WO2015129097A1 - ファイバレーザ装置及びその異常検出方法 - Google Patents

ファイバレーザ装置及びその異常検出方法 Download PDF

Info

Publication number
WO2015129097A1
WO2015129097A1 PCT/JP2014/078069 JP2014078069W WO2015129097A1 WO 2015129097 A1 WO2015129097 A1 WO 2015129097A1 JP 2014078069 W JP2014078069 W JP 2014078069W WO 2015129097 A1 WO2015129097 A1 WO 2015129097A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
power
laser beam
fiber
fiber laser
Prior art date
Application number
PCT/JP2014/078069
Other languages
English (en)
French (fr)
Inventor
祐司 松岡
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Priority to CN201480076300.6A priority Critical patent/CN106063055B/zh
Priority to EP14884180.2A priority patent/EP3113301B1/en
Publication of WO2015129097A1 publication Critical patent/WO2015129097A1/ja
Priority to US15/240,442 priority patent/US9985407B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/0014Monitoring arrangements not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/4257Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/2804Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4286Optical modules with optical power monitoring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094011Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre with bidirectional pumping, i.e. with injection of the pump light from both two ends of the fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy

Definitions

  • the present invention relates to a fiber laser device and an abnormality detection method thereof, and more particularly to a fiber laser device that optically combines and emits laser beams from a plurality of fiber laser units and an abnormality detection method thereof.
  • a fiber laser device has been developed that can provide a high output of kilowatts by providing a plurality of fiber laser units and combining the laser outputs from each fiber laser unit. ing.
  • the amount of excess loss such as a loss at the fusion part or a loss due to the generation of a higher-order mode due to bending of the fiber may increase.
  • Such excessive loss increases the amount of heat generation, and the heat generation due to the excessive loss may directly lead to a failure such as a fiber breakage.
  • a high-power fiber laser device is often provided with means for detecting an abnormality such as a fiber breakage.
  • Patent Document 1 as a method of detecting an abnormality in such a fiber laser device, a laser beam leaking from a fusion part inside the fiber laser device when a malfunction occurs is detected by an imaging means (photodetector), Thus, a technique for detecting breakage of an optical component in a fiber laser device is disclosed.
  • this method it is necessary to preliminarily estimate a portion where damage is likely to occur and to arrange an imaging means (photodetector) for each portion, and the optical fiber is disconnected at a place other than the place where the damage is estimated. In such a case, such an abnormality cannot be detected. Therefore, when there is a portion where damage is likely to occur over a wide range, a large number of imaging means are required, which increases the cost of the apparatus.
  • the present invention has been made in view of such problems of the prior art, and it is a first object to provide a fiber laser device capable of detecting an optical fiber abnormality in the device over a wide range with an inexpensive configuration. The purpose.
  • the present invention also provides a fiber laser apparatus abnormality detection method capable of detecting an abnormality of an optical fiber in the apparatus over a wide range with a low-cost configuration in a fiber laser apparatus including a plurality of fiber laser units. Is the second purpose.
  • a fiber laser device capable of detecting an optical fiber abnormality in the device over a wide range with an inexpensive configuration.
  • the fiber laser device includes a plurality of fiber laser units each including an amplification optical fiber capable of amplifying laser light, a pumping light source that supplies pumping light to the amplification optical fiber, and an optical resonator that oscillates the laser light.
  • a combiner that optically combines the output laser beams output from the plurality of fiber laser units to generate a combined laser beam, a laser emitting unit that emits the combined laser beam generated by the combiner, and the plurality A plurality of output laser beam power detectors for detecting the power of the output laser beam output from each of the optical resonators of the fiber laser unit, and a coupled laser beam for detecting the power of the coupled laser beam generated by the combiner And a power detection unit.
  • the fiber laser device includes a summing unit that calculates a summed laser beam power obtained by summing the powers of the output laser beams detected by the output laser beam power detecting units of the plurality of fiber laser units, and a summing laser calculated by the summing unit.
  • a comparison unit that compares the optical power with the power of the combined laser beam detected by the combined laser beam power detection unit, and a ratio of the combined laser beam power to the combined laser beam power is below a predetermined threshold T
  • an abnormality detection unit having a determination unit that determines that an abnormality has occurred in at least one of the plurality of fiber laser units.
  • the optical fiber includes an amplification optical fiber capable of amplifying laser light, a pumping light source that supplies pumping light to the amplification optical fiber, and an optical resonator that oscillates the laser light.
  • a method for detecting an abnormality in a fiber laser device that emits a combined laser beam obtained by optically combining output laser beams output from a plurality of fiber laser units by a combiner.
  • the power of the output laser light output from the optical resonator of each of the plurality of fiber laser units is detected, the power of the combined laser light on the downstream side of the combiner is detected, and the detected power is detected.
  • the power of the output laser beams from the plurality of fiber laser units is summed to calculate the total laser beam power, and the total laser beam power is compared with the detected combined laser beam power.
  • a predetermined threshold T it is determined that an abnormality has occurred in at least one of the plurality of fiber laser units.
  • the predetermined threshold T may be set to (U-1) / U, where U is the number of the plurality of fiber laser units. At this time, when the ratio of the combined laser beam power to the combined laser beam power falls below the predetermined threshold T, the determination unit of the abnormality detector detects an abnormality in one of the plurality of fiber laser units. Is determined to have occurred.
  • the predetermined threshold T may be set to (U ⁇ n) / U, where the number of the plurality of fiber laser units is U, and an integer between 1 and U is n. In this case, when the ratio of the combined laser beam power to the combined laser beam power falls below the predetermined threshold T, the determination unit of the abnormality detection unit includes n units of the plurality of fiber laser units. It is determined that an abnormality has occurred.
  • the predetermined threshold value is set such that the number of the plurality of fiber laser units is U, the power detection accuracy in the output laser light power detection unit is ⁇ ⁇ , and the power detection accuracy in the combined laser light power detection unit is ⁇ ⁇ .
  • T may be set so as to satisfy the following inequality.
  • the number of the plurality of fiber laser units is U, an integer between 1 and U is n, the power detection accuracy in the output laser beam power detector is ⁇ ⁇ , and the power detection accuracy in the coupled laser beam power detector. May be set to ⁇ ⁇ , and the predetermined threshold T may be set so as to satisfy the following inequality. At this time, when the ratio of the combined laser beam power to the combined laser beam power falls below the predetermined threshold T, the determination unit of the abnormality detection unit abnormally detects n of the plurality of fiber laser units. Is determined to have occurred.
  • the abnormality detection unit includes a drive control unit that sequentially controls at least one fiber laser unit among the plurality of fiber laser units by controlling a current supplied to an excitation light source of the plurality of fiber laser units. It may be.
  • the determination unit of the abnormality detection unit performs the drive control based on the difference between the combined laser light power calculated by the summation unit and the combined laser light power detected by the combined laser light power detection unit.
  • a fiber laser unit in which an abnormality has occurred is identified from at least one fiber laser unit driven by the unit.
  • the combined laser beam power detector may include a photodetector that receives light leaked from a fused portion provided in an optical fiber connecting the combiner and the laser emitting unit. In this case, if this photodetector is arranged on the downstream side of the fused portion, the influence of the return light that is reflected by the workpiece and returned from the coupled laser beam emitted from the fiber laser device can be reduced. Can do.
  • the total power of the output laser beams (total laser beam power) obtained by the output laser beam power detector of each fiber laser unit and the combiner that combines the output laser beams of the fiber laser unit are installed downstream.
  • the fiber breakage between the output laser beam power detection unit of each fiber laser unit and the coupled laser beam power detection unit downstream thereof It is possible to detect whether or not an abnormality such as the above has occurred. That is, as long as an abnormality such as a fiber breakage occurs at any location between the output laser light power detection unit and the combined laser light power detection unit, the abnormality can be detected.
  • each fiber laser unit with two detection units, ie, an output laser beam power detection unit and a combined laser beam power detection unit, over a wide range from the output laser beam power detection unit to the combined laser beam power detection unit.
  • An optical fiber abnormality can be detected.
  • the cost of the fiber laser device can be reduced.
  • FIG. 1 is a diagram schematically showing a configuration of a fiber laser device according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing one configuration of the fiber laser unit of the fiber laser apparatus of FIG.
  • FIG. 3 is a graph illustrating a threshold value for determining that an abnormality has occurred in the fiber laser unit in one embodiment of the present invention.
  • FIG. 4 is a graph illustrating a threshold value for determining that an abnormality has occurred in the fiber laser unit in one embodiment of the present invention.
  • FIG. 5 is a graph illustrating threshold values for determining anomalies due to return light reflected from a workpiece in an embodiment of the present invention.
  • FIGS. 1 to 5 the same or corresponding components are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 1 is a diagram schematically showing a configuration of a fiber laser device 100 according to an embodiment of the present invention.
  • the fiber laser device 100 outputs a plurality of fiber laser units 110 (seven fiber laser units 110 in the example shown in FIG. 1) capable of outputting laser light and the fiber laser units 110.
  • a combiner 120 that combines the laser beams (output laser beams) and a laser emitting unit 130 that emits the laser beams combined by the combiner 120 toward an object to be processed.
  • FIG. 2 is a diagram schematically showing one of the plurality of fiber laser units 110.
  • the fiber laser unit 110 is connected to the amplification optical fiber 112 to which a rare earth element such as Yb (ytterbium) is added and the first end 112A side of the amplification optical fiber 112.
  • a rare earth element such as Yb (ytterbium)
  • FBG fiber Bragg grating
  • a combiner 116A for combining pumping lights from the plurality of pumping light sources 114A, and amplification from the second end 112B of the amplifying optical fiber 112.
  • a plurality of excitation light sources 114B for introducing excitation light into the optical fiber 112 and excitation light from the plurality of excitation light sources 114B. And a wave to combiner 116B.
  • the excitation light sources 114A and 114B for example, a high-power multimode semiconductor laser (LD) having a wavelength of 915 nm can be used.
  • the excitation light from the excitation light source 114A is combined by the combiner 116A and introduced into the amplification optical fiber 112 from the highly reflective FBG 111 side.
  • the excitation light from the excitation light source 114B is combined by the combiner 116B and introduced into the amplification optical fiber 112 from the low reflection FBG 113 side.
  • the amplification optical fiber 112 preferably has a double clad structure including an inner clad and an outer clad lower than the refractive index of the inner clad.
  • a single clad optical fiber (delivery fiber) 118 extending to the outside of the fiber laser unit 110 is connected to the combiner 116B.
  • the high reflection FBG 111 and the low reflection FBG 113 are configured to reflect light having a wavelength corresponding to the wavelength of the laser light, and are arranged so as to satisfy a predetermined resonance condition.
  • the high-reflection FBG 111 and the low-reflection FBG 113 constitute an optical resonator 119 that oscillates the laser light generated in the amplification optical fiber 112.
  • the reflectance of the high reflection FBG 111 is preferably 90% to 100%, and the reflectance of the low reflection FBG 113 is preferably 30% or less.
  • Yb of the amplification optical fiber 112 is excited to emit emission light having a wavelength of 1000 nm band.
  • This Yb emission light is laser-oscillated at a wavelength of 1000 nm band by a high reflection FBG 111 and a low reflection FBG 113 arranged so as to satisfy a predetermined resonance condition.
  • a part of the laser light generated in the optical resonator 119 is reflected by the low reflection FBG 113 and returns to the amplification optical fiber 112, but most of the laser light passes through the low reflection FBG 113 and passes through the optical fiber 118 to be a fiber laser.
  • Output from the unit 110 as output laser light.
  • the output laser beams output from the respective fiber laser units 110 are combined by a combiner 120 to become a high-power coupled laser beam, and this coupled laser beam with this optical power is output from the laser emitting unit 130. Emitted.
  • each fiber laser unit 110 is provided with an output laser light power detector 170 that detects the power of the output laser light emitted from the optical resonator 119.
  • the output laser beam power detection unit 170 detects a leak light from the fused portion 118A formed in the optical fiber 118, and converts the detection signal of the photodetector 172 into the output laser beam power.
  • An output laser light power conversion unit 174 The signal line from the output laser light power conversion unit 174 is connected to a summation unit 162 of an abnormality detection unit 160 described later.
  • the fused portion 118A is covered with a resin having a higher refractive index than the clad of the optical fiber 118, and the photodetector 172 is disposed in the vicinity of the fused portion 118A.
  • the output laser beam power detection unit 170 is installed inside the fiber laser unit 110.
  • the output laser beam power detection unit 170 is arranged outside the fiber laser unit 110. May be.
  • the fiber laser device 100 includes a coupled laser beam power detection unit 140 that detects the power of the coupled laser beam coupled by the combiner 120.
  • the coupled laser beam power detection unit 140 includes a photodetector 142 that detects leakage light from the fused portion 150 ⁇ / b> A formed in the optical fiber 150 that connects the combiner 120 and the laser emitting unit 130, and the photodetector 142.
  • a coupled laser beam power conversion unit 144 that converts the detection signal into the coupled laser beam power (hereinafter referred to as coupled laser beam power).
  • the signal line from the combined laser beam power conversion unit 144 is connected to the comparison unit 164 of the abnormality detection unit 160 described later.
  • the fused portion 150A is covered with a resin having a refractive index higher than that of the clad of the optical fiber 150, and the photodetector 142 is disposed in the vicinity of the fused portion 150A.
  • the fiber laser device 100 includes an abnormality detection unit 160 that detects that an abnormality has occurred in the fiber laser unit 110.
  • the abnormality detection unit 160 includes a summation unit 162 that calculates a total laser light power obtained by summing the powers of the output laser beams input from the output laser beam power conversion units 174 corresponding to the fiber laser units 110, and a summation unit 162. Is used to detect that an abnormality has occurred in the fiber laser unit 110, and a comparison unit 164 that compares the combined laser beam power calculated in step 1 and the combined laser beam power input from the coupled laser beam power conversion unit 144.
  • a storage unit 166 that stores a threshold value and the like, and a determination unit 168 that determines whether an abnormality has occurred in the fiber laser unit 110 based on the comparison result in the comparison unit 164 are provided.
  • the combined laser beam power obtained by the coupled laser beam power detector 140 is The power of the output laser beams obtained by the respective output laser beam power detectors 170 should be approximately equal to the total power. However, if there is any abnormality in the optical fiber 118 between the output laser light power detector 170 and the combiner 120 of any of the fiber laser units 110, the output laser light is supplied downstream from the abnormal part. Therefore, the combined laser beam power obtained by the coupled laser beam power detection unit 140 becomes smaller than the total power of the output laser beams obtained by the respective output laser beam power detection units 170.
  • the determination unit 168 in the present embodiment uses this phenomenon to determine whether or not an abnormality has occurred in the fiber laser unit 110.
  • the optical fiber 118 between the output laser light power detector 170 of each fiber laser unit 110 and the combiner 120 is normal, as shown by ⁇ in FIG.
  • the power and the combined laser beam power are almost the same value.
  • the determination unit 168 determines that the ratio of the combined laser beam power to the combined laser beam power is less than 6/7. It is determined that an abnormality has occurred in one unit. That is, in the example shown in FIG.
  • the threshold T (U ⁇ 1) / U is stored in the storage unit 166, and the ratio of the combined laser beam power to the combined laser beam power is stored in the storage unit 166.
  • the determination unit 168 determines that an abnormality has occurred in one of the fiber laser units 110.
  • the abnormality detection unit 160 includes a drive control unit 169 connected to the power sources of the excitation light sources 114 ⁇ / b> A and 114 ⁇ / b> B of each fiber laser unit 110.
  • the fiber laser units 110 can be sequentially driven one by one by controlling the current supplied to the excitation light sources 114A and 114B of the laser unit 110. If the determination unit 168 determines that an abnormality has occurred in one of the fiber laser units 110 as described above, the drive control unit 169 drives the fiber laser units 110 one by one in order. If there is no abnormality between the output laser light power detector 170 of the driven fiber laser unit 110 and the combiner 120, the combined laser light power and the combined laser light power show substantially the same value.
  • the fiber laser unit 110 is driven by the drive controller 169 one by one in order, and an abnormality occurs in the currently driven fiber laser unit 110 by comparing the combined laser beam power and the combined laser beam power. Can be determined.
  • a plurality of fiber laser units 110 are driven by the drive control unit 169, and the fiber laser unit 110 having an abnormality is identified based on the difference between the combined laser light power and the combined laser light power. Also good.
  • each fiber laser unit 110 is set to a different value for each fiber laser unit 110, and the fiber laser unit 110 having the output laser light power corresponding to the amount of decrease in the combined laser light power is specified. Thus, it is possible to determine the fiber laser unit in which an abnormality has occurred.
  • the total power (total laser light power) of the output laser light obtained by the output laser light power detector 170 of each fiber laser unit 110 and the output laser light of the fiber laser unit 110 are combined.
  • the output laser beam power detector 170 of each fiber laser unit 110 and the downstream thereof It is possible to detect whether or not an abnormality such as a fiber breakage has occurred with the coupled laser beam power detector 140. In other words, as long as an abnormality such as a fiber breakage occurs at any location between the output laser light power detector 170 and the combined laser light power detector 140, the abnormality can be detected.
  • each fiber laser unit 110 with two detection units, that is, an output laser beam power detection unit 170 and a combined laser beam power detection unit 140, the output laser beam power detection unit 170 to the combined laser beam power detection unit 140 are provided. It is possible to detect abnormalities in the optical fibers 118 and 150 over a wide range. Thus, since it is not necessary to provide a large number of detectors (photodetectors) in each fiber laser unit 110, the cost of the fiber laser device 100 can be reduced.
  • the total power of the output laser light obtained by the output laser light power detection unit 170 of each fiber laser unit 110 (total laser light power) and the power of the combined laser light obtained by the combined laser light power detection unit 140 Therefore, the abnormality generated between the output laser light power detector 170 and the combined laser light power detector 140 is not affected by the abnormality generated upstream of the output laser light power detector 170. Can be detected.
  • the output laser beam power decreases and is coupled. The power of the laser beam also decreases accordingly.
  • the output laser beam power detector 170 to the combined laser beam power detector 140 are not affected by the deterioration of the pump light sources 114A and 114B. It is possible to detect abnormalities occurring between the two.
  • the determination unit 168 determines that an abnormality has occurred in one of the fiber laser units 110, but an abnormality has occurred in a plurality of the fiber laser units 110. Can also be determined. That is, when an abnormality occurs in the plurality of fiber laser units 110, the coupled laser beam power is reduced in proportion to the number of fiber laser units 110 in which an abnormality has occurred. Therefore, if a plurality of threshold values T are stored in the storage unit 166 according to the number of the fiber laser units 110 and these threshold values T are compared with the ratio of the combined laser beam power to the combined laser beam power, an abnormality occurs. The number of the fiber laser units 110 can be determined.
  • FIG. 4 shows a plurality of threshold values set according to the number of fiber laser units 110.
  • N indicates the relationship between the combined laser light power and the combined laser light power when normal
  • T 1 to T 6 indicate that an abnormality occurred in one to six fiber laser units 110, respectively. It represents the threshold value for judging this.
  • T 7 0, but in order to determine that an abnormality has occurred on the wake side from the combiner 120, a value greater than 0 and less than T 6 is set in FIG. .
  • the power detection accuracy in the output laser light power detection unit 170 and the power detection accuracy in the combined laser light power detection unit 140 are not considered, but the threshold T is set in consideration of these detection accuracy. It is also possible to set. That is, if the number of the fiber laser units 110 is U, the power detection accuracy in the output laser light power detection unit 170 is ⁇ ⁇ , and the power detection accuracy in the coupled laser light power detection unit 140 is ⁇ ⁇ , the following inequality is satisfied.
  • the threshold value T may be set so as to.
  • the threshold value T may be set so as to satisfy the following inequality.
  • the output laser beam power detector 170 receives and detects the leaked light from the fused portion 118A by the photodetector 172, and the combined laser beam power detector 140 detects the leaked light from the fused portion 150A.
  • the present invention is not limited to this.
  • a part of the laser light propagating through the optical fiber 118 or 150 is extracted by an optical coupler and detected by the photodetector 172 or 142, or the optical fiber 118 or 150 is bent from the bent portion by bending the optical fiber 118 or 150.
  • a part of the laser beam propagating through the laser beam may be emitted and detected by the photodetector 172 or 142.
  • the photodetector 142 of the coupled laser beam power detection unit 140 is fused. It is preferable to arrange on the downstream side of 150A. Alternatively, if the coupled laser beam power detection unit 140 is disposed at a position where the return light can be received, such as the upstream side of the fusion unit 150A, the fiber laser device 100 is stopped when the return light exceeds an allowable amount. Is also possible. That is, when there is return light, the combined laser light power obtained by the combined laser light power detector 140 is larger than the normal combined laser power by the amount of the return light. Therefore, as shown in FIG.
  • a value larger than 1 is set as the threshold value R for determining that the return light is more than the allowable amount, and the ratio of the combined laser beam power to the total laser beam power is equal to or greater than this threshold value R.
  • the excitation light sources 114A and 114B and the combiners 116A and 116B are provided on both the high reflection FBG 111 side and the low reflection FBG 113 side.
  • An excitation light source and a combiner may be installed only on either the FBG 111 side or the low reflection FBG 113 side.
  • the present invention is suitably used for a fiber laser device that optically couples and emits laser beams from a plurality of fiber laser units.
  • Fiber laser device 110 Fiber laser unit 111 High reflection FBG 112 Amplifying optical fiber 112A First end 112B Second end 113 Low reflection FBG 114A, 114B Excitation light sources 116A, 116B Combiner 118 Optical fiber 118A Fusing unit 119 Optical resonator 120 Combiner 130 Laser emitting unit 140 Coupled laser light power detecting unit 142 Photo detector 144 Coupled laser light power converting unit 150 Optical fiber 150A Fusing Unit 160 abnormality detection unit 162 summation unit 164 comparison unit 166 storage unit 168 determination unit 169 drive control unit 170 output laser beam power detection unit 172 photodetector 174 output laser beam power conversion unit

Abstract

 安価な構成により広い範囲にわたって装置内の光ファイバの異常を検出することができるファイバレーザ装置を提供する。ファイバレーザ装置100は、複数のファイバレーザユニット110と、ファイバレーザユニット110から出力される出力レーザ光を光学的に結合して結合レーザ光を生成するコンバイナ120と、結合レーザ光を出射するレーザ出射部130と、ファイバレーザユニット110のそれぞれの出力レーザ光のパワーを検出する出力レーザ光パワー検出部170と、結合レーザ光のパワーを検出する結合レーザ光パワー検出部140と、検出された出力レーザ光のパワーの合計(合算レーザ光パワー)と検出された結合レーザ光のパワーとを比較して、合算レーザ光パワーに対する結合レーザ光のパワーの比が所定の閾値Tを下回った場合にファイバレーザユニット110に異常が生じたものと判断する異常検出部160とを備える。

Description

ファイバレーザ装置及びその異常検出方法
 本発明は、ファイバレーザ装置及びその異常検出方法に係り、特に複数のファイバレーザユニットからのレーザ光を光学的に結合して出射するファイバレーザ装置及びその異常検出方法に関するものである。
 近年、ファイバレーザの高出力化が進んでおり、複数のファイバレーザユニットを設けてそれぞれのファイバレーザユニットからのレーザ出力を結合してキロワット級の高出力を得ることができるファイバレーザ装置が開発されている。このようなファイバレーザ装置では、高出力であるがゆえに、融着部での損失やファイバの曲げによる高次モードの発生による損失といった過剰損失分の光量が大きくなることがある。このような過剰損失によって発熱量も大きくなり、過剰損失による発熱がファイバの断線などの故障に直結してしまうことがある。このため、このような高出力のファイバレーザ装置には、ファイバの断線などの異常を検出する手段が設けられることが多い。
 例えば、特許文献1には、このようなファイバレーザ装置における異常を検出する方法として、ファイバレーザ装置内部の融着部から不具合発生時に漏れ出すレーザ光を撮像手段(光検出器)により検出し、これによりファイバレーザ装置内の光部品の破損を検出する技術が開示されている。しかしながら、この方法では、破損が生じる可能性のある部位を予め推定してその部位ごとに撮像手段(光検出器)を配置する必要があり、破損を推定した箇所以外の箇所で光ファイバの断線などが生じた場合には、そのような異常を検出することができない。したがって、破損が生じる可能性のある部位が広い範囲にわたって存在する場合には、多数の撮像手段が必要となり装置のコストが高くなってしまう。
特開2010-238709号公報
 本発明は、このような従来技術の問題点に鑑みてなされたもので、安価な構成により広い範囲にわたって装置内の光ファイバの異常を検出することができるファイバレーザ装置を提供することを第1の目的とする。
 また、本発明は、複数のファイバレーザユニットを備えたファイバレーザ装置において、安価な構成により広い範囲にわたって装置内の光ファイバの異常を検出することができるファイバレーザ装置の異常検出方法を提供することを第2の目的とする。
 本発明の第1の態様によれば、安価な構成により広い範囲にわたって装置内の光ファイバの異常を検出することができるファイバレーザ装置が提供される。このファイバレーザ装置は、レーザ光を増幅可能な増幅用光ファイバと、上記増幅用光ファイバに励起光を供給する励起光源と、上記レーザ光を発振させる光共振器とを有する複数のファイバレーザユニットと、上記複数のファイバレーザユニットから出力される出力レーザ光を光学的に結合して結合レーザ光を生成するコンバイナと、上記コンバイナにより生成された結合レーザ光を出射するレーザ出射部と、上記複数のファイバレーザユニットのそれぞれの上記光共振器から出力される出力レーザ光のパワーを検出する複数の出力レーザ光パワー検出部と、上記コンバイナにより生成された結合レーザ光のパワーを検出する結合レーザ光パワー検出部とを備えている。ファイバレーザ装置は、上記複数のファイバレーザユニットの出力レーザ光パワー検出部により検出された出力レーザ光のパワーを合計した合算レーザ光パワーを算出する合算部と、上記合算部により算出された合算レーザ光パワーと上記結合レーザ光パワー検出部により検出された結合レーザ光のパワーとを比較する比較部と、上記合算レーザ光パワーに対する上記結合レーザ光のパワーの比が所定の閾値Tを下回った場合に、上記複数のファイバレーザユニットのうちの少なくとも1台に異常が生じたものと判断する判定部とを有する異常検出部を備えている。
 本発明の第2の態様によれば、レーザ光を増幅可能な増幅用光ファイバと、上記増幅用光ファイバに励起光を供給する励起光源と、上記レーザ光を発振させる光共振器とを有する複数のファイバレーザユニットから出力される出力レーザ光をコンバイナで光学的に結合した結合レーザ光を出射するファイバレーザ装置における異常を検出する方法が提供される。この方法では、上記複数のファイバレーザユニットのそれぞれの上記光共振器から出力される出力レーザ光のパワーを検出し、上記コンバイナの下流側での上記結合レーザ光のパワーを検出し、上記検出された上記複数のファイバレーザユニットからの出力レーザ光のパワーを合計して合算レーザ光パワーを算出し、上記合算レーザ光パワーと上記検出された結合レーザ光のパワーとを比較し、上記合算レーザ光パワーに対する上記結合レーザ光のパワーの比が所定の閾値Tを下回った場合に、上記複数のファイバレーザユニットのうちの少なくとも1台に異常が生じたものと判断する。
 上記複数のファイバレーザユニットの台数をUとして、上記所定の閾値Tを(U-1)/Uに設定してもよい。このとき、上記異常検出部の判定部は、上記合算レーザ光パワーに対する上記結合レーザ光のパワーの比が上記所定の閾値Tを下回った場合に、複数のファイバレーザユニットのうちの1台に異常が生じたものと判断する。あるいは、上記複数のファイバレーザユニットの台数をU、1以上U以下の整数をnとして、上記所定の閾値Tを(U-n)/Uに設定してもよい。この場合には、上記異常検出部の判定部は、上記合算レーザ光パワーに対する上記結合レーザ光のパワーの比が上記所定の閾値Tを下回った場合に、上記複数のファイバレーザユニットのうちn台に異常が生じたものと判断する。
 さらに、上記複数のファイバレーザユニットの台数をU、上記出力レーザ光パワー検出部におけるパワーの検出精度を±α、上記結合レーザ光パワー検出部におけるパワーの検出精度を±βとして、上記所定の閾値Tを下記の不等式を満足するように設定してもよい。このとき、上記異常検出部の判定部は、上記合算レーザ光パワーに対する上記結合レーザ光のパワーの比が上記所定の閾値Tを下回った場合に、複数のファイバレーザユニットのうちの1台に異常が生じたものと判断する。
Figure JPOXMLDOC01-appb-M000005
 また、上記複数のファイバレーザユニットの台数をU、1以上U以下の整数をn、上記出力レーザ光パワー検出部におけるパワーの検出精度を±α、上記結合レーザ光パワー検出部におけるパワーの検出精度を±βとして、上記所定の閾値Tを下記の不等式を満足するように設定してもよい。このとき、上記異常検出部の判定部は、上記合算レーザ光パワーに対する上記結合レーザ光のパワーの比が上記所定の閾値Tを下回った場合に、複数のファイバレーザユニットのうちのn台に異常が生じたものと判断する。
Figure JPOXMLDOC01-appb-M000006
 さらに、上記異常検出部は、上記複数のファイバレーザユニットの励起光源に供給する電流を制御して上記複数のファイバレーザユニットのうち少なくとも1台のファイバレーザユニットを順番に駆動させる駆動制御部を備えていてもよい。このとき、上記異常検出部の判定部は、上記合算部により算出された合算レーザ光パワーと上記結合レーザ光パワー検出部により検出された結合レーザ光のパワーとの相違に基づいて、上記駆動制御部により駆動されている少なくとも1台のファイバレーザユニットから異常が生じているファイバレーザユニットを特定する。
 また、上記結合レーザ光パワー検出部は、上記コンバイナと上記レーザ出射部とを接続する光ファイバに設けられた融着部からの漏れ光を受光する光検出器を有していてもよい。この場合において、この光検出器を上記融着部の後流側に配置すれば、ファイバレーザ装置から出射された結合レーザ光が加工物で反射して戻ってくる戻り光の影響を低減することができる。
 本発明によれば、各ファイバレーザユニットの出力レーザ光パワー検出部により得られる出力レーザ光のパワーの合計(合算レーザ光パワー)と、ファイバレーザユニットの出力レーザ光を結合するコンバイナの下流に設置された結合レーザ光パワー検出部により得られる結合レーザ光パワーとを比較することにより、各ファイバレーザユニットの出力レーザ光パワー検出部とその下流にある結合レーザ光パワー検出部との間でファイバ断線などの異常が生じているか否かを検出することができる。すなわち、出力レーザ光パワー検出部と結合レーザ光パワー検出部との間であれば、いずれの箇所でファイバ断線などの異常が生じてもその異常を検出することができる。したがって、出力レーザ光パワー検出部と結合レーザ光パワー検出部という2つの検出部を各ファイバレーザユニットに設けるだけで、出力レーザ光パワー検出部から結合レーザ光パワー検出部までの間の広い範囲にわたって光ファイバの異常を検出することが可能となる。このように、各ファイバレーザユニットに多数の検出部(光検出器)を設ける必要がなくなるため、ファイバレーザ装置のコストを低減することができる。
図1は、本発明の一実施形態におけるファイバレーザ装置の構成を模式的に示す図である。 図2は、図1のファイバレーザ装置のファイバレーザユニットの1つの構成を模式的に示す図である。 図3は、本発明の一実施形態においてファイバレーザユニットに異常が生じたことを判定するための閾値を説明するグラフである。 図4は、本発明の一実施形態においてファイバレーザユニットに異常が生じたことを判定するための閾値を説明するグラフである。 図5は、本発明の一実施形態において加工物から反射した戻り光による異常を判定するための閾値を説明するグラフである。
 以下、本発明に係るファイバレーザ装置の実施形態について図1から図5を参照して詳細に説明する。なお、図1から図5において、同一又は相当する構成要素には、同一の符号を付して重複した説明を省略する。
 図1は、本発明の一実施形態におけるファイバレーザ装置100の構成を模式的に示す図である。図1に示すように、ファイバレーザ装置100は、レーザ光を出力可能な複数のファイバレーザユニット110(図1に示す例では7台のファイバレーザユニット110)と、ファイバレーザユニット110のそれぞれから出力されるレーザ光(出力レーザ光)を合波するコンバイナ120と、コンバイナ120により結合されたレーザ光を例えば被処理物に向けて出射するレーザ出射部130とを備えている。
 図2は、複数のファイバレーザユニット110のうちの1つを模式的に示す図である。図2に示すように、ファイバレーザユニット110は、例えばYb(イッテルビウム)などの希土類元素が添加された増幅用光ファイバ112と、増幅用光ファイバ112の第1の端部112A側に接続された高反射ファイバブラッググレーティング(Fiber Bragg Grating(FBG))111と、増幅用光ファイバ112の第2の端部112B側に接続された低反射FBG113と、増幅用光ファイバ112の第1の端部112Aから増幅用光ファイバ112に励起光を導入する複数の励起光源114Aと、複数の励起光源114Aからの励起光を合波するコンバイナ116Aと、増幅用光ファイバ112の第2の端部112Bから増幅用光ファイバ112に励起光を導入する複数の励起光源114Bと、複数の励起光源114Bからの励起光を合波するコンバイナ116Bとを備えている。
 励起光源114A,114Bとしては、例えば、波長915nmの高出力マルチモード半導体レーザ(LD)を用いることができる。励起光源114Aからの励起光は、コンバイナ116Aにより合波され、高反射FBG111側から増幅用光ファイバ112に導入される。同様に、励起光源114Bからの励起光は、コンバイナ116Bにより合波され、低反射FBG113側から増幅用光ファイバ112に導入される。増幅用光ファイバ112は、内部クラッドと、内部クラッドの屈折率よりも低い外部クラッドとを備えたダブルクラッド構造を有することが好ましい。コンバイナ116Bには、ファイバレーザユニット110の外部に延びるシングルクラッドの光ファイバ(デリバリファイバ)118が接続されている。
 ここで、高反射FBG111及び低反射FBG113は、レーザ光の波長に対応した波長の光を反射するように構成されており、所定の共振条件を満たすように配置されており、増幅用光ファイバ112、高反射FBG111、及び低反射FBG113により、増幅用光ファイバ112に生じたレーザ光を発振させる光共振器119が構成されている。高反射FBG111の反射率は90%~100%であることが好ましく、低反射FBG113の反射率は30%以下であることが好ましい。
 このような構成において、励起光源114A,114Bから例えば915nmの波長の励起光を増幅用光ファイバ112に導入すると、増幅用光ファイバ112のYbが励起され、1000nm帯の波長の放出光を発する。このYb放出光は、所定の共振条件を満たすように配置された高反射FBG111及び低反射FBG113により1000nm帯の波長でレーザ発振する。光共振器119内で生じたレーザ光は、その一部が低反射FBG113で反射して増幅用光ファイバ112に戻るが、そのほとんどが低反射FBG113を透過して光ファイバ118を通ってファイバレーザユニット110から出力レーザ光として出力される。それぞれのファイバレーザユニット110から出力された出力レーザ光は、図1に示すように、コンバイナ120により合波されて高パワーの結合レーザ光となり、この光パワーの結合レーザ光がレーザ出射部130から出射される。
 図2に示すように、それぞれのファイバレーザユニット110には、光共振器119から発される出力レーザ光のパワーを検出する出力レーザ光パワー検出部170が設けられている。この出力レーザ光パワー検出部170は、光ファイバ118に形成された融着部118Aからの漏れ光を検出する光検出器172と、光検出器172の検出信号を出力レーザ光のパワーに換算する出力レーザ光パワー換算部174とを含んでいる。この出力レーザ光パワー換算部174からの信号線は、後述する異常検出部160の合算部162に接続される。融着部118Aは光ファイバ118のクラッドよりも屈折率の高い樹脂で覆われており、光検出器172はこの融着部118Aの近傍に配置される。なお、本実施形態では、出力レーザ光パワー検出部170がファイバレーザユニット110の内部に設置されている例について説明するが、出力レーザ光パワー検出部170はファイバレーザユニット110の外部に配置されていてもよい。
 図1に示すように、ファイバレーザ装置100は、コンバイナ120により結合された結合レーザ光のパワーを検出する結合レーザ光パワー検出部140を備えている。この結合レーザ光パワー検出部140は、コンバイナ120とレーザ出射部130とを接続する光ファイバ150に形成された融着部150Aからの漏れ光を検出する光検出器142と、光検出器142の検出信号を結合レーザ光のパワー(以下、結合レーザ光パワーという)に換算する結合レーザ光パワー換算部144とを含んでいる。この結合レーザ光パワー換算部144からの信号線は、後述する異常検出部160の比較部164に接続される。融着部150Aは光ファイバ150のクラッドよりも屈折率の高い樹脂で覆われており、光検出器142はこの融着部150Aの近傍に配置される。
 図1に示すように、ファイバレーザ装置100は、ファイバレーザユニット110に異常が生じたことを検出する異常検出部160を備えている。この異常検出部160は、それぞれのファイバレーザユニット110に対応する出力レーザ光パワー換算部174から入力される出力レーザ光のパワーを合計した合算レーザ光パワーを算出する合算部162と、合算部162で算出された合算レーザ光パワーと結合レーザ光パワー換算部144から入力される結合レーザ光パワーとを比較する比較部164と、ファイバレーザユニット110に異常が生じたことを検出するために用いられる閾値などを格納した記憶部166と、比較部164における比較結果に基づいてファイバレーザユニット110に異常が生じたか否かを判定する判定部168とを備えている。
 それぞれのファイバレーザユニット110の出力レーザ光パワー検出部170から結合レーザ光パワー検出部140までの間の光路に何も異常がなければ、結合レーザ光パワー検出部140により得られる結合レーザ光パワーは、それぞれの出力レーザ光パワー検出部170により得られる出力レーザ光のパワーの合計にほぼ等しくなるはずである。しかしながら、いずれかのファイバレーザユニット110の出力レーザ光パワー検出部170とコンバイナ120との間の光ファイバ118に何らかの異常がある場合には、異常のある部分から後流に出力レーザ光が供給されなくなるため、結合レーザ光パワー検出部140により得られる結合レーザ光パワーが、それぞれの出力レーザ光パワー検出部170により得られる出力レーザ光のパワーの合計よりも小さくなる。本実施形態における判定部168は、この現象を利用してファイバレーザユニット110に異常が生じたか否かを判定している。
 より具体的には、それぞれのファイバレーザユニット110の出力レーザ光パワー検出部170からコンバイナ120までの間の光ファイバ118が正常である場合には、図3の●で示すように、結合レーザ光パワーと合算レーザ光パワーはほぼ同じ値を示す。例えば、いずれか1台のファイバレーザユニット110の出力レーザ光パワー検出部170とコンバイナ120との間の光ファイバ118に異常(断線)が生じた場合には、結合レーザ光パワーは、ファイバレーザユニット110の1台分の出力レーザ光のパワーだけ減少したものとなる。したがって、本実施形態においては、ファイバレーザユニット110が7台あるため、判定部168は、合算レーザ光パワーに対する結合レーザ光パワーの比が6/7を下回ったときに、ファイバレーザユニット110のうち1台に異常が生じたものと判定する。すなわち、図3に示す例では、異常を判定する閾値Tとして6/7を設定し、合算レーザ光パワーに対する結合レーザ光パワーの比がこの閾値T(図3において▲で示す)を下回った場合に、ファイバレーザユニット110のうち1台に異常が生じたものと判定する。判定部168により異常が検出されると、すべてのファイバレーザユニット110が停止される。
 ファイバレーザユニット110の台数が7台以外の場合は次のようになる。ファイバレーザユニット110の台数をUとすると、閾値T=(U-1)/Uが記憶部166に格納され、合算レーザ光パワーに対する結合レーザ光パワーの比が、この記憶部166に格納された閾値T=(U-1)/Uを下回った場合に、判定部168はファイバレーザユニット110のうち1台に異常が生じたものと判断する。
 ここで、図1に示すように、異常検出部160は、各ファイバレーザユニット110の励起光源114A,114Bの電源に接続された駆動制御部169を備えており、この駆動制御部169によって各ファイバレーザユニット110の励起光源114A,114Bに供給する電流を制御してファイバレーザユニット110を1台ずつ順番に駆動できるようになっている。上述のようにしてファイバレーザユニット110のうち1台に異常が生じたものと判定部168により判定されると、駆動制御部169は、ファイバレーザユニット110を1台ずつ順番に駆動する。駆動しているファイバレーザユニット110の出力レーザ光パワー検出部170とコンバイナ120との間に異常がなければ、結合レーザ光パワーと合算レーザ光パワーはほぼ同じ値を示す。一方、駆動しているファイバレーザユニット110の出力レーザ光パワー検出部170とコンバイナ120との間にファイバ断線などの異常があれば、合算レーザ光パワーは得られるにもかかわらず、結合レーザ光パワーは得られない。したがって、駆動制御部169によりファイバレーザユニット110を1台ずつ順番に駆動し、合算レーザ光パワーと結合レーザ光のパワーとを比較することにより、現在駆動されているファイバレーザユニット110に異常が生じていると判断することができる。なお、このとき、駆動制御部169によりファイバレーザユニット110を複数台ずつ駆動し、合算レーザ光パワーと結合レーザ光のパワーとの相違に基づいて異常を生じているファイバレーザユニット110を特定してもよい。また、各ファイバレーザユニット110の出力レーザ光パワーをファイバレーザユニット110ごとに異なる値に設定し、結合レーザ光パワーが低下した量に対応する出力レーザ光パワーを有するファイバレーザユニット110を特定することにより異常が生じているファイバレーザユニットを判別することもできる。
 このように、本実施形態によれば、各ファイバレーザユニット110の出力レーザ光パワー検出部170により得られる出力レーザ光のパワーの合計(合算レーザ光パワー)と、ファイバレーザユニット110の出力レーザ光を結合するコンバイナ120の下流に設置された結合レーザ光パワー検出部140により得られる結合レーザ光パワーとを比較することにより、各ファイバレーザユニット110の出力レーザ光パワー検出部170とその下流にある結合レーザ光パワー検出部140との間でファイバ断線などの異常が生じているか否かを検出することができる。すなわち、出力レーザ光パワー検出部170と結合レーザ光パワー検出部140との間であれば、いずれの箇所でファイバ断線などの異常が生じてもその異常を検出することができる。したがって、出力レーザ光パワー検出部170と結合レーザ光パワー検出部140という2つの検出部を各ファイバレーザユニット110に設けるだけで、出力レーザ光パワー検出部170から結合レーザ光パワー検出部140までの間の広い範囲にわたって光ファイバ118,150の異常を検出することが可能となる。このように、各ファイバレーザユニット110に多数の検出部(光検出器)を設ける必要がなくなるため、ファイバレーザ装置100のコストを低減することができる。
 また、各ファイバレーザユニット110の出力レーザ光パワー検出部170で得られた出力レーザ光のパワーの合計(合算レーザ光パワー)と結合レーザ光パワー検出部140で得られた結合レーザ光のパワーとを比較しているため、出力レーザ光パワー検出部170の上流側で生じた異常の影響を受けることなく、出力レーザ光パワー検出部170から結合レーザ光パワー検出部140の間で生じた異常を検出することができる。例えば、いずれかのファイバレーザユニット110において、出力レーザ光パワー検出部170の上流側にある励起光源114A,114Bが劣化して出力が低下した場合には、出力レーザ光のパワーが低下するとともに結合レーザ光のパワーもそれに伴って低下する。したがって、合算レーザ光パワーに対する結合レーザ光パワーの比は変化することがないので、励起光源114A,114Bの劣化による影響を受けることなく出力レーザ光パワー検出部170から結合レーザ光パワー検出部140の間で生じた異常を検出することができる。
 また、上述した実施形態では、判定部168は、ファイバレーザユニット110のうち1台に異常が生じたことを判定するものであったが、ファイバレーザユニット110のうち複数台に異常が生じたことを判定することもできる。すなわち、複数台のファイバレーザユニット110に異常が生じると、異常が生じたファイバレーザユニット110の台数に比例して結合レーザ光パワーが低下する。したがって、ファイバレーザユニット110の台数に応じて複数の閾値Tを記憶部166に格納しておき、これらの閾値Tと合算レーザ光パワーに対する結合レーザ光パワーの比とを比較すれば、異常が生じたファイバレーザユニット110の台数を決定することができる。
 図4は、ファイバレーザユニット110の台数に応じて設定される複数の閾値を示すものである。図4において、Nは正常である場合の結合レーザ光パワーと合算レーザ光パワーとの関係を示しており、T1~T6はそれぞれ1台~6台のファイバレーザユニット110に異常が生じたことを判定するための閾値を表すものである。T7は、すべてのファイバレーザユニット110に異常が生じたこと又はコンバイナ120と結合レーザ光パワー検出部140との間に異常が生じたことを判定するための閾値を表している。具体的には、T1=6/7、T2=5/7、T3=4/7、T4=3/7、T5=2/7、T6=1/7となっている。すなわち、ファイバレーザユニット110の台数をUとすると、n台のファイバレーザユニット110に異常が生じたことを判定するための閾値TはT=(U-n)/Uとなっている。なお、この式によればT7=0となるが、コンバイナ120から後流側で異常が生じたことを判定するために、図4においては0より大きくT6未満の値に設定されている。
 上述した実施形態では、出力レーザ光パワー検出部170におけるパワーの検出精度と結合レーザ光パワー検出部140におけるパワーの検出精度を考慮していないが、これらの検出精度を考慮して上記閾値Tを設定することも可能である。すなわち、ファイバレーザユニット110の台数をU、出力レーザ光パワー検出部170におけるパワーの検出精度を±α、結合レーザ光パワー検出部140におけるパワーの検出精度を±βとすると、以下の不等式を満足するように閾値Tを設定してもよい。
Figure JPOXMLDOC01-appb-M000007
 例えば、ファイバレーザユニット110の台数が7台、α=βとすると、上記不等式を満足する閾値TはT=0.926となり、検出精度はα=β=3.85%となる。このように出力レーザ光パワー検出部170及び結合レーザ光パワー検出部140における検出精度を考慮することにより、異常検出部160における誤判定を回避することができる。
 また、上記不等式は、U台のファイバレーザユニット110のうちの1台に異常が生じたものと判断する場合に用いられるものであるが、U台のファイバレーザユニット110のうちのn台に異常が生じたことを検出する場合には、以下の不等式を満足するように閾値Tを設定すればよい。
Figure JPOXMLDOC01-appb-M000008
 上述した実施形態では、出力レーザ光パワー検出部170は融着部118Aからの漏れ光を光検出器172で受光して検出し、結合レーザ光パワー検出部140は融着部150Aからの漏れ光を光検出器142で受光して検出する構成としているが、これに限られるものではない。例えば、光カプラによって光ファイバ118又は150を伝搬するレーザ光の一部を取り出して光検出器172又は142で検出したり、光ファイバ118又は150を曲げることによってこの湾曲部から光ファイバ118又は150を伝搬するレーザ光の一部を放射させて光検出器172又は142で検出したりしてもよい。
 また、ファイバレーザ装置100から出射された結合レーザ光が加工物で反射して戻ってくる戻り光の影響を低減するためには、結合レーザ光パワー検出部140の光検出器142を融着部150Aの後流側に配置することが好ましい。あるいは、結合レーザ光パワー検出部140を、例えば融着部150Aの上流側など戻り光を受光できる位置に配置すれば、戻り光が許容量以上となったときにファイバレーザ装置100を停止させることも可能である。すなわち、戻り光がある場合には、結合レーザ光パワー検出部140で得られる結合レーザ光パワーが正常時の結合レーザ光パワーよりも戻り光のパワーの分だけ大きくなる。したがって、図5に示すように、戻り光が許容量以上あることを判定するための閾値Rとして1よりも大きな値を設定し、合算レーザ光パワーに対する結合レーザ光パワーの比がこの閾値R以上になった場合に、許容量以上の戻り光があると判定し、ファイバレーザ装置100を停止させる。
 上述した実施形態では、高反射FBG111側と低反射FBG113側の双方に励起光源114A,114Bとコンバイナ116A,116Bが設けられており、双方向励起型のファイバレーザ装置となっているが、高反射FBG111側と低反射FBG113側のいずれか一方にのみ励起光源とコンバイナを設置することとしてもよい。
 これまで本発明の好ましい実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。
 本発明は、複数のファイバレーザユニットからのレーザ光を光学的に結合して出射するファイバレーザ装置に好適に用いられる。
100   ファイバレーザ装置
110   ファイバレーザユニット
111   高反射FBG
112   増幅用光ファイバ
112A  第1の端部
112B  第2の端部
113   低反射FBG
114A,114B  励起光源
116A,116B  コンバイナ
118   光ファイバ
118A  融着部
119   光共振器
120   コンバイナ
130   レーザ出射部
140   結合レーザ光パワー検出部
142   光検出器
144   結合レーザ光パワー換算部
150   光ファイバ
150A  融着部
160   異常検出部
162   合算部
164   比較部
166   記憶部
168   判定部
169   駆動制御部
170   出力レーザ光パワー検出部
172   光検出器
174   出力レーザ光パワー換算部

Claims (14)

  1.  レーザ光を増幅可能な増幅用光ファイバと、前記増幅用光ファイバに励起光を供給する励起光源と、前記レーザ光を発振させる光共振器とを有する複数のファイバレーザユニットと、
     前記複数のファイバレーザユニットから出力される出力レーザ光を光学的に結合して結合レーザ光を生成するコンバイナと、
     前記コンバイナにより生成された結合レーザ光を出射するレーザ出射部と、
     前記複数のファイバレーザユニットのそれぞれの前記光共振器から出力される出力レーザ光のパワーを検出する複数の出力レーザ光パワー検出部と、
     前記コンバイナにより生成された結合レーザ光のパワーを検出する結合レーザ光パワー検出部と、
     前記複数のファイバレーザユニットの出力レーザ光パワー検出部により検出された出力レーザ光のパワーを合計した合算レーザ光パワーを算出する合算部と、前記合算部により算出された合算レーザ光パワーと前記結合レーザ光パワー検出部により検出された結合レーザ光のパワーとを比較する比較部と、前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が所定の閾値Tを下回った場合に、前記複数のファイバレーザユニットのうちの少なくとも1台に異常が生じたものと判断する判定部とを有する異常検出部と、
    を備えた、ファイバレーザ装置。
  2.  前記複数のファイバレーザユニットの台数をUとして、前記所定の閾値Tは(U-1)/Uに設定され、
     前記異常検出部の判定部は、前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、複数のファイバレーザユニットのうちの1台に異常が生じたものと判断する、
    請求項1に記載のファイバレーザ装置。
  3.  前記複数のファイバレーザユニットの台数をU、1以上U以下の整数をnとして、前記所定の閾値Tは(U-n)/Uに設定され、
     前記異常検出部の判定部は、前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、前記複数のファイバレーザユニットのうちn台に異常が生じたものと判断する、
    請求項1に記載のファイバレーザ装置。
  4.  前記複数のファイバレーザユニットの台数をU、前記出力レーザ光パワー検出部におけるパワーの検出精度を±α、前記結合レーザ光パワー検出部におけるパワーの検出精度を±βとして、前記所定の閾値Tは、下記の不等式を満足するように設定され、
     前記異常検出部の判定部は、前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、複数のファイバレーザユニットのうちの1台に異常が生じたものと判断する、
    請求項1に記載のファイバレーザ装置。
    Figure JPOXMLDOC01-appb-M000001
  5.  前記複数のファイバレーザユニットの台数をU、1以上U以下の整数をn、前記出力レーザ光パワー検出部におけるパワーの検出精度を±α、前記結合レーザ光パワー検出部におけるパワーの検出精度を±βとして、前記所定の閾値Tは、下記の不等式を満足するように設定され、
     前記異常検出部の判定部は、前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、複数のファイバレーザユニットのうちのn台に異常が生じたものと判断する、
    請求項1に記載のファイバレーザ装置。
    Figure JPOXMLDOC01-appb-M000002
  6.  前記異常検出部は、前記複数のファイバレーザユニットの励起光源に供給する電流を制御して前記複数のファイバレーザユニットのうち少なくとも1台のファイバレーザユニットを順番に駆動させる駆動制御部を備え、
     前記異常検出部の判定部は、前記合算部により算出された合算レーザ光パワーと前記結合レーザ光パワー検出部により検出された結合レーザ光のパワーとの相違に基づいて、前記駆動制御部により駆動されている少なくとも1台のファイバレーザユニットから異常が生じているファイバレーザユニットを特定する、
    請求項1から5のいずれか一項に記載のファイバレーザ装置。
  7.  前記結合レーザ光パワー検出部は、前記コンバイナと前記レーザ出射部とを接続する光ファイバに設けられた融着部からの漏れ光を受光する光検出器であって、該融着部の後流側に配置された光検出器を有する、請求項1から6のいずれか一項に記載のファイバレーザ装置。
  8.  レーザ光を増幅可能な増幅用光ファイバと、前記増幅用光ファイバに励起光を供給する励起光源と、前記レーザ光を発振させる光共振器とを有する複数のファイバレーザユニットから出力される出力レーザ光をコンバイナで光学的に結合した結合レーザ光を出射するファイバレーザ装置における異常を検出する方法であって、
     前記複数のファイバレーザユニットのそれぞれの前記光共振器から出力される出力レーザ光のパワーを検出し、
     前記コンバイナの下流側での前記結合レーザ光のパワーを検出し、
     前記検出された前記複数のファイバレーザユニットからの出力レーザ光のパワーを合計して合算レーザ光パワーを算出し、
     前記合算レーザ光パワーと前記検出された結合レーザ光のパワーとを比較し、
     前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が所定の閾値Tを下回った場合に、前記複数のファイバレーザユニットのうちの少なくとも1台に異常が生じたものと判断する、
    ファイバレーザ装置の異常検出方法。
  9.  前記複数のファイバレーザユニットの台数をUとして、前記所定の閾値Tを(U-1)/Uに設定し、
     前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、前記複数のファイバレーザユニットのうちの1台に異常が生じたものと判断する、
    請求項8に記載のファイバレーザ装置の異常検出方法。
  10.  前記複数のファイバレーザユニットの台数をU、1以上U以下の整数をnとして、前記所定の閾値Tを(U-n)/Uに設定し、
     前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、前記複数のファイバレーザユニットのうちn台に異常が生じたものと判断する、
    請求項8に記載のファイバレーザ装置の異常検出方法。
  11.  前記複数のファイバレーザユニットの台数をU、前記出力レーザ光のパワーを検出するときの検出精度を±α、前記結合レーザ光のパワーを検出するときの検出精度を±βとして、前記所定の閾値Tを下記の不等式を満足するように設定し、
     前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、前記複数のファイバレーザユニットのうちの1台に異常が生じたものと判断する、
    請求項8に記載のファイバレーザ装置の異常検出方法。
    Figure JPOXMLDOC01-appb-M000003
  12.  前記複数のファイバレーザユニットの台数をU、1以上U以下の整数をn、前記出力レーザ光のパワーを検出するときの検出精度を±α、前記結合レーザ光のパワーを検出するときの検出精度を±βとして、前記所定の閾値Tを下記の不等式を満足するように設定し、
     前記合算レーザ光パワーに対する前記結合レーザ光のパワーの比が前記所定の閾値Tを下回った場合に、前記複数のファイバレーザユニットのうちのn台に異常が生じたものと判断する、
    請求項8に記載のファイバレーザ装置の異常検出方法。
    Figure JPOXMLDOC01-appb-M000004
  13.  前記複数のファイバレーザユニットのうちの少なくとも1台に異常が生じたものと判断された場合に、前記複数のファイバレーザユニットの励起光源に供給する電流を制御して前記複数のファイバレーザユニットのうち少なくとも1台のファイバレーザユニットを順番に駆動させ、
     前記合算レーザ光パワーと前記結合レーザ光のパワーとの相違に基づいて、前記駆動されている少なくとも1台のファイバレーザユニットから異常が生じているファイバレーザユニットを特定する、
    請求項8から12のいずれか一項に記載のファイバレーザ装置の異常検出方法。
  14.  前記結合レーザ光のパワーの検出は、前記コンバイナの下流側に設けられた融着部からの漏れ光を該融着部の後流側で受光することにより行われる、請求項8から13のいずれか一項に記載のファイバレーザ装置の異常検出方法。
PCT/JP2014/078069 2014-02-25 2014-10-22 ファイバレーザ装置及びその異常検出方法 WO2015129097A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480076300.6A CN106063055B (zh) 2014-02-25 2014-10-22 光纤激光器装置及其异常检测方法
EP14884180.2A EP3113301B1 (en) 2014-02-25 2014-10-22 Fiber laser device and method for detecting abnormality thereof
US15/240,442 US9985407B2 (en) 2014-02-25 2016-08-18 Fiber laser apparatus and method of detecting failure of fiber laser apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-033635 2014-02-25
JP2014033635A JP5889934B2 (ja) 2014-02-25 2014-02-25 ファイバレーザ装置及びその異常検出方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/240,442 Continuation US9985407B2 (en) 2014-02-25 2016-08-18 Fiber laser apparatus and method of detecting failure of fiber laser apparatus

Publications (1)

Publication Number Publication Date
WO2015129097A1 true WO2015129097A1 (ja) 2015-09-03

Family

ID=54008442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078069 WO2015129097A1 (ja) 2014-02-25 2014-10-22 ファイバレーザ装置及びその異常検出方法

Country Status (5)

Country Link
US (1) US9985407B2 (ja)
EP (1) EP3113301B1 (ja)
JP (1) JP5889934B2 (ja)
CN (1) CN106063055B (ja)
WO (1) WO2015129097A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684701A (zh) * 2015-11-09 2017-05-17 发那科株式会社 激光装置
US10840665B2 (en) 2017-12-05 2020-11-17 Fanuc Corporation Laser machining apparatus
WO2021241391A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 画像表示システム及び画像表示方法

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210954A (ja) * 2014-04-25 2015-11-24 オリンパス株式会社 光源装置およびその光源装置を備えた内視鏡装置
CN105720463B (zh) * 2014-08-01 2021-05-14 恩耐公司 光纤和光纤传输的激光器中的背向反射保护与监控
JP6259435B2 (ja) * 2015-10-28 2018-01-10 ファナック株式会社 レーザ光を合波して出力するレーザ発振器
JP6979758B2 (ja) * 2016-06-14 2021-12-15 浜松ホトニクス株式会社 レーザ発振器、及び、エラー検知方法
JP6888963B2 (ja) * 2017-01-31 2021-06-18 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
CN106679937A (zh) * 2017-03-02 2017-05-17 大族激光科技产业集团股份有限公司 半导体激光器的测试系统
JP6564418B2 (ja) * 2017-04-20 2019-08-21 ファナック株式会社 光パワーモニタ装置およびレーザ装置
CN107677450B (zh) * 2017-09-01 2020-02-04 深圳市创鑫激光股份有限公司 激光器故障探测与响应的方法、系统、存储介质及激光器
US10135216B1 (en) * 2017-09-27 2018-11-20 Joe Denton Brown Monitoring method and apparatus for surgical laser fibers
WO2019215798A1 (ja) * 2018-05-07 2019-11-14 三菱電機株式会社 レーザ装置、レーザ加工機およびレーザ装置の出力制御方法
JP6640920B2 (ja) * 2018-06-12 2020-02-05 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
JP6596544B1 (ja) * 2018-06-22 2019-10-23 株式会社フジクラ 光検出装置及びレーザ装置
WO2020171059A1 (ja) * 2019-02-21 2020-08-27 株式会社フジクラ 光ファイバケーブル、光ファイバケーブルを用いた光コンバイナユニット、及び、レーザ装置
US20220123515A1 (en) * 2019-02-27 2022-04-21 Fujikura Ltd. Laser device
CN110137795A (zh) * 2019-06-11 2019-08-16 深圳市创鑫激光股份有限公司 万瓦级别的超高功率全光纤连续光纤激光器系统
JP6874083B2 (ja) * 2019-09-27 2021-05-19 株式会社フジクラ 光検出装置及びレーザ装置
CN110718847B (zh) * 2019-10-15 2020-12-22 武汉锐科光纤激光技术股份有限公司 具有实时监测光学模块异常功能的多模块光纤激光器
JP7086922B2 (ja) * 2019-12-26 2022-06-20 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
US11784715B2 (en) * 2022-02-01 2023-10-10 Prime World International Holdings Ltd. Optical communication system capable of ensuring operation safety of external laser source

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120696A (en) * 1975-04-15 1976-10-22 Nec Corp Laser oscillator
JP2004207420A (ja) * 2002-12-25 2004-07-22 Toshiba Corp レーザ装置および映像表示装置
JP2006292674A (ja) * 2005-04-14 2006-10-26 Fujikura Ltd 光パワーモニタ方法、光パワーモニタ装置及び光デバイス
WO2007032422A1 (ja) * 2005-09-14 2007-03-22 Matsushita Electric Industrial Co., Ltd. レーザ画像形成装置
WO2012099116A1 (ja) * 2011-01-18 2012-07-26 古河電気工業株式会社 ファイバレーザ装置およびレーザ光照射位置の位置決め方法
JP2013197332A (ja) * 2012-03-21 2013-09-30 Fujikura Ltd 光回路装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4964131A (en) * 1988-12-16 1990-10-16 The Board Of Trustees Of The Leland Standford Junior University Broadband optical fiber laser
JP2005317841A (ja) * 2004-04-30 2005-11-10 Matsushita Electric Ind Co Ltd 半導体レーザ装置
JP2010238709A (ja) * 2009-03-30 2010-10-21 Shibaura Mechatronics Corp ファイバレーザ装置
EP2616209B1 (en) * 2010-09-13 2021-12-22 IPG Photonics Corporation Industrial high power fiber laser system with optical monitoring assembly
CN201966481U (zh) * 2010-11-26 2011-09-07 山西飞虹激光科技有限公司 带防反射装置的保偏光纤激光器
EP2648291A4 (en) * 2010-11-29 2018-04-04 Furukawa Electric Co., Ltd. Fiber laser apparatus, and method of detecting abnormality of fiber laser apparatus
CN103439773B (zh) * 2013-08-28 2015-05-13 中国科学院半导体研究所 高功率全固态连续激光合束系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51120696A (en) * 1975-04-15 1976-10-22 Nec Corp Laser oscillator
JP2004207420A (ja) * 2002-12-25 2004-07-22 Toshiba Corp レーザ装置および映像表示装置
JP2006292674A (ja) * 2005-04-14 2006-10-26 Fujikura Ltd 光パワーモニタ方法、光パワーモニタ装置及び光デバイス
WO2007032422A1 (ja) * 2005-09-14 2007-03-22 Matsushita Electric Industrial Co., Ltd. レーザ画像形成装置
WO2012099116A1 (ja) * 2011-01-18 2012-07-26 古河電気工業株式会社 ファイバレーザ装置およびレーザ光照射位置の位置決め方法
JP2013197332A (ja) * 2012-03-21 2013-09-30 Fujikura Ltd 光回路装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106684701A (zh) * 2015-11-09 2017-05-17 发那科株式会社 激光装置
CN106684701B (zh) * 2015-11-09 2019-04-02 发那科株式会社 激光装置
US10840665B2 (en) 2017-12-05 2020-11-17 Fanuc Corporation Laser machining apparatus
WO2021241391A1 (ja) * 2020-05-29 2021-12-02 パナソニックIpマネジメント株式会社 画像表示システム及び画像表示方法

Also Published As

Publication number Publication date
EP3113301B1 (en) 2019-08-07
US20160359288A1 (en) 2016-12-08
CN106063055A (zh) 2016-10-26
US9985407B2 (en) 2018-05-29
JP5889934B2 (ja) 2016-03-22
EP3113301A1 (en) 2017-01-04
CN106063055B (zh) 2019-04-05
EP3113301A4 (en) 2017-12-20
JP2015159208A (ja) 2015-09-03

Similar Documents

Publication Publication Date Title
JP5889934B2 (ja) ファイバレーザ装置及びその異常検出方法
JP4699131B2 (ja) 光ファイバレーザ、光ファイバ増幅器、mopa方式光ファイバレーザ
US8422890B2 (en) Fiber output stabilizer
US8811434B2 (en) Fiber laser apparatus and method of detecting failure of fiber laser apparatus
JP5276749B2 (ja) 光強度モニタ回路、およびファイバレーザシステム
US7002735B2 (en) Method for detecting disengagement of an optical fiber, an optical fiber amplifier, and a unit of an optical fiber amplifier with a transmission optical fiber
EP3696521B1 (en) Light detection device and laser device
CN110676679A (zh) 光纤激光装置
WO2017183321A1 (ja) 光ファイバ融着接続構造及びレーザ装置の製造方法
US20110222573A1 (en) Fiber laser having inline isolator for preventing damage to pump light source
JP2013197332A (ja) 光回路装置
JP6734683B2 (ja) 光モニタ装置及びレーザ装置
JP2014216497A (ja) 光回路装置
JP2015149369A (ja) ファイバレーザ装置
JP6210532B2 (ja) レーザ装置
JP2021136242A (ja) ファイバレーザ装置
US20110206068A1 (en) Optical fiber emission circuit and fiber laser
JP2008040252A (ja) 光学的モジュール
CN110892595B (zh) 激光装置、激光装置的光源劣化度推定方法
JP6644839B2 (ja) レーザ装置
EP4300728A1 (en) Fiber laser
JP2021150527A (ja) ファイバレーザ装置
JP2018129389A (ja) ファイバレーザ
JP2009065180A (ja) 光モニタ回路
WO2014156227A1 (ja) 光増幅装置における出力光パワー低下の判定方法及び光増幅システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014884180

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884180

Country of ref document: EP