WO2015129775A1 - マルチコアファイバ - Google Patents

マルチコアファイバ Download PDF

Info

Publication number
WO2015129775A1
WO2015129775A1 PCT/JP2015/055489 JP2015055489W WO2015129775A1 WO 2015129775 A1 WO2015129775 A1 WO 2015129775A1 JP 2015055489 W JP2015055489 W JP 2015055489W WO 2015129775 A1 WO2015129775 A1 WO 2015129775A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
mode
light
order
different
Prior art date
Application number
PCT/JP2015/055489
Other languages
English (en)
French (fr)
Inventor
雄佑 佐々木
仁 植村
竹永 勝宏
晋聖 齊藤
Original Assignee
株式会社フジクラ
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ, 国立大学法人北海道大学 filed Critical 株式会社フジクラ
Priority to JP2016505280A priority Critical patent/JP6328745B2/ja
Priority to EP15754524.5A priority patent/EP3035091A4/en
Publication of WO2015129775A1 publication Critical patent/WO2015129775A1/ja
Priority to US15/062,582 priority patent/US9709729B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/268Optical coupling means for modal dispersion control, e.g. concatenation of light guides having different modal dispersion properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/287Structuring of light guides to shape optical elements with heat application
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • G02B6/2821Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals
    • G02B6/2835Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers
    • G02B2006/2839Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers using lateral coupling between contiguous fibres to split or combine optical signals formed or shaped by thermal treatment, e.g. couplers fabricated from double or twin core fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters

Definitions

  • the present invention relates to a multi-core fiber and is suitable for multiplexing / demultiplexing light of different modes.
  • LP01 mode basic mode
  • LP11 mode basic mode
  • Mode communication is known.
  • multimode communication a plurality of LP mode lights propagating in one core are demultiplexed into a plurality of optical fibers, or different LP mode lights propagating in a plurality of optical fibers are combined into one optical fiber. Is done.
  • Non-Patent Document 1 when light of the same LP mode propagates to each of a pair of optical fibers, the light propagating through the optical fibers using a mode converter or the like is set to different LP modes, and thereafter There is a statement that multiplexing is performed.
  • the mode multiplexer / demultiplexer described in Patent Document 1 below has two waveguides. Among these waveguides, one waveguide propagates light of a specific LP mode, and the other waveguide propagates light of a specific LP mode and another LP mode different from the specific LP mode. When light of the same specific LP mode propagates in these waveguides, the propagation constant of the light of the specific LP mode in one waveguide and the propagation constant of the other LP mode in the other waveguide To be matched. With such a configuration, light of a specific LP mode in one waveguide is multiplexed as light in another LP mode of the other waveguide.
  • the mode multiplexer / demultiplexer described in Non-Patent Document 1 requires a mode converter. Further, in the mode multiplexer / demultiplexer described in Patent Document 1, the waveguides are close to each other so that the mode multiplexing / demultiplexing occurs at the place where the mode multiplexing / demultiplexing is performed, and at other places, the mode multiplexing / demultiplexing is performed. The waveguides are separated from each other so as not to occur. Therefore, the mode multiplexer / demultiplexer described in Non-Patent Document 1 requires a place where the mode converter is arranged, and the mode multiplexer / demultiplexer described in Patent Document 1 is guided in each place where the mode multiplexing / demultiplexing is not performed. A place to separate the waveguide is required.
  • an object of the present invention is to realize a mode multiplexer / demultiplexer that can be reduced in size using a multi-core fiber.
  • the multicore fiber of the present invention includes a first core that propagates light up to the x-order LP mode (x is an integer of 2 or more) and light up to the y-order LP mode (y is an integer of 1 or more). ) And a propagation constant of light in the x 1st order LP mode of the first core (x 1 is an integer not less than 2 and not more than x) and y 1st order LP mode of the second core.
  • the propagation constant of the light of the specific LP mode of the second core (the light of the y first- order LP mode) is different from that of the specific LP mode of the first core. This coincides with the propagation constant of mode light (x first- order LP mode light). Accordingly, in the different mode interaction period, the light of the specific LP mode of the second core is mode-multiplexed as the light of the other mode of the first core, or the light of the other LP mode of the first core is the second core. Mode demultiplexing as light of a specific mode. Further, since the first core can propagate light up to at least the secondary LP mode, it can propagate multimode light.
  • the first core can propagate light of an LP mode different from the light of the specific LP mode in addition to the light of the specific LP mode.
  • mode multiplexing / demultiplexing can be performed. For example, if the first core propagates light up to the second order LP mode and the second core propagates light up to the first order LP mode, the LP01 mode light propagating through the second core and the first core LP11 mode light is mode-multiplexed and demultiplexed in the different mode interaction section. Further, the LP01 mode light propagating through the first core propagates through the first core without being multiplexed / demultiplexed.
  • the light propagation constant of each LP mode of the second core does not match the light propagation constant of each LP mode of the first core. For this reason, in the different mode non-interaction section, it is possible to suppress occurrence of mode multiplexing / demultiplexing without separating the first core and the second core as in Patent Document 2.
  • the multi-core fiber propagates light up to the z-order LP mode (z is an integer of 1 or more) and is arranged at a position different from the second core by a predetermined angle with respect to the center of the first core.
  • the light in the x 1st order LP mode is different from each other in the two LP modes that have different energy distributions when rotated by the predetermined angle with respect to the center of the first core.
  • the light It is preferably set to summed light while rotating the a predetermined angle different from each other the center of the core as a reference.
  • the light of the y 1st order LP mode propagating in the second core and the light of one LP mode constituting the light of the x 1st order LP mode of the first core can be multiplexed / demultiplexed. Can do. Therefore, it is possible to perform more mode multiplexing / demultiplexing of light.
  • the predetermined angle is 90 degrees
  • the x 1-order LP mode it is better to be a secondary LP mode.
  • the predetermined angle is 45 degrees
  • the x 1-order LP mode may be a tertiary LP mode.
  • Light in the LP11 mode, which is the second-order LP mode, and light in the LP21 mode, which is the third-order LP mode, are low-order among the light in modes other than the basic mode, and are easy to handle. Therefore, optical communication can be easily performed.
  • the multi-core fiber, the light up to z next LP mode (z is an integer of 1 or more) further comprises a third core for propagating, in the different modes interaction interval, x 2-order LP mode of the first core light (x 2 is 1 or more x less x 1 different integer) propagation constants and the third core z 1-order LP mode optical (z 1 is 1 or z less x 1 and x 2 different integers )
  • the propagation constant of each LP mode light of the first core and the light propagation constant of each LP mode of the third core do not match in the different mode non-interaction section. It is preferable.
  • Such two different LP mode lights propagating through the first core, light propagating through the second core, and light propagating through the third core can be mode-multiplexed / demultiplexed. Therefore, according to such a configuration, it is possible to perform more mode multiplexing / demultiplexing of light.
  • the y 1 and z 1 are equal to each other. Since the light of the same LP mode propagates through the second core and the third core, it becomes easy to handle the light and to make a multi-core fiber.
  • both the second core and the third core are preferably cores that propagate single mode light. Propagating single mode light facilitates handling of light propagating through the second and third cores.
  • the first core may be located at the center of the clad.
  • the different mode interaction section is preferably formed by extending a part of the different mode non-interaction section.
  • the different mode interaction section By forming the different mode interaction section in this way, the cross-sectional structure of the multicore fiber in the different mode interaction section and the cross sectional structure of the multicore fiber in the different mode non-interaction section are similar to each other. Therefore, it is easy to calculate the correlation between the light propagation constant in the different mode interaction section and the light propagation constant in the different mode non-interaction section.
  • the different mode interaction section is formed by stretching, the multimode fiber can be easily drawn by using a heater having a small energy to form the different mode interaction section.
  • the number of LP modes of light propagating through each core in the used wavelength band does not change between the different mode interaction section and the different mode non-interaction section.
  • a mode multiplexer / demultiplexer that can be reduced in size can be realized using a multi-core fiber.
  • FIG. 5 is a diagram illustrating a multi-core fiber that mode-multiplexes and demultiplexes a plurality of second-order LP mode light and first-order LP-mode light, and mode-multiplexes and demultiplexes third-order LP-mode light and first-order LP-mode light. .
  • Example 1 the relationship between the radius of the core and the effective refractive index in light having a relative relative refractive index difference of 0.55% and a wavelength of 1550 nm is expressed as first-order LP mode light, second-order LP mode light, and third-order LP. It is a figure shown about the light of a mode.
  • Example 1 the relationship between the inter-core crosstalk and the inter-core distance between the LP01 mode light and the LP11 mode light, and the relationship between the inter-core crosstalk and the inter-core distance between the LP01 mode lights.
  • Example 1 it is a figure which shows the state of the selection ratio of the light whose stretch ratio is 1.42 and whose wavelength is 1550 nm.
  • Example 1 it is a figure which shows the state of the selection ratio of the light whose stretch ratio is 1.38 and wavelength is 1595 nm. It is a figure which shows the relationship between a wavelength and coupling efficiency.
  • Example 2 when the bend diameter of the multi-core fiber is 80 mm and the wavelength is 1625 nm, the relationship between the inter-core crosstalk XT 01-01 and the inter-core distance between the LP01 modes in the second core and the third core is FIG. 6 is a diagram illustrating the power of light emitted from the second core 12 and the third core 13 in Example 2.
  • FIG. 1 shows the state of the selection ratio of the light whose stretch ratio is 1.38 and wavelength is 1595 nm. It is a figure which shows the relationship between a wavelength and coupling efficiency.
  • Example 2 when the bend diameter of the multi-core fiber is 80 mm and the wavelength is 1625 nm, the relationship between the inter-core crosstalk XT 01-01 and the inter-core distance between the LP01 modes in the second core and the third
  • Example 2 It is a figure which shows the coupling efficiency by the ratio of the power of the light radiate
  • Example 2 it is a figure which shows the coupling efficiency by the ratio of the power of the light radiate
  • NFP Near
  • FIG. 6 is a photograph showing the NFP of light in the second core in the multi-core fiber produced in Example 2. It is a photograph which shows NFP of the light in the 3rd core in the multicore fiber produced in Example 2.
  • FIG. 1 is a diagram illustrating a multi-core fiber according to a first embodiment of the present invention.
  • the multicore fiber 1 of the present embodiment includes a first core 11, a second core 12, and a clad 20 that surrounds the outer peripheral surface of the first core 11 and the outer peripheral surface of the second core 12 without a gap.
  • the multi-core fiber 1 is formed with a large diameter portion 31, a tapered portion 32, and a small diameter portion 33 along the longitudinal direction.
  • the tapered portion 32 and the small diameter portion 33 are formed by heating and stretching a part of the large diameter portion 31.
  • Such stretching by heating may be performed by heating with an oxyhydrogen burner, but can be sufficiently performed by heating by discharge.
  • an optical fiber fuser using arc discharge has been put into practical use, but this arc discharge may be used as a heat source for stretching.
  • FIG. 2 is a diagram showing a state of a cross section perpendicular to the longitudinal direction of each of the large diameter portion 31 and the small diameter portion 33 of the multi-core fiber 1.
  • FIG. 2A shows a state of the structure in the cross section of the large diameter portion 31 and the small diameter portion 33
  • FIG. 2B shows a state of the refractive index distribution in the cross section of the large diameter portion 31 and the small diameter portion 33. .
  • the first core 11 is located at the center of the clad 20, and the second core 12 is located around the first core 11.
  • the small diameter portion 33 is formed by extending the large diameter portion 31 as described above, the ratio of the outer diameter of the clad 20 to the diameter of the first core 11 and the diameter of the second core 12 is a multi-core. It does not change anywhere in the fiber 1. For this reason, the diameter of the first core 11 in the small diameter portion 33 is smaller than the diameter of the first core 11 in the large diameter portion 31, and the diameter of the second core 12 in the small diameter portion 33 is the same as that of the second core 12 in the large diameter portion 31. Smaller than the diameter.
  • the solid line indicates the refractive index distribution of the multi-core fiber 1.
  • the refractive index of the first core 11 and the refractive index of the second core 12 are higher than the refractive index of the clad 20 and are constant along the longitudinal direction.
  • the first core 11 propagates light up to the secondary LP mode. That is, the first core 11 of the present embodiment is a fuse mode core that propagates LP01 mode light and LP11 mode light, and suppresses propagation of LP21 mode light that is third-order LP mode light.
  • the second core 12 propagates light up to the first order LP mode. That is, the second core 12 of the present embodiment is a single mode core that propagates LP01 mode light and suppresses LP11 mode light propagation.
  • the broken line indicates the effective refractive index n eff of each LP mode light propagating through the first core 11 and the second core 12.
  • the light propagation constant of each LP mode of the first core 11 does not match the light propagation constant of each LP mode of the second core 12.
  • the propagation constant corresponds to the effective refractive index n eff . Therefore, in this embodiment, the effective refractive index n eff01 of the first-order LP mode light and the effective refractive index n eff11 of the second-order LP mode light of the first core 11 of the large-diameter portion 31 and the first- order of the second core 12 are determined.
  • the large diameter portion 31 It does not coincide with the effective refractive index n eff01 of the LP mode light. For this reason, in the large diameter portion 31, crosstalk between each LP mode light propagating through the first core 11 and each LP mode light propagating through the second core is suppressed. Therefore, the large-diameter portion 31 is restrained from generating / demultiplexing different modes, and the large-diameter portion 31 is a different-mode non-interaction section.
  • the small-diameter portion 33, the diameter of each core as described above is different from the diameter of the respective cores in the large diameter portion 31, and the effective refractive index n eff of the effective refractive index n eff is also the large-diameter portion 31 Different.
  • the small diameter portion 33, a secondary LP mode of the effective refractive index n Eff11 of light and the effective refractive index n Eff01 of light of the primary LP mode of the second core 12 of the first core 11 matches. That is, the propagation constant of the second-order LP mode light of the first core 11 matches the propagation constant of the first-order LP mode light of the second core 12.
  • the small diameter portion 33 the second order LP mode light propagating through the first core 11 and the first order LP mode light propagating through the second core cross-talk. Therefore, in the small-diameter portion 33, mode multiplexing / demultiplexing of the light of the second order LP mode propagating through the first core 11 and the light of the first order LP mode propagating through the second core occurs. For this reason, the small diameter part 33 is set as a different mode interaction area.
  • the number of LP modes of light propagating through the respective cores in the used wavelength band may change between the large diameter portion 31 and the small diameter portion 33, but it is preferable that the number does not change. Therefore, in the present embodiment, in each of the large diameter portion 31 and the small diameter portion 33, the first core 11 propagates the light of the first-order LP mode and the light of the second-order LP mode and propagates the light of the third-order LP mode.
  • the second core 12 is preferably suppressed, and the light of the first-order LP mode propagates and the propagation of the light of the second-order LP mode is preferably suppressed.
  • the first core 11 and the second core 12 are, for example, It only has to be configured. That is, when the wavelength of light used is 1.55 ⁇ m, the relative refractive index difference between the first core 11 and the cladding 20 is 0.55%, and the relative refractive index difference between the second core 12 and the cladding 20 is 0.
  • the radius of the first core 11 is 6.3 ⁇ m
  • the radius of the second core 12 is 3.7 ⁇ m.
  • the draw ratio of the large diameter part 31 and the small diameter part 33 is set to 1.4. In this case, when light having a wavelength of 1.55 ⁇ m propagates through the first core 11 and the second core 12, the number of LP modes of light propagating through the respective cores is the large diameter portion 31 and the small diameter portion 33. And does not change.
  • the draw ratio is a similarity ratio between the small diameter portion 33 and the large diameter portion 31, and the diameter of the multicore fiber 1 at the large diameter portion 31 when the diameter of the multicore fiber 1 at the small diameter portion 33 is 1. It is the same value.
  • the first-order LP mode light of the second core 12 when the first-order LP mode light is incident on each of the first core 11 and the second core 12, the first-order LP mode light of the second core 12 is first incident on the small-diameter portion 33.
  • the light is multiplexed to the core 11 as light in the second order LP mode.
  • the light of the second LP mode of the first core 11 is incident on the small diameter portion 33.
  • the light is demultiplexed into the second core 12 as light in the first-order LP mode. In this way, mode coupling / demultiplexing is achieved.
  • the propagation constants of the light of each LP mode of the first core 11 and the propagation constants of the light of each LP mode of the second core 12 do not match, so the first core 11 and the second core 12 Even if the structure is not separated, occurrence of such multiplexing / demultiplexing is suppressed. Therefore, according to the multi-core fiber 1 of the present embodiment, a mode multiplexer / demultiplexer that can be reduced in size can be realized.
  • FIG. 3 is a diagram showing a state of a cross section perpendicular to the longitudinal direction at the large-diameter portion and the small-diameter portion of the multi-core fiber in the present embodiment.
  • FIG. 3A shows a state of the structure in the cross section of the large diameter portion 31 and the small diameter portion 33
  • FIG. 3B shows a state of the refractive index distribution in the cross section of the large diameter portion 31 and the small diameter portion 33. .
  • the multi-core fiber 2 of the present embodiment is different from the multi-core fiber 1 of the first embodiment in that it further includes a third core 13 disposed at a position 90 degrees different from the second core 12 with respect to the center of the first core 11. . That is, the angle ⁇ formed by the line connecting the center of the first core 11 and the center of the second core 12 and the line connecting the center of the first core 11 and the center of the third core 13 is 90 degrees.
  • the configuration of the third core 13 is the same as that of the second core 12 except for the position where it is arranged. Accordingly, when the first-order LP mode light is incident on each of the first core 11, the second core 12, and the third core 13, the first-order LP mode light of the second core 12 and the third core 13 is incident on the small diameter portion 33. Is multiplexed into the first core 11 as light in the second-order LP mode. In addition, when light of the first LP mode and the second LP mode is incident on the first core 11 and the light is not incident on the second core 12 and the third core 13, the secondary of the first core 11 is formed in the small diameter portion 33.
  • the LP mode light is demultiplexed into the second core 12 and the third core 13 as first order LP mode light, respectively.
  • the propagation constants of the LP modes of the first core 11 do not match the propagation constants of the LP modes of the second core 12 and the third core 13. Occurrence of mode multiplexing / demultiplexing between the second core 12 and the third core 13 is suppressed.
  • LP11 mode light which is second-order mode light, has a positive electric field distributed on one side and a negative electric field distributed on the other side based on a straight line extending in the radial direction through the center of the core through which the light propagates.
  • the energy distribution is the same on one side and the other side. Therefore, when the light in the LP11 mode is rotated 180 degrees with respect to the center of the propagating core, the same energy distribution as before rotation is obtained, but when rotated at other angles, the energy distribution differs from that before rotation.
  • the LP11 mode light is still called LP11 mode light even if two LP11 mode lights that are rotated 90 degrees from each other are combined.
  • the LP11 mode light propagating through the first core 11 is the LP11a mode light, one of the two LP11 mode lights rotated by 90 degrees and the other as the LP11a mode light and the other as the LP11b mode light. And the LP11b mode light.
  • the light of the second order LP mode (LP11 mode) propagating through the first core 11 is mode-demultiplexed into the light of the first order LP mode propagating through the second core 12 and the third core 13.
  • the LP11a mode light is demultiplexed into the first-order LP mode light propagating through one of the second core 12 and the third core 13, and the LP11b mode light is transmitted through the other of the second core 12 and the third core 13.
  • the first-order LP mode light propagating through the second core 12 and the third core 13 is mode-multiplexed with the LP11 mode light of the first core 11.
  • the light propagating through the second core 12 is combined with one of the LP11a mode light and the LP11b mode light propagating through the first core 11, and the light propagating through the third core 13 is transmitted through the first core 11.
  • the multi-core fiber of the present embodiment even when the first core 11 propagates light up to the second-order LP mode, information is transmitted to the LP01 mode light, the LP11a mode light, and the LP11b mode light. Since they can be superimposed, optical communication having a larger amount of information can be performed.
  • FIG. 4 is a diagram showing a state of a cross section perpendicular to the longitudinal direction of the large-diameter portion and the small-diameter portion of the multi-core fiber in the present embodiment.
  • FIG. 4A shows a state of the structure in the cross section of the large diameter portion 31 and the small diameter portion 33
  • FIG. 4B shows a state of the refractive index distribution in the cross section of the large diameter portion 31 and the small diameter portion 33. .
  • the first core 11 of this embodiment propagates light up to the third order LP mode. That is, the first core 11 of the present embodiment propagates LP01 mode light, LP11 mode light, and LP21 mode light, and suppresses propagation of LP02 mode light that is fourth order LP mode light.
  • the core propagates LP01 mode light, LP11 mode light, and LP21 mode light, and suppresses propagation of LP02 mode light that is fourth order LP mode light.
  • the second core 12 propagates light up to the first order LP mode.
  • the propagation constant of the first-order LP mode light of the second core 12 in the small-diameter portion 33 is the light of the third-order LP mode of the first core 11. Is consistent with the propagation constant. That is, in the small-diameter portion 33, the effective refractive index n Eff01 of light of the primary LP mode of the second core 12 coincides with the effective refractive index n Eff21 of light of the third-order LP mode of the first core 11.
  • the large-diameter portion 31 is configured such that the light propagation constants of the LP modes of the first core 11 do not match the light propagation constants of the LP modes of the third core 13.
  • the multi-core fiber 3 of the present embodiment further includes a third core 13 disposed at a position 45 degrees different from the second core 12 with respect to the center of the first core 11. That is, the angle ⁇ formed by the line connecting the center of the first core 11 and the center of the second core 12 and the line connecting the center of the first core 11 and the center of the third core 13 is 45 degrees.
  • the configuration of the third core 13 is the same as the configuration of the second core 12 except for the position where it is arranged. Accordingly, when the first-order LP mode light is incident on each of the first core 11, the second core 12, and the third core 13, the first-order LP mode light of the second core 12 and the third core 13 is incident on the small diameter portion 33.
  • the first core 11 Is multiplexed into the first core 11 as light in the third-order LP mode. Further, in the case where the light having the first LP mode, the second LP mode, and the third LP mode is incident on the first core 11 and the light is not incident on the second core 12 and the third core 13, The third-order LP mode light of the core 11 is demultiplexed into the second core 12 and the third core 13 as first-order LP mode light, respectively. In the large-diameter portion 31, the propagation constants of the LP modes of the first core 11 do not match the propagation constants of the LP modes of the second core 12 and the third core 13. Occurrence of mode multiplexing / demultiplexing between the second core 12 and the third core 13 is suppressed.
  • the number of LP modes of light propagating through each core does not change between the large diameter portion 31 and the small diameter portion 33.
  • the LP21 mode light which is the third-order mode light, is a distribution of electric fields in adjacent regions in four regions separated by two perpendicular lines extending in the radial direction through the center of the core through which the light propagates. Is in the opposite state, and has the same energy distribution in each region. Accordingly, when the LP21 mode light is rotated 90 degrees with respect to the center of the propagating core, the energy distribution is the same as that before rotation, but when rotated at other angles, the energy distribution is different from that before rotation.
  • the LP21 mode light is also called the LP21 mode even if two LP21 mode lights that are rotated by 45 + 90n degrees (n is an integer greater than or equal to 0), such as 45 degrees or 135 degrees, are combined. .
  • one of the two LP21 mode lights that are rotated 45 degrees from each other is set as the LP21a mode light and the other as the LP21b mode light, and the LP21 mode light propagating through the first core 11 is converted into the LP21a mode light. And the LP21b mode light. Then, it is assumed that light in the third-order LP mode (LP21 mode) propagating through the first core 11 is mode-demultiplexed into light in the first-order LP mode propagating through the second core 12 and the third core 13.
  • the LP21a mode light is superimposed on the primary LP mode light propagating through one of the second core 12 and the third core 13, and the LP21b mode light is propagated through the other of the second core 12 and the third core 13.
  • the first-order LP mode light propagating through the second core 12 and the third core 13 is mode-multiplexed with the LP21 mode light of the first core 11.
  • the light propagating through the second core 12 is combined with one of the LP21a mode light and the LP21b mode light propagating through the first core 11, and the light propagating through the third core 13 is transmitted through the first core 11.
  • the multi-core fiber of the present embodiment even when the first core 11 propagates light up to the third-order LP mode, information is transmitted to the LP01 mode light, the LP21a mode light, and the LP21b mode light. Since they can be superimposed, optical communication having a larger amount of information can be performed.
  • FIG. 5 is a diagram showing a state of a cross section perpendicular to the longitudinal direction at the large-diameter portion and the small-diameter portion of the multi-core fiber in the present embodiment.
  • FIG. 3A shows a state of the structure in the cross section of the large diameter portion 31 and the small diameter portion 33
  • FIG. 3B shows a state of the refractive index distribution in the cross section of the large diameter portion 31 and the small diameter portion 33. .
  • the first core 11 of the present embodiment has the same configuration as the first core 11 of the third embodiment, and propagates light up to the third order LP mode.
  • the multi-core fiber 4 includes a third core 13 on the opposite side of the second core 12 with respect to the center of the first core 11.
  • the third core 13 propagates light up to the primary LP mode.
  • the third core 13 of this embodiment has the same configuration as that of the third core 13 of the third embodiment except that the arrangement position is different. Therefore, in the small-diameter portion 33, the propagation constant of the first-order LP mode light of the third core 13 matches the propagation constant of the third-order LP mode light of the first core 11. That is, in the small-diameter portion 33, the effective refractive index n Eff01 primary LP mode light of the third core 13 coincides with the effective refractive index n Eff21 of light of the third-order LP mode of the first core 11.
  • the large-diameter portion 31 is configured such that the light propagation constants of the LP modes of the first core 11 do not match the light propagation constants of the LP modes of the third core 13.
  • the first-order LP of the second core 12 is formed in the small-diameter portion 33.
  • the mode light is combined with the first core 11 as the second order LP mode light
  • the first order LP mode light of the third core 13 is combined with the first core 11 as the third order LP mode light.
  • the second-order LP mode light of the first core 11 is demultiplexed into the second core 12 as the first-order LP mode light
  • the third-order LP mode light of the first core 11 is demultiplexed into the third core 13 in the first-order LP mode light. Demultiplex as. In the large-diameter portion 31, the propagation constants of the LP modes of the first core 11 do not match the propagation constants of the LP modes of the second core 12 and the third core 13. Occurrence of mode multiplexing / demultiplexing between the second core 12 and the third core 13 is suppressed.
  • the number of LP modes of light propagating through each core does not change between the large diameter portion 31 and the small diameter portion 33.
  • the small-diameter portion 33 can multiplex / demultiplex the second-order LP mode light propagating through the first core 11 and the first-order LP mode light propagating through the second core 12.
  • the third-order LP mode light propagating through the first core 11 and the first-order LP mode light propagating through the third core 13 can be multiplexed / demultiplexed, more mode multiplexing / demultiplexing of light is possible. It can be performed.
  • the multicore fiber 1 in which the second-order LP mode light propagating through the first core 11 and the first-order LP mode light propagating through the second core 12 are mode-multiplexed and demultiplexed has been described as an example.
  • the combination of modes for multiplexing and demultiplexing only needs to be different for light propagating through the first core 11 and light propagating through the second core.
  • the first core 11 propagates light up to the third-order LP mode
  • the second core 12 propagates light up to the second-order LP mode
  • the third-order LP mode light propagated through the first core 11 Mode multiplexing / demultiplexing may be performed with light of the first-order LP mode propagating through the two cores or light of the second-order LP mode.
  • the first core 11 is a core that propagates light up to at least the x-order LP mode (x is an integer of 2 or more), and the second core 12 is at least It is a core that propagates light up to the y-order LP mode (y is an integer of 1 or more), and the propagation constant of the x- first- order LP mode light (x 1 is an integer of 1 to x) of the first core 11
  • the propagation constants of the light of the y 1st order LP mode of the two cores 12 (y 1 is an integer different from x 1 of 1 or more and y or less) coincide with each other.
  • the order is It becomes the combination of the light of the lowest LP mode, and the light can be easily handled.
  • the third core 13 is disposed at a position 90 different from the second core 12 with respect to the center of the first core 11, and propagates through the second core 12 and the third core 13 in the small diameter portion 33.
  • the light propagating through the first core, which is coupled with the light to be coupled with the mode, is the two lights of the same LP mode that have different energy distributions when they rotate 90 degrees different from each other with respect to the center of the first core 11. (LP11a mode light and LP11b mode light) were added together in a state of being rotated by 90 degrees with respect to the center of the first core 11.
  • the third core 13 is disposed at a position different from the second core 12 by 45 with respect to the center of the first core 11, and propagates through the second core 12 and the third core 13 in the small diameter portion 33.
  • the light propagating through the first core that is coupled with the light and the mode is divided into two light beams of the same LP mode that have different energy distributions when they are rotated 45 degrees different from each other with respect to the center of the first core 11 ( LP21a mode light and LP21b mode light) were added together in a state of being rotated by 45 degrees with respect to the center of the first core 11.
  • the angle formed by the second core 12 and the third core 13 with respect to the center of the first core 11 may be different.
  • the light propagating through the second core 12 and the third core 13 that are mode-multiplexed and demultiplexed with the light propagating through the first core 11 is not limited to the light in the first-order LP mode.
  • the light propagating through the second core 12 and the third core 13 that is mode-multiplexed / demultiplexed with the light of the third-order mode propagating through the first core 11 is light of the second-order LP mode. good.
  • the first core 11, the second core 12, and the third core 13 can be generalized as follows.
  • the first core 11 propagates light up to the x-order LP mode (x is an integer of 2 or more), and the second core 12 and the third core 13 each transmit light up to the y-order LP mode (y is an integer of 1 or more).
  • x is an integer of 2 or more
  • y is an integer of 1 or more
  • x 1 is 1 or x an integer
  • y 1 is an integer different from x 1 which is not less than 1 and not more than y.
  • the x Light in the first- order LP mode is equal to each other when the second core 12 and the third core 13 rotate at different predetermined angles with respect to the center of the first core 11 and have different energy distributions.
  • the two light beams in the mode are added together in a state where they rotate so as to be different from each other by a predetermined angle with respect to the center of the first core 11.
  • the light propagation constants of the LP modes of the first core 11 do not match the light propagation constants of the LP modes of the second core 12 and the third core 13.
  • the second embodiment is an example in which x is 2, y is 1, x 1 is 2, y 1 is 1, and a predetermined angle is 90 degrees.
  • the third embodiment is an example in which x is set to 3, y is set to 1, x 1 is set to 3, y 1 is set to 1, and the predetermined angle is 45 degrees.
  • the third-order LP mode light propagating through the first core 11 is mode-multiplexed and demultiplexed with the first-order LP mode light propagating through the second core 12 and the third core 13.
  • the light propagating through the first core and the light propagating through the second core 12 and the third core 13 which are mode-multiplexed / demultiplexed do not have to be in the same LP mode in the second core 12 and the third core 13.
  • the following multi-core fiber can be mentioned as a modification of the third embodiment.
  • the first core 11, the second core 12, and the third core 13 are arranged as in the third embodiment, but the third core 13 propagates light up to the second order LP mode. .
  • the third-order LP mode light propagating through the first core 11 is mode-multiplexed / demultiplexed with the first-order LP mode light propagating through the second core 12, and the second-order LP mode light propagates through the third core 13. And mode combining and demultiplexing.
  • the first core 11, the second core 12, and the third core 13 can be generalized as follows so as to include the modification of the third embodiment.
  • the first core 11 propagates light up to the x-order LP mode (x is an integer of 2 or more)
  • the second core 12 propagates light up to the y-order LP mode (y is an integer of 1 or more)
  • the third The core 13 propagates light up to the z-order LP mode (z is an integer of 1 or more)
  • the second core 12 and the third core 13 are arranged at positions different from each other by a predetermined angle with respect to the center of the first core 11.
  • the propagation constant of the first primary LP mode light of the first core 11 (x 1 is an integer of 1 to x) and the first primary LP mode light of the second core 12 (y 1 is 1).
  • propagation constants and a third z 1-order LP mode core 13 light y following x 1 different from an integer) (z 1 has a propagation constant of 1 or more z less x 1 and y 1 is different from an integer) matches or To do.
  • x Light in the first- order LP mode is equal to each other when the second core 12 and the third core 13 rotate at different predetermined angles with respect to the center of the first core 11 and have different energy distributions.
  • the two light beams in the mode are added together in a state where they rotate so as to be different from each other by a predetermined angle with respect to the center of the first core 11.
  • the light propagation constants of the LP modes of the first core 11 do not match the light propagation constants of the LP modes of the second core 12 and the third core 13.
  • x is set to 3
  • y is set to 1
  • z is set to 2
  • x 1 is set to 3
  • y 1 is set to 1
  • z 1 Is an example in which 2 is set and the predetermined angle is 45 degrees.
  • z 1 may be equal to y 1 in such a generalized state
  • examples of the second embodiment and the third embodiment can be included. That is, x, x 1 are each 2, y, z, y 1 , z 1 are each 1, and the predetermined angle is 90 degrees, thereby indicating an example of the second embodiment.
  • x, x 1 are each set to 3
  • y, z, y 1 , z 1 are each set to 1
  • the predetermined angle is set to 45 degrees, thereby illustrating an example of the third embodiment.
  • the second-order LP mode light propagating through the first core 11 is mode-multiplexed / demultiplexed with the first-order LP mode light propagating through the second core 12, and is propagated through the first core 11.
  • the order LP mode light and the first order LP mode light propagating through the third core 13 are combined and demultiplexed.
  • the light propagating through the first core 11 and the light propagating through the second and third cores 12 and 13 that are mode-multiplexed and demultiplexed do not have to be in the same LP mode in the second core 12 and the third core 13. .
  • the following multi-core fiber can be mentioned as a modification of the fourth embodiment.
  • This multi-core fiber is different from the multi-core fiber 4 of the fourth embodiment in that the third core 13 propagates light up to the second order LP mode. Then, the second-order LP mode light propagating through the first core 11 is mode-multiplexed and demultiplexed with the first-order LP mode light propagating through the second core 12, and the third-order LP mode light propagating through the first core 11 is Mode multiplexing / demultiplexing is performed with the second-order LP mode light propagating through the third core 13.
  • the first core 11, the second core 12, and the third core 13 can be generalized as follows so as to include the fourth embodiment and the modified example of the fourth embodiment.
  • the first core 11 propagates light up to the x-order LP mode (x is an integer of 3 or more)
  • the second core 12 propagates light up to the y-order LP mode (y is an integer of 1 or more)
  • the third The core 13 propagates light up to the z-order LP mode (z is an integer of 1 or more).
  • the propagation constant of x first- order LP mode light (x 1 is an integer of 1 to x) of the first core 11 and y first- order LP mode light (y 1 of 1 or more of the second core 12).
  • the propagation constants of light x 2-order LP mode of the first core 11 (x 2 is 1 or more x less x 1 different from an integer)
  • the propagation constants of the light in the z first- order LP mode of the third core 13 (z 1 is an integer different from x 1 and x 2 of 1 or more and z or less) coincide with each other.
  • the light propagation constants of the LP modes of the first core 11 do not match the light propagation constants of the LP modes of the second core 12 and the third core 13.
  • x is 3, y and z are 1, x 1 is 2, x 2 is 3, and y 1 and z 1 are 1. It is an example.
  • x is 3, y is 1, z is 2, x 1 is 2, x 2 is 3, and y 1 is 1.
  • Z 1 is 2.
  • FIG. 6 is a diagram showing a multi-core fiber that mode-multiplexes and demultiplexes a plurality of second-order LP mode light and first-order LP mode light, and third-order LP mode light and first-order LP mode light.
  • the same or equivalent components as those in the second embodiment are denoted by the same reference numerals, and redundant description is omitted unless specifically described.
  • the multi-core fiber 5 of this example has the same configuration as the second core 12 of the multi-core fiber 3 of the third embodiment at a position symmetrical to the second core 12 with respect to the first core 11.
  • a four-core 14 is further provided.
  • the first core 11 is configured to propagate light up to the third order LP mode.
  • the second-order LP mode light propagating through the first core 11 is the same as in the second embodiment.
  • the multi-core fiber 5 of this example has two secondary LP mode lights (LP11a mode light and LP11b mode light), the second core 12 and the third core propagating through the first core 11 in the small diameter portion 33.
  • the first-order LP mode light propagating through 13 is mode-multiplexed / demultiplexed, and the third-order LP mode light propagating through the first core 11 and the first-order LP mode light propagating through the fourth core 14 are further separated.
  • FIG. 7 is a diagram showing a multi-core fiber that mode-multiplexes and demultiplexes a plurality of second-order LP mode light and first-order LP mode light, and a plurality of third-order LP mode light and first-order LP mode light. is there.
  • the same or equivalent components as those in the example of FIG. 6 are denoted by the same reference numerals, and redundant description is omitted unless specifically described.
  • the multicore fiber 6 of this example has the same configuration as the third core 13 of the multicore fiber 3 of the third embodiment at a position that is 45 degrees with the fourth core 14 with respect to the first core 11.
  • a fifth core 15 is further provided.
  • ⁇ 1 shown in FIG. 7 has the same meaning as ⁇ in FIG. 3 and is 90 degrees
  • ⁇ 2 shown in FIG. 7 has the same meaning as ⁇ in FIG. 4 and is 45 degrees.
  • the third-order LP mode light propagating through the first core 11 is the same as in the third embodiment.
  • the multi-core fiber 6 of the present example includes two secondary LP mode lights propagating through the first core 11 and primary LP mode lights propagating through the second core 12 and the third core 13 in the small-diameter portion 33. 1 are propagated through the fourth core 14 and the fifth core 15, respectively, with two third-order LP mode light (LP21a mode light and LP21b mode light) propagating through the first core 11.
  • the light of the next LP mode is mode-multiplexed / demultiplexed.
  • the first core 11 is located at the center of the clad 20, but the first core 11 may not be located at the center of the clad.
  • Example 1 the multi-core fiber 1 of the first embodiment was manufactured, and it was confirmed whether mode multiplexing / demultiplexing can be performed by the manufactured multi-core fiber 1.
  • the multi-core fiber 1 of the first embodiment in the C band (wavelengths 1530 nm to 1565 nm), the LP01 mode in the L band (wavelengths 1565 nm to 1625 nm) and the design conditions for multiplexing and demultiplexing the LP01 mode light and LP11 mode light The design conditions for combining and demultiplexing the light of LP1 and the light of LP11 mode are obtained.
  • FIG. 8 is a diagram showing the relationship between the radius of the core and the effective refractive index when the wavelength is 1550 nm, for the first-order LP mode light, the second-order LP mode light, and the third-order LP mode light.
  • this figure is a figure in case the 1st core 11 is a step type refractive index distribution whose relative refractive index difference is 0.55%. As shown in FIG.
  • the core radius is 4.1 ⁇ m to 6.3 ⁇ m, it can be seen that light up to the second order LP mode propagates and light beyond the third order LP mode does not propagate. Therefore, considering that the diameter of the first core 11 is smaller at the small diameter portion than at the large diameter portion, the core diameter at the large diameter portion should be as large as possible. Therefore, the radius of the first core 11 at the large diameter portion is set to 6.3 ⁇ m. Further, the relative refractive index difference ⁇ 11 of the first core 11 with respect to the clad 20 was set to 0.55% so that the effective core area A eff of the LP01 mode of the first core 11 was 100 ⁇ m 2 at a wavelength of 1550 nm.
  • the effective core area A eff when the wavelength of a general single mode fiber is 1550 nm is 80 ⁇ m 2
  • the effective core area A eff of the second core 12 is set to be approximately the same. So, the relative refractive index difference delta 12 of the second core 12 relative to the cladding is 0.36%. Further, the radius of the second core 12 was 3.7 ⁇ m.
  • FIG. 9 shows the inter-core crosstalk XT 01-11 between the LP01 mode light and the LP11 mode light when the bend diameter of the multi-core fiber is 80 mm and the wavelength is 1625 nm, and the inter-core distance (between the core centers). It is a figure which shows the relationship between the crosstalk XT 01-01 between cores of the light of LP01 mode and the distance between cores, and the distance between cores.
  • the first core 11 propagates the light up to the second-order LP mode
  • the second core 12 propagates the light in the first-order LP mode. Therefore , the crosstalk XT 01-11 , XT 01 in the large-diameter portion. -01 needs to be evaluated. From FIG. 9, since the larger crosstalk is the crosstalk XT 01-11 , the crosstalk may be considered. Considering that the selection ratio in a general mode multiplexer / demultiplexer is about 25 dB and the use length of this device is 1 m or less, ensuring a crosstalk of ⁇ 30 dB / m; did. Therefore, the inter-core distance between the first core 11 and the second core 12 in the large diameter portion is set to 25 ⁇ m.
  • FIG. 10 is a diagram showing the relationship between the draw ratio and the effective refractive index at 1550 nm and 1595 nm for the LP11 mode light propagating through the first core 11 and the LP01 mode light propagating through the second core 12.
  • 1550 nm is the center wavelength of the C band
  • 1595 nm is the center wavelength of the L band.
  • the stretch ratio is 1.42
  • the effective refractive index of the LP01 mode light and the effective refractive index of the LP11 mode light are the same value.
  • the draw ratio is 1.38, and the effective refractive index of the LP01 mode light and the effective refractive index of the LP11 mode light are the same. Therefore, the draw ratio of the C-band multi-core fiber is 1.42, and the draw ratio of the L-band multi-core fiber is 1.38.
  • FIG. 11 is a diagram showing a state of a light selection ratio with a stretch ratio of 1.42 and a wavelength of 1550 nm
  • FIG. 12 is a state of a light selection ratio with a stretch ratio of 1.38 and a wavelength of 1595 nm.
  • FIG. 11 and 12 show the state of the selection ratio depending on the length of the small diameter portion and the length of the tapered portion.
  • the selection ratio here refers to the power of the LP11 mode emitted from the first core 11 and the LP01 mode emitted from the second core 12 when LP01 mode light is incident on the second core 12 of the multicore fiber 1. The ratio to the power of light.
  • the selection ratio of about 25 dB can be realized by setting the length of the tapered portion to 3.0 to 3.8 mm and the length of the small diameter portion to 4.8 mm to 5.0 mm. Further, as shown in FIG. 12, the selection ratio of about 25 dB can be realized by setting the length of the tapered portion to 3.0 to 3.7 mm and the length of the small diameter portion from 4.8 mm to 5.1 mm. I understand. The higher the selection ratio, the better, but it is not necessary up to 25 dB.
  • the length of the tapered portion is set to 4.0 mm, and the length of the small diameter portion is set to 4.7 mm.
  • the length of the tapered portion is 4.0 mm, and the length of the small diameter portion is 4.9 mm.
  • the selection ratio of each multi-core fiber was about 22 dB.
  • the wavelength was set to 1550 nm and 1625 nm, and the mode field diameter MFD and the effective core area A eff were examined for the LP01 mode light.
  • the loss of light when the wavelength was 1550 nm and 1625 nm and the LP01 mode light was bent at a diameter of 60 mm was examined.
  • the light loss when the wavelength was 1550 nm and 1625 nm and the LP01 mode light was bent at a diameter of 60 mm was examined.
  • the 1 m cutoff wavelength of the LP21 mode of the first core 11 was examined, and the 1 m cutoff wavelength of the LP11 mode of the second core 12 was examined. The results are shown in Table 1.
  • the light of the LP11 mode is incident on the first core 11 of the multi-core fiber 1 including the portion that has been stretched under the condition 1, and the light having the wavelength of 1550 nm and the light of the LP11 mode is emitted from the first core 11 in the demultiplexing.
  • the selectivity of the LP01 mode light emitted from the second core 12 was measured. As a result, it was found that the selection ratio was 17 dB.
  • the light of LP01 mode light having a wavelength of 1550 nm is incident on the second core of the multi-core fiber 1 including the portion that has been stretched under Condition 1, and the light of the LP11 mode that is emitted from the first core 11 at the time of multiplexing is input.
  • the selection ratio between the power and the power of the LP01 mode light emitted from the second core 12 was measured. As a result, it was found that the selection ratio was 15 dB.
  • light in the LP11 mode having a wavelength of 1500 nm to 1630 nm is incident on the first core 11 of the multicore fiber 1 including the portion stretched under the condition 1 and the location stretched under the condition 2, and then separated.
  • the coupling efficiencies of the LP11 mode light of the first core 11 and the LP01 mode light of the second core 12 in the wave were examined.
  • light in the LP01 mode having a wavelength of 1500 nm to 1630 nm is incident on the multi-core fiber 1 including a portion drawn under condition 1 and the second core 12 of the multi-core fiber 1 including a portion drawn under condition 2 to be combined.
  • the coupling efficiency is the ratio of the power of the light obtained by subtracting excess loss from the power of the light incident on the second core 12 and the power of the light emitted from the first core 11 in the multiplexing. This is obtained by taking the ratio of the power of light obtained by subtracting excess loss from the power of light incident on the first core 11 and the power of light emitted from the second core 12. The result is shown in FIG.
  • the multi-core fiber 1 satisfying the condition 1 has a high coupling efficiency of 95% or more at a wavelength of about 1550 nm.
  • the multi-core fiber 1 satisfying the condition 2 has a high coupling efficiency of 88% or more at a wavelength of about 1590 nm.
  • Example 2 the multi-core fiber 2 according to the second embodiment was manufactured, and it was confirmed whether mode multiplexing / demultiplexing can be performed by the manufactured multi-core fiber 2.
  • the first core 11 and the second core 12 were designed in the same manner as the first core 11 and the second core 12 of the first embodiment. Further, the multi-core fiber 2 of the present embodiment includes the third core 13 disposed at a position 90 degrees different from the second core 12 with respect to the center of the first core 11. The design of the third core 13 was the same as that of the second core 12.
  • FIG. 14 shows the relationship between the inter-core crosstalk XT 01-01 and the inter-core distance between the LP01 modes in the second core 12 and the third core 13 when the bending diameter of the multi-core fiber 2 is 80 mm and the wavelength is 1625 nm.
  • the design of the stretch ratio and the design of the tapered portion were the same as the design of the stretch ratio and the design of the tapered portion of Example 1.
  • a multi-core fiber consisting only of a large-diameter portion where a tapered portion and a small-diameter portion are not formed was created.
  • the inter-core distance between the first core 11 and the second core 12 and the inter-core distance between the first core 11 and the third core 13 were both 25.0 ⁇ m. Further, the inter-core distance between the second core 12 and the third core 13 was 35.4 ⁇ m. The angle formed by the second core 12 and the third core 13 with respect to the center of the first core 11 was 88.7 °.
  • the crosstalk XT 01-01 between the core 12 and the core 13 was ⁇ 29 dB / m at a wavelength of 1625 nm and a bending diameter of 120 mm.
  • the wavelength was set to 1550 nm and 1625 nm, and the mode field diameter MFD and the effective core area A eff were examined for the LP01 mode light.
  • the loss of light when the wavelength was 1550 nm and 1625 nm and the LP11 mode light was bent at 60 mm was examined.
  • the loss of light when the wavelength is 1550 nm and the LP01 mode light is bent at a diameter of 60 mm is examined, the wavelength is 1625 nm, the diameter of the LP01 mode light is The loss of light when the lens was bent at 60 mm was examined.
  • the 2 m cutoff wavelength of the LP21 mode of the first core 11 was examined, and the 2 m cutoff wavelength of the LP11 mode of the second core 12 and the third core 13 was examined. The results are shown in Table 3.
  • LP11 mode light having a wavelength of 1550 nm was incident on the first core 11 of the multi-core fiber 2 including the stretched portion.
  • this light passes through the polarizer, the quarter-wave plate, the half-wave plate, and the phase plate, and the LP11 mode light field incident on the first core 11 is rotated by the rotation of the phase plate.
  • emitted from the 2nd core 12 and the 3rd core 13 was measured. The result is shown in FIG.
  • the angle of the phase plate that maximizes the power of light incident on the second core 12 and the angle of the phase plate that maximizes the power of light incident on the third core 13 are approximately equal to each other. It was 90 degrees different. Therefore, it can be confirmed that the LP11 mode light incident on the first core 11 can be demultiplexed into the second core 12 and the third core 13 as LP11a mode light and LP11b mode light whose fields are 90 degrees different from each other. It was.
  • LP01 mode light was incident on the second core 12 of the multi-core fiber 2 including the stretched portion.
  • this light is light that passes through the polarizer, the quarter-wave plate, and the half-wave plate, and the polarization of the light incident on the second core 12 is rotated by the rotation of the polarizer.
  • the power of the light emitted from the second core 12 and the first core 11 is measured for each angle by rotating the polarizer to 0 degree, 45 degrees, 90 degrees, 135 degrees, and 180 degrees.
  • the power of light emitted from only one core 11 was measured for each angle.
  • the same light as the light incident on the second core 12 was incident on the third core 13 of the multi-core fiber 2 including the stretched portion. Then, by rotating the polarizer to the same angle as described above, the power of the light emitted from the third core 13 and the first core 11 is measured for each angle, and the light emitted only from the first core 11 is measured. Power was measured at each angle. And the coupling efficiency by the ratio of the power of the light radiate
  • the coupling efficiency is 79% or more at a wavelength of 1550 nm when light is incident on the second core 12 or when light is incident on the third core 13. As a result. Further, there was no significant difference in the coupling efficiency profile between the case where light was incident on the second core 12 and the case where light was incident on the third core 13.
  • FIG. 18 to 20 show NFP (Near Field Pattern) of light in the multi-core fiber 2 manufactured in this example. Specifically, FIG. 18 shows an optical NPF in the first core 11, FIG. 19 shows an optical NFP in the second core 12, and FIG. 20 shows an optical NFP in the third core 13.
  • NFP Near Field Pattern
  • the LP01 mode light, the LP11a mode light, and the LP11b mode light can be selectively combined using the multi-core fiber 2.
  • the optical device according to the present invention is intended to realize a miniaturized mode multiplexer / demultiplexer using a multi-core fiber, and can be used in the optical communication industry.
  • Multicore fiber 11 First core 12: Second core 13: Third core 14: Fourth core 15: Fifth core 20: Clad 31 ..Large diameter part 32 ... Taper part 33 ... Small diameter part

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

 マルチコアファイバ1は、x次LPモードまでの光(xは2以上の整数)を伝搬する第1コア11と、y次LPモードまでの光(yは1以上の整数)を伝搬する第2コア12と、を備え、第1コア11のx次LPモードの光(xは2以上x以下の整数)の伝搬定数と第2コア12のy次LPモードの光(yは1以上y以下のxと異なる整数)の伝搬定数とが一致する小径部33と、第1コア11の各LPモードの光の伝搬定数と第2コア12の各LPモードの光の伝搬定数とが不一致とされる大径部と、が設けられる。

Description

マルチコアファイバ
 本発明はマルチコアファイバに関し、異なるモードの光を合分波する場合に好適なものである。
 光ファイバを用いた光通信において、LP01モード(基本モード)の光に情報を重畳させると共に、LP11モード等の基本モードよりも高次のLPモードの光に情報を重畳させて情報通信を行う多モード通信が知られている。多モード通信では、1つのコアを伝搬する複数のLPモードの光を複数の光ファイバに分波したり、複数の光ファイバを伝搬する互いに異なるLPモードの光を一つの光ファイバに合波したりすることが行われる。
 下記非特許文献1には、一組の光ファイバのそれぞれに互いに同じLPモードの光が伝搬する場合に、モードコンバータ等を用いてそれぞれの光ファイバを伝搬する光を互いに異なるLPモードとして、その後合波することが行われる旨の記載がある。
 また、下記特許文献1に記載のモード合分波器は、2つの導波路を有する。これら導波路のうち、一方の導波路が特定のLPモードの光を伝搬し、他方の導波路が特定のLPモードの光と当該特定のLPモードと異なる他のLPモードとを伝搬する。これらの導波路に互いに同じ特定のLPモードの光が伝搬する場合に、一方の導波路における当該特定のLPモードの光の伝搬定数と、他方の導波路における他のLPモードの伝搬定数とが一致するようにされている。このような構成により、一方の導波路の特定のLPモードの光が、他方の導波路の他のLPモードの光として合波される。他方の導波路には元々特定のLPモードの光が伝搬しているため、この結果、他方の導波路には特定のLPモードの光と他のLPモードの光とが伝搬することになる。こうして、モードコンバータを用いずとも、複数の光導波路を互いに同じLPモードの光が伝搬する場合に、それぞれの光を一つの導波路に互いに異なるモードの光として伝搬させることができる。
An Li et al., "Low-Loss Fused Mode Coupler for Few-Mode Transmission", OFC, OTu3G4 (2013).
特開2013- 37017号公報
 非特許文献1に記載のモード合分波器ではモードコンバータを必要とする。また、特許文献1に記載のモード合分波器では、モード合分波が行われる場所ではモード合分波が起きるようにそれぞれの導波路が近接され、それ以外の場所では、モード合分波が起きないようにそれぞれの導波路が離れている。従って、非特許文献1に記載のモード合分波器はモードコンバータを配置する場所が必要となり、特許文献1に記載のモード合分波器はモード合分波が行われない場所におけるそれぞれの導波路を離す場所が必要となる。
 そこで、本発明は小型化が可能なモード合分波器をマルチコアファイバを用いて実現しようとすることを目的とする。
 かかる課題を解決するため本発明のマルチコアファイバは、x次LPモードまでの光(xは2以上の整数)を伝搬する第1コアと、y次LPモードまでの光(yは1以上の整数)を伝搬する第2コアと、を備え、前記第1コアのx次LPモードの光(xは2以上x以下の整数)の伝搬定数と前記第2コアのy次LPモードの光(yは1以上y以下のxと異なる整数)の伝搬定数とが一致する異モード相互作用区間と、前記第1コアの各LPモードの光の伝搬定数と前記第2コアの各LPモードの光の伝搬定数とが不一致とされる異モード非相互作用区間と、が設けられることを特徴とするものである。
 このマルチコアファイバの異モード相互作用区間では、第2コアの特定のLPモードの光(y次LPモードの光)の伝搬定数が、第1コアの特定のLPモードの光と異なる他のLPモードの光(x次LPモードの光)の伝搬定数と一致している。従って、異モード相互作用区間において、第2コアの特定のLPモードの光が第1コアの他のモードの光としてモード合波したり、第1コアの他のLPモードの光が第2コアの特定のモードの光としてモード分波したりすることができる。また、第1コアは、少なくとも2次LPモードまでの光を伝搬することができるため、多モードの光を伝搬することができる。従って、第1コアは、上記特定のLPモードの光の他に当該特定のLPモードの光と異なるLPモードの光を伝搬することができる。こうして、モード合分波をすることができるのである。例えば、第1コアが2次LPモードまでの光を伝搬し、第2コアが1次LPモードまでの光を伝搬するのであれば、第2コアを伝搬するLP01モードの光と第1コアのLP11モードの光とが、異モード相互作用区間でモード合分波される。また、第1コアを伝搬するLP01モードの光は合分波されることなく第1コアを伝搬する。
 さらにこのマルチコアファイバの異モード非相互作用区間では、第2コアの各LPモードの光の伝搬定数が、第1コアの各LPモードの光の伝搬定数と一致しない。このため異モード非相互作用区間では、特許文献2のように第1コアと第2コアとを離すことをせずとも、モード合分波が起きることを抑制することができる。
 従って、このマルチコアファイバによれば、小型化が可能なモード合分波器を実現することができるのである。
 また、上記マルチコアファイバは、z次LPモードまでの光(zは1以上の整数)を伝搬し、前記第1コアの中心を基準として前記第2コアと所定角度異なる位置に配置される第3コアを更に備え、前記異モード相互作用区間では、前記第1コアの前記x次LPモードの光の伝搬定数と前記第3コアのz次LPモードの光(zは1以上z以下のxと異なる整数)の伝搬定数とが一致し、前記異モード非相互作用区間では、前記第1コアの各LPモードの光の伝搬定数と前記第3コアの各LPモードの光の伝搬定数とが不一致とされ、前記x次LPモードの光は、前記第1コアの中心を基準として互いに前記所定角度異なるように回転する場合に互いに異なるエネルギー分布となる互いに等しい2つのLPモードの光が、前記第1コアの中心を基準として互いに前記所定角度異なるように回転した状態で足し合わされた光とされることが好ましい。
 このような構成によれば、異モード相互作用区間において、第2コア伝搬するy次LPモードの光と第1コアのx次LPモードの光を構成する一方のLPモードの光とを合分波することができ、さらに、第2コア伝搬するz次LPモードの光と第1コアのx次LPモードの光を構成する他方のLPモードの光とを合分波することができる。従って、さらに多くの光のモード合分波を行うことができる。
 この場合、前記所定角度は90度とされ、前記x次LPモードは2次LPモードとされることが良い。或いは、前記所定角度は45度とされ、前記x次LPモードは3次LPモードとされることが良い。2次LPモードであるLP11モードの光や、3次LPモードであるLP21モードの光は、基本モード以外のモードの光の中で低次であり、取り扱いが容易である。従って、光通信を容易に行うことができる。
 また、上記マルチコアファイバは、z次LPモードまでの光(zは1以上の整数)を伝搬する第3コアを更に備え、前記異モード相互作用区間では、前記第1コアのx次LPモードの光(xは1以上x以下のxと異なる整数)の伝搬定数と前記第3コアのz次LPモードの光(zは1以上z以下のx及びxと異なる整数)の伝搬定数とが一致し、前記異モード非相互作用区間では、前記第1コアの各LPモードの光の伝搬定数と前記第3コアの各LPモードの光の伝搬定数とが不一致とされることが好ましい。
 このような第1コアを伝搬する異なる2つのLPモードの光と第2コアを伝搬する光及び第3コアを伝搬する光とをモード合分波することができる。従って、このような構成によれば、さらに多くの光のモード合分波を行うことができる。
 また、yとzとが互いに等しいことが好ましい。第2コアと第3コアとを同じLPモードの光が伝搬するため、光のハンドリングが容易となり、また、マルチコアファイバの作成が容易となる。
 この場合、y及びzが1とされることが好ましい。つまり、第2コア及び第3コアは共にシングルモードの光を伝搬するコアであることが好ましい。シングルモードの光を伝搬することで、第2、第3コアを伝搬する光のハンドリングが容易となる。
 また、前記第1コアは、クラッドの中心に位置することとしても良い。
 また、前記異モード相互作用区間は、前記異モード非相互作用区間の一部が延伸されることで形成されることが好ましい。
 このように異モード相互作用区間を形成することで、異モード相互作用区間におけるマルチコアファイバの断面の構造と異モード非相互作用区間におけるマルチコアファイバの断面の構造とが、互いに相似の関係となる。このため異モード相互作用区間の光の伝搬定数と異モード非相互作用区間の光の伝搬定数との相関性を計算し易い。また、異モード相互作用区間が延伸により形成されるため、エネルギーの小さな加熱器を用いて容易にマルチコアファイバを延伸して異モード相互作用区間を形成することができる。
 また、使用波長帯域におけるそれぞれのコアを伝搬する光のLPモードの数は、前記異モード相互作用区間と前記異モード非相互作用区間とで変化しないことが好ましい。
 それぞれの区間で伝搬定数が変化しないことにより、不要なLPモードの光が励振されることを考慮せずに済み、効率よく光をハンドリングすることができる。
 以上のように本発明によれば、小型化が可能なモード合分波器をマルチコアファイバを用いて実現することができる。
第1実施形態におけるマルチコアファイバを示す図である。 図1のマルチコアファイバの大径部及び小径部における長手方向に垂直な断面の様子を示す図である。 第2実施形態におけるマルチコアファイバの大径部及び小径部における長手方向に垂直な断面の様子を示す図である。 第3実施形態におけるマルチコアファイバの大径部及び小径部における長手方向に垂直な断面の様子を示す図である。 第4実施形態におけるマルチコアファイバの大径部及び小径部における長手方向に垂直な断面の様子を示す図である。 複数の2次LPモードの光と1次LPモードの光とをモード合分波し、3次LPモードの光と1次LPモードの光とをモード合分波するマルチコアファイバを示す図である。 複数の2次LPモードの光と1次LPモードの光とをモード合分波し、複数の3次LPモードの光と1次LPモードの光とをモード合分波するマルチコアファイバを示す図である。 実施例1において、相対比屈折率差が0.55%、波長が1550nmの光におけるコアの半径と実効屈折率との関係を1次LPモードの光、2次LPモードの光、3次LPモードの光について示す図である。 実施例1において、LP01モードの光とLP11モードの光との間のコア間クロストークとコア間距離との関係、及び、LP01モードの光同士のコア間クロストークとコア間距離との関係を示す図である。 実施例1において、延伸比と実効屈折率との関係を第1コアを伝搬するLP11モードの光と第2コアを伝搬するLP01モードの光について、波長が1550nm及び1595nmで示す図である。 実施例1において、延伸比が1.42で波長が1550nmである光の選択比の状態を示す図である。 実施例1において、延伸比が1.38で波長が1595nmである光の選択比の状態を示す図である。 波長と結合効率との関係を示す図である。 実施例2において、マルチコアファイバの曲げ直径が80mmであり、波長が1625nmのときの第2コアと第3コアとにおけるLP01モード同士のコア間クロストークXT01-01とコア間距離との関係を示す図である。 実施例2において第2コア12及び第3コア13から出射する光のパワーを示す図である。 実施例2において第2コア及び第1コアから出射する光のパワーと、第1コアのみから出射する光のパワーとの比による結合効率を波長ごとに示す図である。 実施例2において第3コア13及び第1コア11から出射する光のパワーと、第1コア11のみから出射する光のパワーとの比による結合効率を波長ごと示す図である。 実施例2において作製したマルチコアファイバにおける第1コアにおける光のNFP(Near Field Pattern)を示す写真である。 実施例2において作製したマルチコアファイバにおける第2コアにおける光のNFPを示す写真である。 実施例2において作製したマルチコアファイバにおける第3コアにおける光のNFPを示す写真である。
 以下、本発明に係るマルチコアファイバの好適な実施形態について図面を参照しながら詳細に説明する。なお、理解の容易のため、それぞれの図に記載のスケールと、以下の説明に記載のスケールとが異なる場合がある。
 (第1実施形態)
 図1は、本発明の第1実施形態におけるマルチコアファイバを示す図である。図1に示すように、本実施形態のマルチコアファイバ1は、第1コア11と、第2コア12と、第1コア11の外周面及び第2コア12の外周面を隙間なく包囲するクラッド20とを備える。
 また、マルチコアファイバ1は、長手方向に沿って大径部31とテーパ部32と小径部33とが形成されている。テーパ部32及び小径部33は、大径部31の一部が加熱されて延伸されることで形成される。このような加熱による延伸は、酸水素バーナによる加熱で行われても良いが、放電による加熱で十分に行うことができる。例えば、アーク放電を用いる光ファイバの融着器が実用されているが、このアーク放電を延伸用の熱源として利用しても良い。
 図2は、マルチコアファイバ1の大径部31及び小径部33のそれぞれにおける長手方向に垂直な断面の様子を示す図である。具体的に図2(A)は大径部31及び小径部33の断面における構造の様子を示し、図2(B)は大径部31及び小径部33の断面における屈折率分布の様子を示す。
 図2(A)に示すように、第1コア11は、クラッド20の中心に位置しており、第2コア12は、第1コア11の周囲に位置している。また、上記のように小径部33は大径部31が延伸されることで形成されるため、クラッド20の外径と第1コア11の直径及び第2コア12の直径との比は、マルチコアファイバ1の何処であっても変わらない。このため、小径部33における第1コア11の直径は大径部31における第1コア11の直径よりも小さく、小径部33における第2コア12の直径は大径部31における第2コア12の直径よりも小さい。
 図2(B)において、実線はマルチコアファイバ1の屈折率分布を示す。図2(B)に示すように、第1コア11の屈折率及び第2コア12の屈折率は、クラッド20の屈折率よりも高く、長手方向に沿って一定である。第1コア11は、2次LPモードまでの光を伝搬する。つまり、本実施形態の第1コア11は、LP01モードの光及びLP11モードの光を伝搬し、3次LPモードの光であるLP21モードの光の伝搬が抑制されるフューモードコアとされる。また、第2コア12は、1次LPモードまでの光を伝搬する。つまり、本実施形態の第2コア12は、LP01モードの光を伝搬しLP11モードの光の伝搬が抑制されるシングルモードコアとされる。
 また、図2(B)において、破線は第1コア11及び第2コア12を伝搬する各LPモードの光の実効屈折率neffを示す。大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12の各LPモードの光の伝搬定数とが不一致とされる。伝搬定数は実効屈折率neffと対応している。従って、本実施形態では、大径部31の第1コア11の1次LPモードの光の実効屈折率neff01及び2次LPモードの光の実効屈折率neff11と第2コア12の1次LPモードの光の実効屈折率neff01とは不一致とされる。このため、大径部31では、第1コア11を伝搬する各LPモードの光と第2コアを伝搬する各LPモードの光とのクロストークが抑制されている。従って、大径部31では、異モードの合分波が起きることが抑制され、大径部31は異モード非相互作用区間とされる。
 一方、小径部33では、上記のようにそれぞれのコアの直径が大径部31でのそれぞれのコアの直径と異なるので、実効屈折率neffも大径部31での実効屈折率neffと異なる。そして、小径部33では、第1コア11の2次LPモードの光の実効屈折率neff11と第2コア12の1次LPモードの光の実効屈折率neff01とが一致する。つまり、第1コア11の2次LPモードの光の伝搬定数と第2コア12の1次LPモードの光の伝搬定数とが一致する。このため、小径部33では、第1コア11を伝搬する2次LPモードの光と第2コアを伝搬する1次LPモードの光とがクロストークする。従って、小径部33では、第1コア11を伝搬する2次LPモードの光と第2コアを伝搬する1次LPモードの光とのモード合分波が起きる。このため、小径部33は、異モード相互作用区間とされる。
 また、使用波長帯域におけるそれぞれのコアを伝搬する光のLPモードの数は、大径部31と小径部33とで変化しても良いが、変化しない方が好ましい。従って、本実施形態では、大径部31及び小径部33のそれぞれにおいて、第1コア11は、1次LPモードの光及び2次LPモードの光が伝搬し3次LPモードの光の伝搬が抑制され、第2コア12は、1次LPモードの光が伝搬し2次LPモードの光の伝搬が抑制されることが好ましい。
 上記のように大径部31が異モード非相互作用区間とされ、小径部33が異モード相互作用区間とされるには、第1コア11及び第2コア12は、例えば、次の様に構成されれば良い。すなわち、使用される光の波長が1.55μmである場合に、第1コア11のクラッド20に対する比屈折率差0.55%とされ、第2コア12のクラッド20に対する比屈折率差0.36%とされ、大径部31において、第1コア11の半径が6.3μmとされ、第2コア12の半径が3.7μmとされる。そして、大径部31と小径部33との延伸比が1.4とされる。この場合には、波長が1.55μmの光が第1コア11及び第2コア12を伝搬する場合に、それぞれのコアを伝搬する光のLPモードの数は、大径部31と小径部33とで変化しない。
 なお、延伸比とは、小径部33と大径部31との相似比であり、小径部33でのマルチコアファイバ1の直径を1とする場合における大径部31でのマルチコアファイバ1の直径と同じ値である。
 本実施形態のマルチコアファイバ1では、第1コア11及び第2コア12のそれぞれに1次LPモードの光を入射すると、小径部33において、第2コア12の1次LPモードの光が第1コア11に2次LPモードの光として合波する。或いは、第1コア11に1次LPモード及び2次LPモードから成る光を入射し第2コア12に光を入射しない場合、小径部33において、第1コア11の2次LPモードの光が第2コア12に1次LPモードの光として分波する。こうしてモード合分波が達成される。しかし、大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12の各LPモードの光の伝搬定数とが一致しないので、第1コア11と第2コア12とを離す構造とせずとも、このような合分波が生じることが抑制される。従って、本実施形態のマルチコアファイバ1によれば、小型化が可能なモード合分波器を実現することができる。
 (第2実施形態)
 次に、本発明の第2実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図3は、本実施形態におけるマルチコアファイバの大径部及び小径部における長手方向に垂直な断面の様子を示す図である。具体的に図3(A)は大径部31及び小径部33の断面における構造の様子を示し、図3(B)は大径部31及び小径部33の断面における屈折率分布の様子を示す。
 本実施形態のマルチコアファイバ2は、第1コア11の中心を基準として第2コア12と90度異なる位置に配置される第3コア13を更に備える点において第1実施形態のマルチコアファイバ1と異なる。つまり、第1コア11の中心と第2コア12の中心とを結ぶ線と、第1コア11の中心と第3コア13の中心とを結ぶ線とがなす角度θが90度とされる。
 第3コア13の構成は、配置される位置を除き第2コア12と同様の構成とされる。従って、第1コア11、第2コア12及び第3コア13のそれぞれに1次LPモードの光を入射すると、小径部33において、第2コア12及び第3コア13の1次LPモードの光が第1コア11に2次LPモードの光として合波する。また、第1コア11に1次LPモード、2次LPモードから成る光を入射し第2コア12及び第3コア13に光を入射しない場合、小径部33において、第1コア11の2次LPモードの光が第2コア12及び第3コア13にそれぞれ1次LPモードの光として分波する。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12及び第3コア13の各LPモードの光の伝搬定数とが一致しないので、第1コア11と第2コア12及び第3コア13との間でモード合分波が生じることが抑制される。
 ここで、第1コア11を伝搬する2次LPモードの光と第2コア12及び第3コア13を伝搬する1次LPモードの光の合分波についてより詳細に説明する。
 2次モードの光であるLP11モードの光は、当該光が伝搬するコアの中心を通り径方向に伸びる直線を基準として、一方側に正の電場が分布し他方側に負の電場が分布し、一方側と他方側とで同じエネルギーの分布となる。従って、LP11モードの光は伝搬するコアの中心を基準に180度回転させると回転前と同じエネルギー分布となるが、それ以外の角度で回転させると回転前と異なるエネルギー分布となる。そしてLP11モードの光は、互いに90度回転させた関係にある2つのLP11モードの光を合波しても、やはりLP11モードの光と呼ばれる。
 そこで、互いに90度回転させた関係にある2つのLP11モードの光の一方をLP11aモードの光とし他方をLP11bモードの光として、第1コア11を伝搬するLP11モードの光が、LP11aモードの光とLP11bモードの光との足し合わせとする。そして、第1コア11を伝搬する2次LPモード(LP11モード)の光が、第2コア12及び第3コア13を伝搬する1次LPモードの光にモード分波する場合を想定する。この場合、LP11aモードの光が第2コア12及び第3コア13の一方を伝搬する1次LPモードの光に分波し、LP11bモードの光が第2コア12及び第3コア13の他方を伝搬する1次LPモードの光に分波する傾向がある。また、第2コア12及び第3コア13を伝搬するそれぞれの1次LPモードの光を第1コア11のLP11モードの光にモード合波する場合を想定する。この場合、第2コア12を伝搬する光は、第1コア11を伝搬するLP11aモードの光及びLP11bモードの光の一方に合波し、第3コア13を伝搬する光は、第1コア11を伝搬するLP11aモードの光及びLP11bモードの光の他方に合波する傾向がある。
 従って、本実施形態のマルチコアファイバによれば、第1コア11が2次LPモードまでの光を伝搬する場合であっても、LP01モードの光、LP11aモードの光及びLP11bモードの光に情報を重畳させることができるので、より多くの情報量を有する光通信を行うことができる。
 (第3実施形態)
 次に、本発明の第3実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図4は、本実施形態におけるマルチコアファイバの大径部及び小径部における長手方向に垂直な断面の様子を示す図である。具体的に図4(A)は大径部31及び小径部33の断面における構造の様子を示し、図4(B)は大径部31及び小径部33の断面における屈折率分布の様子を示す。
 本実施形態の第1コア11は、3次LPモードまでの光を伝搬する。つまり、本実施形態の第1コア11は、LP01モードの光、LP11モードの光及びLP21モードの光を伝搬し、4次LPモードの光であるLP02モードの光の伝搬が抑制されるフューモードコアとされる。
 また、第2コア12は、1次LPモードまでの光を伝搬する。ただし、本実施形態では、第1実施形態のマルチコアファイバ1と異なり、小径部33において、第2コア12の1次LPモードの光の伝搬定数が、第1コア11の3次LPモードの光の伝搬定数と一致する。つまり、小径部33において、第2コア12の1次LPモードの光の実効屈折率neff01が、第1コア11の3次LPモードの光の実効屈折率neff21と一致する。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第3コア13の各LPモードの光の伝搬定数とが一致しない構成とされる。
 また、本実施形態のマルチコアファイバ3は、第1コア11の中心を基準として第2コア12と45度異なる位置に配置される第3コア13を更に備える。つまり、第1コア11の中心と第2コア12の中心とを結ぶ線と、第1コア11の中心と第3コア13の中心とを結ぶ線とがなす角度θが45度とされる。第3コア13の構成は、配置される位置を除き第2コア12の構成と同様とされる。従って、第1コア11、第2コア12及び第3コア13のそれぞれに1次LPモードの光を入射すると、小径部33において、第2コア12及び第3コア13の1次LPモードの光が第1コア11に3次LPモードの光として合波する。また、第1コア11に1次LPモード、2次LPモード及び3次LPモードから成る光を入射し第2コア12及び第3コア13に光を入射しない場合、小径部33において、第1コア11の3次LPモードの光が第2コア12及び第3コア13にそれぞれ1次LPモードの光として分波する。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12及び第3コア13の各LPモードの光の伝搬定数とが一致しないので、第1コア11と第2コア12及び第3コア13との間でモード合分波が生じることが抑制される。
 なお、本実施形態においても、それぞれのコアを伝搬する光のLPモードの数は、大径部31と小径部33とで変化しないことが好ましい。
 ここで、第1コア11を伝搬する3次LPモードの光と第2コア12及び第3コア13を伝搬する1次LPモードの光の合分波についてより詳細に説明する。
 3次モードの光であるLP21モードの光は、当該光が伝搬するコアの中心を通り径方向に伸びる互いに垂直な2つの直線で区切られる4つの領域において、互いに隣り合う領域での電場の分布は、正負が逆の状態となり、それぞれの領域で同じエネルギーの分布となる。従って、LP21モードの光は伝搬するコアの中心を基準に90度回転させると回転前と同じエネルギー分布となるが、それ以外の角度で回転させると回転前と異なるエネルギー分布となる。そしてLP21モードの光は、互いに45度や135度といった具合に45+90n度(nは0以上の整数)回転させた関係にある2つのLP21モードの光を合波しても、やはりLP21モードと呼ばれる。
 そこで、例えば、互いに45度回転させた関係にある2つのLP21モードの光の一方をLP21aモードの光とし他方をLP21bモードの光として、第1コア11を伝搬するLP21モードの光が、LP21aモードの光とLP21bモードの光との足し合わせとする。そして、第1コア11を伝搬する3次LPモード(LP21モード)の光が、第2コア12及び第3コア13を伝搬する1次LPモードの光にモード分波する場合を想定する。この場合、LP21aモードの光が第2コア12及び第3コア13の一方を伝搬する1次LPモードの光に重畳し、LP21bモードの光が第2コア12及び第3コア13の他方を伝搬する1次LPモードの光に分波する傾向がある。また、第2コア12及び第3コア13を伝搬するそれぞれの1次LPモードの光を第1コア11のLP21モードの光にモード合波する場合を想定する。この場合、第2コア12を伝搬する光は、第1コア11を伝搬するLP21aモードの光及びLP21bモードの光の一方に合波し、第3コア13を伝搬する光は、第1コア11を伝搬するLP21aモードの光及びLP21bモードの光の他方に合波する傾向がある。
 従って、本実施形態のマルチコアファイバによれば、第1コア11が3次LPモードまでの光を伝搬する場合であっても、LP01モードの光、LP21aモードの光及びLP21bモードの光に情報を重畳させることができるので、より多くの情報量を有する光通信を行うことができる。
 (第4実施形態)
 次に、本発明の第4実施形態について説明する。なお、第1実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図5は、本実施形態におけるマルチコアファイバの大径部及び小径部における長手方向に垂直な断面の様子を示す図である。具体的に図3(A)は大径部31及び小径部33の断面における構造の様子を示し、図3(B)は大径部31及び小径部33の断面における屈折率分布の様子を示す。
 本実施形態の第1コア11は、第3実施形態の第1コア11と同様の構成とされ、3次LPモードまでの光を伝搬する。
 また、マルチコアファイバ4は、第1コア11の中心を基準として第2コア12側と反対側に第3コア13を備える。第3コア13は、1次LPモードまでの光を伝搬する。本実施形態の第3コア13は、第3実施形態の第3コア13と配置位置が異なる点を除き同様の構成とされる。従って、小径部33において、第3コア13の1次LPモードの光の伝搬定数が、第1コア11の3次LPモードの光の伝搬定数と一致する。つまり、小径部33において、第3コア13の1次LPモードの光の実効屈折率neff01が、第1コア11の3次LPモードの光の実効屈折率neff21と一致する。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第3コア13の各LPモードの光の伝搬定数とが一致しない構成とされる。
 このような構成のマルチコアファイバ4において、第1コア11、第2コア12及び第3コア13のそれぞれに1次LPモードの光を入射すると、小径部33において、第2コア12の1次LPモードの光が第1コア11に2次LPモードの光として合波すると共に第3コア13の1次LPモードの光が第1コア11に3次LPモードの光として合波する。また、第1コア11に1次LPモード、2次LPモード及び3次LPモードから成る光を入射し、第2コア12及び第3コア13に光を入射しない場合、小径部33において、第1コア11の2次LPモードの光が第2コア12に1次LPモードの光として分波すると共に第1コア11の3次LPモードの光が第3コア13に1次LPモードの光として分波する。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12及び第3コア13の各LPモードの光の伝搬定数とが一致しないので、第1コア11と第2コア12及び第3コア13との間でモード合分波が生じることが抑制される。
 なお、本実施形態においてもそれぞれのコアを伝搬する光のLPモードの数は、大径部31と小径部33とで変化しないことが好ましい。
 本実施形態のマルチコアファイバ4によれば、小径部33において、第1コア11を伝搬する2次LPモードの光と第2コア12伝搬する1次LPモードの光とを合分波することができ、さらに、第1コア11を伝搬する3次LPモードの光と第3コア13伝搬する1次LPモードの光とを合分波することができるので、さらに多くの光のモード合分波を行うことができる。
 以上、本発明について、上記実施形態を例に説明したが、本発明はこれらに限定されるものではない。
 第1実施形態では、第1コア11を伝搬する2次LPモードの光と第2コア12を伝搬する1次LPモードの光とがモード合分波するマルチコアファイバ1を例に説明した。しかし、合分波するモードの組み合わせが第1コア11を伝搬する光と第2コアを伝搬する光とで異なっていればよい。例えば、第1コア11が3次LPモードまでの光を伝搬し、第2コア12が2次LPモードまでの光を伝搬し、第1コア11を伝搬する3次LPモードの光が、第2コアを伝搬する1次LPモードの光或いは2次LPモードの光とモード合分波することとしても良い。これをLPモードの次数を特定せずに記載すると、第1コア11は、少なくともx次LPモードまでの光(xは2以上の整数)を伝搬するコアであり、第2コア12は、少なくともy次LPモードまでの光(yは1以上の整数)を伝搬するコアであり、第1コア11のx次LPモードの光(xは1以上x以下の整数)の伝搬定数と第2コア12のy次LPモードの光(yは1以上y以下のxと異なる整数)の伝搬定数とが一致していることとなる。ただし、本実施形態のように、第1コア11が1次LPモードの光及び2次LPモードの光を伝搬し、第2コア12が1次LPモードまでの光を伝搬する場合、次数が最も低いLPモードの光の組み合わせとなり、光を容易に扱うことができる。
 また、第2実施形態では、第1コア11の中心を基準として第2コア12と90異なる位置に第3コア13が配置され、小径部33において、第2コア12及び第3コア13を伝搬する光とモード合分波する第1コアを伝搬する光は、第1コア11の中心を基準として互いに90度異なるように回転する場合に互いに異なるエネルギー分布となる互いに等しいLPモードの2つの光(LP11aモードの光及びLP11bモードの光)が、第1コア11の中心を基準として互いに90度異なるように回転した状態で足し合わされた光とされた。さらに第3実施形態では、第1コア11の中心を基準として第2コア12と45異なる位置に第3コア13が配置され、小径部33において、第2コア12及び第3コア13を伝搬する光とモード合分波する第1コアを伝搬する光は、第1コア11の中心を基準として互いに45度異なるように回転する場合に互いに異なるエネルギー分布となる互いに等しいLPモードの2つの光(LP21aモードの光及びLP21bモードの光)が、第1コア11の中心を基準として互いに45度異なるように回転した状態で足し合わされた光とされた。
 しかし、第1コア11を伝搬する光が他のLPモードの光の場合には、第2コア12と第3コア13とが第1コア11の中心を基準になす角度は異なる場合がある。また、第1コア11を伝搬する光とモード合分波する第2コア12及び第3コア13を伝搬する光は1次LPモードの光に限られない。例えば、第3実施形態において、第1コア11を伝搬する3次モードの光とモード合分波する第2コア12及び第3コア13を伝搬する光は2次LPモードの光であっても良い。
 そこで第1コア11、第2コア12及び第3コア13は、次の様に一般化できる。第1コア11はx次LPモードまでの光(xは2以上の整数)を伝搬し、第2コア12及び第3コア13はそれぞれy次LPモードまでの光(yは1以上の整数)を伝搬すると共に第1コア11の中心を基準として互いに所定角度度異なる位置に配置される。小径部33では、第1コア11のx次LPモードの光(xは1以上x以下の整数)の伝搬定数と第2コア12及び第3コアのy次LPモードの光(yは1以上y以下のxと異なる整数)の伝搬定数とが一致する。x次LPモードの光は、第2コア12と第3コア13とが第1コア11の中心を基準としてなす上記の所定角度異なるように回転する場合に互いに異なるエネルギー分布となる互いに等しいLPモードの2つの光が、第1コア11の中心を基準として互いに所定角度異なるように回転した状態で足し合わされた光とされる。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12及び第3コア13の各LPモードの光の伝搬定数とが不一致とされる。このような定義において、第2実施形態は、xが2とされ、yが1とされ、xが2とされ、yが1とされ、所定角度が90度とされた例である。また、第3実施形態は、xが3とされ、yが1とされ、xが3とされ、yが1とされ、所定角度が45度とされた例である。
 また、第3実施形態において、第1コア11を伝搬する3次LPモードの光が第2コア12、第3コア13を伝搬する1次LPモードの光とモード合分波するものとした。しかし、第1コアを伝搬する光とモード合分波する第2コア12及び第3コア13を伝搬する光が、第2コア12と第3コア13とで同じLPモードである必要はない。例えば、第3実施形態の変形例として、次の様なマルチコアファイバを挙げることができる。この変形例のマルチコアファイバは、第1コア11、第2コア12及び第3コア13が第3実施形態のように配置されるが、第3コア13が2次LPモードまでの光を伝搬する。そして、第1コア11を伝搬する3次LPモードの光が、第2コア12を伝搬する1次LPモードの光とモード合分波すると共に第3コア13を伝搬する2次LPモードの光とモード合分波する。
 そこで、上記の第3実施形態の変形例を含むようにして、第1コア11、第2コア12及び第3コア13は、次の様に一般化できる。第1コア11はx次LPモードまでの光(xは2以上の整数)を伝搬し、第2コア12はy次LPモードまでの光(yは1以上の整数)を伝搬し、第3コア13はz次LPモードまでの光(zは1以上の整数)を伝搬し、第2コア12及び第3コア13は第1コア11の中心を基準として互いに所定角度度異なる位置に配置される。小径部33では、第1コア11のx次LPモードの光(xは1以上x以下の整数)の伝搬定数と、第2コア12のy次LPモードの光(yは1以上y以下のxと異なる整数)の伝搬定数及び第3コア13のz次LPモードの光(zは1以上z以下のx及びyと異なる整数)の伝搬定数とが一致する。x次LPモードの光は、第2コア12と第3コア13とが第1コア11の中心を基準としてなす上記の所定角度異なるように回転する場合に互いに異なるエネルギー分布となる互いに等しいLPモードの2つの光が、第1コア11の中心を基準として互いに所定角度異なるように回転した状態で足し合わされた光とされる。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12及び第3コア13の各LPモードの光の伝搬定数とが不一致とされる。このような定義において、上記第3実施形態の変形例は、xが3とされ、yが1とされ、zが2とされ、xが3とされ、yが1とされ、zが2とされ、所定角度が45度とされた例である。なお、このように一般化した状態で、zがyと等しくても良いものとすれば、第2実施形態や第3実施形態の例を含むことができる。すなわち、x,xがそれぞれ2とされ、y,z,y,zがそれぞれ1とされ、所定角度が90度とされることで、第2実施形態の例を示すことになる。また、x,xがそれぞれ3とされ、y,z,y,zがそれぞれ1とされ、所定角度が45度とされることで、第3実施形態の例を示すことになる。
 また、第4実施形態では、第1コア11を伝搬する2次LPモードの光が第2コア12を伝搬する1次LPモードの光とモード合分波し、第1コア11を伝搬する3次LPモードの光が第3コア13を伝搬する1次LPモードの光とモード合分波するものとした。しかし、第1コア11を伝搬する光とモード合分波する第2コア12及び第3コア13を伝搬する光が、第2コア12と第3コア13とで同じLPモードである必要はない。例えば、第4実施形態の変形例として、次の様なマルチコアファイバを挙げることができる。このマルチコアファイバは、第3コア13が2次LPモードまでの光を伝搬する点において、第4実施形態のマルチコアファイバ4と異なる。そして、第1コア11を伝搬する2次LPモードの光が第2コア12を伝搬する1次LPモードの光とモード合分波し、第1コア11を伝搬する3次LPモードの光が第3コア13を伝搬する2次LPモードの光とモード合分波する。
 そこで、第4実施形態や上記第4実施形態の変形例を含むように、第1コア11、第2コア12及び第3コア13は、次の様に一般化できる。第1コア11はx次LPモードまでの光(xは3以上の整数)を伝搬し、第2コア12はy次LPモードまでの光(yは1以上の整数)を伝搬し、第3コア13はz次LPモードまでの光(zは1以上の整数)を伝搬する。小径部33では、第1コア11のx次LPモードの光(xは1以上x以下の整数)の伝搬定数と第2コア12のy次LPモードの光(yは1以上y以下のxと異なる整数)の伝搬定数とが一致し、さらに、第1コア11のx次LPモードの光(xは1以上x以下のxと異なる整数)の伝搬定数と第3コア13のz次LPモードの光(zは1以上z以下のx及びxと異なる整数)の伝搬定数とが一致する。また、大径部31では、第1コア11の各LPモードの光の伝搬定数と第2コア12及び第3コア13の各LPモードの光の伝搬定数とが不一致とされる。このような定義において、第4実施形態は、xが3とされ、y及びzが1とされ、xが2とされ、xが3とされ、y及びzが1とされた例である。また、上記第4実施形態の変形例は、xが3とされ、yが1とされ、zが2とされ、xが2とされ、xが3とされ、yが1とされ、zが2とされた例である。
 また、第1~第4実施形態や上記のように一般化された例を組み合わせることも可能である。
 図6は、複数の2次LPモードの光と1次LPモードの光、及び、3次LPモードの光と1次LPモードの光とをモード合分波するマルチコアファイバを示す図である。なお、本例を説明するに当たり、第2実施形態と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図6に示すように、本例のマルチコアファイバ5は、第1コア11を基準として第2コア12と対称となる位置に第3実施形態のマルチコアファイバ3の第2コア12と同じ構成の第4コア14を更に備える。また、第1コア11は、3次LPモードまでの光を伝搬する構成とされる。また、第1コア11を伝搬する2次LPモードの光は、第2実施形態と同様とされる。
 従って、本例のマルチコアファイバ5は、小径部33において、第1コア11を伝搬する2つの2次LPモードの光(LP11aモードの光、LP11bモードの光)と第2コア12及び第3コア13を伝搬する1次LPモードの光とがそれぞれモード合分波し、さらに、第1コア11を伝搬する3次LPモードの光と第4コア14を伝搬する1次LPモードの光とがモード合分波する。
 図7は、複数の2次LPモードの光と1次LPモードの光、及び、複数の3次LPモードの光と1次LPモードの光とをモード合分波するマルチコアファイバを示す図である。なお、本例を説明するに当たり、図6の例と同一又は同等の構成要素については、同一の参照符号を付して特に説明する場合を除き重複する説明は省略する。
 図7に示すように、本例のマルチコアファイバ6は、第1コア11を基準として第4コア14と45度となる位置に第3実施形態のマルチコアファイバ3の第3コア13と同じ構成の第5コア15を更に備える。また、図7に示すθは図3のθと同じ意味であり90度とされ、図7に示すθは図4のθと同じ意味であり45度とされる。また、第1コア11を伝搬する3次LPモードの光は、第3実施形態と同様とされる。
 従って、本例のマルチコアファイバ6は、小径部33において、第1コア11を伝搬する2つの2次LPモードの光と第2コア12及び第3コア13を伝搬する1次LPモードの光とがそれぞれモード合分波し、さらに、第1コア11を伝搬する2つの3次LPモードの光(LP21aモードの光、LP21bモードの光)と第4コア14及び第5コア15を伝搬する1次LPモードの光とがモード合分波する。
 また、上記例において、第1コア11はクラッド20の中心に位置するものとしたが、第1コア11はクラッドの中心に位置しなくても良い。
 以下、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
 [実施例1]
 本実施例では、第1実施形態のマルチコアファイバ1を作製して、作製されたマルチコアファイバ1によりモード合分波を行えるかを確認した。
 <マルチコアファイバの設計>
 第1実施形態のマルチコアファイバ1において、Cバンド(波長1530nm~1565nm)において、LP01モードの光とLP11モードの光を合分波する設計条件、及びLバンド(波長1565nm~1625nm)において、LP01モードの光とLP11モードの光を合分波する設計条件を求める。
 (第1コアの設計)
 第1実施形態の説明のように、第1コア11は2次LPモードまでの光を伝搬し3次LPモード以上の光を伝搬しない。図8は、波長を1550nmとしたときのコアの半径と実効屈折率との関係を1次LPモードの光、2次LPモードの光、3次LPモードの光について示す図である。なお、本図は第1コア11が、比屈折率差が0.55%のステップ型屈折率分布である場合の図である。図8に示すように、コアの半径が4.1μm~6.3μmであれば、2次LPモードまでの光を伝搬し3次LPモード以上の光を伝搬しないことが分かる。そこで、第1コア11の径は小径部において大径部よりも小さくなること考慮すると、大径部でのコアの径はできるだけ大きい方が良い。そこで、大径部での第1コア11の半径を6.3μmとした。また、第1コア11のLP01モードの実効コア断面積Aeffが波長1550nmにおいて100μmとなるように、クラッド20に対する第1コア11の比屈折率差Δ11を0.55%とした。
 (第2コアの設計)
 一般的なシングルモードファイバの波長が1550nmにおける実効コア断面積Aeffは80μmであるため、第2コア12の実効コア断面積Aeffもこれと同程度となるようにした。そこで、クラッドに対する第2コア12の比屈折率差Δ12を0.36%とした。また、第2コア12の半径を3.7μmとした。
 (コア間距離の設計)
 図9は、マルチコアファイバの曲げ直径が80mmであり、波長が1625nmのときのLP01モードの光とLP11モードの光との間のコア間クロストークXT01-11とコア間距離(コアの中心間距離)との関係及びLP01モードの光同士のコア間クロストークXT01-01とコア間距離との関係を示す図である。
 上記のように第1コア11は、2次LPモードまでの光を伝搬し、第2コア12は1次LPモードの光を伝搬するため、大径部におけるクロストークXT01-11,XT01-01を評価する必要がある。図9より、より大きなクロストークがクロストークXT01-11であるため、当該クロストークを考察すれば良い。また、一般的なモード合分波器での選択比が25dB程度であることおよび本デバイスの使用長さが1m以下であることを考慮して、-30dB/mのクロストークを確保することとした。そこで大径部における第1コア11と第2コア12とのコア間距離を25μmとした。
 (延伸比の設計)
 図10は、延伸比と実効屈折率との関係を第1コア11を伝搬するLP11モードの光と第2コア12を伝搬するLP01モードの光について、波長が1550nm及び1595nmで示す図である。1550nmはCバンドの中心波長、1595nmはLバンドの中心波長である。図10に示すように、波長1550nmでは延伸比が1.42でLP01モードの光の実効屈折率とLP11モードの光の実効屈折率とが同じ値となる。波長1595nmでは延伸比が1.38でLP01モードの光の実効屈折率とLP11モードの光の実効屈折率とが同じ値となる。そこで、Cバンド用のマルチコアファイバでは延伸比を1.42とし、Lバンド用のマルチコアファイバでは延伸比を1.38とした。
 (テーパ部の設計)
 図11は、延伸比が1.42で波長が1550nmである光の選択比の状態を示す図であり、図12は、延伸比が1.38で波長が1595nmである光の選択比の状態を示す図である。図11及び図12では、小径部の長さとテーパ部の長さによる選択比の状態を示す。ここでいう選択比とは、マルチコアファイバ1の第2コア12にLP01モードの光を入射する場合における第1コア11から出射するLP11モードの光のパワーと第2コア12から出射するLP01モードの光のパワーとの比をさす。この選択比を評価することで、どの程度のモード合分波が生じているかが分かる。図11に示すように、テーパ部の長さが3.0~3.8mmで小径部の長さが4.8mmから5.0mmとされることでおよそ25dBの選択比を実現できることが分かる。また、図12に示すように、テーパ部の長さが3.0~3.7mmで小径部の長さが4.8mmから5.1mmとされることでおよそ25dBの選択比を実現できることが分かる。選択比は高い方が良いが25dBまで必要ないことから、Cバンド用のマルチコアファイバでは、テーパ部の長さを4.0mmとし小径部の長さを4.7mmとした。また、Lバンド用のマルチコアファイバでは、テーパ部の長さを4.0mmとし小径部の長さを4.9mmとした。このときそれぞれのマルチコアファイバで選択比は約22dBとなった。
 <マルチコアファイバの作成及び評価>
 次に、上記で定めた設計に基づいて、テーパ部や小径部が形成されない大径部のみからなるマルチコアファイバを作成した。このマルチコアファイバは、コア間距離が25.6μmであった。また、波長が1625nmの光でのクロストークX01-01が-43.4dB/mとなりクロストークX11-01が-32.4dB/mとなり、設計値のクロストークから悪化しない結果となった。
 また、第1コア11及び第2コア12において、波長を1550nm及び1625nmとして、LP01モードの光について、モードフィールド径MFD、実効コア断面積Aeffを調べた。また、第1コア11において、波長を1550nm及び1625nmとして、LP01モードの光について、直径を60mmで曲げた場合の光の損失を調べた。さらに、第2コア12において、波長を1550nm及び1625nmとして、LP01モードの光について、直径を60mmで曲げた場合の光の損失を調べた。また、第1コア11のLP21モードの1mカットオフ波長を調べ、第2コア12のLP11モードの1mカットオフ波長を調べた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-I000001
 次に上記マルチコアファイバの一部を表2の条件1,2で延伸した。
Figure JPOXMLDOC01-appb-I000002
 そして、条件1で延伸した箇所を含む上記マルチコアファイバ1の第1コア11に波長が1550nmでLP11モードの光から成る光を入射して、分波における第1コア11から出射するLP11モードの光のパワーと第2コア12から出射するLP01モードの光のパワーとの選択比を測定した。その結果、選択比が17dBを実現できていることが分かった。また、条件1で延伸した箇所を含む上記マルチコアファイバ1の第2コアに波長が1550nmでLP01モードの光から成る光を入射して、合波における第1コア11から出射するLP11モードの光のパワーと第2コア12から出射するLP01モードの光のパワーとの選択比を測定した。その結果、選択比が15dBを実現できていることが分かった。
 次に、条件1で延伸した箇所を含む上記マルチコアファイバ1および条件2で延伸した箇所を含む上記マルチコアファイバ1の第1コア11に波長が1500nmから1630nmのLP11モードの光を入射して、分波における第1コア11のLP11モードの光と第2コア12のLP01モードの光との結合効率をそれぞれ調べた。同様に条件1で延伸した箇所を含む上記マルチコアファイバ1および条件2で延伸した箇所を含む上記マルチコアファイバ1の第2コア12に波長が1500nmから1630nmのLP01モードの光を入射して、合波における第1コア11のLP11モードの光と第2コアのLP01モードの光との結合効率をそれぞれ調べた。なお、結合効率は、合波では、第2コア12に入射した光のパワーから過剰損失を差し引いた光のパワーと第1コア11から出射する光のパワーとの比を取り、分波では、第1コア11に入射した光のパワーから過剰損失を差し引いた光のパワーと第2コア12から出射する光のパワーとの比を取ることで求めている。その結果を図13に示す。
 図13に示すように、条件1を満たすマルチコアファイバ1は、波長が約1550nmで95%以上の高い結合効率となった。また、条件2を満たすマルチコアファイバ1は、波長が約1590nmで88%以上の高い結合効率となった。
 [実施例2]
 本実施例では、第2実施形態のマルチコアファイバ2を作製して、作製されたマルチコアファイバ2によりモード合分波を行えるかを確認した。
 <マルチコアファイバの設計>
 第1コア11及び第2コア12は、実施例1の第1コア11及び第2コア12と同様にして設計した。また、本実施例のマルチコアファイバ2では、第1コア11の中心を基準として第2コア12と90度異なる位置に配置される第3コア13を備えている。この第3コア13の設計は、第2コア12と同様とした。
 第1コア11と第2コア12とのクロストーク及び第1コア11と第3コア13とのクロストークは、実施例1の図9とそれぞれ同様となる。従って、大径部において、第1コア11と第2コア12とのコア間距離を実施例1と同様にし、第1コア11と第3コア13とのコア間距離を実施例1と同様とした。ただし、本実施例では、第2コア12と第3コア13とのクロストークに配慮する必要がある。図14は、マルチコアファイバ2の曲げ直径が80mmであり、波長が1625nmのときの第2コア12と第3コア13とにおけるLP01モード同士のコア間クロストークXT01-01とコア間距離との関係を示す図である。第1コア11と第2コア13とのコア間距離、及び、第1コア11と第3コア13とのコア間距離が上記のようにそれぞれ25μmである場合、第2コア12と第3コア13とのコア間距離は約35.4μmとなる。上記のように一般的なモード合分波器での選択比が25dB程度であること及び本デバイスの使用長さが1m以下であることを考慮すれば、-30dB/mのクロストークを確保すれば良い。図14より、第2コア12と第3コア13とのコア間距離は約35.4μmであれば、クロストークを-30dB/mよりも低く抑えられることが確認できた。従って、大径部において、第1コア11と第2コア12とのコア間距離、及び、第1コア11と第3コア13とのコア間距離が25μmであれば良いことが確認できた。
 延伸比の設計、及び、テーパ部の設計は、実施例1の延伸比の設計、及び、テーパ部の設計と同様とした。
 <マルチコアファイバの作成及び評価>
 次に、上記で定めた設計に基づいて、テーパ部や小径部が形成されない大径部のみからなるマルチコアファイバを作成した。このマルチコアファイバは、第1コア11と第2コア12とのコア間距離、及び、第1コア11と第3コア13とのコア間距離が共に25.0μmであった。また、第2コア12と第3コア13とのコア間距離が共に35.4μmであった。また、第1コア11の中心を基準とした第2コア12と第3コア13とがなす角度は88.7°であった。コア12とコア13の間のクロストークXT01-01は、波長1625nmおよび曲げ直径120mmにおいて-29dB/mであった。
 また、第1コア11、第2コア12及び第3コア13において、波長を1550nm及び1625nmとして、LP01モードの光について、モードフィールド径MFD、実効コア断面積Aeffを調べた。また、第1コア11において、波長を1550nm及び1625nmとして、LP11モードの光について、直径を60mmで曲げた場合の光の損失を調べた。さらに、第2コア12及び第3コア13において、波長を1550nmとして、LP01モードの光について、直径を60mmで曲げた場合の光の損失を調べ、波長を1625nmとして、LP01モードの光について、直径を60mmで曲げた場合の光の損失を調べた。また、第1コア11のLP21モードの2mカットオフ波長を調べ、第2コア12及び第3コア13のLP11モードの2mカットオフ波長を調べた。その結果を表3に示す。
Figure JPOXMLDOC01-appb-I000003
 次に上記マルチコアファイバを実施例1の条件1と同様の条件で延伸した。
 そして、延伸した箇所を含む上記マルチコアファイバ2の第1コア11に波長が1550nmのLP11モードの光を入射した。ただし、この光は、偏光子、1/4波長板、半波長板、位相板を通る光であり、第1コア11に入射するLP11モードの光のフィールドは、位相板の回転により回転する。そして、第2コア12及び第3コア13から出射する光のパワーを測定した。その結果を図15に示す。
 図15に示すように、第2コア12に入射する光のパワーが最大となる位相板の角度と、第3コア13に入射する光のパワーが最大となる位相板の角度とは、互いに約90度異なっていた。従って、第1コア11に入射するLP11モードの光を、互いにフィールドが90度異なるLP11aモードの光とLP11bモードの光として、それぞれ第2コア12と第3コア13とに分波できることが確認できた。
 次に延伸した箇所を含む上記マルチコアファイバ2の第2コア12にLP01モードの光を入射した。ただし、この光は、偏光子、1/4波長板、半波長板を通る光であり、第2コア12に入射する光の偏波は、偏光子の回転により回転する。そして、偏光子を0度、45度、90度、135度、180度に回転させて、第2コア12及び第1コア11から出射する光のパワーを各角度毎に測定し、また、第1コア11のみから出射する光のパワーを各角度毎に測定した。そして、第2コア12及び第1コア11から出射する光のパワーと、第1コア11のみから出射する光のパワーとの比による結合効率を波長ごとに求めた。その結果を図16に示す。
 また、延伸した箇所を含む上記マルチコアファイバ2の第3コア13に第2コア12に入射した光と同様の光を入射した。そして、偏光子を上記と同様の角度に回転させて、第3コア13及び第1コア11から出射する光のパワーを各角度毎に測定し、また、第1コア11のみから出射する光のパワーを各角度毎に測定した。そして、第3コア13及び第1コア11から出射する光のパワーと、第1コア11のみから出射する光のパワーとの比による結合効率を波長ごとに求めた。その結果を図17に示す。
 図16、図17に示すように、第2コア12に光を入射する場合、第3コア13に光を入射する場合のどちらであっても、波長が1550nmにおいて79%以上の結合効率となる結果となった。また、第2コア12に光を入射する場合と第3コア13に光を入射する場合とで、結合効率のプロファイルに大きな差はなかった。
 図18~図20は、本実施例で作製したマルチコアファイバ2における光のNFP(Near Field Pattern)を示す。具体的には、図18が第1コア11における光のNPFを示し、図19が第2コア12における光のNFPを示し、図20が第3コア13における光のNFPを示す。
 図16、図17、及び、図18~図20より、マルチコアファイバ2を用いて、LP01モードの光、LP11aモードの光、LP11bモードの光を選択的に合波できることが確認できた。
 以上より本発明のマルチコアファイバによれば、モード合分波を行うことが確認できた。
 以上より、LP01モードの光及びLP11モードの光が共に入射光の実効コア断面積と出射光の実効コア断面積とが等しくなる条件が求められた。
 本発明に係る光デバイスは、小型化が可能なモード合分波器をマルチコアファイバを用いて実現しようとするものであり、光通信の産業において利用することができる。
 1~6・・・マルチコアファイバ
 11・・・第1コア
 12・・・第2コア
 13・・・第3コア
 14・・・第4コア
 15・・・第5コア
 20・・・クラッド
 31・・・大径部
 32・・・テーパ部
 33・・・小径部
 

Claims (10)

  1.  x次LPモードまでの光(xは2以上の整数)を伝搬する第1コアと、
     y次LPモードまでの光(yは1以上の整数)を伝搬する第2コアと、
    を備え、
     前記第1コアのx次LPモードの光(xは1以上x以下の整数)の伝搬定数と前記第2コアのy次LPモードの光(yは1以上y以下のxと異なる整数)の伝搬定数とが一致する異モード相互作用区間と、
     前記第1コアの各LPモードの光の伝搬定数と前記第2コアの各LPモードの光の伝搬定数とが不一致とされる異モード非相互作用区間と、
    が設けられる
    ことを特徴とするマルチコアファイバ。
  2.  z次LPモードまでの光(zは1以上の整数)を伝搬し、前記第1コアの中心を基準として前記第2コアと所定角度異なる位置に配置される第3コアを更に備え、
     前記異モード相互作用区間では、前記第1コアの前記x次LPモードの光の伝搬定数と前記第3コアのz次LPモードの光(zは1以上z以下のxと異なる整数)の伝搬定数とが一致し、
     前記異モード非相互作用区間では、前記第1コアの各LPモードの光の伝搬定数と前記第3コアの各LPモードの光の伝搬定数とが不一致とされ、
     前記x次LPモードの光は、前記第1コアの中心を基準として互いに前記所定角度異なるように回転する場合に互いに異なるエネルギー分布となる互いに等しい2つのLPモードの光が、前記第1コアの中心を基準として互いに前記所定角度異なるように回転した状態で足し合わされた光とされる
    ことを特徴とする請求項1に記載のマルチコアファイバ。
  3.  前記所定角度は90度とされ、
     前記x次LPモードは2次LPモードとされる
    ことを特徴とする請求項2に記載のマルチコアファイバ。
  4.  前記所定角度は45度とされ、
     前記x次LPモードは3次LPモードとされる
    ことを特徴とする請求項2に記載のマルチコアファイバ。
  5.  xは3以上の整数であり、
     z次LPモードまでの光(zは1以上の整数)を伝搬する第3コアを更に備え、
     前記異モード相互作用区間では、前記第1コアのx次LPモードの光(xは1以上x以下のxと異なる整数)の伝搬定数と前記第3コアのz次LPモードの光(zは1以上z以下のx及びxと異なる整数)の伝搬定数とが一致し、
     前記異モード非相互作用区間では、前記第1コアの各LPモードの光の伝搬定数と前記第3コアの各LPモードの光の伝搬定数とが不一致とされる
    ことを特徴とする請求項1に記載のマルチコアファイバ。
  6.  yとzとが互いに等しい
    ことを特徴とする請求項2から5のいずれか1項に記載のマルチコアファイバ。
  7.  y及びzが1とされる
    ことを特徴とする請求項6に記載のマルチコアファイバ。
  8.  前記第1コアは、クラッドの中心に位置する
    ことを特徴とする請求項1から7のいずれか1項にマルチコアファイバ。
  9.  前記異モード相互作用区間は、前記異モード非相互作用区間の一部が延伸されることで形成される
    ことを特徴とする請求項1から8のいずれか1項に記載のマルチコアファイバ。
  10.  使用波長帯域におけるそれぞれのコアを伝搬する光のLPモードの数は、前記異モード相互作用区間と前記異モード非相互作用区間とで変化しない
    ことを特徴とする請求項1から9のいずれか1項に記載のマルチコアファイバ。
PCT/JP2015/055489 2014-02-25 2015-02-25 マルチコアファイバ WO2015129775A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016505280A JP6328745B2 (ja) 2014-02-25 2015-02-25 マルチコアファイバ
EP15754524.5A EP3035091A4 (en) 2014-02-25 2015-02-25 Multicore fiber
US15/062,582 US9709729B2 (en) 2014-02-25 2016-03-07 Multicore fiber with different-mode interaction section

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-034006 2014-02-25
JP2014034006 2014-02-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/062,582 Continuation US9709729B2 (en) 2014-02-25 2016-03-07 Multicore fiber with different-mode interaction section

Publications (1)

Publication Number Publication Date
WO2015129775A1 true WO2015129775A1 (ja) 2015-09-03

Family

ID=54009089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055489 WO2015129775A1 (ja) 2014-02-25 2015-02-25 マルチコアファイバ

Country Status (4)

Country Link
US (1) US9709729B2 (ja)
EP (1) EP3035091A4 (ja)
JP (1) JP6328745B2 (ja)
WO (1) WO2015129775A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017142467A (ja) * 2016-02-12 2017-08-17 株式会社フジクラ マルチコアファイバ
JP2017156449A (ja) * 2016-02-29 2017-09-07 株式会社フジクラ マルチコアファイバ
WO2018173507A1 (ja) * 2017-03-23 2018-09-27 株式会社フジクラ 光送受信装置および光通信システム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10230468B2 (en) * 2016-06-02 2019-03-12 Huawei Technologies Co., Ltd. Transmission adjustment for space division multiplexing of optical signals
CN106772803B (zh) * 2016-12-28 2019-11-08 台州瑜瑞科技有限公司 多模光纤分束器及其制作方法
JP6897373B2 (ja) * 2017-07-06 2021-06-30 住友電気工業株式会社 光ファイバ出射ビームプロファイル測定方法および装置
JP7119611B2 (ja) * 2018-06-12 2022-08-17 住友電気工業株式会社 光ファイバ増幅器
JP7548245B2 (ja) * 2019-12-03 2024-09-10 住友電気工業株式会社 光接続デバイス
JP7389644B2 (ja) * 2019-12-26 2023-11-30 株式会社フジクラ マルチコアファイバ、光ファイバケーブル、及び光コネクタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126209A (en) * 1979-03-19 1980-09-29 Hicks John Wilbur Jr Fiber optics device and equipment for coupling same
JP2005010375A (ja) * 2003-06-18 2005-01-13 Fujikura Ltd 高次モードファイバ用モード変換器
JP2012194362A (ja) * 2011-03-16 2012-10-11 Nippon Telegr & Teleph Corp <Ntt> モード合分波カプラ及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2183358A (en) * 1985-08-19 1987-06-03 Philips Electronic Associated Acousto-optic modulator
US4915468A (en) * 1987-02-20 1990-04-10 The Board Of Trustees Of The Leland Stanford Junior University Apparatus using two-mode optical waveguide with non-circular core
US4961195A (en) * 1988-08-03 1990-10-02 The University Of Rochester Systems for controlling the intensity variations in a laser beam and for frequency conversion thereof
US6631224B2 (en) * 1997-06-06 2003-10-07 Novera Optics, Inc. Tunable filter with core mode blocker
WO2010038863A1 (ja) * 2008-10-03 2010-04-08 国立大学法人 横浜国立大学 非結合系マルチコアファイバ
WO2012177808A1 (en) * 2011-06-20 2012-12-27 Ofs Fitel, Llc Techniques and devices for low-loss coupling to a multicore fiber
CN103069318B (zh) * 2010-08-24 2015-09-02 国立大学法人横滨国立大学 多芯光纤以及多芯光纤的芯的配置方法
JP2014509412A (ja) * 2011-02-24 2014-04-17 オーエフエス ファイテル,エルエルシー 空間多重化のためのマルチコア・ファイバ設計
JP5773521B2 (ja) 2011-08-03 2015-09-02 日本電信電話株式会社 モード合分波器、光送受信装置及び光通信システム
US20130216194A1 (en) * 2012-02-20 2013-08-22 Ofs Fitel, Llc Controlling Differential Group Delay In Mode Division Multiplexed Optical Fiber Systems

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55126209A (en) * 1979-03-19 1980-09-29 Hicks John Wilbur Jr Fiber optics device and equipment for coupling same
JP2005010375A (ja) * 2003-06-18 2005-01-13 Fujikura Ltd 高次モードファイバ用モード変換器
JP2012194362A (ja) * 2011-03-16 2012-10-11 Nippon Telegr & Teleph Corp <Ntt> モード合分波カプラ及びその製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HITOSHI UEMURA ET AL.: "LP_<01>/LP_<11> mode multiplexer/ demultiplexer using a multi-core fiber", NEN THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS SOGO TAIKAI KOEN RONBUNSHU, vol. B-13-11, 4 March 2014 (2014-03-04), pages 507, XP008182332 *
See also references of EP3035091A4 *
TAO LIN ET AL.: "Design Theory and Experiment of a LP_<01>-LP_<11> Mode Converter Utilizing Fused Tapered Fiber Coupler", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, vol. J82-C-I, no. 10, 25 October 1999 (1999-10-25), pages 587 - 595, XP008182318 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017142467A (ja) * 2016-02-12 2017-08-17 株式会社フジクラ マルチコアファイバ
CN107085261A (zh) * 2016-02-12 2017-08-22 株式会社藤仓 多芯光纤
US10215913B2 (en) 2016-02-12 2019-02-26 Fujikura Ltd. Multicore fiber
JP2017156449A (ja) * 2016-02-29 2017-09-07 株式会社フジクラ マルチコアファイバ
US10094972B2 (en) 2016-02-29 2018-10-09 Fujikura Ltd. Multicore fiber
WO2018173507A1 (ja) * 2017-03-23 2018-09-27 株式会社フジクラ 光送受信装置および光通信システム
JPWO2018173507A1 (ja) * 2017-03-23 2019-11-07 株式会社フジクラ 光送受信装置および光通信システム

Also Published As

Publication number Publication date
US9709729B2 (en) 2017-07-18
EP3035091A1 (en) 2016-06-22
JPWO2015129775A1 (ja) 2017-03-30
EP3035091A4 (en) 2017-04-05
JP6328745B2 (ja) 2018-05-23
US20160187577A1 (en) 2016-06-30

Similar Documents

Publication Publication Date Title
JP6328745B2 (ja) マルチコアファイバ
JP6328676B2 (ja) マルチコアファイバ
JP7128213B2 (ja) 空間分割多重光通信用同心円状ファイバ及びその使用方法
JP6177994B2 (ja) マルチコアファイバ
JP6335949B2 (ja) マルチコアファイバ
JP5916525B2 (ja) マルチコアファイバ
JP6532748B2 (ja) マルチコアファイバ
JP5324012B2 (ja) マルチコア光ファイバおよび光伝送システム
JP6340342B2 (ja) マルチコアファイバ
JP5660627B2 (ja) 多芯単一モード光ファイバおよび光ケーブル
US9477045B2 (en) Optical element using multicore optical fiber grating and method for processing optical signal using the same
JP2014126575A (ja) マルチコアファイバ
JP2017134290A (ja) 光デバイス
Uemura et al. Mode multiplexer/demultiplexer based on a partially elongated multi-core fiber
Yang et al. PANDA type four-core fiber with the efficient use of stress rods
JP2017146354A (ja) 光デバイス
JP2017187680A (ja) 光デバイス
JP2015152729A (ja) 光素子
JP6697365B2 (ja) モード合分波光回路
JP2016133592A (ja) マルチコア光ファイバおよび光接続部品
JP2006106372A (ja) 光分岐装置
JP2014006374A (ja) 光ファイバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015754524

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016505280

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE