WO2015129749A1 - 非接触式浮上搬送装置 - Google Patents

非接触式浮上搬送装置 Download PDF

Info

Publication number
WO2015129749A1
WO2015129749A1 PCT/JP2015/055394 JP2015055394W WO2015129749A1 WO 2015129749 A1 WO2015129749 A1 WO 2015129749A1 JP 2015055394 W JP2015055394 W JP 2015055394W WO 2015129749 A1 WO2015129749 A1 WO 2015129749A1
Authority
WO
WIPO (PCT)
Prior art keywords
force
swirl
swirling
swirl flow
transport
Prior art date
Application number
PCT/JP2015/055394
Other languages
English (en)
French (fr)
Inventor
佐藤 光
伊藤 彰彦
貴裕 安田
Original Assignee
オイレス工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オイレス工業株式会社 filed Critical オイレス工業株式会社
Publication of WO2015129749A1 publication Critical patent/WO2015129749A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67784Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations using air tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G49/00Conveying systems characterised by their application for specified purposes not otherwise provided for
    • B65G49/05Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles
    • B65G49/06Conveying systems characterised by their application for specified purposes not otherwise provided for for fragile or damageable materials or articles for fragile sheets, e.g. glass
    • B65G49/063Transporting devices for sheet glass
    • B65G49/064Transporting devices for sheet glass in a horizontal position
    • B65G49/065Transporting devices for sheet glass in a horizontal position supported partially or completely on fluid cushions, e.g. a gas cushion

Definitions

  • a swirl flow generating portion that generates a swirl flow is disposed on a transport path surface that transports a transported object, and the swirl flow generates a driving force for the transported object while floating the transported object, thereby transporting the transported object.
  • the invention relates to a non-contact type levitation transport device that levitates and transports objects in a completely non-contact state, particularly from a glass substrate for display used in flat panels for solar cells, mobile phones, liquid crystal televisions, liquid crystal monitors for personal computers, etc.
  • the present invention relates to a non-contact type levitation conveyance device that levitates and conveys the object to be conveyed.
  • a front surface of a ring-shaped member is provided by providing a spout on the back surface of a ring-shaped member having a circular through-hole penetrating from the front surface to the back surface.
  • a swirling flow forming body that generates a swirling flow in a direction away from the front surface on the side and a flow of air in the back surface direction in the vicinity of the opening of the through hole on the front surface side of the ring-shaped member.
  • a non-contact transfer device that has two or more on the transfer surface, and floats and conveys the object to be conveyed using a contact type driving mechanism while maintaining high flying height accuracy of the object to be conveyed made of liquid crystal glass or the like. (See Patent Document 1 and Patent Document 2).
  • the swirl directions of the swirl flow of the swirl flow forming body are changed so as to maintain the flying height accuracy by avoiding the rotation and wobbling of the conveyed object on the conveyance surface.
  • the swirl force of the swirl flow sent from each swirl flow forming body onto the transport surface is intentionally canceled and swirled in the gap between the bottom surface of the object to be transported and the transport surface
  • a contact-type drive mechanism such as a friction roller or a belt. It is necessary to apply a driving force for transferring the object to the object.
  • a contact type driving mechanism is provided, there is a problem that the overall apparatus configuration as a conveying apparatus and its drive control become complicated.
  • the present invention solves the problems of the prior art as described above, that is, the object of the present invention is to use the swirl force of swirl flow without using a contact type drive mechanism. It is an object of the present invention to provide a non-contact type levitating and conveying apparatus that conveys an object to be conveyed while being levitated in a completely non-contact state.
  • the swirl flow that generates a swirl flow composed of gas is disposed on a flat conveyance path surface that conveys the object to be conveyed, and the swirl flow that sequentially overflows from the swirl flow formation unit.
  • a non-contact type levitation conveyance device that conveys the conveyance object with a conveyance force generated by the swirling force of the swirling flow while floating the conveyance object with a gap between the bottom surface of the conveyance object and the conveyance path surface
  • a pair of the swirl flow forming portions are arranged to be spaced apart from each other in the width direction of the transport road surface, and the swirl flow swirl directions respectively generated in the swirl flow formation portion are the width direction of the transport road surface.
  • a plurality of the swirl flow forming portions are arranged apart from each other in the conveyance direction of the conveyance path surface. And the above-described problems are solved by setting the swirling directions of the swirling flows respectively generated in the swirling flow forming portions to be the same in the transport direction of the transport path surface. .
  • the swirl flow forming portion is provided below the conveyance path surface so as to be on the conveyance path surface. And a gas injection port for generating a swirling flow by injecting the gas into a swirl forming space region surrounded by the peripheral side wall from a tangential direction of the peripheral side wall.
  • the invention according to claim 4 overflows from the swirl flow forming portion to the gap between the conveyance path surface and the object to be conveyed and stays excessively.
  • the above-described problems are further solved by disposing the gas release holes for releasing the gas to be dispersed on the transport path surface.
  • an injection force adjusting means for adjusting the gas injection force includes the gas injection port.
  • the transfer path surface is inclined upward in the transfer direction. Is a further solution.
  • the swirl flow forming unit in addition to the configuration of the non-contact type levitation conveyance device according to any one of the third to sixth aspects, the swirl flow forming unit generates the gas injection force.
  • the above-described problem is further solved by being detachably attached to the transport path surface as another part that can be alternatively selected.
  • the swirl flow forming unit that generates the swirl flow composed of gas is disposed on the flat conveyance path surface that conveys the object to be conveyed, so that the swirl flow formation unit sequentially overflows.
  • the object to be conveyed can be levitated, and the following specific effects can be achieved.
  • a pair of swirl flow forming portions are arranged to be separated from each other in the width direction of the conveyance path surface, and are respectively generated in the swirl flow forming portion. Since the swirling direction of the swirling flow is set to be opposite to each other in the width direction of the conveying road surface, the swirling flow that acts on the object to be conveyed by the pair of left and right swirling flow forming portions and moves toward the front area in the conveying direction.
  • the contact-type drive mechanism utilizing the swirling force of the swirling flow It is possible to transport the object to be transported in a non-contact state while being levitated toward the front area in the transport direction with a simple apparatus configuration without attaching a cover. That is, on the central portion side along the transport direction of the transport path surface where the pair of left and right swirl flow forming portions are arranged, the swirl forces of the swirl flows are lost due to both swirl flows losing the escape and interfering with each other.
  • the swirl force of the swirl flow is not diminished between the pair of left and right swirl flow forming portions, and as a result, between the pair of left and right swirl flow forming portions.
  • the swirling flow acting force acting on the rear area in the conveying direction With respect to the swirling flow acting force acting on the rear area in the conveying direction, the swirling flow acting force acting on the front area in the conveying direction on both outer sides in the road width direction in the pair of left and right swirling flow forming portions becomes relatively large.
  • the force transmitted by the surface friction to the object to be conveyed is greater in the swirling flow acting force acting toward the front area in the conveying direction than in the swirling flow acting force acting toward the rear area in the conveying direction. Without a contact type drive mechanism It can be conveyed toward the conveyed object to the front region in the transport direction in contact.
  • the swirling radius of the swirling flow increases due to the centrifugal force of the swirling flow.
  • the atmospheric pressure generated in the vicinity of the center of the swirling flow is relatively lower than the atmospheric pressure generated in the swirling portion of the swirling flow, and this reduced atmospheric pressure acts as a negative pressure on the object to be transported.
  • the swirl flow forming portions are spaced apart from each other in the conveyance direction of the conveyance road surface.
  • a plurality of sets of swirls arranged in the transport direction are arranged in such a manner that the swirl directions of the swirl flows respectively generated in the swirl flow forming section are set in the same direction as the transport direction of the transport path surface. Since each of the swirling flows generated in the flow forming section acts on the object to be transported, a swirling flow acting force in the transport direction can be applied, so that the transport force can be further increased.
  • the swirl flow forming portion is provided below the conveyance path surface and the conveyance road surface
  • a gas injection port that generates a swirl flow by injecting gas from the tangential direction of the peripheral side wall into the swirl forming space region surrounded by the peripheral side wall Since a swirl flow is formed with a simple and compact configuration, a non-contact type levitation transport device can be simplified without requiring a rotating structure such as a motor.
  • the excess flow overflows from the swirl flow forming portion to the gap between the conveyance path surface and the object to be conveyed. Since the gas release holes for releasing the gas staying in the air are dispersed on the surface of the conveying path, the gas release holes serve as escape places for the gas that stays excessively, and the gas that sequentially overflows from the swirl flow forming portion Therefore, the swirl flow acting force acting toward the front area and the rear area in the conveying direction is increased as compared with the case where no gas release hole is provided, and the difference is also increased to increase the conveying force. Can be increased.
  • the injection force adjusting means for adjusting the gas injection force includes gas injection Since it is provided on the gas path leading to the mouth, the magnitude of the swirling force acting toward the front area in the transport direction can be varied. Can be adjusted.
  • the conveyance road surface is inclined upward in the conveyance direction, so that the injection force
  • the object to be conveyed is transported up against the gravity of the object to be conveyed, and with the decrease in the injection force by the injection force adjusting means, it is completely resistant to the gravity of the object to be conveyed. Without being transported, the object to be transported can be transported down.
  • the force in the direction of lowering the inclination of the conveying path surface due to gravity acts on the conveyed object, starts the injection from the gas injection port to generate a swirling flow, or increases the pressure of the gas to be injected or the gas injection port Since the conveying force is larger than the force in the downward direction by increasing the diameter and strengthening the swirling flow, the object to be conveyed can be moved to increase the inclination.
  • the conveying force by eliminating the swirl flow by eliminating the pressure of the gas injected from the gas injection port, or by lowering the pressure of the gas to be injected or reducing the diameter of the gas injection port to weaken the swirl flow Since the force in the downward direction has a larger relationship, the conveyed product can be moved to move down the slope.
  • the swirl flow forming portion provides the gas injection force. Since it is detachably attached to the transport road surface as a separately selectable separate part, the strength of the swirling force due to swirling flow can be changed simply by changing the swirling flow forming section. It is possible not only to adjust the swirl flow acting force in the transport direction without using force adjustment means but also to arbitrarily adjust the transport force, as well as to diversify the materials of the swirl flow forming part and the manufacturing processing options it can.
  • FIG. 3 is an enlarged perspective view showing a swirl flow forming portion at a location denoted by reference numeral 2 in FIG. 1.
  • FIG. 3 is a conceptual cross-sectional view illustrating the principle of generating a swirling flow and a force to draw downward by the swirling flow forming unit of the present invention.
  • FIG. 5 is an enlarged plan view seen from a reference numeral 4 in FIG. 1 and shows a principle of generating a conveyance force in the first embodiment.
  • the top view which shows arrangement
  • the conceptual sectional side view which shows the non-contact-type levitation conveyance apparatus of 4th Example of this invention.
  • the conceptual sectional side view which shows the non-contact-type levitation conveyance apparatus of 4th Example of this invention.
  • a swirl flow forming unit that generates a swirl flow composed of gas is disposed on a flat conveyance path surface that conveys the object to be conveyed.
  • a non-contact type levitation transport device that floats a transported object by interposing a gap between the transport path surface and a transport force generated by a swirling force of a swirling flow, wherein the swirl flow forming unit is a transport path surface
  • the left and right are spaced apart from each other in the width direction of the road, and the swirl directions of the swirl flows generated in the swirl flow forming portions are set to be opposite to each other in the width direction of the conveyance road surface.
  • the swirl flow swirl direction set in each of the pair of swirl flow forming portions acts on the object to be conveyed by the pair of left and right swirl flow forming portions, and the swirl flow acting force toward the front region in the transport direction and the rear region in the transport direction Based on the relative difference from the swirl force acting toward The transport direction of the transported object is directed, and the swirl force of the swirl flow is utilized to transport the transported object in a non-contact state with a simple device configuration without providing a contact-type drive mechanism.
  • the concrete embodiment may be what kind of thing.
  • a specific embodiment of the swirl flow forming portion employed in the present invention may be directly formed on the base portion itself constituting the conveyance path surface by drilling or cutting, but a chip by resin processing or the like. It may be formed separately from the base part that constitutes the conveyance path surface, such as a shaped molded product, and when the swirl flow forming part is formed separately from the base part, It is more preferable because the options for manufacturing can be diversified. Further, the specific structure of the swirl flow forming portion may be anything as long as it forms a swirl flow from a gas such as air.
  • the swirl flow may be formed by the gas injected from the gas injection port of the swirl flow forming section flowing along the peripheral side wall having a depth of about 3 to 10 mm of the guide recess for guiding in the swirl direction.
  • the shape of the guide recess in plan view is not particularly limited.
  • the specific shape of the guide recess may be, for example, a circular shape, an annular shape, an elliptical shape, a polygonal shape, a circular shape with a notch formed therein, and more specifically, a circular cup with a hook. The shape is more preferable.
  • an air inlet and a fan may be provided in a guide recess provided with a peripheral side wall, and a swirling flow directed upward from the guide recess surrounded by the peripheral side wall may be formed by rotating the fan.
  • sequence form of the swirl flow formation part in this invention as mentioned above, the turning direction of the swirl flow set to the pair of left and right swirl flow formation parts is the pair of left and right swirl flow formation parts.
  • any arrangement form may be used as long as it constructs a levitating conveyance mechanism that can utilize the swirl force of the swirling flow to convey the object to be conveyed while levitating.
  • the pair of swirl flow forming portions that are separated from each other in the width direction of the conveyance road surface may be arranged in the same positional relationship in the conveyance direction, or arranged in a positional relationship that is shifted from each other in the conveyance direction. May be.
  • the conveyance path surface in this invention is flat, and it goes without saying that if the processing accuracy of this flat conveyance path surface is high, a more stable conveyance state of the object to be conveyed can be obtained.
  • the guide plate is transported in order to prevent the gas released from the swirl flow forming portion from excessively leaking from both side edges in the road width direction and to guide and restrict the object to be transported in the transport direction.
  • a thin plate made of a material such as glass, plastic, metal, etc. It is a glass substrate for display of about 0.1 to 0.5 mm used for battery flat panels, mobile phones, liquid crystal televisions, personal computer liquid crystal monitors, and the like.
  • FIG. 1 is a perspective view showing a non-contact type levitation conveying apparatus 100 according to the first embodiment of the present invention
  • FIG. 2 is an enlarged perspective view showing a swirl flow forming portion 130A at a location 2 in FIG.
  • FIG. 3 is a conceptual cross-sectional view showing the principle of generation of the swirling flow R and the force D to be drawn downward by the swirling flow forming portions 130A and 130B of the present invention
  • FIG. FIG. 4 is an enlarged plan view as viewed from reference numeral 4 and is a diagram illustrating a principle that a conveyance force is generated in the first embodiment.
  • the swirl flow forming portions 130 ⁇ / b> A and 130 ⁇ / b> B that generate the swirl flow R made of gas are, for example, 0.
  • the swirl flow R which is disposed on the flat transport path surface 111 for transporting the thin plate-shaped transport object C made of a glass substrate for display of about 3 mm and sequentially overflows from the swirl flow forming portions 130A and 130B, is transferred to the transport object C.
  • the transported object C is lifted by being interposed in the gap between the bottom surface of the transport path 111 and the transport path surface 111 and transported by the transport force generated by the swirl force of the swirl flow R.
  • the non-contact type levitation transfer apparatus 100 includes a base portion 110 and a machine base frame 120 that supports the base portion 110. Then, on the conveyance path surface 111 facing the object C to be conveyed in the base part 110, round cup-shaped swirl flow forming portions 130A and 130B formed by resin molding are provided in the path width direction S of the conveyance path surface 111. Only one pair, that is, one set, is disposed apart from each other on the left and right.
  • the swirl flow forming portions 130A and 130B are provided on the peripheral side wall 131a of the bottomed guide recess 131 provided below the transport path surface and opening on the transport path surface, and the peripheral side wall from the tangential direction of the peripheral side wall 131a.
  • the swirl flow forming portion 130 ⁇ / b> A guides air along a guide recess 131 that guides air in the swirl direction and a cylindrical peripheral side wall 131 a that surrounds the guide recess 131.
  • It has two gas injection ports 132 to inject.
  • these two gas injection ports 132 are provided at a position that bisects the cylindrical peripheral side wall 131a surrounding the guide recess 131, so that the swirling flow R can be reliably and stably provided. It is supposed to be generated.
  • the swirl flow forming portions 130A and 130B configured as described above overflow the swirl flow R between the transport path surface 111 and the transported object C, so that the transported object C is levitated about 0.05 mm, for example. I am letting.
  • the relationship between the structure of the swirl flow forming unit 130A and the structure of the swirl flow forming unit 130B is that the virtual center line in the T-axis direction (conveying direction of the object C) between the swirl flow forming units 130A and 130B. This is a line-symmetrical relationship as a reference, and the swirling directions of the swirling flows Ra and Rb (see FIG.
  • the round cup-shaped member with a flange formed by resin molding forming the swirl flow forming portions 130A and 130B is formed as a member separate from the base portion 110 and is fitted into the base portion 110. However, it may be formed integrally with the base portion 110 itself. Further, the machine base frame 120 is provided so that the posture of the base portion 110 with respect to the horizontal direction can be adjusted, and in this embodiment, the installation posture of the conveyance path surface 111 of the base portion 110 is adjusted to be horizontal.
  • the swirl flow R discharged from the swirl flow forming unit 130A (130B) and the conveyed object C are to be drawn toward the lower swirl flow forming unit 130A (130B).
  • the principle of generating the force D will be described.
  • the swirl flow R in the guide recess 131 are continuously formed.
  • vortex flow R continuously generate
  • the swirl radius of the swirl flow R is swirled by the centrifugal force of the overflow swirl flow R.
  • the swirl flow R swirls while spreading in the radial direction.
  • air in the vicinity of the turning center of the swirling flow R is pulled in the radial direction so that the air pressure in the vicinity of the turning center of the swirling flow R decreases and becomes relatively lower than the air pressure generated in the swirling portion of the swirling flow R.
  • a negative pressure acts on the conveyed object C and a force D is generated to attract and attract the conveyed object C toward the lower swirl flow forming portion 130A (130B).
  • the force D to be attracted and the force to be lifted by the swirling flow R overflowing the conveyed object C are balanced, and the conveyed object is held at the floating position of the conveyed object.
  • a pair of swirl flow forming portions 130 ⁇ / b> A and 130 ⁇ / b> B are disposed apart from each other in the road width direction S of the conveyance path surface 111.
  • the U axis indicates the flying direction (vertical direction).
  • the swirl directions of the swirl flows Ra and Rb generated in the swirl flow forming portions 130 ⁇ / b> A and 130 ⁇ / b> B are set to be opposite to each other in the road width direction S of the conveyance path surface 111.
  • the swirling flow acting force of the swirling flow Ra acting in the direction opposite to the direction of the T-axis arrow is represented by fa1.
  • the swirling flow acting force of the swirling flow Ra acting in the direction of the T-axis arrow is represented by fa2.
  • the swirling flow acting force of the swirling flow Rb acting in the direction opposite to the direction of the T-axis arrow is expressed as fb1.
  • the swirl flow acting force of the swirl flow Rb acting in the direction of the T-axis arrow is defined as fb2.
  • the sum of fa1 and fb1 is the sum of fa2 and fb2, and the sum of fa2 and fb2 is the sum of fa2 and fb2, and the sum of fa2 and fb2.
  • the swirl force acting force acting on the front area is F2.
  • both swirl flows Ra and Rb lose their escape points and become mutual.
  • the swirl forces of the swirl flows Ra and Rb that is, swirl flow acting forces fa1 and fb1 are reduced by interference and disturbance.
  • both the swirl flows Ra and Rb do not interfere with each other on both outer sides 111b in the road width direction in the pair of left and right swirl flow forming portions 130A and 130B, the swirl force of the swirl flows Ra and Rb, that is, swirl The flow acting forces fa2 and fb2 are not diminished.
  • the conveyed object C moves in the direction of the arrow on the T axis upon receiving the conveying force. That is, the pair of left and right swirl flow forming portions 130A and 130B convey the conveyed object C in a non-contact manner using the swirl force of the swirl flows Ra and Rb. At this time, instead of simply applying an air force to the transported object C in the transporting direction, the force D to be attracted by the negative pressure described above acts on the transported object C. In this state, since the swirl flow acting forces F1 and F2 in the conveying direction are added, the conveying force is reliably transmitted to the conveyed object C as a relative difference between the swirl flow acting forces F1 and F2.
  • the gas release holes 150 that escape from the swirling flow forming portions 130A and 130B to the excess space that overflows into the gap between the conveyance path surface 111 and the object to be conveyed C are dispersed on the conveyance path surface 111. It is arranged. As a result, the gas release hole 150 becomes an escape place for the air that stays excessively, and the flow of air that sequentially overflows from the swirl flow forming portions 130A and 130B is not hindered. That is, as compared with the configuration in which the gas release hole 150 is not provided, the swirl flow acting force of the swirl flows Ra and Rb acting toward the front region and the rear region in the transport direction T is increased and the relative difference between them is also large. To increase the conveying force.
  • the swirl flow forming portions 130 ⁇ / b> A and 130 ⁇ / b> B are detachably attached to the conveyance path surface 111 as separate components that can alternatively select the air injection force.
  • the strength of the swirl force by the swirl flow R can be changed simply by changing the swirl flow forming portions 130A and 130B. For example, when the size of the hole of the gas injection port 132 changes, the strength of the swirl force due to the swirl flow R changes, and the transport speed of the transported object C can be freely adjusted.
  • the swirl flow forming portions 130A and 130B are separated from each other in the road width direction S of the conveyance road surface 111 and are paired with each other.
  • the swirl flows Ra and Rb generated in the swirl flow forming portions 130A and 130B are set in directions opposite to each other in the road width direction S of the conveyance path surface 111, so that a pair of swirl flows
  • the forming units 130A and 130B convey the object C to be conveyed in a non-contact state with a simple apparatus configuration without using a contact-type drive mechanism by utilizing the swirl force of the swirl flows Ra and Rb.
  • the conveying force relative difference between F1 and F2
  • the swirl force acting forces F1 and F2 can be reliably transmitted to the conveyed object in the floating support state in which the conveyed object C is stabilized.
  • the swirl forming space 130A, 130B is provided with a bottomed peripheral side wall 131a provided below the transport path surface and opened on the transport path surface, and a swirl formation space surrounded by the peripheral side wall 131a from the tangential direction of the peripheral side wall 131a.
  • gas injection port 132 for injecting air into the region to generate the swirling flows Ra and Rb
  • gas release holes 150 are provided in a distributed manner on the conveyance path surface 111 for releasing excess air that overflows from the swirl flow forming portions 130A and 130B to the gap between the conveyance path surface 111 and the object C to be conveyed.
  • the swirl flow forming portions 130A and 130B are detachably attached to the conveyance path surface 111 as separate components capable of selectively selecting the air injection force, thereby using an injection force adjusting means such as a valve.
  • the effect of the swirling flow acting force F1, F2 in the conveying direction T can be adjusted without any adjustment, and the effect is enormous.
  • FIG. 5 is a perspective view showing a non-contact type levitation conveying apparatus 200 of the second embodiment of the present invention
  • FIG. 6 is a plan view seen from the reference numeral 6 in FIG.
  • the non-contact type levitation transfer device 200 of the second embodiment is obtained by changing the number and arrangement of the swirl flow forming portions 130A and 130B of the non-contact type levitation transfer device 100 of the first embodiment. Is common to the non-contact type levitation transfer apparatus 100 of the first embodiment, detailed description of common items is omitted, and only the reference numbers of the 200 series in which the last two digits are common are attached.
  • the swirl flow forming unit 230 ⁇ / b> A and the swirl flow forming unit 230 ⁇ / b> B are arranged in the road width direction S of the transport path surface 211.
  • a pair is disposed apart from each other on the left and right sides, and a plurality of them are disposed apart from each other in the transport direction T on the transport path surface 211.
  • the swirling directions of the swirling flows Ra and Rb generated respectively in the swirling flow forming portions 230A and 230B are set to be opposite to each other in the road width direction S of the conveying path surface 211 and in the conveying direction T of the conveying path surface 211.
  • each of the swirl flows Ra and Rb generated in the plurality of swirl flow forming portions 230A and 230B arranged in the transport direction T has a swirl flow acting force F1 and F2 in the transport direction T with respect to the conveyed object C.
  • a conveyance force acts on the to-be-conveyed object C as a relative difference of the swirl
  • the swirl flow forming portions 230A and 230B are separated from each other in the road width direction S of the conveyance road surface 211 and are paired with each other.
  • the swirl flows Ra and Rb generated in the swirl flow forming portions 230A and 230B are arranged in a plurality of positions spaced apart from each other in the transport direction T of the transport path surface 211.
  • the pair of swirl flow forming portions 230A and 230B are set in the swirl flow Ra, by being set in opposite directions in the path width direction S and in the same direction in the transport direction T of the transport road surface 211.
  • FIG. 7 is a plan view showing the arrangement of the swirl flow forming portions 330A and 330B according to the third embodiment of the present invention.
  • the non-contact type levitation conveyance device 300 of the third embodiment is obtained by changing the number and arrangement of the swirl flow forming portions 230A and 230B of the non-contact type levitation conveyance device 200 of the second embodiment. Is common to the non-contact type levitating and conveying apparatus 200 of the second embodiment, detailed description of common matters is omitted, and only the reference numbers in the 300 series are shared by the last two digits.
  • a plurality of swirl flow forming portions 330A and swirl flow forming portions 330B are arranged at intervals in the transfer direction T.
  • the swirl flow forming unit 330A and the swirl flow forming unit 330B are arranged in a positional relationship shifted in the transport direction T by a half pitch. In this case, the same effect as that of the second embodiment can be obtained.
  • FIG. 8A is a conceptual cross-sectional side view showing the non-contact levitation conveyance device 400 when the injection force of the air injected from the gas injection port 432 of the fourth embodiment of the present invention is higher than a predetermined injection force.
  • FIG. 8B is a conceptual cross-sectional side view showing the non-contact levitation transport apparatus 400 when the jetting force of the jetted air is lower than a predetermined jetting force.
  • the “predetermined injection force” is applied to the conveyed object C by the downward force from the conveying direction front 411b acting on the conveyed object C due to gravity to the conveying direction rearward 411a and the swirling flow acting force.
  • the gas (air) injection force when the upward force from the conveyance direction rear 411a to the conveyance direction front 411b balances.
  • the non-contact type levitation conveyance device 400 of the fourth embodiment is obtained by inclining the base portion 110 of the non-contact type levitation conveyance device 100 of the first embodiment with respect to the horizontal direction.
  • the non-contact type levitating and conveying apparatus 100 is the same as the non-contact type levitating and conveying apparatus 100. Therefore, detailed description of the common items is omitted, and only the 400th series code having the same lower two digits is attached.
  • the conveyance path surface 411 is inclined upward in the conveyance direction T as shown in FIGS. 8A and 8B.
  • the base portion 410 is inclined with respect to the horizontal direction H, and the conveyance direction rear 411 a of the conveyance path surface 411 is provided lower than the conveyance direction front 411 b of the conveyance path surface 411. Therefore, a downward force from the front 411b in the transport direction to the rear 411a in the transport direction acts on the transported object C due to gravity.
  • an injection force adjusting means 470 such as a compressor or a valve for adjusting the pressure of air injected from the gas injection ports 432 of the swirl flow forming units 430A and 430B is provided on the gas path leading to the gas injection ports 432.
  • an injection force adjusting means 470 such as a compressor or a valve for adjusting the pressure of air injected from the gas injection ports 432 of the swirl flow forming units 430A and 430B is provided on the gas path leading to the gas injection ports 432.
  • flow action force which acts toward the front area of the conveyance direction T is adjusted.
  • the object C can be transported up against the gravity of the object C to be conveyed, and the injection force by the injection force adjustment means 470 is reduced.
  • the transported object C is also transported down without resisting the gravity of the transported object C.
  • the jet force adjusting means 470 makes the jet force of the air jetted from the gas jet port 432 higher than a predetermined jet force to strengthen the swirl flow R, thereby reducing the downward direction due to gravity.
  • the conveyance force is more important than the force. Therefore, the conveyed object C moves so as to climb the slope.
  • the jet force adjusting means 470 lowers the jet force of the air jetted from the gas jet port 432 below a predetermined jet force and weakens the swirl flow R, thereby comparing with the downward force due to gravity.
  • the conveying force is smaller. Accordingly, the conveyed object C moves so as to move down the slope.
  • the injection force was adjusted by changing the level of the pressure of the air injected from the gas injection port 432 by the injection force adjusting means 470, the amount of air can be changed by changing the size of the gas injection port. The same effect can be obtained by adjusting the injection force by changing it or by switching the presence or absence of injection and adjusting the injection force.
  • the transported object C is transported up against the gravity of the transported object C in accordance with the increase adjustment of the spraying force by the spraying force adjusting means 470.
  • the force in the direction of descending from the transport direction front 411b to the transport direction rear 411a due to the gravity always acts on the object C to be transported as a deceleration effect when moving to move up the slope from the transport direction rear 411a to the transport direction front 411b. To do. That is, speed control for the conveyed object C is facilitated.
  • the injection force adjusting means 470 for adjusting the injection force of air is provided on the gas path reaching the gas injection port 432.
  • the conveyance speed can be adjusted by adjusting the conveyance force to the object C to be conveyed.
  • the conveyance path surface 411 is inclined upward in the conveyance direction T, the conveyance object C is moved against the gravity of the conveyance object C along with the increase in the injection force by the injection force adjusting means 470.
  • the effect is enormous, for example, the transported object C can be transported in a downward direction without resisting the gravity of the transported object C along with the decrease adjustment of the spraying force by the spraying force adjusting means 470.
  • Injection force adjusting means C. Swirl flow acting force fa1, fa2 acting on the rear area in the conveying direction
  • the swirling flow acting force F2 due to the swirling flow in one direction...
  • the swirling flow acting force H due to the other swirling flow.

Abstract

 旋回流の旋回力を活用して接触式の駆動機構を付設することなく簡便な装置構成で被搬送物を非接触状態で浮上させながら搬送する非接触式浮上搬送装置を提供すること。 気体からなる旋回流を発生させる旋回流形成部(130A、130B)が、被搬送物(C)を搬送する平坦な搬送路面(111)の路幅方向(S)で左右相互に離間して一対配設され、旋回流形成部(130A、130B)でそれぞれ発生する旋回流の旋回方向が、搬送路面(111)の路幅方向(S)で相互に逆方向に設定されていることにより、旋回流形成部(130A、130B)から順次溢出してくる旋回流を被搬送物(C)の底面と搬送路面(111)との間隙に介在させて被搬送物(C)を浮上させるとともに旋回流の旋回力によって生じる搬送力で被搬送物(C)を搬送する非接触式浮上搬送装置(100)。

Description

非接触式浮上搬送装置
 本発明は、旋回流を発生させる旋回流形成部が被搬送物を搬送する搬送路面に配設され、この旋回流により被搬送物を浮上させながら被搬送物に対する駆動力を発生させて被搬送物を完全な非接触状態にて浮上搬送させる非接触式浮上搬送装置に関するものであって、特に、太陽電池用フラットパネルや携帯電話、液晶テレビ、パソコン用液晶モニターなどに用いるディスプレイ用ガラス基板からなる被搬送物を浮上搬送する非接触式浮上搬送装置に関するものである。
 従来、非接触搬送装置として、表面から裏面に貫通する横断面円形の貫通孔を有するリング状部材の裏面に噴出口を備え、この噴出口から空気を噴出させることにより、このリング状部材の表面側にこの表面から離れる方向へ向かう旋回流を生じさせるとともに、このリング状部材の表面側の貫通孔の開口部近傍に裏面方向への空気の流れを生じさせる旋回流形成体を、基台フレームの搬送面に2個以上備えて、液晶用ガラスなどからなる被搬送物の浮上高さ精度を高く維持しつつ接触式の駆動機構を用いて被搬送物を浮上搬送させる非接触搬送装置が知られている(特許文献1および特許文献2参照)。
特許5237357号公報(特に、第3頁第6~7段落、図1、図2を参照) 国際公開WO2010/004800号公報(特に、請求項1、図3参照)
 しかしながら、上述した従来の非接触搬送装置では、搬送面上における被搬送物の回動やふらつきを回避して浮上高さ精度を保つように、旋回流形成体の旋回流の旋回方向が互いに変わるように搬送方向に複数配列することにより、それぞれの旋回流形成体から搬送面上に送り出された旋回流の旋回力を意図的に相殺させるとともに被搬送物の底面と搬送面との間隙に旋回流を送り続けて介在させた浮上状態を呈するものの、この浮上している被搬送物を搬送方向へ搬送させるためには、別途、摩擦コロやベルトなどの接触式の駆動機構を用いて被搬送物に搬送するための駆動力を与えて搬送する必要があり、このような接触式の駆動機構を付設すると搬送装置としての全体的装置構成やその駆動制御が複雑となるという問題があった。
 そこで、本発明は、前述したような従来技術の問題を解決するものであって、すなわち、本発明の目的は、旋回流の旋回力を活用して接触式の駆動機構を付設することなく簡便な装置構成で被搬送物を完全なる非接触状態で浮上させながら搬送する非接触式浮上搬送装置を提供することである。
 本請求項1に係る発明は、気体からなる旋回流を発生させる旋回流形成部が被搬送物を搬送する平坦な搬送路面に配設され、前記旋回流形成部から順次溢出してくる旋回流を被搬送物の底面と搬送路面との間隙に介在させて被搬送物を浮上させるとともに前記旋回流の旋回力によって生じる搬送力で被搬送物を搬送する非接触式浮上搬送装置であって、前記旋回流形成部が、前記搬送路面の路幅方向で左右相互に離間して一対配設され、前記旋回流形成部でそれぞれ発生する旋回流の旋回方向が、前記搬送路面の路幅方向で相互に逆方向に設定されていることによって、前述した課題を解決するものである。
 本請求項2に係る発明は、請求項1に記載された非接触式浮上搬送装置の構成に加えて、前記旋回流形成部が、前記搬送路面の搬送方向で前後相互に離間して複数配設されているとともに、前記旋回流形成部でそれぞれ発生する旋回流の旋回方向が、前記搬送路面の搬送方向で相互に同一方向に設定されていることによって、前述した課題を解決するものである。
 本請求項3に係る発明は、請求項1または請求項2に記載された非接触式浮上搬送装置の構成に加えて、前記旋回流形成部が、前記搬送路面下に設けられて搬送路面上に開口する有底の周側壁と、該周側壁の接線方向から周側壁で囲繞される旋回形成空間領域内へ前記気体を噴射して旋回流を発生させる気体噴射口とを備えていることにより、前述した課題をさらに解決するものである。
 本請求項4に係る発明は、請求項3に記載された非接触式浮上搬送装置の構成に加えて、前記旋回流形成部から搬送路面と被搬送物との間隙に溢出して過剰に滞留する気体を逃す気体解放孔が、前記搬送路面に分散して配設されていることにより、前述した課題をさらに解決するものである。
 本請求項5に係る発明は、請求項3または請求項4に記載された非接触式浮上搬送装置の構成に加えて、前記気体の噴射力を調整する噴射力調整手段が、前記気体噴射口に至る気体経路上に設けられていることにより、前述した課題をさらに解決するものである。
 本請求項6に係る発明は、請求項5に記載された非接触式浮上搬送装置の構成に加えて、前記搬送路面が、前記搬送方向に向かって上向き傾斜していることによって、前述した課題をさらに解決するものである。
 本請求項7に係る発明は、請求項3乃至請求項6のいずれか1つに記載された非接触式浮上搬送装置の構成に加えて、前記旋回流形成部が、前記気体の噴射力を択一的に選択可能な別部品として前記搬送路面に着脱自在に取り付けられていることにより、前述した課題をさらに解決するものである。
 本発明の非接触式浮上搬送装置は、気体からなる旋回流を発生させる旋回流形成部が被搬送物を搬送する平坦な搬送路面に配設されていることにより、旋回流形成部から順次溢出してくる旋回流を被搬送物の底面と搬送路面との間隙に介在させて被搬送物を浮上させることができるばかりでなく、以下のような特有の効果を奏することができる。
 本請求項1に係る発明の非接触式浮上搬送装置によれば、旋回流形成部が、搬送路面の路幅方向で左右相互に離間して一対配設され、旋回流形成部でそれぞれ発生する旋回流の旋回方向が、搬送路面の路幅方向で相互に逆方向に設定されていることにより、左右一対の旋回流形成部で被搬送物に作用して搬送方向の前方域に向かう旋回流作用力と搬送方向の後方域に向かう旋回流作用力との相対的な差に基づいて被搬送物の搬送方向が方向付けされるため、旋回流の旋回力を活用して接触式の駆動機構を付設することなく簡便な装置構成で、非接触状態で被搬送物を搬送方向の前方域へ向かって浮上させつつ搬送することができる。
 すなわち、左右一対の旋回流形成部が配置された搬送路面の搬送方向に沿った中央部分側では、双方の旋回流が逃げ場を失って相互に干渉したり乱れたりしてそれぞれ旋回流の旋回力が相互に減殺されるが、左右一対の旋回流形成部における路幅方向の両外側では、旋回流の旋回力が相互に減殺されず、その結果、左右一対の旋回流形成部の相互間で搬送方向の後方域へ作用する旋回流作用力に対して、左右一対の旋回流形成部における路幅方向の両外側で搬送方向の前方域へ作用する旋回流作用力が相対的に大きくなり、被搬送物に対して面摩擦によって伝わる力は、搬送方向の後方域へ向かって作用する旋回流作用力よりも搬送方向の前方域へ向かって作用する旋回流作用力の方が大きくなるため、接触式の駆動機構を付設することなく非接触状態で被搬送物を搬送方向の前方域へ向かって搬送させることができる。
 また、旋回流形成部内で連続的に発生する旋回流が旋回流形成部から被搬送物側に向かって搬送路面上に溢出すると、この溢出した旋回流の遠心力によって旋回流の旋回半径が拡大して、旋回流の中心近傍部分に生じる気圧が旋回流の旋回部分に生じる気圧と比べて相対的に低くなり、この低くなった気圧が被搬送物に負圧として作用することにより、被搬送物を旋回流形成部側へ吸引して引き寄せようとする力と被搬送物を溢出した旋回流で浮上させようとする力とが釣り合った被搬送物の浮上位置に被搬送物を保持するため、被搬送物を安定させた浮上支持状態で旋回流作用力による搬送力を確実に被搬送物へ伝えることができる。
 すなわち、単に、搬送方向へ気体の力を被搬送物に対して付加しているのではなく、被搬送物を旋回流形成部側へ吸引して引き寄せようとする力が作用している状態で前述した旋回流作用力を被搬送物に対して付加しているため、確実に旋回流作用力による搬送力を被搬送物へ伝えることができる。
 本請求項2に係る発明の非接触式浮上搬送装置によれば、請求項1に係る発明が奏する効果に加えて、旋回流形成部が、搬送路面の搬送方向で前後相互に離間して複数配設されているとともに、旋回流形成部でそれぞれ発生する旋回流の旋回方向が、搬送路面の搬送方向で相互に同一方向に設定されていることにより、搬送方向に配列された複数組の旋回流形成部で生じた旋回流のそれぞれが被搬送物に対して搬送方向への旋回流作用力を作用するため、搬送力をより一段と大きくすることができる。
 本請求項3に係る発明の非接触式浮上搬送装置によれば、請求項1または請求項2に係る発明が奏する効果に加えて、旋回流形成部が、搬送路面下に設けられて搬送路面上に開口する有底の周側壁と、この周側壁の接線方向から周側壁で囲繞される旋回形成空間領域内へ気体を噴射して旋回流を発生させる気体噴射口とを備えていることにより、簡単でコンパクトな構成で旋回流が形成されるため、モータなどの回転構造を不要として非接触式浮上搬送装置を簡素化することができる。
 本請求項4に係る発明の非接触式浮上搬送装置によれば、請求項3に係る発明が奏する効果に加えて、旋回流形成部から搬送路面と被搬送物との間隙に溢出して過剰に滞留する気体を逃す気体解放孔が、搬送路面に分散して配設されていることにより、この気体解放孔が過剰に滞留する気体の逃げ場となり、旋回流形成部から順次溢出してくる気体の流れが妨げられないため、気体解放孔が設けられていないときと比べて搬送方向の前方域および後方域へ向かって作用する旋回流作用力を大きくするとともにその差も大きくして搬送力を増加させることができる。
 本請求項5に係る発明の非接触式浮上搬送装置によれば、請求項3または請求項4に係る発明が奏する効果に加えて、気体の噴射力を調整する噴射力調整手段が、気体噴射口に至る気体経路上に設けられていることにより、搬送方向の前方域へ向かって作用する旋回流作用力の大きさが可変自在となるため、被搬送物に及ぼす搬送力の増減により搬送速度を調整することができる。
 本請求項6に係る発明の非接触式浮上搬送装置によれば、請求項5に係る発明が奏する効果に加えて、搬送路面が、搬送方向に向かって上向き傾斜されていることにより、噴射力調整手段による噴射力の増加調整に伴って被搬送物の重力に抗して被搬送物を上り搬送させるとともに噴射力調整手段による噴射力の減少調整に伴って被搬送物の重力に抗し切れずに被搬送物を下り搬送させることができる。
 すなわち、重力により搬送路面の傾斜を下る方向の力が被搬送物に作用し、気体噴射口からの噴射を開始して旋回流を発生させる、または噴射する気体の圧力を高くしたり気体噴射口の口径を大きくして旋回流を強めることで下る方向の力と比べて搬送力の方が大きい関係となるため、傾斜を上るように被搬送物を移動させることができる。
 また、気体噴射口から噴射する気体の圧力を無にして旋回流を無くす、または噴射する気体の圧力を低くしたり気体噴射口の口径を小さくして旋回流を弱めることで搬送力と比べて下る方向の力の方が大きな関係となるため、傾斜を下るように搬送物を移動させることができる。
 本請求項7に係る発明の非接触式浮上搬送装置によれば、請求項3乃至請求項6のいずれか1つに係る発明が奏する効果に加えて、旋回流形成部が気体の噴射力を択一的に選択可能な別部品として搬送路面に着脱自在に取り付けられていることにより、旋回流形成部を付け替えるだけで旋回流による旋回力の強さが変更可能となるため、バルブなどの噴射力調整手段を用いることなく搬送方向への旋回流作用力を調整して搬送力を任意に調整することができるばかりでなく、旋回流形成部の素材や製作加工の選択肢を多様化させることができる。
本発明の第1実施例の非接触式浮上搬送装置を示す斜視図。 図1の符号2の箇所の旋回流形成部を示す拡大斜視図。 本発明の旋回流形成部による旋回流および下方へ引き寄せようとする力が発生する原理を示す概念断面図。 図1の符号4から視た拡大平面図であって第1実施例において搬送力が発生する原理を示す図。 本発明の第2実施例の非接触式浮上搬送装置を示す斜視図。 図5の符号6から視た平面図。 本発明の第3実施例の旋回流形成部の配置を示す平面図。 本発明の第4実施例の非接触式浮上搬送装置を示す概念側断面図。 本発明の第4実施例の非接触式浮上搬送装置を示す概念側断面図。
 本発明は、気体からなる旋回流を発生させる旋回流形成部が被搬送物を搬送する平坦な搬送路面に配設され、旋回流形成部から順次溢出してくる旋回流を被搬送物の底面と搬送路面との間隙に介在させて被搬送物を浮上させるとともに旋回流の旋回力によって生じる搬送力で被搬送物を搬送する非接触式浮上搬送装置であって、旋回流形成部が搬送路面の路幅方向で左右相互に離間して一対配設され、旋回流形成部でそれぞれ発生する旋回流の旋回方向が搬送路面の路幅方向で相互に逆方向に設定されていることにより、左右一対の旋回流形成部にそれぞれ設定された旋回流の旋回方向が、左右一対の旋回流形成部で被搬送物に作用して搬送方向の前方域に向かう旋回流作用力と搬送方向の後方域に向かう旋回流作用力との相対的な差に基づいて被搬送物の搬送方向を方向付けして、旋回流の旋回力を活用して接触式の駆動機構を付設することなく簡便な装置構成で被搬送物を非接触状態で浮上させながら搬送するものであれば、その具体的な実施態様は、如何なるものであっても構わない。
 すなわち、本発明で採用する旋回流形成部の具体的な実施態様については、穿孔加工や切削加工などにより搬送路面を構成するベース部自体に直接形成されていても良いが、樹脂加工などによるチップ状の成形品等、搬送路面を構成するベース部と別体に形成されていても良く、旋回流形成部がベース部と別体に形成されている場合には、旋回流形成部の素材や製作加工の選択肢を多様化させることができるので、より好ましい。
 また、旋回流形成部の具体的な構造については、空気などの気体から旋回流を形成するものであれば如何なるものであっても何ら構わない。例えば、旋回流形成部の気体噴射口から噴射された気体が、旋回方向へ案内する案内凹所の深さ3~10mm程度の周側壁に沿って流れることで旋回流を形成するものでもよい。平面視の案内凹所の形状としては如何なるものであっても何ら構わない。この案内凹所の具体的な形状は、例えば、円形状、環状、楕円形状、多角形状、円形状に切り欠き部が形成された形状などでも良く、更に具体的には、鍔付きの円形カップ状のものがより好ましい。
 また、周側壁を備えた案内凹所内に吸気口とファンとを設けて、ファンが回転することで周側壁で囲繞された案内凹所内から上方へ向かう旋回流を形成するものでも良い。
 そして、本発明における旋回流形成部の具体的な配列形態については、前述したように、左右一対の旋回流形成部にそれぞれ設定された旋回流の旋回方向が、左右一対の旋回流形成部で被搬送物に作用して搬送方向の前方域に向かう旋回流作用力と搬送方向の後方域に向かう旋回流作用力との相対的な差に基づいて被搬送物の搬送方向を方向付けし、旋回流の旋回力を活用して被搬送物を浮上させつつ搬送させることが可能な浮上搬送機構を構築するものであれば如何なる配列形態であっても良い。旋回流形成部が、搬送路面の路幅方向で左右相互に離間して一対のみ配設された配列形態、あるいは、搬送路面の路幅方向で左右相互に離間して一対配設されるとともに搬送路面の搬送方向で前後相互に離間して複数配設された配列形態のいずれであっても何ら構わない。
 さらに、本発明では、搬送路面の路幅方向で左右相互に離間する一対の旋回流形成部が、搬送方向で同じ位置関係で配列されても良く、搬送方向で互いにずれた位置関係で配列されても良い。
 そして、本発明における搬送路面は、平坦であることが重要であり、この平坦な搬送路面の加工精度が高ければ被搬送物のより安定した搬送状態が得られることは言うまでもない。また、必要に応じて、旋回流形成部から放出された気体が路幅方向の両側縁から過度に漏出することを抑制するとともに被搬送物を搬送方向へ誘導規制するために、ガイド板を搬送路面の両側縁に設けるのも良い。
 なお、本発明の非接触式浮上搬送装置によって浮上搬送させる被搬送物としては、例えば、ガラス、プラスチック、金属などの素材からなる薄板状のものであり、特に好適な被搬送物としては、太陽電池用フラットパネルや携帯電話、液晶テレビ、パソコン用液晶モニターなどに用いる0.1乃至0.5mm程度のディスプレイ用ガラス基板である。
 以下に、本発明の第1実施例である非接触式浮上搬送装置100について、図1乃至図4に基づいて説明する。
 ここで、図1は、本発明の第1実施例の非接触式浮上搬送装置100を示す斜視図であり、図2は、図1の符号2の箇所の旋回流形成部130Aを示す拡大斜視図であり、図3は、本発明の旋回流形成部130A、130Bによる旋回流Rおよび下方へ引き寄せようとする力Dが発生する原理を示す概念断面図であり、図4は、図1の符号4から視た拡大平面図であって第1実施例において搬送力が発生する原理を示す図である。
 本発明の第1実施例である非接触式浮上搬送装置100は、図1乃至図4に示すように、気体からなる旋回流Rを発生させる旋回流形成部130A、130Bが、例えば、0.3mm程度のディスプレイ用ガラス基板からなる薄板状の被搬送物Cを搬送する平坦な搬送路面111に配設され、旋回流形成部130A、130Bから順次溢出してくる旋回流Rを被搬送物Cの底面と搬送路面111との間隙に介在させて被搬送物Cを浮上させるとともに旋回流Rの旋回力によって生じる搬送力で被搬送物Cを搬送するように構成されている。
 具体的に、非接触式浮上搬送装置100は、ベース部110と、このベース部110を支持する機台フレーム120とを備えている。
 そして、ベース部110における被搬送物Cと対向する搬送路面111には、樹脂成形加工してなる鍔付きの円形カップ状の旋回流形成部130A、130Bが、搬送路面111の路幅方向Sで左右相互に離間して一対、すなわち、一組のみ配設されている。
 本実施例では、旋回流形成部130A、130Bが、搬送路面下に設けられて搬送路面上に開口する有底の案内凹所131の周側壁131aと、この周側壁131aの接線方向から周側壁131aで囲繞される旋回形成空間領域内へ気体としての空気を噴射して旋回流Rを発生させる気体噴射口132とを備えている。
 図2に示すように、旋回流形成部130A(130B)は、空気を旋回方向へ案内する案内凹所131と、この案内凹所131を囲繞する円筒状の周側壁131aに沿って空気をそれぞれ噴射する2つの気体噴射口132とを有している。
 本実施例の場合には、これら2つの気体噴射口132が、案内凹所131を囲繞する円筒状の周側壁131aを2分する位置に設けられており、旋回流Rを確実かつ安定して発生させるようになっている。
 そして、このように構成された旋回流形成部130A、130Bが、旋回流Rを搬送路面111と被搬送物Cとの間に溢出することにより、被搬送物Cを、例えば0.05mm程度浮上させている。
 ここで、旋回流形成部130Aの構造と、旋回流形成部130Bの構造との関係は、旋回流形成部130Aおよび130B間のT軸方向(被搬送物Cの搬送方向)の仮想中心線を基準とした線対称の関係であり、旋回流形成部130A、130Bでそれぞれ発生する旋回流Ra、Rb(図4参照)の旋回方向が、搬送路面111の路幅方向Sで相互に逆方向に設定されている。
 なお、本実施例では、旋回流形成部130A、130Bを構成する樹脂成形加工してなる鍔付きの円形カップ状の部材は、ベース部110と別部材で形成されてベース部110に嵌め込まれているが、ベース部110自体に一体的に形成されていてもよい。
 また、機台フレーム120は、水平方向に対するベース部110の姿勢を調整自在に設けられ、本実施例では、ベース部110の搬送路面111の設置姿勢が水平となるように調整されている。
 ここで、先ず、図3を用いて、旋回流形成部130A(130B)から放出される旋回流R、および、被搬送物Cを下方の旋回流形成部130A(130B)側へ引き寄せようとする力Dがそれぞれ発生する原理について説明する。
 前述した旋回流形成部130A(130B)の気体噴射口132から空気が噴射されると、噴射された空気が案内凹所131の周側壁131aに沿って流れ、案内凹所131内で旋回流Rが連続的に継続して形成される。
 そして、空気が、気体噴射口132から順次噴射されるので、案内凹所131内から連続的に発生してくる旋回流Rは、被搬送物C側に向かって上方へ移動し溢出する。
 この際、旋回流Rが案内凹所131の周側壁131aから上方へ移動し、案内凹所131の周側壁131aから離れるため、溢出した旋回流Rの遠心力により旋回流Rの旋回半径が旋回流Rの旋回中心を基準に拡大する。
 つまり、旋回流Rが放射方向へ広がりながら旋回する。
 そして、旋回流Rの旋回中心近傍の空気が放射方向へ引っ張られるようにして、旋回流Rの旋回中心近傍の気圧が下がり旋回流Rの旋回部分に生じる気圧と比べて相対的に低くなる。
 そのため、被搬送物Cに対して負圧が作用して被搬送物Cを下方の旋回流形成部130A(130B)側へ吸引して引き寄せようとする力Dが発生する。
 この引き寄せようとする力Dと被搬送物Cを溢出した旋回流Rで浮上させようとする力とが釣り合って、被搬送物の浮上位置に被搬送物が保持される。
 続いて、図4を用いて、第1実施例において搬送力が発生する原理について説明する。
 本実施例では、旋回流形成部130A、130Bが、搬送路面111の路幅方向Sで左右相互に離間して一対配設されている。
 なお、U軸が示すのは、浮上方向(鉛直方向)である。
 さらに、旋回流形成部130A、130Bでそれぞれ発生する旋回流Ra、Rbの旋回方向が、搬送路面111の路幅方向Sで相互に逆方向に設定されている。
 これにより、左右一対の旋回流形成部130A、130Bで被搬送物Cに作用して搬送方向Tの前方域に向かう旋回流作用力F2と搬送方向Tの後方域に向かう旋回流作用力F1との相対的な差に基づいて被搬送物Cの搬送方向Tが方向付けされ、その方向に搬送力が発生する。
 以下により、具体的に説明する。
 ここで、図4中の左側の旋回流形成部130Aの旋回流Raが案内凹所131外に出た際、T軸矢印の方向と逆方向に作用する旋回流Raの旋回流作用力をfa1、T軸矢印の方向に作用する旋回流Raの旋回流作用力をfa2とする。
 同様に、図4中の右側の旋回流形成部130Bの旋回流Rbが案内凹所131外に出た際、T軸矢印の方向と逆方向に作用する旋回流Rbの旋回流作用力をfb1、T軸矢印の方向に作用する旋回流Rbの旋回流作用力をfb2とする。
 そして、fa1、fb1の和であり、搬送方向Tの後方域(T軸矢印の方向と逆方向域)へ作用する旋回流作用力をF1とし、fa2、fb2の和であり、搬送方向Tの前方域(T軸矢印の方向域)へ作用する旋回流作用力をF2とする。
 このとき、配置された左右一対の旋回流形成部130A、130Bに挟まれた搬送路面111の搬送方向Tに沿った中央部分側111aでは、双方の旋回流Ra、Rbが逃げ場を失って相互に干渉したり乱れたりしてそれぞれ旋回流Ra、Rbの旋回力、すなわち、旋回流作用力fa1、fb1が減殺される。
 他方、左右一対の旋回流形成部130A、130Bにおける路幅方向の両外側111bでは、双方の旋回流Ra、Rbが相互に干渉したりしないため、旋回流Ra、Rbの旋回力、すなわち、旋回流作用力fa2、fb2が減殺されない。
 その結果、左右一対の旋回流形成部130A、130Bの相互間で搬送方向Tの後方域へ作用する旋回流Ra、Rbの旋回流作用力F1に対して、左右一対の旋回流形成部130A、130Bの路幅方向の両外側111bで搬送方向Tの前方域へ作用する旋回流Ra、Rbの旋回流作用力F2が相対的に大きくなる。
 さらに、被搬送物Cを吸引して下方の旋回流形成部130A、130B側へそれぞれ引き寄せようとする力Dに起因して生じる面摩擦によって被搬送物Cに伝わる力は、搬送方向Tの後方域へ向かって作用する旋回流Ra、Rbの旋回流作用力F1よりも搬送方向Tの前方域へ向かって作用する旋回流Ra、Rbの旋回流作用力F2の方が大きくなる。
 したがって、搬送力を受けて被搬送物Cは、T軸の矢印方向へ移動する。
 つまり、左右一対の旋回流形成部130A、130Bが、旋回流Ra、Rbの旋回力を活用して被搬送物Cを非接触で浮上させつつ搬送する。
 この際、ただ単に、搬送する方向へ空気の力を被搬送物Cに対して付加しているのではなく、上述した負圧による引き寄せようとする力Dが被搬送物Cに対して作用した状態で、搬送する方向への旋回流作用力F1、F2を付加しているため、旋回流作用力F1、F2の相対的な差として搬送力が被搬送物Cへ確実に伝えられる。
 さらに、本実施例では、旋回流形成部130A、130Bから搬送路面111と被搬送物Cとの間隙に溢出して過剰に滞留する空気を逃す気体解放孔150が、搬送路面111に分散して配設されている。
 これにより、気体解放孔150が過剰に滞留する空気の逃げ場となり、旋回流形成部130A、130Bから順次溢出してくる空気の流れが妨げられない。
 つまり、気体解放孔150が設けられていない構成と比べて搬送方向Tの前方域および後方域へ向かって作用する旋回流Ra、Rbの旋回流作用力を大きくするとともにその相対的な差も大きくして搬送力を増加させる。
 また、本実施例では、旋回流形成部130A、130Bが、空気の噴射力を択一的に選択可能な別部品として搬送路面111に着脱自在に取り付けられている。
 これにより、旋回流形成部130A、130Bを付け替えるだけで旋回流Rによる旋回力の強さが変更可能となる。
 例えば、気体噴射口132の孔の大きさが変わることにより、旋回流Rによる旋回力の強さが変わり、被搬送物Cの搬送速度を自在に調整することが可能となる。
 このようにして得られた本発明の第1実施例である非接触式浮上搬送装置100は、旋回流形成部130A、130Bが、搬送路面111の路幅方向Sで左右相互に離間して一対配設され、旋回流形成部130A、130Bでそれぞれ発生する旋回流Ra、Rbの旋回方向が、搬送路面111の路幅方向Sで相互に逆方向に設定されていることにより、一対の旋回流形成部130A、130Bが、旋回流Ra、Rbの旋回力を活用して接触式の駆動機構を付設することなく簡便な装置構成で、被搬送物Cを非接触状態で浮上させながら搬送することができ、被搬送物Cを安定させた浮上支持状態で旋回流作用力F1、F2による搬送力(F1とF2との相対的な差)を確実に被搬送物へ伝えることができる。
 また、旋回流形成部130A、130Bが、搬送路面下に設けられて搬送路面上に開口する有底の周側壁131aと、この周側壁131aの接線方向から周側壁131aで囲繞される旋回形成空間領域内へ空気を噴射して旋回流Ra、Rbを発生させる気体噴射口132とを備えていることにより、モータなどの回転構造を不要として非接触式浮上搬送装置100を簡素化することができる。
 さらに、旋回流形成部130A、130Bから搬送路面111と被搬送物Cとの間隙に溢出して過剰に滞留する空気を逃す気体解放孔150が、搬送路面111に分散して配設されていることにより、気体解放孔150が設けられていない構成と比べて搬送方向Tの前方域および後方域へ向かって作用する旋回流Ra、Rbの旋回流作用力F1、F2を大きくするとともにその相対的な差も大きくして搬送力を増加させることができる。
 また、旋回流形成部130A、130Bが、空気の噴射力を択一的に選択可能な別部品として搬送路面111に着脱自在に取り付けられていることにより、バルブなどの噴射力調整手段を用いることなく搬送方向Tへの旋回流作用力F1、F2を調整して搬送力を調整することができるなど、その効果は甚大である。
 続いて、本発明の第2実施例である非接触式浮上搬送装置200について、図5および図6に基づいて説明する。
 ここで、図5は、本発明の第2実施例の非接触式浮上搬送装置200を示す斜視図であり、図6は、図5の符号6から視た平面図である。
 第2実施例の非接触式浮上搬送装置200は、第1実施例の非接触式浮上搬送装置100の旋回流形成部130A、130Bの配置数および配列形態を変更したものであり、多くの要素について第1実施例の非接触式浮上搬送装置100と共通するので、共通する事項については詳しい説明を省略し、下2桁が共通する200番台の符号を付すのみとする。
 本発明の第2実施例である非接触式浮上搬送装置200では、図5および図6に示すように、旋回流形成部230Aおよび旋回流形成部230Bが、搬送路面211の路幅方向Sで左右相互に離間して一対配設されているとともに搬送路面211の搬送方向Tで前後相互に離間して複数配設されている。
 さらに、旋回流形成部230A、230Bでそれぞれ発生する旋回流Ra、Rbの旋回方向が、搬送路面211の路幅方向Sで相互に逆方向に設定されているとともに搬送路面211の搬送方向Tで相互に同一方向に設定されている。
 これにより、上述した第1実施例と同様の効果を得ることができる。
 さらに、搬送方向Tに配列された複数組の旋回流形成部230A、230Bで生じた旋回流Ra、Rbのそれぞれが被搬送物Cに対して搬送方向Tへの旋回流作用力F1、F2を作用する。そして、旋回流作用力F1、F2の相対的な差として搬送力が被搬送物Cに作用する。
 このようにして得られた本発明の第2実施例である非接触式浮上搬送装置200は、旋回流形成部230A、230Bが、搬送路面211の路幅方向Sで左右相互に離間して一対配設されているとともに搬送路面211の搬送方向Tで前後相互に離間して複数配設され、旋回流形成部230A、230Bでそれぞれ発生する旋回流Ra、Rbの旋回方向が、搬送路面211の路幅方向Sで相互に逆方向に設定されているとともに搬送路面211の搬送方向Tで相互に同一方向に設定されていることにより、一対の旋回流形成部230A、230Bが、旋回流Ra、Rbの旋回力を活用して接触式の駆動機構を付設することなく簡便な装置構成で、被搬送物Cを非接触状態で浮上させつつ搬送力を発生させて被搬送物Cを非接触で搬送することができ、上記第1実施例の構成と比べて搬送力を大きくすることができるなど、その効果は甚大である。
 続いて、本発明の第3実施例である非接触式浮上搬送装置300について、図7に基づいて説明する。
 ここで、図7は、本発明の第3実施例の旋回流形成部330A、330Bの配置を示す平面図である。
 第3実施例の非接触式浮上搬送装置300は、第2実施例の非接触式浮上搬送装置200の旋回流形成部230A、230Bの配置数および配列形態を変更したものであり、多くの要素について第2実施例の非接触式浮上搬送装置200と共通するので、共通する事項については詳しい説明を省略し、下2桁が共通する300番台の符号を付すのみとする。
 本発明の第3実施例である非接触式浮上搬送装置300では、図7に示すように、旋回流形成部330Aおよび旋回流形成部330Bが、それぞれ搬送方向Tに間隔を空けて複数配設されている。
 そして、旋回流形成部330Aおよび旋回流形成部330Bが、搬送方向Tに半ピッチずれた位置関係で配設されている。
 この場合も上述した第2実施例と同様の作用効果を得ることができる。
 続いて、本発明の第4実施例である非接触式浮上搬送装置400について、図8Aおよび図8Bに基づいて説明する。
 ここで、図8Aは、本発明の第4実施例の気体噴射口432から噴射する空気の噴射力が所定の噴射力より高いときの非接触式浮上搬送装置400を示す概念側断面図であり、図8Bは、噴射する空気の噴射力が所定の噴射力より低いときの非接触式浮上搬送装置400を示す概念側断面図である。
 ここで、「所定の噴射力」とは、重力により被搬送物Cに作用する搬送方向前方411bから搬送方向後方411aへの下り方向の力と、旋回流作用力により被搬送物Cに作用する搬送方向後方411aから搬送方向前方411bへの上り方向の力とが釣り合うときの気体(空気)の噴射力をいう。
 第4実施例の非接触式浮上搬送装置400は、第1実施例の非接触式浮上搬送装置100のベース部110を水平方向に対して傾けたものであり、多くの要素について第1実施例の非接触式浮上搬送装置100と共通するので、共通する事項については詳しい説明を省略し、下2桁が共通する400番台の符号を付すのみとする。
 本発明の第4実施例である非接触式浮上搬送装置400では、図8Aおよび図8Bに示すように、搬送路面411が、搬送方向Tに向かって上向き傾斜されている。
 具体的には、ベース部410が水平方向Hに対して傾けられ、搬送路面411の搬送方向後方411aが、搬送路面411の搬送方向前方411bより低く設けられている。
 したがって、重力により搬送方向前方411bから搬送方向後方411aへの下り方向の力が被搬送物Cに作用する。
 また、旋回流形成部430A、430Bの気体噴射口432から噴射する空気の圧力を調整するコンプレッサーやバルブなどの噴射力調整手段470が、気体噴射口432に至る気体経路上に設けられている。
 これにより、搬送方向Tの前方域へ向かって作用する旋回流作用力の大きさが調整される。
 さらに、噴射力調整手段470による噴射力の増加調整に伴って被搬送物Cの重力に抗して被搬送物Cを上り搬送させることが可能であるとともに噴射力調整手段470による噴射力の減少調整に伴って被搬送物Cの重力に抗し切れずに被搬送物Cを下り搬送させるようにも構成されている。
 より詳しく説明すると、図8Aに示すように、噴射力調整手段470により気体噴射口432から噴射する空気の噴射力を所定の噴射力より高くして旋回流Rを強めることで重力による下り方向の力と比べて搬送力の方が大きな関係となる。
 したがって、被搬送物Cが、傾斜を登坂するように移動する。
 また、図8Bに示すように、噴射力調整手段470により気体噴射口432から噴射する空気の噴射力を所定の噴射力より低くして旋回流Rを弱めることで重力による下り方向の力と比べて搬送力の方が小さくなっている。
 したがって、被搬送物Cが、傾斜を下るように移動する。
 なお、噴射力調整手段470により、気体噴射口432から噴射する空気の圧力の高低を変化させて噴射力を調整したが、気体噴射口の口径の大小を変化させることで空気の量の多少を変化させて噴射力を調整したり、噴射の有無を切り替え噴射力を調整しても同様の作用効果を得ることができる。
 また、本実施例では、噴射力調整手段470による噴射力の増加調整に伴って被搬送物Cの重力に抗して被搬送物Cを上り搬送させる構成である。
 これにより、搬送方向後方411aから搬送方向前方411bへ傾斜を登坂するように移動させる際に常に重力により搬送方向前方411bから搬送方向後方411aへ下る方向の力が減速効果として被搬送物Cに作用する。
 つまり、被搬送物Cに対する速度制御が容易になる。
 このようにして得られた本発明の第4実施例である非接触式浮上搬送装置400は、空気の噴射力を調整する噴射力調整手段470が、気体噴射口432に至る気体経路上に設けられていることにより、被搬送物Cへ搬送力を調整して搬送速度を調整することができる。
 さらに、搬送路面411が、搬送方向Tに向かって上向き傾斜されていることにより、噴射力調整手段470による噴射力の増加調整に伴って被搬送物Cの重力に抗して被搬送物Cを上り搬送させるとともに噴射力調整手段470による噴射力の減少調整に伴って被搬送物Cの重力に抗し切れずに被搬送物Cを下り搬送させることができるなど、その効果は甚大である。
100、 200、 300、 400 ・・・非接触式浮上搬送装置
110、 210、 310、 410 ・・・ベース部
111、 211、 311、 411 ・・・搬送路面
               411a・・・搬送方向後方
               411b・・・搬送方向前方
120、 220           ・・・機台フレーム
130A、230A、330A、430A・・・旋回流形成部
130B、230B、330B、430B・・・旋回流形成部
131、 231、 331、 431 ・・・案内凹所
132            432 ・・・気体噴射口
150、 250           ・・・気体解放孔
               470 ・・・噴射力調整手段
C       ・・・被搬送物
D       ・・・下方へ引き寄せようとする力
F1      ・・・搬送方向の後方域へ作用する旋回流作用力
fa1、fa2 ・・・一方の旋回流による旋回流作用力
F2      ・・・搬送方向の前方域へ作用する旋回流作用力
fb1、fb2 ・・・他方の旋回流による旋回流作用力
H       ・・・水平方向
R       ・・・旋回流
S       ・・・路幅方向
T       ・・・搬送方向
U       ・・・浮上方向

 

Claims (7)

  1.  気体からなる旋回流を発生させる旋回流形成部が被搬送物を搬送する平坦な搬送路面に配設され、前記旋回流形成部から順次溢出してくる旋回流を被搬送物の底面と搬送路面との間隙に介在させて被搬送物を浮上させるとともに前記旋回流の旋回力によって生じる搬送力で被搬送物を搬送する非接触式浮上搬送装置であって、
     前記旋回流形成部が、前記搬送路面の路幅方向で左右相互に離間して一対配設され、
     前記旋回流形成部でそれぞれ発生する旋回流の旋回方向が、前記搬送路面の路幅方向で相互に逆方向に設定されていることを特徴とする非接触式浮上搬送装置。
  2.  前記旋回流形成部が、前記搬送路面の搬送方向で前後相互に離間して複数配設されているとともに、
     前記旋回流形成部でそれぞれ発生する旋回流の旋回方向が、前記搬送路面の搬送方向で相互に同一方向に設定されていることを特徴とする請求項1記載の非接触式浮上搬送装置。
  3.  前記旋回流形成部が、前記搬送路面下に設けられて搬送路面上に開口する有底の周側壁と、該周側壁の接線方向から周側壁で囲繞される旋回形成空間領域内へ前記気体を噴射して旋回流を発生させる気体噴射口とを備えていることを特徴とする請求項1または請求項2記載の非接触式浮上搬送装置。
  4.  前記旋回流形成部から搬送路面と被搬送物との間隙に溢出して過剰に滞留する気体を逃す気体解放孔が、前記搬送路面に分散して配設されていることを特徴とする請求項3記載の非接触式浮上搬送装置。
  5.  前記気体の噴射力を調整する噴射力調整手段が、前記気体噴射口に至る気体経路上に設けられていることを特徴とする請求項3または請求項4に記載の非接触式浮上搬送装置。
  6.  前記搬送路面が、前記搬送方向に向かって上向き傾斜していることを特徴とする請求項5に記載の非接触式浮上搬送装置。
  7.  前記旋回流形成部が、前記気体の噴射力を択一的に選択可能な別部品として前記搬送路面に着脱自在に取り付けられていることを特徴とする請求項3乃至請求項6のいずれか1つに記載の非接触式浮上搬送装置。

     
PCT/JP2015/055394 2014-02-26 2015-02-25 非接触式浮上搬送装置 WO2015129749A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-035101 2014-02-26
JP2014035101A JP2015162487A (ja) 2014-02-26 2014-02-26 非接触式浮上搬送装置

Publications (1)

Publication Number Publication Date
WO2015129749A1 true WO2015129749A1 (ja) 2015-09-03

Family

ID=54009064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055394 WO2015129749A1 (ja) 2014-02-26 2015-02-25 非接触式浮上搬送装置

Country Status (3)

Country Link
JP (1) JP2015162487A (ja)
TW (1) TW201544427A (ja)
WO (1) WO2015129749A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109733740A (zh) * 2019-02-21 2019-05-10 彩虹(合肥)液晶玻璃有限公司 一种a型架承载台及液晶玻璃包装装置
CN115990570A (zh) * 2023-03-16 2023-04-21 宁德时代新能源科技股份有限公司 气浮辊及极片涂布装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019396A (ja) * 2004-06-30 2006-01-19 Tokyo Electron Ltd 基板処理装置
JP2007176638A (ja) * 2005-12-27 2007-07-12 Harmotec Corp 非接触搬送装置
JP2009119562A (ja) * 2007-11-15 2009-06-04 Izumi Akiyama 非接触型搬送保持具および非接触型搬送保持装置
JP2010067896A (ja) * 2008-09-12 2010-03-25 Tokyo Electron Ltd 基板処理装置
JP2010533970A (ja) * 2007-07-19 2010-10-28 セントロターム・サーマル・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト 平面状の基板用の非接触型搬送装置
JP2010254463A (ja) * 2009-04-28 2010-11-11 Nitta Moore Co 非接触ワーク支持装置
JP2011235999A (ja) * 2010-05-10 2011-11-24 Oiles Corp 非接触搬送装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006019396A (ja) * 2004-06-30 2006-01-19 Tokyo Electron Ltd 基板処理装置
JP2007176638A (ja) * 2005-12-27 2007-07-12 Harmotec Corp 非接触搬送装置
JP2010533970A (ja) * 2007-07-19 2010-10-28 セントロターム・サーマル・ソルーションズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシヤフト 平面状の基板用の非接触型搬送装置
JP2009119562A (ja) * 2007-11-15 2009-06-04 Izumi Akiyama 非接触型搬送保持具および非接触型搬送保持装置
JP2010067896A (ja) * 2008-09-12 2010-03-25 Tokyo Electron Ltd 基板処理装置
JP2010254463A (ja) * 2009-04-28 2010-11-11 Nitta Moore Co 非接触ワーク支持装置
JP2011235999A (ja) * 2010-05-10 2011-11-24 Oiles Corp 非接触搬送装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109733740A (zh) * 2019-02-21 2019-05-10 彩虹(合肥)液晶玻璃有限公司 一种a型架承载台及液晶玻璃包装装置
CN115990570A (zh) * 2023-03-16 2023-04-21 宁德时代新能源科技股份有限公司 气浮辊及极片涂布装置
CN115990570B (zh) * 2023-03-16 2023-08-04 宁德时代新能源科技股份有限公司 气浮辊及极片涂布装置

Also Published As

Publication number Publication date
JP2015162487A (ja) 2015-09-07
TW201544427A (zh) 2015-12-01

Similar Documents

Publication Publication Date Title
US7108123B2 (en) Contact-free plate conveyor
JP2010073883A (ja) 基板搬送装置ならびに基板位置決め方法および装置
WO2015129749A1 (ja) 非接触式浮上搬送装置
JP2013227151A (ja) 大面積パネル用の搬送プレート
JPWO2015129688A1 (ja) 搬送物排出装置
KR20100040904A (ko) 방향 전환 장치 및 방향 전환 장치를 포함하는 부상 반송 시스템
US20100012469A1 (en) Conveyor system
JP2008179466A (ja) 錠剤搬送装置
KR102605684B1 (ko) 기판 부상 반송 장치
JP6288553B2 (ja) 非接触式浮上搬送装置およびその搬送方向切換方法と搬送速度調整方法
JP6172997B2 (ja) 板状物の搬送装置
JP6288554B2 (ja) 非接触式浮上搬送装置
KR101261313B1 (ko) 평판 이송물 정렬픽업 이송장치
JP2019006549A (ja) 容器搬送装置
JP5902909B2 (ja) 移動装置
JP2012020810A (ja) ベルトコンベヤ
JP2012001374A (ja) ターンテーブル及びそれを用いたターンコンベア並びにコンベア用受け皿
JP4885472B2 (ja) ターンテーブル及びそれを用いたターンコンベア並びにコンベア用受け皿
JP2001048330A (ja) 空気浮上式ベルトコンベア装置
JP6106988B2 (ja) 搬送装置
JP2012101897A (ja) 搬送装置
KR20200013457A (ko) 협소 공간용 컨베이어 벨트 장치
CN208217672U (zh) 一种用于金属材料传输的传送装置
CN101137852A (zh) 滚珠传送设备
JP2015070002A (ja) 板状物の搬送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754490

Country of ref document: EP

Kind code of ref document: A1