)は、第一クラッチC1及びワンウェイクラッチOWCが係合されて形成される。エンジンブレーキを行うときなどは、第一段は、第一クラッチC1及び第二ブレーキB2が係合されて形成される。第二段(2nd)は、第一クラッチC1及び第一ブレーキB1が係合されて形成される。第三段(3rd)は、第一クラッチC1及び第三クラッチC3が係合されて形成される。第四段(4th)は、第一クラッチC1及び第二クラッチC2が係合されて形成される。第五段(5th)は、第二クラッチC2及び第三クラッチC3が係合されて形成される。第六段(6th)は、第二クラッチC2及び第一ブレーキB1が係合されて形成される。
 後進段(Rev)は、第三クラッチC3及び第二ブレーキB2が係合されて形成される。
 これらの各変速段は、入力軸I(内燃機関E)と出力軸Oとの間の変速比(減速比)が大きい順に、第一段、第二段、第三段、第四段、第五段、及び第六段となっている。
 第一遊星歯車機構PG1は、図3に示すように、複数のピニオンギヤP1を支持するキャリアCA1と、ピニオンギヤP1にそれぞれ噛み合うサンギヤS1及びリングギヤR1と、の三つの回転要素を有したシングルピニオン型の遊星歯車機構とされている。第二遊星歯車機構PG2は、第一サンギヤS2及び第二サンギヤS3の二つのサンギヤと、リングギヤR2と、第一サンギヤS2及びリングギヤR2の双方に噛み合うロングピニオンギヤP2並びにこのロングピニオンギヤP2及び第二サンギヤS3に噛み合うショートピニオンギヤP3を支持する共通のキャリアCA2と、の四つの回転要素を有したラビニヨ型の遊星歯車機構とされている。
 第一遊星歯車機構PG1のサンギヤS1は、非回転部材としてのケースCSに固定されている。キャリアCA1は、第三クラッチC3により第二遊星歯車機構PG2の第二サンギヤS3と選択的に一体回転するように駆動連結されるとともに、第一クラッチC1により第二遊星歯車機構PG2の第一サンギヤS2と選択的に一体回転するように駆動連結され、第一ブレーキB1によりケースCSに選択的に固定される。リングギヤR1は、入力軸Iと一体回転するように駆動連結されている。
 第二遊星歯車機構PG2の第一サンギヤS2は、第一クラッチC1により第一遊星歯車機構PG1のキャリアCA1と選択的に一体回転するように駆動連結される。キャリアCA2は、第二クラッチC2により入力軸Iと選択的に一体回転するように駆動連結されるとともに、第二ブレーキB2又はワンウェイクラッチOWCにより非回転部材としてのケースCSに選択的に固定される。ワンウェイクラッチOWCは、一方向の回転のみを阻止することによりキャリアCA2を選択的にケースCSに固定する。リングギヤR2は、出力軸Oと一体回転するように駆動連結されている。第二サンギヤS3は、第三クラッチC3により第一遊星歯車機構PG1のキャリアCA1と選択的に一体回転するように駆動連結されるとともに、第一ブレーキB1によりケースCSに選択的に固定される。
 本実施形態では、変速装置TMが有するワンウェイクラッチOWCを除く複数の係合装置C1、C2、C3、B1、B2は、いずれも摩擦係合装置とされている。具体的には、これらは油圧により動作する多板式クラッチや多板式ブレーキにより構成されている。これらの係合装置C1、C2、C3、B1、B2は、油圧制御装置PCから供給される油圧により、係合の状態が制御される。なお、特定係合装置SSCも摩擦係合装置である。
 摩擦係合装置は、その一対の係合部材間の摩擦により、係合部材間でトルクを伝達する。摩擦係合装置の一対の係合部材間に回転速度差(滑り)がある場合は、動摩擦により回転速度の大きい方の部材から小さい方の部材に伝達トルク容量の大きさのトルク(スリップトルク)が伝達される。摩擦係合装置の係合部材間に回転速度差(滑り)がない場合は、摩擦係合装置は、伝達トルク容量の大きさを上限として、静摩擦により摩擦係合装置の係合部材間に作用するトルクを伝達する。ここで、伝達トルク容量とは、摩擦係合装置が摩擦により伝達することができる最大のトルクの大きさである。伝達トルク容量の大きさは、摩擦係合装置の係合圧に比例して変化する。係合圧とは、入力側係合部材(摩擦板)と出力側係合部材(摩擦板)とを相互に押し付け合う圧力である。本実施形態では、係合圧は、供給されている油圧の大きさに比例して変化する。すなわち、本実施形態では、伝達トルク容量の大きさは、摩擦係合装置に供給されている油圧の大きさに比例して変化する。
 各摩擦係合装置は、リターンばねを備えており、ばねの反力により解放側に付勢されている。そして、各摩擦係合装置の油圧シリンダに供給される油圧により生じる力がばねの反力を上回ると、各摩擦係合装置に伝達トルク容量が生じ始め、各摩擦係合装置は、解放状態から係合状態に変化する。この伝達トルク容量が生じ始めるときの油圧を、ストロークエンド圧と称す。各摩擦係合装置は、供給される油圧がストロークエンド圧を上回った後、油圧の増加に比例して、その伝達トルク容量が増加するように構成されている。なお、摩擦係合装置は、リターンばねを備えておらず、油圧シリンダのピストンの両側にかかる油圧の差圧によって制御させる構造でもよい。
 本実施形態において、係合状態とは、係合装置に伝達トルク容量が生じている状態であり滑り係合状態と直結係合状態とが含まれる。解放状態とは、係合装置に伝達トルク容量が生じていない状態である。また、滑り係合状態とは、係合装置の係合部材間に回転速度差(滑り)がある係合状態であり、直結係合状態とは、係合装置の係合部材間に回転速度差(滑り)がない係合状態である。また、非直結係合状態とは、直結係合状態以外の係合状態であり、解放状態と滑り係合状態とが含まれる。
 なお、摩擦係合装置には、制御装置30により伝達トルク容量を生じさせる指令が出されていない場合でも、係合部材(摩擦部材)同士の引き摺りによって伝達トルク容量が生じる場合がある。例えば、ピストンにより摩擦部材同士が押圧されていない場合でも、摩擦部材同士が接触し、摩擦部材同士の引き摺りによって伝達トルク容量が生じる場合がある。そこで、「解放状態」には、制御装置30が摩擦係合装置に伝達トルク容量を生じさせる指令を出していない場合に、摩擦部材同士の引き摺りにより、伝達トルク容量が生じている状態も含まれるものとする。
2.油圧制御系の構成
 車両用駆動装置1の油圧制御系は、車両の駆動力源や専用のモータによって駆動される油圧ポンプから供給される作動油の油圧を所定圧に調整するための油圧制御装置PCを備えている。油圧制御装置PCは、各係合装置C1、B1・・・、SSCなどに対して供給される油圧を調整するための複数のリニアソレノイド弁などの油圧制御弁を備えている。油圧制御弁は、制御装置30から供給される油圧指令の信号値に応じて弁の開度を調整することにより、当該信号値に応じた油圧の作動油を各係合装置C1、B1・・・、SSCなどに供給する。制御装置30から各リニアソレノイド弁に供給される信号値は電流値とされている。そして、各リニアソレノイド弁から出力される油圧は、基本的に制御装置30から供給される電流値に比例する。
 油圧制御装置PCは、油圧調整用のリニアソレノイド弁から出力される油圧(信号圧)に基づき一又は二以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、変速装置TMが有する複数の係合装置C1、B1・・・及び特定係合装置SSC等に供給される。
3.制御装置の構成
 次に、車両用駆動装置1の制御を行う制御装置30及び内燃機関制御装置31の構成について、図2を参照して説明する。
 制御装置30の制御ユニット32~34及び内燃機関制御装置31は、CPU等の演算処理装置を中核部材として備えるとともに、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている。そして、制御装置のROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置30の各機能部41~45などが構成されている。また、制御装置30の制御ユニット32~34及び内燃機関制御装置31は、互いに通信を行うように構成されており、センサの検出情報及び制御パラメータ等の各種情報を共有するとともに協調制御を行い、各機能部41~45の機能が実現される。
 また、車両用駆動装置1は、センサSe1~Se3などのセンサを備えており、各センサから出力される電気信号は制御装置30及び内燃機関制御装置31に入力される。制御装置30及び内燃機関制御装置31は、入力された電気信号に基づき各センサの検出情報を算出する。
 入力回転速度センサSe1は、入力軸Iの回転速度を検出するためのセンサである。入力軸Iには回転電機MGのロータRoが一体的に駆動連結されているので、回転電機制御ユニット32は、入力回転速度センサSe1の入力信号に基づいて回転電機MGの回転速度(角速度)、並びに入力軸Iの回転速度を検出する。出力回転速度センサSe2は、出力軸Oの回転速度を検出するためのセンサである。動力伝達制御ユニット33は、出力回転速度センサSe2の入力信号に基づいて出力軸Oの回転速度(角速度)を検出する。また、出力軸Oの回転速度は車速に比例するため、動力伝達制御ユニット33は、出力回転速度センサSe2の入力信号に基づいて車速を算出する。機関回転速度センサSe3は、内燃機関出力軸Eo(内燃機関ENG)の回転速度を検出するためのセンサである。内燃機関制御装置31は、機関回転速度センサSe3の入力信号に基づいて内燃機関ENGの回転速度(角速度)を検出する。
3-1.車両制御ユニット34
 車両制御ユニット34は、統合制御部45を備えている。統合制御部45は、内燃機関ENG、回転電機MG、変速装置TM、及び特定係合装置SSC等に対して行われる各種トルク制御、及び各係合装置の係合制御等を車両全体として統合する制御を行う。
 統合制御部45は、アクセル開度、車速、及びバッテリの充電量等に応じて、車輪Wの駆動のために要求されているトルクであって、入力軸I側から出力軸O側に伝達される目標駆動力である車両要求トルクTrqを算出するとともに、内燃機関ENG及び回転電機MGの運転モードを決定する。運転モードとして、回転電機MGのみを駆動力源として走行する電動モードと、少なくとも内燃機関ENGを駆動力源として走行するパラレルモードと、を有する。例えば、アクセル開度が小さく、バッテリの充電量が大きい場合に、運転モードとして電動モードが決定され、それ以外の場合、すなわちアクセル開度が大きい、もしくはバッテリの充電量が小さい場合に、運転モードとしてパラレルモードが決定される。
 そして、統合制御部45は、車両要求トルクTrq、運転モード、及びバッテリの充電量等に基づいて、内燃機関ENGに対して要求する出力トルクである内燃機関要求トルク、回転電機MGに対して要求する出力トルクである回転電機要求トルク、特定係合装置SSCに供給する油圧の目標である油圧指令、及び変速装置TMの各係合装置C1、B1・・・に供給する油圧の目標である油圧指令を算出し、それらを他の制御ユニット32、33及び内燃機関制御装置31に指令して統合制御を行う。なお、基本的に、内燃機関要求トルクと回転電機要求トルクの合計が、車両要求トルクTrqに一致するように設定される。
3-2.内燃機関制御装置31
 内燃機関制御装置31は、内燃機関ENGの動作制御を行う内燃機関制御部41を備えている。本実施形態では、内燃機関制御部41は、統合制御部45又は変速制御部43から内燃機関要求トルクが指令されている場合は、内燃機関ENGが内燃機関要求トルクを出力するように制御するトルク制御を行う。
3-3.回転電機制御ユニット32
 回転電機制御ユニット32は、回転電機MGの動作制御を行う回転電機制御部42を備えている。本実施形態では、回転電機制御部42は、統合制御部45又は変速制御部43から回転電機要求トルクが指令されている場合は、回転電機MGが回転電機要求トルクを出力するように制御する。具体的には、回転電機制御部42は、インバータが備える複数のスイッチング素子をオンオフ制御することにより、回転電機MGの出力トルクを制御する。
3-4.動力伝達制御ユニット33
 動力伝達制御ユニット33は、変速装置TMの制御を行う変速制御部43と、特定係合装置SSCの制御を行う特定係合制御部44と、を備えている。
3-4-1.特定係合制御部44
 特定係合制御部44は、特定係合装置SSCの係合状態を制御する。本実施形態では、特定係合制御部44は、特定係合装置SSCに供給される油圧が、統合制御部45又は変速制御部43から指令された特定係合装置SSCの油圧指令に一致するように、油圧制御装置PCに備えられた各リニアソレノイド弁に供給される信号値を制御する。
3-4-2.変速制御部43
 変速制御部43は、複数の係合装置C1、B1、・・の係合及び解放を制御して、変速装置TMに形成する変速段を切り替える変速制御を行う。
 本実施形態では、変速制御部43は、車速、アクセル開度、及びシフト位置などのセンサ検出情報に基づいて変速装置TMに形成させる目標変速段を決定する。そして、変速制御部43は、油圧制御装置PCを介して変速装置TMに備えられた複数の係合装置C1、B1・・・に供給される油圧を制御することにより、各係合装置C1、B1・・・を係合又は解放して目標とされた変速段を変速装置TMに形成させる。具体的には、変速制御部43は、油圧制御装置PCに各係合装置の目標油圧(油圧指令)を指令し、油圧制御装置PCは、指令された目標油圧(油圧指令)に応じた油圧を各係合装置に供給する。本実施形態では、変速制御部43は、油圧制御装置PCが備えた各リニアソレノイド弁に供給される信号値を制御することにより、各係合装置に供給される油圧を制御するように構成されている。
 本実施形態では、変速制御部43は、不図示のメモリに格納された変速マップを参照し、目標変速段を決定する。変速マップは、アクセル開度及び車速と、変速装置TMにおける目標変速段との関係を規定したマップである。変速マップには複数のアップシフト線と複数のダウンシフト線とが設定されており、車速及びアクセル開度が変化して変速マップ上でアップシフト線又はダウンシフト線を跨ぐと、変速制御部43は、変速装置TMにおける新たな目標変速段を決定して変速段を変更すると判定する。また、変速制御部43は、運転者によるシフトレバーの選択位置(シフト位置)の変更により、アップシフト要求又はダウンシフト要求があった場合に、目標変速段を変更する場合がある。なお、ダウンシフトとは変速比の小さい変速段から変速比の大きい変速段への変更を意味し、アップシフトとは変速比の大きい変速段から変速比の小さい変速段への変更を意味する。
 変速制御部43は、変速段を切り替える変速制御を行なう場合は、各係合装置C1、B1・・・の油圧指令を制御して、各係合装置C1、B1・・・の係合又は解放を行い、変速装置TMに形成させる変速段を目標変速段に切り替える。この際、変速制御部43は、変速段の切り替えのために解放される係合装置である解放側係合装置、及び変速段の切り替えのために係合される係合装置である係合側係合装置を設定する。そして、変速制御部43は、予め計画された変速制御のシーケンスに従い、解放側係合装置を解放させると共に係合側係合装置を係合させる、いわゆるつなぎ替え変速を行う。
 具体的には、変速制御部43は、変速前の変速段を形成する複数の係合装置の内、変速後の変速段を形成する複数の係合装置との間で共通していない係合装置を解放側係合装置に設定する。変速制御部43は、変速後の変速段を形成する複数の係合装置の内、変速前の変速段を形成する複数の係合装置との間で共通していない係合装置を係合側係合装置に設定する。
 例えば、変速前の変速段が第二段2ndで、変速後の変速段が第三段3rdである場合は、図4に示すように、第一ブレーキB1が解放側係合装置に設定され、第三クラッチC3が係合側係合装置に設定される。
 また、係合側係合装置は、変速制御の開始前は解放され、変速制御により係合される係合装置である。解放側係合装置は、変速制御の開始前は係合され、変速制御により解放される係合装置である。
3-4-2-1.オンアップシフト制御
 変速制御部43は、特定係合装置SSCが直結係合状態で車輪Wに前進加速方向のトルクを伝達している状態から、複数の係合装置C1、B1、・・の係合及び解放を制御して変速比が小さい変速段に切り替えるアップシフトを行うオンアップシフト制御を実行するように構成されている。
3-4-2-2.オンアップシフト制御の課題
 まず、図5に示す、比較例のタイムチャートを参照して、オンアップシフト制御の課題を説明する。
 オンアップシフト制御では、入力軸I(回転電機MG)の回転速度を、変速前同期回転速度Wbfから変速後同期回転速度Wafまで低下させて、係合側係合装置の回転速度差ΔW1を減少させる係合側係合装置のイナーシャ相の期間(図5では時刻T03から時刻T04)を、できるだけ短縮することが求められる。車輪Wに前進加速方向のトルクを伝達している状態から行われるオンアップシフト制御では、係合側係合装置のイナーシャ相において、係合側係合装置を滑り係合状態に制御して、駆動力源の駆動力を車輪W側に伝達させるように構成することが望ましい。しかし、係合側係合装置のイナーシャ相の期間が長くなると、係合側係合装置の発熱量が大きくなるため、係合側係合装置の耐久性が悪化するおそれがあった。そこで、係合側係合装置の耐久性を向上するため、係合側係合装置のイナーシャ相(以下、単にイナーシャ相とも称する)の期間をできるだけ短くすることが望まれる。
 図5に示す比較例では、本実施形態とは異なり、オンアップシフト制御の実行中に、特定係合装置SSCが直結係合状態のままに維持されている。よって、イナーシャ相において、内燃機関ENGが入力軸Iと一体回転し、入力軸Iと一体回転する回転部材の慣性モーメントが大きくなる。また、イナーシャ相において、入力軸Iの回転低下のために用いることができるトルクの大きさには限界がある。よって、比較例のように特定係合装置SSCを直結係合状態に制御している場合では、イナーシャ相の期間を短縮するには限界があり、係合側係合装置の耐久性を向上するには限界があった。
 以下、図5に示す比較例を簡単に説明する。時刻T01でアップシフトを開始した後、時刻T01から時刻T02の期間で、プレ相の制御が行われている。プレ相では、解放側係合装置及び係合側係合装置の係合圧が予め変化されている。その後、時刻T02から時刻T03の期間で、トルク相の制御が行われている。トルク相では、係合側係合装置の係合圧が、車両要求トルクTrqに応じた係合圧まで増加されて、係合側係合装置が滑り係合状態にされており、解放側係合装置の係合圧が、ストロークエンド圧未満まで減少されて、解放側係合装置が解放状態にされている。この状態になると、入力軸Iと出力軸Oとが一体的に回転しなくなり、入力軸I側の慣性系が、出力軸O側の慣性系から切り離された状態となる。
 時刻T03から時刻T04の期間で、イナーシャ相の制御が行われている。イナーシャ相では、入力軸Iの回転速度が、変速前同期回転速度Wbfから変速後同期回転速度Wafまで低下され、係合側係合装置の回転速度差ΔW1がゼロまで減少されている。入力軸Iの回転速度をできるだけ早く低下させるため、回転電機MGの出力トルクTmgが、回転電機MGが出力可能な最小トルクTmg_minまで低下されている。しかし、比較例では、特定係合装置SSCが直結係合状態に維持されているため、上記のように、内燃機関ENGが入力軸Iと一体回転し、入力軸Iと一体回転する回転部材の慣性モーメントが大きくなっている。よって、比較例では、イナーシャ相の期間を短縮するには限界があり、係合側係合装置の耐久性を向上するには限界があった。
3-4-2-3.特定係合スリップ制御による解決
 イナーシャ相の期間を短縮するために、本実施形態に係る変速制御部43は、オンアップシフト制御の実行中において、変速段の切り替えのために係合される係合装置である係合側係合装置の一対の係合部材間の回転速度差ΔW1を減少させる場合に、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させる特定係合スリップ制御を行うように構成されている。
 この構成によれば、係合側係合装置の回転速度差ΔW1を減少させるイナーシャ相において、特定係合装置SSCが滑り係合状態に制御されるので、内燃機関ENGと入力軸Iとが一体的に回転しなくなり、内燃機関ENGの慣性系を、入力軸Iの慣性系から切り離すことができる。よって、内燃機関ENGの慣性モーメントの分、入力軸Iと一体回転する回転部材の慣性モーメントを大幅に低下することができ、イナーシャ相の期間を短縮することが可能になる。
 また、係合側係合装置の回転速度差ΔW1が減少される場合に、特定係合装置SSCが滑り係合状態に制御されると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度が低下されるので、イナーシャ相における内燃機関ENGの回転速度の低下が抑制される。よって、内燃機関ENGの回転速度の低下のために用いられる駆動力を少なく抑えることができ、入力軸Iの回転速度の低下のために用いられる駆動力が減少することを抑制できる。この点からも、イナーシャ相の期間を短縮することができる。
 従って、係合側係合装置の耐久性を向上することが可能になる。
 本実施形態では、変速制御部43は、係合側係合装置の回転速度差ΔW1を減少させる際に、係合側係合装置及び特定係合装置SSCの双方を滑り係合状態に制御するように構成されている。
 この構成によれば、係合側係合装置の回転速度差ΔW1を減少させるイナーシャ相において、内燃機関の出力トルクTenを、特定係合装置SSC及び係合側係合装置を介して車輪Wに伝達させることができ、変速中に駆動力の低下が生じることを抑制できる。
3-4-2-4.特定係合装置SSCの回転速度差ΔW2の減少
 変速制御部43は、係合側係合装置の回転速度差ΔW1を予め定めた回転速度差まで減少させた後、特定係合装置SSCの一対の係合部材間の回転速度差ΔW2を減少させるように構成されている。
 本実施形態では、この特定係合装置SSCの回転速度差ΔW2の減少には、第1の構成例と、第2の構成例とがある。以下で、各構成例について説明する。
3-4-2-4-1.第1の構成例
 第1の構成例では、変速制御部43は、係合側係合装置の回転速度差ΔW1をゼロまで減少させた後、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させるように構成される。これについては、図6のタイムチャートを参照して説明する。
 変速制御部43は、運転モードがパラレルモードに決定されており、特定係合装置SSCが直結係合状態に制御され、車両要求トルクTrqがゼロより大きく設定されており、車輪Wに前進加速方向のトルクを伝達している状態において、時刻T11で、目標変速段を変速比のより小さい変速段に変更したため、オンアップシフト制御を開始すると判定している。目標変速段は、例えば、車速の増加によりアップシフト線を跨いだ場合や、シフト位置が変更された場合等に変更される。
<プレ相>
 変速制御部43は、時刻T11から時刻T12の期間で、プレ相の制御を行い、解放側係合装置及び係合側係合装置の係合圧を予め変化させている。
 変速制御部43は、時刻T11から時刻T12の期間で、解放側係合装置の係合圧(油圧指令)を、完全係合圧から直結限界係合圧より大きい解放側予備圧まで減少させ、係合側係合装置の係合圧(油圧指令)を、ゼロからストロークエンド圧より所定圧だけ小さい係合側予備圧まで増加させている。なお、完全係合圧は、駆動力源から各係合装置に伝達されるトルクが変動しても滑りのない係合状態を維持するために設定される最大限の係合圧(供給油圧、油圧指令)である。直結限界係合圧は、係合装置が滑り始める係合圧(供給油圧、油圧指令)である。
 変速制御部43は、特定係合装置SSCを滑り係合状態にするため、特定係合装置SSCの係合圧(油圧指令)を、完全係合圧から直結限界係合圧まで減少させている(時刻T11)。変速制御部43は、イナーシャ相が終了するまで(時刻T14まで)、特定係合装置SSCの係合圧(油圧指令)を、直結限界係合圧に維持している。具体的には、変速制御部43は、内燃機関ENGの出力トルクTenに対応する内燃機関要求トルクを、特定係合装置SSCの伝達トルク容量に設定し、設定した伝達トルク容量を実現する油圧指令を算出する。なお、特定係合装置SSCの伝達トルク容量が、内燃機関ENGの出力トルクTenを下回ると特定係合装置SSCが滑り始める。変速制御部43は、算出した特定係合装置SSCの油圧指令を特定係合制御部44に伝達する。図6に示す例では、統合制御部45は、時刻T11から時刻T15の変速制御中においても、内燃機関要求トルクを、車両要求トルクTrqに応じた(本例では、等しい)トルクに設定している。
 或いは、変速制御部43は、入力軸Iの回転速度が内燃機関ENGの回転速度に対し低下して、特定係合装置SSCの回転速度差が予め定めた判定速度差以上になるまで、特定係合装置SSCの係合圧(油圧指令)を低下させるように構成されてもよい。
<トルク相>
 変速制御部43は、プレ相の後、時刻T12から時刻T13の期間で、トルク相の制御を行っている。具体的には、変速制御部43は、時刻T12から時刻T13の期間で、係合側係合装置の係合圧(油圧指令)を、車両要求トルクTrqに応じた係合圧まで次第に増加させて、係合側係合装置を滑り係合状態にさせ、解放側係合装置の係合圧(油圧指令)を、ストロークエンド圧未満まで次第に減少させて解放側係合装置を解放状態にさせている。このトルク相の制御により、トルクの関係は、変速後の状態に移行されるが、回転速度の関係は、変速前の状態に維持され、係合側係合装置は滑り係合状態にされ、解放側係合装置は解放状態にされる。この状態になると、入力軸Iと出力軸Oとが一体的に回転しなくなり、入力軸I側の慣性系が、出力軸O側の慣性系から切り離された状態となる。
 変速制御部43は、滑り係合状態の係合側係合装置を介して変速装置TMが入力軸I側から出力軸O側に伝達するトルクTtmが、車両要求トルクTrqに応じたトルクになるように、増加後の係合側係合装置の係合圧(油圧指令)を決定する。具体的には、変速制御部43は、車両要求トルクTrqに、係合側係合装置に作用する歯車の歯数比を乗算して係合側係合装置の伝達トルク容量を算出し、算出した伝達トルク容量を実現する油圧指令を算出する。なお、変速制御部43は、イナーシャ相の間も継続して、係合側係合装置が車両要求トルクTrqに応じたトルクを伝達するように、係合側係合装置の油圧指令を算出する。
<イナーシャ相>
 変速制御部43は、トルク相の後、時刻T13から時刻T14の期間で、イナーシャ相の制御を行っている。具体的には、変速制御部43は、時刻T13から時刻T14の期間で、入力軸Iの回転速度を、変速前同期回転速度Wbfから変速後同期回転速度Wafまで低下させ、係合側係合装置の回転速度差ΔW1をゼロまで減少させている。
 ここで、変速後同期回転速度Wafは、係合側係合装置の回転速度差(滑り)がなくなった状態での入力軸Iの回転速度であり、変速制御部43は、出力軸Oの回転速度に変速後の変速段の変速比を乗算して、変速後同期回転速度Wafを算出する。入力軸I(回転電機MG)の回転速度と変速後同期回転速度Wafとの回転速度差は、係合側係合装置の一対の係合部材間の回転速度差ΔW1に比例するため、変速制御部43は、入力軸Iの回転速度と変速後同期回転速度Wafとの回転速度差により、係合側係合装置の回転速度差ΔW1を判定するように構成されている。ここで、入力軸I(回転電機MG)の回転速度は、係合側係合装置の入力側の係合部材の回転速度に対応し、変速後同期回転速度Wafは、係合側係合装置の出力側の係合部材の回転速度に対応する。
 また、変速前同期回転速度Wbfは、解放側係合装置の回転速度差がない状態での入力軸Iの回転速度であり、変速制御部43は、出力軸Oの回転速度に変速前の変速段の変速比を乗算して、変速前同期回転速度Wbfを算出する。
 本実施形態では、変速制御部43は、回転電機MGの出力トルクTmgを低下させることで、入力軸I(回転電機MG)の回転速度を低下させて、係合側係合装置の回転速度差ΔW1を減少させるように構成されている。本例では、変速制御部43は、回転電機MGの回転速度をできるだけ速く低下させるため、回転電機要求トルクを、統合制御部45が決定しているトルクから、回転電機MGが出力可能な最小トルクTmg_minまでΔT1だけ低下させている。なお、変速制御部43は、低下させた回転電機要求トルクを回転電機制御部42に伝達する。図6に示す例では、統合制御部45は、回転電機要求トルクをゼロに決定しており、イナーシャ相の間における回転電機MGの出力トルクTmgの低下量ΔT1は、最小トルクTmg_minのトルクに等しくなっている。
 本例では、入力軸Iの回転速度が低下する低下速度(回転加速度)は、入力軸Iと一体回転する回転部材の慣性モーメントを、回転電機MGの出力トルクTmgの低下量ΔT1で除算した値になる。特定係合装置SSCが滑り係合状態に制御されており、内燃機関ENGの慣性系が、入力軸Iの慣性系から切り離されているので、入力軸Iの慣性モーメントが、図5の比較例の場合に比べて大幅に低下している。よって、入力軸Iの回転速度の低下速度の大きさが、図5の比較例の場合よりも、大幅に大きくなっている。よって、入力軸Iの回転速度を、変速前同期回転速度Wbfから変速後同期回転速度Wafまで低下させるのに要する期間を、図5の比較例の場合よりも大幅に低下させることができている。
 変速制御部43は、係合側係合装置の回転速度差ΔW1を減少させている間(時刻T13から時刻T14)に、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させている。特定係合装置SSCが滑り係合状態にされた状態で、内燃機関ENGの回転速度に対して、回転電機MGの回転速度が低下されているので、特定係合装置SSCの回転速度差ΔW2が増加している。係合側係合装置及び特定係合装置SSCの双方が滑り係合状態に制御される。なお、特定係合装置SSCの一対の係合部材間の回転速度差ΔW2は、内燃機関ENGの回転速度と入力軸I(回転電機MG)の回転速度との回転速度差に対応する。ここで、内燃機関ENGの回転速度が、特定係合装置SSCの入力側の係合部材の回転速度に対応し、入力軸I(回転電機MG)の回転速度が、特定係合装置SSCの出力側の係合部材の回転速度に対応する。
 本実施形態では、変速制御部43は、特定係合装置SSCの回転速度差ΔW2を増加させている間(時刻T13から時刻T14)は、内燃機関ENGの回転速度を、オンアップシフト制御の開始前の内燃機関ENGの回転速度に対応した回転速度に維持するように構成されている。具体的には、変速制御部43は、内燃機関ENGの回転速度が、イナーシャ相の開始時(時刻T13)の変速前同期回転速度Wbf付近(例えば、イナーシャ相の開始時の変速前同期回転速度Wbfの80%から120%の間)に維持されるように、内燃機関ENGの出力トルクTenと特定係合装置SSCを伝達するトルクTsscとが釣り合うように制御する。これにより、内燃機関ENGの回転速度が変化することが抑制され、変速前同期回転速度Wbf付近に維持される。
 図6に示す例では、内燃機関要求トルクが、上記のように、統合制御部45により車両要求トルクTrqに応じた(本例では、等しい)トルクに決定されている。変速制御部43は、上記のように、特定係合装置SSCの伝達トルク容量が、内燃機関ENGの出力トルクTenの大きさに一致するように、特定係合装置SSCの油圧指令を算出している。
 変速制御部43は、係合側係合装置の回転速度差ΔW1(本実施形態では、入力軸Iの回転速度と変速後同期回転速度Wafとの回転速度差)が、予め定めた判定速度差以下になったと判定した場合(時刻T14)に、係合側係合装置の係合圧(油圧指令)を、車両要求トルクTrqに応じた係合圧から完全係合圧まで増加させて、係合側係合装置を直結係合状態に移行させている。
<特定係合装置SSCの回転速度差ΔW2の減少>
 第1の構成例では、変速制御部43は、係合側係合装置の回転速度差ΔW1をゼロまで減少させた後、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させるように構成されている(時刻T14から時刻T15)。
 本実施形態では、変速制御部43は、特定係合装置SSCの回転速度差ΔW2を減少させている間は、内燃機関ENGの回転速度を、オンアップシフト制御の開始前の内燃機関ENGの回転速度に対応した回転速度(本例では、イナーシャ相開始時の変速前同期回転速度Wbf付近の回転速度)から低下させるように構成されている。
 変速制御部43は、特定係合装置SSCの伝達トルク容量(係合圧)を増加させることで、特定係合装置SSCの回転速度差ΔW2を減少させ、特定係合装置SSCの伝達トルク容量(係合圧)の増加に応じて、回転電機MGの出力トルクTmgを低下させるように構成されている。
 この構成によれば、特定係合装置SSCの伝達トルク容量(係合圧)の増加により、内燃機関ENGの慣性系に作用する合計トルクが負になるため、内燃機関ENGの回転速度が低下する。また、特定係合装置SSCの伝達トルク容量(係合圧)の増加により、内燃機関ENG側から入力軸I側に伝達される特定係合装置SSCの伝達トルク(スリップトルク)が増加する。特定係合装置SSCの伝達トルク容量(係合圧)の増加に応じて、回転電機MGの出力トルクTmgが低下されるので、特定係合装置SSCの伝達トルクの増加が、回転電機MGの出力トルクTmgの低下により相殺される。よって、直結係合状態になった係合側係合装置を介して出力軸O側に伝達されるトルクTtmが変動することを抑制できる。
 図6に示す例では、変速制御部43は、回転電機要求トルクを、統合制御部45が決定しているトルク(本例ではゼロ)から、回転電機MGが出力可能な最小トルクTmg_minまで低下させて、回転電機MGの出力トルクTmgの低下量ΔT2を、設定可能な最大量に設定し、特定係合装置SSCの伝達トルク容量が、内燃機関要求トルクに応じたトルク容量から、回転電機要求トルクの低下量ΔT2の大きさだけ増加するように、特定係合装置SSCの係合圧(油圧指令)を増加させている。これにより、出力軸O側に伝達されるトルクが変動することを抑制しつつ、内燃機関ENGの回転速度をできるだけ速く低下させることができる。
 変速制御部43は、特定係合装置SSCの回転速度差ΔW2(本実施形態では、内燃機関ENGの回転速度と入力軸Iの回転速度との回転速度差)が、予め定めた判定速度差以下になったと判定した場合(時刻T15)に、特定係合装置SSCの係合圧(油圧指令)を、完全係合圧まで増加させて、特定係合装置SSCを直結係合状態に移行させている。特定係合装置SSCが直結係合状態になると、内燃機関ENGの出力トルクTenが特定係合装置SSCを伝達するようになる。
 また、変速制御部43は、特定係合装置SSCの回転速度差ΔW2が、予め定めた判定速度差以下になったと判定した場合(時刻T15)に、特定係合装置SSCの係合圧の増加に応じて回転電機MGの出力トルクTmgを低下させる制御を終了し、回転電機要求トルクを、統合制御部45が決定しているトルク(本例ではゼロ)に設定させる。
<第1の構成例のフローチャート>
 次に、第1の構成例の場合のオンアップシフト制御の処理について、図7のフローチャートを参照して説明する。
 まず、変速制御部43は、オンアップシフト制御を開始する条件が成立したか否か判定する(ステップ♯01)。変速制御部43は、オンアップシフト制御の開始条件が成立した場合(ステップ♯01:Yes)に、特定係合装置SSCを滑り係合状態にするため、特定係合装置SSCの係合圧(油圧指令)を減少させる制御を実行する(ステップ♯02)。また、変速制御部43は、オンアップシフト制御の開始条件が成立した場合(ステップ♯01:Yes)に、上記したプレ相の制御を実行する(ステップ♯03)。変速制御部43は、プレ相の制御の終了後、上記したトルク相の制御を実行する(ステップ♯04)。
 変速制御部43は、トルク相の制御の終了後、上記したイナーシャ相の制御を実行する(ステップ♯05)。具体的には、変速制御部43は、係合側係合装置の回転速度差ΔW1を減少させる場合に、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させる。
 変速制御部43は、係合側係合装置の回転速度差ΔW1をゼロまで減少したか否か判定する(ステップ♯06)。変速制御部43は、係合側係合装置の回転速度差ΔW1がゼロまで減少したと判定した場合(ステップ♯06:Yes)に、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させる制御を実行する(ステップ♯07)。変速制御部43は、特定係合装置SSCの回転速度差ΔW2がゼロまで減少したと判定した場合(ステップ♯08:Yes)に、オンアップシフト制御の処理を終了する。
3-4-2-4-2.第2の構成例
 第2の構成例では、変速制御部43は、係合側係合装置の回転速度差ΔW1を、ゼロより大きい値に予め定めた目標回転速度差ΔWoまで減少させた後、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させ、その後、係合側係合装置の回転速度差ΔW1をゼロまで減少させるように構成されている。これについて、図8のタイムチャートを参照して説明する。図8における時刻T24の直前までは、図6における時刻T14の直前までと同様であるので説明を省略する。
 本実施形態では、変速制御部43は、係合側係合装置の回転速度差ΔW1が、目標回転速度差ΔWo以下になったと判定した場合(時刻T24)に、特定係合装置SSCの回転速度差ΔW2の減少を開始している。
 変速制御部43は、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させた後(時刻T25後)、係合側係合装置の回転速度差ΔW1をゼロまで減少させている(時刻T26)。特定係合装置SSCの回転速度差ΔW2の減少中(時刻T24から時刻T25)、係合側係合装置が滑り係合状態に維持されるので、特定係合装置SSCの回転速度差ΔW2の減少に伴って生じるトルク変動が、出力軸O側に伝達されることを抑制できる。
 また、係合側係合装置の回転速度差ΔW1が、目標回転速度差ΔWoまで減少されるので、係合側係合装置の単位時間当たりの発熱量を、第1の構成例のようにゼロまで減少できないものの、回転速度差ΔW1の減少分だけ大幅に減少させることができ、係合側係合装置の耐久性を向上させることが可能になる。なお、係合装置の単位時間当たりの発熱量は、係合装置の伝達トルクと係合装置の回転速度差とを乗算した値に比例する。
 変速制御部43は、第1の構成例(時刻T14から時刻T15まで)と同様に、特定係合装置SSCの回転速度差ΔW2を減少させている間(時刻T24から時刻T25)は、内燃機関ENGの回転速度を、オンアップシフト制御の開始前の内燃機関ENGの回転速度に対応した回転速度(本例では、イナーシャ相の開始時(時刻T23)の変速前同期回転速度Wbf付近の回転速度)から低下させるように構成されている。
 また、変速制御部43は、第1の構成例(時刻T14から時刻T15まで)と同様に、特定係合装置SSCの係合圧を増加させることで、特定係合装置SSCの回転速度差ΔW2を減少させ、特定係合装置SSCの係合圧の増加に応じて、回転電機MGの出力トルクTmgをΔT2だけ低下させるように構成されている(時刻T24から時刻T25)。
 本実施形態では、変速制御部43は、係合側係合装置の回転速度差ΔW1を目標回転速度差ΔWoまで減少させた後、係合側係合装置の回転速度差ΔW1が、目標回転速度差ΔWoに維持されるように回転電機MGの出力トルクTmgを変化させる回転速度制御を実行するように構成されている(時刻T24から時刻T25)。
 具体的には、変速制御部43は、変速後同期回転速度Wafに目標回転速度差ΔWoを加算した回転速度を目標回転速度に設定し、回転電機MGの回転速度が目標回転速度に近づくように、回転電機要求トルクを変化させる回転速度制御を行うように構成されている。この回転速度制御により、回転電機MGの出力トルクTmgが、特定係合装置SSCの係合圧の増加に応じて自動的に低下される。
 この回転速度制御により、係合側係合装置の回転速度差ΔW1を、より確実に目標回転速度差ΔWoに維持して、滑り係合状態に維持することができる。
 変速制御部43は、特定係合装置SSCの回転速度差ΔW2が、予め定めた判定速度差以下になったと判定した場合(時刻T25)に、特定係合装置SSCの係合圧(油圧指令)を、完全係合圧まで増加させて、特定係合装置SSCを直結係合状態に移行させている。特定係合装置SSCが直結係合状態になると、内燃機関ENGの出力トルクTenが特定係合装置SSCを伝達するようになる(時刻T25以降)。
 また、変速制御部43は、特定係合装置SSCの回転速度差ΔW2が、予め定めた判定速度差以下になったと判定した場合(時刻T25)に、特定係合装置SSCの係合圧の増加に応じて回転電機MGの出力トルクTmgを低下させる制御を終了し、回転電機要求トルクを、統合制御部45が決定しているトルク(本例ではゼロ)に設定させている。
 変速制御部43は、特定係合装置SSCの回転速度差ΔW2が、予め定めた判定速度差以下になったと判定した場合(時刻T25)に、係合側係合装置の回転速度差ΔW1をゼロまで減少させる制御を実行するように構成されている(時刻T25から時刻T26)。
 変速制御部43は、時刻T23から時刻T24までと同様に、回転電機MGの出力トルクTmgをΔT1だけ低下させて、係合側係合装置の回転速度差ΔW1をゼロまで減少させるように構成されている。
 なお、回転電機MGの回転速度制御を継続し、目標回転速度差ΔWoをゼロまで次第に減少させることにより、係合側係合装置の回転速度差ΔW1をゼロまで減少させるように構成されてもよい。
 変速制御部43は、係合側係合装置の回転速度差ΔW1が、予め定めた判定速度差以下になったと判定した場合(時刻T26)に、係合側係合装置の係合圧(油圧指令)を、車両要求トルクTrqに応じた係合圧から完全係合圧まで増加させて、係合側係合装置を直結係合状態に移行させている。
<第2の構成例のフローチャート>
 次に、第2の構成例の場合のオンアップシフト制御の処理について、図9のフローチャートを参照して説明する。
 まず、変速制御部43は、オンアップシフト制御を開始する条件が成立したか否か判定する(ステップ♯11)。変速制御部43は、オンアップシフト制御の開始条件が成立した場合(ステップ♯11:Yes)に、特定係合装置SSCを滑り係合状態にするため、特定係合装置SSCの係合圧(油圧指令)を減少させる制御を実行する(ステップ♯12)。また、変速制御部43は、オンアップシフト制御の開始条件が成立した場合(ステップ♯11:Yes)に、上記したプレ相の制御を実行する(ステップ♯13)。変速制御部43は、プレ相の制御の終了後、上記したトルク相の制御を実行する(ステップ♯14)。
 変速制御部43は、トルク相の制御の終了後、上記したイナーシャ相の制御を実行する(ステップ♯15)。具体的には、変速制御部43は、係合側係合装置の回転速度差ΔW1を減少させる場合に、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させる。
 変速制御部43は、係合側係合装置の回転速度差ΔW1を目標回転速度差ΔWoまで減少したか否か判定する(ステップ♯16)。変速制御部43は、係合側係合装置の回転速度差ΔW1が目標回転速度差ΔWoまで減少したと判定した場合(ステップ♯16:Yes)に、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させる制御を実行する(ステップ♯17)。変速制御部43は、特定係合装置SSCの回転速度差ΔW2がゼロまで減少したと判定した場合(ステップ♯18:Yes)に、係合側係合装置の回転速度差ΔW1をゼロまで減少させる制御を実行する(ステップ♯19)。変速制御部43は、係合側係合装置の回転速度差ΔW1がゼロまで減少したと判定した場合(ステップ♯20:Yes)に、オンアップシフト制御の処理を終了する。
〔その他の実施形態〕
 最後に、本発明のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記の実施形態において、制御装置30は、複数の制御ユニット32~34を備え、これら複数の制御ユニット32~34が分担して複数の機能部41~45を備える場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、制御装置30は、上述した複数の制御ユニット32~34を任意の組み合わせで統合又は分離した制御装置として備えるようにしてもよく、複数の機能部41~45の分担も任意に設定することができる。
(2)上記の実施形態においては、変速装置TMは、2つの遊星歯車機構を有し、6つの係合装置を有し、6つの前進変速段を有し、各変速段は2つの係合装置が係合されることにより形成される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速装置TMは、少なくとも1つ以上の係合装置の係合で形成される変速段を2つ以上有していれば、どのような構成であってもよい。すなわち、変速装置TMは、2つ以上又は1つの遊星歯車機構を有してもよく、2つ以上の係合装置を有してもよく、2つ以上の前進変速段を有してもよく、各変速段は1つの係合装置が係合されることにより、或いは3つ以上の係合装置が係合されることにより形成されてもよい。
(3)上記の実施形態においては、変速制御部43は、係合側係合装置の回転速度差ΔW1を減少させる際に、係合側係合装置及び特定係合装置SSCの双方を滑り係合状態に制御するように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、係合側係合装置の回転速度差ΔW1を減少させる際に、少なくとも特定係合装置SSCを滑り係合状態に制御すればよく、係合側係合装置は解放状態に制御されるように構成されてもよい。
(4)上記の実施形態においては、変速制御部43は、回転電機MGの出力トルクTmgを低下させることで、回転電機MGの回転速度を低下させて、係合側係合装置の回転速度差ΔW1を減少させ、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、特定係合装置SSCの係合圧を、直結限界係合圧よりも減少させたり、係合側係合装置の係合圧を車両要求トルクTrqに応じた係合圧よりも増加させたり、することによっても、回転電機MGの回転速度を低下させて、係合側係合装置の回転速度差ΔW1を減少させ、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させるように構成されてもよい。
(5)上記の実施形態の第1の構成例においては、変速制御部43は、係合側係合装置の回転速度差ΔW1をゼロまで減少させた後、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、係合側係合装置の回転速度差ΔW1が、ゼロまで減少する前から、特定係合装置SSCの回転速度差ΔW2の減少を開始するように構成されてもよい。すなわち、係合側係合装置の回転速度差ΔW1の減少期間と、特定係合装置SSCの回転速度差ΔW2の減少期間とが重複するように構成されてもよい。
(6)上記の実施形態の第2の構成例においては、変速制御部43は、係合側係合装置の回転速度差ΔW1を目標回転速度差ΔWoまで減少させた後、特定係合装置SSCの回転速度差ΔW2をゼロまで減少させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、係合側係合装置の回転速度差ΔW1が、目標回転速度差ΔWoまで減少する前から、特定係合装置SSCの回転速度差ΔW2の減少を開始するように構成されてもよい。すなわち、係合側係合装置の回転速度差ΔW1の減少期間と、特定係合装置SSCの回転速度差ΔW2の減少期間とが重複するように構成されてもよい。
(7)上記の実施形態の第2の構成例においては、変速制御部43は、係合側係合装置の回転速度差ΔW1が、目標回転速度差ΔWoに維持されるように回転電機MGの出力トルクTmgを変化させる回転速度制御を実行するように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、係合側係合装置の回転速度差ΔW1が、目標回転速度差ΔWoに維持されるように、特定係合装置SSCの係合圧又は係合側係合装置の係合圧を変化させる回転速度制御を実行するように構成されてもよい。
(8)上記の実施形態においては、変速制御部43は、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させている間は、内燃機関ENGの回転速度を、オンアップシフト制御の開始前の内燃機関ENGの回転速度に対応した回転速度に維持するように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、特定係合装置SSCを滑り係合状態に制御すると共に、内燃機関ENGの回転速度に対して回転電機MGの回転速度を低下させている間、内燃機関ENGの回転速度が、オンアップシフト制御の開始前の内燃機関ENGの回転速度に対応した回転速度から増加又は減少するように構成されてもよい。
(9)上記の実施形態においては、変速制御部43は、特定係合装置SSCの係合圧を増加させることで、特定係合装置SSCの回転速度差ΔW2を減少させ、特定係合装置SSCの係合圧の増加に応じて、回転電機MGの出力トルクTmgを低下させるように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、変速制御部43は、内燃機関ENGの出力トルクTen(内燃機関要求トルク)を低下させることで、特定係合装置SSCの回転速度差ΔW2を減少させるように構成されてもよい。
(10)上記の実施形態においては、特定係合装置SSCは供給油圧(油圧指令)を減少させることで伝達トルク容量(係合圧)が減少するように構成されている場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、特定係合装置SSCは供給油圧(油圧指令)を増加させることで伝達トルク容量(係合圧)が減少するように構成されてもよい。この場合は、例えば、リターンばねが係合側に付勢しており、特定係合装置SSCへの供給油圧が解放側に押圧するように構成されている。
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、特定係合装置、回転電機、及び変速装置が設けられた車両用駆動装置を制御対象とする制御装置に好適に利用することができる。
1    :車両用駆動装置
2    :動力伝達経路
30   :制御装置
41   :内燃機関制御部
42   :回転電機制御部
43   :変速制御部
44   :特定係合制御部
45   :統合制御部
I    :入力軸
MG   :回転電機
O    :出力軸
SSC  :特定係合装置
TM   :変速装置
Ten  :内燃機関の出力トルク(内燃機関要求トルク)
Tmg  :回転電機の出力トルク(回転電機要求トルク)
Tmg_min:回転電機の最小トルク
Trq  :車両要求トルク
Tssc :特定係合装置の伝達トルク
Ttm  :変速装置の伝達トルク
Waf  :変速後同期回転速度
Wbf  :変速前同期回転速度
ΔT1  :ΔW1を低下させるための回転電機の出力トルクの低下量
ΔT2  :ΔW2を低下させるための回転電機の出力トルクの低下量
ΔW1  :係合側係合装置の一対の係合部材間の回転速度差
ΔW2  :特定係合装置の一対の係合部材間の回転速度差
ΔWo  :目標回転速度差

Claims (9)

  1.  内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、特定係合装置、回転電機、及び変速装置が設けられた車両用駆動装置を制御対象とする制御装置であって、
     前記変速装置は、複数の係合装置を備えると共に、当該複数の係合装置の係合の状態に応じて変速比の異なる複数の変速段が選択的に形成され、
     前記特定係合装置が直結係合状態で前記車輪に前進加速方向のトルクを伝達している状態から、前記複数の係合装置の係合及び解放を制御して変速比が小さい変速段に切り替えるオンアップシフト制御を実行する変速制御部を備え、
     前記変速制御部は、前記オンアップシフト制御の実行中において、変速段の切り替えのために係合される前記係合装置である係合側係合装置の一対の係合部材間の回転速度差を減少させる場合に、前記特定係合装置を滑り係合状態に制御すると共に、前記内燃機関の回転速度に対して前記回転電機の回転速度を低下させる車両用駆動装置の制御装置。
  2.  前記変速制御部は、前記係合側係合装置の回転速度差を減少させる際に、前記係合側係合装置及び前記特定係合装置の双方を滑り係合状態に制御する請求項1に記載の車両用駆動装置の制御装置。
  3.  前記変速制御部は、前記回転電機の出力トルクを低下させることで、前記回転電機の回転速度を低下させて、前記係合側係合装置の回転速度差を減少させる請求項1又は2に記載の車両用駆動装置の制御装置。
  4.  前記変速制御部は、前記係合側係合装置の回転速度差を予め定めた回転速度差まで減少させた後、前記特定係合装置の一対の係合部材間の回転速度差を減少させる請求項1から3のいずれか一項に記載の車両用駆動装置の制御装置。
  5.  前記変速制御部は、前記係合側係合装置の回転速度差をゼロまで減少させた後、前記特定係合装置の回転速度差をゼロまで減少させる請求項4に記載の車両用駆動装置の制御装置。
  6.  前記変速制御部は、前記係合側係合装置の回転速度差をゼロより大きい値に予め定めた目標回転速度差まで減少させた後、前記特定係合装置の回転速度差をゼロまで減少させ、その後、前記係合側係合装置の回転速度差をゼロまで減少させる請求項4に記載の車両用駆動装置の制御装置。
  7.  前記変速制御部は、前記係合側係合装置の回転速度差を前記目標回転速度差まで減少させた後、前記係合側係合装置の回転速度差が、前記目標回転速度差に維持されるように前記回転電機の出力トルクを変化させる回転速度制御を実行する請求項6に記載の車両用駆動装置の制御装置。
  8.  前記変速制御部は、前記特定係合装置の回転速度差を増加させている間は、前記内燃機関の回転速度を、前記オンアップシフト制御の開始前の前記内燃機関の回転速度に対応した回転速度に維持し、前記特定係合装置の回転速度差を減少させている間は、前記内燃機関の回転速度を、前記オンアップシフト制御の開始前の前記内燃機関の回転速度に対応した回転速度から低下させる請求項4から7のいずれか一項に記載の車両用駆動装置の制御装置。
  9.  前記変速制御部は、前記特定係合装置の伝達トルク容量を増加させることで、前記特定係合装置の回転速度差を減少させ、前記特定係合装置の伝達トルク容量の増加に応じて、前記回転電機の出力トルクを低下させる請求項4から8のいずれか一項に記載の車両用駆動装置の制御装置。
PCT/JP2015/056490 2014-03-05 2015-03-05 車両用駆動装置の制御装置 WO2015133570A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580007970.7A CN105980226B (zh) 2014-03-05 2015-03-05 车辆用驱动装置的控制装置
DE112015000308.8T DE112015000308B4 (de) 2014-03-05 2015-03-05 Steuervorrichtung für eine Fahrzeugantriebsvorrichtung
US15/118,282 US9919698B2 (en) 2014-03-05 2015-03-05 Control device for vehicle driving device
JP2016506549A JP6265261B2 (ja) 2014-03-05 2015-03-05 車両用駆動装置の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014042956 2014-03-05
JP2014-042956 2014-03-05

Publications (1)

Publication Number Publication Date
WO2015133570A1 true WO2015133570A1 (ja) 2015-09-11

Family

ID=54055370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056490 WO2015133570A1 (ja) 2014-03-05 2015-03-05 車両用駆動装置の制御装置

Country Status (5)

Country Link
US (1) US9919698B2 (ja)
JP (1) JP6265261B2 (ja)
CN (1) CN105980226B (ja)
DE (1) DE112015000308B4 (ja)
WO (1) WO2015133570A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10569758B2 (en) * 2016-02-26 2020-02-25 Ford Global Technologies, Llc System and method for modeling and estimating engine cranking torque disturbances during starts and stops
KR101813542B1 (ko) * 2016-10-06 2018-01-30 현대자동차주식회사 하이브리드 차량 및 그 제어 방법
US10562512B2 (en) * 2016-10-31 2020-02-18 Ford Global Technologies. Llc Methods and systems for operating a driveline of a hybrid engine powertrain
DE102017212676A1 (de) 2017-07-24 2019-01-24 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Kraftfahrzeugs
DE102017212672A1 (de) 2017-07-24 2019-01-24 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Kraftfahrzeugs
DE102017212674A1 (de) 2017-07-24 2019-01-24 Zf Friedrichshafen Ag Verfahren und Steuergerät zum Betreiben eines Kraftfahrzeugs
KR102322569B1 (ko) * 2017-09-25 2021-11-04 현대자동차주식회사 하이브리드 차량의 변속 제어 방법
CN110481343B (zh) * 2019-08-30 2020-10-02 东风汽车集团有限公司 四轮轮毂电机驱动汽车力矩补偿的组合二阶滑模控制方法
FR3131891B1 (fr) * 2022-01-18 2023-12-08 Psa Automobiles Sa Procede de controle d’un changement de rapport sur un groupe motopropulseur de vehicule hybride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069789A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2010149560A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2013039912A (ja) * 2012-09-25 2013-02-28 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520668B2 (ja) 1996-06-11 2004-04-19 トヨタ自動車株式会社 ハイブリッド車両の制御装置
JP4529940B2 (ja) * 2006-05-02 2010-08-25 日産自動車株式会社 ハイブリッド車両の伝動状態切り替え制御装置
DE102007038775A1 (de) * 2007-08-16 2009-02-19 Zf Friedrichshafen Ag Verfahren zur Durchführung einer Lastschaltung bei Fahrzeugen mit elektrischem Antrieb
JP5141369B2 (ja) * 2008-05-16 2013-02-13 日産自動車株式会社 ハイブリッド車両の制御装置
JP5039098B2 (ja) * 2009-07-24 2012-10-03 日産自動車株式会社 ハイブリッド車両の制御装置
JP5565627B2 (ja) * 2010-09-29 2014-08-06 アイシン・エィ・ダブリュ株式会社 制御装置
WO2012053590A1 (ja) * 2010-10-22 2012-04-26 日野自動車株式会社 車両および制御方法、並びにプログラム
CN103415427B (zh) * 2011-03-25 2016-03-30 爱信精机株式会社 混合动力车辆的变速控制装置
JP2013112190A (ja) * 2011-11-29 2013-06-10 Aisin Aw Co Ltd 制御装置
KR101427932B1 (ko) * 2012-12-07 2014-08-08 현대자동차 주식회사 구동모터의 속도 제어를 수반한 하이브리드 차량의 변속 제어 방법 및 시스템
JP2015113102A (ja) * 2013-12-16 2015-06-22 アイシン精機株式会社 ハイブリッド車両用駆動装置
CN104608760B (zh) * 2014-10-20 2016-05-25 比亚迪股份有限公司 混合动力汽车及其换挡控制方法、动力传动系统
US9499164B2 (en) * 2014-11-19 2016-11-22 Ford Global Technologies, Llc Controlling a clutch between an engine and a motor during a shift event in a hybrid vehicle
KR101765594B1 (ko) * 2015-12-11 2017-08-07 현대자동차 주식회사 듀얼 클러치 변속기를 구비한 하이브리드 차량의 제어 방법 및 장치
US9783188B2 (en) * 2016-01-13 2017-10-10 Ford Global Technologies, Llc EV mode shift strategy for hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007069789A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2010149560A (ja) * 2008-12-24 2010-07-08 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動制御装置
JP2013039912A (ja) * 2012-09-25 2013-02-28 Nissan Motor Co Ltd ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
US9919698B2 (en) 2018-03-20
DE112015000308T5 (de) 2016-10-27
DE112015000308B4 (de) 2021-12-23
US20160355173A1 (en) 2016-12-08
CN105980226B (zh) 2018-05-11
CN105980226A (zh) 2016-09-28
JP6265261B2 (ja) 2018-01-24
JPWO2015133570A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP6265261B2 (ja) 車両用駆動装置の制御装置
JP5177578B2 (ja) 制御装置
JP6562001B2 (ja) 車両用駆動伝達装置の制御装置
JP5532339B2 (ja) 制御装置
WO2011122533A1 (ja) 車両用変速装置
JP2011213252A (ja) 制御装置
JP6278345B2 (ja) 車両用駆動装置の制御装置
US20200023726A1 (en) Control device
JP6394792B2 (ja) 制御装置
JP5825422B2 (ja) 制御装置
JP6465204B2 (ja) 車両用駆動装置の制御装置
JP6390788B2 (ja) 制御装置
JP6299281B2 (ja) 車両用駆動装置の制御装置
JP6414489B2 (ja) 車両用駆動装置の制御装置
JP2020006782A (ja) 車両用駆動装置の制御装置
WO2015147051A1 (ja) 車両用駆動装置の制御装置
JP6064742B2 (ja) 車両用駆動装置の制御装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
JP5939173B2 (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757820

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015000308

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016506549

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15118282

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15757820

Country of ref document: EP

Kind code of ref document: A1