WO2014192773A1 - ポリビニルアルコール及びそれを含有する紙用コーティング剤 - Google Patents

ポリビニルアルコール及びそれを含有する紙用コーティング剤 Download PDF

Info

Publication number
WO2014192773A1
WO2014192773A1 PCT/JP2014/064030 JP2014064030W WO2014192773A1 WO 2014192773 A1 WO2014192773 A1 WO 2014192773A1 JP 2014064030 W JP2014064030 W JP 2014064030W WO 2014192773 A1 WO2014192773 A1 WO 2014192773A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
molecular weight
peak top
top molecular
measured
Prior art date
Application number
PCT/JP2014/064030
Other languages
English (en)
French (fr)
Inventor
楠藤 健
芳聡 浅沼
俊輔 藤岡
辻 嘉久
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2014192773A1 publication Critical patent/WO2014192773A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/10Coatings without pigments
    • D21H19/14Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12
    • D21H19/20Coatings without pigments applied in a form other than the aqueous solution defined in group D21H19/12 comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H19/00Coated paper; Coating material
    • D21H19/36Coatings with pigments
    • D21H19/44Coatings with pigments characterised by the other ingredients, e.g. the binder or dispersing agent
    • D21H19/56Macromolecular organic compounds or oligomers thereof obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H19/60Polyalkenylalcohols; Polyalkenylethers; Polyalkenylesters

Definitions

  • the present invention relates to polyvinyl alcohol suitably used for paper coating agents and the like.
  • the present invention also relates to a paper coating agent containing the polyvinyl alcohol.
  • PVA Polyvinyl alcohol
  • PVA is known as a water-soluble synthetic polymer.
  • PVA is particularly excellent in strength characteristics and film-forming properties as compared with other synthetic polymers, and is used in various applications such as a coating agent for paper processing.
  • Patent Documents 1 and 2 describe a dispersion stabilizer for suspension polymerization comprising PVA having a carbonyl group in the molecule and containing a divalent or trivalent metal salt or hydroxide.
  • the aqueous solution of PVA preferably has a predetermined absorbance with respect to ultraviolet rays having a predetermined wavelength. It is described that when such a dispersion stabilizer for suspension polymerization made of PVA is used, the resulting polyvinyl chloride particles are excellent in dispersibility and can be obtained with less coloring. However, when the PVA was heated, it was markedly colored. Moreover, the effect of improving the dispersibility of organic particles and inorganic particles was still insufficient.
  • Patent Document 3 proposes a method for producing PVA using a peroxyester compound having a predetermined structure as an initiator used for polymerization of vinyl ester.
  • PVA produced using such a polymerization initiator is described as being difficult to be colored by heating.
  • the production method is still insufficient in the effect of reducing coloring due to heating of PVA.
  • PVA obtained by the said manufacturing method was inadequate in the effect of improving the water dispersibility of an organic particle or an inorganic particle.
  • Patent Document 4 describes a method for producing PVA in which a polyvinyl acetate monomer having a content of an inhibitor (polymerization inhibitor) of 10 ppm or less is polymerized to obtain polyvinyl acetate, and then the polyvinyl acetate is hydrolyzed. Has been.
  • the PVA thus obtained is described as being less colored.
  • the production method is still insufficient in the effect of reducing coloring due to heating of PVA.
  • PVA obtained by the said manufacturing method was inadequate in the effect of improving the water dispersibility of an organic particle or an inorganic particle.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to provide polyvinyl alcohol that is less colored by heating and excellent in the effect of improving the water dispersibility of organic particles and inorganic particles. . Another object of the present invention is to provide a paper coating agent that is less colored after heat drying and also excellent in water dispersion stability of organic particles and inorganic particles.
  • the inventors of the present invention improve the water dispersibility of organic particles and inorganic particles while polyvinyl alcohol satisfying specific requirements is difficult to be colored when heated.
  • the inventors have found that the effect is excellent and have completed the present invention.
  • the object of the present invention is to have a saponification degree of 50 to 99.99 mol%, a viscosity average polymerization degree of 200 to 5000, and an alkali metal salt content of carboxylic acid of 0.5% by mass or less in terms of the mass of alkali metal
  • PVA polyvinyl alcohol
  • GPC gel permeation chromatography
  • the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength 280 nm) are expressed by the following formula (1).
  • hexafluoroisopropanol may be abbreviated as HFIP.
  • Sample injection volume 1.00 mg / ml solution 100 ⁇ l
  • the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight (C) measured with an absorptiometric detector (measurement wavelength: 320 nm) are expressed by the following formula (2).
  • the absorbance at the peak top molecular weight (C) is preferably 0.20 ⁇ 10 ⁇ 3 to 2.90 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the PVA determined by a differential refractive index detector in the GPC measurement is 2.2 to 3.5.
  • the paper coating agent containing the PVA is a preferred embodiment of the present invention.
  • the paper coating agent is preferably composed of the aqueous solution of PVA or a dispersion in which inorganic particles or organic particles are dispersed in the aqueous solution of PVA.
  • the PVA of the present invention is less colored by heating and is excellent in the effect of improving the water dispersibility of organic particles and inorganic particles.
  • the paper coating agent of the present invention containing such PVA is less colored after being heated and dried, and is excellent in dispersion stability of organic particles and inorganic particles. Therefore, by using the paper coating agent of the present invention, a processed paper having a small surface color and excellent surface condition can be obtained.
  • the PVA of the present invention has a saponification degree of 50 to 99.99 mol%, a viscosity average polymerization degree of 200 to 5000, and the content of alkali metal salt of carboxylic acid is 0.5% by mass or less in terms of the mass of alkali metal. PVA measured by GPC measurement of the PVA heated at 120 ° C.
  • the peak top molecular weight (A) measured by a differential refractive index detector and measured by an absorptiometric detector (measurement wavelength 280 nm)
  • the peak top molecular weight (B) is expressed by the following formula (1) (AB) / A ⁇ 0.75 (1)
  • the absorbance at the peak top molecular weight (B) is 0.25 ⁇ 10 ⁇ 3 to 3.00 ⁇ 10 ⁇ 3 .
  • a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors.
  • the absorptiometric detector needs to be capable of measuring absorbance at a wavelength of 280 nm, and preferably is capable of simultaneously measuring absorbance at a wavelength of 280 nm and absorbance at a wavelength of 320 nm.
  • a cell having a cell length (optical path length) of 10 mm is used as the cell of the detection unit of the absorptiometer.
  • the absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths.
  • the signal intensity by the differential refractive index detector is approximately proportional to the PVA concentration (mg / ml).
  • PVA detected by the absorptiometric detector is only one having absorption at a predetermined wavelength.
  • the concentration and absorbance at a predetermined wavelength can be measured for each molecular weight component of PVA.
  • HFIP containing 20 mmol / l sodium trifluoroacetate is used as a solvent and mobile phase used for dissolving PVA measured in the GPC measurement.
  • HFIP can dissolve PVA and polymethyl methacrylate (hereinafter abbreviated as PMMA). Further, by adding sodium trifluoroacetate, the adsorption of PVA to the column filler is prevented.
  • the flow rate in the GPC measurement is 1 ml / min, and the column temperature is 40 ° C.
  • monodisperse PMMA is used as a standard.
  • Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA.
  • a calibration curve created using the detector is used for measurement by the differential refractive index detector, and a calibration curve created using the detector is used for measurement by the absorptiometric detector.
  • the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
  • ⁇ PVA is heated at 120 ° C for 3 hours before the GPC measurement.
  • PVA is heated by the following method. After casting an aqueous solution in which the PVA powder is dissolved, the PVA film is obtained by drying at 20 ° C. and 65% RH. The PVA film has a thickness of 30 to 75 ⁇ m, preferably 40 to 60 ⁇ m.
  • the film is heated at 120 ° C. for 3 hours using a hot air dryer. From the viewpoint of suppressing heat treatment errors between samples, a gear oven is preferable as the hot air dryer.
  • the heated PVA is dissolved in the solvent described above to obtain a measurement sample.
  • the concentration of PVA in the measurement sample is 1.00 mg / ml, and the injection volume is 100 ⁇ l.
  • an appropriately diluted sample injection amount 100 ⁇ l
  • Absorbance is proportional to the concentration of PVA. Therefore, the absorbance when the PVA concentration is 1.00 mg / ml is determined using the diluted sample concentration and the actually measured absorbance.
  • FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of PVA and the value measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength). It is the graph which showed the relationship with the light absorbency measured by 280 nm.
  • RI is a chromatogram obtained by plotting the value measured by the differential refractive index detector against the molecular weight (horizontal axis) of PVA converted from the elution volume.
  • the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (A).
  • peak top molecular weight (A) When there are a plurality of peaks in the chromatogram, the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (A).
  • UV is a chromatogram obtained by plotting the absorbance measured with an absorptiometer (measurement wavelength: 280 nm) against the molecular weight (horizontal axis) of PVA converted from the elution volume.
  • the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (B).
  • peak top molecular weight (B) the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (B).
  • the PVA of the present invention has a peak top molecular weight (A) measured by a differential refractive index detector and a peak top molecular weight measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method.
  • (B) satisfies the following formula (1).
  • the peak top molecular weight (A) is a value serving as an index of the molecular weight of PVA.
  • the peak top molecular weight (B) is derived from a component present in PVA and having absorption at 280 nm.
  • (AB) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm.
  • the balance between the coloring property of PVA (easiness of coloring when heated) and the effect of improving the water dispersibility of organic particles and inorganic particles cannot be achieved.
  • (AB) / A is preferably less than 0.70, more preferably less than 0.65.
  • the PVA of the present invention needs to have an absorbance at a peak top molecular weight (B) of 0.25 ⁇ 10 ⁇ 3 to 3.00 ⁇ 10 ⁇ 3 when GPC measurement is performed by the method described above.
  • B peak top molecular weight
  • the absorbance is preferably 0.50 ⁇ 10 ⁇ 3 to 2.80 ⁇ 10 ⁇ 3, and more preferably 0.75 ⁇ 10 ⁇ 3 to 2.50 ⁇ 10 ⁇ 3 .
  • the peak top molecular weight (A) measured by a differential refractive index detector in the GPC measurement is expressed by the following formula (2) (AC) / A ⁇ 0.75 (2) It is preferable to satisfy.
  • the peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • the peak top molecular weight (C) is derived from a component having an absorption at 320 nm, which is present in the PVA of the present invention.
  • (AC) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, there is a possibility that the balance between the colorability of PVA and the effect of improving the water dispersibility of organic particles and inorganic particles cannot be achieved.
  • (AC) / A is more preferably less than 0.70, and still more preferably less than 0.65.
  • the PVA of the present invention preferably has an absorbance at a peak top molecular weight (C) of 0.20 ⁇ 10 ⁇ 3 to 2.90 ⁇ 10 ⁇ 3 when GPC measurement is performed by the method described above.
  • C peak top molecular weight
  • the absorbance is more preferably 0.40 ⁇ 10 ⁇ 3 to 2.70 ⁇ 10 ⁇ 3 , and further preferably 0.60 ⁇ 10 ⁇ 3 to 2.40 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the PVA determined by a differential refractive index detector in the GPC measurement is 2.2 to 6.0. Is preferred. Mw and Mn are obtained from a chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of PVA described above. Mw and Mn in the present invention are values in terms of PMMA.
  • Mn is an average molecular weight that is strongly influenced by a low molecular weight component
  • Mw is an average molecular weight that is strongly influenced by a high molecular weight component.
  • Mw / Mn is generally used as an index of molecular weight distribution of a polymer. When Mw / Mn is small, it indicates that the polymer has a small proportion of low molecular weight component, and when Mw / Mn is large, it indicates that the polymer has a large proportion of low molecular weight component.
  • Mw / Mn when Mw / Mn is less than 2.2, it indicates that the proportion of low molecular weight components is small in PVA.
  • Mw / Mn when Mw / Mn is less than 2.2, the effect of improving the water dispersibility of organic particles and inorganic particles may be reduced. It is more preferable that Mw / Mn is 2.3 or more.
  • Mw / Mn exceeds 6.0, it shows that the ratio of a low molecular weight component is large in PVA. When Mw / Mn exceeds 6.0, the colorability may be insufficient.
  • Mw / Mn is more preferably 3.5 or less, and further preferably 3.0 or less. From these things, it is thought that the low molecular weight component in PVA has an influence on the effect of improving the colorability of PVA and the water dispersibility of organic particles and inorganic particles.
  • the viscosity average polymerization degree of the PVA of the present invention is 200 to 5,000.
  • the viscosity average polymerization degree is less than 200, practical strength cannot be obtained. Therefore, when PVA is used for the paper coating agent, the strength of the formed coating film is insufficient.
  • the degree of viscosity polymerization exceeds 5000, the viscosity of the aqueous PVA solution becomes too high, so that when PVA is used as a paper coating agent or the like, a high PVA concentration cannot be obtained.
  • the viscosity average degree of polymerization is preferably 250 to 4500, more preferably 300 to 4000, and still more preferably 400 to 3500.
  • the degree of saponification of the PVA of the present invention is measured according to JIS-K6726.
  • the saponification degree of the PVA of the present invention is 50 to 99.99 mol%.
  • the degree of saponification of the PVA of the present invention is preferably 60 to 99.8 mol%, more preferably 70 to 99.7 mol%, still more preferably 80 to 99.6 mol%.
  • the PVA of the present invention contains an alkali metal salt of a carboxylic acid, and its content is 0.5% by mass or less, preferably 0.37% by mass or less, more preferably 0.28 in terms of the mass of the alkali metal. It is at most mass%, more preferably at most 0.23 mass%. When the content of the alkali metal salt of the carboxylic acid exceeds 0.5% by mass, the colorability of PVA becomes insufficient.
  • the content of alkali metal salt of carboxylic acid (in terms of alkali metal mass) is determined by alkali metal ions obtained by ashing PVA with a platinum crucible and then measuring the resulting ash content by ICP emission analysis. It can be determined from the quantity.
  • alkali metal salt of carboxylic acid examples include those obtained by neutralizing an alkali catalyst used in a saponification step described later, for example, sodium hydroxide, potassium hydroxide, sodium methylate, etc. with carboxylic acid, and a polymerization step described later.
  • an inhibitor added to stop radical polymerization the carboxylic acid added for the purpose of inhibiting the alcoholysis of the vinyl ester monomer such as vinyl acetate used in the saponification process is neutralized.
  • a carboxylic acid having a conjugated double bond those obtained by neutralizing the carboxylic acid in the saponification step, or those intentionally added are included.
  • Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium 1,1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1-carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium reti
  • Examples of the vinyl ester monomer used in the production of the PVA of the present invention include vinyl formate, vinyl acetate, vinyl propionate, vinyl valerate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, and vinyl pivalate. And vinyl versatate, and vinyl acetate is particularly preferred.
  • the PVA of the present invention is obtained by polymerizing a vinyl ester monomer in the presence of a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. It can also be manufactured. By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
  • a thiol compound such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid
  • Examples of the method for polymerizing the vinyl ester monomer include known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed.
  • a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable.
  • the lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used.
  • the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy).
  • Azo initiators such as -2,4-dimethylvaleronitrile
  • organic peroxide initiators such as benzoyl peroxide and n-propyl peroxycarbonate, and the like, as long as they do not impair the effects of the present invention. Can be mentioned.
  • organic peroxide initiators having a half-life of 10 to 110 minutes at 60 ° C. are preferred, and peroxydicarbonate is particularly preferred.
  • the polymerization temperature for carrying out the polymerization reaction but a range of 5 ° C to 200 ° C is suitable.
  • a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired.
  • monomers include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, and the like.
  • acrylic acid or its salts acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or its salts, methyl methacrylate, ethyl methacrylate, n-propyl methacrylate Methacrylic acid esters such as isopropyl methacrylate; acrylamide derivatives such as acrylamide, N-methylacrylamide and N-ethylacrylamide; methacrylamide derivatives such as methacrylamide, N-methylmethacrylamide and N-ethylmethacrylamide; Vinyl ethers such as ru vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether; hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, 1,4-butan
  • the amount of the monomer that can be copolymerized with these vinyl ester monomers varies depending on the purpose and use of the monomer, but is usually based on all monomers used for copolymerization. Is 20 mol% or less, preferably 10 mol% or less.
  • ethylene is preferably used from the viewpoint of less coloring by heating and further improving the water dispersibility of organic particles and inorganic particles.
  • the ethylene unit content is preferably 1 to 20 mol%, more preferably 1.5 to 15 mol%, further preferably 2 to 12 mol%, and particularly preferably 2 to 10 mol%.
  • PVA can be obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
  • an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide.
  • the amount of the alkaline substance used is preferably in the range of 0.002 to 0.2 in the molar ratio based on the vinyl ester monomer unit of the polyvinyl ester, and in the range of 0.004 to 0.1. It is particularly preferred.
  • the saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added and added during the saponification reaction.
  • Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. At this time, the water content of methanol is preferably adjusted to 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and particularly preferably 0.005 to 0.8% by mass.
  • the saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C.
  • the saponification reaction is preferably performed for 5 minutes to 10 hours, more preferably for 10 minutes to 5 hours.
  • the saponification reaction can be performed by either a batch method or a continuous method.
  • the remaining catalyst may be neutralized as necessary.
  • Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
  • the alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate generated by the progress of the saponification reaction, or neutralized by a carboxylic acid such as acetic acid added after the reaction. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed.
  • the content of the alkali metal salt of the carboxylic acid in the PVA of the present invention needs to be 0.5% by mass or less. In order to obtain such PVA, the PVA may be washed after saponification.
  • Examples of the cleaning liquid used in this case include a lower alcohol such as methanol, a solution composed of 100 parts by weight of the lower alcohol and 20 parts by weight or less of water, and a solution composed of the lower alcohol and an ester such as methyl acetate produced in the saponification step. It is done.
  • the content of the ester in the solution composed of the lower alcohol and the ester is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol.
  • the addition amount of the cleaning liquid is preferably 100 parts by weight to 10,000 parts by weight, more preferably 150 parts by weight to 5000 parts by weight, and more preferably 200 parts by weight with respect to 100 parts by weight of the gel obtained by saponification and PVA swollen with alcohol.
  • the washing method is not particularly limited, but, for example, a step of adding gel (PVA) and a washing solution into a tank and stirring or standing at 5 to 100 ° C. for about 5 to 180 minutes and then draining the solution. Is a batch system in which the content of the alkali metal salt of the carboxylic acid is repeated within a predetermined range. Further, there is a continuous method in which PVA is continuously added from the top of the column at the same temperature and for the same time as the batch method, and a lower alcohol is continuously added from the bottom of the column, and the two are brought into contact with each other.
  • PVA gel
  • the absorbance at peak top molecular weight (A), peak top molecular weight (B), peak top molecular weight (B), absorbance at peak top molecular weight (C), and peak top molecular weight (C) are described above.
  • Examples of the method for adjusting so as to satisfy the condition include the following methods.
  • a vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
  • Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetaldehyde such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalization of the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
  • aldehydes such as acetaldehyde, crotonaldehyde, and acrolein
  • acetaldehyde such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalization of the aldehyde with a solvent alcohol
  • ketones such as acetone
  • Organic acids specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc.
  • a carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible.
  • the addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
  • the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
  • Organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer.
  • Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
  • an inhibitor When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator.
  • the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction.
  • isoprene 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-
  • Polyenes such as conjugated polyene consisting Motoni double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used.
  • a polyvinyl ester alcohol solution from which the remaining vinyl ester monomer is removed as much as possible is used for the saponification reaction.
  • the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
  • the desired PVA can be obtained by appropriately combining A) to H).
  • the PVA of the present invention thus obtained is less colored by heating and is excellent in the effect of improving the water dispersibility of organic particles and inorganic particles.
  • the PVA of the present invention is useful as a component of a paper coating agent.
  • the paper coating agent containing the PVA of the present invention the PVA may be used alone, or various additives may be used in combination as long as the effects of the present invention are not impaired.
  • water-soluble resins that can be used in combination include raw starch obtained from wheat, corn, rice, potato, sweet potato, tapioca, sago palm, etc .; raw starch degradation products such as oxidized starch and dextrin; etherified starch, esterified starch , Starch derivatives such as cationized starch; albumin, gelatin, casein, gum arabic, polyamide resin, melamine resin, poly (meth) acrylamide, polyvinylpyrrolidone, sodium poly (meth) acrylate, anion-modified PVA, sodium alginate, water-soluble Examples include polyesters and cellulose derivatives such as methylcellulose, hydroxyethylcellulose, carboxymethylcellulose (CMC), and water-dispersible resins include SBR latex, NBR latex, vinyl acetate emulsion, ethylene / vinyl acetate.
  • raw starch degradation products such as oxidized starch and dextrin
  • etherified starch, esterified starch
  • the amount of the other water-soluble or water-dispersible resin added is not particularly limited, but is 10000 parts by mass or less, preferably 5000 parts by mass or less, more preferably 3000 parts by mass or less with respect to 100 parts by mass of PVA. preferable. When it exceeds 10,000 mass parts, the effect of this invention may be impaired.
  • the paper coating agent of the present invention may be used in combination with saccharides as long as the effects of the present invention are not impaired.
  • saccharides that can be used in combination include monosaccharides such as glucose, fructose, isomerized sugar, and xylose; disaccharides such as maltose, lactose, sucrose, trehalose, palatinose, reduced maltose, reduced palatinose, and reduced lactose; syrup, isomalto-oligosaccharide, and fructo-oligo Examples include sugars, lactose oligosaccharides, soybean oligosaccharides, xylooligosaccharides, coupling sugars, cyclodextrin compounds and other oligosaccharides; pullulan, pectin, agar, konjac mannan, polydextrose, xanthan gum and other polysaccharides.
  • oligosaccharides those of 10-mer or less are preferably used. These saccharides are preferably water-soluble or water-dispersible. Although there is no restriction
  • a paper coating agent containing the PVA of the present invention is a preferred embodiment of the present invention.
  • the paper coating agent of the present invention is preferably composed of the aqueous solution of PVA or a dispersion in which inorganic particles or organic particles are dispersed in the aqueous solution of PVA.
  • the PVA is less colored by heating and is excellent in the effect of improving the water dispersibility of organic particles and inorganic particles. Therefore, the paper coating agent containing such PVA has little coloring after heat drying.
  • the coating agent contains organic particles or inorganic particles, these particles have excellent dispersion stability. Therefore, by using the paper coating agent of the present invention, a processed paper having a small surface color and excellent surface condition can be obtained.
  • the PVA concentration of the aqueous PVA solution used in the paper coating agent of the present invention is not particularly limited, but is preferably 1 to 30% by mass.
  • the aqueous solution may contain a water-soluble organic solvent as long as the effects of the present invention are not impaired.
  • the content of the organic solvent in the aqueous solution is preferably 10% by mass or less. From the environmental viewpoint, it is preferable that such an organic solvent is not substantially contained.
  • the aqueous solution may contain an acid, a base and a salt as long as the effects of the present invention are not impaired.
  • the paper coating agent comprising a dispersion in which inorganic particles or organic particles are dispersed in the PVA aqueous solution is obtained by dispersing inorganic particles or organic particles in the PVA aqueous solution described above.
  • inorganic particles precipitated silica, gel silica, gas phase method silica, colloidal silica, colloidal alumina, aluminum hydroxide, pseudoboehmite, clay, talc, diatomaceous earth, zeolite, calcium carbonate, alumina, zinc oxide, satin white, etc.
  • An inorganic filler is mentioned.
  • the organic particles include organic pigments, leuco dyes, and developers.
  • the average particle size of the inorganic particles or organic particles is not particularly limited, but is preferably 0.1 to 100 ⁇ m. Although content in particular of an inorganic particle or an organic particle is not restrict
  • the paper coating agent of the present invention As a method of coating the paper coating agent of the present invention on paper, it can be applied to paper using a conventionally known size press, various roll coaters, air knife coaters, bar coaters, blade coaters, curtain coaters, cast coaters, etc. The method of doing is mentioned.
  • the paper coating agent may be impregnated in the paper, or a coating layer containing the PVA may be formed on the surface of the paper. These can be arbitrarily selected according to the purpose.
  • the coating amount of the paper coating agent of the present invention is not particularly limited, but is usually 0.1 to 60 g / m 2 , preferably 0.2 to 45 g / m 2 , more preferably 0.3 to 3 in terms of solid content. It is about 30 g / m 2 .
  • the paper targeted by the paper coating agent of the present invention is not particularly limited, and examples thereof include paperboards such as manila balls, white balls, and liners, and printing papers such as general fine paper, medium paper, and gravure paper. Further, it can be applied to various special papers such as thermal paper, release paper, ink jet paper, pressure sensitive paper, oil resistant paper, barrier paper and the like.
  • Polymerization degree and saponification degree of PVA The polymerization degree and saponification degree of PVA were determined by the method described in JIS-K6726.
  • the sodium acetate content (in terms of sodium) of PVA is determined by measuring the amount of sodium in the obtained ash using Jarrel Ash ICP emission analyzer “IRIS AP” after ashing PVA. It was.
  • GPC measurement was performed using “GPCmax” manufactured by VISCOTECH.
  • TDA305 manufactured by VISCOTECH was used.
  • UV Detector 2600 manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector.
  • the optical path length of the detection cell of the absorptiometric detector is 10 mm.
  • GPC column “GPC HFIP-806M” manufactured by Showa Denko KK was used.
  • OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
  • HFIP HFIP containing 20 mmol / liter of sodium trifluoroacetate was used as the mobile phase.
  • the mobile phase flow rate was 1.0 ml / min.
  • the sample injection amount was 100 ⁇ l, and measurement was performed at a GPC column temperature of 40 ° C.
  • the sample in which the viscosity average polymerization degree of PVA exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably.
  • the absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. ⁇ (mg / ml) is the concentration of the diluted sample.
  • Absorbance at a sample concentration of 1.00 mg / ml (1.00 / ⁇ ) ⁇ measured value of absorbance
  • PMMA polymethyl methacrylate
  • Agilent Technologies peak top molecular weight: 1944000, 790000, 467400, 271,400, 144000, 79250, 35300, 13300, 7100, 1960, 1020, 690
  • a calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the differential refractive index detector and the absorptiometric detector.
  • the analytical software was used to create each calibration curve. In this measurement, a column in a state where the peaks of the standard samples having both molecular weights of 1944000 and 271400 can be separated in the measurement of polymethyl methacrylate was used.
  • the coating agent was allowed to stand at 20 ° C. for 1 month, and then dispersion stability was evaluated according to the following evaluation criteria.
  • B Settling of a small amount of inorganic particles is confirmed visually. However, streaks are not observed when re-dispersed by stirring within 5 minutes and the coating agent after stirring is applied to paper.
  • C Sedimentation of inorganic particles was confirmed visually, and stirring for about 30 minutes was required for redispersion. No streaks are observed when the coating agent after stirring is applied to paper.
  • the pre-treated liquid mixture (about 640 g) is put into a disperser (“Ready-mill type NVM-03 type” manufactured by AIMEX), glass beads 0.5-0.7 mm ⁇ , bead filling rate 82%, rotation speed 3400 rpm (Peripheral speed: 14 m / sec), a flow rate of 55.2 cc / min, and liquid circulation conditions for 15 minutes to obtain a dispersion in which the dye (organic particles) was dispersed.
  • the dispersed particle size of the dye in the dispersion obtained was measured using a laser diffraction particle size distribution analyzer (“SALD-2200” manufactured by Shimadzu Corporation). The smaller the dispersed particle size, the better the water dispersibility of the organic particles.
  • the viscosity of the dispersion after 1 hour from the treatment with the disperser was measured with a BL type viscometer at 20 ° C. and 60 rpm. Further, the dispersion was allowed to stand at 20 ° C. for 2 weeks, and the viscosity was measured under the same conditions. The viscosity increase ratio (viscosity after 2 weeks / viscosity after 1 hour) was calculated from the values thus obtained. As the thickening factor is closer to 1, the change in viscosity is smaller and the stability is better.
  • ⁇ YI difference in yellowness
  • the polymerization degree of PVA exceeded 2400
  • the 5 mass% aqueous solution of PVA was prepared.
  • a coated paper was prepared and evaluated in the same manner as described above except that the PVA aqueous solution was used.
  • the amount of di-n-propyl peroxydicarbonate added was 0.081 g.
  • a methanol solution of di-n-propyl peroxydicarbonate was sequentially added at a rate of 20.9 mL / hour until the completion of polymerization.
  • the temperature in the flask was kept at 60 ° C.
  • 0.0141 g of sorbic acid 3% of di-n-propyl peroxydicarbonate remaining undecomposed in the polymerization solution was obtained.
  • the polymerization solution was cooled to stop the polymerization.
  • the polymerization rate of the vinyl acetate monomer was 35.0%.
  • the inside of the flask was depressurized using a water aspirator to distill off the vinyl acetate monomer and methanol, thereby precipitating polyvinyl acetate.
  • the polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained.
  • a 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1.
  • the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days.
  • the obtained polyvinyl alcohol was dried and subjected to viscosity average polymerization degree measurement.
  • the degree of polymerization was 1700.
  • PVAc-2 to PVAc-20 Polyvinyl acetate (PVAc-2 to PVAc-20) was obtained in the same manner as PVAc-1, except that the conditions were changed to those described in Table 1.
  • “ND” means less than 1 ppm.
  • the degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
  • VAM vinyl acetate monomer
  • a 0.55 mass% methanol solution of di n-propyl peroxydicarbonate was prepared, and 18.6 mL was added to the flask to initiate polymerization. At this time, the amount of di-n-propyl peroxydicarbonate added was 0.081 g.
  • a methanol solution of di-n-propyl peroxydicarbonate was sequentially added at a rate of 20.9 mL / hour until the completion of polymerization. During the polymerization, the temperature in the flask was kept at 60 ° C.
  • the inside of the flask was decompressed using a water flow aspirator to distill off the vinyl acetate monomer and methanol, thereby precipitating ethylene-modified polyvinyl acetate.
  • 3000 g of methanol was added to the precipitated ethylene-modified polyvinyl acetate and the polyvinyl acetate was dissolved while heating at 30 ° C.
  • the inside of the flask was again decompressed using a water aspirator, so that the vinyl acetate monomer and methanol were removed. Distilled off to precipitate ethylene modified polyvinyl acetate.
  • the operation of dissolving ethylene-modified polyvinyl acetate in methanol and then precipitating it was further repeated twice.
  • PVAc-21 ethylene-modified polyvinyl acetate having a vinyl acetate monomer removal rate of 99.8%.
  • the degree of polymerization of PVAc-21 was 1700, and the content of ethylene units in PVAc-21 was 4 mol%.
  • Example 1 Hydroxylation with respect to vinyl acetate monotonic units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 30% by mass with respect to a 40% by mass methanol solution of polyvinyl acetate in PVAc-1.
  • An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium was 0.020, and the saponification reaction was started at 40 ° C.
  • the gel is pulverized when the gelated product is generated as the saponification reaction proceeds, and the crushed gel is transferred to a container at 40 ° C.
  • the polymerization degree of the obtained PVA was 1700, the saponification degree was 99.1 mol%, and the sodium acetate content was 0.7% (0.20% in terms of sodium). These physical property data are also shown in Table 2.
  • FIG. 1 is a graph showing the relationship between the molecular weight and the value measured with a differential refractive index detector, and the relationship between the molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm).
  • the molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight).
  • the peak top molecular weight (A) measured with the differential refractive index detector obtained from FIG. 1 was 100,000, and the peak top molecular weight (B) measured with the absorptiometric detector (280 nm) was 53,000. It was.
  • the obtained value is expressed by the following formula (AB) / A
  • the value obtained by substituting for was 0.47.
  • the absorbance at the peak top molecular weight (B) was 1.30 ⁇ 10 ⁇ 3 .
  • the peak top molecular weight (C) measured with an absorptiometric detector (320 nm) determined in the same manner as the method for determining the peak top molecular weight (B) was 50,000.
  • the peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A The value obtained by substituting for was 0.50.
  • the absorbance at the peak top molecular weight (C) was 1.05 ⁇ 10 ⁇ 3 .
  • Examples 2-8, Comparative Examples 1-5 Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 2.
  • Table 2 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 2.
  • Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 2.
  • Table 2 shows the evaluation of fully saponified PVA having a degree of polymerization of 1700.
  • Example 9 Comparative Examples 6-8 Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 3.
  • Table 3 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 3. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 3.
  • Table 3 shows the evaluation of fully saponified PVA having a polymerization degree of 300 and a polymerization degree of 150.
  • the value obtained by the gel permeation chromatography measurement satisfies the conditions specified in the present invention (Example 9)
  • the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper are all excellent. It was.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 (Comparative Example 6)
  • the dispersion stability of the inorganic particles is low. It was inferior.
  • Example 10 Comparative Example 9 and Comparative Example 10
  • Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 4.
  • Table 4 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 4. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 4.
  • Table 4 shows the evaluation of fully saponified PVA having a polymerization degree of 500.
  • the values obtained by gel permeation chromatography satisfy the conditions specified in the present invention (Example 10)
  • all of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper are excellent. It was.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometer (measurement wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 (Comparative Example 9)
  • the dispersion stability of the inorganic particles is low. It was inferior.
  • the absorbance at the peak top molecular weight (B) exceeded 3.00 ⁇ 10 ⁇ 3 (Comparative Example 10)
  • the film and coated paper were colored, and the PVA colorability was poor.
  • Example 11 Comparative Example 11 and Comparative Example 12
  • Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 5.
  • Table 5 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 5. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 5.
  • Table 5 shows the evaluation of fully saponified PVA having a degree of polymerization of 2400.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 , and the peak top molecular weight (A) and the peak top molecular weight (B) are as described above.
  • Example 12 Comparative Examples 13-15
  • Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 6.
  • Table 6 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 6. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 6.
  • Table 6 shows the evaluation of fully saponified PVA having a polymerization degree of 3600 and a polymerization degree of 5500.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 , and the peak top molecular weight (A) and the peak top molecular weight (B) are also described above.
  • Examples 13 to 19 and Comparative Examples 16 to 19 Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 7.
  • Table 7 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 7. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 7.
  • Table 7 shows the evaluation of partially saponified PVA having a degree of polymerization of 1700 (degree of saponification of about 88 mol%).
  • Example 20 Comparative Examples 20 and 21
  • Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 8.
  • Table 8 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 8. Evaluation of the colorability of the PVA film, the dispersion stability of the organic particles, and the colorability of the coated paper was carried out. The results are shown in Table 8.
  • Example 21 Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 30% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3.
  • An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.003, and the saponification reaction was started at 40 ° C.
  • saponification reaction was performed by adding distilled water so that the water content in the system was 1.2%.
  • One hour after adding the methanol solution of sodium hydroxide 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction.
  • the obtained solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain PVA.
  • the polymerization degree of the obtained PVA was 300, the saponification degree was 60.2 mol%, and the sodium acetate content was 1.3%.
  • Table 8 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 8. Evaluation of the colorability of the PVA film, the dispersion stability of the organic particles, and the colorability of the coated paper was carried out. The results are shown in Table 8.
  • Comparative Example 22 Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3.
  • An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 3.0%.
  • One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction.
  • the obtained solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain PVA.
  • the polymerization degree of the obtained PVA was 300, the saponification degree was 45.3 mol%, and the sodium acetate content was 1.2%. Since the obtained PVA was insoluble in water, a film for GPC measurement could not be prepared, and GPC measurement and PVA evaluation could not be performed.
  • Table 8 shows the evaluation of partially saponified PVA having a polymerization degree of 300.
  • the values obtained by gel permeation chromatography satisfy the conditions defined in the present invention (Examples 20 and 21)
  • all of the colorability of the film, the colorability of the coated paper, and the dispersion stability of the inorganic particles are all excellent. It was.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometer (measuring wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 (Comparative Example 20)
  • the dispersion stability of the organic particles is low. It was inferior.
  • the absorbance at the peak top molecular weight (B) exceeded 3.00 ⁇ 10 ⁇ 3 (Comparative Example 21)
  • the film and the coated paper were colored, and the PVA colorability was poor.
  • Example 22 Comparative Examples 23 and 24 Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 9.
  • Table 9 shows the physical property data of the obtained PVA. Evaluation of the colorability of the PVA film, the dispersion stability of the organic particles, and the colorability of the coated paper was carried out. The results are shown in Table 9.
  • Table 9 shows the evaluation of partially saponified PVA having a polymerization degree of 500 (saponification degree of about 88 mol%).
  • the film colorability, the coated paper colorability, and the inorganic particle dispersion stability were all excellent.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometer (measurement wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 (Comparative Example 23)
  • the dispersion stability of the organic particles is low. It was inferior.
  • the absorbance at the peak top molecular weight (B) exceeded 3.00 ⁇ 10 ⁇ 3 (Comparative Example 24)
  • the film and the coated paper were colored, and the PVA colorability was poor.
  • Example 23 Comparative Examples 25 and 26 Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 10.
  • Table 10 shows the physical property data of the obtained PVA. Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 10. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 10.
  • Table 10 shows the evaluation of partially saponified PVA (degree of saponification of about 88 mol%) having a degree of polymerization of 2400.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 , and the peak top molecular weight (A) and the peak top molecular weight (B) are as described above.
  • Example 24 Comparative Examples 27 and 28 Each PVA was manufactured like Example 1 except having changed into the conditions shown in Table 11.
  • Table 11 shows the physical property data of the obtained PVA.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 11. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 11.
  • Table 11 shows the evaluation of partially saponified PVA having a degree of polymerization of 3600 (degree of saponification of about 88 mol%).
  • the film colorability, the coated paper colorability, and the inorganic particle dispersion stability were all excellent.
  • the absorbance at the peak top molecular weight (B) measured with an absorptiometric detector (measurement wavelength: 280 nm) is less than 0.25 ⁇ 10 ⁇ 3 , and the peak top molecular weight (A) and the peak top molecular weight (B) are as described above.
  • Example 25 PVA was produced in the same manner as in Example 1 except that the conditions shown in Table 12 were changed.
  • the physical property data of the obtained PVA are shown in Table 12.
  • Gel permeation measurement was carried out in the same manner as in Example 1. The results are shown in Table 12. Evaluation of the colorability of the PVA film, the dispersion stability of the inorganic particles, and the colorability of the coated paper was performed. The results are shown in Table 12.
  • Table 12 shows the evaluation of ethylene-modified PVA.
  • the PVA of the present invention is excellent in film colorability, coated paper colorability, and dispersion stability of inorganic substances and organic substances, and also in performance balance. On the other hand, it is clear that PVA that does not satisfy the range defined in the present invention is inferior in performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Paper (AREA)

Abstract

 けん化度が50~99.99モル%、粘度平均重合度が200~5000、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるポリビニルアルコールであって、120℃において3時間加熱された前記ポリビニルアルコールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1) (A-B)/A<0.75 (1) を満たし、かつピークトップ分子量(B)における吸光度が0.25×10-3~3.00×10-3となるポリビニルアルコール。これにより、加熱による着色が少なく、かつ有機粒子や無機粒子の水分散性を向上させる効果に優れたポリビニルアルコールが提供される。

Description

ポリビニルアルコール及びそれを含有する紙用コーティング剤
 本発明は紙用コーティング剤等に好適に用いられるポリビニルアルコールに関する。また、本発明は当該ポリビニルアルコールを含有する紙用コーティング剤に関する。
 ポリビニルアルコール(以下、「PVA」と略記することがある)は水溶性の合成高分子として知られている。PVAは他の合成高分子と比べて強度特性および造膜性が特に優れており、紙加工用のコーティング剤等、種々の用途において重用されている。
 一方で、PVAは加熱により着色しやすかった。また、有機粒子や無機粒子の水分散性を向上させるためにPVAを用いた場合に、その効果が不十分である場合があった。これらの欠点を改良する目的で種々の提案がなされている。例えば、ビニル化合物の懸濁重合用分散安定剤として、所定の波長の紫外線に対して所定の吸光度を有するPVAが提案されている(特許文献1および2)。特許文献1には、分子内にカルボニル基を有し、かつ2~3価の金属の塩又は水酸化物を含有するPVAからなる懸濁重合用分散安定剤が記載されている。そして、当該PVAの水溶液が所定の波長の紫外線に対して所定の吸光度を有することが好ましいと記載されている。このようなPVAからなる懸濁重合用分散安定剤を用いた場合には、得られるポリ塩化ビニル粒子の分散性が優れるとともに、着色の少ないポリ塩化ビニルが得られると記載されている。しかしながら、当該PVAを加熱すると著しく着色した。また、有機粒子や無機粒子の分散性を向上させる効果もなお不十分であった。
 特許文献3には、ビニルエステルの重合に用いる開始剤として所定の構造を有するパーオキシエステル化合物を用いるPVAの製造方法が提案されている。このような重合開始剤を用いて製造されたPVAは、加熱によって着色しにくいと記載されている。しかしながら、当該製造方法は、なおPVAの加熱による着色を低減させる効果が不十分であった。また、当該製造方法によって得られたPVAは、有機粒子や無機粒子の水分散性を向上させる効果が不十分であった。
 特許文献4には、抑制剤(重合禁止剤)の含有量が10ppm以下である酢酸ビニルモノマーを重合してポリ酢酸ビニルを得た後、該ポリ酢酸ビニルを加水分解するPVAの製造方法が記載されている。こうして得られたPVAは、着色が少ないと記載されている。しかしながら、当該製造方法は、なおPVAの加熱による着色を低減させる効果が不十分であった。また、当該製造方法によって得られたPVAは、有機粒子や無機粒子の水分散性を向上させる効果が不十分であった。
特開平08-269112号公報 特表2004-189889号公報 特開平05-320219号公報 特表2011-508802号公報
 本発明は、上記課題を解決するためになされたものであり、加熱による着色が少なく、かつ有機粒子や無機粒子の水分散性を向上させる効果に優れたポリビニルアルコールを提供することを目的とする。また、本発明は、加熱乾燥後の着色が少ないうえに、有機粒子や無機粒子の水分散安定性にも優れた紙用コーティング剤を提供することを目的とする。
 本発明者らは上記の課題を解決するために鋭意検討した結果、特定の要件を満足するポリビニルアルコールが、加熱した際に着色しにくいうえに、有機粒子や無機粒子の水分散性を向上させる効果に優れることを見出し本発明を完成するに至った。
 すなわち、本発明の目的は、けん化度が50~99.99モル%、粘度平均重合度が200~5000、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるポリビニルアルコール(以下、PVAと略記することがある。)であって、120℃において3時間加熱された前記PVAをゲルパーミエーションクロマトグラフィー(以下、GPCと略記することがある)測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A-B)/A<0.75   (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.25×10-3~3.00×10-3となるPVAを提供することによって達成される。
 ただし、前記GPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)
試料注入量:1.00mg/ml溶液100μl
カラム:昭和電工株式会社製「GPC HFIP-806M」
カラム温度:40℃
流速:1ml/分
吸光光度検出器のセル長:10mm
である。
 ここで、前記GPC測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
(A-C)/A<0.75   (2)
を満たし、かつピークトップ分子量(C)における吸光度が0.20×10-3~2.90×10-3となることが好適である。
 前記GPC測定における、示差屈折率検出器によって求められる、前記PVAの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2~3.5となることも好適である。
 前記PVAを含有する紙用コーティング剤が本発明の好適な実施態様である。当該紙用コーティング剤が、前記PVAの水溶液、または前記PVAの水溶液に無機粒子又は有機粒子が分散した分散液からなるものであることが好適である。
 本発明のPVAは、加熱による着色が少なく、かつ有機粒子や無機粒子の水分散性を向上させる効果に優れる。このようなPVAを含有する本発明の紙用コーティング剤は、加熱乾燥後の着色が少ないうえに、有機粒子や無機粒子の分散安定性にも優れる。しがたって、本発明の紙用コーティング剤を用いることにより、着色が少ないうえに、表面状態に優れた加工紙が得られる。
実施例1のPVAにおいて、分子量と示差屈折率検出器(RI)で測定された値との関係、及び、分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。
 本発明のPVAは、けん化度が50~99.99モル%、粘度平均重合度が200~5000、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるPVAであって、120℃において3時間加熱された前記PVAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
(A-B)/A<0.75   (1)
を満たし、かつピークトップ分子量(B)における吸光度が0.25×10-3~3.00×10-3となるものである。
 ただし、前記GPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有HFIP
試料注入量:1.00mg/ml溶液100μl
カラム:昭和電工株式会社製「GPC HFIP-806M」
カラム温度:40℃
流速:1ml/分
吸光光度検出器のセル長:10mm
である。
 本発明におけるGPC測定では、示差屈折率検出器及び吸光光度検出器を有し、これらの検出器による測定を同時に行うことのできるGPC装置を使用する。吸光光度検出器としては、波長280nmにおける吸光度を測定できるものである必要があり、波長280nmにおける吸光度と波長320nmにおける吸光度とを同時に測定できるものが好ましい。吸光光度検出器の検出部のセルには、セル長(光路長)が10mmのものを使用する。吸光光度検出器は、特定波長の紫外光の吸収を測定するものでもよいし、特定範囲の波長の紫外光の吸収を分光測定するものでもよい。示差屈折率検出器によるシグナル強度は、概ねPVAの濃度(mg/ml)に比例する。一方、吸光光度検出器により検出されるPVAは、所定の波長に吸収を有するもののみである。前記GPC測定により、PVAの各分子量成分ごとの、濃度および所定の波長における吸光度を測定することができる。
 前記GPC測定において測定されるPVAの溶解に用いる溶媒及び移動相として、トリフルオロ酢酸ナトリウムを20mmol/l含有するHFIPを用いる。HFIPは、PVA及びポリメタクリル酸メチル(以下、PMMAと略記する)を溶解させることができる。また、トリフルオロ酢酸ナトリウムを添加することにより、カラム充填剤へのPVAの吸着が防止される。前記GPC測定における流速は1ml/分、カラム温度は40℃とする。
 前記GPC測定において、標品として単分散のPMMAを用いる。分子量の異なる数種類の標準PMMAを測定し、GPC溶出容量と標準PMMAの分子量から検量線を作成する。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器を用いて作成した検量線を使用する。これらの検量線を用いてGPC溶出容量から分子量に換算し、ピークトップ分子量(A)及びピークトップ分子量(B)を求める。
 前記GPC測定の前に、PVAを120℃において3時間加熱する。本発明においては、以下の方法でPVAを加熱する。PVA粉体を溶解させた水溶液を流延した後、20℃、65%RHにて乾燥させてPVAフィルムを得る。当該PVAフィルムの厚みは、30~75μmであり、40~60μmが好ましい。加熱乾燥後の試料の色相の差異を紫外吸収の差異に明確に反映させるために、熱風乾燥機を用いて当該フィルムを120℃において3時間加熱する。試料間の熱処理誤差を抑制する観点から、熱風乾燥機としてギアオーブンが好ましい。
 加熱されたPVAを前述した溶媒に溶解させて測定試料を得る。測定試料のPVAの濃度は1.00mg/mlとし、注入量は100μlとする。但し、PVAの粘度重合度が2400を超える場合、排除体積が増大するため、PVAの濃度が1.00mg/mlでは再現性良く測定できない場合がある。その場合には、適宜希釈した試料(注入量100μl)を用いる。吸光度はPVAの濃度に比例する。したがって、希釈した試料の濃度と実測された吸光度を用いて、PVA濃度が1.00mg/mlの場合の吸光度を求める。
 図1は、後述する本発明の実施例において、PVAをGPC測定して得られた、分子量と示差屈折率検出器で測定された値との関係、及び、分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。図1を用いて本発明におけるGPC測定についてさらに説明する。図1において、RIは、溶出容量から換算したPVAの分子量(横軸)に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(A)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(A)とする。
 図1において、UVは、溶出容量から換算したPVAの分子量(横軸)に対して、吸光光度検出器(測定波長280nm)で測定された吸光度をプロットして得たクロマトグラムである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(B)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(B)とする。
 本発明のPVAは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)を満たす。
(A-B)/A<0.75   (1)
 ピークトップ分子量(A)は、PVAの分子量の指標となる値である。一方、ピークトップ分子量(B)は、PVA中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(B)よりもピークトップ分子量(A)のほうが大きいため、(A-B)/Aは正の値になる。ピークトップ分子量(B)が大きくなれば、(A-B)/Aは小さくなり、ピークトップ分子量(B)が小さくなれば、(A-B)/Aは大きくなる。すなわち、(A-B)/Aが大きい場合には、PVA中の低分子量成分に280nm波長の紫外線を吸収する成分が多いことを意味する。
 (A-B)/Aが0.75以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、PVAの着色性(加熱された場合の着色のし易さ)と、有機粒子や無機粒子の水分散性を向上させる効果とのバランスが取れない。(A-B)/Aは、好ましくは0.70未満であり、より好ましくは0.65未満である。
 本発明のPVAは、上述した方法によりGPC測定されたときの、ピークトップ分子量(B)における吸光度が0.25×10-3~3.00×10-3となる必要がある。前記吸光度が0.25×10-3未満の場合には、有機粒子や無機粒子の水分散性を向上させる効果が低下する。一方、前記吸光度が3.00×10-3を超える場合には、加熱によりPVAが激しく着色する。前記吸光度は0.50×10-3~2.80×10-3が好ましく、0.75×10-3~2.50×10-3がより好ましい。
 PVAの着色性と、有機粒子や無機粒子の水分散性を向上させる効果とのバランスに優れる観点からは、前記GPC測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
(A-C)/A<0.75   (2)
を満たすことが好ましい。
 ピークトップ分子量(C)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(B)と同様にして測定される。ピークトップ分子量(C)は、本発明のPVA中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(C)よりもピークトップ分子量(A)のほうが大きいため、(A-C)/Aは正の値になる。ピークトップ分子量(C)が大きくなれば、(A-C)/Aは小さくなり、ピークトップ分子量(C)が小さくなれば、(A-C)/Aは大きくなる。すなわち、(A-C)/Aが大きい場合には、PVA中の低分子量成分に320nm波長の紫外線を吸収する成分が多いことを意味する。
 (A-C)/Aが0.75以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合、PVAの着色性と、有機粒子や無機粒子の水分散性を向上させる効果とのバランスが取れないおそれがある。(A-C)/Aは、より好ましくは0.70未満であり、さらに好ましくは0.65未満である。
 本発明のPVAは、上述した方法によりGPC測定されたときの、ピークトップ分子量(C)における吸光度が0.20×10-3~2.90×10-3であることが好ましい。前記吸光度が0.20×10-3未満の場合には、有機粒子や無機粒子の水分散性を向上させる効果が低下するおそれがある。一方、前記吸光度が2.90×10-3を超える場合には、着色性が不十分になるおそれがある。前記吸光度は0.40×10-3~2.70×10-3がより好ましく、0.60×10-3~2.40×10-3がさらに好ましい。
 また、本発明のPVAは、前記GPC測定における、示差屈折率検出器によって求められる、前記PVAの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2~6.0であることが好ましい。Mw及びMnは、前述したPVAの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。本発明におけるMw及びMnは、PMMA換算の値である。
 一般にMnは低分子量成分の影響を強く受ける平均分子量であり、Mwは、高分子量成分の影響を強く受ける平均分子量である。Mw/Mnは高分子の分子量分布の指標として一般的に用いられている。Mw/Mnが小さい場合は、低分子量成分の割合が小さい高分子であることを示し、Mw/Mnが大きい場合には、低分子量成分の割合が大きい高分子であることを示す。
 したがって、本発明において、Mw/Mnが2.2未満の場合、PVAにおいて、低分子量成分の割合が小さいことを示す。Mw/Mnが2.2未満の場合、有機粒子や無機粒子の水分散性を向上させる効果が低下する場合がある。Mw/Mnが2.3以上であることがより好ましい。一方、Mw/Mnが6.0を超える場合、PVAにおいて、低分子量成分の割合が大きいことを示す。Mw/Mnが6.0を超える場合、着色性が不十分になる場合がある。Mw/Mnが3.5以下であることがより好ましく、3.0以下であることがさらに好ましい。これらのことから、PVA中の低分子量成分がPVAの着色性や有機粒子や無機粒子の水分散性を向上させる効果に影響していると考えられる。
 本発明のPVAの粘度平均重合度はJIS-K6726に準じて測定される。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求めることができる。
  P=([η]×10000/8.29)(1/0.62)
 本発明のPVAの粘度平均重合度は200~5000である。粘度平均重合度が200未満の場合には、実用的な強度が得られない。したがって、PVAを紙用コーティング剤に用いた場合、形成される塗膜の強度が不足する。一方、粘度重合度が5000を超える場合、PVA水溶液の粘度が高くなるなりすぎるため、PVAを紙用コーティング剤などとして用いた場合、PVAの濃度が高いものが得られない。粘度平均重合度は好ましくは250~4500、より好ましくは300~4000、更に好ましくは400~3500である。
 本発明のPVAのけん化度はJIS-K6726に準じて測定される。本発明のPVAのけん化度は50~99.99モル%である。けん化度が50モル%に満たない場合、PVAの水溶性が著しく低下する。一方、けん化度が99.99モル%を超える場合、PVAを安定に製造することができない。本発明のPVAのけん化度は好ましくは60~99.8モル%であり、より好ましくは70~99.7モル%であり、更に好ましくは80~99.6モル%である。
 本発明のPVAは、カルボン酸のアルカリ金属塩を含有し、その含有量はアルカリ金属の質量換算で0.5質量%以下であり、好ましくは0.37質量%以下、より好ましくは0.28質量%以下、更に好ましくは0.23質量%以下である。カルボン酸のアルカリ金属塩の含有量が0.5質量%を超える場合、PVAの着色性が不十分になる。
 本発明において、カルボン酸のアルカリ金属塩の含有量(アルカリ金属の質量換算)は、PVAを白金ルツボにて灰化したのち、得られた灰分をICP発光分析により測定して得たアルカリ金属イオン量から求めることができる。
カルボン酸のアルカリ金属塩としては、後述するけん化工程で使用するアルカリ触媒、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラートなどをカルボン酸で中和して得られるもの、また、後述する重合工程で使用する酢酸ビニルなどの原料ビニルエステルモノマーの加アルコール分解を抑制する目的で添加されるカルボン酸が、けん化工程で中和されて得られるもの、ラジカル重合を停止させるために添加する禁止剤として共役二重結合を有するカルボン酸を用いた場合に、当該カルボン酸がけん化工程で中和されて得られるもの、あるいは意図的に添加されたものもなどが含まれる。具体例としては、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、グリセリン酸ナトリウム、グリセリン酸カリウム、リンゴ酸ナトリウム、リンゴ酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、乳酸カリウム、酒石酸ナトリウム、酒石酸カリウム、サリチル酸ナトリウム、サリチル酸カリウム、マロン酸ナトリウム、マロン酸カリウム、コハク酸ナトリウム、コハク酸カリウム、マレイン酸ナトリウム、マレイン酸カリウム、フタル酸ナトリウム、フタル酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、グルタル酸ナトリウム、グルタル酸カリウム、アビエチン酸ナトリウム、アビエチン酸カリウム、ソルビン酸ナトリウム、ソルビン酸カリウム、2,4,6-オクタトリエン-1-カルボン酸ナトリウム、2,4,6-オクタトリエン-1-カルボン酸カリウム、エレオステアリン酸ナトリウム、エレオステアリン酸カリウム、2,4,6,8-デカテトラエン-1-カルボン酸ナトリウム、2,4,6,8-デカテトラエン-1-カルボン酸カリウム、レチノイン酸ナトリウム、レチノイン酸カリウムなどが挙げられるが、これらに限定されるものではない。
 本発明のPVAの製造に用いられるビニルエステルモノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、とりわけ酢酸ビニルが好ましい。
 また、本発明のPVAは、ビニルエステルモノマーを2-メルカプトエタノール、n-ドデシルメルカプタン、メルカプト酢酸、3-メルカプトプロピオン酸などのチオール化合物の存在下で重合させ、得られるポリビニルエステルをけん化することによって製造することもできる。この方法により、チオール化合物に由来する官能基が末端に導入されたPVAが得られる。
 ビニルエステルモノマーを重合する方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。その方法の中でも、無溶媒で行う塊状重合法またはアルコールなどの溶媒を用いて行う溶液重合法が通常採用される。本発明の効果を高める点では、低級アルコールと共に重合する溶液重合法が好ましい。低級アルコールとしては、特に限定はされないが、メタノール、エタノール、プロパノール、イソプロパノールなど炭素数3以下のアルコールが好ましく、通常、メタノールが用いられる。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式および連続式のいずれの方式も用いることができる。重合反応に使用される開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などのアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネートなどの有機過酸化物系開始剤など本発明の効果を損なわない範囲で公知の開始剤が挙げられる。なかでも、60℃での半減期が10~110分の有機過酸化物系開始剤が好ましく、特にパーオキシジカーボネートを用いることが好ましい。重合反応を行う際の重合温度については特に制限はないが、5℃~200℃の範囲が適当である。
 ビニルエステル単量体をラジカル重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン;フマル酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその誘導体;アクリル酸またはその塩、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル;メタクリル酸またはその塩、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル;オキシアルキレン基を有する単量体;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミド-プロピルトリメトキシシラン、3-(メタ)アクリルアミド-プロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらのビニルエステル単量体と共重合可能な単量体の使用量は、その使用される目的および用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下、好ましくは10モル%以下である。これら共重合可能な単量体の中でも、加熱による着色がより少なく、かつ有機粒子や無機粒子の水分散性がより一層向上する観点からエチレンが好ましく用いられる。エチレン単位の含有率は1~20モル%であることが好ましく、1.5~15モル%がより好ましく、2~12モル%がさらに好ましく、2~10モル%が特に好ましい。
 上述の方法により得られたポリビニルエステルをアルコール溶媒中でけん化することによりPVAを得ることができる。
 ポリビニルエステルのけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およびナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。アルカリ性物質の使用量は、ポリビニルエステルのビニルエステル単量体単位を基準にしたモル比で0.002~0.2の範囲内であることが好ましく、0.004~0.1の範囲内であることが特に好ましい。けん化触媒は、けん化反応の初期に一括して添加しても良いし、あるいはけん化反応の初期に一部を添加し、残りをけん化反応の途中で追加して添加しても良い。
 けん化反応に用いることができる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましく用いられる。このとき、メタノールの含水率を好ましくは0.001~1質量%、より好ましくは0.003~0.9質量%、特に好ましくは0.005~0.8質量%に調整する。
 けん化反応は、好ましくは5~80℃、より好ましくは20~70℃の温度で行われる。けん化反応は、好ましくは5分間~10時間、より好ましくは10分間~5時間行う。けん化反応は、バッチ法および連続法のいずれの方式によっても行うことができる。けん化反応の終了後に、必要に応じて、残存する触媒を中和しても良い。使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などを挙げることができる。
 けん化反応時に添加したアルカリ金属を含有するアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルにより中和されるか、反応後添加された酢酸などのカルボン酸により中和される。このとき、酢酸ナトリウムなどのカルボン酸のアルカリ金属塩が生じる。上述のように、本発明のPVA中のカルボン酸のアルカリ金属塩の含有量は0.5質量%以下である必要がある。このようなPVAを得るために、けん化後、PVAを洗浄しても良い。
 この場合に用いる洗浄液として、メタノールなどの低級アルコール、当該低級アルコール100質量部と20質量部以下の水からなる溶液、当該低級アルコールとけん化工程において生成する酢酸メチルなどのエステルからなる溶液などが挙げられる。低級アルコールとエステルからなる溶液中のエステルの含有量は、特に制限はないが、低級アルコール100質量部に対して、1000質量部以下が好ましい。洗浄液の添加量としては、けん化により得られる、アルコールによってPVAが膨潤したゲル100質量部に対して、100質量部~10000質量部が好ましく、150質量部~5000質量部がより好ましく、200質量部~1000質量部が更に好ましい。洗浄液の添加量が100質量部に満たない場合には、カルボン酸のアルカリ金属塩量が上記範囲を超えるおそれがある。一方、洗浄液の添加量が10000質量部を超える場合には、添加量を増やすことによる洗浄効果の改善が見込めない。洗浄の方法としては、特に限定はないが、例えば、槽内にゲル(PVA)と洗浄液を加え、5~100℃で、5分~180分程度、攪拌あるいは静置した後、脱液する工程を、カルボン酸のアルカリ金属塩の含有量が所定の範囲になるまで繰り返すバッチ方式が挙げられる。また、おおよそバッチ方式と同温度、同時間で、塔頂からPVAを連続的に添加するとともに、塔底より低級アルコールを連続的に添加し、両者を接触交流させる連続方式などが挙げられる。
 本発明のPVAを調製するに際して、ピークトップ分子量(A)、ピークトップ分子量(B)、ピークトップ分子量(B)における吸光度、ピークトップ分子量(C)及びピークトップ分子量(C)における吸光度が上述した条件を満たすように調整する方法としては、例えば、以下の方法が挙げられる。
 A)原料ビニルエステルモノマーに含まれるラジカル重合禁止剤を予め取り除いたビニルエステルモノマーを重合に用いる。
 B)原料ビニルエステルモノマー中に含まれる不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるビニルエステルモノマーをラジカル重合に用いる。不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレインなどのアルデヒド;同アルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタールなどのアセタール;アセトンなどのケトン;酢酸メチル、酢酸エチルなどのエステルなどが挙げられる。
 C)アルコール溶媒中にて原料ビニルエステルモノマーをラジカル重合し、未反応モノマーを回収再利用する一連の工程にて、アルコールや微量の水分によるモノマーの加アルコール分解や加水分解を抑制するために、有機酸、具体的にはグリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸などのヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸などの多価カルボン酸などを添加し、分解により生じるアセトアルデヒドなどのアルデヒドの生成を極力抑制する。有機酸の添加量としては、原料ビニルエステルモノマーに対して、好ましくは1~500ppm、より好ましくは3~300ppm、さらに好ましくは5~100ppmである。
 D)重合に用いる溶媒として、不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるものを用いる。溶媒中に含まれる不純物としては、原料ビニルエステルモノマー中に含まれる不純物として上述したものが挙げられる。
 E)ビニルエステルモノマーをラジカル重合する際に、ビニルエステルモノマーに対する溶媒の比を高める。
 F)ビニルエステルモノマーをラジカル重合する際に使用するラジカル重合開始剤として、有機過酸化物を用いる。有機過酸化物としては、アセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジn-プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、特に、60℃での半減期が10~110分のパーオキシジカーボネートを用いることが好ましい。
 G)ビニルエステルモノマーのラジカル重合後に、重合を抑制するために禁止剤を添加する場合、残存する未分解のラジカル重合開始剤に対して5モル当量以下の禁止剤を添加する。禁止剤の種類としては、分子量が1000以下の共役二重結合を有する化合物であって、ラジカルを安定化させて重合反応を阻害する化合物が挙げられる。具体的には、イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の炭素-炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素-炭素二重結合3個の共役構造よりなる共役トリエン;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の炭素-炭素二重結合4個以上の共役構造よりなる共役ポリエンなどのポリエンが挙げられる。なお、1,3-ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いても良い。さらに、p-ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2-フェニル-1-プロペン、2-フェニル-1-ブテン、2,4-ジフェニル-4-メチル-1-ペンテン、3,5-ジフェニル-5-メチル-2-ヘプテン、2,4,6-トリフェニル-4,6-ジメチル-1-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-2-ノネン、1,3-ジフェニル-1-ブテン、2,4-ジフェニル-4-メチル-2-ペンテン、3,5-ジフェニル-5-メチル-3-ヘプテン、1,3,5-トリフェニル-1-ヘキセン、2,4,6-トリフェニル-4,6-ジメチル-2-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-3-ノネン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン等の芳香族系化合物が挙げられる。
 H)残存するビニルエステルモノマーが極力除去されたポリビニルエステルのアルコール溶液をけん化反応に用いる。好ましくは残存モノマーの除去率99%以上、より好ましくは99.5%以上、更に好ましくは99.8%以上のものを用いる。
 A)~H)を適宜組み合わせることで所望のPVAが得られる。こうして得られる本発明のPVAは、加熱による着色が少なく、かつ有機粒子や無機粒子の水分散性を向上させる効果に優れる。
 本発明のPVAは、紙用コーティング剤の成分として有用である。本発明のPVAを含有する紙用コーティング剤としては、該PVA単独で使用しても良いし、本発明の効果を損なわない範囲で種々の添加剤を併用しても良い。併用できる他の水溶性樹脂としては、小麦、コーン、米、馬鈴薯、甘しょ、タピオカ、サゴ椰子などから得られる生澱粉、酸化澱粉やデキストリンなどの生澱粉分解産物;エーテル化澱粉、エステル化澱粉、カチオン化澱粉などの澱粉誘導体;アルブミン、ゼラチン、カゼイン、アラビアゴム、ポリアミド樹脂、メラミン樹脂、ポリ(メタ)アクリルアミド、ポリビニルピロリドン、ポリ(メタ)アクリル酸ナトリウム、アニオン変性PVA、アルギン酸ナトリウム、水溶性ポリエステル、ならびにメチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース(CMC)などのセルロース誘導体などが挙げられ、水分散性樹脂としてはSBRラテックス、NBRラテックス、酢酸ビニル系エマルジョン、エチレン/酢酸ビニル共重合体エマルジョン、(メタ)アクリルエステル系エマルジョン、塩化ビニル系エマルジョンなどが挙げられるが、これらに制限されるものではない。他の水溶性あるいは水分散性樹脂の添加量としては、特に制限はないが、PVA100質量部に対して、10000質量部以下、好ましくは5000質量部以下、更に好ましくは3000質量部以下の範囲が好ましい。10000質量部を超える場合には本発明の効果が損なわれることがある。
 また、本発明の紙用コーティング剤は同様に本発明の効果を損なわない範囲で糖類を併用しても良い。併用できる糖類としては、グルコース、フルクトース、異性化糖、キシロースなどの単糖類;マルトース、ラクトース、スクロース、トレハロース、パラチノース、還元麦芽糖、還元パラチノース、還元乳糖などの二糖類;水あめ、イソマルトオリゴ糖、フラクトオリゴ糖、乳糖オリゴ糖、大豆オリゴ糖、キシロオリゴ糖、カップリングシュガー、シクロデキストリン化合物などのオリゴ糖類;プルラン、ペクチン、寒天、コンニャクマンナン、ポリデキストロース、キサンタンガムなどの多糖類などが挙げられるが、これらに限定されるものではない。オリゴ糖類については、10量体以下のものが好適に用いられる。またこれら糖類については、水溶性または水分散性のものが好ましい。糖類の添加量としては、特に制限はないが、PVA100質量部に対して1000質量部以下、好ましくは200質量部以下、更に好ましくは100質量部以下である。1000質量部を超える場合には、本発明の効果が損なわれることがあり、コーティング後の塗工紙の表面強度などの基本的な特徴が損なわれることがある。
 本発明のPVAを含有する紙用コーティング剤が本発明の好適な実施態様である。本発明の紙用コーティング剤は、前記PVAの水溶液、または前記PVAの水溶液に無機粒子又は有機粒子が分散した分散液からなるものであることが好ましい。前記PVAは、加熱による着色が少なく、かつ有機粒子や無機粒子の水分散性を向上させる効果に優れる。したがって、このようなPVAを含有する紙用コーティング剤は、加熱乾燥後の着色が少ない。なおかつ、前記コーティング剤が有機粒子や無機粒子を含有する場合、これらの粒子は優れた分散安定性を有する。しがたって、本発明の紙用コーティング剤を用いることにより、着色が少ないうえに、表面状態に優れた加工紙が得られる。
 本発明の紙用コーティング剤に用いられるPVA水溶液のPVA濃度は特に限定されないが、1~30質量%であることが好ましい。前記水溶液は、本発明の効果を損なわない範囲で水溶性の有機溶媒を含有していても構わない。水溶液中の有機溶媒の含有量は10質量%以下が好ましい。環境面からはこのような有機溶媒を実質的に含有しないことが好ましい。また、前記水溶液は、本発明の効果を損なわない範囲で酸、塩基および塩を含有していても構わない。
 前記PVAの水溶液に無機粒子又は有機粒子が分散した分散液からなる紙用コーティング剤は、前述したPVA水溶液に無機粒子又は有機粒子を分散させることにより得られる。無機粒子として、沈降シリカ、ゲル状シリカ、気相法シリカ、コロイダルシリカ、コロイダルアルミナ、水酸化アルミニウム、擬ベーマイト、クレー、タルク、ケイソウ土、ゼオライト、炭酸カルシウム、アルミナ、酸化亜鉛、サチンホワイト等の無機充填剤が挙げられる。有機粒子として、有機顔料、ロイコ染料、顕色剤等が挙げられる。無機粒子又は有機粒子の平均粒子径は特に制限されないが、0.1~100μmが好ましい。無機粒子又は有機粒子の含有量は特に制限されないが、PVA100質量部に対して、好ましくは2000質量部以下、より好ましくは1500質量部以下、更に好ましくは1000質量部以下である。2000質量部を超えると分散安定性が低下するおそれがある。
 本発明の紙用コーティング剤を紙に塗工する方法としては、従来公知のサイズプレス、各種ロールコーター、エアーナイフコーター、バーコーター、ブレードコーター、カーテンコーター、キャストコーターなどを用いて紙に塗工する方法が挙げられる。前記紙用コーティング剤を紙中に含浸させてもよいし、紙の表面に前記PVAを含有するコート層を形成させてもよい。これらは目的に応じて任意に選択できる。
 本発明の紙用コーティング剤の塗工量は特に制限はないが、通常固形分換算で0.1~60g/m、好ましくは0.2~45g/m、更に好ましくは0.3~30g/m程度である。本発明の紙用コーティング剤が対象とする紙としては特に制限はないが、マニラボール、白ボール、ライナーなどの板紙、一般上質紙、中質紙、グラビア用紙などの印刷紙などが挙げられる。また、感熱紙、剥離紙、インクジェット用紙、感圧紙、耐油紙、バリアー紙などの種々の特殊紙への応用も可能である。
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下の実施例および比較例において「部」および「%」は、特に断らない限り質量基準である。「重合度」は「粘度平均重合度」を意味する。
[PVAの重合度およびけん化度]
 PVAの重合度およびけん化度は、JIS-K6726に記載の方法により求めた。
[酢酸ナトリウム含有量の測定]
PVAの酢酸ナトリウム含有量(ナトリウム換算)は、PVAを灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のナトリウム量を測定することにより求めた。
[PVAのGPC測定]
(試料の準備)
95℃にて1時間加熱してPVAを水に溶解させた後、室温に冷却して、PVAの2%水溶液を得た。ポリエチレンテレフタレートフィルム上(20cm×20cm)に得られた水溶液を流延し、20℃、65%RHの条件下で1週間乾燥させて、厚さ50μmのPVAフィルムを得た。得られたフィルムをステンレス製の金属型枠(20cm×20cmで幅1cmの金属枠)にクリップで固定し、ギアオーブンにて120℃3時間熱処理した。
(測定装置)
 VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。当該吸光光度検出器の検出用セルの光路長は10mmである。GPCカラムには昭和電工株式会社製「GPC HFIP-806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
(測定条件)
 上記方法で得られた熱処理後のPVAフィルムの中央付近から試料を採取した。当該試料をトリフルオロ酢酸ナトリウム20ミリモル/リットルを含有するヘキサフルオロイソプロパノール(以後「HFIP」と略記する)に溶解し、PVAの1.00mg/ml溶液を調製した。当該溶液を0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、測定に用いた。
 移動相には、トリフルオロ酢酸ナトリウム20ミリモル/リットルを含有するHFIPを用いた。移動相の流速は1.0ml/分とした。試料注入量は100μlとし、GPCカラム温度40℃にて測定した。
 なお、PVAの粘度平均重合度が2400を超える試料は、適宜希釈した試料(100μl)を用いてGPC測定を行った。実測値から下記式により、試料濃度が1.00mg/mlの場合における吸光度を算出した。α(mg/ml)は希釈された試料の濃度である。
 
試料濃度1.00mg/mlにおける吸光度=(1.00/α)×吸光度の測定値
 
(検量線の作成)
 標品として、Agilent Technologies製のポリメタクリル酸メチル(以下「PMMA」と略記する)(ピークトップ分子量:1944000、790000、467400、271400、144000、79250、35300、13300、7100、1960、1020、690)を測定し、示差屈折率検出器および吸光光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、前記解析ソフトを用いた。
 なお、本測定においてはポリメタクリル酸メチルの測定において、1944000と271400の両分子量の標準試料同士のピークが分離できる状態のカラムを用いた。
[PVAの物性評価]
(PVAフィルムの着色性)
 GPC測定用の試料の準備の項で説明した方法により、PVAフィルムの作成及び得られたフィルムの熱処理を行った。スガ試験機株式会社製SMカラーコンピュータ「SM-T-H」を用いてJIS K 7105に従って得られた熱処理フィルムの黄色度(YI)を評価した。
(無機粒子の分散液安定性)
 95℃にて1時間加熱してPVAを水に溶解させた後、室温に冷却して、PVAの10質量%水溶液を得た。1リットルのプラスチックカップに、カオリンクレー(エンゲルハート社製「UW-90」)、前記PVA水溶液及びイオン交換水を添加して、固形分の質量比がカオリンクレー/PVA=70/30であり、総固形分濃度が15質量%である混合液を調製した。ディスパーサー(SMT社製)を用いて、3000rpmにて10分間前記混合液を処理し、カオリンクレーが分散したコーティング剤を調整した。当該コーティング剤を20℃で1ヶ月静置した後、分散安定性を以下の評価基準により評価した。
A:目視にて無機粒子の沈降が確認されず、当該コーティング剤を紙へ塗工した際にスジが見られない。
B:目視にて少量の無機粒子の沈降が確認される。しかしながら、5分以内の攪拌により再分散し、撹拌後のコーティング剤を紙へ塗工した際にスジが見られない。
C:目視にて無機粒子の沈降が確認され、再分散に約30分の攪拌を要する。撹拌後のコーティング剤を紙へ塗工した際にスジが見られない。
D:目視にて無機粒子の沈降が確認され、再分散に約1時間の攪拌を要する。撹拌後のコーティング剤を紙へ塗工した際にスジが認められる。
E:目視にて無機粒子の沈降が確認され、1時間以上攪拌しても再分散できない。
(有機粒子の分散液安定性)
 95℃にて1時間加熱してPVAを水に溶解させた後、室温に冷却して、PVAの10質量%水溶液を得た。1リットルのプラスチックカップに、ロイコ染料(クラリアント社製「ODB-2」)、前記PVA水溶液、濡れ剤(日信化学工業株式会社製「サーフィノール104E」)及びイオン交換水を添加し、固形分の質量比が染料/PVA/濡れ剤=100/10/0.2であり、総固形分濃度が35質量%である混合液を調整した。この混合液を碇型攪拌翼にて200rpmで15分間攪拌することにより前処理を行った。前処理された混合液(約640g)を分散機(AIMEX製「Ready-mill type NVM-03型」)に投入し、ガラスビーズ0.5-0.7mmφ、ビーズ充填率82%、回転数3400rpm(周速:14m/秒)、流量55.2cc/分、液循環の条件で15分間処理して、染料(有機粒子)が分散した分散液を得た。レーザー回折式粒度分布測定装置(株式会社島津製作所製「SALD-2200」)を用いて得られた分散液中の染料の分散粒子径を測定した。分散粒子径が小さいほど、有機粒子の水分散性に優れる。また、分散機で処理してから1時間後の分散液の粘度をBL型粘度計で20℃、60rpmの条件で測定した。さらに、分散液を20℃で2週間放置し、同様の条件にて粘度を測定した。こうして得られた値から増粘倍率(2週間後の粘度/1時間後の粘度)を算出した。増粘倍率が1に近いほど粘度変化が少なく、安定性に優れる。
(塗工紙の着色性)
 95℃にて1時間加熱してPVAを水に溶解させた後、室温に冷却して、PVAの10質量%水溶液を得た。当該PVA水溶液をワイヤーバーを用いて上質紙(王子製紙株式会社製「OKプリンス(登録商標)」)に塗布した。塗布量は2.9g/mであった。カール防止のため塗工紙を固定した後、120℃で乾燥させた。10分乾燥させた塗工紙と60分乾燥させた塗工紙をそれぞれスガ試験機製SMカラーコンピュータ「SM-T-H」を用いてJIS K 7105に従って黄色度を測定した。両者の黄色度の差(ΔYI)を求め、以下の評価基準で評価した。なお、PVAの重合度が2400を超える場合には、PVAの5質量%水溶液を調製した。当該PVA水溶液を用いたこと以外は、上述した方法と同様にして塗工紙の作成及び評価を行った。
 A:ΔYIが0.5未満
 B:ΔYIが0.5以上1.0未満
 C:ΔYIが1.0以上1.5未満
 D:ΔYIが1.5以上2.0未満
 E:ΔYIが2.0以上
 
[ポリ酢酸ビニルの合成]
PVAc-1
撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6Lセパラブルフラスコに、あらかじめ脱酸素し、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニルモノマー(VAM)2555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;酢酸ビニルモノマー中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。前記フラスコ内に窒素を吹き込みながら、フラスコ内の温度を60℃に調整した。なお、還流管には-10℃のエチレングリコール/水溶液を循環させた。ジn-プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調整し、18.6mLを前記フラスコ内に添加し重合を開始した。このときのジn-プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn-プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn-プロピルパーオキシジカーボネートの3モル等量に相当する)含有するメタノールを1200g添加した後、重合液を冷却し重合を停止した。重合停止時の酢酸ビニルモノマーの重合率は35.0%であった。重合液を室温まで冷却した後、水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去し、ポリ酢酸ビニルを析出させた。析出したポリ酢酸ビニルにメタノールを3000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去してポリ酢酸ビニルを析出させた。ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作をさらに2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、酢酸ビニルモノマーの除去率99.8%のポリ酢酸ビニル(PVAc-1)の40質量%のメタノール溶液を得た。
 得られたPVAc-1のメタノール溶液の一部を用いて重合度を測定した。PVAc-1のメタノール溶液に、ポリ酢酸ビニル中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が、0.1となるように水酸化ナトリウムの10%メタノール溶液を添加した。ゲル化物が生成した時点でゲルを粉砕し、メタノールでソックスレー抽出を3日間行った。得られたポリビニルアルコールを乾燥し、粘度平均重合度測定に供した。重合度は1700であった。
PVAc-2~PVAc-20
 表1に記載した条件に変更したこと以外は、PVAc-1と同様の方法により、ポリ酢酸ビニル(PVAc-2~PVAc-20)を得た。なお、表1中の「ND」は1ppm未満を意味する。得られた各ポリ酢酸ビニルの重合度をPVAc-1と同様にして求めた。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
[エチレン変性ポリ酢酸ビニルの合成]
PVAc-21
 撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6L圧力反応容器に、あらかじめ脱酸素した、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニルモノマー(VAM)2555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;酢酸ビニルモノマー中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。次いで、フラスコ内の温度を60℃に調整した後、反応槽圧力が0.39MPaとなるようにエチレンを圧入した。なお、還流管には-10℃のエチレングリコール/水溶液を循環させた。ジn-プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調整し、18.6mLを前記フラスコ内に添加し重合を開始した。このときのジn-プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn-プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn-プロピルパーオキシジカーボネートの3モル等量に相当する)含有するメタノールを1200g添加した後、重合液を冷却し重合を停止した。重合停止時の酢酸ビニルモノマーの重合率は35.0%であった。重合液を室温まで冷却した後、圧力反応容器を開放し、未反応エチレンを除去した。さらに、水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去し、エチレン変性ポリ酢酸ビニルを析出させた。析出したエチレン変性ポリ酢酸ビニルにメタノールを3000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去してエチレン変性ポリ酢酸ビニルを析出させた。エチレン変性ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作をさらに2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、酢酸ビニルモノマーの除去率99.8%のエチレン変性ポリ酢酸ビニル(PVAc-21)の40質量%のメタノール溶液を得た。PVAc-21の重合度は1700であり、PVAc-21中のエチレン単位の含有率は4モル%であった。
実施例1
PVAc-1のポリ酢酸ビニルの40質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単調体単位に対する水酸化ナトリウムのモル比が0.020となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。けん化反応の進行に伴ってゲル化物が生成した時点でゲルを粉砕し、粉砕後のゲルを40℃の容器に移し、けん化反応の開始から60分経過した時点で、メタノール/酢酸メチル/水(25/70/5質量比)の溶液に浸漬し、中和処理した。得られた膨潤ゲルを遠心分離し、膨潤ゲルの質量に対して、2倍の質量のメタノールを添加、浸漬し30分間放置した後、遠心分離する操作を4回繰り返し、60℃1時間、100℃で2時間乾燥してPVAを得た。
 得られたPVAの重合度は1700、けん化度は99.1モル%、酢酸ナトリウム含有量0.7%(ナトリウム換算で0.20%)であった。これらの物性データを表2にも示す。
 得られたPVAのゲルパーミエーション測定を行った。図1は、分子量と示差屈折率検出器で測定された値との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図1から求めた示差屈折率検出器で測定されたピークトップ分子量(A)は100,000であり、吸光光度検出器(280nm)で測定されたピークトップ分子量(B)は53,000であった。得られた値を下記式
(A-B)/A
に代入して得られた値は0.47であった。ピークトップ分子量(B)における吸光度は1.30×10-3であった。これらの結果を表2にも示す。
 ピークトップ分子量(B)を求めた方法と同様にして求めた吸光光度検出器(320nm)で測定されたピークトップ分子量(C)は50,000であった。ピークトップ分子量(A)とピークトップ分子量(C)とを下記式
(A-C)/A
に代入して得られた値は0.50であった。ピークトップ分子量(C)における吸光度は1.05×10-3であった。これらの結果を表2にも示す。
 PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表2に示す。
実施例2~8、比較例1~5
 表2に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表2に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表2に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2には重合度1700の完全けん化PVAの評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例1~8)、フィルムの着色性、塗工紙の着色性及び無機粒子の分散安定性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満である場合(比較例1及び3)や、さらにピークトップ分子量(A)及びピークトップ分子量(B)も上記式(1)を満たさない場合(比較例3)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例2及び4)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。酢酸ナトリウムの含有量(ナトリウム換算)が0.5質量%を超える場合(比較例5)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例9、比較例6~8
 表3に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表3に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表3に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3には重合度300、および重合度150の完全けん化PVAの評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例9)、PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満である場合(比較例6)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例7)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。重合度が200未満である場合(比較例8)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例10、比較例9及び比較例10
 表4に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表4に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表4に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4には重合度500の完全けん化PVAの評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例10)、PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満である場合(比較例9)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例10)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例11、比較例11及び比較例12
 表5に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表5に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表5に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5には重合度2400の完全けん化PVAの評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例11)、PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満であり、ピークトップ分子量(A)及びピークトップ分子量(B)が上記式(1)を満たさない場合(比較例11)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例12)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例12、比較例13~15
 表6に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表6に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表6に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6には重合度3600および重合度5500の完全けん化PVAの評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例12)、PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満であり、ピークトップ分子量(A)及びピークトップ分子量(B)も上記式(1)を満たさない場合(比較例13)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例14)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。重合度が5000を超える場合(比較例15)には、無機粒子の分散安定性が劣っていた。
実施例13~19、比較例16~比較例19
 表7に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表7に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表7に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7には重合度1700の部分けん化PVA(けん化度約88モル%)の評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例13~19)、フィルムの着色性、塗工紙の着色性及び無機粒子の分散安定性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満である場合(比較例16及び18)や、さらにピークトップ分子量(A)及びピークトップ分子量(B)も上記式(1)を満たさない場合(比較例18)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例17及び19)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例20、比較例20及び21
 表8に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表8に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表8に示す。PVAフィルムの着色性、有機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表8に示す。
実施例21
PVAc-3のポリ酢酸ビニルの55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.003となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を1.2%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、1%酢酸水を水酸化ナトリウムの0.8モル等量および多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥してPVAを得た。
 得られたPVAの重合度は300、けん化度は60.2モル%、酢酸ナトリウム含有量1.3%であった。得られたPVAの物性データを表8に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表8に示す。PVAフィルムの着色性、有機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表8に示す。
比較例22
PVAc-3のポリ酢酸ビニルの55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が40質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.005となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を3.0%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、1%酢酸水を水酸化ナトリウムの0.8モル等量および多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥してPVAを得た。
 得られたPVAの重合度は300、けん化度は45.3モル%、酢酸ナトリウム含有量1.2%であった。なお、得られたPVAは水に対して不溶であったことから、GPC測定のためのフィルムが準備できず、GPC測定及びPVAの評価ができなかった。
Figure JPOXMLDOC01-appb-T000008
 表8には重合度300の部分けん化PVAの評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例20及び21)、フィルムの着色性、塗工紙の着色性及び無機粒子の分散安定性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満である場合(比較例20)には、有機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例21)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例22、比較例23及び24
 表9に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表9に示す。PVAフィルムの着色性、有機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 表9には重合度500の部分けん化PVA(けん化度約88モル%)の評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例22)、フィルムの着色性、塗工紙の着色性及び無機粒子の分散安定性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満である場合(比較例23)には、有機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例24)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例23、比較例25及び26
 表10に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの物性データを表10に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表10に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表10に示す。
Figure JPOXMLDOC01-appb-T000010
 表10には重合度2400の部分けん化PVA(けん化度約88モル%)の評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例23)、フィルムの着色性、塗工紙の着色性及び無機粒子の分散安定性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満であり、ピークトップ分子量(A)及びピークトップ分子量(B)が上記式(1)を満たさない場合(比較例25)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例26)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例24、比較例27及び28
 表11に示す条件に変更したこと以外は実施例1と同様にして各PVAを製造した。得られたPVAの物性データを表11に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表11に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表11に示す。
Figure JPOXMLDOC01-appb-T000011
 表11に重合度3600の部分けん化PVA(けん化度約88モル%)の評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例24)、フィルムの着色性、塗工紙の着色性及び無機粒子の分散安定性が全て優れていた。一方、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)における吸光度が0.25×10-3未満であり、ピークトップ分子量(A)及びピークトップ分子量(B)が上記式(1)を満たさない場合(比較例27)には、無機粒子の分散安定性が劣っていた。ピークトップ分子量(B)における吸光度が3.00×10-3を超える場合(比較例28)には、フィルム及び塗工紙が着色し、PVAの着色性が劣っていた。
実施例25
 表12に示す条件に変更したこと以外は実施例1と同様にしてPVAを製造した。得られたPVAの物性データを表12に示す。実施例1と同様にしてゲルパーミエーション測定を行った。その結果を表12に示す。PVAフィルムの着色性、無機粒子の分散液安定性及び塗工紙の着色性の評価を実施した。その結果を表12に示す。
Figure JPOXMLDOC01-appb-T000012
 表12にエチレン変性PVAの評価を示した。ゲルパーミエーションクロマトグラフィー測定により得られた値が本発明で規定した条件を満たす場合(実施例25)、フィルムの着色性、塗工紙の着色性及び無機粒子の分散安定性が全て優れていた。
 以上の結果から、本発明のPVAは、フィルム着色性、塗工紙の着色性、および無機物や有機物の分散安定性において優れるうえに、性能のバランスにも優れていることが明らかである。一方、本発明で規定した範囲を満たさないPVAは、いずれかの性能が劣ることが明らかである。

Claims (5)

  1.  けん化度が50~99.99モル%、粘度平均重合度が200~5000、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるポリビニルアルコールであって、
     120℃において3時間加熱された前記ポリビニルアルコールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
    (A-B)/A<0.75   (1)
    を満たし、かつピークトップ分子量(B)における吸光度が0.25×10-3~3.00×10-3となるポリビニルアルコール。
  2.  前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
    (A-C)/A<0.75   (2)
    を満たし、かつピークトップ分子量(C)における吸光度が0.20×10-3~2.90×10-3となる請求項1に記載のポリビニルアルコール。
  3.  前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器によって求められる、前記ポリビニルアルコールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2~3.5となる請求項1又は2に記載のポリビニルアルコール。
  4.  請求項1~3のいずれかに記載のポリビニルアルコールを含有する紙用コーティング剤。
  5.  前記ポリビニルアルコールの水溶液、または前記ポリビニルアルコールの水溶液に無機粒子又は有機粒子が分散した分散液からなる請求項4に記載の紙用コーティング剤。
PCT/JP2014/064030 2013-05-31 2014-05-27 ポリビニルアルコール及びそれを含有する紙用コーティング剤 WO2014192773A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-116387 2013-05-31
JP2013116387A JP2016145263A (ja) 2013-05-31 2013-05-31 ポリビニルアルコール及びそれを含有する紙用コーティング剤

Publications (1)

Publication Number Publication Date
WO2014192773A1 true WO2014192773A1 (ja) 2014-12-04

Family

ID=51988801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/064030 WO2014192773A1 (ja) 2013-05-31 2014-05-27 ポリビニルアルコール及びそれを含有する紙用コーティング剤

Country Status (3)

Country Link
JP (1) JP2016145263A (ja)
TW (1) TW201502142A (ja)
WO (1) WO2014192773A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093499A1 (ja) * 2013-12-19 2015-06-25 株式会社クラレ フィルム
JP2017043872A (ja) * 2015-08-28 2017-03-02 株式会社クラレ 紙用コーティング剤
JP2017115076A (ja) * 2015-12-25 2017-06-29 株式会社クラレ バリア用コーティング剤
WO2018021495A1 (ja) * 2016-07-29 2018-02-01 日本合成化学工業株式会社 樹脂組成物及びその用途、並びに樹脂組成物の製造方法
CN112098264A (zh) * 2020-09-16 2020-12-18 无锡斯贝尔磁性材料有限公司 一种易溶、粘性好的聚乙烯醇的甄别装置及其工艺
EP3805279A4 (en) * 2018-05-25 2022-03-09 Kuraray Co., Ltd. RESIN MATERIAL, AQUEOUS SOLUTION AND ADHESIVE
WO2022255095A1 (ja) * 2021-05-31 2022-12-08 デンカ株式会社 ポリビニルアルコール系重合体組成物、及びガラスペーパー用バインダー
JP7579973B2 (ja) 2021-05-31 2024-11-08 デンカ株式会社 ポリビニルアルコール系重合体組成物、及びガラスペーパー用バインダー

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088692A (ja) * 2019-04-15 2022-06-15 株式会社クラレ 紙用塗工液
DE112021003449T5 (de) * 2020-06-30 2023-04-13 Kuraray Co., Ltd. Vinylacetat, vinylacetatpolymer und vinylalkoholpolymer
JP2023123889A (ja) * 2020-07-31 2023-09-06 デンカ株式会社 ポリビニルアルコールの製造方法
CN114525699A (zh) * 2022-03-09 2022-05-24 台山市晟丰新材料有限公司 一种pva涂布液和pva纸塑复合材料及其制备方法
CN117702532B (zh) * 2024-01-04 2024-05-31 东营市盛基环保工程有限公司 一种无甲醛浸渍装饰纸的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272774A (ja) * 1996-04-05 1997-10-21 Kuraray Co Ltd 酸性物質包装用水溶性フィルム
JPH11181158A (ja) * 1997-12-25 1999-07-06 Kuraray Co Ltd エマルジョン組成物
JP2000309607A (ja) * 1998-12-09 2000-11-07 Kuraray Co Ltd ビニルアルコール系重合体および組成物
JP2003105154A (ja) * 2001-09-28 2003-04-09 Kuraray Co Ltd ビニルアルコール系重合体組成物
JP2012067145A (ja) * 2010-09-21 2012-04-05 Kuraray Co Ltd ブロック共重合体の製法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272774A (ja) * 1996-04-05 1997-10-21 Kuraray Co Ltd 酸性物質包装用水溶性フィルム
JPH11181158A (ja) * 1997-12-25 1999-07-06 Kuraray Co Ltd エマルジョン組成物
JP2000309607A (ja) * 1998-12-09 2000-11-07 Kuraray Co Ltd ビニルアルコール系重合体および組成物
JP2003105154A (ja) * 2001-09-28 2003-04-09 Kuraray Co Ltd ビニルアルコール系重合体組成物
JP2012067145A (ja) * 2010-09-21 2012-04-05 Kuraray Co Ltd ブロック共重合体の製法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015093499A1 (ja) * 2013-12-19 2015-06-25 株式会社クラレ フィルム
CN105814123A (zh) * 2013-12-19 2016-07-27 株式会社可乐丽
JPWO2015093499A1 (ja) * 2013-12-19 2017-03-16 株式会社クラレ フィルム
CN105814123B (zh) * 2013-12-19 2019-10-25 株式会社可乐丽
JP2017043872A (ja) * 2015-08-28 2017-03-02 株式会社クラレ 紙用コーティング剤
JP2017115076A (ja) * 2015-12-25 2017-06-29 株式会社クラレ バリア用コーティング剤
JPWO2018021495A1 (ja) * 2016-07-29 2019-05-23 日本合成化学工業株式会社 樹脂組成物及びその用途、並びに樹脂組成物の製造方法
WO2018021495A1 (ja) * 2016-07-29 2018-02-01 日本合成化学工業株式会社 樹脂組成物及びその用途、並びに樹脂組成物の製造方法
JP7338948B2 (ja) 2016-07-29 2023-09-05 三菱ケミカル株式会社 樹脂組成物及びその用途、並びに樹脂組成物の製造方法
EP3805279A4 (en) * 2018-05-25 2022-03-09 Kuraray Co., Ltd. RESIN MATERIAL, AQUEOUS SOLUTION AND ADHESIVE
US12012528B2 (en) 2018-05-25 2024-06-18 Kuraray Co., Ltd. Resin material, aqueous solution, and adhesive
CN112098264A (zh) * 2020-09-16 2020-12-18 无锡斯贝尔磁性材料有限公司 一种易溶、粘性好的聚乙烯醇的甄别装置及其工艺
WO2022255095A1 (ja) * 2021-05-31 2022-12-08 デンカ株式会社 ポリビニルアルコール系重合体組成物、及びガラスペーパー用バインダー
JP7579973B2 (ja) 2021-05-31 2024-11-08 デンカ株式会社 ポリビニルアルコール系重合体組成物、及びガラスペーパー用バインダー

Also Published As

Publication number Publication date
TW201502142A (zh) 2015-01-16
JP2016145263A (ja) 2016-08-12

Similar Documents

Publication Publication Date Title
WO2014192773A1 (ja) ポリビニルアルコール及びそれを含有する紙用コーティング剤
JP6694391B2 (ja) ビニルアルコール系重合体及びその用途
US10016959B2 (en) Multilayer film and interlayer film for laminated glass therefrom
JP6441307B2 (ja) 合わせガラス用中間膜
JP5900706B2 (ja) セラミック成形用又は導電ペースト用のバインダー、及びそれらの用途
JP6010833B2 (ja) ビニル化合物の懸濁重合用分散剤
JP5420804B1 (ja) ポリビニルアセタールを含有するフィルム
CN110662869A (zh) 剥离纸原纸和其制造方法、以及剥离纸
EP3564305B1 (en) Polyvinyl alcohol composition and use thereof
JP2013177646A (ja) ビニルアルコール系重合体
TWI650364B (zh) 薄膜及其製造方法
JP5420805B1 (ja) ポリビニルアセタールおよびそれを含有する合わせガラス用中間膜
JP5420806B1 (ja) ポリビニルアセタール及びそれを含有する合わせガラス用中間膜
JP6221147B2 (ja) インキ又は塗料用バインダー及びその用途
JP6221146B2 (ja) 乳化重合用分散剤およびその用途
JP2015151500A (ja) ラジカル重合性樹脂組成物
JP2019065091A (ja) コーティング剤及びそれを塗工してなる塗工物
JP5820560B2 (ja) ビニルアルコール系重合体を含有するコーティング剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14804261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14804261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP