WO2015125690A1 - 合わせガラス用中間膜 - Google Patents

合わせガラス用中間膜 Download PDF

Info

Publication number
WO2015125690A1
WO2015125690A1 PCT/JP2015/053846 JP2015053846W WO2015125690A1 WO 2015125690 A1 WO2015125690 A1 WO 2015125690A1 JP 2015053846 W JP2015053846 W JP 2015053846W WO 2015125690 A1 WO2015125690 A1 WO 2015125690A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated glass
interlayer film
molecular weight
measured
fine particles
Prior art date
Application number
PCT/JP2015/053846
Other languages
English (en)
French (fr)
Inventor
卓哉 小林
楠藤 健
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016504064A priority Critical patent/JP6441307B2/ja
Priority to US15/118,937 priority patent/US10259198B2/en
Priority to EP15751649.3A priority patent/EP3109213B1/en
Publication of WO2015125690A1 publication Critical patent/WO2015125690A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10614Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer comprising particles for purposes other than dyeing
    • B32B17/10623Whitening agents reflecting visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/38Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by a acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2329/00Polyvinylalcohols, polyvinylethers, polyvinylaldehydes, polyvinylketones or polyvinylketals
    • B32B2329/06PVB, i.e. polyinylbutyral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2331/00Polyvinylesters
    • B32B2331/04Polymers of vinyl acetate, e.g. PVA
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/10Copolymer characterised by the proportions of the comonomers expressed as molar percentages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2331/00Characterised by the use of copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, or carbonic acid, or of a haloformic acid
    • C08J2331/02Characterised by the use of omopolymers or copolymers of esters of monocarboxylic acids
    • C08J2331/04Homopolymers or copolymers of vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc

Definitions

  • Patent Document 5 describes a method of suppressing coloring of the obtained polyvinyl acetal by adding a reducing agent after neutralization by acetalization reaction.
  • the obtained interlayer film made of polyvinyl acetal was easily colored by heating, and foreign matter was likely to be generated.
  • penetration resistance was easy to fall.
  • the absolute value is 0.20 or more, and the haze measured by a method according to JIS K 7105 when the laminated glass interlayer film is sandwiched between two 3 mm thick glass plates to form a laminated glass is 20 % Of the interlayer film for laminated glass satisfying the following formulas (1) and (2).
  • A, a, B, b, x, and y are as follows.
  • Peak top molecular weight a Signal intensity at peak top molecular weight (A) B: Measured with an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed on the interlayer film for laminated glass heated at 230 ° C. for 3 hours.
  • Peak top molecular weight b Signal intensity at peak top molecular weight (B) x: Differential refractive index detection when GPC measurement of monodisperse polymethyl methacrylate (hereinafter sometimes abbreviated as PMMA) Signal intensity at peak top molecular weight measured with a vessel y: G of monodispersed PMMA When the C measured signal intensity at the peak top molecular weight measured by spectrophotometric detector (measuring wavelength 220 nm)
  • PMMA monodisperse polymethyl methacrylate
  • y G of monodispersed PMMA
  • the present invention also [2] Further, the present invention relates to the interlayer film for laminated glass of [1] that satisfies the following formulas (3) and (4).
  • A, a, C, c, x, and y are as follows.
  • the present invention it is possible to provide an interlayer film for laminated glass containing polyvinyl acetal in which light-diffusing fine particles are dispersed without agglomeration due to less coloring and foreign matters due to heating. Furthermore, the laminated glass excellent in penetration resistance, transparency, and light diffusibility can be provided.
  • the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the absorbance measured by the molecular weight and the absorbance detector (UV) (measurement wavelength 280 nm) It is an example of the graph which showed these relationships.
  • the interlayer film for laminated glass of the present invention has a polyvinyl acetal having an acetalization degree of 60 to 80 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 1400 to 4000. And an absolute value of a difference between the refractive index of the light diffusing fine particles and the refractive index of the composition obtained by removing the light diffusing fine particles from the composition is 0.20 or more. And the haze measured by a method in accordance with JIS K 7105 when sandwiching the interlayer film for laminated glass between two glass plates having a thickness of 3 mm to form laminated glass is 20% or less, and The expressions (1) and (2) are satisfied.
  • A, a, B, b, x, and y are as follows.
  • a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors is used.
  • the cell of the detection part of the absorptiometric detector preferably has a cell length (optical path length) of 10 mm.
  • the absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths.
  • the interlayer film for laminated glass subjected to the measurement is separated into each molecular weight component by a GPC column.
  • the signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the component constituting the interlayer film for laminated glass.
  • the components detected by the absorptiometric detector are only those having a structure that absorbs a predetermined wavelength.
  • the concentration and absorbance at a predetermined wavelength of each molecular weight component of the interlayer film for laminated glass can be measured.
  • HFIP containing sodium trifluoroacetate having a concentration of 20 mmol / l is used as the solvent and mobile phase used for dissolving the interlayer film for laminated glass and monodispersed PMMA measured in the GPC measurement.
  • HFIP can dissolve the interlayer film for laminated glass and PMMA of the present invention.
  • sodium trifluoroacetate by adding sodium trifluoroacetate, adsorption of components of the interlayer film for laminated glass and PMMA to the column filler is prevented.
  • the flow rate and column temperature in the GPC measurement are appropriately adjusted according to the type of column used.
  • the flow rate in the GPC measurement is usually 1.0 ml / min, and the column temperature is usually 40 ° C.
  • the peak top molecular weight (A) and the peak top molecular weight (B) are obtained by preparing a calibration curve.
  • the calibration curve is prepared based on the GPC elution capacity of these monodispersed PMMAs and their molecular weights by measuring several types of monodispersed PMMA having different molecular weights, which are used as standards for preparing the calibration curve.
  • a calibration curve prepared using the detector is used for the measurement with the differential refractive index detector, and a calibration prepared using the detector (measurement wavelength: 220 nm) for the measurement with the absorptiometric detector. Use lines. Using these calibration curves, the peak top molecular weight (A) and the peak top molecular weight (B) are determined by conversion from the GPC elution volume.
  • the interlayer film for laminated glass is heated at 230 ° C. for 3 hours.
  • the interlayer film for laminated glass is heated by the following method. Heating is performed by hot pressing the interlayer film for laminated glass at a pressure of 2 MPa and 230 ° C. for 3 hours. Thereby, the difference in the hue of the sample after the heat treatment is clearly reflected in the difference in the absorbance (that is, the signal intensity detected by the absorptiometric detector).
  • the thickness of the interlayer film for laminated glass to be subjected to heating is usually 600 to 800 ⁇ m, preferably about 760 ⁇ m, which is the thickness of the usual interlayer film for laminated glass.
  • the heated interlayer film for laminated glass is dissolved in the aforementioned solvent (HFIP containing sodium trifluoroacetate) to obtain a measurement sample.
  • the concentration of the measurement sample is 1.00 mg / ml, and the injection volume is 100 ⁇ l.
  • an appropriately diluted sample injection amount 100 ⁇ l is used.
  • the signal intensity detected by the absorptiometric detector and the differential refractive index detector is proportional to the concentration of the sample. Therefore, the concentration of the diluted sample and the actually measured signal intensity are used to convert each signal intensity when the concentration of the measurement sample is 1.00 mg / ml.
  • FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of the interlayer film for laminated glass of the present invention and the signal intensity measured by the differential refractive index detector, and the molecular weight and the spectrophotometric detector (measurement wavelength 280 nm). It is an example of the graph which showed the relationship with the signal intensity
  • the GPC measurement in the present invention will be further described with reference to FIG.
  • the chromatogram indicated by “RI” is a plot of the signal intensity measured by the differential refractive index detector against the molecular weight (horizontal axis) of the interlayer film component for laminated glass converted from the elution volume. It is.
  • the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (A) of the polymer component
  • the signal intensity at the peak top molecular weight (A) is defined as the signal intensity (a). Since the interlayer film for laminated glass of the present invention contains polyvinyl acetal having a viscosity average polymerization degree of 1400 to 4000, the peak top molecular weight (A) of the polymer component usually exceeds 3500.
  • the peak seen in the molecular weight 1500 vicinity is a peak of a plasticizer in case the plasticizer is contained in the intermediate film for laminated glasses.
  • the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (A).
  • the chromatogram indicated by “UV” is a signal measured by an absorptiometric detector (measurement wavelength: 280 nm) with respect to the molecular weight (horizontal axis) of the component of the interlayer film for laminated glass converted from the elution volume.
  • the intensity (absorbance) is plotted.
  • the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (B) of the polymer component
  • the signal intensity (absorbance) at the peak top molecular weight (B) is defined as the signal intensity (b). Since the interlayer film for laminated glass of the present invention contains polyvinyl acetal having a viscosity average polymerization degree of 1400 to 4000, the peak top molecular weight (B) of the polymer component usually exceeds 3500. When there are a plurality of peaks having a peak top molecular weight exceeding 3500 in the chromatogram, the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (B).
  • the interlayer film for laminated glass of the present invention has a peak top molecular weight (A) of a polymer component measured by a differential refractive index detector and a spectrophotometric detector (measurement wavelength: 280 nm) when GPC measurement is performed by the method described above.
  • the peak top molecular weight (B) of the polymer component measured by (1) satisfies the following formula (1). (AB) / A ⁇ 0.80 (1)
  • the peak top molecular weight (A) is a value serving as an index of the molecular weight of the polymer component in the interlayer film for laminated glass.
  • the peak top molecular weight (B) is derived from a component having absorption at 280 nm, which is present in the polymer component.
  • (AB) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, foreign matter in the interlayer film for laminated glass increases. Further, the color resistance of the interlayer film for laminated glass, the foreign matters (undissolved part) in the interlayer film for laminated glass and the performance regarding the penetration resistance of the laminated glass obtained using the interlayer film for laminated glass cannot be balanced.
  • (AB) / A is preferably less than 0.75, more preferably less than 0.70.
  • the interlayer film for laminated glass of the present invention satisfies the following formula (2). 1.00 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 2.00 ⁇ 10 ⁇ 1 (2)
  • a is the signal intensity measured by the differential refractive index detector at the peak top molecular weight (A) in the GPC measurement.
  • b is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) at the peak top molecular weight (B).
  • the signal intensity (x) is obtained in the same manner as the signal intensity (a).
  • the signal intensity (y) is obtained in the same manner as the signal intensity (b).
  • PMMA having a weight average molecular weight of about 85000 is preferable.
  • (B / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 280 nm in the polymer component of the interlayer film for laminated glass. When this value is large, it means that the content is large.
  • the signal intensity by the differential refractive index detector is approximately proportional to the component concentration (g / l) of the interlayer film for laminated glass.
  • the signal intensity (absorbance) by the absorptiometric detector is proportional to the concentration of the component having absorption at 280 nm. .
  • the signal intensity of the differential refractive index detector is indicated by “millivolt”
  • the signal intensity (absorbance) of the absorptiometric detector is indicated by “absorbance unit (AU)”.
  • the ratio of both is simply compared. It ’s difficult.
  • the ratio of the signal intensity obtained by the differential refractive index detector and the signal intensity obtained by the absorptiometric detector is not different depending on the model of the GPC apparatus and the measurement conditions. Desired.
  • the ratio (a / x) of the signal intensity (a) of the interlayer film for laminated glass by the differential refractive index detector to the signal intensity (x) of monodispersed PMMA by the differential refractive index detector, and the spectrophotometric detection The ratio (b / y) of the signal intensity (b) of the interlayer film for laminated glass by the absorptiometric detector to the signal intensity (y) of monodispersed PMMA by the vessel is obtained. And ratio (b / y) / (a / x) of both is calculated
  • the same index can be used for evaluation regardless of the device model and measurement conditions.
  • the interlayer film for laminated glass of the present invention preferably satisfies the following formula (2 ′), and more preferably satisfies the following formula (2 ′′). 1.50 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 1.50 ⁇ 10 ⁇ 1 (2 ′) 2.00 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 1.00 ⁇ 10 ⁇ 1 (2 ′′)
  • the polymer component of the interlayer film for laminated glass has few components that absorb ultraviolet light having a wavelength of 280 nm. Therefore, foreign matter (undissolved part) in the interlayer film for laminated glass increases. Further, the color resistance of the interlayer film for laminated glass, the foreign matters (undissolved part) in the interlayer film for laminated glass and the performance regarding the penetration resistance of the laminated glass obtained using the interlayer film for laminated glass cannot be balanced.
  • the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight (C) measured with an absorptiometric detector (measurement wavelength: 320 nm) are expressed by the following formula (3).
  • the peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • a peak top molecular weight (C) originates in the component which has absorption in 320 nm which exists in the polymer component in the intermediate film for laminated glasses.
  • (AC) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet rays having a wavelength of 320 nm.
  • foreign matter in the interlayer film for laminated glass may increase.
  • the anti-coloring property of the interlayer film for laminated glass, the foreign matter (undissolved part) in the interlayer film for laminated glass and the performance regarding the penetration resistance of the laminated glass obtained using the interlayer film for laminated glass may not be balanced.
  • (AC) / A is more preferably less than 0.75, and even more preferably less than 0.70.
  • the interlayer film for laminated glass of the present invention preferably satisfies the following formula (4). 5.00 ⁇ 10 ⁇ 3 ⁇ (c / y) / (a / x) ⁇ 7.00 ⁇ 10 ⁇ 2 (4)
  • a, x and y are the same as the above formula (2).
  • c is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength: 320 nm) at the peak top molecular weight (C).
  • (c / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 320 nm in the polymer component of the interlayer film for laminated glass. When this value is large, it means that the content is large. And it calculates
  • the interlayer film for laminated glass of the present invention preferably satisfies the following formula (4 ′), and more preferably satisfies the following formula (4 ′′). 7.00 ⁇ 10 ⁇ 3 ⁇ (c / y) / (a / x) ⁇ 6.00 ⁇ 10 ⁇ 2 (4 ′) 1.00 ⁇ 10 ⁇ 2 ⁇ (c / y) / (a / x) ⁇ 5.00 ⁇ 10 ⁇ 2 (4 ′′)
  • the polymer component of the interlayer film for laminated glass has few components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, there is a possibility that foreign matter in the interlayer film for laminated glass increases.
  • the anti-coloring property of the interlayer film for laminated glass, the foreign matter (undissolved part) in the interlayer film for laminated glass and the performance regarding the penetration resistance of the laminated glass obtained using the interlayer film for laminated glass may not be balanced. There is.
  • the polymer component of the interlayer film for laminated glass has many components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, the coloring resistance of the interlayer film for laminated glass and the penetration resistance of the obtained laminated glass may be deteriorated.
  • the degree of acetalization represents the ratio of the acetalized vinyl alcohol monomer unit to the total monomer units constituting the polyvinyl acetal.
  • PVA vinyl alcohol monomer units in the raw material polyvinyl alcohol
  • the viscosity average polymerization degree of the polyvinyl acetal is 1400 to 4000, and preferably 1500 to 3000.
  • the viscosity average polymerization degree is less than 1400, the strength of the interlayer film for laminated glass is low, and the resulting laminated glass has insufficient penetration resistance.
  • the degree of polymerization exceeds 4000, the melt viscosity becomes too high and film formation becomes difficult.
  • the content of the vinyl ester monomer unit in the polyvinyl acetal is 0.1 to 20 mol%, preferably 0.3 to 18 mol%, more preferably 0.5 to 15 mol%, Preferably, it is 0.7 to 13 mol%.
  • the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed.
  • the content of the vinyl ester monomer unit exceeds 20 mol%, the interlayer film for laminated glass becomes highly colored.
  • the content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal is preferably 20 mol% or less, more preferably 10%. It is less than mol%.
  • the polyvinyl acetal is usually produced by acetalizing polyvinyl alcohol.
  • Polyvinyl alcohol is usually produced by saponifying a polyvinyl ester.
  • Polyvinyl ester is produced by polymerizing vinyl ester monomers.
  • vinyl ester monomers used in the production of polyvinyl esters include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and versatic.
  • vinyl acid, and vinyl acetate is particularly preferable.
  • the vinyl ester monomer is derived from the thiol compound by polymerizing the vinyl ester monomer in the presence of a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester.
  • a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester.
  • a PVA having a functional group introduced at the end is obtained.
  • Examples of the method for polymerizing the vinyl ester monomer include known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed.
  • a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable.
  • the lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used.
  • the reaction can be carried out by either a batch method or a continuous method.
  • the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy).
  • Azo initiators such as -2,4-dimethylvaleronitrile
  • organic peroxide initiators such as benzoyl peroxide, n-propyl peroxycarbonate, peroxydicarbonate, etc., within a range that does not impair the effects of the present invention.
  • a well-known initiator is mentioned.
  • organic peroxide initiators having a half-life of 10 to 110 minutes at 60 ° C. are preferred, and peroxydicarbonate is particularly preferred.
  • polymerization temperature for carrying out the polymerization reaction, but a range of 5 ° C to 200 ° C is suitable.
  • a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired.
  • monomers include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, or the like Derivatives; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n-methacrylate Methacrylic acid esters such as propyl and isopropyl methacrylate; Acrylamide derivatives such as acrylamide, N-methylacrylamide and N-ethylacryl
  • the amount of the monomer that can be copolymerized with these vinyl ester monomers varies depending on the purpose and use of the monomer, but is usually based on all monomers used for copolymerization. Is 20 mol% or less, preferably 10 mol% or less.
  • PVA is obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
  • the degree of saponification of PVA used for the production of polyvinyl acetal is preferably 80 to 99.9 mol%, more preferably 82 to 99.7 mol%, still more preferably 85 to 99.5 mol%, particularly preferably. Is 87-99.3 mol%.
  • the degree of saponification of PVA is less than 80 mol%, the number of foreign matters (undissolved parts) in the interlayer film for laminated glass may increase, and the coloring resistance of the interlayer film may decrease.
  • the saponification degree exceeds 99.9 mol%, there is a possibility that PVA cannot be stably produced.
  • Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. In its use, the water content of methanol is preferably adjusted to 0.001 to 1% by weight, more preferably 0.003 to 0.9% by weight, and particularly preferably 0.005 to 0.8% by weight.
  • the saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C.
  • the time required for the saponification reaction is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours.
  • the saponification reaction can be carried out by either a batch method or a continuous method.
  • the remaining saponification catalyst may be neutralized as necessary.
  • Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
  • the alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate produced by the progress of the saponification reaction, or neutralized by adding a carboxylic acid such as acetic acid. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed.
  • the PVA may be washed with a washing solution containing a lower alcohol such as methanol after saponification.
  • the cleaning liquid may contain 20 parts by mass or less of water with respect to 100 parts by mass of the lower alcohol.
  • cleaning liquid may contain ester, such as methyl acetate produced
  • the content of the ester at this time is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol.
  • the PVA thus obtained is acetalized to produce polyvinyl acetal used for the production of an interlayer film for laminated glass.
  • the method of acetalization is not specifically limited, For example, the following method is mentioned.
  • PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA.
  • an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant. At that time, polyvinyl acetal having reached a certain degree of acetalization is precipitated.
  • reaction solution is raised to 25 to 80 ° C. over 30 to 300 minutes, and the temperature is maintained for 10 minutes to 25 hours (this temperature is set as the reaction temperature for driving in).
  • a neutralizing agent such as an alkali is added to the reaction solution as necessary to neutralize the acid catalyst, and the resultant is washed with water and dried to obtain polyvinyl acetal.
  • aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed.
  • coarse particles are generated, there is a risk of causing variation between batches.
  • a specific PVA described later is used as a raw material, the generation of coarse particles is suppressed from the conventional product, and as a result, foreign matter (undissolved content) is reduced when the resulting polyvinyl acetal is melt-formed.
  • An interlayer film for laminated glass can be obtained.
  • the acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid. Of these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used. In general, when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected. On the other hand, the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase.
  • the aldehyde used for the acetalization reaction of polyvinyl acetal is not particularly limited, but a conventionally known aldehyde having 1 to 8 carbon atoms is preferable, an aldehyde having 4 to 6 carbon atoms is more preferable, and n-butyraldehyde is particularly preferable.
  • polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
  • the antioxidant used in the method 1) is not particularly limited, and examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among these, phenolic antioxidants are used. Preferably, alkyl-substituted phenolic antioxidants are particularly preferred.
  • phenolic antioxidants examples include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate and 2,4-di-t-amyl-6.
  • Acrylate compounds such as-(1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate; 2,6-di-t-butyl-4-methylphenol, 2,6-di-t- Butyl-4-ethylphenol, octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene-bis (4-methyl-6-tert-butylphenol), 4, 4′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 4,4′-thiobi (3-methyl-6-tert-
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2-t-butyl).
  • sulfur-based antioxidant examples include dilauryl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, lauryl stearyl 3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane.
  • the blending amount of the antioxidant is not particularly limited, but is 0.001 to 5 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polyvinyl acetal. When the amount of the antioxidant is less than 0.001 part by mass, a sufficient effect may not be exhibited, and when it exceeds 5 parts by mass, the effect cannot be improved by increasing the blending amount.
  • Examples of the method for producing PVA used in the above method 2) include the following A) to H).
  • a vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
  • Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
  • Organic acids specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc.
  • a carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible.
  • the addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
  • the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
  • Organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer.
  • Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
  • an inhibitor When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator.
  • the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction.
  • isoprene 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-
  • the glass transition temperature of the interlayer film for laminated glass of the present invention is not particularly limited and can be appropriately selected depending on the purpose, but is preferably in the range of 0 to 50 ° C, more preferably 0 to 45 ° C.
  • the temperature is preferably 0 to 40 ° C.
  • the thickness of the interlayer film for laminated glass of the present invention is not particularly limited, but is preferably 0.05 to 5.0 mm, and more preferably 0.1 to 2.0 mm.
  • the method for producing the interlayer film for laminated glass of the present invention is not particularly limited, but after PVA is acetalized to obtain polyvinyl acetal, the polyvinyl acetal is mixed with light diffusing fine particles and, if necessary, a plasticizer and other components.
  • a method of melt-molding the obtained composition is preferred.
  • the melt molding method a method of melt-kneading the obtained polyvinyl acetal, light diffusing fine particles, plasticizer, and other components using an extruder to form a film is preferable.
  • the method for dispersing the light diffusing fine particles in the interlayer film for laminated glass of the present invention is not particularly limited, but a method of adding a dispersion obtained by dispersing the light diffusing fine particles in a plasticizer to the polyvinyl acetal resin is preferable. Further, the dispersion may contain a dispersant as required.
  • the method for dispersing the light diffusing fine particles in the plasticizer is not particularly limited, but a composition in which the light diffusing fine particles, the plasticizer and other components are mixed is mixed with a bead mill, ball mill, sand mill, homogenizer, attritor, high speed rotation.
  • the dispersion treatment can be performed by an apparatus such as an agitator or an ultrasonic dispersion apparatus.
  • the resin temperature at the time of extrusion is preferably 150 to 250 ° C, more preferably 170 to 230 ° C.
  • the resin temperature becomes too high, polyvinyl acetal is decomposed, and the content of volatile substances in the intermediate film after film formation increases.
  • the temperature is too low, the removal of volatile matter in the extruder becomes insufficient, and the content of volatile substances in the intermediate film after film formation increases.
  • the interlayer film for laminated glass of the present invention can also be obtained by forming a film obtained by dissolving or dispersing polyvinyl acetal, light diffusing fine particles, plasticizer and other components in an organic solvent, and then distilling off the organic solvent. Can be manufactured.
  • the shape of the surface of the interlayer film for laminated glass is not particularly limited. However, in consideration of the handleability (foaming property) when laminating with glass, the melt fracture and embossing are performed on the surface in contact with the glass by a conventionally known method. It is preferable that a concavo-convex structure such as is formed.
  • the emboss height is not particularly limited, but is preferably 5 ⁇ m to 500 ⁇ m, more preferably 7 ⁇ m to 300 ⁇ m, and still more preferably 10 ⁇ m to 200 ⁇ m.
  • emboss height is less than 5 ⁇ m
  • bubbles formed between the glass and the intermediate film may not be efficiently removed during lamination, and when it exceeds 500 ⁇ m, it is difficult to form the emboss.
  • Embossing may be performed on one side of the intermediate film or on both sides, but it is usually preferable to apply it on both sides.
  • the emboss pattern may be regular or irregular.
  • embossing roll method In order to form such embossing, a conventionally known embossing roll method, profile extrusion method, extrusion lip embossing method using melt fracture, or the like is employed.
  • the embossing roll method is suitable for stably obtaining an interlayer film for laminated glass on which uniform and fine irregularities are formed.
  • the embossing roll used in the embossing roll method can be produced by, for example, using an engraving mill (mother mill) having a desired concavo-convex pattern and transferring the concavo-convex pattern onto the surface of the metal roll.
  • an embossing roll can also be produced using laser etching.
  • blasting is performed on the surface using an abrasive such as aluminum oxide, silicon oxide, or glass beads to form a finer concavo-convex pattern. You can also.
  • a release treatment on the embossing roll used in the embossing roll method.
  • a roll that has not been subjected to release treatment is used, troubles in which the interlayer film for laminated glass cannot be peeled off from the roll tend to occur.
  • a known method such as silicone treatment, Teflon (registered trademark) treatment, plasma treatment or the like can be used.
  • a film may be formed using only a virgin resin (one that does not contain recycled polyvinyl acetal).
  • the film may be reused.
  • a film forming apparatus provided with a weighing machine such as a gear pump and a die such as a T die in an extruder is used.
  • a weighing machine such as a gear pump
  • a die such as a T die in an extruder
  • both ends (trims) of the interlayer film for laminated glass and the like are cut off. It is very important to collect and reuse such trims from the viewpoints of energy saving, effective utilization of resources and improvement of yield.
  • off-spec products produced during the production of an interlayer film for laminated glass having irregularities on the surface are also useful because they can be reused in the same way as trim.
  • the interlayer film for laminated glass of the present invention has few foreign matters (undissolved content) generated when the film is formed by melting. Further, since the interlayer film for laminated glass of the present invention is less colored when heat-treated, the recovered interlayer film for laminated glass (trim, off-spec intermediate film for laminated glass) can be effectively reused.
  • the trim or off-spec intermediate film for laminated glass wound on a roll is unwound as it is and re-entered into the extruder;
  • Examples include a method in which an intermediate film for laminated glass of an off-spec product wound on a roll is cut into a certain size and then re-entered into an extruder.
  • the ratio of the virgin resin in the raw material to the interlayer film for recovered laminated glass is between 0: 100 and 100: 0. Can be changed arbitrarily.
  • the content of the light diffusing fine particles, the plasticizer, and other components can be adjusted by the following method.
  • a desired interlayer film for laminated glass is obtained by adjusting the amount of each component added to the extruder while analyzing the components of the interlayer film for laminated glass obtained.
  • a laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is a preferred embodiment of the present invention.
  • the laminated glass can be produced by sandwiching the intermediate film between at least two glass plates and heating and bonding the intermediate film.
  • the glass used for the laminated glass is not particularly limited.
  • inorganic glass such as float plate glass, tempered plate glass, polished plate glass, mold plate glass, netted plate glass, heat ray absorbing plate glass, conventionally known polymethyl methacrylate, polycarbonate and the like.
  • Organic glass or the like can be used. These may be either colorless or colored. From the viewpoint of transparency when using laminated glass, these glasses preferably have a haze of 20% or less measured by a method based on JIS K 7105.
  • the laminated glass can be produced by a conventionally known method, and examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Further, there is a method in which the obtained laminate is put into an autoclave after being temporarily pressed using these methods.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass. For example, 1.0 to 1.5 MPa The treatment is preferably carried out at 130 to 145 ° C. for 0.5 to 3 hours under pressure.
  • the sample in which the PVA viscosity average polymerization degree in a sample exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably.
  • the absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. ⁇ (mg / ml) is the concentration of the diluted sample.
  • Absorbance at a sample concentration of 1.00 mg / ml (1.00 / ⁇ ) ⁇ measured value of absorbance
  • the signal intensity obtained from the differential refractive index detector is expressed in millivolts
  • the signal intensity obtained from the absorptiometric detector is expressed in absorbance (absunit: Absorbance unit).
  • the polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained.
  • a 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1.
  • the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days.
  • the obtained polyvinyl alcohol was dried and the viscosity average polymerization degree was measured.
  • the degree of polymerization was 1700.
  • PVAc-2 to 13 Polyvinyl acetate (PVAc-2 to 13) was obtained by the same method as PVAc-1 except that the conditions were changed to those described in Table 1.
  • “ND” means less than 1 ppm.
  • the degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
  • the polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS K 6726.
  • the degree of polymerization was 1700, and the degree of saponification was 99.1 mol%.
  • These physical property data are shown in Table 2.
  • PVA-2, 3, comparative PVA-1 to 3 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 2 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 2.
  • PVA-4, comparative PVA-4, 5 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 3.
  • PVA-5, comparative PVA-6-8 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 4.
  • PVA-6-8, comparative PVA-9-11 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 5 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 5.
  • PVA-9, comparative PVA-12, 13 Each PVA was synthesized in the same manner as PVA-1 except that the conditions were changed to those shown in Table 6.
  • the polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. The results are shown in Table 6.
  • PVB-1 A 10 L glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the contents were heated to 95 ° C. The PVA was completely dissolved. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C.
  • composition of PVB The degree of butyralization (degree of acetalization) of PVB-1, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K 6728. The degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 0.9 mol%, and the content of vinyl alcohol monomer units was 30.9 mol%. It was. The results are shown in Table 8.
  • PVB-4 PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 365 g. The results are shown in Table 8.
  • the degree of butyralization (degree of acetalization) of PVB is 64.3 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 34.8. Mol%.
  • PVB-5 PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 449 g. The results are shown in Table 8.
  • the degree of butyralization (degree of acetalization) of PVB is 79.8 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 19.3. Mol%.
  • Comparison PVB-4 A 10 L glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the contents were heated to 95 ° C. The PVA was completely dissolved. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 740 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 80 ° C. over 90 minutes, kept at 80 ° C.
  • PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 8.
  • the degree of butyralization (degree of acetalization) of PVB is 87.4 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 11.7. Mol%.
  • Comparative PVB-5 A 10 L glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-3 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 8 ° C. over about 30 minutes while stirring at 120 rpm, and 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 8.
  • the degree of butyralization (degree of acetalization) of PVB was 68.5 mol%, the content of vinyl acetate monomer units was 1.5 mol%, and the content of vinyl alcohol monomer units was 30.0. Mol%.
  • PVB-6 A 10 L glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-4 (PVA concentration 6.0%), and the contents were heated to 95 ° C. And completely dissolved. Next, the contents were gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 307 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • PVB-7 A 10 L glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8322 g of ion-exchanged water and 438 g of PVA-5 (PVA concentration 5.0%), and the contents were heated to 95 ° C. Thus, the PVA was completely dissolved. Next, the contents are gradually cooled to 20 ° C. over about 30 minutes while stirring at 120 rpm, and then 256 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • Comparison PVB-8 ⁇ 10 PVB was synthesized and evaluated in the same manner as PVB-7, except that the raw material PVA was changed to that shown in Table 10. The results are shown in Table 10.
  • PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 11.
  • the obtained PVB had a butyralization degree (acetalization degree) of 74.1 mol%, a vinyl acetate monomer unit content of 8.1 mol%, and a vinyl alcohol monomer unit content of It was 17.8 mol%.
  • Comparative PVB-11, 12 PVB was synthesized and evaluated in the same manner as PVB-8 except that the raw material PVA was changed to that shown in Table 11. The results are shown in Table 11.
  • Example 1 (Preparation of interlayer film for laminated glass) Titanium oxide fine particles “JR-1000” (refractive index 2.72) 0.007 parts by mass as light diffusing fine particles, 0.014 parts by mass of magnesium acetate, and triethylene glycol-di-2-ethylhexa as a plasticizer 19 parts by weight of noate was mixed and stirred for 30 minutes using a stirrer to prepare a mixed solution.
  • the mixed solution was added to 50 parts by mass of PVB-1 powder, and melt kneaded for 5 minutes at 160 ° C. and 50 rpm using a Laboplast mill “C model” manufactured by Toyo Seiki Seisakusho.
  • the obtained kneaded material was hot-pressed at 160 ° C. and 5 MPa for 30 minutes to produce an interlayer film for laminated glass having a size of 20 cm ⁇ 20 cm and a thickness of 760 ⁇ m.
  • the interlayer film for laminated glass contains 0.0101% by mass of light diffusing fine particles.
  • the obtained interlayer film for laminated glass was heated by hot pressing at 230 ° C. under a pressure of 2 MPa for 3 hours, and then cooled and subjected to a heat treatment to obtain an interlayer film for laminated glass. A sample was collected from the vicinity of the center, and the obtained sample was subjected to GPC measurement by the above method.
  • the peak top molecular weight (C) measured with an absorptiometric detector (320 nm) determined in the same manner as the method for determining the peak top molecular weight (B) except that the measurement wavelength is different is 45600, and the peak top molecular weight
  • the signal intensity (absorbance, c) in (C) was 1.03 mV (1.03 ⁇ 10 ⁇ 3 absorption units).
  • the peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A The value obtained by substituting for was 0.52. The results are shown in Table 14.
  • PMMA85K weight average molecular weight 85450, number average molecular weight 74300, intrinsic viscosity 0.309 manufactured by the company was used.
  • the monodispersed PMMA was measured by GPC by the above method.
  • the signal intensity (absorbance, y) at the peak top molecular weight measured with an absorptiometric detector (220 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (B) was 269.28 mV (0.26928 absorber). Unit).
  • Signal intensity (a), peak top molecular weight (b), signal intensity (x), and signal intensity (y) are expressed by the following formulas (b / y) / (a / x) The value obtained by substituting for was 2.17 ⁇ 10 ⁇ 2 . The results are shown in Table 14.
  • Signal intensity (a), peak top molecular weight (c), signal intensity (x), and signal intensity (y) are represented by the following formula (c / y) / (a / x) The value obtained by substituting for was 1.37 ⁇ 10 ⁇ 2 .
  • the results are shown in Table 14.
  • the obtained laminated glass was evaluated according to the method shown in the penetration resistance test of JIS R 3212 (automotive safety glass test method) and JIS R 3211 (automotive safety glass). That is, after the laminated glass was temperature-controlled at 23 ° C. for 4 hours, it was placed horizontally on a dedicated support frame, and a steel ball having a mass of 2260 g and a diameter of 82 mm was freely dropped from a height of 4 m onto the central portion of the laminated glass. When the steel ball penetrated within 5 seconds after the collision, it was determined as “penetration”. Six laminated glasses were tested, and if all did not penetrate, it was determined to be acceptable. In the case where there were 5 pieces that did not penetrate, a retest was conducted. If all 6 pieces did not penetrate, the test was accepted. The results are shown in Table 14.
  • an interlayer film base material for laminated glass containing PVB-1 was obtained in the same manner as described above (Preparation of interlayer film for laminated glass).
  • the refractive index of the interlayer substrate for laminated glass was measured by using an Abbe refractometer manufactured by Atago Co., Ltd., and the absolute difference between the obtained refractive index and the refractive index of the light diffusing fine particles was calculated. The evaluation results are shown in Table 14.
  • the interlayer films for laminated glass of Examples 1 to 9 have less foreign matter (undissolved content) in the interlayer film for laminated glass, and are excellent in coloring resistance of the interlayer film for laminated glass.
  • Laminated glass manufactured using a film is excellent in penetration resistance, transparency and light diffusivity, and even when an interlayer film for laminated glass made of a kneaded product that has been repeatedly heated is used, the increase in haze is suppressed. there were.
  • the performance of any of the interlayer films for laminated glass of Comparative Examples 1 to 7 that did not satisfy the conditions defined in the present invention was lowered.
  • Examples 10-12, Comparative Example 8 The titanium oxide fine particle “JR-1000” manufactured by Teika Co., Ltd. was changed to the titanium oxide fine particle “JR-301” (refractive index: 2.72) manufactured by Teica Co., Ltd., and the added amount of “JR-301” is shown in Table 15. Production and evaluation of an interlayer film for laminated glass were carried out in the same manner as in Example 1 except for changing to those shown. The results are shown in Table 15.
  • the interlayer films for laminated glass of Examples 10 to 12 have less foreign matter (undissolved content) in the interlayer film for laminated glass, and excellent in coloration resistance of the interlayer film for laminated glass.
  • Laminated glass manufactured using a film is excellent in penetration resistance, transparency and light diffusivity, and even when an interlayer film for laminated glass made of a kneaded product that has been repeatedly heated is used, the increase in haze is suppressed. there were.
  • any performance of the interlayer film for laminated glass of Comparative Example 8 that does not satisfy the conditions defined in the present invention was lowered.
  • Examples 13 to 15 and Comparative Example 9 Changed the titanium oxide fine particle “JR-1000” manufactured by Teika Co., Ltd. to the zinc oxide fine particle “Zinc oxide type 1” (refractive index 1.95) manufactured by Sakai Chemical Industry Co., Ltd.
  • the interlayer film for laminated glass was produced and evaluated in the same manner as in Example 1 except that the values were changed to those shown in Table 16. The results are shown in Table 16.
  • the interlayer films for laminated glass of Examples 13 to 15 have less foreign matter (undissolved content) in the interlayer film for laminated glass, and excellent in coloration resistance of the interlayer film for laminated glass.
  • Laminated glass manufactured using a film is excellent in penetration resistance, transparency and light diffusivity, and even when an interlayer film for laminated glass made of a kneaded product that has been repeatedly heated is used, the increase in haze is suppressed. there were.
  • the performance of any of the interlayer films for laminated glass of Comparative Examples 9 to 10 that did not satisfy the conditions specified in the present invention was lowered.
  • Example 16 Comparative Examples 11-12 An interlayer film for laminated glass was prepared and evaluated in the same manner as in Example 1 except that PVB shown in Table 17 was used instead of PVB-1. The results are shown in Table 17.
  • the interlayer film for laminated glass of Example 16 has few foreign matters (undissolved content) in the interlayer film for laminated glass, and has excellent coloration resistance of the interlayer film for laminated glass.
  • the laminated glass produced using this was excellent in penetration resistance, transparency and light diffusibility, and even when an interlayer film for laminated glass made of a kneaded material repeatedly heated was used, the increase in haze was suppressed. .
  • the performance of any of the interlayer films for laminated glass of Comparative Examples 11 to 12 that did not satisfy the conditions defined in the present invention was reduced.
  • Example 17 Comparative Examples 13-15 An interlayer film for laminated glass was prepared and evaluated in the same manner as in Example 1 except that PVB shown in Table 18 was used instead of PVB-1. The results are shown in Table 18.
  • the interlayer film for laminated glass of Example 17 has little foreign matter (undissolved content) in the interlayer film for laminated glass, and is excellent in coloring resistance of the interlayer film for laminated glass.
  • the laminated glass produced using this was excellent in penetration resistance, transparency and light diffusibility, and even when an interlayer film for laminated glass made of a kneaded material repeatedly heated was used, the increase in haze was suppressed. .
  • the performance of any of the interlayer films for laminated glass of Comparative Examples 13 and 14 decreased. In Comparative Example 15, the viscosity was too high to obtain an interlayer film for laminated glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】加熱による着色および異物(未溶解分)が少なく、光拡散性微粒子が凝集せず分散されたポリビニルアセタールを含有する合わせガラス用中間膜の提供。当該合わせガラス用中間膜が繰り返し加熱して得られたものであっても光拡散性微粒子が凝集せず分散されており、該中間膜を用いた場合にも、耐貫通性、透明性および光拡散性に優れる合わせガラスの提供。 【解決手段】合わせガラス用中間膜であって、アセタール化度が60~80モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~4000であるポリビニルアセタール、及び光拡散性微粒子を含有する組成物からなり、該光拡散性微粒子の屈折率と前記組成物から該光拡散性微粒子を除いた組成物の屈折率との差分絶対値が0.20以上であり、前記合わせガラス用中間膜を厚さ3mmのガラス板2枚の間に挟みこんで合わせガラスにした際のJIS K 7105に準拠した方法で測定したヘイズが20%以下であり、かつ下記式(1)及び(2)を満たす合わせガラス用中間膜。 (A-B)/A<0.80 (1) 1.00×10-2<(b/y)/(a/x)<2.00×10-1(2)

Description

合わせガラス用中間膜
 本発明は合わせガラス用中間膜に関する。また、本発明は当該合わせガラス用中間膜を用いた合わせガラスに関する。
 微粒子の添加等により光拡散性を付与した構造体は、電球やLED等の点光源や蛍光管等の線光源から出射した光を拡散させ、面方向へ光を出射させる機能を有する。上記構造体は、従来から液晶表示装置のバックライト光源として広く利用されているが、近年、他の用途にも利用する動きが高まっている。例えば、光源消灯時は透明で光源点灯時には面方向への拡散光により不透明となることを利用した窓材を兼ねた遮光板や、照明、装飾板、看板、サイン等の発光板としての利用が挙げられる。上記構造体として具体的には、アクリル樹脂やポリカーボネート樹脂等からなる板状体に微粒子を添加したり表面処理したりしたものなどが広く用いられている。
 前記遮光板および発光板を構成する部材として、耐擦傷性が高い、静電気を帯びにくく埃が付着しにくい等の理由からアクリル樹脂やポリカーボネート樹脂等とともにガラス板を用いることもある。例えば、アクリル樹脂等からなるフレネルレンズシート/レンチキュラーシートと共に、特定の規定を満たす球状微粒子を含有する中間膜を用いた合わせガラスを光拡散シートとして用いた透過型スクリーンが挙げられる(特許文献1参照)。前記中間膜を構成する材料としては、ポリビニルブチラールに代表されるポリビニルアセタールが挙げられる。その他に拡散光を利用した合わせガラスの例として、酸化チタン微粒子を含有させた中間膜により複数枚のガラス板を接着した合わせガラスを可視光をある程度透過しつつ、人又は物体を視認させない合わせガラスとして用いるものが挙げられる(特許文献2参照)。
 一方でポリビニルアセタールからなる中間膜には、従来からの課題として、1)加熱により着色しやすい、2)異物(未溶解分)を生じやすい、3)安全合わせガラスに用いた際に耐貫通性が低下しやすいなどの問題点があった。前記1)および2)の問題が生じた場合、遮光板および発光板の色味が変化したり、均一な光拡散性が得られないことがあった。また前記3)の問題が生じた場合、合わせガラスの安全性が損なわれることがあった。これらの問題を解決するために種々の提案がなされている。例えば、特許文献3および4には、高温高圧下にて特定の水酸化物イオン濃度でアセタール化することにより、ポリビニルアセタールの着色を抑制する方法が記載されている。特許文献5には、アセタール化反応して中和した後に還元剤を添加することにより、得られるポリビニルアセタールの着色を抑制する方法が記載されている。しかしながら、特許文献3~5に記載された方法の場合、得られたポリビニルアセタールからなる中間膜は加熱により着色しやすく、さらに異物が生じやすかった。また当該中間膜を安全合わせガラスに用いた際に耐貫通性が低下しやすかった。
 また均一な光拡散性を有する遮光板や発光板を得るためには、光拡散性を付与する微粒子をポリビニルアセタールからなる中間膜に高度に分散させる必要がある。特許文献6には酸変性ポリオレフィンを添加することにより、ポリビニルアセタールからなる中間膜に無機微粒子を分散させる方法が記載されている。しかし、特許文献6に記載された方法の場合、ポリビニルアセタールからなる中間膜への微粒子の分散性に未だ改善の余地があった。このようなことから、上述した問題が全て解決されたポリビニルアセタールからなる合わせガラス用中間膜が強く求められている。
特開2007-57906号公報 国際公開2009/035081号 特開2011-219670号公報 特開2011-219671号公報 特開平05-140211号公報 特開2009-221029号公報
 本発明は、上記課題を解決するためになされたものであり、加熱による着色および異物(未溶解分)が少なく、光拡散性微粒子が凝集せず分散されたポリビニルアセタールを含有する合わせガラス用中間膜を提供することを目的とする。さらに、耐貫通性、透明性および光拡散性に優れる合わせガラスを提供することを目的とする。
 本発明者らは鋭意検討した結果、以下の[1]~[13]の発明により、上記課題が解決されることを見出した。
すなわち、本発明は、
 [1]ポリビニルアセタールを含有する合わせガラス用中間膜であって、アセタール化度が60~80モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~4000であるポリビニルアセタール、及び光拡散性微粒子を含有する組成物からなり、該光拡散性微粒子の屈折率と前記組成物から該光拡散性微粒子を除いた組成物の屈折率との差分絶対値が0.20以上であり、前記合わせガラス用中間膜を厚さ3mmのガラス板2枚の間に挟みこんで合わせガラスにした際のJIS K 7105に準拠した方法で測定したヘイズが20%以下であり、かつ下記式(1)及び(2)を満たす合わせガラス用中間膜に関する。
(A-B)/A<0.80 (1)
1.00×10-2<(b/y)/(a/x)<2.00×10-1(2)
式中、A、a、B、b、x、yは以下のとおりである。
A:230℃において3時間加熱された前記合わせガラス用中間膜をゲルパーミエーションクロマトグラフィー(以下、GPCと略称することがある。)測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
a:ピークトップ分子量(A)におけるシグナル強度
B:230℃において3時間加熱された前記合わせガラス用中間膜をGPC測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
b:ピークトップ分子量(B)におけるシグナル強度
x:単分散のポリメタクリル酸メチル(以下、PMMAと略称することがある。)をGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
y:前記単分散のPMMAをGPC測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
また、本発明は、
[2]さらに、下記式(3)及び(4)を満たす[1]の合わせガラス用中間膜に関する。
(A-C)/A<0.80 (3)
5.00×10-3<(c/y)/(a/x)<7.00×10-2(4)
式中、A、a、C、c、x、yは以下のとおりである。
A:前記式(1)と同じ
a、x、y:前記式(2)と同じ
C:230℃において3時間加熱された前記合わせガラス用中間膜をGPC測定したときの、吸光光度検出器(測定波長320nm)で測定されるポリマー成分のピークトップ分子量
c:ピークトップ分子量(C)におけるシグナル強度
さらに本発明は、
[3]前記ポリビニルアセタールがポリビニルブチラール(以下「PVB」と略記する場合がある。)である、[1]又は[2]の合わせガラス用中間膜;
[4]さらに可塑剤を含有する、[1]~[3]のいずれかの合わせガラス用中間膜;
[5]可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエートを含有する[4]の合わせガラス用中間膜;
[6]前記光拡散性微粒子が無機化合物である、[1]~[5]のいずれかに記載の合わせガラス用中間膜;
[7]前記無機化合物が金属酸化物である、[6]の合わせガラス用中間膜;
[8]前記金属酸化物が酸化チタンである、[7]の合わせガラス用中間膜;
[9]前記金属酸化物が酸化亜鉛である、[7]の合わせガラス用中間膜;
[10]前記光拡散性微粒子の含有量が0.001~0.040質量%である、[6]~[9]のいずれかの合わせガラス用中間膜;
[11][1]~[9]のいずれかの合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラス;
[12]ポリビニルアルコール(以下「PVA」と略記する場合がある)をアセタール化して、アセタール化度が60~80モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~4000であるポリビニルアセタールを得た後、該ポリビニルアセタールを溶融成形する[1]~[10]のいずれかの合わせガラス用中間膜の製造方法;
[13][11]に記載の合わせガラスを構成として有する光拡散板;
[14][11]に記載の合わせガラスを備える発光板;
[15][11]に記載の合わせガラスを構成として有するサンルーフパネル
に関する。
 本発明によれば、加熱による着色および異物が少なく、光拡散性微粒子が凝集せず分散されたポリビニルアセタールを含有する合わせガラス用中間膜を提供できる。さらに、耐貫通性、透明性および光拡散性に優れる合わせガラスを提供できる。
本発明の合わせガラス用中間膜において、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフの一例である。
 本発明の合わせガラス用中間膜は、アセタール化度が60~80モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~4000であるポリビニルアセタール、及び光拡散性微粒子を含有する組成物からなり、該光拡散性微粒子の屈折率と前記組成物から該光拡散性微粒子を除いた組成物の屈折率との差分絶対値が0.20以上であり、前記合わせガラス用中間膜を厚さ3mmのガラス板2枚の間に挟みこんで合わせガラスにした際のJIS K 7105に準拠した方法で測定したヘイズが20%以下であり、かつ下記式(1)及び(2)を満たすものである。
(A-B)/A<0.80 (1)
1.00×10-2<(b/y)/(a/x)<2.00×10-1(2)
式中、A、a、B、b、x、yは以下のとおりである。
A:230℃において3時間加熱された前記合わせガラス用中間膜をGPC測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
a:ピークトップ分子量(A)におけるシグナル強度
B:230℃において3時間加熱された前記合わせガラス用中間膜をGPC測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
b:ピークトップ分子量(B)におけるシグナル強度
x:単分散PMMAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
y:前記単分散PMMAをGPC測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
 ただし、合わせガラス用中間膜及び単分散PMMAのGPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略称する)
試料濃度:1.00mg/ml(溶媒:20mmol/lトリフルオロ酢酸ナトリウム含有HFIP)
試料注入量:100μl
カラム温度:40℃
流速:1.0ml/分
である。
 本発明におけるGPC測定では、示差屈折率検出器及び吸光光度検出器を有し、これらの検出器による測定を同時に行うことができるGPC装置を使用する。吸光光度検出器の検出部のセルは、セル長(光路長)が10mmのものが好ましい。吸光光度検出器は、特定波長の紫外光の吸収を測定するものでもよいし、特定範囲の波長の紫外光の吸収を分光測定するものでもよい。測定に供された合わせガラス用中間膜は、GPCカラムによって各分子量成分に分離される。示差屈折率検出器によるシグナル強度は、概ね合わせガラス用中間膜を構成する成分の濃度(g/l)に比例する。一方、吸光光度検出器により検出される成分は、所定の波長を吸収する構造を有するもののみである。前記GPC測定により、合わせガラス用中間膜の各分子量成分の、濃度および所定の波長における吸光度を測定することができる。
 前記GPC測定において測定される合わせガラス用中間膜及び単分散PMMAの溶解に用いる溶媒及び移動相として、20mmol/lの濃度のトリフルオロ酢酸ナトリウム含有HFIPを用いる。HFIPは、本発明の合わせガラス用中間膜及びPMMAを溶解させることができる。また、トリフルオロ酢酸ナトリウムを添加することにより、カラム充填剤への合わせガラス用中間膜の成分やPMMAの吸着が防止される。前記GPC測定における流速やカラム温度は使用するカラムの種類等によって適宜調整する。前記GPC測定における流速は通常1.0ml/分であり、カラム温度は通常40℃である。
 前記GPC測定において使用されるGPCカラムは、本発明の合わせガラス用中間膜中の成分を分子量ごとに分離できるものであれば特に限定されない。具体的には、昭和電工株式会社製「GPC HFIP-806M」等が好適に用いられる。
 本発明において、ピークトップ分子量(A)及びピークトップ分子量(B)は、検量線を作成して求める。検量線は、検量線作成用の標品として用いられる、分子量の異なる数種類の単分散のPMMAを測定し、それらの単分散のPMMAのGPC溶出容量とそれらの分子量に基づいて作成する。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器(測定波長220nm)を用いて作成した検量線を使用する。これらの検量線を用いてGPC溶出容量から換算し、ピークトップ分子量(A)及びピークトップ分子量(B)を求める。
 前記GPC測定の前に、合わせガラス用中間膜を230℃において3時間加熱する。本発明においては、以下の方法で合わせガラス用中間膜を加熱する。合わせガラス用中間膜を圧力2MPa、230℃にて、3時間熱プレスすることにより加熱を行う。これにより、加熱処理後の試料の色相の差異を吸光度(すなわち、吸光光度検出器で検出されるシグナル強度)の差異に明確に反映させる。加熱に供する合わせガラス用中間膜の厚みは、通常、600~800μmであり、通常の合わせガラス用中間膜の厚みである概ね760μmであることが好ましい。
 加熱された合わせガラス用中間膜を前述した溶媒(トリフルオロ酢酸ナトリウム含有HFIP)に溶解させて測定試料を得る。測定試料の濃度は1.00mg/mlとし、注入量は100μlとする。但し、合わせガラス用中間膜中のポリビニルアセタールの粘度平均重合度が2400を超える場合、排除体積が増大するため、測定試料の濃度が1.00mg/mlでは再現性良く測定できない場合がある。その場合には、適宜希釈した試料(注入量100μl)を用いる。吸光光度検出器及び示差屈折率検出器で検出されるシグナル強度は試料の濃度に比例する。したがって、希釈した試料の濃度と実測された各シグナル強度を用いて、測定試料の濃度が1.00mg/mlの場合の各シグナル強度に換算する。
 図1は、本発明の合わせガラス用中間膜をGPC測定して得られた、分子量と示差屈折率検出器で測定されたシグナル強度との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)との関係を示したグラフの一例である。図1を用いて本発明におけるGPC測定についてさらに説明する。図1において、「RI」で示されるクロマトグラムは、溶出容量から換算した合わせガラス用中間膜成分の分子量(横軸)に対して、示差屈折率検出器で測定されたシグナル強度をプロットしたものである。当該クロマトグラム中の分子量10万(log(M)=5.0)付近に見られるピークがポリマー成分のピークである。本発明において、このようなポリマー成分のピークの位置における分子量をポリマー成分のピークトップ分子量(A)とし、ピークトップ分子量(A)におけるシグナル強度をシグナル強度(a)とする。本発明の合わせガラス用中間膜は、粘度平均重合度が1400~4000であるポリビニルアセタールを含有するため、通常、ポリマー成分のピークトップ分子量(A)は3500を超える。なお、図1において、分子量1500付近に見られるピークは合わせガラス用中間膜に可塑剤が含有されている場合の可塑剤のピークである。クロマトグラム中にピークトップ分子量が3500を超えるピークが複数存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(A)とする。
 図1において、「UV」で示されるクロマトグラムは、溶出容量から換算した合わせガラス用中間膜の成分の分子量(横軸)に対して、吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)をプロットしたものである。当該クロマトグラム中の分子量5万(log(M)=4.7)付近に見られるピークがポリマー成分のピークである。本発明において、このようなポリマー成分のピークの位置における分子量をポリマー成分のピークトップ分子量(B)とし、ピークトップ分子量(B)におけるシグナル強度(吸光度)をシグナル強度(b)とする。本発明の合わせガラス用中間膜は、粘度平均重合度が1400~4000であるポリビニルアセタールを含有するため、通常、ポリマー成分のピークトップ分子量(B)は3500を超える。クロマトグラム中にピークトップ分子量が3500を超えるピークが複数存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(B)とする。
 本発明の合わせガラス用中間膜は、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量(B)が下記式(1)を満たす。
(A-B)/A<0.80 (1)
 ピークトップ分子量(A)は、合わせガラス用中間膜中のポリマー成分の分子量の指標となる値である。一方、ピークトップ分子量(B)は、ポリマー成分中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(B)よりもピークトップ分子量(A)のほうが大きいため、(A-B)/Aは正の値になる。ピークトップ分子量(B)が大きくなれば、(A-B)/Aは小さくなり、ピークトップ分子量(B)が小さくなれば、(A-B)/Aは大きくなる。すなわち、(A-B)/Aが大きい場合には、ポリマー成分中の低分子量成分に波長280nmの紫外線を吸収する成分が多いことを意味する。
 (A-B)/Aが0.80以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、合わせガラス用中間膜中の異物が増える。また、合わせガラス用中間膜の耐着色性、合わせガラス用中間膜中の異物(未溶解分)及び合わせガラス用中間膜を用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れない。(A-B)/Aは、好ましくは0.75未満であり、より好ましくは0.70未満である。
 本発明の合わせガラス用中間膜は下記式(2)を満たす。
1.00×10-2<(b/y)/(a/x)<2.00×10-1 (2)
 式(2)中、aは、前記GPC測定における、ピークトップ分子量(A)における示差屈折率検出器で測定されるシグナル強度である。bは、ピークトップ分子量(B)における吸光光度検出器(測定波長280nm)で測定されるシグナル強度(吸光度)である。 
 式(2)中、xは、単分散PMMAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度である。yは、前記単分散PMMAをGPC測定したときの、吸光光度検出器で(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度(吸光度)である。単分散PMMAのGPC測定は、加熱された合わせガラス用中間膜の代わりに単分散PMMAを用いること及び吸光光度検出器の測定波長を220nmに変更すること以外は、前述した合わせガラス用中間膜のGPC測定と同様にして行う。シグナル強度(x)は、シグナル強度(a)と同様にして求められる。シグナル強度(y)は、シグナル強度(b)と同様にして求められる。x及びyを求める際に使用する単分散PMMAとして、重量平均分子量約85000であるPMMAが好ましい。
 (b/y)/(a/x)は、合わせガラス用中間膜のポリマー成分中の、波長280nmの紫外光を吸収する構造を有する成分の含有量の指標となる。この値が大きい場合は、当該含有量が多いことを意味する。上述したとおり、示差屈折率検出器によるシグナル強度は概ね合わせガラス用中間膜の成分の濃度(g/l)に比例する。一方、吸光光度検出器により検出されるものは、測定波長である280nmに吸収を有する成分のみであり、吸光光度検出器によるシグナル強度(吸光度)は、280nmに吸収を有する成分の濃度に比例する。通常、示差屈折率検出器のシグナル強度は「ミリボルト」、吸光光度検出器のシグナル強度(吸光度)は「アブソーバンスユニット(A.U.)」で表示される。
 但し、示差屈折率検出器により測定されるシグナル強度(a)及び吸光光度検出器により得られるシグナル強度(b)は、GPC装置の機種や測定条件によって異なるため、両者の比を単純に比較することは難しい。それに対して、本発明では、以下に説明するとおり、示差屈折率検出器により得られるシグナル強度と、吸光光度検出器により得られるシグナル強度の比を、GPC装置の機種や測定条件による差がなく求められる。
 本発明では、示差屈折率検出器による単分散のPMMAのシグナル強度(x)に対する示差屈折率検出器による合わせガラス用中間膜のシグナル強度(a)の比(a/x)と、吸光光度検出器による単分散のPMMAのシグナル強度(y)に対する吸光光度検出器による合わせガラス用中間膜のシグナル強度(b)の比(b/y)とをそれぞれ求める。そして、両者の比(b/y)/(a/x)を求め、これを波長280nmの紫外光を吸収する構造を有する成分の含有量の指標とする。このように、単分散のPMMAのシグナル強度を基準に用いることで、装置の機種や測定条件に関わらず、同じ指標により評価できる。
 本発明の合わせガラス用中間膜は、下記式(2’)を満たすことが好ましく、下記式(2”)を満たすことがより好ましい。
1.50×10-2<(b/y)/(a/x)<1.50×10-1 (2’)
2.00×10-2<(b/y)/(a/x)<1.00×10-1 (2”)
(b/y)/(a/x)が1.00×10-2以下である場合、上述の通り、合わせガラス用中間膜のポリマー成分中に波長280nmの紫外光を吸収する成分が少ない。そのため、合わせガラス用中間膜中の異物(未溶解分)が増える。また、合わせガラス用中間膜の耐着色性、合わせガラス用中間膜中の異物(未溶解分)及び合わせガラス用中間膜を用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れない。逆に、(b/y)/(a/x)が2.00×10-1以上である場合、合わせガラス用中間膜のポリマー成分中に波長280nmの紫外光を吸収する成分が多い。そのため、合わせガラス用中間膜の耐着色性や得られる合わせガラスの耐貫通性が悪化する。
 合わせガラス用中間膜の耐着色性、合わせガラス用中間膜中の異物(未溶解分)及び合わせガラス用中間膜を用いて得られる合わせガラスの耐貫通性に関する性能のバランスに優れる観点からは、前記GPC測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(3)
(A-C)/A<0.80 (3)
を満たすことが好ましい。
 ピークトップ分子量(C)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(B)と同様にして測定される。ピークトップ分子量(C)は、合わせガラス用中間膜中のポリマー成分中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(C)よりもピークトップ分子量(A)のほうが大きいため、(A-C)/Aは正の値になる。ピークトップ分子量(C)が大きくなれば、(A-C)/Aは小さくなり、ピークトップ分子量(C)が小さくなれば、(A-C)/Aは大きくなる。すなわち、(A-C)/Aが大きい場合には、ポリマー成分中の低分子量成分に320nm波長の紫外線を吸収する成分が多いことを意味する。
 (A-C)/Aが0.80以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合には、合わせガラス用中間膜中の異物が増えるおそれがある。また、合わせガラス用中間膜の耐着色性、合わせガラス用中間膜中の異物(未溶解分)及び合わせガラス用中間膜を用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。(A-C)/Aは、より好ましくは0.75未満であり、さらに好ましくは0.70未満である。
 本発明の合わせガラス用中間膜は、下記式(4)を満たすことが好ましい。
5.00×10-3<(c/y)/(a/x)<7.00×10-2 (4)
 式(4)中、a、x及びyは、上記式(2)と同じである。cは、ピークトップ分子量(C)における吸光光度検出器(測定波長320nm)で測定されるシグナル強度(吸光度)である。
 ここで、(c/y)/(a/x)は、合わせガラス用中間膜のポリマー成分中の、波長320nmの紫外光を吸収する構造を有する成分の含有量の指標となる。この値が大きい場合は、当該含有量が多いことを意味する。そして、吸光光度検出器における測定波長が320nmであること以外は、上述の(b/y)/(a/x)と同様にして求められる。
 本発明の合わせガラス用中間膜は、下記式(4’)を満たすことが好ましく、下記式(4”)を満たすことがより好ましい。
7.00×10-3<(c/y)/(a/x)<6.00×10-2 (4’)
1.00×10-2<(c/y)/(a/x)<5.00×10-2 (4”)
 (c/y)/(a/x)が5.00×10-3以下である場合、上述の通り、合わせガラス用中間膜のポリマー成分中に波長320nmの紫外光を吸収する成分が少ない。そのため、合わせガラス用中間膜中の異物が増えるおそれがある。また、合わせガラス用中間膜の耐着色性、合わせガラス用中間膜中の異物(未溶解分)及び合わせガラス用中間膜を用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。逆に、(c/y)/(a/x)が7.00×10-2以上である場合、合わせガラス用中間膜のポリマー成分中に波長320nmの紫外光を吸収する成分が多い。そのため、合わせガラス用中間膜の耐着色性や得られる合わせガラスの耐貫通性が悪化するおそれがある。
 本発明の合わせガラス用中間膜中のポリビニルアセタールのアセタール化度は、60~80モル%である。アセタール化度は、好ましくは62~78モル%、より好ましくは65~75モル%である。アセタール化度が60モル%に満たない場合には、可塑剤などとの相溶性が低下する。また、得られる合わせガラスの耐貫通性が低下する。一方、アセタール化度が80モル%を超える場合には、アセタール化反応の効率が著しく低下するため、高温で長時間反応を行う必要がある。その結果、得られる合わせガラスの耐貫通性が低下するとともに、得られる合わせガラス用中間膜の耐着色性が低下する。
 なお、アセタール化度はポリビニルアセタールを構成する全単量体単位に対する、アセタール化されたビニルアルコール単量体単位の割合を表す。原料のポリビニルアルコール(以下、PVAと略称することがある。)中のビニルアルコール単量体単位のうち、アセタール化されなかったものは、得られるポリビニルアセタール中において、ビニルアルコール単量体単位として残存する。
 前記ポリビニルアセタールの粘度平均重合度は、JIS K 6726に準じて測定される原料のPVAの粘度平均重合度で表される。すなわち、ポリビニルアルコールをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求めることができる。PVAの粘度平均重合度と、それをアセタール化して得られるポリビニルアセタールの粘度平均重合度とは、実質的に同じである。
P=([η]×10000/8.29)(1/0.62)
 前記ポリビニルアセタールの粘度平均重合度は1400~4000であり、1500~3000が好ましい。粘度平均重合度が1400に満たない場合には、合わせガラス用中間膜の強度が低く、得られる合わせガラスの耐貫通性が不十分になる。逆に、重合度が4000を超える場合には溶融粘度が高くなりすぎて製膜が困難になる。
 前記ポリビニルアセタールにおけるビニルエステル単量体単位の含有量は0.1~20モル%であり、好ましくは0.3~18モル%であり、より好ましくは0.5~15モル%であり、更に好ましくは0.7~13モル%である。ビニルエステル単量体単位の含有量が0.1モル%に満たない場合、ポリビニルアセタールを安定に製造することができず、製膜できない。また、ビニルエステル単量体単位の含有量が20モル%を超える場合には、合わせガラス用中間膜の着色が激しくなる。
 前記ポリビニルアセタール中の、アセタール化された単量体単位、ビニルエステル単量体単位及びビニルアルコール単量体単位以外の単量体単位の含有量は、好ましくは20モル%以下、より好ましくは10モル%以下である。
 前記ポリビニルアセタールは、通常、ポリビニルアルコールをアセタール化することにより製造する。ポリビニルアルコールは、通常、ポリビニルエステルをけん化することにより製造する。
 ポリビニルエステルはビニルエステルモノマーを重合することにより製造する。ポリビニルエステルの製造に用いられるビニルエステルモノマーとしては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、とりわけ酢酸ビニルが好ましい。
 また、ビニルエステルモノマーを2-メルカプトエタノール、n-ドデシルメルカプタン、メルカプト酢酸、3-メルカプトプロピオン酸などのチオール化合物の存在下で重合させ、得られるポリビニルエステルをけん化することによって、チオール化合物に由来する官能基が末端に導入されたPVAが得られる。
 ビニルエステルモノマーを重合する方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。中でも、無溶媒で行う塊状重合法またはアルコールなどの溶媒を用いて行う溶液重合法が通常採用される。本発明の効果を高める点では、低級アルコールと共に重合する溶液重合法が好ましい。低級アルコールとしては、特に限定はされないが、メタノール、エタノール、プロパノール、イソプロパノールなど炭素数3以下のアルコールが好ましく、通常、メタノールが用いられる。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式および連続式のいずれの方式にても実施可能である。重合反応に使用される開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などのアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネート、パーオキシジカーボネートなどの有機過酸化物系開始剤など本発明の効果を損なわない範囲で公知の開始剤が挙げられる。中でも、60℃での半減期が10~110分の有機過酸化物系開始剤が好ましく、特にパーオキシジカーボネートを用いることが好ましい。重合反応を行う際の重合温度については特に制限はないが、5℃~200℃の範囲が適当である。
 ビニルエステルモノマーを重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその誘導体;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル類;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル;オキシアルキレン基を有する単量体;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン;エチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミド-プロピルトリメトキシシラン、3-(メタ)アクリルアミド-プロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらのビニルエステル単量体と共重合可能な単量体の使用量は、その使用される目的および用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下、好ましくは10モル%以下である。
 上述の方法により得られたポリビニルエステルをアルコール溶媒中でけん化することによりPVAが得られる。
 ポリビニルアセタールの製造に用いられるPVAのけん化度は80~99.9モル%が好ましく、より好ましくは82~99.7モル%であり、更に好ましくは85~99.5モル%であり、特に好ましくは87~99.3モル%である。PVAのけん化度が80モル%に満たない場合、合わせガラス用中間膜中の異物(未溶解分)の数が増加するおそれや、該中間膜の耐着色性が低下するおそれがある。けん化度が99.9モル%を超える場合、PVAを安定に製造することができないおそれがある。
 PVAは、カルボン酸のアルカリ金属塩を含有しても良く、その含有量はアルカリ金属の質量換算で0.50質量%以下が好ましく、0.37質量%以下がより好ましく、0.28質量%以下が更に好ましく、0.23質量以下が特に好ましい。PVA中のカルボン酸のアルカリ金属塩の含有量が0.50質量%を超える場合、合わせガラス中間膜が着色しやすくなるおそれがある。カルボン酸のアルカリ金属塩の含有量(アルカリ金属の質量換算)は、PVAを白金ルツボにて灰化したのち、得られた灰分をICP発光分析により測定して得たアルカリ金属イオン量から求めることができる。
 ポリビニルエステルのけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およびナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。アルカリ性物質の使用量は、ポリビニルエステルのビニルエステル単量体単位を基準にしたモル比で0.002~0.2の範囲内であることが好ましく、0.004~0.1の範囲内であることが特に好ましい。けん化触媒は、けん化反応の初期に一括して添加しても良いし、けん化反応の初期に一部を添加し、残りをけん化反応の途中で添加しても良い。
 けん化反応に用いることができる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましく用いられる。その使用にあたり、メタノールの含水率が好ましくは0.001~1重量%、より好ましくは0.003~0.9重量%、特に好ましくは0.005~0.8重量%に調整される。
 けん化反応は、好ましくは5~80℃、より好ましくは20~70℃の温度で行われる。けん化反応に必要とされる時間は、好ましくは5分間~10時間、より好ましくは10分間~5時間である。けん化反応は、バッチ法および連続法のいずれの方式によっても実施可能である。けん化反応の終了後に、必要に応じて、残存するけん化触媒を中和しても良い。使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などが挙げられる。
 けん化反応時に添加したアルカリ金属を含有するアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルにより中和されるか、酢酸などのカルボン酸添加などにより中和される。このとき、酢酸ナトリウムなどのカルボン酸のアルカリ金属塩が生じる。
 アルカリ金属塩の低減等のため、けん化後にPVAをメタノールなどの低級アルコールを含む洗浄液で洗浄しても良い。前記洗浄液は、低級アルコール100質量部に対して20質量部以下の水を含んでいてもよい。また、前記洗浄液は、けん化工程において生成する酢酸メチルなどのエステルを含んでいてもよい。このときの、エステルの含有量としては、特に制限はないが、低級アルコール100質量部に対して、1000質量部以下が好ましい。洗浄に用いる洗浄液の添加量としては、けん化により得られる、アルコールによってPVAが膨潤したゲル100質量部に対して、100質量部~10000質量部が好ましく、150質量部~5000質量部がより好ましく、200質量部~1000質量部が更に好ましい。洗浄液の添加量が100質量部に満たない場合には、カルボン酸のアルカリ金属塩量が上記範囲を超えるおそれがある。一方、洗浄液の添加量が10000質量部を超える場合には、添加量を増やすことによる洗浄効果の改善が見込めない。洗浄の方法としては、特に限定はないが、例えば、槽内にPVA(膨潤したゲル)と洗浄液とを加え、5~100℃で、5分~180分程度、攪拌あるいは静置し脱液する工程を、カルボン酸のアルカリ金属塩の含有量が上記範囲になるまで繰り返すバッチ方式が挙げられる。また、おおよそバッチ方式と同温度、同時間で、塔頂からPVAを連続的に添加するとともに、塔底より洗浄液を連続的に添加し、両者を接触交流させる連続方式も挙げられる。 
 PVAに含有されていてもよいカルボン酸のアルカリ金属塩としては、上述したけん化工程で使用するアルカリ触媒、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシドなどをカルボン酸で中和して得られるもの、また、重合工程で使用する酢酸ビニルなどの原料ビニルエステル単量体の加アルコール分解を抑制する目的で添加されるカルボン酸が、けん化工程で中和されて得られるもの、ラジカル重合を停止させるために添加する禁止剤として共役二重結合を有するカルボン酸を用いた場合に、当該カルボン酸がけん化工程で中和されて得られるもの、あるいは意図的に添加されたものもなどが含まれる。具体例としては、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、グリセリン酸ナトリウム、グリセリン酸カリウム、リンゴ酸ナトリウム、リンゴ酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、乳酸カリウム、酒石酸ナトリウム、酒石酸カリウム、サリチル酸ナトリウム、サリチル酸カリウム、マロン酸ナトリウム、マロン酸カリウム、コハク酸ナトリウム、コハク酸カリウム、マレイン酸ナトリウム、マレイン酸カリウム、フタル酸ナトリウム、フタル酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、グルタル酸ナトリウム、グルタル酸カリウム、アビエチン酸ナトリウム、アビエチン酸カリウム、ソルビン酸ナトリウム、ソルビン酸カリウム、2,4,6-オクタトリエン-1-カルボン酸ナトリウム、2,4,6-オクタトリエン-1-カルボン酸カリウム、エレオステアリン酸ナトリウム、エレオステアリン酸カリウム、2,4,6,8-デカテトラエン-1-カルボン酸ナトリウム、2,4,6,8-デカテトラエン-1-カルボン酸カリウム、レチノイン酸ナトリウム、レチノイン酸カリウムなどが挙げられるが、これらに限定されるものではない。
 こうして得られたPVAをアセタール化して合わせガラス用中間膜の製造に用いられるポリビニルアセタールを製造する。アセタール化の方法は特に限定されないが、例えば以下の方法が挙げられる。80~100℃に加熱してPVAを水に溶解させた後、10~60分かけて徐々に冷却することにより、PVAの3~40質量%水溶液を得る。温度が-10~30℃まで低下したところで、前記水溶液にアルデヒドおよび酸触媒を添加し、温度を一定に保ちながら、30~300分間アセタール化反応を行う。その際、一定のアセタール化度に達したポリビニルアセタールが析出する。その後反応液を30~300分かけて25~80℃まで昇温し、その温度を10分~25時間保持する(この温度を追い込み時反応温度とする)。次に反応溶液に、必要に応じてアルカリなどの中和剤を添加して酸触媒を中和し、水洗、乾燥することにより、ポリビニルアセタールが得られる。
 一般的に、このような反応や処理の工程においてポリビニルアセタールからなる凝集粒子が生じ、粗粒子を形成しやすい。このような粗粒子が生じた場合には、バッチ間のばらつきの原因になるおそれがある。それに対して、後述する特定のPVAを原料とした場合、従来品より粗粒子の生成が抑制され、その結果、得られるポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減された合わせガラス用中間膜を得ることができる。
 アセタール化反応に用いる酸触媒としては特に限定されず、有機酸および無機酸のいずれでも使用可能であり、例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく用いられる。また一般には、硝酸を用いた場合は、アセタール化反応の反応速度が速くなり、生産性の向上が望める一方、得られるポリビニルアセタールの粒子が粗大になりやすく、バッチ間のばらつきが大きくなる傾向があるが、特定のポリビニルアルコールを原料とした場合、粗粒子の生成が抑制され、結果として、得られたポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減された合わせガラス用中間膜を得ることができる。
 ポリビニルアセタールのアセタール化反応に用いられるアルデヒドは特に限定されないが、従来公知の炭素数1~8のアルデヒドが好ましく、炭素数4~6のアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましい。本発明においては、アルデヒドを2種類以上併用して得られるポリビニルアセタールを使用することもできる。
 本発明において、合わせガラス用中間膜のGPC測定により求められる各値がそれぞれ上述した範囲に入るように調整する方法としては、1)ポリビニルアセタールに酸化防止剤を添加して製膜する方法、2)合わせガラス用中間膜の製造に用いるポリビニルアセタールの原料に特定のPVAを用いる方法が挙げられる。これらの方法を適宜組み合わせてもよい。
 上記1)の方法で用いられる酸化防止剤は、特に限定されないが、例えばフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤が特に好ましい。
 フェノール系酸化防止剤としては、例えば2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジt-アミル-6-(1-(3,5-ジt-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどのアクリレート系化合物;2,6-ジt-ブチル-4-メチルフェノール、2,6-ジt-ブチル-4-エチルフェノール、オクタデシル-3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(6-t-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ビス(3-シクロヘキシル-2-ヒドロキシ-5-メチルフェニル)メタン、3,9-ビス(2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジt-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3’,5’-ジt-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタン、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジt-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3,5-ジメチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3-メチル-5-t-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジt-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物などがある。
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2-t-ブチル-4-メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレンなどのモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジトリデシルホスファイト)、4,4’-イソプロピリデン-ビス(フェニル-ジアルキル(C12~C15)ホスファイト)、4,4’-イソプロピリデン-ビス(ジフェニルモノアルキル(C12~C15)ホスファイト)、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン、テトラキス(2,4-ジt-ブチルフェニル)-4,4’-ビフェニレンホスファイトなどのジホスファイト系化合物などがある。中でもモノホスファイト系化合物が好ましい。
 硫黄系酸化防止剤としては、例えば、ジラウリル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ラウリルステアリル3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどがある。
 これらの酸化防止剤は単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤の配合量は、特に制限はないが、ポリビニルアセタール100質量部に対して0.001~5質量部、好ましくは0.01~1質量部の範囲である。酸化防止剤の量が0.001質量部未満である場合には十分な効果が発現しないことがあり、また5質量部を超える場合、配合量を増やすことによる効果の向上が望めない。
 上記2)の方法に用いられるPVAの製造方法として、例えば、下記A)~H)が挙げられる。
 A)原料ビニルエステルモノマーに含まれるラジカル重合禁止剤を予め取り除いたビニルエステルモノマーを重合に用いる。
 B)原料ビニルエステルモノマー中に含まれる不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるビニルエステルモノマーをラジカル重合に用いる。不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレインなどのアルデヒド;同アルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタールなどのアセタール;アセトンなどのケトン;酢酸メチル、酢酸エチルなどのエステルなどが挙げられる。
 C)アルコール溶媒中にて原料ビニルエステルモノマーをラジカル重合し、未反応モノマーを回収再利用する一連の工程にて、アルコールや微量の水分によるモノマーの加アルコール分解や加水分解を抑制するために、有機酸、具体的にはグリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸などのヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸などの多価カルボン酸などを添加し、分解により生じるアセトアルデヒドなどのアルデヒドの生成を極力抑制する。有機酸の添加量としては、原料ビニルエステルモノマーに対して、好ましくは1~500ppm、より好ましくは3~300ppm、さらに好ましくは5~100ppmである。
 D)重合に用いる溶媒として、不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるものを用いる。溶媒中に含まれる不純物としては、原料ビニルエステルモノマー中に含まれる不純物として上述したものが挙げられる。
 E)ビニルエステルモノマーをラジカル重合する際に、ビニルエステルモノマーに対する溶媒の比を高める。
 F)ビニルエステルモノマーをラジカル重合する際に使用するラジカル重合開始剤として、有機過酸化物を用いる。有機過酸化物としては、アセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジn-プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、特に、60℃での半減期が10~110分のパーオキシジカーボネートを用いることが好ましい。
 G)ビニルエステルモノマーのラジカル重合後に、重合を抑制するために禁止剤を添加する場合、残存する未分解のラジカル重合開始剤に対して5モル当量以下の禁止剤を添加する。禁止剤の種類としては、分子量が1000以下の共役二重結合を有する化合物であって、ラジカルを安定化させて重合反応を阻害する化合物が挙げられる。具体的には、イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の炭素-炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素-炭素二重結合3個の共役構造よりなる共役トリエン;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の炭素-炭素二重結合4個以上の共役構造よりなる共役ポリエンなどのポリエンが挙げられる。なお、1,3-ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いても良い。さらに、p-ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2-フェニル-1-プロペン、2-フェニル-1-ブテン、2,4-ジフェニル-4-メチル-1-ペンテン、3,5-ジフェニル-5-メチル-2-ヘプテン、2,4,6-トリフェニル-4,6-ジメチル-1-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-2-ノネン、1,3-ジフェニル-1-ブテン、2,4-ジフェニル-4-メチル-2-ペンテン、3,5-ジフェニル-5-メチル-3-ヘプテン、1,3,5-トリフェニル-1-ヘキセン、2,4,6-トリフェニル-4,6-ジメチル-2-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-3-ノネン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン等の芳香族系化合物が挙げられる。
 H)残存するビニルエステルモノマーが極力除去されたポリビニルエステルのアルコール溶液をけん化反応に用いる。好ましくは残存モノマーの除去率99%以上、より好ましくは99.5%以上、更に好ましくは99.8%以上のものを用いる。
 A)~H)を適宜組み合わせることで所望のPVAが得られる。こうして得られるPVAをアセタール化して得られるポリビニルアセタールを合わせガラス用中間膜の原料とすることが好ましい。
 本発明の合わせガラス用中間膜に含有される光拡散性微粒子としては、本発明の合わせガラス用中間膜を構成する組成物から該光拡散性微粒子を除いた組成物(以下、合わせガラス用中間膜基材と称する)の屈折率と該光拡散性微粒子の屈折率の差分絶対値が大きい、無機系の光拡散性微粒子および有機系の光拡散性微粒子のいずれか又は両方が用いられる。該光拡散性微粒子と合わせガラス用中間膜基材の屈折率の差分絶対値は、0.20以上であり、0.40以上であることがより好ましく、0.60以上であることがさらに好ましい。差分絶対値が0.20未満であると、照射した光が十分に拡散しないことがある。また、該光拡散性微粒子と合わせガラス用中間膜基材の屈折率の差分絶対値の上限は特に限定されるものではないが、得られる合わせガラスのヘイズを低減する観点から、3.0以下であることが好ましく、2.0以下であることがより好ましい。
 上記無機系の光拡散性微粒子としては、例えば硫酸カルシウム、硫酸バリウム、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化亜鉛等の金属酸化物;水酸化アルミニウム、シリカ、ガラス、タルク、マイカ、ホワイトカーボン等の無機化合物が挙げられ、これらは脂肪酸等で表面処理が施されたものであっても良い。また、有機系の光拡散性微粒子としては、例えばアクリル系重合体粒子、スチレン系重合体粒子、シリコーン系重合体粒子、フッ素系重合体粒子等が挙げられる。これらの光拡散性微粒子のうち、無機系の光拡散性微粒子が好ましく、金属酸化物がより好ましく、酸化チタンまたは酸化亜鉛がさらに好ましく、酸化チタンが特に好ましい。また、これらは単独で用いても良く、2種以上を併用しても良い。
 光拡散性微粒子の平均粒径は10μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることがさらに好ましい。平均粒径が10μmを超えると目視で光拡散性微粒子が確認できるものとなり、外観が不良となる。平均粒径の下限値は特に限定されるものではないが、光拡散性の観点から0.20μm以上であることが好ましく、0.25μm以上がより好ましい。また光拡散性微粒子の形状は特に限定されるものではないが、真球状、球状、楕円状、柱状、錘状、板状、針状、星状、中空状、不定形状等が挙げられる。ここで、本明細書において平均粒径は、レーザー回折式粒度分布測定方法により測定される体積基準平均径を指す。
 光拡散性微粒子の含有量は、合わせガラス用中間膜を構成する組成物中0.001~0.040質量%の範囲であることが好ましく、0.002~0.030質量%の範囲であることがより好ましく、0.003~0.025質量%の範囲であることがさらに好ましく、0.004~0.020質量%の範囲であることが特に好ましい。光拡散性微粒子の含有量が合わせガラス用中間膜を構成する組成物中0.001質量%未満であると、該中間膜を用いた合わせガラスの光拡散性が十分でない場合がある。また、光拡散性微粒子の含有量が合わせガラス用中間膜を構成する組成物中0.040質量%より多いと、該中間膜を用いた合わせガラスの透明性が十分でない場合がある。
 本発明の合わせガラス用中間膜は可塑剤を含有することが好ましい。前記可塑剤は、本発明の効果を損なわず、ポリビニルアセタールとの相溶性に問題がなければ特に制限されない。前記可塑剤として、両末端に水酸基を有するオリゴアルキレングルコールとカルボン酸とのモノまたはジエステル、ジカルボン酸と水酸基含有化合物とのジエステルなどを用いることができる。これらは単独で、あるいは2種以上を組み合わせて用いることができる。両末端に水酸基を有するオリゴアルキレングリコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロピレングリコール、1,2-プロピレングリコールの二量体および三量体、1,3-プロピレングリコール、1,3-プロピレングリコールの二量体および三量体、1,2-ブチレングリコール、1,2-ブチレングリコールの二量体および三量体、1,4-ブチレングリコール、1,4-ブチレングリコールの二量体および三量体、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,2-デカンジオール、1,4-シクロヘキサンジオールなどが挙げられる。カルボン酸としては、酢酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、デカン酸などが挙げられる。ここで、オリゴアルキレングリコールとカルボン酸との組み合わせは任意である。これらの中でも、トリエチレングリコールと2-エチルヘキサン酸のモノエステルおよびジエステルが取り扱い性(成形時の揮発性)などの観点で好ましい。また、ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸などのアルキレンジカルボン酸や、フタル酸、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸などが挙げられる。水酸基含有化合物としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、オクタノール、2-エチルヘキサノール、ノナオール、デカノール、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノールなどが挙げられ、先のジカルボン酸化合物とのジエステルが挙げられる。ここで、ジカルボン酸と水酸基含有化合物の組み合わせは任意である。
 前記可塑剤の含有量は、本発明の効果を損なわない範囲であれば特に制限はないが、ポリビニルアセタール100質量部に対して好ましくは10~100質量部、より好ましくは15~90質量部、更に好ましくは20~80質量部である。可塑剤の含有量が10質量部に満たない場合には、合わせガラス用中間膜として所望の柔軟性が得られないおそれがある。含有量が100質量部を超える場合には、所望する力学物性、特に合わせガラスの耐貫通性などが低下するおそれがある。
 本発明の合わせガラス用中間膜は、本発明の主旨に反しない限り、光拡散性微粒子を分散させる目的で分散剤を含んでもよい。前記分散剤としては、例えばリン酸エステル化合物、硫酸エステル化合物、ポリカルボン酸エステル化合物、リシノール酸エステル化合物等が挙げられる。
 本発明の合わせガラス用中間膜は、本発明の主旨に反しない限り、紫外線吸収剤、接着性調整剤、顔料、染料、その他従来公知の添加剤を含んでいても良い。このような添加剤について以下に説明する。
 前記紫外線吸収剤としては、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ビス(α,α’-ジメチルベンジル)フェニル)-2H-ベンゾトリアゾール、2-(3,5-ジt-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、4-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)-1-(2-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル)-2,2,6,6-テトラメチルピペリジンなどのヒンダードアミン系紫外線吸収剤;2,4-ジt-ブチルフェニル-3,5-ジt-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジt-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤;マロン酸[(4-メトキシフェニル)-メチレン]-ジメチルエステル等のマロン酸エステル系紫外線吸収剤;2-エチル-2’-エトキシ-オキサルアニリド等のシュウ酸アニリド系紫外線吸収剤などが挙げられる。これらの紫外線吸収剤は単独で、あるいは2種以上を組み合わせて用いることができる。合わせガラス用中間膜中の紫外線吸収剤の含有量は特に制限はないが、10~50,000ppmであることが好ましく、100~10,000ppmの範囲であることがより好ましい。含有量が10ppmより少ないと十分な効果が発現しないことがあり、また50,000ppmより多くしても含有量を増やすことによる効果の向上が望めない。
 本発明の合わせガラス用中間膜は、ガラスとの接着性を適切に調節するために、接着性調整剤を含有しても構わない。接着性調整剤としては、従来公知のものが使用可能である。例えば酢酸、プロピオン酸、ブタン酸、ヘキサン酸、2-エチルブタン酸、2-エチルヘキサン酸などの有機酸のナトリウム塩、カリウム塩、マグネシウム塩などが用いられる。これらは単独で、あるいは2種類以上を組み合わせて使用できる。接着性調整剤の好適な含有量は、その種類により異なるが、得られる合わせガラス用中間膜のガラスへの接着力が、パンメル試験(Pummel test;国際公開第03/033583号等に記載)において、一般には3~10になるように調整することが好ましい。特に高い耐貫通性を必要とする場合は3~6になるように含有量を調整することが好ましく、高いガラス飛散防止性を必要とする場合は7~10になるように含有量を調整することが好ましい。高いガラス飛散防止性が求められる場合は、接着性調整剤を添加しないことも有用な方法である。通常、合わせガラス用中間膜中の接着性調整剤の含有量としては、0.0001~1質量%であることが好ましく、0.0005~0.1質量%がより好ましく、0.001~0.03質量%が更に好ましい。
 また、上記接着性を調整するための他の添加剤としてはシランカップリング剤が挙げられる。合わせガラス用中間膜中のシランカップリング剤の含有量は、0.01~5質量%が好ましい。
 本発明の合わせガラス用中間膜のガラス転移温度は特に限定されず、目的に応じて適宜選択可能であるが、0~50℃の範囲であることが好ましく、0~45℃であることがより好ましく、0~40℃であることがさらに好ましい。
 本発明の合わせガラス用中間膜の厚さは特に限定されないが、0.05~5.0mmであることが好ましく、0.1~2.0mmであることがより好ましい。
 本発明の合わせガラス用中間膜の製造方法は特に限定されないが、PVAをアセタール化してポリビニルアセタールを得た後、該ポリビニルアセタールと光拡散性微粒子および必要に応じて可塑剤やその他の成分を混合して得た組成物を溶融成形する方法が好ましい。前記溶融成形方法としては、押出機を用いて、得られたポリビニルアセタール、光拡散性微粒子、可塑剤、およびその他の成分を溶融混練し、製膜する方法が好ましい。本発明の合わせガラス用中間膜中に光拡散性微粒子を分散させる方法としては特に限定されないが、光拡散性微粒子を可塑剤に分散させた分散液をポリビニルアセタール樹脂に添加する方法等が好ましい。また該分散液は、必要に応じて分散剤を含んでもよい。上記光拡散性微粒子を可塑剤中に分散させる方法としては特に限定されないが、光拡散性微粒子、可塑剤およびその他成分を混合した組成物を、ビーズミル、ボールミル、サンドミル、ホモジナイザー、アトライター、高速回転攪拌装置、超音波分散装置等の装置にて分散処理を施すことができる。押出し時の樹脂温度は150~250℃が好ましく、170~230℃がより好ましい。樹脂温度が高くなりすぎるとポリビニルアセタールが分解を起こし、製膜後の中間膜中の揮発性物質の含有量が多くなる。逆に温度が低すぎると、押出機での揮発分除去が不十分となり、製膜後の中間膜中の揮発性物質の含有量は多くなる。揮発性物質を効率的に除去するためには、押出機内を減圧することによりベント口から揮発性物質を除去することが好ましい。本発明の合わせガラス用中間膜は、ポリビニルアセタール、光拡散性微粒子、可塑剤およびその他の成分を有機溶剤に溶解又は分散させたものを製膜した後、前記有機溶剤を留去する方法によっても製造できる。
 前記合わせガラス用中間膜の表面の形状は特に限定されないが、ガラスとラミネートする際の取り扱い性(泡抜け性)を考慮すると、ガラスと接触する面に、従来公知の方法により、メルトフラクチャー、エンボスなどの凹凸構造が形成されていることが好ましい。エンボス高さについては特に制限はないが、5μm~500μmであることが好ましく、7μm~300μmであることがより好ましく、10μm~200μmであることが更に好ましい。エンボス高さが5μmに満たない場合には、ラミネートの際に、ガラスと中間膜との間にできる気泡を効率よく除去できない場合があり、500μmを超える場合には、エンボスの形成が難しい。エンボスを中間膜の片面に施してもよいし、両面でもよいが、通常、両面に施すのが好ましい。エンボスパターンは、規則的でもよいし、不規則的でもよい。
 このようなエンボスを形成するには、従来公知の、エンボスロール法、異形押出法、メルトフラクチャーを利用した押出リップエンボス法、等が採用される。特に均一で微細な凹凸が形成された合わせガラス用中間膜を安定的に得るにはエンボスロール法が好適である。
 エンボスロール法で用いられるエンボスロールは、例えば、所望の凹凸模様を有する彫刻ミル(マザーミル)を用い、この凹凸模様を金属ロール表面に転写することにより作製できる。また、レーザーエッチングを用いてもエンボスロールを作製できる。さらに上記のようにしてロール表面に微細な凹凸模様を形成した後、その表面に酸化アルミニウムや酸化珪素やガラスビ-ズなどの研削材を用いてブラスト処理を行ってさらに微細な凹凸模様を形成することもできる。
 またエンボスロール法で用いられるエンボスロ-ルに離形処理を施すことが好ましい。離形処理されていないロールを用いた場合、合わせガラス用中間膜がロールから剥離できないトラブルが発生しやすい。離形処理はシリコーン処理、テフロン(登録商標)処理、プラズマ処理、等の公知の方法が利用できる。
 本発明において、合わせガラス用中間膜の原料のポリビニルアセタールとして、バージン樹脂(再利用されたポリビニルアセタールを含まないもの)のみを用いて製膜してもよいが、後述するトリムやオフスペック品を再利用して製膜してもよい。通常、製膜には、押出機にギアポンプなどの計量機およびTダイなどのダイを備え付けた製膜装置等が用いられる。一般的に、合わせガラス用中間膜等を製膜する際には、合わせガラス用中間膜等の両端部(トリム)は切り取られる。このようなトリムを回収し、再利用することは省エネルギー化、資源の有効活用や収率向上の観点から非常に重要である。また、表面に凹凸を有する合わせガラス用中間膜の製造の際に生じたオフスペック品も、トリム同様に再利用できるため有用である。本発明の合わせガラス用中間膜は、溶融製膜した際に生じる異物(未溶解分)が少ない。また、本発明の合わせガラス用中間膜は熱処理した際の着色が少ないことから、上記回収合わせガラス用中間膜(トリム、オフスペック品の合わせガラス用中間膜)を有効に再利用できる。回収合わせガラス用中間膜を再び押出機に投入する方法として、トリムやオフスペック品の合わせガラス用中間膜をロールに巻き取ったものを、そのまま巻き出して押出機に再投入する方法;トリムやオフスペック品の合わせガラス用中間膜をロールに巻き取ったものを一定の大きさにカットした後、押出機に再投入する方法などが挙げられる。本発明の合わせガラス用中間膜を製膜する際は、原料中のバージン樹脂と回収合わせガラス用中間膜の比率(バージン樹脂:回収合わせガラス用中間膜)は0:100~100:0の間で任意に変更できる。
 上記トリムやオフスペック品の合わせガラス用中間膜を再利用して合わせガラス用中間膜を製造する場合、光拡散性微粒子、可塑剤、その他成分の含有量は以下の方法により調整できる。得られる合わせガラス用中間膜の成分を分析しつつ、押出機への各成分の添加量を調整することにより、所望の合わせガラス用中間膜が得られる。
 前記合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスが本発明の好適な実施態様である。当該合わせガラスは、前記中間膜を少なくとも2枚のガラス板で挟み、中間膜を加熱し接着することによって製造することができる。前記合わせガラスに使用するガラスは特に限定されず、フロート板ガラス、強化板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラスなどの無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネートなどの従来公知の有機ガラス等が使用できる。これらは無色、有色のいずれであってもよい。合わせガラスにした際の透明性の観点から、これらのガラスはJIS K 7105に準拠した方法で測定したヘイズが20%以下であることが好ましい。また、同じ種類のガラスをラミネートしてもよいし、異なる種類のガラスをラミネートしてもよい。ガラスの厚みは特に限定されないが、100mm以下であることが好ましい。また、上記ガラスの形状については特に制限はなく、単純な平面状の板ガラスであっても、自動車用サンルーフガラスなどの曲率を有するガラスであっても良い。
 本発明の合わせガラス用中間膜は、厚さ3mmのガラス板2枚の間に挟みこんで合わせガラスにした場合、透明性の観点から、JIS K 7105に準拠した方法でヘイズが20%以下であり、17.5%以下であることがより好ましく、15%以下であることがさらに好ましい。ヘイズの下限値は特に限定されるものではないが、3%以上であることが好ましい。下限値が3%未満であると、照射した光が十分に拡散しないことがある。測定の際に用いるガラス板は、通常、単体でヘイズが20%以下である。
 前記合わせガラスは従来公知の方法で製造が可能であり、例えば、真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。またこれらの方法を用いて仮圧着させた後に、得られた積層体をオートクレーブに投入する方法も挙げられる。
 真空ラミネーター装置を用いる場合、例えば、1×10-6~3×10-2MPaの減圧下、100~200℃、特に130~160℃でガラスと中間膜がラミネートされる。真空バッグまたは真空リングを用いる方法は、例えば、欧州特許第1235683号明細書に記載されており、約2×10-2MPaの圧力下、130~145℃でラミネートされる。
 ニップロールを用いる製造方法としては、合わせガラス用中間膜の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば、赤外線ヒーターなどで30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。
 上述の方法を用いて圧着させた後にオートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は、合わせガラスの厚さや構成により適宜選択されるが、例えば1.0~1.5MPaの圧力下、130~145℃にて0.5~3時間処理することが好ましい。
 上記の方法により得られた本発明の合わせガラスは、耐貫通性、透明性および光拡散性に優れることから、光拡散板として用いることができる。例えば、光源消灯時は透明で光源点灯時には面方向への拡散光により不透明となることを利用した窓材を兼ねた遮光板や、照明、装飾板、看板、サイン等の発光板として、建材、内装材、自動車や航空機等の輸送機器用部材、電気機器用部材、電子機器用部材等に好適に用いることができる。
 本発明の合わせガラスを上記輸送機器用部材として用いる場合、具体的な適用例としては、サンルーフパネルが挙げられる。サンルーフとは、輸送機器、とりわけ自動車の屋根に装備される開口部のことであり、サンルーフの一部品であるサンルーフパネルは透光性材料から成り、採光部としての役割を果たす。本発明の合わせガラスをサンルーフパネルとして用いると、安全性を確保しつつ意匠性に優れる。
 以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によって何ら限定されるものではない。なお、以下の実施例において「%」および「部」は特に断りのない限り、「質量%」および「質量部」を意味する。
[GPC測定]
(測定装置)
 VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。当該吸光光度検出器の検出用セルの光路長は10mmである。GPCカラムには昭和電工株式会社製「GPC HFIP-806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
(測定条件)
 試料を20mmol/lトリフルオロ酢酸ナトリウム含有HFIPに溶解し、試料が溶解した溶液(濃度1.00mg/ml)を調製した。当該溶液の上澄みをとり、0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、測定に用いた。
 移動相には、20mmol/lトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0ml/分とした。試料注入量は100μlとし、GPCカラム温度40℃にて測定した。
 なお、試料中のPVA粘度平均重合度が2400を超える試料は、適宜希釈した試料(100μl)を用いてGPC測定を行った。実測値から下記式により、試料濃度が1.00mg/mlの場合における吸光度を算出した。α(mg/ml)は希釈された試料の濃度である。
試料濃度1.00mg/mlにおける吸光度=(1.00/α)×吸光度の測定値
(検量線の作成)
 標品として、Agilent Technologies製の単分散のPMMA(ピークトップ分子量:1944000、790000、467400、271400、144000、79250、35300、13300、7100、1960、1020、690)を測定し、示差屈折率検出器および吸光光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、前記解析ソフトを用いた。なお、本測定においてはPMMAの測定において、1944000と271400の両分子量の標準試料同士のピークが分離できる状態のカラムを用いた。
 なお、本装置においては、示差屈折率検出器から得られるシグナル強度はミリボルトで、吸光光度検出器から得られるシグナル強度は吸光度(absunit:アブソーバンスユニット)で表される。
[ポリ酢酸ビニルの合成]
PVAc-1
 撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6Lセパラブルフラスコに、あらかじめ脱酸素した、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニルモノマー(VAM)2555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;VAM中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。前記フラスコ内に窒素を吹き込みながら、フラスコ内の温度を60℃に調整した。なお、還流管には-10℃のエチレングリコール/水溶液を循環させた。ジn-プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調製し、18.6mLを前記フラスコ内に添加し重合を開始した。このときのジn-プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn-プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn-プロピルパーオキシジカーボネートの3モル等量に相当する)含有するメタノールを1200g添加した後、重合液を冷却し重合を停止した。重合停止時のVAMの重合率は35.0%であった。重合液を室温まで冷却した後、水流アスピレータを用いてフラスコ内を減圧することにより、VAMおよびメタノールを留去し、ポリ酢酸ビニルを析出させた。析出したポリ酢酸ビニルにメタノールを3000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、VAMおよびメタノールを留去してポリ酢酸ビニルを析出させた。ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作をさらに2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、VAMの除去率99.8%のポリ酢酸ビニル(PVAc-1)の40質量%のメタノール溶液を得た。
 得られたPVAc-1のメタノール溶液の一部を用いて重合度を測定した。PVAc-1のメタノール溶液に、ポリ酢酸ビニル中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が、0.1となるように水酸化ナトリウムの10%メタノール溶液を添加した。ゲル化物が生成した時点でゲルを粉砕し、メタノールでソックスレー抽出を3日間行った。得られたポリビニルアルコールを乾燥し、粘度平均重合度を測定した。重合度は1700であった。
PVAc-2~13
 表1に記載した条件に変更したこと以外は、PVAc-1と同様の方法により、ポリ酢酸ビニル(PVAc-2~13)を得た。なお、表1中の「ND」は1ppm未満を意味する。得られた各ポリ酢酸ビニルの重合度をPVAc-1と同様にして求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[PVAの合成及び評価]
PVA-1
 PVAc-1のポリ酢酸ビニルの40質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.020となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。けん化反応の進行に伴ってゲル化物が生成した時点でゲルを粉砕し、粉砕後のゲルを40℃の容器に移し、けん化反応の開始から60分経過した時点で、メタノール/酢酸メチル/水(25/70/5質量比)の溶液に浸漬し、中和処理した。得られた膨潤ゲルを遠心分離し、膨潤ゲルの質量に対して、2倍の質量のメタノールを添加、浸漬し30分間放置した後、遠心分離する操作を4回繰り返し、60℃1時間、100℃で2時間乾燥してPVA-1を得た。
 PVA-1の重合度およびけん化度を、JIS K 6726に記載の方法により求めた。重合度は1700、けん化度は99.1モル%であった。これらの物性データを表2に示す。
 PVA-1を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のナトリウム量を測定することによりPVA-1の酢酸ナトリウム含有量を求めた。酢酸ナトリウム含有量0.7%(ナトリウム換算で0.20%)であった。これらの物性データを表2に示す。
PVA-2、3、比較PVA-1~3
 表2に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
PVA-4、比較PVA-4、5
 表3に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
PVA-5、比較PVA-6~8
 表4に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
PVA-6~8、比較PVA-9~11
 表5に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
PVA-9、比較PVA-12、13
 表6に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
PVA-10、比較PVA-14、15
 表7に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。それらの結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
[PVBの合成及び評価]
PVB-1
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド384gと20%の塩酸540mLを添加し、ブチラール化反応を150分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してPVB-1を得た。
(PVBの組成)
 PVB-1のブチラール化度(アセタール化度)、酢酸ビニル単量体単位の含有量、及びビニルアルコール単量体単位の含有量はJIS K 6728に従って測定した。ブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は30.9モル%であった。結果を表8に示す。
PVB-2、3、比較PVB-1、2
 原料PVAを表8に示すものに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表8に示す。
PVB-4
 n-ブチルアルデヒドの添加量を365gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表8に示す。なお、PVBのブチラール化度(アセタール化度)は64.3モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は34.8モル%であった。
PVB-5
 n-ブチルアルデヒドの添加量を449gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表8に示す。なお、PVBのブチラール化度(アセタール化度)は79.8モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は19.3モル%であった。
比較PVB-3
 n-ブチルアルデヒドの添加量を271gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表8に示す。なお、PVBのブチラール化度(アセタール化度)は48.2モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は50.9モル%であった。
比較PVB-4
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド740gと20%の塩酸810mLを添加し、ブチラール化反応を150分間行った。その後90分かけて80℃まで昇温し、80℃にて16時間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表8に示す。なお、PVBのブチラール化度(アセタール化度)は87.4モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は11.7モル%であった。
比較PVB-5
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水を8100g、比較PVA-3を660g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、8℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド384gと20%の塩酸540mLを添加し、ブチラール化反応を150分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表8に示す。なお、PVBのブチラール化度(アセタール化度)は68.5モル%、酢酸ビニル単量体単位の含有量は1.5モル%であり、ビニルアルコール単量体単位の含有量は30.0モル%であった。
PVB-6
  還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水8234g、PVA-4を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド307gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表9に示す。なお、得られたPVBのブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は1.3モル%であり、ビニルアルコール単量体単位の含有量は30.5モル%であった。
比較PVB-6、7
  原料PVAを表9に示すものに変更したこと以外は、PVB-6と同様にしてPVBの合成及び評価を実施した。結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
PVB-7
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水を8322g、PVA-5を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、20℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド256gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表10に示す。なお、得られたPVBのブチラール化度(アセタール化度)は68.1モル%、酢酸ビニル単量体単位の含有量は1.5モル%であり、ビニルアルコール単量体単位の含有量は30.4モル%であった。
比較PVB-8~10
 原料PVAを表10に示すものに変更したこと以外は、PVB-7と同様にしてPVBの合成及び評価を実施した。結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
PVB-8
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水を8100g、PVA-6を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド432gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表11に示す。なお、得られたPVBのブチラール化度(アセタール化度)は74.1モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は17.8モル%であった。
PVB-9、10
 原料PVAを表11に示すものに変更したこと以外は、PVB-8と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。 
PVB-11
 n-ブチルアルデヒドの添加量を307gに変更したこと以外はPVB-8と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。なお、得られたPVBのブチラール化度(アセタール化度)は63.2モル%、酢酸ビニル単量体単位の含有量は8.5モル%であり、ビニルアルコール単量体単位の含有量は28.3モル%であった。
PVB-12
 n-ブチルアルデヒドの添加量を458gに変更したこと以外はPVB-8と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。なお、得られたPVBのブチラール化度(アセタール化度)は78.5モル%、酢酸ビニル単量体単位の含有量は7.5モル%であり、ビニルアルコール単量体単位の含有量は14.0モル%であった。
比較PVB-11、12
 原料PVAを表11に示すものに変更したこと以外は、PVB-8と同様にしてPVBの合成及び評価を実施した。結果を表11に示す。
比較PVB-13
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水を8100g、比較PVA-11を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド450gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて30℃まで昇温し、30℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表11に示す。なお、得られたPVBのブチラール化度(アセタール化度)は74.3モル%、酢酸ビニル単量体単位の含有量は7.9モル%であり、ビニルアルコール単量体単位の含有量は17.8モル%であった。
Figure JPOXMLDOC01-appb-T000011
PVB-13
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水を8234g、PVA-9を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド344gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表12に示す。なお、得られたPVBのブチラール化度(アセタール化度)は74.6モル%、酢酸ビニル単量体単位の含有量は8.3モル%であり、ビニルアルコール単量体単位の含有量は17.1モル%であった。
比較PVB-14、15
 原料PVAを表12に示すものに変更したこと以外は、PVB-13と同様にしてPVBの合成及び評価を実施した。結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
PVB-14
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lのガラス製容器に、イオン交換水を8234g、PVA-10を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド265gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表13に示す。なお、得られたPVBのブチラール化度(アセタール化度)は73.2モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は18.7モル%であった。
比較PVB-16、17
 原料PVAを表13に示すものに変更したこと以外は、PVB-14と同様にしてPVBの合成及び評価を実施した。結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
実施例1
(合わせガラス用中間膜の作製)
 光拡散性微粒子としてテイカ株式会社製酸化チタン微粒子「JR-1000」(屈折率2.72)0.007質量部、酢酸マグネシウム0.014質量部および可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート19重量部を混合し、攪拌機を用いて30分間攪拌し、混合液を作製した。前記混合液をPVB-1の粉体50質量部に添加し、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、160℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を160℃、5MPaで、30分間熱プレスして、20cm×20cm、厚み760μmの合わせガラス用中間膜を作製した。このとき合わせガラス用中間膜は光拡散性微粒子を0.0101質量%含有する。得られた合わせガラス用中間膜のGPC測定および異物(未溶解分)の評価を以下のとおり行った。
(GPC測定)
 得られた合わせガラス用中間膜を圧力2MPa、230℃にて、3時間熱プレスすることにより加熱後、冷却して加熱処理された合わせガラス用中間膜を得た。その中央付近から試料を採取し、得られた試料を上記方法によりGPC測定した。 
 示差屈折率検出器で測定されたピークトップ分子量(A)は95000であり、ピークトップ分子量(A)におけるシグナル強度(a)は108.8mVであった。また、吸光光度検出器(280nm)で測定されたピークトップ分子量(B)は44900であり、ピークトップ分子量(B)におけるシグナル強度(吸光度、b)は1.63mV(1.63×10-3アブソーバンスユニット)であった。得られたピークトップ分子量(A)及びピークトップ分子量(B)を下記式
(A-B)/A
に代入して得られた値は0.53であった。結果を表14に示す。なお、このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。
 測定波長が異なること以外は、ピークトップ分子量(B)を求めた方法と同様にして求めた、吸光光度検出器(320nm)で測定されたピークトップ分子量(C)は45600であり、ピークトップ分子量(C)におけるシグナル強度(吸光度、c)は1.03mV(1.03×10-3アブソーバンスユニット)であった。ピークトップ分子量(A)とピークトップ分子量(C)とを下記式
(A-C)/A
に代入して得られた値は0.52であった。結果を表14に示す。
 単分散PMMAとして、American Polymer Standard Corp.社製「PMMA85K」(重量平均分子量85450、数平均分子量74300、固有粘度0.309)を使用した。当該単分散PMMAを上記方法によりGPC測定した。ピークトップ分子量(A)を求めた方法と同様にして求めた、示差屈折率検出器で測定されたピークトップ分子量におけるシグナル強度(x)は390.82mVであった。また、ピークトップ分子量(B)を求めた方法と同様にして求めた、吸光光度検出器(220nm)で測定されたピークトップ分子量におけるシグナル強度(吸光度、y)は269.28mV(0.26928アブソーバンスユニット)であった。
 シグナル強度(a)、ピークトップ分子量(b)、シグナル強度(x)及びシグナル強度(y)を下記式
 (b/y)/(a/x)
に代入して得られた値は2.17×10-2であった。結果を表14に示す。
 シグナル強度(a)、ピークトップ分子量(c)、シグナル強度(x)及びシグナル強度(y)を下記式
(c/y)/(a/x)
に代入して得られた値は1.37×10-2であった。結果を表14に示す。
(光拡散性微粒子の平均粒径測定)
 株式会社堀場製作所製レーザ回折/散乱式粒子径分布測定装置「Partica LA-950」を用い、「合わせガラス用中間膜の作製」の項で記載した混合液の作製方法と同様にして作製した混合液中の光拡散性微粒子の体積基準平均径を測定し、該微粒子の平均粒径とした。評価結果を表14に示す。
(合わせガラス用中間膜中の異物)
 得られた合わせガラス用中間膜を2枚の透明なガラス板(縦20cm×横20cm、厚さ3mm)の間に挟み、ガラス板と合わせガラス用中間膜の間の空気を押出しながら110℃にてプレスロールを通すことにより予備接着を行った。予備接着後の積層体をオートクレーブにて135℃、1.2MPaで30分間静置することにより合わせガラスを作製(合計20枚)した。拡大鏡を用いて得られた合わせガラス中の異物の数をカウントした。合わせガラス20枚中の合計異物数を求め、以下の判定基準で評価した。評価結果を表14に示す。
A:0(個/20枚)  
B:1~2(個/20枚)
C:2~5(個/20枚)
D:5~11(個/20枚)
E:12以上(個/20枚)
(合わせガラス用中間膜の耐着色性) 
 上述したPVB-1を含む合わせガラス用中間膜の作製に使用した混練物と同じものを作製した。当該混練物34.5質量部に、新たにPVB-1の粉体25質量部、さらに酸化チタン微粒子「JR-1000」0.0035質量部、トリエチレングリコール-ジ2-エチルヘキサノエート9.5質量部および酢酸マグネシウム0.007質量部を混合し、攪拌機を用いて30分間攪拌して得た混合液を加え、再び株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、140℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。さらに3回、得られた混練物40質量部に新たに比較PVB-1の粉体、「クラレポリオールP-510」および酢酸マグネシウムを上記と同量加え上記と同様の条件で混練する操作を繰り返した。得られた混練物(繰り返し混練物-1)を用いて、上述したPVB-1を含む合わせガラス用中間膜の作製方法と同様にして合わせガラス用中間膜を作製した。そして、当該中間膜を用いて、「合わせガラス用中間膜中の異物」の項に記載した合わせガラスの作製方法と同様にして合わせガラスを作製した。ここで得られた合わせガラス(繰り返し加熱されたPVBを用いたもの)と、上記「合わせガラス用中間膜中の異物」で得られた合わせガラス(バージンのPVBを用いたもの)の黄色度(YI)をそれぞれ測定し、両者の黄色度の差(ΔYI)から以下の判定基準で耐着色性を評価した。測定は、スガ試験機株式会社製SMカラーコンピュータ「SM-T-H」を用い、JIS K 7105に従って行った。
評価結果を表14に示す。
A:0.5未満  
B:0.5以上1.0未満
C:1.0以上1.8未満
D:1.8以上3.0未満
E:3.0以上
(合わせガラスの耐貫通性)
 「合わせガラス用中間膜の耐着色性」の項に記載した繰り返し混練物-1を用いて作製した合わせガラス用中間膜と同じものを作製した。当該合わせガラス用中間膜を23℃、28%RHの条件下で24時間調湿した後、2枚の透明なガラス板(30cm×30cm)の間に挟み込み、ガラス板と合わせガラス用中間膜の間の空気を押出しながら110℃にてプレスロールを通すことにより予備接着を行った。予備接着後の積層体をオートクレーブにて135℃、1.2MPaで30分間静置することにより合わせガラスを作製(合計6枚)した。得られた合わせガラスは、JIS R 3212(自動車用安全ガラス試験方法)およびJIS R 3211(自動車用安全ガラス)の耐貫通性試験に示された方法に従って評価を行った。すなわち、合わせガラスを23℃にて4時間調温したのち、専用の支持枠上に水平に置き、質量2260g、直径82mmの鋼球を高さ4mから合わせガラスの中心部分に自由落下させた。衝突後5秒以内に鋼球が貫通した場合、「貫通」と判定した。6枚の合わせガラスを試験して、すべて貫通しなければ合格とし、貫通しないものが4枚以下の場合は不合格とした。貫通しないものが5枚の場合は、再試験を行い、6枚全て貫通しなければ合格とし、それ以外は不合格とした。結果を表14に示す。
(合わせガラス用中間膜および光拡散性微粒子の屈折率の差分絶対値算出)
 PVB-1の粉体50質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート19重量部および酢酸マグネシウム0.014質量部を、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、160℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を用いて、上述した(合わせガラス用中間膜の作製)と同様にしてPVB-1を含む合わせガラス用中間膜基材を得た。当該合わせガラス用中間膜基材の屈折率の測定は、株式会社アタゴ製アッベ屈折計を用い、得られた屈折率と光拡散性微粒子の屈折率の差分絶対値を算出した。評価結果を表14に示す。
(ヘイズの測定)
 「合わせガラス用中間膜の耐着色性」の項に記載した繰り返し混練物-1を用いて作製した合わせガラス用中間膜と同じものを作製した。そして、当該中間膜を用いて、「合わせガラス用中間膜中の異物」の項に記載した合わせガラスの作製方法と同様にして合わせガラスを作製した。当該合わせガラスのヘイズの測定は、スガ試験機株式会社製ヘイズメーター「HZ1」を用い、JIS K 7105に従って行った。評価結果を表14に示す。
 また、「合わせガラス用中間膜の作製」の項で作製した合わせガラス用中間膜を用いて、「合わせガラス用中間膜中の異物」の項に記載した合わせガラスの作製方法と同様にして合わせガラスを作製した。ヘイズの測定は前記と同様にして行い、前記繰り返し混練物-1を用いて作製した合わせガラス用中間膜を使用した合わせガラスのヘイズと、測定したヘイズとの差分をとり、ヘイズの上昇が0.3未満であるものを可、0.3以上であるものを不可とした。評価結果を表14に示す。
(合わせガラスの明るさの評価)
 「合わせガラス用中間膜の耐着色性」の項に記載した繰り返し混練物-1を用いて作製した合わせガラス用中間膜と同じものを作製し、「合わせガラス用中間膜中の異物」の項に記載した合わせガラスの作製方法と同様にして合わせガラスを作製した。当該合わせガラスの向かい合う2辺に下記点状光源を配置して面発光体とし、点灯時の明るさを目視評価により5段階評価した。最も優れるものをA、最も劣るものをEとした。評価結果を表14に示す。
使用光源:日亜化学工業株式会社製白色LED「NS2W157ART-H3」
使用個数:1辺あたり20個
配置間隔:10mm
印加電圧:2.8V/1光源
実施例2~9、比較例1~7
 PVB-1の代わりに表14に示すPVBを用い、さらに酸化チタン微粒子「JR-1000」の添加量を表14に示すものに変更した以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表14に示す。
 表14中、実施例1~9の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、本発明で規定した条件を満たさない比較例1~7の合わせガラス用中間膜は、いずれかの性能が低下した。
実施例10~12、比較例8
 テイカ株式会社製酸化チタン微粒子「JR-1000」を、テイカ株式会社製酸化チタン微粒子「JR-301」(屈折率2.72)に変更し、さらに「JR-301」の添加量を表15に示すものに変更した以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表15に示す。
Figure JPOXMLDOC01-appb-T000015
 表15中、実施例10~12の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、本発明で規定した条件を満たさない比較例8の合わせガラス用中間膜は、いずれかの性能が低下した。
実施例13~15、比較例9
 テイカ株式会社製酸化チタン微粒子「JR-1000」を、堺化学工業株式会社製酸化亜鉛微粒子「酸化亜鉛1種」(屈折率1.95)に変更し、さらに「酸化亜鉛1種」の添加量を表16に示すものに変更した以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表16に示す。
比較例10
 テイカ株式会社製酸化チタン微粒子「JR-1000」を、Omya GmbH社製炭酸カルシウム微粒子Hydrocarb 95T-OG(屈折率1.59)に変更した以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表16に示す。
Figure JPOXMLDOC01-appb-T000016
 表16中、実施例13~15の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、本発明で規定した条件を満たさない比較例9~10の合わせガラス用中間膜は、いずれかの性能が低下した。
実施例16、比較例11~12
 PVB-1の代わりに表17に示すPVBを用いた以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表17に示す。
Figure JPOXMLDOC01-appb-T000017
表17中、実施例16の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、本発明で規定した条件を満たさない比較例11~12の合わせガラス用中間膜は、いずれかの性能が低下した。
実施例17、比較例13~15
 PVB-1の代わりに表18に示すPVBを用いた以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表18に示す。
Figure JPOXMLDOC01-appb-T000018
 表18中、実施例17の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、比較例13、14の合わせガラス用中間膜は、いずれかの性能が低下した。また比較例15は粘度が高すぎて合わせガラス用中間膜を得ることが出来なかった。
実施例18~22、比較例16~18
 PVB-1の代わりに表19に示すPVBを用いた以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表19に示す。
Figure JPOXMLDOC01-appb-T000019
 表19中、実施例18~22の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、本発明で規定した条件を満たさない比較例16~18の合わせガラス用中間膜は、いずれかの性能が低下した。
実施例23、比較例19~20
 PVB-1の代わりに表20に示すPVBを用いた以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表20に示す。
Figure JPOXMLDOC01-appb-T000020
 表20中、実施例23の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、本発明で規定した条件を満たさない比較例19~20の合わせガラス用中間膜は、いずれかの性能が低下した。
実施例24、比較例21~22
 PVB-1の代わりに表21に示すPVBを用いた以外は、実施例1と同様にして合わせガラス用中間膜の作製及び評価を実施した。結果を表21に示す。
Figure JPOXMLDOC01-appb-T000021
 表21中、実施例24の合わせガラス用中間膜は、合わせガラス用中間膜中の異物(未溶解分)が少なく、合わせガラス用中間膜の耐着色性に優れ、該合わせガラス用中間膜を用いて製造された合わせガラスは耐貫通性、透明性および光拡散性に優れ、繰り返し加熱した混練物からなる合わせガラス用中間膜を用いた場合でも、ヘイズの上昇が抑制されたものであった。一方、本発明で規定した条件を満たさない比較例21~22の合わせガラス用中間膜は、いずれかの性能が低下した。

Claims (12)

  1.  ポリビニルアセタールを含有する合わせガラス用中間膜であって、アセタール化度が60~80モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~4000であるポリビニルアセタール、及び光拡散性微粒子を含有する組成物からなり、該光拡散性微粒子の屈折率と前記組成物から該光拡散性微粒子を除いた組成物の屈折率との差分絶対値が0.20以上であり、前記合わせガラス用中間膜を厚さ3mmのガラス板2枚の間に挟みこんで合わせガラスにした際のJIS K 7105に準拠した方法で測定したヘイズが20%以下であり、かつ下記式(1)及び(2)を満たす合わせガラス用中間膜。
    (A-B)/A<0.80 (1)
    1.00×10-2<(b/y)/(a/x)<2.00×10-1(2)
    式中、A、a、B、b、x、yは以下のとおりである。
    A:230℃において3時間加熱された前記合わせガラス用中間膜をゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
    a:ピークトップ分子量(A)におけるシグナル強度
    B:230℃において3時間加熱された前記合わせガラス用中間膜をゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
    b:ピークトップ分子量(B)におけるシグナル強度
    x:単分散のポリメタクリル酸メチルをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
    y:前記単分散のポリメタクリル酸メチルをゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
  2.  さらに下記式(3)及び(4)を満たす請求項1に記載の合わせガラス用中間膜。
    (A-C)/A<0.80 (3)
    5.00×10-3<(c/y)/(a/x)<7.00×10-2(4)
    式中、A、a、C、c、x、yは以下の取りである。
    A:前記式(1)と同じ
    a、x、y:前記式(2)と同じ
    C:230℃において3時間加熱された前記合わせガラス用中間膜をゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長320nm)で測定されるポリマー成分のピークトップ分子量
    c:ピークトップ分子量(C)におけるシグナル強度
    である。
  3.  前記ポリビニルアセタールがポリビニルブチラールである、請求項1又は2に記載の合わせガラス用中間膜。
  4.  さらに可塑剤を含有する、請求項1~3のいずれかに記載の合わせガラス用中間膜。
  5.  可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエートを含有する請求項4に記載の合わせガラス用中間膜。
  6.  前記光拡散性微粒子が無機化合物である、請求項1~5のいずれかに記載の合わせガラス用中間膜。
  7.  前記無機化合物が金属酸化物である、請求項6に記載の合わせガラス用中間膜。
  8.  前記金属酸化物が酸化チタンである、請求項7に記載の合わせガラス用中間膜。
  9.  前記金属酸化物が酸化亜鉛である、請求項7に記載の合わせガラス用中間膜。
  10.  前記光拡散性微粒子の含有量が合わせガラス用中間膜を構成する組成物中0.001~0.040質量%である、請求項6~9のいずれかに記載の合わせガラス用中間膜。
  11.  請求項1~9のいずれかに記載の合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラス。
  12.  請求項11に記載の合わせガラスを構成として有する光拡散板。
PCT/JP2015/053846 2014-02-18 2015-02-12 合わせガラス用中間膜 WO2015125690A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016504064A JP6441307B2 (ja) 2014-02-18 2015-02-12 合わせガラス用中間膜
US15/118,937 US10259198B2 (en) 2014-02-18 2015-02-12 Interlayer film for laminated glass
EP15751649.3A EP3109213B1 (en) 2014-02-18 2015-02-12 Interlayer film for laminated glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014029013 2014-02-18
JP2014-029013 2014-02-18

Publications (1)

Publication Number Publication Date
WO2015125690A1 true WO2015125690A1 (ja) 2015-08-27

Family

ID=53878195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053846 WO2015125690A1 (ja) 2014-02-18 2015-02-12 合わせガラス用中間膜

Country Status (4)

Country Link
US (1) US10259198B2 (ja)
EP (1) EP3109213B1 (ja)
JP (1) JP6441307B2 (ja)
WO (1) WO2015125690A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158914A1 (ja) * 2017-03-02 2018-09-07 マクセルホールディングス株式会社 合わせガラス及びそれに用いる合わせガラス用光学フィルム
JP2018168013A (ja) * 2017-03-29 2018-11-01 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス、及び、合わせガラス用中間膜の製造方法
WO2021020148A1 (ja) * 2019-07-30 2021-02-04 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物及び成形体
JP7457853B1 (ja) 2022-12-05 2024-03-28 積水化学工業株式会社 ポリビニルアセタール樹脂

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017174684A1 (en) * 2016-04-08 2017-10-12 Kuraray Europe Gmbh Polyvinyl acetal with reduced flowability
WO2017174682A1 (en) 2016-04-08 2017-10-12 Kuraray Europe Gmbh Multilayer film comprising layer of plasticized polyvinyl acetal with reduced flowability
US20210309770A1 (en) * 2018-09-05 2021-10-07 Kuraray Co., Ltd. Production method of polyvinyl alcohol resin, and polyvinyl alcohol resin
WO2022164631A1 (en) 2021-01-26 2022-08-04 Solutia Inc. Light systems having a diffusive pvb interlayer
EP4183761A1 (en) * 2021-11-18 2023-05-24 Kuraray Europe GmbH Use of compacted polyvinyl acetals as binder in ceramic green sheets

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024061A (ja) * 2008-07-15 2010-02-04 Sekisui Chem Co Ltd 光拡散性合わせガラス用中間膜、及び、合わせガラス
JP5420804B1 (ja) * 2013-08-07 2014-02-19 株式会社クラレ ポリビニルアセタールを含有するフィルム
JP5469287B1 (ja) * 2013-10-25 2014-04-16 株式会社クラレ 複層フィルム及びそれからなる合わせガラス用中間膜
WO2015019452A1 (ja) * 2013-08-07 2015-02-12 株式会社クラレ ポリビニルアセタールを含有するフィルム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3022657B2 (ja) 1991-11-15 2000-03-21 積水化学工業株式会社 ポリビニルアセタール樹脂の製造方法
DE10214419A1 (de) * 2002-03-30 2003-10-30 Ennepetaler Schneid Maehtech Arbeitsgerät mit mindestens einem über einen Motor antreibbaren Werkzeug und einer das Werkzeug stillsetzenden Bremse
JP2004140283A (ja) * 2002-10-21 2004-05-13 Nisshinbo Ind Inc ディスプレイ用薄型電磁波シールド積層体及びその製造方法
JP2007057906A (ja) 2005-08-25 2007-03-08 Central Glass Co Ltd 透過型スクリーン
EP2192092B1 (en) 2007-09-12 2016-08-31 Sekisui Chemical Co., Ltd. Interlayer for laminated glass
CN101903172A (zh) * 2007-12-18 2010-12-01 可乐丽股份有限公司 层合玻璃用夹层膜、其制造方法和含有其的层合玻璃
JP4972019B2 (ja) 2008-03-13 2012-07-11 積水化学工業株式会社 合わせガラス用中間膜、及び、合わせガラス
JP5466566B2 (ja) 2010-04-13 2014-04-09 積水化学工業株式会社 ビニルアセタール樹脂の製造方法
JP2011219670A (ja) 2010-04-13 2011-11-04 Sekisui Chem Co Ltd ビニルアセタール樹脂の製造方法
CN105848894B (zh) 2013-10-25 2018-01-23 株式会社可乐丽 多层薄膜和包含其的夹层玻璃用中间膜

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010024061A (ja) * 2008-07-15 2010-02-04 Sekisui Chem Co Ltd 光拡散性合わせガラス用中間膜、及び、合わせガラス
JP5420804B1 (ja) * 2013-08-07 2014-02-19 株式会社クラレ ポリビニルアセタールを含有するフィルム
WO2015019452A1 (ja) * 2013-08-07 2015-02-12 株式会社クラレ ポリビニルアセタールを含有するフィルム
JP5469287B1 (ja) * 2013-10-25 2014-04-16 株式会社クラレ 複層フィルム及びそれからなる合わせガラス用中間膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109213A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018158914A1 (ja) * 2017-03-02 2018-09-07 マクセルホールディングス株式会社 合わせガラス及びそれに用いる合わせガラス用光学フィルム
JPWO2018158914A1 (ja) * 2017-03-02 2019-12-19 マクセルホールディングス株式会社 合わせガラス及びそれに用いる合わせガラス用光学フィルム
JP2018168013A (ja) * 2017-03-29 2018-11-01 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス、及び、合わせガラス用中間膜の製造方法
JP2021193065A (ja) * 2017-03-29 2021-12-23 積水化学工業株式会社 合わせガラス用中間膜、合わせガラス、及び、合わせガラス用中間膜の製造方法
WO2021020148A1 (ja) * 2019-07-30 2021-02-04 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物及び成形体
JP7470123B2 (ja) 2019-07-30 2024-04-17 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物及び成形体
JP7457853B1 (ja) 2022-12-05 2024-03-28 積水化学工業株式会社 ポリビニルアセタール樹脂

Also Published As

Publication number Publication date
JP6441307B2 (ja) 2018-12-19
JPWO2015125690A1 (ja) 2017-03-30
US10259198B2 (en) 2019-04-16
EP3109213A1 (en) 2016-12-28
EP3109213B1 (en) 2022-12-21
US20170043557A1 (en) 2017-02-16
EP3109213A4 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
JP6441307B2 (ja) 合わせガラス用中間膜
JP5420804B1 (ja) ポリビニルアセタールを含有するフィルム
JP5469286B1 (ja) 複層フィルム及びそれからなる合わせガラス用中間膜
JP6259307B2 (ja) 合わせガラス用中間膜およびそれを用いた合わせガラス
JP5632077B1 (ja) 透明性に優れる組成物
JP5420808B1 (ja) ポリビニルアセタールを含有するフィルム
JP5469287B1 (ja) 複層フィルム及びそれからなる合わせガラス用中間膜
JP5469288B1 (ja) 複層フィルム及びそれからなる合わせガラス用中間膜
WO2014192773A1 (ja) ポリビニルアルコール及びそれを含有する紙用コーティング剤
JP5420806B1 (ja) ポリビニルアセタール及びそれを含有する合わせガラス用中間膜
JP2012530034A (ja) ヘイズの低い、赤外線吸収性の合わせガラス用中間膜
JP5469289B1 (ja) 複層フィルム及びそれからなる合わせガラス用中間膜
WO2015093499A1 (ja) フィルム
JP5420805B1 (ja) ポリビニルアセタールおよびそれを含有する合わせガラス用中間膜
JP2015151499A (ja) 光硬化性樹脂組成物
JP6221147B2 (ja) インキ又は塗料用バインダー及びその用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15751649

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504064

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015751649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015751649

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15118937

Country of ref document: US