WO2015132892A1 - リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池 Download PDF

Info

Publication number
WO2015132892A1
WO2015132892A1 PCT/JP2014/055541 JP2014055541W WO2015132892A1 WO 2015132892 A1 WO2015132892 A1 WO 2015132892A1 JP 2014055541 W JP2014055541 W JP 2014055541W WO 2015132892 A1 WO2015132892 A1 WO 2015132892A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion secondary
secondary battery
electrolyte
negative electrode
Prior art date
Application number
PCT/JP2014/055541
Other languages
English (en)
French (fr)
Inventor
繁貴 坪内
渉平 鈴木
西村 勝憲
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/055541 priority Critical patent/WO2015132892A1/ja
Priority to JP2016505989A priority patent/JP6064082B2/ja
Priority to US15/028,308 priority patent/US20160268637A1/en
Publication of WO2015132892A1 publication Critical patent/WO2015132892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte solution for a lithium ion secondary battery and a lithium ion secondary battery using the same.
  • Patent Document 1 discloses an electrolytic solution in which an electrolyte salt is dissolved in an organic solvent, wherein the organic solvent contains at least one phosphorus compound such as trimethyl phosphate.
  • An object of this invention is to improve the initial stage charge / discharge efficiency of a lithium ion secondary battery.
  • the means for solving the above problems are as follows, for example.
  • An organic solvent containing a compound represented by the formula (1), an electrolyte, and an additive containing a metal cation R 1 , R 2 and R 3 are independently from each other. , C 1 -C 2 alkyl or C 1 -C 2 alkoxyl, and the metal cation is one or more of K + , Rb + , and Cs + .
  • the internal structure of a lithium ion secondary battery is shown typically.
  • FIG. 1 schematically shows the internal structure of the lithium ion secondary battery 101.
  • the lithium ion secondary battery 101 is a general term for an electrochemical device that can store and use electrical energy by occluding and releasing ions to and from an electrode in a non-aqueous electrolyte.
  • a lithium ion secondary battery will be described as a representative example.
  • an electrode group including a positive electrode 107, a negative electrode 108, and a separator 109 inserted between both electrodes is housed in a battery container 102 in a sealed state.
  • a lid 103 is provided on the upper part of the battery container 102, and the lid 103 has a positive external terminal 104, a negative external terminal 105, and a liquid inlet 106.
  • the lid 103 is put on the battery container 102, and the outer periphery of the lid 103 is welded to be integrated with the battery container 102.
  • At least one or more of the positive electrode 107 or the negative electrode 108 are alternately stacked, and a separator 109 is inserted between the positive electrode 107 and the negative electrode 108 to prevent a short circuit between the positive electrode 107 and the negative electrode 108.
  • the positive electrode 107, the negative electrode 108, and the separator 109 constitute an electrode group. It is possible to use a polyolefin polymer sheet made of polyethylene, polypropylene, or the like, or a separator 109 having a multilayer structure in which a polyolefin polymer and a fluorine polymer sheet typified by tetrafluoropolyethylene are welded.
  • a mixture of ceramics and a binder may be formed in a thin layer on the surface of the separator 109 so that the separator 109 does not contract when the battery temperature increases. Since these separators 109 need to allow lithium ions to permeate during charging / discharging of the lithium ion secondary battery 101, generally, when the pore diameter is 0.01 to 10 ⁇ m and the porosity is 20 to 90%, lithium ion secondary batteries are used.
  • the secondary battery 101 can be used.
  • the separator 109 is also inserted between the electrode disposed at the end of the electrode group and the battery container 102 so that the positive electrode 107 and the negative electrode 108 are not short-circuited through the battery container 102. Electrolytic solution 113 is held on the surfaces of separator 109, positive electrode 107, and negative electrode 108 and inside the pores.
  • the upper part of the electrode group is electrically connected to an external terminal via a lead wire.
  • the positive electrode 107 is connected to the positive electrode external terminal 104 via the positive electrode lead wire 110.
  • the negative electrode 108 is connected to the negative electrode external terminal 105 through the negative electrode lead wire 111.
  • the positive electrode lead wire 110 and the negative electrode lead wire 111 can take any shape such as a wire shape or a plate shape. Any material can be used for the positive electrode lead 110 and the negative electrode lead 111 as long as it has a structure capable of reducing ohmic loss when a current is passed and does not react with the electrolytic solution 113.
  • An insulating sealing material 112 is inserted between the positive electrode external terminal 104 or the negative electrode external terminal 105 and the battery container 102 so as not to short-circuit both terminals.
  • the insulating sealing material 112 can be selected from a fluororesin, a thermosetting resin, a glass hermetic seal, and the like, and any material that does not react with the electrolytic solution 113 and has excellent airtightness can be used.
  • a positive temperature coefficient is provided in the middle of the positive electrode lead wire 110 or the negative electrode lead wire 111, or at the connection portion between the positive electrode lead wire 110 and the positive electrode external terminal 104, or at the connection portion between the negative electrode lead wire 111 and the negative electrode external terminal 105.
  • PTC positive temperature coefficient
  • the positive electrode lead wire 110 and the negative electrode lead wire 111 can have any shape such as a foil shape or a plate shape.
  • the structure of the electrode group can be various shapes such as a stack of strip-shaped electrodes shown in FIG. 1, or a wound shape in an arbitrary shape such as a cylindrical shape or a flat shape.
  • the shape of the battery container may be selected from shapes such as a cylindrical shape, a flat oval shape, and a square shape according to the shape of the electrode group.
  • the material of the battery container 102 is selected from materials that are corrosion resistant to the non-aqueous electrolyte, such as aluminum, stainless steel, and nickel-plated steel.
  • the material is altered by corrosion of the battery container or alloying with lithium ions in the portion in contact with the nonaqueous electrolyte. Select the lead wire material to prevent this from occurring.
  • the lid 103 is brought into close contact with the battery container 102 and the whole battery is sealed.
  • sealing the battery such as welding and caulking.
  • the positive electrode 107 includes a positive electrode mixture layer and a positive electrode current collector.
  • the positive electrode mixture layer is composed of a positive electrode active material, and if necessary, a conductive agent and a binder.
  • Illustrative examples of the positive electrode active material include LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 .
  • the particle size of the positive electrode active material is specified to be equal to or less than the thickness of the positive electrode mixture layer.
  • the coarse particles are removed in advance by sieving classification, wind classification or the like, and particles having a thickness of the positive electrode mixture layer or less are prepared.
  • the positive electrode active material is a powder
  • a binder for bonding the particles of the powder is necessary to form a positive electrode.
  • the positive electrode active material is an oxide
  • the conductivity of the oxide is generally low, so carbon powder is added to increase the conductivity between the oxide particles.
  • the positive electrode active material, the conductive agent and the binder are blended so that the mixing ratio (weight percentage display) of the positive electrode active material is 80 to 95% by weight, the conductive agent is 3 to 15% by weight, and the binder is 1 to 10% by weight. .
  • the mixing ratio of the conductive agent is 5% by weight or more. This is because the resistance of the entire positive electrode is reduced and the ohmic loss is reduced even when a large current is passed.
  • the mixing ratio of the positive electrode active material is desirably in the high range of 85 to 95% by weight.
  • the conductive agent known materials such as carbon black such as graphite, amorphous carbon, graphitizable carbon, and Denka black, activated carbon, carbon fiber, and carbon nanotube can be used.
  • the conductive fiber include vapor-grown carbon, fiber produced by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) as a raw material at high temperature, carbon fiber produced from acrylic fiber (polyacrylonitrile), and the like. .
  • it is a material that does not oxidize and dissolve at the charge / discharge potential of the positive electrode (usually 2.5 to 4.3 V), and has a lower electrical resistance than the positive electrode active material, such as a corrosion-resistant metal such as titanium or gold.
  • a fiber made of carbide such as SiC or WC, or a nitride such as Si 3 N 4 or BN may be used.
  • a manufacturing method an existing manufacturing method such as a melting method or a chemical vapor deposition method can be used.
  • an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used.
  • stainless steel, titanium and the like are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the positive electrode 107 For the application of the positive electrode 107, a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means.
  • a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means.
  • the organic solvent is dried, and the positive electrode is pressure-formed by a roll press, whereby the positive electrode 107 can be manufactured.
  • a plurality of mixture layers can be laminated on the current collector by performing a plurality of times from application to drying.
  • the negative electrode 108 includes a negative electrode mixture layer and a negative electrode current collector.
  • the negative electrode mixture layer is mainly composed of a negative electrode active material and a binder, and a conductive agent may be added as necessary. A method for manufacturing the negative electrode will be described.
  • the negative electrode active material is, for example, a carbon material having a graphene structure. That is, natural graphite, artificial graphite, mesophase carbon, expanded graphite, carbon fiber, vapor grown carbon fiber, pitch-based carbonaceous material, needle coke, petroleum coke that can occlude and release lithium ions electrochemically, Uses carbonaceous materials such as polyacrylonitrile-based carbon fiber and carbon black, or amorphous carbon materials synthesized by thermal decomposition of 5-membered or 6-membered cyclic hydrocarbons or cyclic oxygen-containing organic compounds. Is possible.
  • a conductive polymer material made of polyacene, polyparaphenylene, polyaniline, or polyacetylene can also be used for the negative electrode 108. These materials can be combined with a carbon material having a graphene structure such as graphite, graphitizable carbon, and non-graphitizable carbon.
  • Examples of the negative electrode active material that can be used in an embodiment of the present invention include aluminum, silicon, and tin that are alloyed with lithium, and further, from graphite or amorphous carbon that can electrochemically occlude and release lithium ions. There are also carbonaceous materials. In this invention, there is no restriction
  • a slurry is prepared by adding a solvent to a mixture composed of the negative electrode active material prepared above and the binder according to one embodiment of the present invention, and sufficiently kneading or dispersing the mixture.
  • the solvent can be arbitrarily selected as long as it is an organic solvent, water or the like and does not alter the binder of the present invention.
  • the mixing ratio of the negative electrode active material and the binder is preferably in the range of 80:20 to 99: 1 by weight.
  • the weight composition has a value of a negative electrode active material ratio smaller than 99: 1.
  • Conductive agent is added to the negative electrode as necessary. For example, when charging or discharging a large current, it is desirable to add a small amount of a conductive agent to reduce the resistance of the negative electrode.
  • a conductive agent known materials such as graphite, amorphous carbon, graphitizable carbon, carbon black, activated carbon, carbon fiber, and carbon nanotube can be used.
  • the conductive fiber include vapor-grown carbon, fiber produced by carbonizing pitch (by-products such as petroleum, coal, coal tar, etc.) as a raw material at high temperature, carbon fiber produced from acrylic fiber (polyacrylonitrile), and the like. .
  • the above slurry is applied to the negative electrode current collector, and the negative electrode 108 is manufactured by evaporating the solvent and drying.
  • the negative electrode current collector a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a hole diameter of 0.1 to 10 mm, an expanded metal, a foam metal plate, etc. are used.
  • stainless steel, titanium, and the like are also applicable.
  • any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the negative electrode 108 For the application of the negative electrode 108, a known production method such as a doctor blade method, a dipping method, or a spray method can be adopted, and there is no limitation on the means.
  • the solvent is dried, and the negative electrode is pressure-formed by a roll press, whereby the negative electrode 108 can be manufactured.
  • the electrolyte solution in one embodiment of the present invention includes an organic solvent, an electrolyte, and an additive.
  • Materials other than the organic solvent, the electrolyte, and the additive may be included in the electrolytic solution, or the electrolyte may be configured with an organic solvent, an electrolyte, and an additive.
  • Organic solvents include flame retardant solvents.
  • Specific examples of the flame retardant solvent include compounds represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently C 1 -C 2 alkyl or C 1 -C 2 alkoxyl. It is preferable. From the viewpoint of not impairing the solubility and flame retardant capabilities to Li salt, R 1, R 2 and R 3 is which at least two, independently of each other, is preferably C 1 ⁇ C 2 alkoxyl, R 1, More preferably, R 2 and R 3 are methoxyl, or R 1 and R 2 are methoxyl and R 3 is methyl.
  • “C 1 -C 2 alkyl” and “C 1 -C 2 alkoxyl” mean an unsubstituted group.
  • TMP trimethyl phosphate
  • DMMP dimethyl methyl phosphonate
  • the compound represented by formula (1) has low flammability compared to one or more additional organic solvents described below. Therefore, the compound represented by the formula (1) can be used as a flame retardant in the electrolytic solution for a lithium ion secondary battery of the present invention.
  • the compound represented by Formula (1) has a high donor number compared with the 1 or more types of further organic solvent demonstrated below.
  • the compound represented by the formula (1) has higher electrolyte solubility than a fluorine-based phosphorus compound such as a fluorine-containing phosphate. Therefore, the compound represented by the formula (1) can dissolve a desired amount of electrolyte even when used alone as an organic solvent without being mixed with another organic solvent.
  • the organic solvent may be used in a form consisting only of the compound represented by formula (I), and if desired, a mixture of the compound represented by formula (1) and one or more additional organic solvents (hereinafter, (Also referred to as “mixed solution”).
  • one or more additional organic solvents include cyclic carbonates commonly used in the art, such as ethylene carbonate (EC) or propylene carbonate; Linear or branched) carbonates such as dimethyl carbonate, ethyl methyl carbonate (EMC) or diethyl carbonate; cyclic ethers such as tetrahydrofuran, 1,3-dioxolane; linear (linear or branched) ethers such as , Dimethoxyethane; cyclic esters such as ⁇ -butyrolactone; and chain (linear or branched) esters such as methyl acetate or ethyl acetate.
  • cyclic carbonates commonly used in the art, such as ethylene carbonate (EC) or propylene carbonate
  • Linear or branched) carbonates such as dimethyl carbonate, ethyl methyl carbonate (EMC) or diethyl carbonate
  • cyclic ethers such as tetrahydrofuran, 1,
  • the one or more additional organic solvents are preferably selected from the group consisting of ethylene carbonate (EC), ethyl methyl carbonate (EMC) and propylene carbonate.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • propylene carbonate ethyl methyl carbonate
  • the content of the compound represented by formula (I) in the organic solvent is preferably at least 10% by volume, more preferably at least 40% by volume, and at least 50% by volume based on the total volume of the organic solvent. % Is more preferable.
  • the content of the compound represented by the formula (1) in the organic solvent is preferably in the range of 10 to 100% by volume, and in the range of 40 to 100% by volume with respect to the total volume of the organic solvent. More preferably, it is more preferably in the range of 50 to 100% by volume, and particularly preferably in the range of 50 to 60% by volume.
  • content of the compound represented by Formula (1) in an organic solvent is the said range, the solubility of the electrolyte with respect to an organic solvent can be improved.
  • the electrolyte is LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (SO 2 F) 2 , LiClO 4 , LiCF 3 CO 2 , LiAsF 6 and One or more lithium salts selected from the group consisting of LiSbF 6 are desirable.
  • the electrolyte is preferably LiPF 6 .
  • LiPF 6 has high ionic conductivity and high solubility in the above organic solvent. Therefore, by using LiPF 6 as the electrolyte, the battery characteristics (for example, charge / discharge characteristics) of the resulting lithium ion secondary battery can be improved.
  • the electrolyte is preferably contained at a concentration of at least 0.5 mol / L (mol / dm ⁇ 3 ).
  • the concentration is a molar concentration relative to the total volume of the electrolytic solution.
  • the concentration of the electrolyte is preferably in the range of 0.5 to 2 mol / L, more preferably in the range of 0.5 to 1.5 mol / L, and in the range of 0.5 to 1 mol / L. Is particularly preferred.
  • Examples of the metal cation contained in the additive include K + , Rb + and Cs + .
  • K + , Rb + and Cs + are less Lewis acidic than Li + and have no solvation selectivity.
  • the ion sizes of K + , Rb + and Cs + are larger than Li + , and as a result, only Li + can participate in the insertion / extraction reaction to graphite. Since Li + solvates with cyclic carbonates such as EC and moves in the liquid, it is preferable that metal cations such as K + do not interact with them in terms of not reducing the effective number of Li + ions.
  • K + has a larger ion size than Li + and may cause a reduction in capacity or a decomposition reaction.
  • the metal cation only one kind of K + , Rb + and Cs + may be used, or two or more kinds may be used. In actuality, it is necessary to dissolve in an electrolyte as an additive.
  • the additive is preferably contained at a concentration of at least 0.05 mol / L (mol / dm ⁇ 3 ).
  • the concentration is a molar concentration relative to the total volume of the electrolytic solution.
  • the concentration of the additive is preferably in the range of 0.05 to 1 mol / L, particularly preferably in the range of 0.05 to 0.5 mol / L.
  • Table 1 shows the results of the initial charge / discharge efficiency in an electrolytic solution in which 1.0 mol / dm -3 LiPF 6 was dissolved in a mixed solvent of 16.7: 33.3: 50 at a volume ratio of EC, EMC, and TMP. Shown in
  • Table 1 shows the results of the initial charge / discharge efficiency in an electrolytic solution in which 1.0 mol / dm -3 LiPF 6 was dissolved in a mixed solvent of 16.7: 33.3: 50 at a volume ratio of EC, EMC, and DMMP. Shown in

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

 式(1)で表される化合物を含む有機溶媒と、電解質と、金属カチオンを含む添加剤と、を含有し、式(1)中、R1、R2及びR3は、互いに独立して、C1~C2アルキル又はC1~C2アルコキシルであり、金属カチオンは、K+、Rb+、Cs+のいずれか一種以上であるリチウムイオン二次電池用電解液および当該リチウムイオン二次電池用電解液と、正極と、負極とを備えるリチウムイオン二次電池であり、添加剤として、KSO3CF3、KN(SO2CF322からなる群より選択される1種以上の塩が挙げられる。

Description

リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池に関する。
 リチウムイオン二次電池の電解液の多くは六フッ化リン酸リチウム(LiPF6)を電解質塩として含有した環状カーボネートと鎖状カーボネートの混合溶媒とからなる引火性を有する非水電解液が使用されている。近年、このリチウムイオン二次電池は高出力・高エネルギー密度であることから、自動車、航空機、モバイル機器等に代表されるアプリケーションに使われている。これらのアプリケーションは高い安全性が要求されており、それに伴いリチウムイオン二次電池において難燃性の電解液が求められている。
 そこで、難燃性を有する溶媒としてホスフェイトが知られている。特許文献1には、電解質塩を有機溶媒に溶解した電解液において、該有機溶媒が、トリメチルホスフェートなどのリン化合物の少なくとも一種を含むことを特徴とする電解液が開示されている
特開平10-228928号広報
 有機溶媒にトリメチルホスフェートなどのリン化合物が含まれる場合、充電過程で負極のグラファイト層間にLi+と共挿入し還元分解し、リチウムイオン二次電池の初期充放電効率が低下する可能性がある。本発明は、リチウムイオン二次電池の初期充放電効率を向上させることを目的とする。
 上記課題を解決する手段は、例えば次の通りである。
 式(1)で表される化合物を含む有機溶媒と、電解質と、金属カチオンを含む添加剤と、を含有し、式(1)中、R1、R2及びR3は、互いに独立して、C1~C2アルキル又はC1~C2アルコキシルであり、金属カチオンは、K+、Rb+、Cs+のいずれか一種以上であるリチウムイオン二次電池用電解液。
Figure JPOXMLDOC01-appb-C000002
 本発明によれば、リチウムイオン二次電池の初期充放電効率を向上できるリチウムイオン二次電池用電解液を提供できる。上記した以外の課題、構成および効果は以下の実施形態の説明により明らかにされる。
リチウムイオン二次電池の内部構造を模式的に示したものである。
 以下、図面等を用いて、本発明の実施形態について説明する。以下の説明は本発明の内容の具体例を示すものであり、本発明がこれらの説明に限定されるものではなく、本明細書に開示される技術的思想の範囲内において当業者による様々な変更および修正が可能である。また、本発明を説明するための全図において、同一の機能を有するものは、同一の符号を付け、その繰り返しの説明は省略する場合がある。
 <リチウムイオン二次電池>
 図1は、リチウムイオン二次電池101の内部構造を模式的に示している。リチウムイオン二次電池101とは、非水電解質中における電極へのイオンの吸蔵・放出により、電気エネルギーを貯蔵・利用可能とする電気化学デバイスの総称である。本実施例では、リチウムイオン二次電池を代表例として説明する。
 図1のリチウムイオン二次電池101において、正極107、負極108、および両電極の間に挿入されたセパレータ109からなる電極群を、電池容器102に密閉状態にて収納されている。電池容器102の上部に蓋103があり、その蓋103に正極外部端子104、負極外部端子105、注液口106を有する。電池容器102に電極群を収納した後に、蓋103を電池容器102に被せ、蓋103の外周を溶接して電池容器102と一体になっている。
 正極107または負極108の少なくとも一個以上を交互に重ね合わせて、正極107と負極108の間にセパレータ109を挿入し、正極107と負極108の短絡を防止する。正極107、負極108、セパレータ109で電極群が構成される。ポリエチレン、ポリプロピレンなどからなるポリオレフィン系高分子シート、あるいはポリオレフィン系高分子と4フッ化ポリエチレンを代表とするフッ素系高分子シートを溶着させた多層構造のセパレータ109などを使用することが可能である。電池温度が高くなったときにセパレータ109が収縮しないように、セパレータ109の表面にセラミックスとバインダの混合物を薄層状に形成しても良い。これらのセパレータ109は、リチウムイオン二次電池101の充放電時にリチウムイオンを透過させる必要があるため、一般に細孔径が0.01~10μm、気孔率が20~90%であれば、リチウムイオン二次電池101に使用可能である。
 セパレータ109は、電極群の末端に配置されている電極と電池容器102の間にも挿入し、正極107と負極108が電池容器102を通じて短絡しないようにしている。セパレータ109と正極107、負極108の表面および細孔内部に、電解液113が保持されている。
 電極群の上部には、リード線を介して外部端子に電気的に接続されている。正極107は正極リード線110を介して正極外部端子104に接続されている。負極108は負極リード線111を介して負極外部端子105に接続されている。なお、正極リード線110と負極リード線111は、ワイヤ状、板状などの任意の形状を採ることができる。電流を流したときにオーム損失を小さくすることのできる構造であり、かつ電解液113と反応しない材質であれば、正極リード線110、負極リード線111の形状、材質は任意である。
 正極外部端子104または負極外部端子105と、電池容器102の間には絶縁性シール材料112を挿入し、両端子が短絡しないようにしている。絶縁性シール材料112にはフッ素樹脂、熱硬化性樹脂、ガラスハーメチックシールなどから選択することができ、電解液113と反応せず、かつ気密性に優れた任意の材質を使用することができる。
 正極リード線110または負極リード線111の途中、あるいは正極リード線110と正極外部端子104の接続部、または負極リード線111と負極外部端子105の接続部に、正温度係数(PTC;Positive temperature coefficient)抵抗素子を利用した電流遮断機構を設けると、電池内部の温度が高くなったときに、リチウムイオン二次電池101の充放電を停止させ、電池を保護することが可能となる。なお、正極リード線110、負極リード線111は箔状、板状など、任意の形状にすることができる。
 電極群の構造は、図1に示した短冊状電極の積層したもの、あるいは円筒状、扁平状などの任意の形状に捲回したものなど、種々の形状にすることができる。電池容器の形状は、電極群の形状に合わせ、円筒型、偏平長円形状、角型などの形状を選択してもよい。
 電池容器102の材質は、アルミニウム、ステンレス鋼、ニッケルメッキ鋼製など、非水電解質に対し耐食性のある材料から選択される。また、電池容器102を正極リード線110または負極リード線111に電気的に接続する場合は、非水電解質と接触している部分において、電池容器の腐食やリチウムイオンとの合金化による材料の変質が起こらないように、リード線の材料を選定する。
 その後、蓋103を電池容器102に密着させ、電池全体を密閉する。電池を密閉する方法には、溶接、かしめなど公知の技術がある。
 <正極>
 正極107は、正極合剤層、正極集電体から構成される。正極合剤層は、正極活物質、必要に応じて導電剤、バインダから構成される。その正極活物質を例示すると、LiCoO2、LiNiO2、LiMn24が代表例である。他に、LiMnO3、LiMn23、LiMnO2、Li4Mn512、LiMn2-xx2(ただし、M=Co、Ni、Fe、Cr、Zn、Taであって、x=0.01~0.2)、Li2Mn3MO8(ただし、M=Fe、Co、Ni、Cu、Zn)、Li1-xAxMn24(ただし、A=Mg、Ba、B、Al、Fe、Co、Ni、Cr、Zn、Caであって、x=0.01~0.1)、LiNi1-xMxO2(ただし、M=Co、Fe、Ga、x=0.01~0.2)、LiFeO2、Fe2(SO43、LiCo1-xx2(ただし、M=Ni、Fe、Mnであって、x=0.01~0.2)、LiNi1-xx2(ただし、M=Mn、Fe、Co、Al、Ga、Ca、Mgであって、x=0.01~0.2)、Fe(MoO43、FeF3、LiFePO4、LiMnPO4などを列挙することができる。本発明は正極材料に何ら制約を受けないので、これらの材料に限定されない。
 正極活物質の粒径は、正極合剤層の厚さ以下になるように規定される。正極活物質粉末中に正極合剤層厚さ以上のサイズを有する粗粒がある場合、予めふるい分級、風流分級などにより粗粒を除去し、正極合剤層厚さ以下の粒子を作製する。
 正極活物質は粉体であるので、正極にするために粉体の粒子同士を結合させるためのバインダが必要である。また、正極活物質が酸化物であるとき、一般に酸化物の導電性が低いので、炭素粉末を加えて酸化物粒子間の導電性を高める。
 正極活物質の混合比(重量百分率表示)は80~95重量%、導電剤は3~15重量%、バインダは1~10重量%になるように、正極活物質と導電剤とバインダを配合する。導電性を十分に発揮させ、大電流の充放電を可能にするために、導電剤の混合比を5重量%以上にすることが望ましい。正極全体の抵抗が小さくなり、大電流を流してもオーム損失が小さくなるからである。逆に、電池のエネルギー密度を高める場合は、正極活物質の混合比を85~95重量%の高い範囲にすることが望ましい。
 導電剤には、黒鉛、非晶質炭素、易黒鉛化炭素、デンカブラックなどのカーボンブラック、活性炭、炭素繊維、カーボンナノチューブなどの公知の材料を用いることができる。導電性繊維は、気相成長炭素、またはピッチ(石油、石炭、コールタールなどの副生成物)を原料に高温で炭化して製造した繊維、アクリル繊維(Polyacrylonitrile)から製造した炭素繊維などがある。また、正極の充放電電位(通常は2.5~4.3Vである。)にて酸化溶解しない材料であり、正極活物質よりも電気抵抗の低い金属材料、例えばチタン、金等の耐食性金属、SiCやWCなどのカーバイド、Si34、BNなどの窒化物からなる繊維を用いても良い。製造方法は溶融法、化学気相成長法など既存の製法を利用することができる。
 正極集電体には、厚さが10~100μmのアルミニウム箔、厚さが10~100μm、孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質もアルミニウムの他に、ステンレス鋼、チタンなども適用可能である。本発明では、材質、形状、製造方法などに制限されることなく、任意の集電体を使用することができる。
 正極107の塗布には、ドクターブレード法、ディッピング法、スプレー法などの既知の製法を採ることができ、手段に制限はない。また、スラリを集電体へ付着させた後、有機溶媒を乾燥し、ロールプレスによって正極を加圧成形することにより、正極107を作製することができる。また、塗布から乾燥までを複数回行うことにより、複数の合剤層を集電体に積層化させることも可能である。
 <負極>
 負極108は、負極合剤層、負極集電体から構成される。負極合剤層は、主に負極活物質とバインダから構成され、必要に応じて導電剤が添加される場合がある。負極の作製方法を説明する。
 負極活物質は、例えば、グラフェン構造を有する炭素材料である。すなわち、リチウムイオンを電気化学的に吸蔵・放出可能な天然黒鉛、人造黒鉛、メソフェ-ズ炭素、膨張黒鉛、炭素繊維、気相成長法炭素繊維、ピッチ系炭素質材料、ニードルコークス、石油コークス、ポリアクリロニトリル系炭素繊維、カーボンブラックのなどの炭素質材料、あるいは5員環または6員環の環式炭化水素または環式含酸素有機化合物を熱分解によって合成した非晶質炭素材料、などが利用可能である。黒鉛、易黒鉛化炭素、難黒鉛化炭素等の材料の混合負極、または前記炭素材料に前記金属または前記合金の混合負極または複合負極であっても、本発明を実施する上で障害はない。本発明では負極活物質に特に制限がなく、上述の材料以外でも利用可能である。
 ポリアセン、ポリパラフェニレン、ポリアニリン、ポリアセチレンからなる導電性高分子材料も、負極108に用いることができる。これらの材料と黒鉛、易黒鉛化炭素、難黒鉛化炭素等のグラフェン構造を有する炭素材料と組み合わせることができる。
 本発明の一実施形態で使用可能な負極活物質は、リチウムと合金化するアルミニウム、シリコン、スズなどがあり、さらに、リチウムイオンを電気化学的に吸蔵・放出可能な黒鉛や非晶質炭素からなる炭素質材料などもある。本発明では負極活物質に特に制限がなく、上述の材料以外でも利用可能である。
 上述で作製した負極活物質と本発明の一実施形態に係るバインダからなる混合物に溶媒を添加し、十分に混練または分散させて、スラリを調製する。溶媒は、有機溶媒、水などであって、本発明のバインダを変質させないものであれば、任意に選択することができる。
 負極活物質とバインダの混合比は、重量比率で80:20~99:1の範囲が好適である。導電性を十分に発揮させ、大電流の充放電を可能にするために、上記重量組成は99:1に対し負極活物質比率の小さい値になるようにすることが望ましい。逆に、電池のエネルギー密度を高めるために、90:10よりも大きな負極活物質比率になるように、配合することが好適である。
 導電剤は必要に応じて負極に添加される。例えば、大電流の充電または放電を行う場合に、少量の導電剤を添加して、負極の抵抗を下げることが望ましい。導電剤には、黒鉛、非晶質炭素、易黒鉛化炭素、カーボンブラック、活性炭、炭素繊維、カーボンナノチューブなどの公知の材料を用いることができる。導電性繊維は、気相成長炭素、またはピッチ(石油、石炭、コールタールなどの副生成物)を原料に高温で炭化して製造した繊維、アクリル繊維(Polyacrylonitrile)から製造した炭素繊維などがある。
 上述のスラリは、負極集電体に塗布し、溶媒を蒸発させて乾燥することによって、負極108を製造する。負極集電体には、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板などが用いられ、材質も銅の他に、ステンレス鋼、チタンなども適用可能である。本発明では、材質、形状、製造方法などに制限されることなく、任意の集電体を使用することができる。
 負極108の塗布には、ドクターブレード法、ディッピング法、スプレー法などの既知の製法を採ることができ、手段に制限はない。また、負極スラリを集電体へ付着させた後、溶媒を乾燥し、ロールプレスによって負極を加圧成形することにより、負極108を作製することができる。また、塗布から乾燥までを複数回おこなうことにより、複数の負極合剤層を集電体に積層化させることも可能である。
 <電解液>
 本発明の一実施形態における電解液には、有機溶媒、電解質、添加剤が含まれる。電解液に有機溶媒、電解質、添加剤以外の材料が含まれていてもよいし、有機溶媒、電解質、添加剤で構成されていてもよい。
 <有機溶媒>
 有機溶媒には、難燃溶媒が含まれる。難燃溶媒の具体例として以下の式(1)で表わされる化合物があげられる。
Figure JPOXMLDOC01-appb-C000003
 Li塩に対する溶解性の観点から、式(1)で表される化合物において、R1、R2及びR3は、互いに独立して、C1~C2アルキル又はC1~C2アルコキシルであることが好ましい。Li塩に対する溶解性および難燃機能を損なわない観点から、R1、R2及びR3は、そのうち少なくとも2つが、互いに独立して、C1~C2アルコキシルであることが好ましく、R1、R2及びR3がメトキシルであるか、又は、R1及びR2がメトキシルであり、R3がメチルであることがより好ましい。本発明において、「C1~C2アルキル」及び「C1~C2アルコキシル」は、非置換の基を意味する。
 式(1)で表される化合物としては、例えば、トリメチルホスフェート(リン酸トリメチル、TMP)又はジメチル=メチルホスホナート(メチルホスホン酸ジメチル、DMMP)が好ましい。式(1)で表される化合物は、以下において説明する1種以上のさらなる有機溶媒と比較して引火性が低い。それ故、式(1)で表される化合物は、本発明のリチウムイオン二次電池用電解液において、難燃剤として使用することができる。また、式(1)で表される化合物は、以下において説明する1種以上のさらなる有機溶媒と比較してドナー数が高い。さらに、式(1)で表される化合物は、含フッ素リン酸エステルのようなフッ素系リン化合物と比較して、電解質の溶解度が高い。それ故、式(1)で表される化合物は、他の有機溶媒と混合せず、単独で有機溶媒として使用した場合であっても、所望の量の電解質を溶解することができる。
 有機溶媒は、式(I)で表される化合物のみからなる形態で使用されてもよく、所望により、式(1)で表される化合物と1種以上のさらなる有機溶媒との混合物(以下、「混合溶液」とも記載する)の形態で使用されてもよい。有機溶媒が混合溶液の形態で使用される場合、1種以上のさらなる有機溶媒としては、当該技術分野で通常使用される環状カーボネート、例えば、エチレンカーボネート(EC)若しくはプロピレンカーボネート;鎖状(直鎖状若しくは分岐鎖状)カーボネート、例えば、ジメチルカーボネート、エチルメチルカーボネート(EMC)若しくはジエチルカーボネート;環状エーテル、例えば、テトラヒドロフラン、1,3-ジオキソラン;鎖状(直鎖状若しくは分岐鎖状)エーテル、例えば、ジメトキシエタン;環状エステル、例えば、γ-ブチロラクトン;及び、鎖状(直鎖状若しくは分岐鎖状)エステル、例えば、メチルアセテート若しくはエチルアセテート等を挙げることができる。1種以上のさらなる有機溶媒は、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)及びプロピレンカーボネートからなる群より選択されることが好ましい。1種以上のさらなる有機溶媒を用いることにより、有機溶媒に対する電解質の溶解度を向上させることができる。
 有機溶媒における式(I)で表される化合物の含有量は、有機溶媒の総体積に対して、少なくとも10体積%であることが好ましく、少なくとも40体積%であることがより好ましく、少なくとも50体積%であることがさらに好ましい。或いは、前記有機溶媒における式(1)で表される化合物の含有量は、有機溶媒の総体積に対して、10~100体積%の範囲であることが好ましく、40~100体積%の範囲であることがより好ましく、50~100体積%の範囲であることがさらに好ましく、50~60体積%の範囲であることが特に好ましい。有機溶媒における式(1)で表される化合物の含有量が前記範囲である場合、有機溶媒に対する電解質の溶解度を向上させることができる。
 <電解質>
 本発明の一実施形態におけるリチウムイオン二次電池用電解液において、電解質は、LiPF6、LiBF4、LiCF3SO3、LiN(SO2F)2、LiClO4、LiCF3CO2、LiAsF6及びLiSbF6からなる群より選択される1種以上のリチウム塩であることが望ましい。電解質は、LiPF6であることが好ましい。LiPF6は、イオン伝導度が高く、且つ上記の有機溶媒に対する溶解度が高い。それ故、電解質としてLiPF6を用いることにより、結果として得られるリチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。
 本発明の一実施形態におけるリチウムイオン二次電池用電解液において、電解質は、少なくとも0.5mol/L(mol/dm-3)の濃度で含有されることが好ましい。濃度は、電解液の総体積に対するモル濃度である。電解質の濃度は、0.5~2mol/Lの範囲であることが好ましく、0.5~1.5mol/Lの範囲であることがより好ましく、0.5~1mol/Lの範囲であることが特に好ましい。濃度で電解質を含有させることにより、結果として得られるリチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。
 <添加剤>
 添加剤に含まれる金属カチオンにはK+、Rb+、Cs+があげられる。イオン化エネルギーの観点から、K+、Rb+、Cs+はLi+よりもルイス酸性が低く溶媒和の選択性がないもののである。また、K+、Rb+、Cs+のイオンサイズはLi+よりも大きく、結果としてLi+のみがグラファイトへの挿入脱離反応に関与できる。Li+はECなどの環状カーボネートと溶媒和し液中を移動するため、K+などの金属カチオンがそれらと相互作用を及ぼさないことは実効的なLi+イオン数を減少させない点で好ましい。また、K+とECが溶媒和してK+が充放電に関与するならば、K+はLi+よりイオンサイズが大きいため容量低下あるいは分解反応を引き起こす可能性がある。金属カチオンとして、K+、Rb+、Cs+のいずれか一種のみを用いてもよいし、二種以上用いてもよい。実際には添加剤として電解液中に溶解させる必要があり、金属カチオンの対アニオンとしては次のBr-、I-、PF6-、BF4-、ClO4-、SO3CF3-、N(SO2F)2-、N(SO2CF32-、N(SO2CF2CF32-が選ばれる。その中でも電解液への溶解の観点からKN(SO2CF32またはKSO3CF3からなる群より選択される1種以上の塩が望ましい。電解液に上記の金属カチオンおよび上記のアニオンを含む添加剤が一種のみ含まれていてもよいし、二種以上含まれていてもよい。
 本発明の一実施形態におけるリチウムイオン二次電池用電解液において、添加剤は、少なくとも0.05mol/L(mol/dm-3)の濃度で含有されることが好ましい。濃度は、電解液の総体積に対するモル濃度である。添加剤の濃度は、0.05~1mol/Lの範囲であることが好ましく、0.05~0.5mol/Lの範囲であることが特に好ましい。先に記載した範囲の濃度で添加剤を含有させることにより、電解質のリチウムイオンと式(I)で表される化合物との溶媒和分子の形成を実質的に抑制して、リチウムイオン二次電池の電池特性(例えば、充放電特性)を向上させることができる。
 以下に実施例を用いて本発明をさらに具体的に示す。以下の実施例では、作用極がグラファイト負極、対極および参照極がLi金属とからなる電池構成において、1mA/cm2の電流値で0.01Vまで定電流充電し、その後0.01Vでの定電圧充電を継続し、0.025mA/cm2まで電流値が収束するかあるいは7時間経過した時点で充電を終了し、1mA/cm2の電流値で1.5Vまでの放電を実施した例およびその充放電効率の効果を示す。
 EC、EMC、TMPからなる体積比にて16.7:33.3:50の混合溶媒に1.0mol/dm-3のLiPF6を溶解させた溶液に、更に添加剤として0.5mol/dm-3のKN(SO2CF32を溶解させた電解液における初期充放電効率の結果を表1に示す。
 EC、EMC、TMPからなる体積比にて16.7:33.3:50の混合溶媒に1.0mol/dm-3のLiPF6を溶解させた溶液に、更に添加剤として0.5mol/dm-3のKSO3CF3を溶解させた電解液における初期充放電効率の結果を表1に示す。
比較例1
 EC、EMC、TMPからなる体積比にて16.7:33.3:50の混合溶媒に1.0mol/dm-3のLiPF6を溶解させた電解液における初期充放電効率の結果を表1に示す。
 EC、EMC、DMMPからなる体積比にて16.7:33.3:50の混合溶媒に1.0mol/dm-3のLiPF6を溶解させた溶液に、更に添加剤として0.5mol/dm-3のKSO3CF3を溶解させた電解液における初期充放電効率の結果を表1に示す。
比較例2
 EC、EMC、DMMPからなる体積比にて16.7:33.3:50の混合溶媒に1.0mol/dm-3のLiPF6を溶解させた電解液における初期充放電効率の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004
 実施例1~2および比較例1より、本発明の添加剤、KN(SO2CF32、KSO3CF3をEC、EMC、TMPからなる体積比にて1:2:3の混合溶媒に1.0mol/dm-3のLiPF6を溶解させた溶液に混合する事で、添加剤がない電解液の状態に比べて効率が向上していることが確認された。
 実施例3および比較例2より、本発明のルイス酸塩、KSO3CF3をEC、EMC、DMMPからなる体積比にて16.7:33.3:50の混合溶媒に1.0mol/dm-3のLiPF6を溶解させた溶液に混合することで、添加剤がない電解液の状態に比べて効率が向上していることが確認された。また、難燃剤の種類が異なる場合でも添加剤の効果があることが示された。

Claims (8)

  1.  式(1)で表される化合物を含む有機溶媒と、
     電解質と、
     金属カチオンを含む添加剤と、を含有し、
     前記式(1)中、R1、R2及びR3は、互いに独立して、C1~C2アルキル又はC1~C2アルコキシルであり、
     前記金属カチオンは、K+、Rb+、Cs+のいずれか一種以上であるリチウムイオン二次電池用電解液。
    Figure JPOXMLDOC01-appb-C000001
  2.  請求項1において、
     前記電解質は、LiPF6であるリチウムイオン二次電池用電解液。
  3.  請求項1乃至2のいずれかにおいて、
     前記添加剤が、KSO3CF3、KN(SO2CF322からなる群より選択される1種以上の塩であるリチウムイオン二次電池用電解液。
  4.  請求項1乃至3のいずれかにおいて、
     前記添加剤の濃度は、0.05~1mol/Lであるリチウムイオン二次電池用電解液。
  5.  請求項1乃至4のいずれかにおいて、
     R1、R2及びR3の少なくとも2つが、互いに独立して、C1~C2アルコキシルであるリチウムイオン二次電池用電解液。
  6.  請求項1乃至5のいずれかにおいて、
     R1、R2及びR3がメトキシルであるか、又は、
     R1及びR2がメトキシルであり、R3がメチルであるリチウムイオン二次電池用電解液。
  7.  請求項1乃至6のいずれかにおいて、
     前記有機溶媒の総体積に対して少なくとも50体積%の前記化合物を含むリチウムイオン二次電池用電解液。
  8.  請求項1乃至7のいずれかのリチウムイオン二次電池用電解液と、正極と、負極とを備えるリチウムイオン二次電池。
PCT/JP2014/055541 2014-03-05 2014-03-05 リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池 WO2015132892A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/055541 WO2015132892A1 (ja) 2014-03-05 2014-03-05 リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池
JP2016505989A JP6064082B2 (ja) 2014-03-05 2014-03-05 リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池
US15/028,308 US20160268637A1 (en) 2014-03-05 2014-03-05 Electrolyte solution for lithium ion secondary batteries and lithium ion secondary battery using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055541 WO2015132892A1 (ja) 2014-03-05 2014-03-05 リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2015132892A1 true WO2015132892A1 (ja) 2015-09-11

Family

ID=54054730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055541 WO2015132892A1 (ja) 2014-03-05 2014-03-05 リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池

Country Status (3)

Country Link
US (1) US20160268637A1 (ja)
JP (1) JP6064082B2 (ja)
WO (1) WO2015132892A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112602211A (zh) * 2018-06-20 2021-04-02 通用汽车环球科技运作有限责任公司 具有盐包水电解质的水基混合锂离子电容器电池
JP2021511640A (ja) * 2018-01-29 2021-05-06 アルケマ フランス カリウム塩とリチウム塩の混合物と電池におけるその使用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027624A (ja) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2005203363A (ja) * 2003-12-19 2005-07-28 Kanto Denka Kogyo Co Ltd 常温溶融塩及びその製造方法
JP2011054463A (ja) * 2009-09-03 2011-03-17 Konica Minolta Holdings Inc 電解質組成物、その製造方法、および二次電池
JP2011192568A (ja) * 2010-03-16 2011-09-29 Konica Minolta Holdings Inc 電解質組成物、および二次電池

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3425493B2 (ja) * 1994-07-28 2003-07-14 日立マクセル株式会社 非水二次電池およびその製造方法
US6566015B1 (en) * 1998-10-09 2003-05-20 Denso Corporation Non-aqueous electrolytic salt and non-aqueous electrolytic secondary battery in which it is used
US6495285B2 (en) * 1999-01-25 2002-12-17 Wilson Greatbatch Ltd. Phosphonate additives for nonaqueous electrolyte in rechargeable electrochemical cells
IL135078A0 (en) * 1999-03-17 2001-05-20 Noboru Oyama Polymer electrolyte
US7459237B2 (en) * 2004-03-15 2008-12-02 The Gillette Company Non-aqueous lithium electrical cell
JP2008027766A (ja) * 2006-07-21 2008-02-07 Hitachi Maxell Ltd リチウム電池
EP3736250B1 (en) * 2010-05-28 2023-07-26 Nippon Shokubai Co., Ltd. Alkali metal salt of fluorosulfonyl imide
KR101532847B1 (ko) * 2010-09-02 2015-06-30 닛본 덴끼 가부시끼가이샤 이차 전지 및 그것에 사용되는 이차 전지용 전해액
JPWO2013176273A1 (ja) * 2012-05-25 2016-01-14 日本電気株式会社 蓄電デバイス
WO2015075811A1 (ja) * 2013-11-22 2015-05-28 株式会社日立製作所 リチウムイオン二次電池用電解質液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1027624A (ja) * 1996-07-10 1998-01-27 Matsushita Electric Ind Co Ltd 非水電解液二次電池
JP2005203363A (ja) * 2003-12-19 2005-07-28 Kanto Denka Kogyo Co Ltd 常温溶融塩及びその製造方法
JP2011054463A (ja) * 2009-09-03 2011-03-17 Konica Minolta Holdings Inc 電解質組成物、その製造方法、および二次電池
JP2011192568A (ja) * 2010-03-16 2011-09-29 Konica Minolta Holdings Inc 電解質組成物、および二次電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021511640A (ja) * 2018-01-29 2021-05-06 アルケマ フランス カリウム塩とリチウム塩の混合物と電池におけるその使用
JP7355744B2 (ja) 2018-01-29 2023-10-03 アルケマ フランス カリウム塩とリチウム塩の混合物と電池におけるその使用
CN112602211A (zh) * 2018-06-20 2021-04-02 通用汽车环球科技运作有限责任公司 具有盐包水电解质的水基混合锂离子电容器电池
CN112602211B (zh) * 2018-06-20 2023-10-10 通用汽车环球科技运作有限责任公司 具有盐包水电解质的水基混合锂离子电容器电池

Also Published As

Publication number Publication date
JPWO2015132892A1 (ja) 2017-03-30
US20160268637A1 (en) 2016-09-15
JP6064082B2 (ja) 2017-01-18

Similar Documents

Publication Publication Date Title
JP4868556B2 (ja) リチウム二次電池
JP6253411B2 (ja) リチウム二次電池
JP5121035B1 (ja) リチウムイオン二次電池
WO2017110661A1 (ja) リチウムイオン二次電池
US20160072152A1 (en) Lithium ion secondary battery
JP5949605B2 (ja) 非水電解質二次電池、及び蓄電装置
JP6730284B2 (ja) 電極の製造方法及び蓄電デバイスの製造方法
KR102232185B1 (ko) 리튬 이온 이차 전지
JP2016045987A (ja) リチウムイオン二次電池用の電解液およびリチウムイオン二次電池
JP5851801B2 (ja) リチウム二次電池
JP6396136B2 (ja) リチウム二次電池
JP6064082B2 (ja) リチウムイオン二次電池用電解質液およびそれを用いたリチウムイオン二次電池
JP2013149451A (ja) リチウム二次電池
JP2018049821A (ja) 蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法
JP5845096B2 (ja) リチウム二次電池
WO2017094526A1 (ja) 電気化学素子用電極およびリチウムイオン二次電池
JP6258180B2 (ja) リチウム二次電池用電解液の添加剤及びそれを用いたリチウム二次電池用電解液、リチウム二次電池
JP2015159050A (ja) Li電池用材料
JP6023222B2 (ja) リチウムイオン二次電池用負極材料
JP5658122B2 (ja) リチウム二次電池
WO2015118675A1 (ja) リチウムイオン二次電池用負極材料
JP5785653B2 (ja) リチウム二次電池
JP6135980B2 (ja) 正極活物質及び蓄電素子
JP2018005973A (ja) リチウムイオン電池
WO2015132842A1 (ja) リチウムイオン二次電池用難燃剤、リチウムイオン二次電池用電解液、リチウムイオン二次電池、リチウムイオン二次電池を利用した電源または機器システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884689

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505989

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15028308

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884689

Country of ref document: EP

Kind code of ref document: A1