WO2015129789A1 - 架橋性ニトリルゴム組成物およびゴム架橋物 - Google Patents

架橋性ニトリルゴム組成物およびゴム架橋物 Download PDF

Info

Publication number
WO2015129789A1
WO2015129789A1 PCT/JP2015/055545 JP2015055545W WO2015129789A1 WO 2015129789 A1 WO2015129789 A1 WO 2015129789A1 JP 2015055545 W JP2015055545 W JP 2015055545W WO 2015129789 A1 WO2015129789 A1 WO 2015129789A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrile rubber
highly saturated
parts
cross
rubber composition
Prior art date
Application number
PCT/JP2015/055545
Other languages
English (en)
French (fr)
Inventor
友則 中島
清香 井上
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US15/119,845 priority Critical patent/US20170058100A1/en
Priority to KR1020167023622A priority patent/KR102261613B1/ko
Priority to EP15756081.4A priority patent/EP3112410B1/en
Priority to JP2016505285A priority patent/JP6593321B2/ja
Priority to MX2016010756A priority patent/MX2016010756A/es
Priority to CN201580009438.9A priority patent/CN106029767B/zh
Publication of WO2015129789A1 publication Critical patent/WO2015129789A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides

Definitions

  • the present invention is obtained by using a crosslinkable nitrile rubber composition that can provide a rubber cross-linked product having excellent scorch stability and excellent in normal physical properties and bending fatigue resistance, and the cross-linkable nitrile rubber composition. It relates to a rubber cross-linked product.
  • Nitrile rubber (acrylonitrile-butadiene copolymer rubber) has been used as a material for automotive rubber parts such as hoses, belts, tubes, etc., taking advantage of oil resistance, mechanical properties, chemical resistance, etc.
  • Highly saturated nitrile rubber obtained by saturating the carbon-carbon double bond in the polymer main chain of nitrile rubber by hydrogenation is superior in heat resistance, so it is used for rubber parts such as seals, belts, hoses, diaphragms, etc. Has been.
  • Patent Document 1 discloses that 100 parts by weight of a nitrile group-containing copolymer rubber having an iodine value of 20 or less and an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit content of 40 to 60% by weight.
  • a rubber composition comprising 3 to 100 parts by weight of an ⁇ , ⁇ -ethylenically unsaturated carboxylic acid metal salt.
  • a rubber cross-linked product excellent in oil resistance such as resistance to deterioration oil is obtained from the composition.
  • Patent Document 1 Although a rubber cross-linked product having excellent resistance to deterioration oil can be obtained, it has high mechanical properties such as scorch stability as a rubber composition and resistance to bending fatigue. The characteristics are not always sufficient, and therefore, improvement in advanced mechanical characteristics such as scorch stability and bending fatigue resistance has been desired.
  • the present invention is obtained by using a crosslinkable nitrile rubber composition that can provide a rubber cross-linked product having excellent scorch stability and excellent in normal physical properties and bending fatigue resistance, and the cross-linkable nitrile rubber composition.
  • An object is to provide a rubber cross-linked product.
  • the present inventors have found that a highly saturated nitrile rubber having a Mooney viscosity [ML 1 + 4 , 100 ° C.] of 50 or less and an iodine value of 120 or less has an unsaturated carboxylic acid metal salt. And the rubber composition comprising the organic peroxide cross-linking agent was found to achieve the above object, and the present invention was completed.
  • a crosslinkable nitrile rubber composition containing an oxide crosslinking agent (C) In the crosslinkable nitrile rubber composition of the present invention, the highly saturated nitrile rubber (A) preferably has a degree of branching index of 20,000 Pa ⁇ s or less.
  • the highly saturated nitrile rubber (A) preferably has a molecular weight distribution (Mw / Mn) of 1.2 to 10.
  • the unsaturated carboxylic acid metal salt (B) is preferably an unsaturated carboxylic acid zinc salt, more preferably an unsaturated monocarboxylic acid zinc salt.
  • the unsaturated carboxylic acid metal salt (B) preferably has a content ratio of particles having a volume average particle diameter of 20 ⁇ m or more of 5% or less.
  • a rubber cross-linked product obtained by cross-linking any of the above cross-linkable nitrile rubber compositions.
  • a crosslinkable nitrile rubber composition capable of providing a rubber cross-linked product having excellent scorch stability and excellent in normal physical properties and bending fatigue resistance, and the cross-linkable nitrile rubber composition are used.
  • the resulting rubber cross-linked product can be provided.
  • Crosslinkable nitrile rubber composition comprises a highly saturated nitrile rubber (A) having a Mooney viscosity [ML 1 + 4 , 100 ° C] of 50 or less and an iodine value of 120 or less, and an unsaturated carboxylic acid. It is a composition comprising a metal salt (B) and an organic peroxide crosslinking agent (C).
  • A highly saturated nitrile rubber
  • B metal salt
  • C organic peroxide crosslinking agent
  • Highly saturated nitrile rubber (A) The highly saturated nitrile rubber (A) used in the present invention is obtained by copolymerizing at least an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer with another monomer copolymerizable therewith.
  • ML 1 + 4 , 100 ° C.] is 50 or less, and iodine value is 120 or less.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • acrylonitrile; ⁇ -chloroacrylonitrile, ⁇ -bromoacrylonitrile, etc. ⁇ -halogenoacrylonitrile, ⁇ -alkylacrylonitrile such as methacrylonitrile, and the like Among these, acrylonitrile and methacrylonitrile are preferable, and acrylonitrile is particularly preferable.
  • One ⁇ , ⁇ -ethylenically unsaturated nitrile monomer may be used alone, or a plurality of these may be used in combination.
  • the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is preferably 10 to 60% by weight, more preferably 20 to 20%, based on all monomer units constituting the highly saturated nitrile rubber (A). 50% by weight, more preferably 25 to 45% by weight. If the content of the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer unit is too small, the oil resistance of the resulting rubber cross-linked product may be lowered, and conversely if too much, the cold resistance may be lowered. is there.
  • the monomer that is copolymerized with the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer for forming the highly saturated nitrile rubber (A) used in the present invention is not particularly limited, but expresses rubber elasticity. From the standpoint, a conjugated diene monomer is preferable.
  • the conjugated diene monomer is not particularly limited as long as it is copolymerizable with an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, and 1,3-butadiene, isoprene, 2,3-dimethyl-1, Examples thereof include 3-butadiene and 1,3-pentadiene. Among these, 1,3-butadiene and isoprene are preferable, and 1,3-butadiene is particularly preferable.
  • a conjugated diene monomer may be used individually by 1 type, and these multiple types may be used together.
  • the content of the conjugated diene monomer unit is preferably 90 to 40% by weight, more preferably 80 to 50% by weight, and still more preferably based on all monomer units constituting the highly saturated nitrile rubber (A). 75 to 55% by weight. If the content of the conjugated diene monomer unit is too small, the rubber elasticity of the resulting crosslinked product may be lowered. Conversely, if the content is too large, heat resistance and chemical stability may be impaired.
  • the highly saturated nitrile rubber (A) used in the present invention is obtained by copolymerizing an ⁇ , ⁇ -ethylenically unsaturated nitrile monomer and a conjugated diene monomer and other monomers copolymerizable therewith.
  • Such other monomers include non-conjugated diene monomers, ethylene, ⁇ -olefin monomers, aromatic vinyl monomers, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids and esters, ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid and its monoester, polyvalent ester and anhydride, crosslinkable monomer, copolymerizable anti-aging agent and the like.
  • the non-conjugated diene monomer preferably has 5 to 12 carbon atoms, and examples thereof include 1,4-pentadiene, 1,4-hexadiene, vinylnorbornene, and dicyclopentadiene.
  • the ⁇ -olefin monomer preferably has 3 to 12 carbon atoms, and examples thereof include propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and 1-octene.
  • Examples of the aromatic vinyl monomer include styrene, ⁇ -methylstyrene, vinyl pyridine and the like.
  • Preferred examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid include acrylic acid, methacrylic acid, crotonic acid, and cinnamic acid.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid ester include ethyl (meth) acrylate (meaning ethyl acrylate and ethyl methacrylate; the same shall apply hereinafter), butyl (meth) acrylate, and (meth) acrylic. Examples include acid 2-ethylhexyl.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the ⁇ , ⁇ -ethylenically unsaturated polycarboxylic acid monoester include monoalkyl maleates such as monomethyl maleate, monoethyl maleate, monopropyl maleate, mono n-butyl maleate; monomethyl fumarate, Monoalkyl fumarate such as monoethyl fumarate, monopropyl fumarate, mono n-butyl fumarate; citraconic acid monoalkyl esters such as citraconic acid monomethyl, citraconic acid monoethyl, citraconic acid monopropyl, citraconic acid mono n-butyl; Itaconic acid monoalkyl esters such as monomethyl itaconate, monoethyl itaconate, monopropyl itaconate, mono-n-butyl itaconate
  • crosslinkable monomer examples include divinyl compounds such as divinylbenzene; di (meth) acrylates such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate; trimethylol Self-crosslinking such as N-methylol (meth) acrylamide, N, N'-dimethylol (meth) acrylamide, in addition to polyfunctional ethylenically unsaturated monomers such as trimethacrylates such as propane tri (meth) acrylate; And other monomers.
  • divinyl compounds such as divinylbenzene
  • di (meth) acrylates such as ethylene di (meth) acrylate, diethylene glycol di (meth) acrylate, and ethylene glycol di (meth) acrylate
  • trimethylol Self-crosslinking such as N-methylol (meth) acrylamide, N, N'-dimethylol (meth)
  • copolymerizable anti-aging agents examples include N- (4-anilinophenyl) acrylamide, N- (4-anilinophenyl) methacrylamide, N- (4-anilinophenyl) cinnamamide, N- (4- Anilinophenyl) crotonamide, N-phenyl-4- (3-vinylbenzyloxy) aniline, N-phenyl-4- (4-vinylbenzyloxy) aniline and the like.
  • the content of other monomer units is preferably 50% by weight or less, more preferably 30% by weight or less, and still more preferably 10%, based on all monomer units constituting the highly saturated nitrile rubber (A). % By weight or less.
  • the production method of the highly saturated nitrile rubber (A) used in the present invention is not particularly limited.
  • ⁇ , ⁇ -ethylenically unsaturated nitrile monomer, conjugated diene monomer, and, if necessary, are added.
  • a copolymer (a) is obtained, an anti-aging agent is added to the obtained copolymer (a), and an anti-aging agent is obtained.
  • a method of performing a high shearing treatment that imparts a high shearing force in the presence of.
  • any of the known emulsion polymerization method, suspension polymerization method, bulk polymerization method and solution polymerization method can be used, but the emulsion polymerization method is preferable because the polymerization reaction can be easily controlled.
  • emulsion polymerization commonly used polymerization auxiliary materials such as emulsifiers, polymerization initiators, molecular weight regulators and the like can be used.
  • nonionic emulsifiers such as polyoxyethylene alkyl ether, polyoxyethylene alkyl phenol ether, polyoxyethylene alkyl ester, polyoxyethylene sorbitan alkyl ester; myristic acid, palmitic acid, oleic acid And salts of fatty acids such as linolenic acid, alkylbenzene sulfonates such as sodium dodecylbenzenesulfonate, anionic emulsifiers such as higher alcohol sulfates and alkylsulfosuccinates; sulfoesters of ⁇ , ⁇ -unsaturated carboxylic acids, ⁇ , ⁇ -unsaturated carboxylic acid sulfate esters, sulfoalkyl aryl ethers and other copolymerizable emulsifiers.
  • the amount of the emulsifier used is preferably 0.1 to 10 parts
  • the polymerization initiator is not particularly limited as long as it is a radical initiator, but inorganic peroxides such as potassium persulfate, sodium persulfate, ammonium persulfate, potassium perphosphate, hydrogen peroxide; t-butyl peroxide, cumene Hydroperoxide, p-menthane hydroperoxide, di-t-butyl peroxide, t-butylcumyl peroxide, acetyl peroxide, isobutyryl peroxide, octanoyl peroxide, dibenzoyl peroxide, 3, 5, 5 Organic peroxides such as trimethylhexanoyl peroxide and t-butylperoxyisobutyrate; azobisisobutyronitrile, azobis-2,4-dimethylvaleronitrile, azobiscyclohexanecarbonitrile, methyl azobisisobutyrate, etc.
  • inorganic peroxides
  • polymerization initiators can be used alone or in combination of two or more.
  • an inorganic or organic peroxide is preferable.
  • a peroxide is used as the polymerization initiator, it can be used as a redox polymerization initiator in combination with a reducing agent such as sodium bisulfite or ferrous sulfate.
  • the amount of the polymerization initiator used is preferably 0.01 to 2 parts by weight with respect to 100 parts by weight of all monomers.
  • the molecular weight modifier is not particularly limited, but mercaptans such as t-dodecyl mercaptan, n-dodecyl mercaptan, octyl mercaptan; halogenated hydrocarbons such as carbon tetrachloride, methylene chloride, methylene bromide; ⁇ -methylstyrene dimer And sulfur-containing compounds such as tetraethylthiuram disulfide, dipentamethylene thiuram disulfide, and diisopropylxanthogen disulfide. These can be used alone or in combination of two or more.
  • the amount of the molecular weight modifier used is preferably 0.1 to 0.8 parts by weight with respect to 100 parts by weight of the total monomers.
  • Water is usually used as the emulsion polymerization medium.
  • the amount of water is preferably 80 to 500 parts by weight with respect to 100 parts by weight of the total monomers.
  • polymerization auxiliary materials such as a stabilizer, a dispersant, a pH adjuster, an oxygen scavenger, and a particle size adjuster can be used as necessary. In using these, neither the kind nor the usage-amount is specifically limited.
  • the copolymer (a) can be obtained by coagulating the copolymer (a) from the latex of the copolymer (a) obtained by emulsion polymerization.
  • the copolymer (a) obtained may be subjected to hydrogenation (hydrogenation reaction) of the copolymer (a) as necessary.
  • the hydrogenation method is not particularly limited, and a known method may be employed.
  • the Mooney viscosity [ML 1 + 4 , 100 ° C.] of the copolymer (a) is usually 60 to 200, preferably 50 to 160.
  • an anti-aging agent is added to the copolymer (a) thus obtained, and a high shearing treatment is applied to impart a high shearing force in the presence of the anti-aging agent.
  • a) is made to have a low Mooney viscosity, whereby a highly saturated nitrile rubber (A) can be obtained.
  • the anti-aging agent is not particularly limited, but for example, aromatic secondary amine, amine / ketone, mercaptobenzimidazole, bisphenol, monophenol, thiobisphenol, hydroquinone, nickel, thiourea, Thioether and phosphorus anti-aging agents can be used.
  • aromatic secondary amine, amine / ketone, mercaptobenzimidazole, bisphenol, monophenol, thiobisphenol, hydroquinone, nickel, thiourea, Thioether and phosphorus anti-aging agents can be used.
  • hydroquinone-based anti-aging agents are preferred from the viewpoint that low Mooney viscosity can be improved favorably by high shear treatment.
  • the aromatic secondary amine anti-aging agent is a secondary amine having an aromatic ring bonded to a nitrogen atom, and specific examples thereof include octylated diphenylamine, 4,4′-bis (dimethylbenzyl) diphenylamine, phenyl- ⁇ .
  • a diarylamine antioxidant such as naphthylamine; a diaryl-p-phenylenediamine antioxidant such as diphenyl-p-phenylenediamine, dinaphthyl-p-phenylenediamine; and N-isopropyl-N′-phenyl -P-phenylenediamine, N-1,3-dimethylbutyl-N'-phenyl-p-phenylenediamine, N- (3-methacryloyloxy-2-hydroxypropyl) -N'-phenyl-p-phenylenediamine, N -(Methacryloyl) -N'-phenyl-p-phenylenedi Alkyl aryl -p- phenylenediamine antioxidant such as amine, and the like.
  • the amine / ketone antioxidant is a condensation product of an aromatic amine and a ketone. Specific examples thereof include aniline / acetone condensation products, p-phenetidine / acetone condensation products, diphenylamine / acetone condensation products, and the like. Can be mentioned. Specific examples of the mercaptobenzimidazole antioxidant include mercaptobenzimidazole and its zinc salt, mercaptomethylbenzimidazole and its zinc salt, and the like. Specific examples of the bisphenol anti-aging agent include 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-tert-butylphenol) and the like.
  • Bisphenol alkanes and bisphenol sulfides such as 4,4'-thiobis (3-methyl-6-t-butylphenol).
  • monophenol antioxidants include styrenated phenol, 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, n- Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-dimethyl-6- (1-methylcyclohexyl) phenol, 2-t-butyl-6- (3-t -Butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2- [1- (2-hydro-3,5-di-t-pentylphenyl) ethyl] -4,6-di-t -Pentylphenyl acrylate and the like.
  • thiobisphenol anti-aging agent examples include 4,4′-thiobis (3-methyl-6-tert-butylphenol), 4,4′-bis (3,5-di-tert-butyl-4-hydroxy). Benzyl) sulfide, 4,4′-thiobis (6-t-butyl-o-cresol) and the like.
  • hydroquinone antioxidants include 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, poly (2,2,4-trimethyl-1,2-dihydroquinoline, etc. Is mentioned.
  • nickel-based antiaging agent examples include nickel dimethyldithiocarbamate, nickel diethyldithiocarbamate, nickel dibutylthiocarbamate, nickel isopropyl santogenate, and the like.
  • thiourea antioxidant examples include 1,3-bis (dimethylaminopropyl) thiourea and tributylthiourea.
  • Specific examples of the thioether type anti-aging agent include dilauryl-3,3-thiodipropionate, distearyl-3,3-thiodipropionate, pentaerythritol tetrakis (3-laurylthiopropionate) and the like.
  • Specific examples of the phosphorus-based antiaging agent include tris (nonylated phenyl) phosphite.
  • the method for imparting a high shear force to the copolymer (a) in the presence of an anti-aging agent is not particularly limited, but the shear rate is preferably 500 to 5,000 s ⁇ 1 , more preferably 800 to 5, 000 s ⁇ 1 , and the temperature during the high shearing force application treatment is preferably 180 to 380 ° C., more preferably 250 to 350 ° C.
  • an extruder equipped with a single screw or a multi-screw preferably a twin screw is used.
  • a method of applying a shear force at the above-described shear rate and temperature conditions using a twin screw extruder provided is preferable.
  • the twin screw extruder a fully meshed twin screw extruder can be preferably used, and the screw shape is preferably two or more screws from the viewpoint of imparting shearing force.
  • a double screw or a triple screw is particularly preferable.
  • the twin screw extruder used for applying a high shear force preferably has an L / D (length / diameter) ratio of 30 or more, more preferably 30 to 80. If the L / D is too small, the cooling zone cannot be secured sufficiently, so that the rubber is not sufficiently cooled at the exit of the extruder, and the rubber cannot be taken out well when being taken out from the extruder, or is extruded at a high temperature. Therefore, the rubber may be deteriorated or gelled. In particular, since heat generation increases by applying a high shearing force, it is desirable that the rubber is sufficiently cooled before being extruded from the extruder from such a viewpoint. It is desirable that / D is in the above range and a sufficient cooling zone is secured.
  • the rubber temperature at the exit of the extruder is preferably 360 ° C. or lower, more preferably 330 ° C. or lower.
  • the twin-screw extruder is usually composed of a plurality of barrels that are connected in series.
  • the twin-screw extruder is charged with the copolymer (a) and the antioxidant. It is preferable to comprise a zone, a melting zone for melting them, a kneading / shearing zone for kneading with high shearing force, and a cooling / degassing zone for cooling and degassing.
  • the copolymer (a) and the antioxidant are melted, and the antioxidant is uniformly dispersed in the copolymer (a).
  • the screw configuration in the charging zone and the melting zone is basically composed of a feeding conveyance section, and a configuration in which each material is gradually compressed is used.
  • the set temperature is preferably set so that melt kneading is appropriately performed. In practice, it is preferable to increase the set temperature to about 250 ° C. in several steps.
  • a screw composed of a kneading section is used, and shearing force is applied to the rubber at a predetermined high temperature using the shearing force of the screw.
  • the temperature setting of the kneading / shearing zone is preferably 240 to 320 ° C, more preferably 250 to 300 ° C.
  • the kneaded material kneaded with a high shear force is cooled, and moisture and volatile by-products are removed from the degassing vent under reduced pressure. Finally, the kneaded product is extruded from the extrusion head.
  • the screw configuration of the cooling / degassing zone is preferably configured using a feeding conveyance section having a low shearing force so that the kneaded material is sufficiently cooled.
  • the temperature setting in the cooling / degassing zone is preferably 180 to 270 ° C., and preferably maintained at a reduced pressure of 700 to 750 mmHg, but may be a normal pressure.
  • the copolymer (a) is subjected to a high shearing treatment that imparts a high shearing force in the presence of an antioxidant, thereby reducing the copolymer (a) to a low Mooney viscosity.
  • a highly saturated nitrile rubber (A) can be obtained.
  • the Mooney viscosity (polymer Mooney viscosity) [ML 1 + 4 , 100 ° C.] of the highly saturated nitrile rubber (A) is 50 or less, preferably 5 to 48, more preferably 10 to 45. If the Mooney viscosity is too high, the processability is inferior and the resulting rubber cross-linked product is inferior in bending fatigue resistance.
  • the branching index of the highly saturated nitrile rubber (A) is preferably 20,000 Pa ⁇ s or less, more preferably 15000 Pa ⁇ s or less, and further preferably 12000 Pa ⁇ s or less.
  • the lower limit of the degree of branching index is not particularly limited, but is usually 3000 Pa ⁇ s or more.
  • the method for measuring the degree of branching index of the highly saturated nitrile rubber (A) is not particularly limited, but the complex viscosity ( ⁇ 1) on the low shear rate side that is significantly affected by the long chain branching structure, The difference ( ⁇ 2 ⁇ 1) from the complex viscosity ( ⁇ 2) on the high shear rate side can be obtained and used as the branching index.
  • a complex viscosity ( ⁇ 1) measured at a temperature of 100 ° C., a frequency of 1 Hz, a dynamic strain of 7.0%, a shear rate of 0.44 s ⁇ 1 , a temperature of 100 ° C. The complex viscosity ( ⁇ 2) measured at a frequency of 1 Hz, a dynamic strain of 473.0%, and a shear rate of 29.7 s ⁇ 1 was measured, and the difference ( ⁇ 2 ⁇ 1) was calculated. can do.
  • the method for setting the branching degree index in the above range is not particularly limited.
  • the copolymer (a) is first polymerized by an emulsion polymerization method or the like.
  • the method of selecting the kind of molecular weight regulator used when adjusting, or adjusting an addition amount is mentioned.
  • the copolymer obtained as described above is used.
  • the Mooney viscosity and molecular weight distribution values of the coalescence (a) a method of adjusting the type and amount of the anti-aging agent, a method of adjusting the shearing conditions (for example, a twin screw extruder used for applying shear force) Screw configuration, its rotational speed, processing speed, barrel set temperature, etc.).
  • the higher the screw speed the lower the branching index.
  • the branching index can be increased as the processing speed is decreased.
  • the iodine value of the highly saturated nitrile rubber (A) is 120 or less, more preferably 60 or less, and still more preferably 30 or less. If the iodine value is too high, the heat resistance and ozone resistance of the resulting rubber cross-linked product may be reduced.
  • the molecular weight distribution (Mw / Mn) of the highly saturated nitrile rubber (A) is preferably 1.2 to 10, more preferably 1.5 to 10, and further preferably 1.7 to 8. 0, most preferably 1.8 to 5.0.
  • Mw / Mn is too small, the kneadability of the resulting crosslinkable rubber composition may be deteriorated. If Mw / Mn is too large, the dynamic exothermic property of the resulting rubber cross-linked product may be deteriorated.
  • a method of setting the Mooney viscosity of the highly saturated nitrile rubber (A) in the above range a method of reducing the Mooney viscosity by a high shearing force application treatment is exemplified, but the method is particularly limited to such a method.
  • a method of reducing the Mooney viscosity by reducing the molecular weight of the copolymer (a) using a metathesis reaction or the like may be employed.
  • Unsaturated carboxylic acid metal salt (B) The unsaturated carboxylic acid metal salt (B) used in the present invention is a salt of an unsaturated carboxylic acid and a metal.
  • the unsaturated carboxylic acid has at least a monovalent free carboxyl group to form a metal salt, and examples thereof include unsaturated monocarboxylic acid, unsaturated dicarboxylic acid, and unsaturated dicarboxylic acid monoester. .
  • Examples of unsaturated monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid, and 3-butenoic acid.
  • Examples of the unsaturated dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Examples of the unsaturated dicarboxylic acid monoester include monomethyl maleate, monoethyl maleate, monomethyl itaconate, monoethyl itaconate and the like.
  • an unsaturated carboxylic acid having no ester group is preferable, an unsaturated monocarboxylic acid is more preferable, and methacrylic acid is particularly preferable from the viewpoint of strength characteristics (particularly bending fatigue resistance) of the obtained rubber cross-linked product. .
  • a metal which comprises unsaturated carboxylic acid metal salt (B) for example, polyvalent metals, such as zinc, magnesium, calcium, barium, titanium, chromium, iron, cobalt, nickel, aluminum, tin, lead Is preferable.
  • polyvalent metals such as zinc, magnesium, calcium, and aluminum are preferable, and zinc is particularly preferable from the viewpoint of strength characteristics (particularly, bending fatigue resistance) of the obtained rubber cross-linked product.
  • the unsaturated carboxylic acid metal salt (B) is composed of the unsaturated carboxylic acid that forms the unsaturated carboxylic acid metal salt (B) on the highly saturated nitrile rubber (A), the metal or You may make it produce
  • the resulting unsaturated carboxylic acid metal salt (B) can be favorably dispersed in the highly saturated nitrile rubber (A).
  • examples of the metal compound used in this case include the above-described metal oxides, hydroxides, carbonates, etc. Among them, zinc oxide and zinc carbonate are preferably used.
  • the amount of the unsaturated carboxylic acid is 1 mol.
  • the metal or metal compound is preferably added in an amount of 0.5 to 4 moles, more preferably 0.7 to 3 moles. If the amount of the metal or metal compound used is too small or too large, the reaction between the unsaturated carboxylic acid and the metal or metal compound is difficult to occur.
  • the metal compound when zinc oxide, zinc carbonate, zinc hydroxide or the like is used as the metal compound, it functions as a crosslinking accelerator as a rubber compounding agent alone, so even if the upper limit of the above range is exceeded, the compounding composition May not cause problems.
  • the unsaturated carboxylic acid metal salt (B) is preferably a fine one as long as there is no problem in handling, and in particular, the content ratio of particles having a volume average particle diameter of 20 ⁇ m or more is preferably 5% or less. .
  • a method of classifying the unsaturated carboxylic acid metal salt (B) using an air classifier or a sieve classifier is used. That's fine.
  • an unsaturated carboxylic acid metal salt (B) is produced in a highly saturated nitrile rubber (A) by blending an unsaturated carboxylic acid and a metal or metal compound, the metal or metal compound is
  • the unsaturated carboxylic acid metal salt (B) may be made fine by using a classifying method using an air classifier or a sieve classifier.
  • the content of the unsaturated carboxylic acid metal salt (B) in the crosslinkable nitrile rubber composition of the present invention is preferably 1 to 100 parts by weight, more preferably 100 parts by weight with respect to 100 parts by weight of the highly saturated nitrile rubber (A). Is 1 to 50 parts by weight, more preferably 2 to 20 parts by weight. If the content of the unsaturated carboxylic acid metal salt (B) is too small, the strength of the resulting cross-linked product may be low, and conversely if too high, the elongation of the cross-linked product may be too low.
  • Organic peroxide crosslinking agent (C) The crosslinkable nitrile rubber composition of the present invention contains an organic peroxide crosslinking agent (C) in addition to the highly saturated nitrile rubber (A) and the unsaturated carboxylic acid metal salt (B).
  • organic peroxide crosslinking agent (C) conventionally known ones can be used, and are not particularly limited.
  • dicumyl peroxide cumene hydroperoxide, t-butylcumyl peroxide, paramentane hydroperoxide, di-t -Butyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, 1,4-bis (t-butylperoxyisopropyl) benzene, 1,1-di-t-butylperoxy-3,3-trimethylcyclohexane, 4,4-bis- (t-butyl-peroxy) -n-butyl valerate, 2,5-dimethyl-2,5-di-t-butylperoxyhexane, 2,5-dimethyl-2,5-di- t-butylperoxyhexyne-3,1,1-di-t-butylperoxy-3,5,5-trimethylcyclohexa , P- chlorobenzoyl peroxide, t- butyl peroxy isopropyl
  • the content of the organic peroxide crosslinking agent (C) in the crosslinkable nitrile rubber composition of the present invention is preferably 1 to 20 parts by weight, more preferably 100 parts by weight of the highly saturated nitrile rubber (A). Is 2 to 15 parts by weight, more preferably 3 to 10 parts by weight.
  • an organic peroxide crosslinking agent (C) there exists a possibility that the mechanical characteristics (breaking strength etc.) of the rubber crosslinked material obtained may deteriorate.
  • the amount is too large, the bending fatigue resistance of the resulting crosslinked product may be deteriorated.
  • the crosslinkable nitrile rubber composition of the present invention may further contain a co-crosslinking agent.
  • the co-crosslinking agent is preferably a low-molecular or high-molecular compound having a plurality of radical-reactive unsaturated groups in the molecule.
  • polyfunctional vinyl compounds such as divinylbenzene and divinylnaphthalene; triallyl isocyanurate, trimerene Isocyanurates such as taryl isocyanurate; cyanurates such as triallyl cyanurate; maleimides such as N, N′-m-phenylene dimaleimide; diallyl phthalate, diallyl isophthalate, diallyl maleate, diallyl fumarate, diallyl seba Allyl esters of polyvalent acids such as keto and triallyl phosphate; diethylene glycol bisallyl carbonate; ethylene glycol diallyl ether, trimethylolpropane triallyl ether, pentaerythritol partial allyl Allyl ethers such as ethers; Allyl-modified resins such as allylated novolaks and allylated resole resins; Tri- to 5-functional methacrylate compounds and acrylate compounds such as trimethylolpropane
  • the content of the co-crosslinking agent in the cross-linkable nitrile rubber composition of the present invention is preferably 1 to 20 parts by weight, more preferably 1 to 10 parts per 100 parts by weight of the highly saturated nitrile rubber (A). Part by weight, more preferably 2 to 5 parts by weight.
  • other compounding agents usually used in the rubber processing field may be blended.
  • compounding agents include reinforcing agents, fillers, antioxidants, light stabilizers, scorch inhibitors, plasticizers, processing aids, lubricants, adhesives, lubricants, flame retardants, acid acceptors, Examples include antifungal agents, antistatic agents, colorants, silane coupling agents, crosslinking aids, crosslinking retarders, and foaming agents.
  • an amount corresponding to the compounding purpose can be appropriately adopted.
  • the crosslinkable nitrile rubber composition of the present invention may contain a rubber other than the above highly saturated nitrile rubber (A) as long as the effects of the present invention are not impaired.
  • Such other rubbers include acrylic rubber, ethylene-acrylic acid copolymer rubber, styrene-butadiene copolymer rubber, polybutadiene rubber, ethylene-propylene copolymer rubber, ethylene-propylene-diene terpolymer. Examples thereof include rubber, epichlorohydrin rubber, fluorine rubber, urethane rubber, chloroprene rubber, silicone rubber, natural rubber, and polyisoprene rubber.
  • the blending amount in the crosslinkable nitrile rubber composition is preferably 30 parts by weight or less, more preferably 100 parts by weight or less. Is 20 parts by weight or less, more preferably 10 parts by weight or less.
  • the crosslinkable nitrile rubber composition of the present invention is prepared by mixing each of the above components preferably in a non-aqueous system.
  • the components excluding the organic peroxide crosslinking agent (C) and the heat-labile co-crosslinking agent and crosslinking aid After primary kneading with a mixer such as a Banbury mixer, intermixer, kneader, etc., transfer to an open roll, etc., and add organic peroxide cross-linking agent (C) or a heat-unstable co-crosslinking agent to secondary kneading. Can be prepared.
  • the primary kneading is usually performed at a temperature of 10 to 200 ° C., preferably 30 to 180 ° C. for 1 minute to 1 hour, preferably 1 minute to 30 minutes, and the secondary kneading is usually 10 to 90 ° C., Preferably, the reaction is performed at a temperature of 20 to 60 ° C. for 1 minute to 1 hour, preferably 1 minute to 30 minutes.
  • the crosslinkable nitrile rubber composition of the present invention thus obtained has a compound Mooney viscosity [ML 1 + 4 , 100 ° C.] of preferably 5 to 200, more preferably 10 to 150, and further preferably 20 to 100.
  • the crosslinkable nitrile rubber composition of the present invention has a long scorch time and excellent scorch stability.
  • Cross-linked rubber The cross-linked rubber of the present invention is obtained by cross-linking the cross-linkable nitrile rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention is formed using the cross-linkable nitrile rubber composition of the present invention, for example, by a molding machine corresponding to a desired shape, for example, an extruder, an injection molding machine, a compressor, a roll, It can manufacture by performing a crosslinking reaction by heating and fixing a shape as a crosslinked product. In this case, crosslinking may be performed after molding in advance, or crosslinking may be performed simultaneously with molding.
  • the molding temperature is usually 10 to 200 ° C, preferably 25 to 120 ° C.
  • the crosslinking temperature is usually 100 to 200 ° C., preferably 130 to 190 ° C.
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 1 hour.
  • a heating method a general method used for crosslinking of rubber such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
  • the rubber cross-linked product of the present invention thus obtained is obtained by using the cross-linkable nitrile rubber composition of the present invention described above, and therefore has excellent normal physical properties and bending fatigue resistance. For this reason, the rubber cross-linked product of the present invention makes use of such characteristics, and O-rings, packings, diaphragms, oil seals, shaft seals, bearing seals, well head seals, pneumatic equipment seals, and air conditioner cooling devices.
  • Various seal materials such as seals for valves (rolling bearings, automotive hub units, automotive water pumps, linear guide devices, ball screws, etc.), valves and valve seats, BOP (Blow Out Preventar), platters; intake manifolds and cylinders Attach to the connection with the head Intake manifold gasket, cylinder head gasket attached to the connection between the cylinder block and cylinder head, rocker cover gasket attached to the connection between the rocker cover and cylinder head, oil pan and cylinder block or transmission case
  • Various gaskets such as an oil pan gasket attached to the connecting part, a gasket for a fuel cell separator attached between a pair of housings sandwiching a unit cell having a positive electrode, an electrolyte plate, and a negative electrode; a top cover gasket for a hard disk drive;
  • the content ratio of each monomer unit constituting the highly saturated nitrile rubber was measured by the following method.
  • the content ratio of 1,3-butadiene units and saturated butadiene units was calculated by measuring iodine values (according to JIS K 6235) before and after the hydrogenation reaction using highly saturated nitrile rubber.
  • the content ratio of the acrylonitrile unit was calculated by measuring the nitrogen content in the highly saturated nitrile rubber by the Kjeldahl method according to JIS K6384.
  • the iodine value of the highly saturated nitrile rubber was measured according to JIS K 6235.
  • Mooney viscosity (Polymer Mooney) The Mooney viscosity (polymer Mooney) of the highly saturated nitrile rubber was measured according to JIS K6300-1 (unit: [ML 1 + 4 , 100 ° C.]).
  • Branching Index The branching index of the highly saturated nitrile rubber was measured using a viscoelasticity measuring device: trade name “RPA-2000, Rubber Process Analyzer” (manufactured by Alpha Technologies). Specifically, first, for a highly saturated nitrile rubber, a complex viscosity ⁇ * at a frequency of 1 Hz, a dynamic strain of 7.0%, and a shear rate of 0.44 s ⁇ 1 was measured at 100 ° C., and this was measured as ⁇ 1 (unit: [Pa ⁇ s]).
  • the complex viscosity ⁇ * at a frequency of 1 Hz, a dynamic strain of 473.0%, and a shear rate of 29.7 s ⁇ 1 was measured, and this was defined as ⁇ 2 (unit: [Pa ⁇ s]).
  • the degree of branching index is obtained by ( ⁇ 2) ⁇ ( ⁇ 1) (unit: [Pa ⁇ s]).
  • Mw / Mn Molecular weight distribution (Mw / Mn)
  • the highly saturated nitrile rubber was dissolved in chloroform, passed through a membrane filter, and then measured by gel permeation chromatography under the following conditions to obtain the molecular weight distribution Mw / Mn of the highly saturated nitrile rubber.
  • Mw and Mn are standard polystyrene conversion.
  • Measuring instrument Product name “HLC-8220” (manufactured by Tosoh Corporation) Column: Two brand names “GMH-HR-H” (manufactured by Tosoh Corporation) and one brand name “G3000H-HR” (manufactured by Tosoh Corporation) are connected in series.
  • Detector differential refractometer RI Eluent: Chloroform Column temperature: 40 ° C
  • Scorch stability (Mooney scorch) The Mooney scorch time (t5) of the crosslinkable nitrile rubber composition was measured at 125 ° C. according to JIS K6300. The larger the Mooney scorch time (t5), the better the scorch stability.
  • the crosslinkable nitrile rubber composition was placed in a mold having a length of 15 cm, a width of 15 cm, and a depth of 0.2 cm, and press-molded at 170 ° C. for 20 minutes while being pressed at a press pressure of 10 MPa to obtain a sheet-like rubber cross-linked product. .
  • the obtained rubber cross-linked product was transferred to a gear-type oven and subjected to secondary cross-linking at 170 ° C. for 4 hours.
  • the obtained sheet-like rubber cross-linked product was punched out with a No. 3 dumbbell in the row direction to prepare a test piece.
  • Bending fatigue resistance (bending crack initiation test)
  • the crosslinkable nitrile rubber composition was subjected to press crosslinking at 170 ° C. for 30 minutes in accordance with JIS K6260 to obtain a rubber crosslinked product for a demacha type bending fatigue test.
  • count of bending fatigue at the time of a crack generation was measured at 25 degreeC using the Demacha type
  • the latex obtained above was added to an aqueous solution of aluminum sulfate in an amount of 3% by weight with respect to the nitrile rubber content and stirred to coagulate the latex, and after filtering with washing with water, Nitrile rubber was obtained by vacuum drying at 60 ° C. for 12 hours. Then, the obtained nitrile rubber was dissolved in acetone so as to have a concentration of 12%, and this was put into an autoclave. A palladium-silica catalyst was added at 200 ppm by weight to the nitrile rubber, and hydrogenated at a hydrogen pressure of 3.0 MPa. Reaction was performed. After completion of the hydrogenation reaction, the mixture was poured into a large amount of water to coagulate, filtered and dried to obtain a highly saturated nitrile rubber (a1) before high shear treatment.
  • poly (2,2,2,) is obtained with respect to 100 parts of the highly saturated nitrile rubber (a1) before the high shear treatment obtained above.
  • 4-trimethyl-1,2-dihydroquinoline (trade name “NOCRACK 224”, manufactured by Ouchi Shinsei Chemical Co., Ltd., hydroquinone-based anti-aging agent) was added, and a high shearing force was applied under the following conditions. .
  • Barrel 1 (input zone): 100 ° C
  • Barrel 2 (melting zone): 270 ° C
  • Barrel 3-6 (kneading, shearing zone): 270-300 ° C
  • Barrel 7-8 (cooling, degassing zone): 200-270 ° C
  • composition of the resulting highly saturated nitrile rubber (A1) after the treatment for imparting high shear force was 36.1% by weight of acrylonitrile units and 63.9% by weight of 1,3-butadiene units (including hydrogenated parts).
  • the iodine value was 25, the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 28, the branching index was 9310 Pa ⁇ s, and Mw / Mn was 3.11.
  • Production Example 2 (Synthesis of highly saturated nitrile rubber (A2)) The amount of acrylonitrile used was changed from 37 parts to 41 parts, the amount of 1,3-butadiene used was changed from 63 parts to 59 parts, and the amount of palladium / silica catalyst used in the hydrogenation reaction was changed from 200 ppm by weight. A highly saturated nitrile rubber (a2) before high shear treatment was obtained in the same manner as in Production Example 1 except that the content was changed to 500 ppm by weight. Then, using the same twin-screw extruder as in Production Example 1 (configured by combining eight barrels), 100 parts of the highly saturated nitrile rubber (a2) before the high shear treatment obtained above was used.
  • Production Example 3 Synthesis of Highly Saturated Nitrile Rubber (A3)
  • a highly saturated nitrile rubber (a3) before high shear treatment is obtained in the same manner as in Production Example 1, except that the amount of t-dodecyl mercaptan (molecular weight modifier) used is changed from 0.47 parts to 0.35 parts. It was. Then, using the same twin-screw extruder as in Production Example 1 (configured by combining eight barrels), 100 parts of the highly saturated nitrile rubber (a3) before the high shear treatment obtained above was used.
  • Production Example 4 (Synthesis of highly saturated nitrile rubber (A4))
  • the amount of acrylonitrile used is 37 to 36 parts
  • the amount of 1,3-butadiene is 63 to 60 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.47 to 0.55 parts.
  • a highly saturated nitrile rubber (a4) before the high shear treatment was obtained in the same manner as in Production Example 1, except that each was changed. Then, using the same twin-screw extruder as in Production Example 1 (configured by combining eight barrels), 100 parts of the highly saturated nitrile rubber (a3) before the high shear treatment obtained above was used.
  • a highly saturated nitrile rubber (A4) was obtained by performing a high shearing force application treatment in the same manner as in Production Example 1, except that the time was changed from 1 hour / hour to 1 kg / hour.
  • the composition of the obtained highly saturated nitrile rubber (A4) after the treatment for imparting high shear force was 35.5% by weight of acrylonitrile units and 64.5% by weight of 1,3-butadiene units (including hydrogenated parts).
  • the iodine value was 35, the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 20, the branching index was 15630 Pa ⁇ s, and Mw / Mn was 5.0.
  • Production Example 5 (Synthesis of highly saturated nitrile rubber (A5))
  • the amount of acrylonitrile used is 37 to 34 parts
  • the amount of 1,3-butadiene is 63 to 66 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.47 to 0.39 parts.
  • the reaction temperature during the polymerization reaction was changed from 5 ° C. to 10 ° C.
  • the amount of the palladium / silica catalyst used for the hydrogenation reaction was changed from 200 ppm to 400 ppm by weight.
  • a highly saturated nitrile rubber (a5) before high shear treatment was obtained.
  • composition of the obtained highly saturated nitrile rubber (A5) after the treatment for imparting high shear force was 33.0% by weight of acrylonitrile units and 67.0% by weight of 1,3-butadiene units (including hydrogenated parts).
  • the iodine value was 11
  • the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 43
  • the branching index was 9560 Pa ⁇ s
  • Mw / Mn was 2.9.
  • Production Example 6 (Synthesis of highly saturated nitrile rubber (A6))
  • the amount of acrylonitrile used is 37 to 44 parts
  • the amount of 1,3-butadiene is 63 to 56 parts
  • the amount of t-dodecyl mercaptan (molecular weight modifier) is 0.47 to 0.45 parts.
  • a high-saturated nitrile rubber (A6) is obtained by carrying out a high shearing force application treatment in the same manner as in Production Example 1 except that the speed is changed from 400 rpm to 300 rpm and the processing speed is changed from 2 kg / hour to 1 kg / hour. Got.
  • the composition of the resulting highly saturated nitrile rubber (A6) after the treatment for imparting high shear force was 43.0% by weight of acrylonitrile units and 57.0% by weight of 1,3-butadiene units (including hydrogenated parts).
  • the iodine value was 18, the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 33, the branching index was 16200 Pa ⁇ s, and Mw / Mn was 5.5.
  • composition of the resulting highly saturated nitrile rubber (B1) was 36.0% by weight of acrylonitrile units, 64.0% by weight of 1,3-butadiene units (including hydrogenated part), and an iodine value of 29,
  • the polymer Mooney viscosity [ML 1 + 4 , 100 ° C.] was 60, the branching index was 23549 Pa ⁇ s, and Mw / Mn was 2.84.
  • Example 1 Using a Banbury mixer, 100 parts of the highly saturated nitrile rubber (A1) obtained in Production Example 1, 15 parts of SRF carbon black (trade name “Seast S”, carbon black manufactured by Tokai Carbon Co., Ltd.), silica (trade name “ Nip seal VN-3 ", manufactured by Tosoh Silica Co., Ltd., silica) 5 parts, zinc methacrylate (with a volume average particle diameter of 20 ⁇ m or more containing 5% or less), 15 parts, (4,4'-di -( ⁇ , ⁇ -dimethylbenzyl) diphenylamine (trade name “NOCRACK CD”, manufactured by Ouchi Shinsei Chemical Co., Ltd., anti-aging agent) 1.5 parts, 2-mercaptobenzimidazole zinc salt (trade name “NOCRACK MBZ”, 1.5 parts by Ouchi Shinsei Chemical Co., Ltd.
  • SRF carbon black trade name “Seast S”, carbon black manufactured by Tokai Carbon Co., Ltd.
  • silica trade name “
  • Example 2 In the same manner as in Example 1, except that 100 parts of the highly saturated nitrile rubber (A2) obtained in Production Example 2 was used instead of 100 parts of the highly saturated nitrile rubber (A1) obtained in Production Example 1, A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.
  • Example 3 A crosslinkable nitrile rubber composition was prepared in the same manner as in Example 2 except that the amount of SRF carbon black was changed from 15 parts to 2 parts and the amount of zinc methacrylate was changed from 15 parts to 25 parts. The same evaluation was made. The results are shown in Table 1.
  • Example 4 In the same manner as in Example 1, except that 100 parts of the highly saturated nitrile rubber (A3) obtained in Production Example 3 was used instead of 100 parts of the highly saturated nitrile rubber (A1) obtained in Production Example 1, A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.
  • Example 5 In the same manner as in Example 1, except that 100 parts of the highly saturated nitrile rubber (A4) obtained in Production Example 4 was used instead of 100 parts of the highly saturated nitrile rubber (A1) obtained in Production Example 1, A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.
  • Example 6 In the same manner as in Example 1, except that 100 parts of the highly saturated nitrile rubber (A5) obtained in Production Example 5 was used instead of 100 parts of the highly saturated nitrile rubber (A1) obtained in Production Example 1, A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.
  • Example 7 In the same manner as in Example 1, except that 100 parts of the highly saturated nitrile rubber (A6) obtained in Production Example 6 was used instead of 100 parts of the highly saturated nitrile rubber (A1) obtained in Production Example 1, A crosslinkable nitrile rubber composition was prepared and evaluated in the same manner. The results are shown in Table 1.
  • Comparative Example 3 A crosslinkable nitrile rubber composition was prepared in the same manner as in Example 1 except that the blending amount of SRF carbon black was changed from 15 parts to 55 parts and no zinc methacrylate was blended. went. The results are shown in Table 1.
  • a crosslinkable nitrile rubber composition containing a predetermined highly saturated nitrile rubber (A), an unsaturated carboxylic acid metal salt (B), and an organic peroxide crosslinking agent (C) according to the present invention is a scorch.
  • the stability was excellent, and the crosslinked rubber obtained using the rubber composition was excellent in the state physical properties and the bending fatigue resistance (Examples 1 to 7).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ムーニー粘度(ML1+4、100℃)が50以下、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、不飽和カルボン酸金属塩(B)と、有機過酸化物架橋剤(C)とを含有する架橋性ニトリルゴム組成物を提供する。スコーチ安定性に優れ、かつ、常態物性および耐屈曲疲労性に優れたゴム架橋物を与えることができる架橋性ニトリルゴム組成物を提供することができる。

Description

架橋性ニトリルゴム組成物およびゴム架橋物
 本発明は、スコーチ安定性に優れ、かつ、常態物性および耐屈曲疲労性に優れたゴム架橋物を与えることができる架橋性ニトリルゴム組成物、および該架橋性ニトリルゴム組成物を用いて得られるゴム架橋物に関する。
 従来から、ニトリルゴム(アクリロニトリル-ブタジエン共重合ゴム)は、耐油性、機械的特性、耐薬品性等を活かして、ホースやベルト、チューブなどの自動車用ゴム部品の材料として使用されており、また、ニトリルゴムのポリマー主鎖中の炭素-炭素二重結合を水素化などにより飽和化して得られる高飽和ニトリルゴムはさらに耐熱性に優れるため、シール、ベルト、ホース、ダイアフラム等のゴム部品に使用されている。
 このような状況に対して、特許文献1は、ヨウ素価20以下、α,β-エチレン性不飽和ニトリル単量体単位含有量40~60重量%のニトリル基含有共重合ゴム100重量部に対し、α,β-エチレン性不飽和カルボン酸金属塩3~100重量部を配合してなるゴム組成物を提案している。該組成物により耐劣化油性などの耐油性に優れたゴム架橋物が得られている。
 しかしながら、上記特許文献1に記載の技術によれば、耐劣化油性に優れたゴム架橋物を得ることができるものの、ゴム組成物としてのスコーチ安定性や、耐屈曲疲労性などの高度な機械的特性が必ずしも十分でなく、そのため、スコーチ安定性や、耐屈曲疲労性などの高度な機械的特性についての改善が望まれていた。
特開2003-221469号公報
 本発明は、スコーチ安定性に優れ、かつ、常態物性および耐屈曲疲労性に優れたゴム架橋物を与えることができる架橋性ニトリルゴム組成物、および該架橋性ニトリルゴム組成物を用いて得られるゴム架橋物を提供することを目的とする。
 本発明者等は、上記目的を達成するために鋭意研究した結果、ムーニー粘度〔ML1+4、100℃〕が50以下、ヨウ素価が120以下である高飽和ニトリルゴムに、不飽和カルボン酸金属塩および有機過酸化物架橋剤を配合してなるゴム組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、ムーニー粘度〔ML1+4、100℃〕が50以下、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、不飽和カルボン酸金属塩(B)と、有機過酸化物架橋剤(C)とを含有する架橋性ニトリルゴム組成物が提供される。
 本発明の架橋性ニトリルゴム組成物において、前記高飽和ニトリルゴム(A)は、分岐度指数が20,000Pa・s以下であることが好ましい。
 本発明の架橋性ニトリルゴム組成物において、前記高飽和ニトリルゴム(A)は、分子量分布(Mw/Mn)が1.2~10であることが好ましい。
 本発明の架橋性ニトリルゴム組成物において、前記不飽和カルボン酸金属塩(B)が、不飽和カルボン酸の亜鉛塩であることが好ましく、不飽和モノカルボン酸の亜鉛塩であることがより好ましい。
 本発明の架橋性ニトリルゴム組成物において、前記不飽和カルボン酸金属塩(B)は、体積平均粒子径が20μm以上の粒子の含有割合が5%以下であることが好ましい。
 また、本発明によれば、上記いずれかの架橋性ニトリルゴム組成物を架橋してなるゴム架橋物が提供される。
 本発明によれば、スコーチ安定性に優れ、かつ、常態物性および耐屈曲疲労性に優れたゴム架橋物を与えることができる架橋性ニトリルゴム組成物、および該架橋性ニトリルゴム組成物を用いて得られるゴム架橋物を提供することができる。
 架橋性ニトリルゴム組成物
 本発明の架橋性ニトリルゴム組成物は、ムーニー粘度〔ML1+4、100℃〕が50以下、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、不飽和カルボン酸金属塩(B)と、有機過酸化物架橋剤(C)とを含有してなる組成物である。
 高飽和ニトリルゴム(A)
 本発明で用いる高飽和ニトリルゴム(A)は、少なくともα,β-エチレン性不飽和ニトリル単量体を、これと共重合可能な他の単量体と共重合して得られる、ムーニー粘度〔ML1+4、100℃〕が50以下、ヨウ素価が120以下のゴムである。
 α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されず、たとえば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらのなかでも、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルが特に好ましい。α,β-エチレン性不飽和ニトリル単量体は一種を単独で使用してもよく、またこれらの複数種を併用してもよい。
 α,β-エチレン性不飽和ニトリル単量体単位の含有量は、高飽和ニトリルゴム(A)を構成する全単量体単位に対して、好ましくは10~60重量%、より好ましくは20~50重量%、さらに好ましくは25~45重量%である。α,β-エチレン性不飽和ニトリル単量体単位の含有量が少なすぎると、得られるゴム架橋物の耐油性が低下するおそれがあり、逆に、多すぎると耐寒性が低下する可能性がある。
 本発明で用いる高飽和ニトリルゴム(A)を形成するための、α,β-エチレン性不飽和ニトリル単量体と共重合する単量体としては、特に限定されないが、ゴム弾性を発現するという点より、共役ジエン単量体が好ましく挙げられる。
 共役ジエン単量体としては、α,β-エチレン性不飽和ニトリル単量体と共重合可能なものであれば特に限定されず、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどが挙げられる。これらのなかでも、1,3-ブタジエンおよびイソプレンが好ましく、1,3-ブタジエンが特に好ましい。共役ジエン単量体は一種を単独で使用してもよく、またこれらの複数種を併用してもよい。
 共役ジエン単量体単位の含有量は、高飽和ニトリルゴム(A)を構成する全単量体単位に対して、好ましくは90~40重量%、より好ましくは80~50重量%、さらに好ましくは75~55重量%である。共役ジエン単量体単位の含有量が少なすぎると、得られる架橋物のゴム弾性が低下するおそれがあり、逆に、多すぎると耐熱性や耐化学的安定性が損なわれる可能性がある。
 本発明で用いる高飽和ニトリルゴム(A)は、α,β-エチレン性不飽和ニトリル単量体および共役ジエン単量体とともに、これらと共重合可能なその他の単量体を共重合したものであってもよい。このようなその他の単量体としては、非共役ジエン単量体、エチレン、α-オレフィン単量体、芳香族ビニル単量体、α,β-エチレン性不飽和モノカルボン酸およびそのエステル、α,β-エチレン性不飽和多価カルボン酸ならびにそのモノエステル、多価エステルおよび無水物、架橋性単量体、共重合性老化防止剤などが挙げられる。
 非共役ジエン単量体としては、炭素数が5~12のものが好ましく、たとえば、1,4-ペンタジエン、1,4-ヘキサジエン、ビニルノルボルネン、ジシクロペンタジエンなどが挙げられる。
 α-オレフィン単量体としては、炭素数が3~12のものが好ましく、たとえば、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテンなどが挙げられる。
 芳香族ビニル単量体としては、たとえば、スチレン、α-メチルスチレン、ビニルピリジンなどが挙げられる。
 α,β-エチレン性不飽和モノカルボン酸としては、たとえば、アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸などが好ましく挙げられる。
 α,β-エチレン性不飽和モノカルボン酸エステルとしては、たとえば、(メタ)アクリル酸エチル(アクリル酸エチル及びメタクリル酸エチルの意。以下同様。)、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸としては、たとえば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸モノエステルとしては、たとえば、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノn-ブチルなどのマレイン酸モノアルキルエステル;フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノn-ブチルなどのフマル酸モノアルキルエステル;シトラコン酸モノメチル、シトラコン酸モノエチル、シトラコン酸モノプロピル、シトラコン酸モノn-ブチルなどのシトラコン酸モノアルキルエステル;イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノn-ブチルなどのイタコン酸モノアルキルエステル;などが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸多価エステルとしては、たとえば、マレイン酸ジメチル、マレイン酸ジn-ブチル、フマル酸ジメチル、フマル酸ジn-ブチル、イタコン酸ジメチル、イタコン酸ジn-ブチルなどが挙げられる。
 α,β-エチレン性不飽和多価カルボン酸無水物としては、たとえば、無水マレイン酸、無水イタコン酸などが挙げられる。
 架橋性単量体としては、たとえば、ジビニルベンゼンなどのジビニル化合物;エチレンジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、エチレングリコールジ(メタ)アクリレートなどのジ(メタ)アクリル酸エステル類;トリメチロールプロパントリ(メタ)アクリレートなどのトリメタクリル酸エステル類;などの多官能エチレン性不飽和単量体のほか、N-メチロール(メタ)アクリルアミド、N,N’-ジメチロール(メタ)アクリルアミドなどの自己架橋性単量体などが挙げられる。
 共重合性老化防止剤としては、たとえば、N-(4-アニリノフェニル)アクリルアミド、N-(4-アニリノフェニル)メタクリルアミド、N-(4-アニリノフェニル)シンナムアミド、N-(4-アニリノフェニル)クロトンアミド、 N-フェニル-4-(3-ビニルベンジルオキシ)アニリン、N-フェニル-4-(4-ビニルベンジルオキシ)アニリンなどが挙げられる。
 これらの共重合可能なその他の単量体は、複数種類を併用してもよい。その他の単量体の単位の含有量は、高飽和ニトリルゴム(A)を構成する全単量体単位に対して、好ましくは50重量%以下、より好ましくは30重量%以下、さらに好ましくは10重量%以下である。
 本発明で用いる高飽和ニトリルゴム(A)の製造方法は、特に限定されないが、たとえば、α,β-エチレン性不飽和ニトリル単量体、共役ジエン単量体、および、必要に応じて加えられるこれらと共重合可能なその他の単量体を共重合することにより、共重合体(a)を得て、得られた共重合体(a)に、老化防止剤を添加して、老化防止剤の存在下で高剪断力を付与する高剪断処理を行う方法などが挙げられる。
 重合法としては、公知の乳化重合法、懸濁重合法、塊状重合法および溶液重合法のいずれをも用いることができるが、重合反応の制御が容易であることから乳化重合法が好ましい。乳化重合に際しては、乳化剤、重合開始剤、分子量調整剤等の通常用いられる重合副資材を使用することができる。
 乳化剤としては、特に限定されないが、たとえば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェノールエーテル、ポリオキシエチレンアルキルエステル、ポリオキシエチレンソルビタンアルキルエステル等の非イオン性乳化剤;ミリスチン酸、パルミチン酸、オレイン酸およびリノレン酸等の脂肪酸の塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、高級アルコール硫酸エステル塩、アルキルスルホコハク酸塩等のアニオン性乳化剤;α,β-不飽和カルボン酸のスルホエステル、α,β-不飽和カルボン酸のサルフェートエステル、スルホアルキルアリールエーテル等の共重合性乳化剤;などが挙げられる。乳化剤の使用量は、全単量体100重量部に対して、好ましくは0.1~10重量部である。
 重合開始剤としては、ラジカル開始剤であれば特に限定されないが、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム、過リン酸カリウム、過酸化水素等の無機過酸化物;t-ブチルパーオキサイド、クメンハイドロパーオキサイド、p-メンタンハイドロパーオキサイド、ジ-t-ブチルパーオキサイド、t-ブチルクミルパーオキサイド、アセチルパーオキサイド、イソブチリルパーオキサイド、オクタノイルパーオキサイド、ジベンゾイルパーオキサイド、3,5,5-トリメチルヘキサノイルパーオキサイド、t-ブチルパーオキシイソブチレート等の有機過酸化物;アゾビスイソブチロニトリル、アゾビス-2,4-ジメチルバレロニトリル、アゾビスシクロヘキサンカルボニトリル、アゾビスイソ酪酸メチル等のアゾ化合物;等を挙げることができる。これらの重合開始剤は、単独でまたは2種類以上を組み合わせて使用することができる。重合開始剤としては、無機または有機の過酸化物が好ましい。重合開始剤として過酸化物を用いる場合には、重亜硫酸ナトリウム、硫酸第一鉄等の還元剤と組み合わせて、レドックス系重合開始剤として使用することもできる。重合開始剤の使用量は、全単量体100重量部に対して、好ましくは0.01~2重量部である。
 分子量調整剤としては、特に限定されないが、t-ドデシルメルカプタン、n-ドデシルメルカプタン、オクチルメルカプタン等のメルカプタン類;四塩化炭素、塩化メチレン、臭化メチレン等のハロゲン化炭化水素;α-メチルスチレンダイマー;テトラエチルチウラムダイサルファイド、ジペンタメチレンチウラムダイサルファイド、ジイソプロピルキサントゲンダイサルファイド等の含硫黄化合物等が挙げられる。これらは単独で、または2種類以上を組み合わせて使用することができる。なかでも、メルカプタン類が好ましく、t-ドデシルメルカプタンがより好ましい。分子量調整剤の使用量は、全単量体100重量部に対して、好ましくは0.1~0.8重量部である。
 乳化重合の媒体には、通常、水が使用される。水の量は、全単量体100重量部に対して、好ましくは80~500重量部である。
 乳化重合に際しては、さらに、必要に応じて安定剤、分散剤、pH調整剤、脱酸素剤、粒子径調整剤等の重合副資材を用いることができる。これらを用いる場合においては、その種類、使用量とも特に限定されない。
 そして、乳化重合により得られた共重合体(a)のラテックスから、共重合体(a)を凝固させることにより、共重合体(a)を得ることができる。
 また、得られた共重合体(a)について、必要に応じて、共重合体(a)の水素化(水素添加反応)を行ってもよい。この場合における、水素化の方法は特に限定されず、公知の方法を採用すればよい。
 共重合体(a)のムーニー粘度〔ML1+4、100℃〕は、通常、60~200、好ましくは50~160である。
 そして、このようにして得られた共重合体(a)に、老化防止剤を添加して、老化防止剤の存在下で高剪断力を付与する高剪断処理を行うことにより、共重合体(a)を低ムーニー粘度化させ、これにより、高飽和ニトリルゴム(A)を得ることができる。
 老化防止剤としては、特に限定されないが、たとえば、芳香族二級アミン系、アミン・ケトン系、メルカプトベンゾイミダゾール系、ビスフェノール系、モノフェノール系、チオビスフェノール系、ヒドロキノン系、ニッケル系、チオウレア系、チオエーテル系およびリン系の老化防止剤を用いることができる。これらの中でも、高剪断処理による低ムーニー粘度化を良好に行うことができるという観点から、ヒドロキノン系の老化防止剤が好適である。
 芳香族二級アミン系老化防止剤は窒素原子に芳香族環が結合した二級アミンであり、その具体例としては、オクチル化ジフェニルアミン、4,4’-ビス(ジメチルベンジル)ジフェニルアミン、フェニル-α-ナフチルアミンなどのようなジアリールアミン系老化防止剤;ジフェニル-p-フェニレンジアミン、ジナフチル-p-フェニレンジアミンなどのようなジアリール-p-フェニレンジアミン系老化防止剤;およびN-イソプロピル-N’-フェニル-p-フェニレンジアミン、N-1,3-ジメチルブチル-N’-フェニル-p-フェニレンジアミン、N-(3-メタクリロイルオキシ-2-ヒドロキシプロピル)-N’-フェニル-p-フェニレンジアミン、N-(メタアクリロイル)-N’-フェニル-p-フェニレンジアミンなどのようなアルキル・アリール-p-フェニレンジアミン系老化防止剤、が挙げられる。
 アミン・ケトン系老化防止剤は芳香族アミンとケトンとの縮合生成物であって、その具体例としては、アニリン・アセトン縮合生成物、p-フェネチジン・アセトン縮合物、ジフェニルアミン・アセトン縮合物などが挙げられる。
 メルカプトベンゾイミダゾール系老化防止剤の具体例としては、メルカプトベンゾイミダゾールおよびその亜鉛塩、メルカプトメチルベンゾイミダゾールおよびその亜鉛塩などが挙げられる。
 ビスフェノール系老化防止剤の具体例としては、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)などのようなビスフェノール・アルカン;および4,4’-チオビス(3-メチル-6-t-ブチルフェノール)などのようなビスフェノール・スルフィド、が挙げられる。
 モノフェノール系老化防止剤の具体例としては、スチレン化フェノ-ル、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、n-オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ジメチル-6-(1-メチルシクロヘキシル)フェノール、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2-〔1-(2-ヒドロ-3,5-ジ-t-ペンチルフェニル)エチル〕-4,6-ジ-t-ペンチルフェニルアクリレートなどが挙げられる。
 チオビスフェノール系老化防止剤の具体例としては、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、4,4’-ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)スルフィド、4,4’-チオビス(6-t-ブチル-o-クレゾール)などが挙げられる。
 ヒドロキノン系老化防止剤の具体例としては、2,5-ジ-t-ブチルヒドロキノン、2,5-ジ-t-アミルヒドロキノン、ポリ(2,2,4-トリメチル-1,2-ジヒドロキノリンなどが挙げられる。
 ニッケル系老化防止剤の具体例としては、ニッケルジメチルジチオカーバメート、ニッケルジエチルジチオカーバメート、ニッケルジブチルチオカーバメート、ニッケルイソプロピルサントゲン酸塩などが挙げられる。
 チオウレア系老化防止剤の具体例としては、1,3-ビス(ジメチルアミノプロピル)チオウレア、トリブチルチオウレアなどが挙げられる。
 チオエーテル系老化防止剤の具体例としては、ジラウリル-3,3-チオジプロピオネート、ジステアリル-3,3-チオジプロピオネート、ペンタエリスリトールテトラキス(3-ラウリルチオプロピオネート)などが挙げられる。
リン系老化防止剤の具体例としては、トリス(ノニル化フェニル)フォスファイトなどが挙げられる。
 共重合体(a)に、老化防止剤の存在下で高剪断力を付与する方法としては特に限定されないが、剪断速度が、好ましくは500~5,000s-1、より好ましくは800~5,000s-1、高剪断力付与処理時の温度が、好ましく180~380℃、より好ましくは250~350℃の条件で行うことができる。
 共重合体(a)に、老化防止剤の存在下で高剪断力を付与する際の具体的な方法としては、たとえば、単軸または多軸スクリューを備えた押出機、好ましくは二軸スクリューを備えた二軸押出機を用いて、上述した剪断速度および温度条件にて剪断力を付与する方法が好適である。二軸押出機としては、完全かみ合い型でスクリューが同方向に回転する二軸押出機を好ましく用いることができ、また、スクリューの形状としては、剪断力付与の観点より、二条以上のスクリューが好ましく、二条スクリューまたは三条スクリューが特に好ましい。
 また、高剪断力を付与する際に用いる二軸押出機としては、L/D(長さ/直径)比が、30以上のものが好ましく、30~80のものがより好ましい。L/Dが小さすぎると、冷却ゾーンが充分に確保できず、そのため押出機の出口でゴムが充分に冷却されず、押出機から引取る際にゴムがうまく引取れなかったり、高温で押出されるため、ゴムの劣化あるいはゲル化が起こる場合がある。特に、高剪断力を付与することにより、発熱が大きくなるため、このような観点から、ゴムを押出機から押出される前に充分冷却されることが望ましく、そのため、このような観点より、L/Dを上記範囲とし、冷却ゾーンを十分に確保することが望ましい。なお、押出機の出口のゴム温度は好ましくは360℃以下、より好ましくは330℃以下である。
 また、二軸押出機は、通常、直列に連なる複数のバレルから構成されるものであるが、本発明においては、二軸押出機を、共重合体(a)および老化防止剤を投入する投入ゾーン、これらを溶融させる溶融ゾーン、高剪断力にて混練を行う混練・剪断ゾーン、および、冷却および脱気を行う冷却・脱気ゾーンからなるものとすることが好ましい。
 投入ゾーンおよび溶融ゾーンでは、共重合体(a)および老化防止剤を溶融させるとともに、共重合体(a)中に老化防止剤を均一に分散させる。投入ゾーンおよび溶融ゾーンにおけるスクリュー構成は、基本的に送りの搬送セクションで構成され、各材料を徐々に圧縮する構成が用いられる。また、設定温度も溶融混練が適当に行われる様な設定が好ましく、実際には、250℃程度まで数段階に上昇させることが好ましい。
 続く混練・剪断ゾーンでは、混練セクションで構成されるスクリューが用いられ、スクリューの剪断力を利用して、所定の高温度でゴムに剪断力を付与する。混練・剪断ゾーンの温度設定は、好ましくは240~320℃であり、より好ましくは250~300℃である。上記温度範囲とすることにより、ゲル化の発生を防止しながら、共重合体(a)に適切に高剪断力を付与することができ、これにより、高剪断力付与による低ムーニー粘度化を適切に行うことができる。
 続く冷却・脱気ゾーンでは、高剪断力により混練された混練物を冷却するとともに、脱気用ベントから減圧下に水分や揮発性の副生成物の除去が行われる。そして、最後に押出しヘッドから、混練物が押出される。冷却・脱気ゾーンのスクリュー構成は、混練物が十分に冷却されるために、剪断力の小さい送りの搬送セクションを用いて構成されることが好ましい。また、冷却・脱気ゾーンの温度設定は好ましくは180~270℃であり、好ましくは700~750mmHgの減圧状態に保持することが好ましいが、常圧としてもよい。
 このようにして、共重合体(a)について、老化防止剤の存在下で高剪断力を付与する高剪断処理を行うことにより、共重合体(a)を低ムーニー粘度化させ、これにより、高飽和ニトリルゴム(A)を得ることができる。
 高飽和ニトリルゴム(A)のムーニー粘度(ポリマームーニー粘度)〔ML1+4、100℃〕は、50以下であり、好ましくは5~48、より好ましくは10~45である。ムーニー粘度が高すぎると、加工性に劣るとともに、得られるゴム架橋物が耐屈曲疲労性に劣るものとなってしまう。
 また、高飽和ニトリルゴム(A)の分岐度指数は、好ましくは20,000Pa・s以下であり、より好ましくは15000Pa・s以下、さらに好ましくは12000Pa・s以下である。なお、分岐度指数の下限は、特に限定されないが、通常、3000Pa・s以上である。分岐度指数を上記範囲とすることにより、スコーチ安定性およびゴム架橋物とした場合の耐屈曲疲労性をより向上させることができる。一方で、分岐度指数が高すぎると、スコーチ安定性や耐屈曲疲労性の改善効果が小さくなる場合がある。
 なお、本発明において、高飽和ニトリルゴム(A)の分岐度指数の測定方法としては、特に限定されないが、長鎖分岐構造による影響を顕著に受ける低せん断速度側における複素粘度(η1)と、高せん断速度側における複素粘度(η2)との差(η2-η1)を求め、これを分岐度指数とすることができる。具体的には、粘弾性測定装置を用いて、温度100℃、周波数1Hz、動的ひずみ7.0%、せん断速度0.44s-1で測定された複素粘度(η1)と、温度100℃、周波数1Hz、動的ひずみ473.0%、せん断速度29.7s-1で測定された複素粘度(η2)とを測定し、これらの差(η2-η1)を算出し、これを分岐度指数とすることができる。
 本発明において、分岐度指数を上記範囲とする方法としては、特に限定されないが、たとえば、高飽和ニトリルゴム(A)を得るにあたり、まず、上記共重合体(a)を乳化重合法等により重合する際に用いる、分子量調整剤の種類を選択したり添加量を調整したりする方法が挙げられる。さらに、その結果得られた共重合体(a)に上記のように老化防止剤の存在下で高剪断力を付与して高飽和ニトリルゴム(A)を得るにあたり、上記で得られた共重合体(a)の、ムーニー粘度や分子量分布の値に応じて、老化防止剤の種類や添加量を調整する方法、剪断の条件を調整する方法(例えば、剪断力付与に用いる二軸押出機のスクリュー構成、およびその回転数、処理速度、バレル設定温度など)が挙げられる。
 一例を挙げると、スクリュー回転数を高くするほど、分岐度指数を低くすることができる。さらに、処理速度を遅くするほど、分岐度指数を高くすることができる。
 以上、これらの方法を複数組み合わせることにより、分岐度指数が上記範囲になるように調整することが好ましい。
 さらに、高飽和ニトリルゴム(A)のヨウ素価は、120以下であり、より好ましくは60以下、さらに好ましくは30以下である。ヨウ素価が高すぎると、得られるゴム架橋物の耐熱性および耐オゾン性が低下するおそれがある。
 また、高飽和ニトリルゴム(A)の分子量分布(Mw/Mn)は、1.2~10であることが好ましく、より好ましくは1.5~10であり、さらに好ましくは1.7~8.0、最も好ましくは、1.8~5.0である。Mw/Mnが小さすぎると、得られる架橋性ゴム組成物の混練加工性が悪化するおそれがある。Mw/Mnが大きすぎると、得られるゴム架橋物の動的発熱性が悪化する恐れがある。
 なお、上記においては、高飽和ニトリルゴム(A)のムーニー粘度を上記範囲とする方法として、高剪断力付与処理により、低ムーニー粘度化する方法を例示したが、このような方法に特に限定されず、たとえば、メタセシス反応などを利用し、共重合体(a)を低分子量化することにより、低ムーニー粘度化する方法などを採用してもよい。
 不飽和カルボン酸金属塩(B)
 本発明で用いる不飽和カルボン酸金属塩(B)は、不飽和カルボン酸と、金属との塩である。
 不飽和カルボン酸は、金属塩を生成するために少なくとも1価のフリーのカルボキシル基を有するものであって、不飽和モノカルボン酸、不飽和ジカルボン酸、不飽和ジカルボン酸モノエステルなどが例示される。
 不飽和モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸、3-ブテン酸などが挙げられる。不飽和ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。不飽和ジカルボン酸モノエステルとしては、マレイン酸モノメチル、マレイン酸モノエチル、イタコン酸モノメチル、イタコン酸モノエチルなどが挙げられる。これらのなかでも、得られるゴム架橋物の強度特性(特に、耐屈曲疲労性)の点からエステル基を持たない不飽和カルボン酸が好ましく、不飽和モノカルボン酸がより好ましく、メタクリル酸が特に好ましい。
 不飽和カルボン酸金属塩(B)を構成する金属としては特に限定されないが、たとえば、亜鉛、マグネシウム、カルシウム、バリウム、チタン、クロム、鉄、コバルト、ニッケル、アルミニウム、錫、鉛などの多価金属が好ましいものとして挙げられる。これらのなかでも、得られるゴム架橋物の強度特性(特に、耐屈曲疲労性)の点から、亜鉛、マグネシウム、カルシウム、およびアルミニウムが好ましく、亜鉛が特に好ましい。
 なお、本発明においては、不飽和カルボン酸金属塩(B)は、高飽和ニトリルゴム(A)に、不飽和カルボン酸金属塩(B)を形成することとなる不飽和カルボン酸と、金属または金属化合物とを配合して、高飽和ニトリルゴム(A)中で、両者を反応させることで、生成させてもよい。このような方法により、不飽和カルボン酸金属塩(B)を生成させることにより、得られる不飽和カルボン酸金属塩(B)を高飽和ニトリルゴム(A)中に良好に分散させることができる。なお、この場合に用いられる金属化合物としては、上述した金属の酸化物、水酸化物、炭酸塩などが挙げられ、なかでも、酸化亜鉛、炭酸亜鉛が好ましく用いられる。
 高飽和ニトリルゴム(A)中に、不飽和カルボン酸と金属または金属化合物とを配合して、不飽和カルボン酸金属塩(B)を生成させる場合には、不飽和カルボン酸1モルに対して、金属または金属化合物を、好ましくは0.5~4モル、より好ましくは0.7~3モル配合して反応させる。使用する金属または金属化合物の量が少なすぎても多すぎても、不飽和カルボン酸と、金属または金属化合物との反応が起こり難くなる。ただし、金属化合物として、酸化亜鉛、炭酸亜鉛、水酸化亜鉛などを用いる場合は、それら単独でもゴムの配合剤としての架橋促進剤として機能するので、上記範囲の上限を超えた場合でも、配合組成によっては問題を生じない場合がある。
 また、不飽和カルボン酸金属塩(B)は、取り扱いの問題が生じない限り、細かなものが好ましく、特に、体積平均粒子径が20μm以上の粒子の含有割合を5%以下としたものが好ましい。このように不飽和カルボン酸金属塩(B)を細かなものとするためには、不飽和カルボン酸金属塩(B)を、風力分級装置またはふるい分級装置などを用いて分級する方法などを用いればよい。あるいは、不飽和カルボン酸と、金属または金属化合物とを配合して、高飽和ニトリルゴム(A)中で、不飽和カルボン酸金属塩(B)を生成させる場合には、金属または金属化合物を、風力分級装置またはふるい分級装置などを用いて分級する方法などを用いることで、不飽和カルボン酸金属塩(B)を細かなものとすればよい。
 本発明の架橋性ニトリルゴム組成物中における、不飽和カルボン酸金属塩(B)の含有量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは1~100重量部、より好ましくは1~50重量部、さらに好ましくは2~20重量部である。不飽和カルボン酸金属塩(B)の含有量が少なすぎると得られる架橋物の強度が低くなる場合があり、逆に多すぎると架橋物の伸びが低下し過ぎる場合がある。
 有機過酸化物架橋剤(C)
 本発明の架橋性ニトリルゴム組成物は、高飽和ニトリルゴム(A)および不飽和カルボン酸金属塩(B)に加えて、有機過酸化物架橋剤(C)を含有する。
 有機過酸化物架橋剤(C)としては、従来公知のものを用いることができ、特に限定されないが、ジクミルペルオキシド、クメンヒドロペルオキシド、t-ブチルクミルペルオキシド、パラメンタンヒドロペルオキシド、ジ-t-ブチルペルオキシド、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,4-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、1,1-ジ-t-ブチルペルオキシ-3,3-トリメチルシクロヘキサン、4,4-ビス-(t-ブチル-ペルオキシ)-n-ブチルバレレート、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキサン、2,5-ジメチル-2,5-ジ-t-ブチルペルオキシヘキシン-3、1,1-ジ-t-ブチルペルオキシ-3,5,5-トリメチルシクロヘキサン、p-クロロベンゾイルペルオキシド、t-ブチルペルオキシイソプロピルカーボネート、t-ブチルペルオキシベンゾエート等が挙げられる。これらは一種単独でまたは複数種併せて用いることができる。
 本発明の架橋性ニトリルゴム組成物中における、有機過酸化物架橋剤(C)の含有量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは1~20重量部、より好ましくは2~15重量部、さらに好ましくは3~10重量部である。有機過酸化物架橋剤(C)の含有量が少なすぎると、得られるゴム架橋物の機械特性(破断強度など)が悪化するおそれがある。一方、多すぎると、得られる架橋物の耐屈曲疲労性が悪化する可能性がある。
 また、本発明の架橋性ニトリルゴム組成物には、さらに共架橋剤を含有させてもよい。共架橋剤としては、ラジカル反応性の不飽和基を分子中に複数個有する低分子または高分子の化合物が好ましく、たとえば、ジビニルベンゼンやジビニルナフタレンなどの多官能ビニル化合物;トリアリルイソシアヌレート、トリメタリルイソシアヌレートなどのイソシアヌレート類;トリアリルシアヌレートなどのシアヌレート類;N,N'-m-フェニレンジマレイミドなどのマレイミド類;ジアリルフタレート、ジアリルイソフタレート、ジアリルマレエート、ジアリルフマレート、ジアリルセバケート、トリアリルホスフェートなどの多価酸のアリルエステル;ジエチレングリコールビスアリルカーボネート;エチレングリコールジアリルエーテル、トリメチロールプロパンのトリアリルエーテル、ペンタエリトリットの部分的アリルエーテルなどのアリルエーテル類;アリル化ノボラック、アリル化レゾール樹脂等のアリル変性樹脂;トリメチロールプロパントリメタクリレートやトリメチロールプロパントリアクリレートなどの、3~5官能のメタクリレート化合物やアクリレート化合物;などが挙げられる。これらのなかでも、本発明の効果がより一層顕著になる点で、イソシアヌレート類が好ましく、トリアリルイソシアヌレートが特に好ましい。
 本発明の架橋性ニトリルゴム組成物中における、共架橋剤の含有量は、高飽和ニトリルゴム(A)100重量部に対して、好ましくは1~20重量部であり、より好ましくは1~10重量部、さらに好ましくは2~5重量部である。
 さらに、本発明の架橋性ニトリルゴム組成物には、高飽和ニトリルゴム(A)、不飽和カルボン酸金属塩(B)、および有機過酸化物架橋剤(C)、ならびに必要に応じて用いられる共架橋剤に加えて、ゴム加工分野において通常使用されるその他の配合剤を配合してもよい。このような配合剤としては、たとえば、補強剤、充填材、酸化防止剤、光安定剤、スコーチ防止剤、可塑剤、加工助剤、滑剤、粘着剤、潤滑剤、難燃剤、受酸剤、防黴剤、帯電防止剤、着色剤、シランカップリング剤、架橋助剤、架橋遅延剤、発泡剤などが挙げられる。これらの配合剤の配合量は、配合目的に応じた量を適宜採用することができる。
 また、本発明の架橋性ニトリルゴム組成物には、本発明の効果を阻害しない範囲で上記高飽和ニトリルゴム(A)以外のゴムを配合してもよい。このようなその他のゴムとしては、アクリルゴム、エチレン-アクリル酸共重合体ゴム、スチレン-ブタジエン共重合体ゴム、ポリブタジエンゴム、エチレン-プロピレン共重合体ゴム、エチレン-プロピレン-ジエン三元共重合体ゴム、エピクロロヒドリンゴム、フッ素ゴム、ウレタンゴム、クロロプレンゴム、シリコーンゴム、天然ゴム、ポリイソプレンゴムなどが挙げられる。高飽和ニトリルゴム(A)以外のゴムを配合する場合における、架橋性ニトリルゴム組成物中の配合量は高飽和ニトリルゴム(A)100重量部に対して、好ましくは30重量部以下、より好ましくは20重量部以下、さらに好ましくは10重量部以下である。
 本発明の架橋性ニトリルゴム組成物は、上記各成分を好ましくは非水系で混合することで調製される。本発明の架橋性ニトリルゴム組成物を調製する方法に限定はないが、通常、有機過酸化物架橋剤(C)および熱に不安定な共架橋剤や架橋助剤などを除いた成分を、バンバリーミキサ、インターミキサ、ニーダなどの混合機で一次混練した後、オープンロールなどに移して有機過酸化物架橋剤(C)や熱に不安定な共架橋剤などを加えて二次混練することにより調製できる。なお、一次混練は、通常、10~200℃、好ましくは30~180℃の温度で、1分間~1時間、好ましくは1分間~30分間行い、二次混練は、通常、10~90℃、好ましくは20~60℃の温度で、1分間~1時間、好ましくは1分間~30分間行う。
 このようにして得られる本発明の架橋性ニトリルゴム組成物は、コンパウンドムーニー粘度〔ML1+4、100℃〕が、好ましくは5~200、より好ましくは10~150、さらに好ましくは20~100であり、加工性に優れるものであり、さらには、本発明の架橋性ニトリルゴム組成物は、スコーチ時間が長く、スコーチ安定性にも優れるものである。
 ゴム架橋物
 本発明のゴム架橋物は、上述した本発明の架橋性ニトリルゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明の架橋性ニトリルゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~1時間である。
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴムの架橋に用いられる一般的な方法を適宜選択すればよい。
 このようにして得られる本発明のゴム架橋物は、上述した本発明の架橋性ニトリルゴム組成物を用いて得られるものであるため、常態物性および耐屈曲疲労性に優れるものである。
 このため、本発明のゴム架橋物は、このような特性を活かし、O-リング、パッキン、ダイアフラム、オイルシール、シャフトシール、ベアリングシール、ウェルヘッドシール、空気圧機器用シール、エアコンディショナの冷却装置や空調装置の冷凍機用コンプレッサに使用されるフロン若しくはフルオロ炭化水素または二酸化炭素の密封用シール、精密洗浄の洗浄媒体に使用される超臨界二酸化炭素または亜臨界二酸化炭素の密封用シール、転動装置(転がり軸受、自動車用ハブユニット、自動車用ウォーターポンプ、リニアガイド装置およびボールねじ等)用のシール、バルブおよびバルブシート、BOP(Blow Out Preventar)、プラターなどの各種シール材;インテークマニホールドとシリンダヘッドとの連接部に装着されるインテークマニホールドガスケット、シリンダブロックとシリンダヘッドとの連接部に装着されるシリンダヘッドガスケット、ロッカーカバーとシリンダヘッドとの連接部に装着されるロッカーカバーガスケット、オイルパンとシリンダブロックあるいはトランスミッションケースとの連接部に装着されるオイルパンガスケット、正極、電解質板および負極を備えた単位セルを挟み込む一対のハウジング間に装着される燃料電池セパレーター用ガスケット、ハードディスクドライブのトップカバー用ガスケットなどの各種ガスケット;印刷用ロール、製鉄用ロール、製紙用ロール、工業用ロール、事務機用ロールなどの各種ロール;平ベルト(フィルムコア平ベルト、コード平ベルト、積層式平ベルト、単体式平ベルト等)、Vベルト(ラップドVベルト、ローエッジVベルト等)、Vリブドベルト(シングルVリブドベルト、ダブルVリブドベルト、ラップドVリブドベルト、背面ゴムVリブドベルト、上コグVリブドベルト等)、CVT用ベルト、タイミングベルト、歯付ベルト、コンベアーベルト、などの各種ベルト;燃料ホース、ターボエアーホース、オイルホース、ラジェターホース、ヒーターホース、ウォーターホース、バキュームブレーキホース、コントロールホース、エアコンホース、ブレーキホース、パワーステアリングホース、エアーホース、マリンホース、ライザー、フローラインなどの各種ホース;CVJブーツ、プロペラシャフトブーツ、等速ジョイントブーツ、ラックアンドピニオンブーツなどの各種ブーツ;クッション材、ダイナミックダンパ、ゴムカップリング、空気バネ、防振材などの減衰材ゴム部品;ダストカバー、自動車内装部材、タイヤ、被覆ケーブル、靴底、電磁波シールド、フレキシブルプリント基板用接着剤等の接着剤、燃料電池セパレーターの他、エレクトロニクス分野など幅広い用途に使用することができる。
 以下、本発明を、さらに詳細な実施例に基づき説明するが、本発明は、これら実施例に限定されない。なお、以下において、「部」は、特に断りのない限り重量基準である。また、試験および評価は下記によった。
 ゴム組成
 高飽和ニトリルゴムを構成する各単量体単位の含有割合は、以下の方法により測定した。
 1,3-ブタジエン単位および飽和化ブタジエン単位の含有割合は、高飽和ニトリルゴムを用いて、水素添加反応前と水素添加反応後のよう素価(JIS K 6235による)を測定することにより算出した。
 アクリロニトリル単位の含有割合は、JIS K6384に従い、ケルダール法により、高飽和ニトリルゴム中の窒素含量を測定することにより算出した。
 ヨウ素価
 高飽和ニトリルゴムのヨウ素価は、JIS K 6235に準じて測定した。
 ムーニー粘度(ポリマー・ムーニー)
 高飽和ニトリルゴムのムーニー粘度(ポリマー・ムーニー)は、JIS K6300-1に従って測定した(単位は〔ML1+4、100℃〕)。
 分岐度指数
 高飽和ニトリルゴムの分岐度指数は、粘弾性測定装置:商品名「RPA-2000、ラバープロセスアナライザー」、アルファテクノロジーズ社製)を用いて測定した。
 具体的には、まず、高飽和ニトリルゴムについて、100℃において、周波数1Hz、動的ひずみ7.0%、せん断速度0.44s-1における複素粘度η*を測定し、これをη1(単位は〔Pa・s〕)とした。次いで、100℃において、周波数1Hz、動的ひずみ473.0%、せん断速度29.7s-1における複素粘度η*を測定し、これをη2(単位は〔Pa・s〕)とした。分岐度指数は(η2)-(η1)で求められる(単位は〔Pa・s〕)。
 分子量分布(Mw/Mn)
 高飽和ニトリルゴムをクロロホルムに溶解し、メンブレンフィルターを通した後、ゲル・パーミエーション・クロマトグラフィーにより、以下の条件で測定し、高飽和ニトリルゴムの分子量分布Mw/Mnを求めた。なお、MwおよびMnは標準ポリスチレン換算である。
 測定器:商品名「HLC-8220」(東ソー社製)
 カラム:商品名「GMH-HR-H」(東ソー社製)2本と、商品名「G3000H-HR」(東ソー社製)1本を直列に接続。
 検出器:示差屈折計RI
 溶離液:クロロホルム
 カラム温度:40℃
 スコーチ安定性(ムーニースコーチ)
 架橋性ニトリルゴム組成物のムーニースコーチ時間(t5)を、JIS K6300に従って125℃で測定した。ムーニースコーチ時間(t5)の値が大きいほど、スコーチ安定性に優れる。
 常態物性(引張強さ、伸び、100%引張応力)
 架橋性ニトリルゴム組成物を、縦15cm、横15cm、深さ0.2cmの金型に入れ、プレス圧10MPaで加圧しながら170℃で20分間プレス成形してシート状のゴム架橋物を得た。次いで、得られたゴム架橋物をギヤー式オーブンに移して170℃で4時間二次架橋を実施した。得られたシート状のゴム架橋物を列理方向に3号形ダンベルで打ち抜いて試験片を作製した。そして、得られた試験片を用いて、JIS K6251に従い、ゴム架橋物の破断時の引張強度、100%引張応力、および、破断時の伸びをそれぞれ測定した。
 耐屈曲疲労性(屈曲き裂発生試験)
 架橋性ニトリルゴム組成物をJIS K6260に従い、170℃で30分間プレス架橋を行い、デマチャ式屈曲疲労試験用のゴム架橋物を得た。そして、得られたゴム架橋物について、デマチャ式屈曲疲労試験機(上島製作所製)を用いて、25℃にて亀裂発生時の屈曲疲労回数を測定した。亀裂発生までの屈曲疲労回数が多いほど、耐屈曲疲労性に優れると判断できる。
 製造例1(高飽和ニトリルゴム(A1)の合成)
 反応器内でイオン交換水200部に、炭酸ナトリウム0.2部を溶解し、それに脂肪酸カリウム石鹸(脂肪酸のカリウム塩)2.25部を添加して石鹸水溶液を調製した。そして、この石鹸水溶液に、アクリロニトリル37部、およびt-ドデシルメルカプタン(分子量調整剤)0.47部をこの順に仕込み、内部の気体を窒素で3回置換した後、1,3-ブタジエン63部を仕込んだ。次いで、反応器内を5℃に保ち、クメンハイドロパーオキサイド(重合開始剤)0.1部、還元剤、およびキレート剤適量を仕込み、温度を5℃に保ちながら16時間重合反応を行なった。次いで、濃度10%のハイドロキノン(重合停止剤)水溶液0.1部を加えて重合反応を停止し、水温60℃のロータリーエバポレータを用いて残留単量体を除去して、ニトリルゴムのラテックス(固形分濃度約25重量%)を得た。
 次いで、上記にて得られたラテックスを、そのニトリルゴム分に対して3重量%となる量の硫酸アルミニウムの水溶液に加えて撹拌してラテックスを凝固し、水で洗浄しつつ濾別した後、60℃で12時間真空乾燥してニトリルゴムを得た。そして、得られたニトリルゴムを、濃度12%となるようにアセトンに溶解し、これをオートクレーブに入れ、パラジウム・シリカ触媒をニトリルゴムに対して200重量ppm加え、水素圧3.0MPaで水素添加反応を行なった。水素添加反応終了後、大量の水中に注いで凝固させ、濾別および乾燥を行なって高剪断処理前の高飽和ニトリルゴム(a1)を得た。
 次いで、二軸押出機(8つのバレルを結合して構成したもの)を用いて、上記にて得られた高剪断処理前の高飽和ニトリルゴム(a1)100部に対しポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)(商品名「ノクラック224」、大内新興化学社製、ヒドロキノン系老化防止剤)1部を添加し、下記条件で、高剪断力付与処理を行った。
 <二軸押出機>
 二軸押出機:商品名「KZW15TW-60MG」(テクノベル社製)
 シリンダ内径:15mm
 スクリュー長:900mm
 送りスクリュー部の溝深さ:2.75mm
 チップクリアランス(シリンダ内壁とスクリュー先端との距離):0.2mm
 L/D:60
 バレル構成:8バレル構成
 スクリュー構成:混練、剪断ゾーンにおけるニーディングゾーンは3箇所
 スクリュー回転数:400rpm
 処理速度:2kg/時間
 スクリューの構造:完全かみ合い型の二条スクリュー、同方向回転
 滞留時間 :180~230秒
 <設定温度>
 バレル1(投入ゾーン):100℃
 バレル2(溶融ゾーン):270℃
 バレル3~6(混練、剪断ゾーン):270~300℃
 バレル7~8(冷却、脱気ゾーン):200~270℃
 得られた高剪断力付与処理後の高飽和ニトリルゴム(A1)の組成は、アクリロニトリル単位36.1重量%、1,3-ブタジエン単位(水素化された部分を含む)63.9重量%であり、ヨウ素価は25、ポリマー・ムーニー粘度〔ML1+4、100℃〕は28、分岐度指数は9310Pa・s、Mw/Mnは3.11であった。
 製造例2(高飽和ニトリルゴム(A2)の合成)
 アクリロニトリルの使用量を37部から41部に、1,3-ブタジエンの使用量を63部から59部にそれぞれ変更し、さらに、水素添加反応に使用するパラジウム・シリカ触媒の量を200重量ppmから500重量ppmに変更した以外は、製造例1と同様にして、高剪断処理前の高飽和ニトリルゴム(a2)を得た。
 そして、製造例1と同様の二軸押出機(8つのバレルを結合して構成したもの)を用いて、上記にて得られた高剪断処理前の高飽和ニトリルゴム(a2)100部に対しポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)(商品名「ノクラック224」、大内新興化学社製、アミン・ケトン類老化防止剤)1部を添加し、製造例1と同様にして、高剪断力付与処理を行うことで、高飽和ニトリルゴム(A2)を得た。
 得られた高剪断力付与処理後の高飽和ニトリルゴム(A2)の組成は、アクリロニトリル単位40.0重量%、1,3-ブタジエン単位(水素化された部分を含む)60.0重量%であり、ヨウ素価は6、ポリマー・ムーニー粘度〔ML1+4、100℃〕は27、分岐度指数は9615Pa・s、Mw/Mnは2.29であった。
 製造例3(高飽和ニトリルゴム(A3)の合成)
 t-ドデシルメルカプタン(分子量調整剤)の使用量を0.47部から0.35部に変更した以外は、製造例1と同様にして、高剪断処理前の高飽和ニトリルゴム(a3)を得た。
 そして、製造例1と同様の二軸押出機(8つのバレルを結合して構成したもの)を用いて、上記にて得られた高剪断処理前の高飽和ニトリルゴム(a3)100部に対しポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)(商品名「ノクラック224」、大内新興化学社製、アミン・ケトン類老化防止剤)1部を添加し、スクリュー回転数を400rpmから200rpmに変更した以外は、製造例1と同様にして、高剪断力付与処理を行うことで、高飽和ニトリルゴム(A3)を得た。
 得られた高剪断力付与処理後の高飽和ニトリルゴム(A3)の組成は、アクリロニトリル単位36.0重量%、1,3-ブタジエン単位(水素化された部分を含む)64.0重量%であり、ヨウ素価は26、ポリマー・ムーニー粘度〔ML1+4、100℃〕は35、分岐度指数は10210Pa・s、Mw/Mnは4.1であった。
 製造例4(高飽和ニトリルゴム(A4)の合成)
 アクリロニトリルの使用量を37部から36部に、1,3-ブタジエンの使用量を63部から60部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.47部から0.55部に、それぞれ変更した以外は、製造例1と同様にして、高剪断処理前の高飽和ニトリルゴム(a4)を得た。
 そして、製造例1と同様の二軸押出機(8つのバレルを結合して構成したもの)を用いて、上記にて得られた高剪断処理前の高飽和ニトリルゴム(a3)100部に対しポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)(商品名「ノクラック224」、大内新興化学社製、アミン・ケトン類老化防止剤)1部を添加し、処理速度を2kg/時間から1kg/時間に変更した以外は、製造例1と同様にして、高剪断力付与処理を行うことで、高飽和ニトリルゴム(A4)を得た。
 得られた高剪断力付与処理後の高飽和ニトリルゴム(A4)の組成は、アクリロニトリル単位35.5重量%、1,3-ブタジエン単位(水素化された部分を含む)64.5重量%であり、ヨウ素価は35、ポリマー・ムーニー粘度〔ML1+4、100℃〕は20、分岐度指数は15630Pa・s、Mw/Mnは5.0であった。
 製造例5(高飽和ニトリルゴム(A5)の合成)
 アクリロニトリルの使用量を37部から34部に、1,3-ブタジエンの使用量を63部から66部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.47部から0.39部に、それぞれ変更するとともに、重合反応時の反応温度を5℃から10℃に変更し、さらに水素添加反応に使用するパラジウム・シリカ触媒の量を200重量ppmから400重量ppmに変更した以外は、製造例1と同様にして、高剪断処理前の高飽和ニトリルゴム(a5)を得た。
 そして、製造例1と同様の二軸押出機(8つのバレルを結合して構成したもの)を用いて、上記にて得られた高剪断処理前の高飽和ニトリルゴム(a5)100部に対しポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン(商品名「ノクラック224」、大内新興化学社製、アミン・ケトン類老化防止剤)1部を添加し、製造例1と同様にして、高剪断力付与処理を行うことで、高飽和ニトリルゴム(A5)を得た。
 得られた高剪断力付与処理後の高飽和ニトリルゴム(A5)の組成は、アクリロニトリル単位33.0重量%、1,3-ブタジエン単位(水素化された部分を含む)67.0重量%であり、ヨウ素価は11、ポリマー・ムーニー粘度〔ML1+4、100℃〕は43、分岐度指数は9560Pa・s、Mw/Mnは2.9であった。
 製造例6(高飽和ニトリルゴム(A6)の合成)
 アクリロニトリルの使用量を37部から44部に、1,3-ブタジエンの使用量を63部から56部に、t-ドデシルメルカプタン(分子量調整剤)の使用量を0.47部から0.45部に、それぞれ変更するとともに、水素添加反応に使用するパラジウム・シリカ触媒の量を200重量ppmから400重量ppmに変更した以外は、製造例1と同様にして、高剪断処理前の高飽和ニトリルゴム(a6)を得た。
 そして、製造例1と同様の二軸押出機(8つのバレルを結合して構成したもの)を用いて、上記にて得られた高剪断処理前の高飽和ニトリルゴム(a6)100部に対しポリ(2,2,4-トリメチル-1,2-ジヒドロキノリン)(商品名「ノクラック224」、大内新興化学社製、アミン・ケトン類老化防止剤)1部を添加し、スクリュー回転数を400rpmから300rpmに変更し、かつ、処理速度を2kg/時間から1kg/時間に変更した以外は、製造例1と同様にして、高剪断力付与処理を行うことで、高飽和ニトリルゴム(A6)を得た。
 得られた高剪断力付与処理後の高飽和ニトリルゴム(A6)の組成は、アクリロニトリル単位43.0重量%、1,3-ブタジエン単位(水素化された部分を含む)57.0重量%であり、ヨウ素価は18、ポリマー・ムーニー粘度〔ML1+4、100℃〕は33、分岐度指数は16200Pa・s、Mw/Mnは5.5であった。
 製造例7(高飽和ニトリルゴム(B1)の合成)
 t-ドデシルメルカプタン(分子量調整剤)の使用量を0.47部から0.50部に変更するとともに、二軸押出機を用いた高剪断力付与処理を行わなかった以外は、製造例1と同様にして、高飽和ニトリルゴム(B1)を得た。
 得られた高飽和ニトリルゴム(B1)の組成は、アクリロニトリル単位36.0重量%、1,3-ブタジエン単位(水素化された部分を含む)64.0重量%であり、ヨウ素価は29、ポリマー・ムーニー粘度〔ML1+4、100℃〕は60、分岐度指数は23549Pa・s、Mw/Mnは2.84であった。
 製造例8(高飽和ニトリルゴム(B2)の合成)
 t-ドデシルメルカプタン(分子量調整剤)の使用量を0.47部から0.48部に変更するとともに、二軸押出機を用いた高剪断力付与処理を行わなかった以外は、製造例1と同様にして、高飽和ニトリルゴム(B2)を得た。
 得られた高飽和ニトリルゴム(B2)の組成は、アクリロニトリル単位36.3重量%、1,3-ブタジエン単位(水素化された部分を含む)63.7重量%であり、ヨウ素価は28、ポリマー・ムーニー粘度〔ML1+4、100℃〕は75、分岐度指数は28780Pa・s、Mw/Mnは2.72であった。
 実施例1
 バンバリーミキサを用いて、製造例1で得られた高飽和ニトリルゴム(A1)100部、SRFカーボンブラック(商品名「シーストS」、東海カーボン社製、カーボンブラック)15部、シリカ(商品名「ニップシールVN-3」、東ソー・シリカ社製、シリカ)5部、メタクリル酸亜鉛(体積平均粒子径が20μm以上の粒子の含有割合が5%以下のもの)15部、(4,4’-ジ-(α,α-ジメチルベンジル)ジフェニルアミン(商品名「ノクラックCD」、大内新興化学工業社製、老化防止剤)1.5部、2-メルカプトベンゾイミダゾール亜鉛塩(商品名「ノクラックMBZ」、大内新興化学工業社製、老化防止剤)1.5部、トリメリット酸トリ-2-エチルヘキシル(商品名「アデカサイザーC-8」、ADEKA社製、可塑剤)5部、およびステアリン酸1部を、チャンバー設定温度50℃で5分間混練した。次いで、混合物をオープンロールに移して、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン(商品名「ペロキシモンF-40」、日本油脂社製、有機過酸化物架橋剤)5部を配合し、50℃で10分間混練することにより、架橋性ニトリルゴム組成物を得た。
 そして、得られた架橋性ニトリルゴム組成物を用いて、上述した方法にしたがって、スコーチ安定性、常態物性、および耐屈曲疲労性の各試験、評価を行った。結果を表1に示す。
 実施例2
 製造例1で得られた高飽和ニトリルゴム(A1)100部に代えて、製造例2で得られた高飽和ニトリルゴム(A2)100部を使用した以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 実施例3
 SRFカーボンブラックの配合量を15部から2部に、メタクリル酸亜鉛の配合量を15部から25部に、それぞれ変更した以外は、実施例2と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 実施例4
 製造例1で得られた高飽和ニトリルゴム(A1)100部に代えて、製造例3で得られた高飽和ニトリルゴム(A3)100部を使用した以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 実施例5
 製造例1で得られた高飽和ニトリルゴム(A1)100部に代えて、製造例4で得られた高飽和ニトリルゴム(A4)100部を使用した以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 実施例6
 製造例1で得られた高飽和ニトリルゴム(A1)100部に代えて、製造例5で得られた高飽和ニトリルゴム(A5)100部を使用した以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 実施例7
 製造例1で得られた高飽和ニトリルゴム(A1)100部に代えて、製造例6で得られた高飽和ニトリルゴム(A6)100部を使用した以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 比較例1
 製造例1で得られた高飽和ニトリルゴム(A1)100部に代えて、製造例3で得られた高飽和ニトリルゴム(B1)100部を使用した以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 比較例2
 製造例1で得られた高飽和ニトリルゴム(A1)100部に代えて、製造例4で得られた高飽和ニトリルゴム(B2)100部を使用した以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
 比較例3
 SRFカーボンブラックの配合量を15部から55部に変更するとともに、メタクリル酸亜鉛を配合しなかった以外は、実施例1と同様にして、架橋性ニトリルゴム組成物を調製し、同様に評価を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明所定の高飽和ニトリルゴム(A)、不飽和カルボン酸金属塩(B)、および有機過酸化物架橋剤(C)を含有する架橋性ニトリルゴム組成物はスコーチ安定性に優れ、さらに、該ゴム組成物を用いて得られるゴム架橋物は状態物性、および耐屈曲疲労性に優れる結果であった(実施例1~7)。
 一方、ムーニー粘度が50より大きい高飽和ニトリルゴムを使用した場合には、スコーチ時間が短く、スコーチ安定性に劣り、さらには、得られるゴム架橋物は、耐屈曲疲労性に劣るものであった(比較例1~2)。
 また、不飽和カルボン酸金属塩(B)を配合しない場合には、得られるゴム架橋物は、引張強さが低く、耐屈曲疲労性に劣るものであった(比較例3)。

Claims (7)

  1.  ムーニー粘度(ML1+4、100℃)が50以下、ヨウ素価が120以下である高飽和ニトリルゴム(A)と、
     不飽和カルボン酸金属塩(B)と、
     有機過酸化物架橋剤(C)とを含有する架橋性ニトリルゴム組成物。
  2.  前記高飽和ニトリルゴム(A)は、分岐度指数が20,000Pa・s以下である請求項1に記載の架橋性ニトリルゴム組成物。
  3.  前記高飽和ニトリルゴム(A)は、分子量分布(Mw/Mn)が1.2~10である請求項1または2に記載の架橋性ニトリルゴム組成物。
  4.  前記不飽和カルボン酸金属塩(B)が、不飽和カルボン酸の亜鉛塩である請求項1~3のいずれかに記載の架橋性ニトリルゴム組成物。
  5.  前記不飽和カルボン酸金属塩(B)が、不飽和モノカルボン酸の亜鉛塩である請求項1~4のいずれかに記載の架橋性ニトリルゴム組成物。
  6.  前記不飽和カルボン酸金属塩(B)は、体積平均粒子径が20μm以上の粒子の含有割合が5%以下である請求項1~5のいずれかに記載の架橋性ニトリルゴム組成物。
  7.  請求項1~6のいずれかに記載の架橋性ニトリルゴム組成物を架橋してなるゴム架橋物。
PCT/JP2015/055545 2014-02-27 2015-02-26 架橋性ニトリルゴム組成物およびゴム架橋物 WO2015129789A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/119,845 US20170058100A1 (en) 2014-02-27 2015-02-26 Cross-linkable nitrile rubber composition and cross-linked rubber
KR1020167023622A KR102261613B1 (ko) 2014-02-27 2015-02-26 가교성 니트릴 고무 조성물 및 고무 가교물
EP15756081.4A EP3112410B1 (en) 2014-02-27 2015-02-26 Cross-linkable nitrile rubber composition and cross-linked rubber product
JP2016505285A JP6593321B2 (ja) 2014-02-27 2015-02-26 架橋性ニトリルゴム組成物およびゴム架橋物
MX2016010756A MX2016010756A (es) 2014-02-27 2015-02-26 Composicion de caucho reticulable de nitrilo y caucho reticulado.
CN201580009438.9A CN106029767B (zh) 2014-02-27 2015-02-26 交联性腈橡胶组合物及橡胶交联物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014036624 2014-02-27
JP2014-036624 2014-02-27

Publications (1)

Publication Number Publication Date
WO2015129789A1 true WO2015129789A1 (ja) 2015-09-03

Family

ID=54009103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055545 WO2015129789A1 (ja) 2014-02-27 2015-02-26 架橋性ニトリルゴム組成物およびゴム架橋物

Country Status (7)

Country Link
US (1) US20170058100A1 (ja)
EP (1) EP3112410B1 (ja)
JP (1) JP6593321B2 (ja)
KR (1) KR102261613B1 (ja)
CN (1) CN106029767B (ja)
MX (1) MX2016010756A (ja)
WO (1) WO2015129789A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170130400A (ko) * 2015-03-13 2017-11-28 니폰 제온 가부시키가이샤 니트릴 고무 조성물 및 고무 가교물
CN110431157B (zh) * 2017-03-28 2022-04-05 日本瑞翁株式会社 含羧基腈橡胶的制造方法
CN110092954B (zh) * 2018-01-29 2021-07-02 中国石油化工股份有限公司 丁腈橡胶/尼龙热塑性弹性体及其制备方法
KR20210121546A (ko) 2020-03-30 2021-10-08 주식회사 엘지화학 니트릴계 공중합체의 제조방법
KR20210132867A (ko) 2020-04-28 2021-11-05 주식회사 엘지화학 니트릴계 공중합체의 제조방법
KR102579024B1 (ko) 2020-05-26 2023-09-18 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스의 제조방법
KR20210156991A (ko) 2020-06-19 2021-12-28 주식회사 엘지화학 카르본산 변성 니트릴계 공중합체 라텍스의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052035A (ja) * 2009-08-31 2011-03-17 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびその架橋物
JP2013503226A (ja) * 2009-08-31 2013-01-31 ランクセス・ドイチュランド・ゲーエムベーハー 場合により水素化された低分子量ニトリルゴムを含有する加硫性ポリマー組成物
WO2014115806A1 (ja) * 2013-01-28 2014-07-31 日本ゼオン株式会社 油田またはガス井で使用されるシール材用の架橋性ゴム組成物およびシール材

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778149B2 (ja) * 1988-06-03 1995-08-23 日本ゼオン株式会社 加硫性ゴム組成物
WO1998044037A1 (fr) 1997-03-31 1998-10-08 Nippon Zeon Co., Ltd. Composition melangee de resine synthetique et de caoutchouc
EP0972797A4 (en) * 1997-03-31 2001-01-17 Nippon Zeon Co RUBBER COMPOSITION CONTAINING AN ETHYLENICALLY UNSATURATED CARBOXYLIC ACID METAL SALT
CA2308876A1 (en) * 2000-05-12 2001-11-12 Bayer Inc. Improved rubber composition
JP4553094B2 (ja) * 2002-01-30 2010-09-29 日本ゼオン株式会社 ゴム組成物、加硫性ゴム組成物および加硫物
JP5002043B2 (ja) * 2009-11-13 2012-08-15 三ツ星ベルト株式会社 ゴム製歯付ベルトおよび歯付ベルト用ゴム組成物
WO2013015373A1 (ja) * 2011-07-28 2013-01-31 日本ゼオン株式会社 ニトリル基含有高飽和共重合体ゴム組成物
JP7120000B2 (ja) * 2016-03-18 2022-08-17 日本ゼオン株式会社 ニトリルゴム組成物およびゴム架橋物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052035A (ja) * 2009-08-31 2011-03-17 Nippon Zeon Co Ltd 架橋性ニトリルゴム組成物およびその架橋物
JP2013503226A (ja) * 2009-08-31 2013-01-31 ランクセス・ドイチュランド・ゲーエムベーハー 場合により水素化された低分子量ニトリルゴムを含有する加硫性ポリマー組成物
WO2014115806A1 (ja) * 2013-01-28 2014-07-31 日本ゼオン株式会社 油田またはガス井で使用されるシール材用の架橋性ゴム組成物およびシール材

Also Published As

Publication number Publication date
EP3112410B1 (en) 2023-09-13
KR20160127008A (ko) 2016-11-02
US20170058100A1 (en) 2017-03-02
MX2016010756A (es) 2017-02-15
JPWO2015129789A1 (ja) 2017-03-30
JP6593321B2 (ja) 2019-10-23
CN106029767B (zh) 2018-01-09
EP3112410A4 (en) 2017-10-18
KR102261613B1 (ko) 2021-06-04
EP3112410A1 (en) 2017-01-04
CN106029767A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
JP6593321B2 (ja) 架橋性ニトリルゴム組成物およびゴム架橋物
JP6627749B2 (ja) ニトリル基含有共重合体ゴム、架橋性ゴム組成物およびゴム架橋物
TWI720017B (zh) 腈橡膠組合物、交聯性腈橡膠組合物及橡膠交聯物
JP6933440B2 (ja) ニトリル基含有高飽和共重合体ゴム組成物およびゴム架橋物
JP6729376B2 (ja) ニトリル基含有共重合体ゴム、架橋性ゴム組成物およびゴム架橋物
KR102401457B1 (ko) 니트릴 고무 조성물, 고포화 니트릴 고무의 라텍스 조성물, 고무 가교물
WO2017022598A1 (ja) ニトリル基含有高飽和共重合体ゴム、架橋性ゴム組成物、およびゴム架橋物
EP3689927B1 (en) Method for producing nitrile group-containing copolymer rubber
JP6614153B2 (ja) 高飽和ニトリルゴム組成物およびゴム架橋物
JP5423251B2 (ja) 架橋性ニトリルゴム組成物およびその架橋物
JP7147780B2 (ja) 水素化ニトリルゴムの製造方法
JP2008297394A (ja) 重合体粒子およびその製造方法
JP5445002B2 (ja) 架橋性ニトリルゴム組成物およびその製造方法
WO2014192844A1 (ja) ニトリル共重合体ゴム組成物、架橋性ゴム組成物およびゴム架橋物
JP2016196668A (ja) ニトリル基含有高飽和共重合体ゴム
JP2024042443A (ja) (メタ)アクリル系重合体、(メタ)アクリル系重合体含有組成物及び(メタ)アクリル系重合体架橋物
JP2020084162A (ja) 混合ゴムおよびその製造方法、架橋性ゴム組成物ならびにゴム架橋物
JP2020050722A (ja) ゴム混合液、ニトリル基含有共重合体ゴム組成物、架橋性ゴム組成物およびゴム架橋物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756081

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505285

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015756081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015756081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15119845

Country of ref document: US

Ref document number: MX/A/2016/010756

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 20167023622

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE