WO2015133185A1 - 細胞画像取得装置および方法並びにプログラム - Google Patents

細胞画像取得装置および方法並びにプログラム Download PDF

Info

Publication number
WO2015133185A1
WO2015133185A1 PCT/JP2015/051066 JP2015051066W WO2015133185A1 WO 2015133185 A1 WO2015133185 A1 WO 2015133185A1 JP 2015051066 W JP2015051066 W JP 2015051066W WO 2015133185 A1 WO2015133185 A1 WO 2015133185A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
region
magnification
colony
maturity
Prior art date
Application number
PCT/JP2015/051066
Other languages
English (en)
French (fr)
Inventor
松本 剛
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015133185A1 publication Critical patent/WO2015133185A1/ja
Priority to US15/251,819 priority Critical patent/US10416433B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/086Condensers for transillumination only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • G02B21/08Condensers
    • G02B21/14Condensers affording illumination for phase-contrast observation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/693Acquisition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/01Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials specially adapted for biological cells, e.g. blood cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1429Signal processing
    • G01N15/1433Signal processing using image recognition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N2015/1006Investigating individual particles for cytology

Definitions

  • the present invention relates to a cell image acquisition apparatus, method, and program for acquiring a high-magnification image obtained by imaging a region of interest in a cell colony at a high magnification.
  • stem cells such as ES cells and iPS cells and differentiation-induced cells are imaged with a microscope and the like, and the culture state of the cells is determined by capturing the characteristics of the images.
  • the cells are imaged at a low magnification to obtain a low-magnification captured image, and then the low-magnification captured image. It is possible to recognize more detailed features of cells by identifying a region of interest that is particularly interesting in the image, capturing the region of interest at a high magnification, obtaining a high-magnification captured image, and observing it .
  • Patent Document 1 and Patent Document 2 propose a method of imaging a fertilized embryo to be cultured at a high magnification. Further, Patent Document 3 and Patent Document 4 propose to image a position in a container designated by a user at a designated magnification based on management data relating to culture.
  • the morphology of the stem cell colonies changes according to the culture period. Specifically, for example, in the initial stage of culture, undifferentiated cells are uniformly distributed in the colony region, but as the culture progresses, differentiation begins at the periphery of the colony region and differentiated cells are distributed. Become.
  • observation may be made by paying attention to the central part in the colony region, but when culture proceeds, it is necessary to pay attention to the peripheral part of the colony region in order to recognize the degree of differentiation. .
  • Patent Document 1 and Patent Document 2 only propose imaging of individual fertilized embryos, and nothing is proposed regarding imaging of cell colonies. Also, Patent Document 3 and Patent Document 4 disclose only imaging a predetermined observation position in the container based on management data, and the imaging according to the change in the morphology of the cell colony as described above. None has been proposed.
  • the present invention can appropriately limit a region of interest for performing high-magnification imaging in a colony region in accordance with a change in the shape of the colony region, and process and store the cell colony. It is an object of the present invention to provide a cell image acquisition apparatus, method, and program capable of reducing the amount of data.
  • the cell image acquisition device of the present invention acquires a cell image obtained by imaging a cell at a first magnification, and a maturity information acquisition unit that acquires information related to the maturity of a cell to be cultured.
  • a colony region specifying unit for specifying a colony region of cells
  • an attention region determining unit for determining a region of interest in the cell colony region based on information related to maturity, and a region of interest higher than the first magnification.
  • a high-magnification image acquisition unit that acquires a high-magnification captured image captured at a magnification of 2.
  • the attention area determination unit may determine the attention area at a different position depending on the stage of cell maturity.
  • the attention area determination unit may determine, as the attention area, an area estimated to have a high possibility of being differentiated by cell maturation.
  • the attention area determination unit may determine the central part in the colony area as the attention area when the maturity of the cell is in the initial stage, or in the case of the middle stage advanced from the initial stage. May determine a peripheral portion in the colony region as a region of interest.
  • the attention area determination unit may determine the central part in the colony area as the attention area when the maturity of the cell is in a later stage that is higher than the middle stage.
  • the attention area determination unit may determine an area including the edge of the colony area as the attention area when the maturity level is a preset stage of expansion growth period.
  • information on the cell culture period can be acquired as information related to maturity.
  • the maturity level information acquisition unit may acquire information related to the maturity level by analyzing the image information of the colony region of the cells in the cell image.
  • information relating to the shape or size of the colony region of cells can be acquired as information relating to maturity.
  • the attention area determination unit may determine the attention area in the colony area of the cell based on the information related to the maturity and the culture condition of the cell.
  • the cell image acquisition method of the present invention acquires information related to the maturity of a cell to be cultured, acquires a cell image obtained by imaging the cell at a first magnification, and specifies a cell colony region in the cell image And determining a region of interest in the colony region of the cell based on the information related to the maturity level, and acquiring a high-magnification captured image obtained by imaging the region of interest at a second magnification higher than the first magnification.
  • the cell image acquisition program of the present invention acquires a cell image obtained by imaging a cell at a first magnification, a maturity information acquisition unit that acquires information related to the maturity of a cell to be cultured, and the cell A colony region specifying unit that specifies a colony region of cells in the image; an attention region determining unit that determines a region of interest in the colony region of cells based on information related to maturity; It is made to function as a high-magnification image acquisition part which acquires a high-magnification picked-up image imaged with higher 2nd magnification.
  • the cell image acquisition apparatus, method, and program of the present invention information related to the maturity level of a cell to be cultured is acquired, and a region of interest in the colony area of the cell is determined based on the information related to the maturity level.
  • the attention area can be appropriately limited according to the morphological change of the colony area, and the data to be processed and stored The amount can be reduced.
  • the block diagram which shows schematic structure of the stem cell culture observation system using one Embodiment of the cell image acquisition apparatus of this invention.
  • Diagram showing schematic configuration of phase contrast microscope The figure which shows an example of the form of the stem cell colony in the initial stage of culture, the middle stage of culture, and the latter stage.
  • cultivation period, and the position of the attention area The figure which shows an example of the attention area in the center part of a cell colony, and the attention area in a peripheral part Diagram showing an example of the area of interest during the expansion period
  • FIG. 1 is a block diagram showing a schematic configuration of a cell culture observation system.
  • the cell culture observation system includes a cell culture device 1, a cell image acquisition device 2, a phase contrast microscope 3, a display 4, and an input device 5, as shown in FIG.
  • the cell culture device 1 is a device for culturing cells.
  • Examples of cells to be cultured include pluripotent stem cells such as iPS cells, ES cells, and STAP cells, cells such as nerves, skin, and liver induced by differentiation from stem cells, and cancer cells.
  • pluripotent stem cells such as iPS cells, ES cells, and STAP cells
  • cells such as nerves, skin, and liver induced by differentiation from stem cells, and cancer cells.
  • a plurality of culture containers in which cells to be cultured are seeded in a medium are accommodated.
  • the cell culture device 1 includes a stage 10, a transport unit 11, and a control unit 12.
  • the stage 10 is provided with a culture vessel to be photographed by the phase contrast microscope 3.
  • the transport unit 11 selects a culture container to be imaged from among a plurality of culture containers accommodated at a predetermined position in the cell culture apparatus 1, and transports the selected culture container to the stage 10.
  • the control unit 12 controls the entire cell culture device 1 and controls environmental conditions such as temperature, humidity, and CO 2 concentration in the cell culture device 1 in addition to the operations of the stage 10 and the transport unit 11 described above.
  • the temperature, the configuration for adjusting the humidity and CO 2 concentration can be a known configuration.
  • the phase contrast microscope 3 captures a phase image of the cells in the culture vessel installed on the stage 10.
  • FIG. 2 is a diagram showing a schematic configuration of the phase-contrast microscope 3.
  • the phase-contrast microscope 3 has a white light source 31 that emits white light and a ring-shaped slit, and the white light emitted from the white light source 31 is incident to emit ring-shaped illumination light.
  • an objective lens that irradiates the cells in the culture vessel 15 installed on the stage 10 with the ring-shaped illumination light emitted from the slit plate 32. 33.
  • a phase difference lens 34, an imaging lens 37, and an image sensor 38 are provided on the opposite side of the stage 10 from the white light source 31.
  • the phase difference lens 34 includes an objective lens 35 and a phase plate 36.
  • the phase plate 36 is configured by forming a phase ring on a transparent plate that is transparent to the wavelength of the ring-shaped illumination light.
  • the size of the slit of the slit plate 32 described above is in a conjugate relationship with this phase ring.
  • the phase ring includes a phase film that shifts the phase of incident light by a quarter wavelength and a neutral density filter that attenuates the incident light in a ring shape.
  • the direct light incident on the phase difference lens 34 is collected by the objective lens 35 and passes through the phase ring, so that the phase is shifted by 1 ⁇ 4 wavelength and the brightness is weakened.
  • most of the diffracted light diffracted by the cells in the culture vessel 15 passes through the transparent plate of the phase plate, and its phase and brightness do not change.
  • the phase difference lens 34 is moved in the direction of arrow A shown in FIG. 2 by a driving mechanism (not shown). As the phase difference lens 34 moves in this way, the focus position is changed and focus control is performed.
  • the drive mechanism moves the phase difference lens 34 based on the focus control signal output from the imaging control unit 26 of the cell image acquisition device 2.
  • phase contrast microscope 3 of the present embodiment is configured such that a plurality of phase difference lenses 34 having different magnifications can be exchanged.
  • the phase difference lens 34 may be replaced automatically according to an instruction input from the user, or may be replaced manually by the user.
  • low-magnification imaging for macro observation and high-magnification imaging for detailed observation are performed.
  • a phase difference lens 34 of 1 to 4 times is used.
  • high-magnification imaging a 10 to 20 times phase difference lens 34 is used.
  • low magnification imaging and high magnification imaging only need to have relatively different magnifications, and are not limited to these magnifications.
  • the imaging lens 37 receives direct light and diffracted light that have passed through the phase difference lens 34 and forms an image of these lights on the image sensor 38.
  • the imaging element 38 captures a phase image of the cell by photoelectrically converting the image formed by the imaging lens 37.
  • a charge-coupled device (CCD) image sensor, a complementary metal-oxide semiconductor (CMOS) image sensor, or the like is used as the image sensor 38.
  • the phase-contrast microscope 3 is used as the imaging device.
  • a microscope capable of changing other optical magnifications may be used.
  • a differential interference microscope may be used. Good.
  • the cell image acquisition device 2 includes a low-magnification image acquisition unit 20, a colony region identification unit 21, a maturity information acquisition unit 22, an attention region determination unit 23, a high-magnification image acquisition unit 24, And a control unit 25.
  • the control unit 25 includes an imaging control unit 26 and a display control unit 27.
  • the cell image acquisition device 2 is one in which an embodiment of the cell image acquisition program of the present invention is installed in a computer.
  • the cell image acquisition apparatus 2 includes a central processing unit, a semiconductor memory, a hard disk, and the like, and an embodiment of a cell image acquisition program is installed on the hard disk. Then, by executing this program by the central processing unit, as shown in FIG. 1, a low-magnification image acquisition unit 20, a colony region specifying unit 21, a maturity information acquisition unit 22, a region of interest determination unit 23, a high magnification
  • the image acquisition unit 24, the imaging control unit 26, and the display control unit 27 operate.
  • the low-magnification image acquisition unit 20 acquires the cell image captured by the phase-contrast microscope 3 by performing the above-described low-magnification imaging.
  • the low-magnification captured image acquired by the low-magnification image acquisition unit 20 may be one image obtained by imaging one cell colony, or a plurality of image groups obtained by dividing one cell colony into a plurality of rectangular divided regions. Good. A plurality of cell colonies may be included in one image.
  • the low-magnification image acquisition unit 20 stores identification information for identifying cell colonies and low-magnification captured images in association with each other. For example, when one cell colony is captured as one low-magnification captured image, the identification information of the cell colony and the low-magnification captured image are stored in a one-to-one correspondence. In addition, when one cell colony is captured as a low-magnification captured image of a plurality of divided regions, the identification information of the cell colony and the low-magnification captured image groups of the plurality of divided regions are stored in association with each other. When a plurality of cell colonies are captured as one low-magnification captured image, identification information of each cell colony and one low-magnification captured image are stored in association with each other.
  • the identification information of the cell colony and the low-magnification captured image can be immediately read out and displayed.
  • the colony region specifying unit 21 specifies the position of the cell colony region in the low-magnification captured image acquired by the low-magnification image acquiring unit 20.
  • a method for specifying a cell colony region for example, after converting a low-magnification captured image into a binarized image, the cell colony region is automatically extracted by template matching or the like, and the position of the cell colony is specified. Good. Moreover, about automatic extraction of a cell colony area
  • the display control unit 27 causes the display 4 to display a low-magnification captured image, the user designates a cell colony region in the low-magnification captured image using the input device 5, and the designated coordinates
  • the colony region specifying unit 21 may acquire position information such as
  • the maturity level information acquisition unit 22 acquires information related to the maturity level of cells.
  • the information related to the maturity acquired by the maturity information acquisition unit 22 is used by the attention area determination unit 23 when determining the attention area in the cell colony area.
  • This attention area is an imaging target area for the high-magnification imaging described above.
  • the cell maturity is divided into three stages, ie, the initial stage of culture, the middle stage of culture, and the late stage of culture, and information related to the maturity level of the cell is acquired by the maturity level information acquisition unit 22. Get the stage to which the maturity of the cell belongs.
  • the cell maturity is divided into the early stage, middle stage of culture and late stage of culture because the morphology of the cell colony differs depending on each stage, and it is desirable to set the attention area according to the form. .
  • undifferentiated cells are uniformly distributed in the colony region as shown in FIG.
  • undifferentiated cells are densely distributed in the central part of the colony region, and differentiated cells are distributed in the peripheral part.
  • differentiated cells are distributed in the central portion and the peripheral portion of the colony region, and differentiated cells are distributed in an intermediate portion between the central portion and the peripheral portion.
  • the region of interest is set according to this form change. That is, an area for imaging at a high magnification is determined.
  • the information related to the maturity level of the cell acquired by the maturity level information acquisition unit 22 may be any information as long as it is information indicating the stage of the maturity level of the cell.
  • the culture period measured by a timer or the like is used as the maturity level. It can be acquired as related information.
  • the image information of the cell colony region in the low magnification image is analyzed, and the size of the cell colony, the number of cells in the stem cell colony or the number of cells per unit area smaller than the stem cell colony is calculated. You may measure and acquire such information as information relevant to maturity. For example, it is determined that the maturity degree is advanced as the number of measured cells is larger.
  • the size of the cell colony As the size of the cell colony, the area, perimeter, maximum diameter, etc. of the cell colony can be obtained. In addition, what is necessary is just to make it acquire about the image information of a cell colony area
  • FIG. For the measurement of the number of cells in the cell colony, for example, individual cells or nuclei and nucleoli in the cells may be detected by pattern matching, and the number of detected individual cells may be counted. .
  • the brightness of the image of the cell colony region, and the texture such as uniformity and roughness may be acquired as information related to maturity.
  • the degree of maturity advances and the density of the stem cells increases, and the stem cells are further stacked to gradually increase the luminance of the image. Therefore, it can be said that the higher the brightness is, the more mature the progress is.
  • the feature quantity of the shape of the stem cell colony may be acquired.
  • the shape of the stem cell colony gradually approaches a circular shape, and then the differentiation of the peripheral portion proceeds and the complexity of the edge increases. Therefore, the feature amount of the change in the shape of the stem cell colony can be acquired as the feature amount related to the maturity.
  • the feature quantity of the thickness of the stem cell colony may be acquired. As the maturity of stem cells progresses, the stem cell colonies gradually become thicker. Therefore, such a feature quantity of the thickness of the stem cell colony can be acquired as a feature quantity related to maturity.
  • the thickness of the stem cell colony may be measured by, for example, a separately provided measuring device.
  • the information related to the maturity described above may be set and input by the user using the input device 5, and not only the culture period and the size of the cell colony described above, but also the cell passage number
  • the user may input the information related to the degree.
  • the cell maturity is divided into three stages, but is not limited to three stages, and may be divided into two stages or four or more stages.
  • various intervals can be set for the intervals of each stage according to the culture conditions and the like.
  • the attention area determination unit 23 determines the attention area in the cell colony based on the information related to the maturity degree acquired by the maturity degree information acquisition part 22 and the position of the colony area specified by the colony area specification part 21. .
  • the attention area determination unit 23 of the present embodiment has a table associating the culture period and the attention area as shown in FIG. 4, and determines the attention area with reference to this table. Moreover, in this embodiment, the attention area
  • the culture conditions include the type of scaffold and medium, and whether or not different types of heterogeneous cells (feeder cells) are used. Even in the same culture period, the stage of maturity varies depending on these culture conditions. In this embodiment, the region of interest is determined in consideration of the culture conditions.
  • the culture conditions are not limited to the above-mentioned conditions, but may be any conditions as long as they affect the cell growth rate.
  • culture conditions such as temperature, humidity or CO 2 concentration are included. May be.
  • the culture condition information is set and input by the user using the input device 5, for example, but the temperature and humidity as described above may be the conditions measured with a thermometer or hygrometer.
  • the attention area determination unit 23 observes mainly the state of undifferentiated cells, as shown in FIG.
  • a region of interest (rectangular region indicated by a bold line) is set at the center and the culture period is the middle stage of culture, in order to observe how much differentiation of undifferentiated cells has progressed, as shown in FIG.
  • the region of interest is set in the peripheral part and the culture period is the latter part of the culture, the region of interest is again determined as the central part in order to observe the above-described hole range.
  • the range of the attention area may be a range of a divided area obtained by dividing the imaging area of the low-magnification captured image into a plurality of rectangular areas as shown in FIG. 5, for example.
  • condition B when the culture condition is condition B, unlike the case of condition A, when the culture period is the late stage of culture, the degree of differentiation of the undifferentiated cells is observed.
  • the area is determined as the peripheral part.
  • the attention area determination unit 23 determines the attention area at different positions depending on the maturity level. The determination of the attention area at which position and at which position depends on the cell or cell colony that the user wants to observe. It is set appropriately depending on the state.
  • an area that is estimated to be highly differentiated by cell maturation is determined as an attention area by using the central area in the early stage of culture, the peripheral area in the middle stage of culture, and the central area in the late stage of culture as the observation area.
  • the central part and the peripheral part as described above, but also the left half of the cell colony area is matured while remaining undifferentiated. There are cases where only half of the cells are differentiated, and the regions that are likely to be differentiated differ depending on the cell type and maturity.
  • an area estimated to have a high possibility of differentiation may be appropriately set as the attention area.
  • the region estimated to have a high possibility of differentiation may be set in advance by the user with respect to the table as described above, or automatically determined by analyzing the image of the cell colony region. Also good.
  • the density of cells may be calculated for each divided area in the cell colony area, and an area where the density is less than or equal to a predetermined threshold or greater than the threshold may be an area that is estimated to have a high possibility of differentiation.
  • the density of cells may be calculated by detecting individual cells or nuclei and nucleoli in the cells by pattern matching as described above.
  • a halo generated between individual cells may be detected, and a region where the area of the halo is equal to or greater than a predetermined threshold may be a region that is estimated to have a high possibility of differentiation.
  • Halo is a high-luminance artifact that occurs due to diffracted light that has passed between cells.
  • the position of the attention area not only the central part and the peripheral part of the colony area as described above, but also an intermediate part between the central part and the peripheral part is set, and the attention area is determined at the intermediate part. You may do it.
  • the edge of the cell colony region is detected, and the edge It is sufficient to determine the region including the region of interest.
  • the upper diagram in FIG. 6 shows an example of the position of the region of interest when the edge of the cell colony region exists in the upper right corner in the imaging region of the low-magnification captured image
  • the lower diagram in FIG. 6 shows the cell colony region
  • the stage of the expansion growth period is set as in the case of the condition C of the table shown in FIG. 4, and when the culture period is at this stage, the edge of the cell colony region is detected, A region including an edge may be determined as a region of interest.
  • the stage of the expansion growth phase may be determined from the culture period as described above, or by detecting that a circular region composed of a large number of cells is not extracted from the low-magnification captured image. You may make it do.
  • the imaging control unit 26 outputs a control signal to the control unit 12 of the cell culture device 1 based on the attention area determined by the attention area determination unit 23, so that the attention area in the cell colony has a high magnification.
  • the movement of the stage 10 in the XY direction is controlled so that an image is taken.
  • the imaging control unit 26 changes the phase difference lens 34 from the low magnification phase difference lens 34 to the high magnification phase difference lens 34.
  • a control signal is output so as to be changed to If the phase contrast microscope 3 is configured to manually change the magnification of the phase difference lens 34, the user can change the phase difference lens 34 to the high magnification phase difference lens 34 at the time of high magnification imaging. Good.
  • the imaging control unit 26 adjusts the position of the culture vessel 15 in the XY direction, and high-magnification imaging is performed in a state where the magnification of the phase difference lens 34 is changed to a high magnification. Is imaged.
  • the high-magnification image acquisition unit 24 acquires a high-magnification captured image captured by the phase-contrast microscope 3 as described above, and stores this.
  • the display control unit 27 displays a low-magnification captured image or a high-magnification captured image on the display 4.
  • the input device 5 includes a mouse, a keyboard, etc., and accepts an operation input by the user.
  • the input device 5 can accept a setting input when capturing a magnification when capturing a low-magnification image or a high-magnification image.
  • the input device 5 accepts setting inputs such as the culture conditions and the culture period described above.
  • the culture to be photographed is selected from the plurality of accommodated culture containers by the transport unit 11, and the selected culture container 15 is placed on the stage 10 (S10).
  • the magnification of the phase difference lens 34 of the phase-contrast microscope 3 is set to a low magnification, and a low-magnification captured image is captured, and the captured low-magnification captured image is acquired by the low-magnification image acquisition unit 20 (S12). .
  • the low-magnification captured image acquired by the low-magnification image acquisition unit 20 is output to the display control unit 27 and displayed on the display 4 by the display control unit 27.
  • the low-magnification captured image acquired by the low-magnification image acquisition unit 20 is output to the colony region specifying unit 21, and the colony region specifying unit 21 is based on the input low-magnification captured image.
  • the position of the colony region in the inside is specified (S14).
  • the maturity level information acquisition unit 22 acquires information on the culture period and information on the culture conditions as information related to the maturity level of the cells by setting input by the user (S16).
  • the information on the culture period and culture conditions acquired by the maturity information acquisition unit 22 is output to the attention area determination unit 23.
  • the attention area determination unit 23 determines an attention area that is an imaging target of high-magnification imaging in the phase-contrast microscope 3 based on the information on the culture period and culture conditions and the position of the colony area, and outputs the attention area to the imaging control unit 26. (S18).
  • the imaging control unit 26 moves the stage 10 in the XY direction based on the position information of the attention area determined by the attention area determination unit 23 so that the attention area is imaged at a high magnification (S20). At this time, the phase difference lens 34 in the phase difference microscope 3 is changed to a phase difference lens 34 for high magnification imaging.
  • phase-contrast microscope 3 a high-magnification image for detailed observation is taken with the focus position adjusted.
  • the high-magnification captured image captured by the phase-contrast microscope 3 is acquired by the high-magnification image acquisition unit 24 of the cell image acquisition device 2 and is output to the display control unit 27 (S22).
  • the display control unit 27 displays the input high-magnification captured image for detailed observation on the display 4 (S24).
  • the attention area in the colony area of the cell is determined based on the information related to the maturity level, and a high-magnification image obtained by imaging the attention area at a high magnification is acquired.
  • the region of interest can be appropriately limited according to the shape change of the colony region, and the amount of data to be processed and stored can be reduced.
  • the region of interest is determined based on information related to cell maturity and the culture conditions. Since the change is different, the region of interest may be determined in consideration of the cell type.
  • a table as shown in FIG. 4 may be set for each cell type, and the attention area determination unit 23 may acquire the cell type information and determine the attention area.
  • Examples of cell type information include pluripotent stem cells such as iPS cells, ES cells, and STAP cells as described above, cells such as nerves, skin, and liver that are induced to differentiate from stem cells, and cancer cells.
  • the cell type information may be set and input by the user using the input device 5, for example.
  • the tip position of a blood vessel in a cardiomyocyte colony or a skin cell colony is considered to vary depending on the culture period. Therefore, an area including the tip position of the blood vessel corresponding to the culture period may be set as the attention area.
  • the position of the attention area in the cell colony is determined based on the information related to the maturity of the cell. You may make it change the focus parameter in the focus control about Z direction.
  • the height h of the stem cell nucleus at the center of the colony region The height hedge of the nucleus of the center and the peripheral stem cells is the same.
  • FIG. 8 shows a plan view (upper view) and an elevation view (lower view) of undifferentiated cells and differentiated cells.
  • Differentiated cells have a lower nucleus / cytoplasm ratio than undifferentiated cells and thus have a lower nucleus height. Therefore, as shown in FIG. 3, the height h center of the stem cell nucleus in the center of the colony region is higher by ⁇ h than the height h edge of the stem cell nucleus in the peripheral portion.
  • the height h center of the stem cell nucleus in the central part of the colony region is the same as the height h edge of the stem cell nucleus in the peripheral part, but the nucleus of the intermediate stem cell between the central part and the peripheral part is the same.
  • the height h middle is increased by ⁇ h.
  • the morphology of the cell colony region changes in the early stage of culture, the middle stage of culture, and the late stage of culture.
  • the height of the nucleus varies depending on the position in the XY direction. It is desirable to set the initial focus search position for autofocus.
  • a focus parameter determination unit 28 is further provided.
  • the focus parameter determination unit 28 determines a focus search initial position according to the position of the region of interest, and based on the determined focus search initial position.
  • the imaging control unit 26 may control autofocus in the phase-contrast microscope 3.
  • a table as shown in FIG. 10 is preset in the focus parameter determination unit 28.
  • the table shown in FIG. 10 is a table in which cell types, culture conditions, culture periods, positions of interest, and autofocus focus search initial positions are associated with each other. That is, the focus parameter determination unit 28 determines the focus search initial position in consideration of the cell type, the culture condition, and the culture period in addition to the position of the region of interest.
  • the focus parameter determination unit 28 determines the focus search initial position in consideration of the cell type, the culture condition, and the culture period in addition to the position of the region of interest.
  • the relative relationship of the offset amount (distance) from the bottom surface of the culture vessel 15 is shown as the focus search initial position, the absolute value of the offset amount is actually acquired, The offset amount is determined as the focus search initial position.
  • the ES cell offset amount is actually set but not shown.
  • the culture condition information is condition A
  • the region of interest is the center of the cell colony region
  • the culture period is the initial stage of culture and the culture If the focus search initial position offset is relatively small (closer to the cell installation surface side) in the later stage, and the focus search initial position offset is in the middle culture stage The amount may be relatively large (away from the cell installation surface).
  • the offset amount is set according to the culture period. A relatively small offset amount may be determined without changing.
  • the thickness information for each position in the XY plane of the bottom of the culture vessel 15 and the thickness information for each position in the XY plane of the scaffold are acquired, and the focus search initial position is also taken into consideration. It may be determined.
  • the focus parameter determination unit 28 also determines the focus search range, the focus search width, the focus search order, the number of focus operations, and the like.
  • the focus search range is a focus position change range in autofocus control, and has a lower limit value and an upper limit value.
  • a table in which cell types and focus search ranges are associated with each other may be set in advance, and a wider focus search range may be determined as the cell size increases.
  • a table in which the attention area in the cell colony area is associated with the focus search range may be set in advance, and the focus search range may be determined according to the position of the attention area.
  • the attention area is the central part
  • a relatively wide focus search range may be set
  • a relatively narrow focus search range may be determined.
  • a table in which the culture period is associated with the focus search range may be set in advance.
  • the focus search range may be expanded as the culture period becomes longer.
  • the focus search range may be determined for each combination of cell type, region of interest, and culture period.
  • the focus search width is a change width when the focus position is changed once in autofocus control. As culture progresses and cell colonies expand, it is considered that the density of cells varies depending on the location. Therefore, there is a possibility that the probability that the cell nucleus is out of the focus search range is increased with the focus search width set in accordance with the initial stage of the culture in which the variation in cell density is small.
  • a table in which the culture period is associated with the focus search width may be set in advance, and the focus search width may be increased as the culture period becomes longer.
  • a table in which the position of the region of interest in the cell colony region is associated with the focus search width may be set in advance, and the focus search width may be increased toward the periphery of the cell colony region.
  • the focus search width may be determined for each combination of the position of the region of interest in the cell colony and the culture period.
  • the auto focus control when the auto focus control is performed by sequentially changing the focus position from the high position to the low position with reference to the bottom surface of the culture vessel 15, the auto focus is performed by sequentially changing the focus position from the low position to the high position.
  • the control is performed and a case where the auto focus control is performed by alternately repeating the change of the focus position in the direction approaching the bottom surface of the culture vessel 15 and the change of the focus position in the direction away from the culture container 15.
  • a table in which the culture period and the focus search order are associated with each other is set in advance, and in the initial culture period or the intermediate culture period, as described above, from a low position to a high position, or from a high position to a low position.
  • the focus position may be searched, and in the latter stage of culture, the focus position may be searched by alternately repeating the search for the focus position from the high position and the search for the focus position from the low position.
  • the focus search order may be determined for each combination of the position of the region of interest in the cell colony and the culture period.
  • the number of focus operations is the upper limit of the number of focus position changes in autofocus control. It can be said that strict focus accuracy is necessary in order to accurately recognize and evaluate the morphology of cell nuclei and tissues (for example, nucleolus) corresponding to the cell nuclei in the early to mid-culture. On the other hand, as the culture progresses, cell nuclei and tissues corresponding thereto tend to be difficult to visually recognize due to cell differentiation and lamination, and in this case, it is considered that strict focus accuracy is not necessary.
  • a table in which the culture period is associated with the number of focus operations may be set in advance, and the number of focus operations may be reduced as the culture progresses.
  • a table in which the position of the region of interest in the cell colony region is associated with the number of focus operations is set in advance, and the central portion is increased by increasing the number of focus operations toward the center rather than the periphery of the cell colony region.
  • the focus accuracy may be increased.
  • you want to focus on the periphery of the cell colony area increase the number of focusing operations in the periphery rather than the center of the cell colony area to increase the focus accuracy of the periphery. Also good.
  • the number of focus operations may be determined for each combination of the position of the region of interest in the cell colony and the culture period.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Computer Hardware Design (AREA)
  • Cell Biology (AREA)
  • Signal Processing (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

細胞コロニーの撮像に際して、コロニー領域内において高倍率な撮像を行う注目領域を、コロニー領域の形態変化に応じて適切に限定し、処理および保存すべきデータの量を削減する細胞画像取得装置および方法並びにプログラムを提供する。培養される細胞の成熟度に関連する情報を取得する成熟度情報取得部22と、細胞を第1の倍率で撮像した細胞画像を取得し、その細胞画像内における細胞のコロニー領域を特定するコロニー領域特定部21と、成熟度に関連する情報に基づいて、細胞のコロニー領域における注目領域を決定する注目領域決定部23と、注目領域を第1の倍率よりも高い第2の倍率で撮像した高倍率撮像画像を取得する高倍率画像取得部24とを備える。

Description

細胞画像取得装置および方法並びにプログラム
 本発明は、細胞コロニーにおける注目領域を高倍率で撮像した高倍率撮像画像を取得する細胞画像取得装置および方法並びにプログラムに関するものである。
 従来、ES細胞やiPS細胞などの幹細胞や分化誘導された細胞などを顕微鏡などで撮像し、その画像の特徴を捉えることで細胞の培養状態を判定する方法が提案されている。
 そして、このように細胞を撮像した画像の特徴に基づいて細胞の培養状態を判定する際には、まず、低倍率で細胞を撮像して低倍率撮像画像を取得し、その後、低倍率撮像画像内において特に注目したい注目領域を特定し、その注目領域を高倍率で撮像して高倍率撮像画像を取得してこれを観察することによって、細胞のより詳細な特徴を認識することが可能である。
 たとえば、特許文献1および特許文献2には、培養される受精胚を高倍率で撮像する方法が提案されている。また、特許文献3および特許文献4には、培養に関する管理データに基づいて、ユーザが指定した容器内の位置を、指定した倍率で撮像することが提案されている。
国際公開第2010/128670号 国際公開第2009/125547号 特開2011-239778号公報 特開2011-229409号公報
 ここで、たとえば幹細胞を培養する場合、幹細胞コロニーの形態は培養期間に応じて変化する。具体的には、たとえば培養初期は、コロニー領域内に未分化細胞が均一に分布している状態であるが、培養が進むとコロニー領域の周辺部は分化が始まって分化細胞が分布することになる。
 すなわち、培養初期は、コロニー領域内の中央部に注目して観察を行えば良いが、培養が進んだ際には、分化の程度を認識するため、コロニー領域の周辺部に注目する必要がある。
 このような幹細胞コロニーの形態変化に応じて、たとえば幹細胞コロニーの全範囲を高倍率で撮像するようにした場合には、幹細胞コロニーの全範囲を分割した複数の領域についてそれぞれ高倍率撮像を行う必要があり、計測時間が非常に長くなってしまう。また、高倍率で撮像された画像のデータ量も膨大となってしまう。
 特許文献1および特許文献2には、個々の受精胚を撮像することしか提案されておらず、細胞コロニーの撮像については何も提案されていない。また、特許文献3および特許文献4においても、管理データに基づいて、容器内の所定の観察位置を撮像することしか開示されておらず、上述したような細胞コロニーの形態変化に応じた撮像については何も提案されていない。
 本発明は、上記の問題に鑑み、細胞コロニーの撮像に際して、コロニー領域内において高倍率な撮像を行う注目領域を、コロニー領域の形態変化に応じて適切に限定することができ、処理および保存するデータの量を削減することができる細胞画像取得装置および方法並びにプログラムを提供することを目的とする。
 本発明の細胞画像取得装置は、培養される細胞の成熟度に関連する情報を取得する成熟度情報取得部と、細胞を第1の倍率で撮像した細胞画像を取得し、その細胞画像内における細胞のコロニー領域を特定するコロニー領域特定部と、成熟度に関連する情報に基づいて、細胞のコロニー領域における注目領域を決定する注目領域決定部と、注目領域を第1の倍率よりも高い第2の倍率で撮像した高倍率撮像画像を取得する高倍率画像取得部とを備えたことを特徴とする。
 また、上記本発明の細胞画像取得装置においては、注目領域決定部は、細胞の成熟度の段階によって異なる位置に注目領域を決定してもよい。
 また、注目領域決定部は、細胞の成熟によって分化する可能性が高いと推定される領域を注目領域として決定してもよい。
 また、注目領域決定部は、細胞の成熟度が初期段階である場合には、コロニー領域内の中心部を注目領域として決定してもよいし、初期段階よりも進んだ中期段階である場合には、コロニー領域内の周辺部を注目領域として決定してもよい。
 また、注目領域決定部は、細胞の成熟度が中期段階よりも進んだ後期段階である場合には、コロニー領域内の中心部を注目領域として決定してもよい。
 また、注目領域決定部は、成熟度の段階が予め設定された拡大成長期の段階である場合には、コロニー領域のエッジを含む領域を注目領域として決定してもよい。
 また、成熟度に関連する情報として、細胞の培養期間の情報を取得することができる。
 また、成熟度情報取得部は、細胞画像内の細胞のコロニー領域の画像情報を解析することによって成熟度に関連する情報を取得してもよい。
 また、成熟度に関連する情報として、細胞のコロニー領域の形状または大きさに関する情報を取得することができる。
 また、注目領域決定部は、成熟度に関連する情報と細胞の培養条件とに基づいて、細胞のコロニー領域における注目領域を決定してもよい。
 本発明の細胞画像取得方法は、培養される細胞の成熟度に関連する情報を取得し、細胞を第1の倍率で撮像した細胞画像を取得し、その細胞画像内における細胞のコロニー領域を特定し、成熟度に関連する情報に基づいて、細胞のコロニー領域内における注目領域を決定し、注目領域を第1の倍率よりも高い第2の倍率で撮像した高倍率撮像画像を取得することを特徴とする。
 本発明の細胞画像取得プログラムは、コンピュータを、培養される細胞の成熟度に関連する情報を取得する成熟度情報取得部と、細胞を第1の倍率で撮像した細胞画像を取得し、その細胞画像内における細胞のコロニー領域を特定するコロニー領域特定部と、成熟度に関連する情報に基づいて、細胞のコロニー領域内における注目領域を決定する注目領域決定部と、注目領域を第1の倍率よりも高い第2の倍率で撮像した高倍率撮像画像を取得する高倍率画像取得部として機能させることを特徴とする。
 本発明の細胞画像取得装置および方法並びにプログラムによれば、培養される細胞の成熟度に関連する情報を取得し、その成熟度に関連する情報に基づいて、細胞のコロニー領域における注目領域を決定し、その決定した注目領域を高倍率で撮像した高倍率撮像画像を取得するようにしたので、注目領域をコロニー領域の形態変化に応じて適切に限定することができ、処理および保存するデータの量を削減することができる。
本発明の細胞画像取得装置の一実施形態を用いた幹細胞培養観察システムの概略構成を示すブロック図 位相差顕微鏡の概略構成を示す図 培養初期、培養中期および培養後期における幹細胞コロニーの形態の一例を示す図 培養条件および培養期間と、注目領域の位置とを対応づけたテーブルの一例を示す図 細胞コロニーの中心部における注目領域と周辺部における注目領域の一例を示す図 拡大成長期における注目領域の一例を示す図 本発明の細胞画像取得装置の一実施形態を用いた幹細胞培養観察システムの作用を説明するためのフローチャート 未分化細胞と分化細胞の核/細胞質の比を説明するための図 図1に示す細胞培養観察システムの変形例を示す図 細胞の種類、培養条件、培養期間および観察位置と、オートフォーカスのフォーカス探索初期位置とを対応づけたテーブルの一例を示す図
 以下、本発明の細胞画像取得装置および方法並びにプログラムの一実施形態を用いた細胞培養観察システムについて、図面を参照しながら詳細に説明する。図1は、細胞培養観察システムの概略構成を示すブロック図である。
 細胞培養観察システムは、図1に示すように、細胞培養装置1と、細胞画像取得装置2と、位相差顕微鏡3と、ディスプレイ4と、入力装置5とを備えている。
 細胞培養装置1は、細胞の培養を行うための装置である。培養対象の細胞としては、たとえばiPS細胞やES細胞やSTAP細胞といった多能性幹細胞や、幹細胞から分化誘導された神経や皮膚や肝臓などの細胞や、がん細胞などがある。細胞培養装置1内には、培養対象の細胞を培地に播種した培養容器が複数収容されている。そして、細胞培養装置1は、ステージ10と搬送部11と制御部12とを備えている。
 ステージ10は、位相差顕微鏡3による撮影対象の培養容器が設置されるものである。また、搬送部11は、細胞培養装置1内の所定位置に収容されている複数の培養容器の中から撮像対象の培養容器を選択し、その選択した培養容器をステージ10まで搬送する。また、制御部12は、細胞培養装置1全体を制御し、上述したステージ10や搬送部11の動作以外に、細胞培養装置1内の温度、湿度およびCO濃度などの環境条件を制御する。なお、温度、湿度およびCO濃度を調整するための構成については、公知な構成を用いることができる。
 位相差顕微鏡3は、ステージ10上に設置された培養容器内の細胞の位相画像を撮像する。図2は、位相差顕微鏡3の概略構成を示す図である。位相差顕微鏡3は、図2に示すように、白色光を出射する白色光源31と、リング形状のスリットを有し、白色光源31から出射された白色光が入射されてリング状照明光を出射するスリット板32と、スリット板32から射出されたリング状照明光が入射され、その入射されたリング状照明光をステージ10上に設置された培養容器15内の細胞に対して照射する対物レンズ33とを備えている。
 そして、ステージ10に対して白色光源31とは反対側に、位相差レンズ34と、結像レンズ37と、撮像素子38とが設けられている。
 位相差レンズ34は、対物レンズ35と、位相板36とを備える。位相板36は、リング状照明光の波長に対して透明な透明板に対して位相リングを形成して構成される。なお、上述したスリット板32のスリットの大きさは、この位相リングと共役な関係にある。
 位相リングは、入射された光の位相を1/4波長ずらす位相膜と、入射された光を減光する減光フィルタとがリング状に形成されて構成される。位相差レンズ34に入射された直接光は対物レンズ35によって集光され、位相リングを通過することによって位相が1/4波長ずれるとともに、その明るさが弱められる。一方、培養容器15内の細胞によって回折された回折光は大部分が位相板の透明板を通過し、その位相および明るさは変化しない。
 位相差レンズ34は、図示省略した駆動機構によって図2に示す矢印A方向に移動する。このように位相差レンズ34が移動することによってフォーカス位置が変更されてフォーカス制御が行われる。駆動機構は、細胞画像取得装置2の撮像制御部26から出力されたフォーカス制御信号に基づいて位相差レンズ34を移動させる。
 また、本実施形態の位相差顕微鏡3は、倍率の異なる複数の位相差レンズ34を交換可能に構成されている。位相差レンズ34の交換については、ユーザからの指示入力に応じて自動的に行う構成としてもよいし、ユーザが手動で交換するようにしてもよい。
 本実施形態においては、マクロ観察のための低倍率撮像と詳細観察のための高倍率撮像とが行われるが、低倍率撮像の際には1倍~4倍の位相差レンズ34が用いられ、高倍率撮像の際には10倍~20倍の位相差レンズ34が用いられる。ただし、低倍率撮像と高倍率撮像とは相対的に倍率が異なっていればよく、これらの倍率に限定されない。
 結像レンズ37は、位相差レンズ34を通過した直接光および回折光が入射され、これらの光を撮像素子38に結像する。撮像素子38は、結像レンズ37によって結像された像を光電変換することによって細胞の位相画像を撮像する。撮像素子38としては、CCD(charge-coupled device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどが用いられる。
 なお、本実施形態においては、撮像装置として位相差顕微鏡3を用いるようにしたが、その他の光学倍率が変更可能な顕微鏡を用いるようにしてもよく、たとえば微分干渉顕微鏡などを用いるようにしてもよい。
 図1に戻り、細胞画像取得装置2は、低倍率画像取得部20と、コロニー領域特定部21と、成熟度情報取得部22と、注目領域決定部23と、高倍率画像取得部24と、制御部25とを備えている。制御部25は、撮像制御部26と表示制御部27とを備えている。
 細胞画像取得装置2は、コンピュータに対して本発明の細胞画像取得プログラムの一実施形態がインストールされたものである。 
 細胞画像取得装置2は、中央処理装置、半導体メモリおよびハードディスクなどを備えており、ハードディスクに細胞画像取得プログラムの一実施形態がインストールされている。そして、このプログラムが中央処理装置によって実行されることによって、図1に示すような、低倍率画像取得部20、コロニー領域特定部21、成熟度情報取得部22、注目領域決定部23、高倍率画像取得部24、撮像制御部26および表示制御部27が動作する。
 低倍率画像取得部20は、位相差顕微鏡3が、上述した低倍率撮像を行って撮像した細胞画像を取得する。低倍率画像取得部20によって取得される低倍率撮像画像は、1つの細胞コロニーを撮像した1枚の画像でもよいし、1つの細胞コロニーを矩形の複数の分割領域で分割した複数の画像群でもよい。また、1枚の画像内に複数の細胞コロニーが含まれていてもよい。
 低倍率画像取得部20は、細胞コロニーを識別するための識別情報と低倍率撮像画像とを対応づけて記憶する。たとえば、1つの細胞コロニーを1枚の低倍率撮像画像として撮像した場合には、その細胞コロニーの識別情報と低倍率撮像画像とが1対1で対応づけられて記憶される。また、1つの細胞コロニーを複数の分割領域の低倍率撮像画像として撮像した場合には、その細胞コロニーの識別情報と複数の分割領域の低倍率撮像画像群とが対応づけられて記憶される。また、複数の細胞コロニーを1枚の低倍率撮像画像として撮像した場合には、その各細胞コロニーの識別情報と1枚の低倍率撮像画像とが対応づけられて記憶される。
 このように細胞コロニーの識別情報と低倍率撮像画像とを対応づけて記憶して管理することによって、たとえばユーザが入力装置5から細胞コロニーの識別情報を入力した際、その識別情報に対応づけられた低倍率撮像画像を即座に読み出して表示等することができる。
 コロニー領域特定部21は、低倍率画像取得部20によって取得された低倍率撮像画像内における細胞コロニー領域の位置を特定する。細胞コロニー領域を特定する方法としては、たとえば低倍率撮像画像を2値化画像に変換した後、テンプレートマッチングなどによって細胞コロニー領域を自動的に抽出し、細胞コロニーの位置を特定するようにすればよい。また、細胞コロニー領域の自動抽出については、上述した方法に限らず、その他の公知な方法を用いるようにしてもよい。
 また、自動抽出に限らず、表示制御部27によってディスプレイ4に低倍率撮像画像を表示させ、ユーザが入力装置5を用いて低倍率撮像画像内における細胞コロニー領域を指定し、その指定された座標などの位置情報をコロニー領域特定部21が取得するようにしてもよい。
 成熟度情報取得部22は、細胞の成熟度に関連する情報を取得する。成熟度情報取得部22によって取得された成熟度に関連する情報は、注目領域決定部23において、細胞コロニー領域における注目領域を決定する際に用いられる。この注目領域が、上述した高倍率撮像の撮像対象領域である。
 本実施形態においては、細胞の成熟度を培養初期、培養中期および培養後期の3段階に区分し、成熟度情報取得部22によって細胞の成熟度に関連する情報を取得することによって、撮像対象の細胞の成熟度が属する段階を取得する。
 細胞の成熟度を培養初期、培養中期および培養後期と区分するのは、これらのそれぞれの段階によって細胞コロニーの形態が異なっており、その形態に応じて注目領域を設定することが望ましいからである。
 具体的には、たとえば幹細胞コロニーの場合、培養初期は、図3に示すようにコロニー領域内に未分化細胞が均一に分布している。そして、培養中期になると、図3に示すようにコロニー領域の中心部は未分化細胞が密集して分布し、周辺部は分化が始まって分化細胞が分布することになる。
 さらに、培養後期になると、図3に示すようにコロニー領域の中心部において分化が起こり易くなり、いわゆるホールと呼ばれる現象が起こることがある。これによりコロニー領域の中心部と周辺部には分化細胞が分布し、中心部と周辺部との間の中間部に分化細胞が分布することになる。
 上述したように、培養初期と培養中期と培養後期とで細胞コロニー領域の形態が変化するので、本実施形態においては、この形態変化に応じて注目領域を設定する。すなわち、高倍率で撮像を行う領域を決定する。
 成熟度情報取得部22によって取得される細胞の成熟度に関連する情報は、細胞の成熟度の段階を示す情報であれば如何なる情報でもよく、たとえばタイマなどによって計測された培養期間を成熟度に関連する情報として取得することができる。また、培養期間に限らず、たとえば低倍率撮像画像内の細胞コロニー領域の画像情報を解析し、細胞コロニーの大きさや、幹細胞コロニー内の細胞数または幹細胞コロニーよりも小さい単位面積当たりの細胞数を計測し、これらの情報を成熟度に関連する情報として取得するようにしてもよい。たとえば、計測した細胞数が多いほど成熟度が進んでいると判断する。細胞コロニーの大きさとしては、細胞コロニーの面積、周囲長、最大径などを取得することができる。なお、細胞コロニー領域の画像情報については、コロニー領域特定部21によって特定された細胞コロニーの位置情報に基づいて取得するようにすればよい。また、細胞コロニー内の細胞数の計測については、たとえば個々の細胞または細胞内の核や核小体をパターンマッチングなどによって検出し、その検出した個々の細胞の数をカウントするようにすればよい。
 また、たとえば細胞コロニー領域の画像の輝度や、均一性や粗さなどのテクスチャを成熟度に関連する情報として取得するようにしてもよい。たとえば撮像対象の細胞が幹細胞である場合には、その成熟度が進行すると幹細胞の密集度が高くなり、さらに幹細胞が積層されて、画像の輝度が次第に高くなる。したがって、輝度が高いほど成熟度が進行しているといえる。
 また、成熟度が進行して上述したように幹細胞が増殖して積層された状態となった場合、画像の均一性が高くなり、また凹凸の少ない滑らかな画像となる。したがって、画像の均一性が高いほど、または画像が滑らかであるほど成熟度が進行しているといえる。画像の均一性や滑らかさの特徴量の取得方法については、既に公知な手法を用いることができる。
 また、成熟度に関連する情報として、幹細胞コロニーの形状の特徴量を取得するようにしてもよい。幹細胞の成熟度が進行すると幹細胞コロニーの形状は次第に円形に近づいた後、周辺部分の分化が進行してエッジの複雑度が大きくなる。したがって、このような幹細胞コロニーの形状の変化の特徴量を成熟度に関連する特徴量として取得することができる。
 また、成熟度に関連する情報として、幹細胞コロニーの厚さの特徴量を取得するようにしてもよい。幹細胞の成熟度が進行すると幹細胞コロニーは次第に厚くなっていく。したがって、このような幹細胞コロニーの厚さの特徴量を成熟度に関連する特徴量として取得することができる。幹細胞コロニーの厚さについては、たとえば別途設けられた計測装置によって計測するようにすればよい。
 また、上述した成熟度に関連する情報は、ユーザが入力装置5を用いて設定入力するようにしてもよく、上述した培養期間や細胞コロニーの大きさなどだけでなく、細胞の継代数を成熟度に関連する情報としてユーザが入力するようにしてもよい。
 なお、本実施形態においては、細胞の成熟度を3段階に区分するようにしたが、3段階に限らず、2段階や4段階以上に区分してもよい。また、各段階の間隔についても、培養条件などに応じて種々の間隔を設定することができる。
 注目領域決定部23は、成熟度情報取得部22において取得された成熟度に関連する情報とコロニー領域特定部21によって特定されたコロニー領域の位置とに基づいて、細胞コロニーにおける注目領域を決定する。
 本実施形態の注目領域決定部23は、具体的には、図4に示すような培養期間と注目領域とを対応づけたテーブルを有しており、このテーブルを参照して注目領域を決定する。また、本実施形態においては、注目領域決定部23は、培養期間の他に培養条件も取得し、その取得した培養条件と培養期間とに基づいて、図4に示すテーブルを参照して注目領域を決定する。
 培養条件としては、足場や培地の種類や、培養対象の細胞とは異なる種類の異種細胞(フィーダー細胞)を使用しているか否かの条件などがある。同じ培養期間であっても、これらの培養条件によって成熟度の段階が異なることになるので、本実施形態では、培養条件も考慮して注目領域を決定する。
 また、培養条件は、上記に挙げた条件に限らず、細胞の成長速度に影響する条件であれば如何なる条件でもよく、たとえば温度、湿度またはCO濃度などの培養の環境条件なども含めるようにしてもよい。なお、培養条件の情報は、たとえばユーザによって入力装置5を用いて設定入力されるが、上述したような温度や湿度などは温度計や湿度計で計測した条件を用いるようにしてもよい。
 注目領域決定部23は、具体的には、たとえば培養条件が条件Aであり、培養期間が培養初期である場合には、未分化細胞の状態を中心に観察するため、図5に示すように注目領域(太線で示される矩形領域)を中心部に設定し、培養期間が培養中期である場合には、未分化細胞の分化がどの程度進んでいるかを観察するため、図5に示すように注目領域を周辺部に設定し、培養期間が培養後期である場合には、上述したホールの範囲を観察するため、再び注目領域を中心部に決定する。なお、注目領域の範囲としては、たとえば図5に示すように低倍率撮像画像の撮像領域を複数の矩形状の領域で分割した分割領域の範囲とすればよい。
 また、たとえば培養条件が条件Bである場合には、条件Aの場合とは異なり、培養期間が培養後期である場合には、未分化細胞の分化がどの程度進んでいるかを観察するため、注目領域を周辺部に決定する。
 上述したように注目領域決定部23は、成熟度の段階によって異なる位置の注目領域を決定するが、どの段階でどの位置に注目領域を決定するかについては、ユーザが観察したい細胞や細胞コロニーの状態などによって適宜設定される。
 上記説明では、培養初期では中心部、培養中期では周辺部、培養後期では中心部を観察領域とすることによって、細胞の成熟によって分化する可能性が高いと推定される領域を注目領域として決定するようにしたが、分化する可能性が高いと推定される領域は、上記のような中央部や周辺部だけでなく、たとえば細胞コロニー領域の左半分は未分化性を保ったまま成熟して右半分だけが分化してしまう場合などもあり、細胞の種類や成熟度によって分化する可能性が高いと推定される領域は異なる。
 したがって、細胞の種類や成熟度を考慮し、分化する可能性が高いと推定される領域を注目領域として適宜設定するようにすればよい。分化する可能性が高いと推定される領域は、上述したようなテーブルに対してユーザが予め設定入力してもよいし、細胞コロニー領域の画像を解析することによって自動的に決定するようにしてもよい。たとえば、細胞コロニー領域内の各分割領域について細胞の密集度を算出し、その密集度が所定の閾値以下または閾値以上の領域を、分化する可能性が高いと推定される領域としてもよい。なお、細胞の密集度については、上述したように個々の細胞または細胞内の核や核小体をパターンマッチングなどによって検出することによって算出するようにすればよい。
 また、密集度に限らず、個々の細胞間で発生するハロを検出し、そのハロの面積が所定の閾値以上の領域を、分化する可能性が高いと推定される領域としてもよい。ハロとは、細胞間を通過した回折光に起因して発生する高輝度のアーチファクトのことである。
 また、注目領域の位置については、上述したようなコロニー領域の中心部や周辺部だけでなく、たとえば中心部と周辺部との間の中間部を設定し、その中間部に注目領域を決定するようにしてもよい。
 また、たとえば細胞コロニーの成熟度が進行し、図6に示すように低倍率撮像画像の撮像領域内に細胞コロニー領域が収まらないような場合には、細胞コロニー領域のエッジを検出し、そのエッジを含む領域を注目領域として決定するようにすればよい。図6の上段の図は、細胞コロニー領域のエッジが低倍率撮像画像の撮像領域内の右上隅に存在する場合における注目領域の位置の一例を示し、図6の下段の図は、細胞コロニー領域のエッジが低倍率撮像画像の撮像領域の中央辺りに存在する場合における注目領域の位置の一例を示す。
 具体的には、たとえば、図4に示すテーブルの条件Cの場合のように拡大成長期の段階を設定し、培養期間がこの段階である場合には、細胞コロニー領域のエッジを検出し、そのエッジを含む領域を注目領域として決定するようにすればよい。なお、拡大成長期の段階であることは、上述したように培養期間から決定するようにしてもよいし、低倍率撮像画像から多数の細胞からなる円形領域が抽出されないことを検出することによって決定するようにしてもよい。
 図1に戻り、撮像制御部26は、注目領域決定部23によって決定された注目領域に基づいて、細胞培養装置1の制御部12に制御信号を出力し、細胞コロニー内の注目領域が高倍率撮像されるようにステージ10のX-Y方向の移動を制御する。また、撮像制御部26は、位相差顕微鏡3が、位相差レンズ34の倍率を自動的に変更可能に構成されている場合には、低倍率の位相差レンズ34から高倍率の位相差レンズ34に変更されるように制御信号を出力する。なお、位相差顕微鏡3が、位相差レンズ34の倍率を手動で変更する構成である場合には、高倍率撮像の際には、ユーザが高倍率の位相差レンズ34に変更するようにすればよい。
 そして、撮像制御部26によって培養容器15のX-Y方向の位置が調整され、位相差レンズ34の倍率が高倍率に変更された状態で高倍率撮像が行われ、注目領域の高倍率撮像画像が撮像される。
 高倍率画像取得部24は、上述したようにして位相差顕微鏡3によって撮像された高倍率撮像画像を取得し、これを記憶する。
 表示制御部27は、低倍率撮像画像や高倍率撮像画像をディスプレイ4に表示させる。
 入力装置5は、マウスやキーボードなどを備え、ユーザによる操作入力を受け付ける。たとえば、入力装置5は、低倍率画像を撮像する際の倍率や高倍率画像を撮像する際の設定入力を受け付け可能である。また、入力装置5は、上述した培養条件、培養期間などの設定入力を受け付ける。
 次に、上述した細胞培養観察システムの作用について、図7に示すフローチャートを参照しながら説明する。
 まず、細胞培養装置1において、搬送部11によって、収容されている複数の培養容器の中から撮影対象の培養が選択され、その選択された培養容器15がステージ10に設置される(S10)。
 そして、位相差顕微鏡3の位相差レンズ34の倍率が低倍率に設定されて低倍率撮像画像が撮像され、その撮像された低倍率撮像画像が低倍率画像取得部20によって取得される(S12)。低倍率画像取得部20によって取得された低倍率撮像画像は表示制御部27に出力され、表示制御部27によってディスプレイ4に表示される。
 また、低倍率画像取得部20によって取得された低倍率撮像画像は、コロニー領域特定部21に出力され、コロニー領域特定部21は、入力された低倍率撮像画像に基づいて、その低倍率撮像画像内におけるコロニー領域の位置を特定する(S14)。
 一方、ユーザによる設定入力などによって成熟度情報取得部22は、細胞の成熟度に関連する情報としての培養期間の情報と、培養条件の情報とを取得する(S16)。
 そして、成熟度情報取得部22によって取得された培養期間および培養条件の情報は、注目領域決定部23に出力される。注目領域決定部23は、培養期間および培養条件の情報とコロニー領域の位置とに基づいて、位相差顕微鏡3における高倍率撮像の撮像対象である注目領域を決定し、撮像制御部26に出力する(S18)。
 撮像制御部26は、注目領域決定部23によって決定された注目領域の位置情報に基づいて、その注目領域が高倍率撮像されるようにステージ10をX-Y方向に移動させる(S20)。また、このとき位相差顕微鏡3における位相差レンズ34は高倍率撮像の位相差レンズ34に変更される。
 そして、位相差顕微鏡3において、フォーカス位置が調整された状態で詳細観察用の高倍率撮像画像が撮像される。位相差顕微鏡3によって撮像された高倍率撮像画像は細胞画像取得装置2の高倍率画像取得部24によって取得され、表示制御部27に出力される(S22)。表示制御部27は、入力された詳細観察用の高倍率撮像画像をディスプレイ4に表示させる(S24)。
 上記実施形態の細胞培養観察システムによれば、成熟度に関連する情報に基づいて、細胞のコロニー領域における注目領域を決定し、その注目領域を高倍率で撮像した高倍率撮像画像を取得するようにしたので、注目領域をコロニー領域の形態変化に応じて適切に限定することができ、処理および保存すべきデータの量を削減することができる。
 なお、上記実施形態の細胞培養観察システムにおいては、細胞の成熟度に関連する情報と培養条件とに基づいて注目領域を決定するようにしたが、細胞の種類によってもその成長の仕方や形態の変化は異なるため、さらに細胞の種類も考慮して注目領域を決定するようにしてもよい。
 具体的には、たとえば図4に示すようなテーブルを細胞の種類毎に設定しておき、注目領域決定部23が、細胞の種類の情報も取得して注目領域を決定するようにすればよい。細胞の種類の情報としては、上述したようなiPS細胞やES細胞やSTAP細胞といった多能性幹細胞や、幹細胞から分化誘導された神経や皮膚や肝臓などの細胞や、がん細胞などがある。細胞の種類の情報は、たとえばユーザが入力装置5を用いて設定入力するようにすればよい。
 具体的には、たとえば心筋細胞コロニーや皮膚細胞コロニーにおける血管の先端位置は、培養期間によって異なると考えられる。したがって、培養期間に応じた血管の先端位置を含む領域を注目領域として設定するようにすればよい。
 また、上記実施形態の細胞培養観察システムにおいては、細胞の成熟度に関連する情報に基づいて細胞コロニーにおける注目領域の位置を決定するようにしたが、さらに、その決定した注目領域の位置によって、Z方向についてのフォーカス制御におけるフォーカスパラメータを変更するようにしてもよい。
 上述したように、たとえば幹細胞コロニーの場合、培養初期は、図3に示すようにコロニー領域内に未分化細胞が均一に分布しているため、コロニー領域の中心部の幹細胞の核の高さhcenterと周辺部の幹細胞の核の高さhedgeは同じである。
 そして、培養中期になると、図3に示すようにコロニー領域の中心部は未分化細胞が密集して分布し、周辺部は分化が始まって分化細胞が分布することになる。図8は、未分化細胞と分化細胞の平面図(上段の図)と立面図(下段の図)とを示した図である。分化細胞は未分化細胞よりも核/細胞質の比が低下するので核の高さが低くなる。したがって、図3に示すように、コロニー領域の中心部の幹細胞の核の高さhcenterは、周辺部の幹細胞の核の高さhedgeよりもΔhだけ高くなる。
 さらに、培養後期になると、図3に示すようにコロニー領域の中心部において分化が起こり易くなり、いわゆるホールと呼ばれる現象が起こることがある。したがって、コロニー領域の中心部の幹細胞の核の高さhcenterと周辺部の幹細胞の核の高さhedgeとは同じになるが、中心部と周辺部との間の中間部の幹細胞の核の高さhmiddleはΔhだけ高くなる。
 上述したように、培養初期と培養中期と培養後期とで細胞コロニー領域の形態が変化し、これによりX-Y方向の位置によって核の高さが異なることになるので、注目領域の位置に応じてオートフォーカスのフォーカス探索初期位置を設定することが望ましい。
 したがって、図9に示すように、フォーカスパラメータ決定部28をさらに設け、このフォーカスパラメータ決定部28において、注目領域の位置に応じてフォーカス探索初期位置を決定し、その決定したフォーカス探索初期位置に基づいて、撮像制御部26が、位相差顕微鏡3におけるオートフォーカスを制御するようにしてもよい。
 具体的には、フォーカスパラメータ決定部28には、たとえば図10に示すようなテーブルが予め設定されている。図10に示すテーブルは、細胞の種類、培養条件、培養期間および注目位置と、オートフォーカスのフォーカス探索初期位置とを対応づけたテーブルである。すなわち、フォーカスパラメータ決定部28は、注目領域の位置の他に、細胞の種類、培養条件および培養期間も考慮してフォーカス探索初期位置を決定する。なお、図10に示すテーブルにおいては、フォーカス探索初期位置として培養容器15の底面からのオフセット量(距離)の相対的な関係を示しているが、実際にはオフセット量の絶対値が取得され、そのオフセット量がフォーカス探索初期位置として決定される。また、図5に示すテーブルにおいてES細胞のオフセット量については実際には設定されているが図示省略している。
 そして、たとえば細胞の種類情報がiPS細胞であり、培養条件の情報が条件Aであり、注目領域が細胞コロニー領域の中心部である場合には、培養期間が培養初期の段階である場合と培養後期の段階である場合に、フォーカス探索初期位置のオフセット量を相対的に小さくし(細胞の設置面側に近くする)、培養期間が培養中期の段階である場合に、フォーカス探索初期位置のオフセット量を相対的に大きくする(細胞の設置面から遠くする)ようにすればよい。
 また、同様に、細胞の種類情報がiPS細胞であり、培養条件の情報が条件Aであっても、注目領域が細胞コロニー領域の周辺部である場合には、培養期間に応じてオフセット量を変更することなく、相対的に小さいオフセット量を決定するようにすればよい。
 このように図10に示すテーブルを参照してオフセット量を取得することによって、注目領域の位置に応じた適切なフォーカス探索初期位置を決定することができる。
 また、さらに培養容器15の底部のX-Y面内の位置毎の厚さや、足場のX-Y面内の位置毎の厚さ情報などを取得し、これらも考慮してフォーカス探索初期位置を決定するようにしてもよい。
 また、上記説明では、オートフォーカスにおけるフォーカス探索初期位置を決定する方法について説明したが、フォーカスパラメータ決定部28は、フォーカス探索範囲、フォーカス探索幅、フォーカス探索順、フォーカス動作回数なども決定する。
 フォーカス探索範囲は、オートフォーカス制御におけるフォーカス位置の変更範囲であり、下限値と上限値とを有する。フォーカス探索範囲については、たとえば細胞の種類とフォーカス探索範囲とを対応づけたテーブルを予め設定しておき、細胞のサイズが大きいほど広いフォーカス探索範囲を決定するようにすればよい。
 また、細胞コロニー領域内の注目領域とフォーカス探索範囲とを対応づけたテーブルを予め設定し、注目領域の位置に応じたフォーカス探索範囲を決定するようにしてもよい。この場合、たとえば注目領域が中央部である場合には、相対的に広いフォーカス探索範囲とし、注目領域が周辺部である場合には、相対的に狭いフォーカス探索範囲を決定するようにすればよい。
 また、培養期間とフォーカス探索範囲とを対応づけたテーブルを予め設定するようにしてもよい。この場合、たとえば培養期間が長くなるほどフォーカス探索範囲を広げるようにすればよい。
 また、細胞の種類、注目領域の位置および培養期間の組み合わせ毎にフォーカス探索範囲を決定するようにしてもよい。
 フォーカス探索幅とは、オートフォーカス制御における1回のフォーカス位置の変更の際の変更幅のことである。培養が進み細胞コロニーが拡大してくると、場所に応じて細胞の密集度にばらつきが生じることが考えられる。したがって、細胞の密集度のばらつきが小さい培養初期に合わせて設定したフォーカス探索幅では、細胞核がフォーカス探索範囲を外れる確率が上がる可能性がある。
 したがって、たとえば培養期間とフォーカス探索幅とを対応づけたテーブルを予め設定しておき、培養期間が長くなるほどフォーカス探索幅を広くするようにしてもよい。
 また、細胞コロニー領域の周辺ほど個々の細胞が周りの細胞から受ける外力が小さくなって動きやすくなり、よりばらつきが大きくなる。したがって、細胞コロニー領域内の注目領域の位置とフォーカス探索幅とを対応づけたテーブルを予め設定しておき、細胞コロニー領域の周辺ほどフォーカス探索幅を広くするようにしてもよい。
 また、細胞コロニー内の注目領域の位置および培養期間の組み合わせ毎にフォーカス探索幅を決定するようにしてもよい。
 フォーカス探索順としては、培養容器15の底面を基準として高い位置から低い位置にフォーカス位置を順次変更してオートフォーカス制御を行う場合と、低い位置から高い位置にフォーカス位置を順次変更してオートフォーカス制御を行う場合と、培養容器15の底面に近づいていく方向へのフォーカス位置の変更と離れていく方向へのフォーカス位置の変更とを交互に繰り返してオートフォーカス制御を行う場合とがある。
 分化細胞や、コロニー周辺の細胞は培養容器15の底面に這うように分布していることが多いため、培養容器15の底面側(低い位置)からフォーカス位置を探索する方が効率的である。一方、未分化細胞や細胞コロニー中心付近の細胞は立っていることが多いので、培養容器15の底面から離れた位置からフォーカス位置を探索する方が効率的である。
 したがって、細胞コロニー領域内の注目領域の位置とフォーカス探索順とを対応づけたテーブルを予め設定しておき、細胞コロニー領域の中心部については低い位置から高い位置に向かってフォーカス位置を探索し、細胞コロニーの周辺部について高い位置から低い位置に向かってフォーカス位置を探索するようにしてもよい。
 また、培養が進むと、上述したようにフォーカス位置のばらつきが大きくなることから、どちらか一方からフォーカス位置を探索するよりも、高い位置と低い位置とからで挟んで探索した方が細胞コロニー全体での探索回数が減らせてトータルで効率的となる場合があると考えられる。
 したがって、たとえば培養期間とフォーカス探索順とを対応づけたテーブルを予め設定しておき、培養初期や培養中期は、上述したように低い位置から高い位置に向かって、または高い位置から低い位置に向かってフォーカス位置を探索し、培養後期は、高い位置からのフォーカス位置の探索と低い位置からのフォーカス位置の探索とを交互に繰り返して挟んでフォーカス位置を探索するようにしてもよい。
 また、細胞コロニー内の注目領域の位置および培養期間の組み合わせ毎にフォーカス探索順を決定するようにしてもよい。
 フォーカス動作回数とは、オートフォーカス制御におけるフォーカス位置の変更回数の上限である。培養初期~培養中期において、細胞核やそれに準ずる組織(たとえば核小体)の形態を厳密に認識・評価するためには、厳密なフォーカス精度が必要であるといえる。一方、培養が進んでくると細胞の分化や積層により細胞核やそれに準ずる組織が視認しづらくなってくる傾向にあり、その場合は厳密なフォーカス精度が必要でなくなると考えられる。
 したがって、たとえば培養期間とフォーカス動作回数とを対応づけたテーブルを予め設定しておき、培養が進むほどフォーカス動作回数を少なくするようにしてもよい。また、逆に、培養が進むにつれて発現する性状(核内のクロマチン凝集)を評価したい場合もあり、このような場合には、培養が進むほどフォーカス動作回数を増やしてフォーカス精度を上げるようにしてもよい。
 また、細胞コロニー領域内の注目領域の位置とフォーカス動作回数とを対応づけたテーブルを予め設定しておき、細胞コロニー領域の周辺部よりも中央部ほどフォーカス動作回数を多くすることによって、中央部のフォーカス精度を上げるようにしてもよい。また、逆に細胞コロニー領域の周辺部を重点的に観察したい場合には、細胞コロニー領域の中央部よりも周辺部ほどフォーカス動作回数を多くすることによって、周辺部のフォーカス精度を上げるようにしてもよい。
 また、細胞コロニー内の注目領域の位置および培養期間の組み合わせ毎にフォーカス動作回数を決定するようにしてもよい。
1   細胞培養装置
2   細胞画像取得装置
3   位相差顕微鏡
4   ディスプレイ
5   入力装置
10  ステージ
11  搬送部
12  制御部
15  培養容器
20  低倍率画像取得部
21  コロニー領域特定部
22  成熟度情報取得部
23  注目領域決定部
24  高倍率画像取得部
25  制御部
26  撮像制御部
27  表示制御部
28  フォーカスパラメータ決定部
31  白色光源
32  スリット板
33  対物レンズ
34  位相差レンズ
35  対物レンズ
36  位相板
37  結像レンズ
38  撮像素子

Claims (12)

  1.  培養される細胞の成熟度に関連する情報を取得する成熟度情報取得部と、
     前記細胞を第1の倍率で撮像した細胞画像を取得し、該細胞画像内における前記細胞のコロニー領域を特定するコロニー領域特定部と、
     前記成熟度に関連する情報に基づいて、前記細胞のコロニー領域における注目領域を決定する注目領域決定部と、
     前記注目領域を前記第1の倍率よりも高い第2の倍率で撮像した高倍率撮像画像を取得する高倍率画像取得部とを備えたことを特徴とする細胞画像取得装置。
  2.  前記注目領域決定部が、前記細胞の成熟度の段階によって異なる位置に前記注目領域を決定する請求項1記載の細胞画像取得装置。
  3.  前記注目領域決定部が、前記細胞の成熟によって分化する可能性が高いと推定される領域を前記注目領域として決定する請求項2記載の細胞画像取得装置。
  4.  前記注目領域決定部が、前記細胞の成熟度が初期段階である場合には、前記コロニー領域内の中心部を前記注目領域として決定し、前記初期段階よりも進んだ中期段階である場合には、前記コロニー領域内の周辺部を前記注目領域として決定する請求項2記載の細胞画像取得装置。
  5.  前記注目領域決定部が、前記細胞の成熟度が後期段階である場合に、前記コロニー領域内の中心部を前記注目領域として決定する請求項2から4いずれか1項記載の細胞画像取得装置。
  6.  前記注目領域決定部が、前記成熟度の段階が予め設定された拡大成長期の段階である場合には、前記コロニー領域のエッジを含む領域を前記注目領域として決定する請求項1から5いずれか1項記載の細胞画像取得装置。
  7.  前記成熟度に関連する情報が、前記細胞の培養期間の情報である請求項1から6いずれか1項記載の細胞画像取得装置。
  8.  前記成熟度情報取得部が、前記細胞画像内の前記細胞のコロニー領域の画像情報を解析することによって前記成熟度に関連する情報を取得する請求項1から6いずれか1項記載の細胞画像取得装置。
  9.  前記成熟度に関連する情報が、前記細胞のコロニー領域の形状または大きさに関する情報である請求項8記載の細胞画像取得装置。
  10.  前記注目領域決定部が、前記成熟度に関連する情報と前記細胞の培養条件とに基づいて、前記細胞のコロニー領域における注目領域を決定する請求項1から9いずれか1項記載の細胞画像取得装置。
  11.  培養される細胞の成熟度に関連する情報を取得し、
     前記細胞を第1の倍率で撮像した細胞画像を取得し、該細胞画像内における前記細胞のコロニー領域を特定し、
     前記成熟度に関連する情報に基づいて、前記細胞のコロニー領域内における注目領域を決定し、
     前記注目領域を前記第1の倍率よりも高い第2の倍率で撮像した高倍率撮像画像を取得することを特徴とする細胞画像取得方法。
  12.  コンピュータを、培養される細胞の成熟度に関連する情報を取得する成熟度情報取得部と、
     前記細胞を第1の倍率で撮像した細胞画像を取得し、該細胞画像内における前記細胞のコロニー領域を特定するコロニー領域特定部と、
     前記成熟度に関連する情報に基づいて、前記細胞のコロニー領域内における注目領域を決定する注目領域決定部と、
     前記注目領域を前記第1の倍率よりも高い第2の倍率で撮像した高倍率撮像画像を取得する高倍率画像取得部として機能させることを特徴とする細胞画像取得プログラム。
PCT/JP2015/051066 2014-03-04 2015-01-16 細胞画像取得装置および方法並びにプログラム WO2015133185A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/251,819 US10416433B2 (en) 2014-03-04 2016-08-30 Cell image acquisition device, method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-041688 2014-03-04
JP2014041688A JP6595156B2 (ja) 2014-03-04 2014-03-04 細胞画像取得装置および方法並びにプログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/251,819 Continuation US10416433B2 (en) 2014-03-04 2016-08-30 Cell image acquisition device, method, and program

Publications (1)

Publication Number Publication Date
WO2015133185A1 true WO2015133185A1 (ja) 2015-09-11

Family

ID=54054997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051066 WO2015133185A1 (ja) 2014-03-04 2015-01-16 細胞画像取得装置および方法並びにプログラム

Country Status (3)

Country Link
US (1) US10416433B2 (ja)
JP (1) JP6595156B2 (ja)
WO (1) WO2015133185A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106367330A (zh) * 2016-11-19 2017-02-01 厦门大学 一种微生物形态拍摄鉴定装置及方法
JP2017063651A (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 細胞評価装置および方法
WO2019138572A1 (ja) * 2018-01-15 2019-07-18 オリンパス株式会社 細胞解析装置及び細胞解析システム
EP3428262A4 (en) * 2016-03-11 2019-11-06 Nikon Corporation IMAGE PROCESSING DEVICE, OBSERVATION DEVICE, AND PROGRAM
WO2021166089A1 (ja) * 2020-02-18 2021-08-26 オリンパス株式会社 評価支援装置、評価支援システム、評価支援方法およびプログラム
WO2022270179A1 (ja) * 2021-06-24 2022-12-29 富士フイルム株式会社 情報処理装置、情報処理方法、及びプログラム
US11609537B2 (en) 2017-03-02 2023-03-21 Shimadzu Corporation Cell analysis method and cell analysis system using a holographic microscope

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6595156B2 (ja) 2014-03-04 2019-10-23 富士フイルム株式会社 細胞画像取得装置および方法並びにプログラム
JP6143365B2 (ja) * 2014-03-05 2017-06-07 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
AU2017287141B2 (en) * 2016-07-01 2020-06-18 Sony Corporation Image acquisition method, image acquisition device, program and culture container
US11398032B2 (en) * 2016-07-14 2022-07-26 Dai Nippon Printing Co., Ltd. Image analysis system, culture management system, image analysis method, culture management method, cell group structure method, and program
JP6670222B2 (ja) * 2016-11-01 2020-03-18 株式会社日立ハイテク 画像診断支援装置及びシステム、画像診断支援方法
CN107644210B (zh) * 2017-09-22 2020-05-12 哈尔滨工业大学(威海) 基于图像处理的微生物数量估算方法
JP2018157830A (ja) * 2018-06-25 2018-10-11 富士フイルム株式会社 細胞画像取得装置および方法並びにプログラム
EP3865566A4 (en) * 2018-10-12 2022-08-03 Nikon Corporation SUB CULTURE LEVEL CALCULATION DEVICE AND SUB CULTURE LEVEL CALCULATION METHOD AND PROGRAM
KR102225540B1 (ko) 2019-05-21 2021-03-09 한국과학기술연구원 망막 이미지 촬영 방법 및 장치, 및 망막 및 시신경 기능 평가 시스템
JP7342950B2 (ja) * 2019-07-18 2023-09-12 株式会社島津製作所 細胞画像解析方法および細胞画像解析装置
US11134171B1 (en) * 2020-06-30 2021-09-28 Kyocera Document Solutions Inc. Image reading apparatus, image forming apparatus, and image reading method that perform image processing for each area
US11212419B1 (en) * 2020-06-30 2021-12-28 Kyocera Document Solutions Inc. Image reading system, image forming system, and image reading method that perform image processing for each area

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215383A (ja) * 1986-03-17 1987-09-22 Datsuku Eng Kk 微小生物体検査装置
JPH08287261A (ja) * 1995-11-27 1996-11-01 Hitachi Ltd 画像認識システム及び画像認識制御システム
WO2011013319A1 (ja) * 2009-07-31 2011-02-03 株式会社ニコン 細胞塊の成熟判定手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
WO2011016189A1 (ja) * 2009-08-07 2011-02-10 株式会社ニコン 細胞の分類手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
JP2013201909A (ja) * 2012-03-27 2013-10-07 National Institute Of Advanced Industrial Science & Technology 細胞画像判定装置、方法、並びにプログラム

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6993170B2 (en) * 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
JP3736278B2 (ja) * 2000-04-12 2006-01-18 松下電器産業株式会社 生化学物質の観察方法
US20050058330A1 (en) * 2003-09-16 2005-03-17 Sysmex Corporation Method of displaying smear image and retrieving method employing the same, surveillance method, system of displaying smear image, program for displaying smear image and recording medium recording the program
US7907769B2 (en) * 2004-05-13 2011-03-15 The Charles Stark Draper Laboratory, Inc. Image-based methods for measuring global nuclear patterns as epigenetic markers of cell differentiation
WO2006124878A2 (en) * 2005-05-12 2006-11-23 Mark Lawson Palmer Method for achieving virtual resolution enhancement of a diagnostic imaging modality by using coupled fea analyses
WO2007074929A1 (ja) * 2005-12-27 2007-07-05 Olympus Corporation 生物由来の被験試料の画像を取得する装置及び方法
EP2034349B2 (en) 2006-06-08 2023-07-19 Nikon Corporation Observing apparatus and observing method
JP2010527007A (ja) * 2007-05-07 2010-08-05 ジーイー・ヘルスケア・バイオサイエンス・コーポレイション 細胞アッセイ及び組織の自動解析のためのシステム及び方法
WO2009125547A1 (ja) 2008-04-09 2009-10-15 株式会社ニコン 培養装置の制御装置及び制御プログラム
EP2447752A4 (en) * 2009-05-08 2018-07-04 Nikon Corporation Focus control device, and incubation and observation device
JP5848885B2 (ja) 2010-04-23 2016-01-27 国立大学法人名古屋大学 化学物質のスクリーニング方法
JP5740101B2 (ja) 2010-04-23 2015-06-24 国立大学法人名古屋大学 細胞評価装置、インキュベータ、細胞評価方法、細胞評価プログラムおよび細胞の培養方法
JP5516108B2 (ja) * 2010-06-15 2014-06-11 株式会社ニコン 観察装置、観察方法、及びプログラム
JP5734588B2 (ja) * 2010-07-15 2015-06-17 オリンパス株式会社 細胞観察装置および観察方法
US8351676B2 (en) * 2010-10-12 2013-01-08 Sony Corporation Digital image analysis using multi-step analysis
JP5145487B2 (ja) * 2011-02-28 2013-02-20 三洋電機株式会社 観察プログラムおよび観察装置
WO2012118962A2 (en) * 2011-03-02 2012-09-07 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Optical coherence tomography as a rapid, accurate, non-contact method of visualizing the palisades of vogt
JP5691894B2 (ja) * 2011-07-06 2015-04-01 富士通株式会社 無線端末および復調方法
JP2014018184A (ja) * 2012-07-23 2014-02-03 Tokyo Electron Ltd 画像解析による多能性幹細胞の評価方法
US20140168402A1 (en) * 2012-12-13 2014-06-19 Vala Sciences, Inc. Continuous-Scanning Image Acquisition in Automated Microscopy Using Reflective Autofocus
JP6066492B2 (ja) * 2013-08-22 2017-01-25 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
JP6071007B2 (ja) * 2013-08-22 2017-02-01 富士フイルム株式会社 観察画像撮影評価装置および方法並びにプログラム
JP6097951B2 (ja) * 2013-08-22 2017-03-22 富士フイルム株式会社 幹細胞分化判定装置および方法並びにプログラム
JP6595156B2 (ja) 2014-03-04 2019-10-23 富士フイルム株式会社 細胞画像取得装置および方法並びにプログラム
JP6173950B2 (ja) * 2014-03-04 2017-08-02 富士フイルム株式会社 細胞撮像制御装置および方法並びにプログラム
JP6143365B2 (ja) * 2014-03-05 2017-06-07 富士フイルム株式会社 細胞画像評価装置および方法並びにプログラム
US20160069903A1 (en) * 2014-09-10 2016-03-10 Fundació Institute De Ciències Foròniques Method for detecting cells
JP6291388B2 (ja) * 2014-09-12 2018-03-14 富士フイルム株式会社 細胞培養評価システムおよび方法
JP6348030B2 (ja) * 2014-09-18 2018-06-27 富士フイルム株式会社 細胞培養装置および方法
JP6359931B2 (ja) * 2014-09-29 2018-07-18 富士フイルム株式会社 細胞情報取得装置および方法並びにプログラム
US9983399B2 (en) * 2015-02-27 2018-05-29 University of Pittsburgh—of the Commonwealth System of Higher Education Depth-resolved spatial-domain low-coherence quantitative phase microscopy for unstained tissue and cells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215383A (ja) * 1986-03-17 1987-09-22 Datsuku Eng Kk 微小生物体検査装置
JPH08287261A (ja) * 1995-11-27 1996-11-01 Hitachi Ltd 画像認識システム及び画像認識制御システム
WO2011013319A1 (ja) * 2009-07-31 2011-02-03 株式会社ニコン 細胞塊の成熟判定手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
WO2011016189A1 (ja) * 2009-08-07 2011-02-10 株式会社ニコン 細胞の分類手法、この手法を用いた画像処理プログラム及び画像処理装置、並びに細胞塊の製造方法
JP2013201909A (ja) * 2012-03-27 2013-10-07 National Institute Of Advanced Industrial Science & Technology 細胞画像判定装置、方法、並びにプログラム

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017063651A (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 細胞評価装置および方法
WO2017056945A1 (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 細胞評価装置および方法
US10704022B2 (en) 2015-09-29 2020-07-07 Fujifilm Corporation Cell evaluation apparatus and cell evaluation method
US11068695B2 (en) 2016-03-11 2021-07-20 Nikon Corporation Image processing device, observation device, and program
EP3428262A4 (en) * 2016-03-11 2019-11-06 Nikon Corporation IMAGE PROCESSING DEVICE, OBSERVATION DEVICE, AND PROGRAM
CN106367330A (zh) * 2016-11-19 2017-02-01 厦门大学 一种微生物形态拍摄鉴定装置及方法
US11609537B2 (en) 2017-03-02 2023-03-21 Shimadzu Corporation Cell analysis method and cell analysis system using a holographic microscope
JPWO2019138572A1 (ja) * 2018-01-15 2021-01-21 オリンパス株式会社 細胞解析装置及び細胞解析システム
JP7139359B2 (ja) 2018-01-15 2022-09-20 株式会社エビデント 細胞解析装置及び細胞解析システム
WO2019138572A1 (ja) * 2018-01-15 2019-07-18 オリンパス株式会社 細胞解析装置及び細胞解析システム
US11920123B2 (en) 2018-01-15 2024-03-05 Evident Corporation Cell analyzing device and cell analyzing system
WO2021166089A1 (ja) * 2020-02-18 2021-08-26 オリンパス株式会社 評価支援装置、評価支援システム、評価支援方法およびプログラム
WO2022270179A1 (ja) * 2021-06-24 2022-12-29 富士フイルム株式会社 情報処理装置、情報処理方法、及びプログラム

Also Published As

Publication number Publication date
US20160370569A1 (en) 2016-12-22
JP6595156B2 (ja) 2019-10-23
JP2015165785A (ja) 2015-09-24
US10416433B2 (en) 2019-09-17

Similar Documents

Publication Publication Date Title
JP6595156B2 (ja) 細胞画像取得装置および方法並びにプログラム
JP6173950B2 (ja) 細胞撮像制御装置および方法並びにプログラム
JP6461128B2 (ja) 細胞評価装置および方法並びにプログラム
JP6143365B2 (ja) 細胞画像評価装置および方法並びにプログラム
WO2015182396A1 (ja) 細胞評価装置および方法並びにプログラム
JP6219214B2 (ja) 細胞撮像制御装置および方法並びにプログラム
JP6071007B2 (ja) 観察画像撮影評価装置および方法並びにプログラム
JP6066492B2 (ja) 細胞画像評価装置および方法並びにプログラム
JP6130801B2 (ja) 細胞領域表示制御装置および方法並びにプログラム
JP2015039342A (ja) 幹細胞分化判定装置および方法並びにプログラム
US11169079B2 (en) Captured image evaluation apparatus, captured image evaluation method, and captured image evaluation program
WO2015133187A1 (ja) 細胞撮像制御装置および方法並びにプログラム
JP2018157830A (ja) 細胞画像取得装置および方法並びにプログラム
KR20180104041A (ko) 세포 관찰 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757752

Country of ref document: EP

Kind code of ref document: A1