WO2015125576A1 - Egr装置 - Google Patents

Egr装置 Download PDF

Info

Publication number
WO2015125576A1
WO2015125576A1 PCT/JP2015/052423 JP2015052423W WO2015125576A1 WO 2015125576 A1 WO2015125576 A1 WO 2015125576A1 JP 2015052423 W JP2015052423 W JP 2015052423W WO 2015125576 A1 WO2015125576 A1 WO 2015125576A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection amount
side threshold
engine
speed
threshold value
Prior art date
Application number
PCT/JP2015/052423
Other languages
English (en)
French (fr)
Inventor
龍 遊木
中野 聡
卓也 石黒
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Priority to CA2939190A priority Critical patent/CA2939190A1/en
Priority to US15/120,096 priority patent/US10634074B2/en
Priority to KR1020167025671A priority patent/KR101827513B1/ko
Priority to EP15752606.2A priority patent/EP3135894B1/en
Priority to CN201580009902.4A priority patent/CN106030077B/zh
Publication of WO2015125576A1 publication Critical patent/WO2015125576A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/08Introducing corrections for particular operating conditions for idling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D21/00Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas
    • F02D21/06Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air
    • F02D21/08Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine
    • F02D2021/083Controlling engines characterised by their being supplied with non-airborne oxygen or other non-fuel gas peculiar to engines having other non-fuel gas added to combustion air the other gas being the exhaust gas of engine controlling exhaust gas recirculation electronically
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an EGR device.
  • an engine provided with an EGR device that recirculates a part of exhaust gas to intake air is known.
  • the exhaust gas with low oxygen concentration (EGR gas) is recirculated to the intake air by the EGR device to lower the combustion temperature and suppress the generation of nitrogen oxides.
  • EGR gas exhaust gas with low oxygen concentration
  • the unburned fuel may adhere to the EGR device, which may cause a problem in the EGR system.
  • an engine is known that is controlled so that the exhaust gas recirculation is not performed by closing the EGR valve (exhaust gas recirculation valve) when the engine is in an idle operation state.
  • EGR valve exhaust gas recirculation valve
  • the EGR device described in Patent Document 1 opens and closes an EGR valve based on a detection signal of a clutch sensor that detects ON / OFF of a clutch. Specifically, when the EGR device acquires a clutch OFF signal from the clutch sensor, that is, when the accelerator operation is not performed, the EGR device determines that the engine is in an idle operation state and closes the EGR valve. To control.
  • the generator, the working machine, and the like are configured to be able to be operated with the accelerator held at a predetermined position. Therefore, when the accelerator is operated and held to a predetermined position under operating conditions including unburned fuel, there is a possibility that exhaust gas containing unburned fuel is continuously supplied to the EGR device.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide an EGR device that can control an EGR valve by determining whether or not the engine is in an idle state regardless of the operation state of the accelerator. .
  • an EGR device that recirculates a part of the engine exhaust as EGR gas to the intake air of the engine, the engine speed is between the low speed side threshold and the high speed side threshold, and the fuel
  • the EGR valve that restricts the flow rate of the EGR gas is closed.
  • a dead speed range and a dead injection amount range are further set, and the speed rises from the low speed side threshold Na to a dead speed range Nh, or the speed is insensitive from the high speed side threshold.
  • the EGR when the injection amount is lower than the rotation speed range and the injection amount is increased from the low injection amount side threshold value to the dead injection amount range, or the injection amount is decreased from the high injection amount side threshold value to the dead injection amount range. The valve is closed.
  • the rotational speed is between the low speed side threshold value Na and the high speed side threshold value Nb for a predetermined time or more and the injection amount is a predetermined time or more and the low injection amount side threshold value to the high injection amount.
  • the EGR valve is closed.
  • a plurality of the low speed side threshold value, the high speed side threshold value, the low injection amount side threshold value, and the high injection amount side threshold value are respectively set and selectively switched depending on the use application of the engine. is there.
  • the idle operation region is set from the engine speed and the fuel injection amount. Accordingly, it is possible to control the EGR valve by determining whether or not the engine is in the idle state regardless of the operation state of the accelerator.
  • the operation state is recognized stably. Accordingly, it is possible to control the EGR valve by determining whether or not the engine is in the idle state regardless of the operation state of the accelerator.
  • the present invention even if the operation state temporarily corresponding to the idle operation region is reached, it is not determined that the vehicle is in the idle state. Accordingly, it is possible to control the EGR valve by determining whether or not the engine is in the idle state regardless of the operation state of the accelerator.
  • an appropriate idle operation region is set depending on the use application of the engine. Accordingly, it is possible to control the EGR valve by determining whether or not the engine is in the idle state regardless of the operation state of the accelerator.
  • the engine 1 is a diesel engine.
  • the engine 1 is an in-line four-cylinder engine 1 having four cylinders 3, 3, 3, and 3.
  • the engine 1 is an in-line four cylinder, but the present invention is not limited to this.
  • the engine 1 may include a supercharger.
  • the engine 1 supplies the intake air supplied to the inside of the cylinder 3 via the intake pipe 2 and the fuel supplied to the inside of the cylinder 3 from the fuel injection valves 4, 4, 4, 4.
  • the output shaft is rotationally driven by mixing and burning in the interior of 3.
  • the engine 1 discharges exhaust generated by the combustion of fuel to the outside through an exhaust pipe 5.
  • the engine 1 includes an engine speed detection sensor 6, an injection amount detection sensor 7 for the fuel injection valve 4, an EGR device 8, and an ECU 12 serving as a control device.
  • the engine speed detection sensor 6 detects the speed N that is the speed of the engine 1.
  • the engine speed detection sensor 6 includes a sensor and a pulsar, and is provided on the output shaft of the engine 1.
  • the engine speed detection sensor 6 is composed of a sensor and a pulsar, but any sensor that can detect the speed N may be used.
  • the injection amount detection sensor 7 detects an injection amount F that is a fuel injection amount from the fuel injection valve 4.
  • the injection amount detection sensor 7 is provided in the middle of a fuel supply pipe (not shown).
  • the injection amount detection sensor 7 is composed of a flow rate sensor.
  • the injection amount detection sensor 7 is constituted by a flow rate sensor.
  • the present invention is not limited to this, and any device that can detect the fuel injection amount F may be used.
  • the EGR device 8 returns a part of the exhaust gas to the intake air.
  • the EGR device 8 includes an EGR pipe 9, an EGR valve 10, an opening degree detection sensor 11, and an ECU 12 that is an EGR control unit.
  • the EGR pipe 9 is a pipe for guiding the exhaust to the intake pipe 2.
  • the EGR pipe 9 is provided so as to communicate the intake pipe 2 and the exhaust pipe 5. Thereby, a part of the exhaust gas passing through the exhaust pipe 5 is guided to the intake pipe 2 through the EGR pipe 9. That is, a part of the exhaust gas is configured to be recirculated to the intake air as EGR gas (hereinafter simply referred to as “EGR gas”).
  • EGR gas EGR gas
  • the EGR valve 10 limits the flow rate of the EGR gas that passes through the EGR pipe 9.
  • the EGR valve 10 is composed of a normally closed type electromagnetic flow control valve.
  • the EGR valve 10 is provided in the middle of the EGR pipe 9.
  • the EGR valve 10 can change the opening degree of the EGR valve 10 by acquiring a signal from the ECU 12 described later.
  • the EGR valve 10 is composed of a normally closed electromagnetic flow control valve, but any EGR gas flow rate can be used.
  • the opening degree detection sensor 11 detects an EGR valve opening degree G (not shown).
  • the opening degree detection sensor 11 is composed of a position detection sensor.
  • the opening degree detection sensor 11 is provided in the EGR valve 10.
  • the opening degree detection sensor 11 is composed of a position detection sensor.
  • any sensor that can detect the EGR valve opening degree G may be used.
  • the ECU 12 controls the engine 1. Specifically, the engine 1 body and the EGR device 8 are controlled.
  • the ECU 12 stores various programs for controlling the engine 1 and data such as a rotation speed threshold map M1 (not shown), an injection amount side threshold map M2 (not shown), and a dead width map M3 (not shown). Has been.
  • the ECU 12 may be configured such that a CPU, ROM, RAM, HDD, and the like are connected by a bus, or may be configured by a one-chip LSI or the like.
  • the ECU 12 is connected to the fuel injection valves 4, 4, 4, 4 and can control the fuel injection valves 4, 4, 4, 4.
  • the ECU 12 is connected to the engine speed detection sensor 6 and can acquire the speed N detected by the engine speed detection sensor 6.
  • ECU12 is connected to the injection quantity detection sensor 7, and can acquire the injection quantity F which the injection quantity detection sensor 7 detects.
  • the ECU 12 is connected to the EGR valve 10 and can control the opening and closing of the EGR valve 10.
  • ECU12 is connected to the opening degree detection sensor 11, and can acquire the EGR valve opening degree G which the opening degree detection sensor 11 detects.
  • the ECU 12 can calculate the low speed side threshold value Na and the high speed side threshold value Nb of the rotational speed N of the engine 1 that is determined to be in an idle state based on the rotational speed threshold map M1 from the intended use of the engine 1.
  • the ECU 12 uses the acquired usage of the engine 1, the rotational speed N of the engine 1, and the injection amount side threshold map M ⁇ b> 2 to determine a low injection amount side of the injection amount F of the engine 1 that is determined to be in an idle state at each rotational speed N.
  • the threshold value Fa (n) and the high injection amount side threshold value Fb (n) can be calculated.
  • the ECU 12 uses the engine 1 based on the dead width map M3.
  • the ECU 12 closes the dead rotation speed width Nh and the low injection amount side threshold Fa (n ) And the high injection amount side threshold value Fb (n), the dead injection amount width Fh can be calculated.
  • the ECU 12 can set the use application of the engine 1, specifically, the type of work device driven by the engine 1 such as generator, tractor, and backhoe. Thereby, the ECU 12 can calculate various set values suitable for the intended use of the engine 1. Further, the ECU 12 may calculate various set values according to the environmental state based on values detected by an intake air temperature sensor or an atmospheric pressure sensor (not shown).
  • the ECU 12 determines the low speed side threshold value Na and the high speed side threshold value Nb of the rotational speed N, the low injection amount side threshold value Fa (n) of the injection amount F, and the high injection amount side threshold value Fb (n) based on the acquired usage of the engine 1. ) And a dead rotation speed width Nh and a dead injection amount width Fh. Then, the ECU 12 determines whether or not the acquired rotation speed N and injection amount F are within the ranges determined from the respective threshold values. When the ECU 12 determines that the rotation speed N and the injection amount F are within the ranges determined from the respective threshold values, the ECU 12 closes the EGR valve 10 assuming that the engine 1 is in the idling operation state.
  • the low speed side threshold value Na and the high speed side threshold value Nb of the rotational speed N, the low injection amount side threshold value Fa (n) and the high injection amount side threshold value Fb (n) of the injection amount F are the maximum fuel injection amount. Is set within the range of each rotation speed N of the engine 1. In the ECU 12, the rotation speed N is between the low speed side threshold value Na and the high speed side threshold value Nb, and the injection amount F is between the low injection amount side threshold value Fa (n) and the high injection amount side threshold value Fb (n). In the case (shaded portion in FIG. 2), it is determined that the engine 1 is in the idle operation state.
  • the rotational speed N increases or decreases from outside the range determined by the low speed side threshold value Na and the high speed side threshold value Nb
  • the rotational speed N increases from each threshold value to the insensitive rotational speed width Nh or more. Or if it does not descend, the EGR valve 10 is not closed.
  • the injection amount F increases or decreases from outside the range determined by the low injection amount side threshold value Fa (n) and the high injection amount side threshold value Fb (n)
  • the injection amount F increases.
  • the EGR valve 10 is not closed unless the threshold value increases or decreases beyond the dead injection amount width Fh.
  • step S ⁇ b> 110 the ECU 12 determines whether or not the setting for the intended use of the engine 1 set from the outside has been acquired. As a result, when it is determined that the setting for the intended use of the engine 1 has not been acquired, the ECU 12 shifts the step to step S120. On the other hand, when it determines with having acquired the setting about the intended use of the engine 1, ECU12 makes a step transfer to step S160.
  • step S120 the ECU 12 obtains a setting for the intended use of the engine 1, and shifts the step to step S130.
  • step S130 the ECU 12 calculates the low speed side threshold value Na and the high speed side threshold value Nb of the rotational speed N from the rotational speed threshold value map M1 based on the acquired use application of the engine 1, and the process proceeds to step S140.
  • step S140 the ECU 12 calculates the low injection amount side threshold value Fa (n) and the high injection amount side threshold value Fb (n) of the injection amount F from the injection amount side threshold value map M2 based on the obtained usage application of the engine 1. Then, the step moves to step S150.
  • step S150 the ECU 12 calculates the dead rotation speed width Nh of the rotation speed N and the dead injection quantity width Fh of the injection quantity F from the dead width map M3 based on the obtained usage application of the engine 1, and the step is executed in step S160. To migrate.
  • step S160 the ECU 12 acquires the rotational speed N detected by the engine rotational speed detection sensor 6, detects the injection amount F detected by the injection amount detection sensor 7, and shifts the step to step S200.
  • step S200 the ECU 12 starts the rotational speed determination process A and shifts the step to step S210 (see FIG. 4). Then, when the rotational speed determination process A is completed, the step is shifted to step S400.
  • step S400 the ECU 12 starts the injection amount determination process B and shifts the step to step S410 (see FIG. 5). Then, when the injection amount determination process B ends, the step proceeds to step S170.
  • step S170 the ECU 12 determines whether or not both the rotational speed N and the injection amount F satisfy the condition for setting the idling operation state based on the determination results of the rotational speed determination processing A and the injection amount determination processing B. judge. As a result, when it is determined that both the rotational speed N and the injection amount F satisfy the conditions for setting the idle operation state, the ECU 12 shifts the step to step S180. On the other hand, when it is determined that at least one of the rotational speed N and the injection amount F does not satisfy the condition for setting the idle operation state, the ECU 12 shifts the step to step S110.
  • step S180 the ECU 12 controls the EGR valve to the closed state and shifts the step to step S110.
  • step S200 the ECU 12 starts the rotational speed determination process A and shifts the step to step S210 (see FIG. 4).
  • step S210 the ECU 12 determines whether or not the acquired rotation speed N is equal to or higher than the low speed side threshold value Na and equal to or lower than the high speed side threshold value Nb. As a result, when it is determined that the rotation speed N is not less than the low speed side threshold value Na and not more than the high speed side threshold value Nb, the ECU 12 shifts the step to step S220. On the other hand, when it determines with it not being more than the low speed side threshold value Na and the high speed side threshold value Nb, ECU12 makes a step transfer to step S330.
  • step S220 the ECU 12 determines whether or not the acquired rotational speed N is equal to or higher than the rotational speed obtained by adding the insensitive rotational speed width Nh to the low speed side threshold value Na. As a result, when it is determined that the rotation speed N is equal to or higher than the rotation speed obtained by adding the insensitive rotation speed width Nh to the low speed side threshold value Na, the ECU 12 shifts the step to step S230. On the other hand, when it is determined that the rotational speed N is not equal to or higher than the rotational speed obtained by adding the insensitive rotational speed width Nh to the low speed side threshold value Na, the ECU 12 proceeds to step S320.
  • step S230 the ECU 12 determines whether or not the acquired rotation speed N is equal to or less than the rotation speed obtained by subtracting the insensitive rotation speed width Nh from the high speed side threshold Nb. As a result, when it is determined that the rotation speed N is equal to or less than the rotation speed obtained by subtracting the insensitive rotation speed width Nh from the high speed side threshold Nb, the ECU 12 shifts the step to step S240. On the other hand, when it is determined that the rotational speed N is not equal to or lower than the rotational speed obtained by subtracting the insensitive rotational speed width Nh from the high speed side threshold value Nb, the ECU 12 proceeds to step S310.
  • step S240 the ECU 12 sets the engine 1 at a rotational speed N equal to or higher than the rotational speed obtained by adding the insensitive rotational speed width Nh to the low speed side threshold Na and equal to or lower than the rotational speed obtained by subtracting the insensitive rotational speed width Nh from the high speed side threshold Nb. It is determined whether or not the operation is continued for a predetermined time. As a result, the engine 1 is operated at a predetermined rotational speed N that is equal to or higher than the rotational speed obtained by adding the insensitive rotational speed width Nh to the low speed side threshold Na and equal to or lower than the rotational speed obtained by subtracting the insensitive rotational speed width Nh from the high speed side threshold Nb.
  • ECU12 makes a step transfer to step S250.
  • the engine 1 is operated for a predetermined time at a rotational speed N equal to or higher than the rotational speed obtained by adding the insensitive rotational speed width Nh to the low speed side threshold Na and equal to or lower than the rotational speed obtained by subtracting the insensitive rotational speed width Nh from the high speed side threshold Nb
  • ECU12 complete finishes the rotational speed determination process A, and makes a step transfer to step S400 (refer FIG. 3).
  • step S250 the ECU 12 determines that the rotation speed N satisfies a condition for setting the idle operation state, ends the rotation speed determination processing A, and shifts the step to step S200 (see FIG. 3).
  • step S310 the ECU 12 determines whether or not the acquired rotation speed N has increased from a rotation speed equal to or lower than the rotation speed obtained by subtracting the insensitive rotation speed width Nh from the high speed side threshold Nb.
  • the ECU 12 shifts the step to step S240.
  • the ECU 12 shifts the step to step S330.
  • step S320 the ECU 12 determines whether or not the acquired rotation speed N has decreased from a rotation speed equal to or higher than the rotation speed obtained by adding the insensitive rotation speed width Nh from the low speed side threshold value Na. As a result, when it is determined that the acquired rotational speed N has decreased from the rotational speed equal to or higher than the rotational speed obtained by adding the insensitive rotational speed width Nh from the low speed side threshold value Na, the ECU 12 shifts the step to step S240. If it is determined that the acquired rotation speed N has not decreased from a rotation speed equal to or higher than the rotation speed obtained by adding the insensitive rotation speed width Nh from the low speed side threshold value Na, the ECU 12 shifts the step to step S330.
  • step S330 the ECU 12 determines that the rotation speed N does not satisfy the condition for setting the idle operation state, ends the rotation speed determination processing A, and shifts the step to step S400 (see FIG. 3).
  • step S400 the ECU 12 starts an injection amount determination process B and shifts the step to step S410 (see FIG. 5).
  • step S410 the ECU 12 determines whether or not the acquired injection amount F is not less than the low injection amount side threshold Fa (n) and not more than the high injection amount side threshold Fb (n). As a result, when it is determined that the injection amount F is not less than the low injection amount side threshold Fa (n) and not more than the high injection amount side threshold Fb (n), the ECU 12 shifts the step to step S420. On the other hand, when it determines with it not being more than the low injection amount side threshold value Fa (n) and below the high injection amount side threshold value Fb (n), ECU12 makes a step transfer to step S530.
  • step S420 the ECU 12 determines whether or not the acquired injection amount F is equal to or greater than the injection amount obtained by adding the dead injection amount width Fh to the low injection amount side threshold Fa (n). As a result, when it is determined that the injection amount F is equal to or greater than the injection amount obtained by adding the dead injection amount width Fh to the low injection amount side threshold Fa (n), the ECU 12 shifts the step to step S430. On the other hand, when it is determined that the injection amount F is not equal to or greater than the injection amount obtained by adding the dead injection amount width Fh to the low injection amount side threshold Fa (n), the ECU 12 shifts the step to step S520.
  • step S430 the ECU 12 determines whether or not the acquired injection amount F is equal to or less than the injection amount obtained by subtracting the dead injection amount width Fh from the high injection amount side threshold value Fb (n). As a result, when it is determined that the injection amount F is equal to or less than the injection amount obtained by subtracting the dead injection amount width Fh from the high injection amount side threshold Fb (n), the ECU 12 shifts the step to step S440. On the other hand, when it is determined that the injection amount F is not equal to or less than the injection amount obtained by subtracting the dead injection amount width Fh from the high injection amount side threshold value Fb (n), the ECU 12 shifts the step to step S510.
  • step S440 the ECU 12 is equal to or greater than the injection amount obtained by adding the dead injection amount width Fh to the low injection amount side threshold Fa (n), and subtracts the dead injection amount width Fh from the high injection amount side threshold Fb (n). It is determined whether or not the operation of the engine 1 is continued for a predetermined time with an injection amount F equal to or less than the injection amount. As a result, the injection amount is equal to or greater than the injection amount obtained by adding the dead injection amount width Fh to the low injection amount side threshold Fa (n) and equal to or less than the injection amount obtained by subtracting the dead injection amount width Fh from the high injection amount side threshold Fb (n).
  • the ECU 12 shifts the step to step S250.
  • the injection is equal to or greater than the injection amount obtained by adding the dead injection amount width Fh to the low injection amount side threshold Fa (n) and equal to or less than the injection amount obtained by subtracting the dead injection amount width Fh from the high injection amount side threshold Fb (n).
  • the ECU 12 ends the injection amount determination processing B and shifts the step to step S170 (see FIG. 3).
  • step S450 the ECU 12 determines that the injection amount F satisfies a condition for setting the idle operation state, ends the injection amount determination processing B, and shifts the step to step S170 (see FIG. 3).
  • step S510 the ECU 12 determines whether or not the acquired injection amount F has increased from an injection amount equal to or less than an injection amount obtained by subtracting the dead injection amount width Fh from the high injection amount side threshold Fb (n).
  • the ECU 12 shifts the step to step S440.
  • the ECU 12 proceeds to step S530. .
  • step S520 the ECU 12 determines whether or not the acquired injection amount F has decreased from an injection amount equal to or greater than the injection amount obtained by adding the dead injection amount width Fh to the low injection amount side threshold Fa (n). As a result, when it is determined that the acquired injection amount F has decreased from the injection amount equal to or greater than the injection amount obtained by adding the dead injection amount width Fh from the low injection amount side threshold Fa (n), the ECU 12 proceeds to step S440. Let If the ECU 12 determines that the acquired injection amount F has not decreased from the injection amount equal to or greater than the injection amount obtained by adding the dead injection amount width Fh from the low injection amount side threshold Fa (n), the ECU 12 proceeds to step S530. Let
  • step S530 the ECU 12 determines that the injection amount F does not satisfy the condition for setting the idle operation state, ends the injection amount determination processing B, and shifts the step to step S170 (see FIG. 3).
  • an idle operation region is set from the rotational speed N of the engine 1 and the fuel injection amount F. And even if the rotation speed N and the fuel injection amount F fluctuate in the vicinity of the threshold value, the operating state is recognized stably. Furthermore, even if the driving state temporarily corresponding to the idle driving region is reached, it is not determined to be the idle state. Also, an appropriate idle operation region is set depending on the intended use of the engine 1. Thus, it is possible to control the EGR valve 10 by determining whether or not the engine is in an idle state regardless of the operation state of an accelerator (not shown).
  • the ECU 12 counts up over a count-up time that can be arbitrarily set to control the EGR valve 10 when the operation state of the engine 1 satisfies the idle operation condition during the operation time T1.
  • the ECU 12 closes the EGR valve 10 when the count time reaches a predetermined time during the operation time T2.
  • the ECU 12 starts a countdown with an arbitrarily settable countdown time.
  • the ECU 12 closes the EGR valve 10 at the maximum valve closing speed during the operation time T2. Then, the ECU 12 opens the EGR valve 10 at the maximum valve opening speed during the operation time T3. That is, the ECU 12 immediately opens the EGR valve 10 when the operation state of the engine 1 does not satisfy the idle operation condition.
  • the ECU 12 closes the EGR valve 10 at the maximum valve closing speed during the operation time T2. Then, the ECU 12 opens the EGR valve 10 at the maximum valve opening speed during the operation time T4. That is, the ECU 12 immediately opens the EGR valve 10 after a lapse of a countdown time that can be arbitrarily set when the operation state of the engine 1 does not satisfy the idle operation condition.
  • the ECU 12 closes the EGR valve 10 at the maximum valve closing speed during the operation time T2. Then, the ECU 12 starts to open the EGR valve 10 at the valve opening speed arbitrarily set during the operation time T3. That is, the ECU 12 opens the EGR valve 10 over an arbitrary time when the operation state of the engine 1 does not satisfy the idle operation condition.
  • the present invention can be used for an EGR device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

 アクセルの操作状態に関わらずアイドル状態であるか否かを判断してEGR弁を 制御することができるEGR装置の提供を目的とする。エンジン(1)の排気の一部をEGRガスとしてエンジン(1)の吸気に還流させるEGR装置(8)において、エンジン(1)の回転数Nが低速側閾値(Na)から高速側閾値(Nb)までの間にあり、かつ燃料の噴射量Fが回転数(N)毎に設定される低噴射量側閾値(Fa)から高噴射量側閾値(Fb)までの間にある場合、EGRガスの流量を制限するEGR弁(10)を閉弁させるものとした。

Description

EGR装置
 本発明はEGR装置に関する。
 従来、排気の一部を吸気に還流させるEGR装置を設けたエンジンが知られている。EGR装置によって吸気に酸素濃度の低い排気(EGRガス)を還流させることで燃焼温度を低下させ、窒素酸化物の発生を抑制するものである。このようなエンジンにおいて、未燃燃料が多く含まれるアイドル運転状態における排気が長時間還流されると、未燃燃料がEGR装置に付着することでEGRシステムに問題が生じる可能性がある。そこで、エンジンがアイドル運転状態の場合、EGR弁(排気還流弁)を閉弁して排気の還流を行わないように制御されるエンジンが知られている。例えば、特許文献1に記載の如くである。
 特許文献1に記載のEGR装置は、クラッチのON・OFFを検出するクラッチセンサの検出信号に基づいてEGR弁の開閉を行う。具体的には、EGR装置は、クラッチセンサからクラッチOFFの信号を取得した場合、すなわち、アクセル操作が行われていない場合、エンジンがアイドル運転状態であると判断してEGR弁を閉状態にするように制御する。しかし、発電機や作業機等は、アクセルを所定の位置で保持した状態で運転することができるように構成されている。従って、未燃燃料が含まれる運転条件において、アクセルを所定の位置まで操作して保持した場合、未燃燃料が含まれる排気がEGR装置に継続的に供給される可能性があった。
実開昭62-54264号公報
 本発明は以上の如き状況に鑑みてなされたものであり、アクセルの操作状態に関わらずアイドル状態であるか否かを判断してEGR弁を制御することができるEGR装置の提供を目的とする。
 即ち、本発明においては、エンジンの排気の一部をEGRガスとしてエンジンの吸気に還流させるEGR装置であって、エンジンの回転数が低速側閾値から高速側閾値までの間にあり、かつ燃料の噴射量が回転数毎に設定される低噴射量側閾値から高噴射量側閾値までの間にある場合、EGRガスの流量を制限するEGR弁を閉弁させるものである。
 本発明においては、不感回転数幅と不感噴射量幅とが更に設定され、前記回転数が前記低速側閾値Naから不感回転数幅Nhよりも上昇し、または回転数が前記高速側閾値から不感回転数幅よりも低下し、かつ前記噴射量が前記低噴射量側閾値から不感噴射量幅よりも上昇し、または噴射量が前記高噴射量側閾値から不感噴射量幅よりも低下すると前記EGR弁を閉弁させるものである。
 本発明においては、前記回転数が所定時間以上、前記低速側閾値Naから前記高速側閾値Nbまでの間にあり、かつ前記噴射量が所定時間以上、前記低噴射量側閾値から前記高噴射量側閾値までの間にある場合、前記EGR弁を閉弁させるものである。
 本発明においては、前記低速側閾値と、前記高速側閾値と、前記低噴射量側閾値と、前記高噴射量側閾値とがそれぞれ複数設定され、前記エンジンの使用用途によって選択的に切り替わるものである。
 本発明の効果として、以下に示すような効果を奏する。
 即ち、本発明によれば、エンジンの回転数と燃料の噴射量とからアイドル運転領域が設定される。これにより、アクセルの操作状態に関わらずアイドル状態であるか否かを判断してEGR弁を制御することができる。
 また、本発明によれば、閾値の近辺で回転数や燃料の噴射量が変動しても安定的に運転状態が認識される。これにより、アクセルの操作状態に関わらずアイドル状態であるか否かを判断してEGR弁を制御することができる。
 また、本発明によれば、一時的にアイドル運転領域に該当する運転状態になってもアイドル状態と判断されない。これにより、アクセルの操作状態に関わらずアイドル状態であるか否かを判断してEGR弁を制御することができる。
 また、本発明によれば、エンジンの使用用途によって、適切なアイドル運転領域が設定される。これにより、アクセルの操作状態に関わらずアイドル状態であるか否かを判断してEGR弁を制御することができる。
本発明に係るエンジンの構成を示した概略図。 本発明に係るエンジンの各回転数における最大燃料噴射量とアイドル運転領域との関係を表すグラフを示す図。 本発明に係るエンジンの一実施形態におけるEGR装置8のEGR弁の開閉制御の態様を表すフローチャートを示す図。 本発明に係るエンジンの一実施形態におけるEGR装置8のEGR弁の回転数判定処理の制御態様を表すフローチャートを示す図。 本発明に係るエンジンの一実施形態におけるEGR装置8のEGR弁の噴射量判定処理の制御態様を表すフローチャートを示す図。 (a)本発明に係るエンジンのEGR弁の制御タイミングを表すグラフを示す図(b)本発明に係るエンジンのEGR弁制御の第一実施形態を表すグラフを示す図(c)本発明に係るエンジンのEGR弁制御の第二実施形態を表すグラフを示す図(d)本発明に係るエンジンのEGR弁制御の第三実施形態を表すグラフを示す図。
 以下に、図1を用いて、本発明の一実施形態に係るエンジン1について説明する。
 図1に示すように、エンジン1は、ディーゼルエンジンであり、本実施形態においては、四つの気筒3・3・3・3を有する直列四気筒エンジン1である。なお、本実施形態において、エンジン1を直列四気筒としたがこれに限定されるものではない。また、エンジン1は、過給機を具備していてもよい。
 エンジン1は、吸気管2を介して気筒3の内部に供給される吸気と、燃料噴射弁4・4・4・4から気筒3の内部に供給される燃料とを気筒3・3・3・3の内部において混合して燃焼させることで出力軸を回転駆動させている。エンジン1は、燃料の燃焼により発生する排気を、排気管5を介して外部へ排出している。
 エンジン1は、エンジン回転数検出センサー6、燃料噴射弁4の噴射量検出センサー7、EGR装置8、および制御装置であるECU12が具備されている。
 エンジン回転数検出センサー6は、エンジン1の回転数である回転数Nを検出するものである。エンジン回転数検出センサー6は、センサーとパルサーとから構成され、エンジン1の出力軸に設けられている。なお、本実施形態において、エンジン回転数検出センサー6をセンサーとパルサーとから構成しているが、回転数Nを検出することができるものであればよい。
 噴射量検出センサー7は、燃料噴射弁4からの燃料噴射量である噴射量Fを検出するものである。噴射量検出センサー7は、図示しない燃料供給管の途中部に設けられている。噴射量検出センサー7は、流量センサーから構成されている。なお、本実施形態において、噴射量検出センサー7を流量センサーで構成しているがこれに限定するものでなく、燃料の噴射量Fを検出できるものであればよい。
 EGR装置8は、排気の一部を吸気に還流するものである。EGR装置8は、EGR管9、EGR弁10、開度検出センサー11、EGR制御部であるECU12を具備する。
 EGR管9は、排気を吸気管2に案内するための管である。EGR管9は、吸気管2と排気管5とを連通するように設けられている。これにより、排気管5を通過する排気の一部がEGR管9を通じて吸気管2に案内される。すなわち、排気の一部がEGRガスとして吸気に還流可能に構成されている(以下、単に「EGRガス」と記す)。
 EGR弁10は、EGR管9を通過するEGRガスの流量を制限するものである。EGR弁10は、ノーマルクローズドタイプの電磁式流量制御弁から構成されている。EGR弁10は、EGR管9の途中部に設けられている。EGR弁10は、後述のECU12からの信号を取得してEGR弁10の開度を変更することができる。なお、本実施形態において、EGR弁10をノーマルクローズドタイプの電磁式流量制御弁から構成しているが、EGRガスの流量を制限することができるものであればよい。
 開度検出センサー11は、EGR弁開度G(不図示)を検出するものである。開度検出センサー11は、位置検出センサーから構成されている。開度検出センサー11は、EGR弁10に設けられている。なお、本実施形態において、開度検出センサー11を位置検出センサーから構成しているが、EGR弁開度Gを検出することができるものであればよい。
 ECU12は、エンジン1を制御するものである。具体的には、エンジン1本体やEGR装置8を制御する。ECU12には、エンジン1の制御を行うための種々のプログラムや回転数閾値マップM1(不図示)、噴射量側閾値マップM2(不図示)、不感幅マップM3(不図示)等のデータが格納されている。ECU12は、CPU、ROM、RAM、HDD等がバスで接続される構成であってもよく、あるいはワンチップのLSI等からなる構成であってもよい。
 ECU12は、燃料噴射弁4・4・4・4と接続され、燃料噴射弁4・4・4・4を制御することが可能である。
 ECU12は、エンジン回転数検出センサー6に接続され、エンジン回転数検出センサー6が検出する回転数Nを取得することが可能である。
 ECU12は、噴射量検出センサー7に接続され、噴射量検出センサー7が検出する噴射量Fを取得することが可能である。
 ECU12は、EGR弁10と接続され、EGR弁10の開閉を制御することが可能である。
 ECU12は、開度検出センサー11に接続され、開度検出センサー11が検出するEGR弁開度Gを取得することが可能である。
 ECU12は、エンジン1の使用用途から回転数閾値マップM1に基づいて、アイドル状態と判断されるエンジン1の回転数Nの低速側閾値Naと高速側閾値Nbとを算出することができる。
 ECU12は、取得したエンジン1の使用用途とエンジン1の回転数Nと噴射量側閾値マップM2に基づいて、各回転数Nにおいてアイドル状態と判断されるエンジン1の噴射量Fの低噴射量側閾値Fa(n)と高噴射量側閾値Fb(n)とを算出することができる。
 ECU12は、エンジン1の使用用途から不感幅マップM3に基づいて、EGR弁10を閉弁させる低速側閾値Naと高速側閾値Nbとからの不感回転数幅Nhおよび低噴射量側閾値Fa(n)と高噴射量側閾値Fb(n)とからの不感噴射量幅Fhを算出することができる。
 ECU12は、エンジン1の使用用途、具体的には、発電機用、トラクター用、バックホー用等のエンジン1によって駆動される作業装置の種別を外部から設定することができる。これにより、ECU12は、エンジン1の使用用途に適した各種設定値を算出することができる。また、ECU12は、図示しない吸気温度センサーや気圧センサーが検出した値によってその環境状態に応じた各種設定値を算出してもよい。
 以下では、図2から図5を用いて、本発明の一実施形態に係るエンジン1のEGR装置8の制御態様について説明する。
 ECU12は、取得したエンジン1の使用用途に基づいて、回転数Nの低速側閾値Naと高速側閾値Nb、噴射量Fの低噴射量側閾値Fa(n)と高噴射量側閾値Fb(n)および不感回転数幅Nhと不感噴射量幅Fhとを算出する。そして、ECU12は、取得した回転数Nと噴射量Fとがそれぞれの閾値から定まる範囲内であるか否か判定する。ECU12は、回転数Nと噴射量Fとがそれぞれの閾値から定まる範囲内であると判定した場合、エンジン1がアイドル運転状態であるとしてEGR弁10を閉弁する。
 図2に示すように、回転数Nの低速側閾値Naと高速側閾値Nbおよび噴射量Fの低噴射量側閾値Fa(n)と高噴射量側閾値Fb(n)は、最大燃料噴射量が設定されているエンジン1の各回転数Nの範囲内において設定されている。ECU12は、回転数Nが低速側閾値Naと高速側閾値Nbとの間であり、噴射量Fが低噴射量側閾値Fa(n)と高噴射量側閾値Fb(n)との間にある場合(図2における網掛け部)、エンジン1がアイドル運転状態であると判定する。
 また、ECU12は、回転数Nが低速側閾値Naと高速側閾値Nbとから定まる範囲外から範囲内に向かって上昇または下降する場合、回転数Nが各閾値から不感回転数幅Nh以上に上昇または下降しなければEGR弁10を閉弁させない。同様に、ECU12は、噴射量Fが低噴射量側閾値Fa(n)と高噴射量側閾値Fb(n)とから定まる範囲外から範囲内に向かって増加または減少する場合、噴射量Fが各閾値から不感噴射量幅Fh以上に増加または減少しなければEGR弁10を閉弁させない。
 次に、本発明に係るEGR装置8の制御態様について具体的に説明する。
 図3に示すように、ステップS110において、ECU12は、外部から設定されるエンジン1の使用用途についての設定を取得していないか否か判定する。
 その結果、エンジン1の使用用途についての設定を取得していないと判定した場合、ECU12はステップをステップS120に移行させる。
 一方、エンジン1の使用用途についての設定を取得していると判定した場合、ECU12はステップをステップS160に移行させる。
 ステップS120において、ECU12は、エンジン1の使用用途についての設定を取得し、ステップをステップS130に移行させる。
 ステップS130において、ECU12は、取得したエンジン1の使用用途に基づいて回転数閾値マップM1から回転数Nの低速側閾値Naと高速側閾値Nbとを算出し、ステップをステップS140に移行させる。
 ステップS140において、ECU12は、取得したエンジン1の使用用途に基づいて噴射量側閾値マップM2から噴射量Fの低噴射量側閾値Fa(n)と高噴射量側閾値Fb(n)とを算出し、ステップをステップS150に移行させる。
 ステップS150において、ECU12は、取得したエンジン1の使用用途に基づいて、不感幅マップM3から回転数Nの不感回転数幅Nhおよび噴射量Fの不感噴射量幅Fhを算出し、ステップをステップS160に移行させる。
 ステップS160において、ECU12は、エンジン回転数検出センサー6が検出する回転数Nを取得し、噴射量検出センサー7が検出する噴射量Fを検出し、ステップをステップS200に移行させる。
 ステップS200において、ECU12は、回転数判定処理Aを開始し、ステップをステップS210に移行させる(図4参照)。そして、回転数判定処理Aが終了するとステップをステップS400に移行させる。
 ステップS400において、ECU12は、噴射量判定処理Bを開始し、ステップをステップS410に移行させる(図5参照)。そして、噴射量判定処理Bが終了するとステップをステップS170に移行させる。
 ステップS170において、ECU12は、回転数判定処理Aと噴射量判定処理Bとの判定結果に基づいて、回転数Nと噴射量Fとが共にアイドル運転状態とするための条件を満たしているか否か判定する。
 その結果、回転数Nと噴射量Fとが共にアイドル運転状態とするための条件を満たしていると判定した場合、ECU12はステップをステップS180に移行させる。
 一方、回転数Nと噴射量Fとのうち、少なくとも一方がアイドル運転状態とするための条件を満たしていないと判定した場合、ECU12はステップをステップS110に移行させる。
 ステップS180において、ECU12は、EGR弁を閉状態に制御してステップをステップS110に移行させる。
 ステップS200において、ECU12は、回転数判定処理Aを開始し、ステップをステップS210に移行させる(図4参照)。
 図4に示すように、ステップS210において、ECU12は、取得した回転数Nが低速側閾値Na以上かつ高速側閾値Nb以下であるか否か判定する。
 その結果、回転数Nが低速側閾値Na以上かつ高速側閾値Nb以下であると判定した場合、ECU12はステップをステップS220に移行させる。
 一方、低速側閾値Na以上かつ高速側閾値Nb以下でないと判定した場合、ECU12はステップをステップS330に移行させる。
 ステップS220において、ECU12は、取得した回転数Nが低速側閾値Naに不感回転数幅Nh分を加算した回転数以上であるか否か判定する。
 その結果、回転数Nが低速側閾値Naに不感回転数幅Nh分を加算した回転数以上であると判定した場合、ECU12はステップをステップS230に移行させる。
 一方、回転数Nが低速側閾値Naに不感回転数幅Nh分を加算した回転数以上でないと判定した場合、ECU12はステップをステップS320に移行させる。
 ステップS230において、ECU12は、取得した回転数Nが高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下であるか否か判定する。
 その結果、回転数Nが高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下であると判定した場合、ECU12はステップをステップS240に移行させる。
 一方、回転数Nが高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下でないと判定した場合、ECU12はステップをステップS310に移行させる。
 ステップS240において、ECU12は、低速側閾値Naに不感回転数幅Nh分を加算した回転数以上、かつ高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下の回転数Nでエンジン1の運転が所定時間継続しているか否か判定する。
 その結果、低速側閾値Naに不感回転数幅Nh分を加算した回転数以上、かつ高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下の回転数Nでエンジン1の運転が所定時間継続していると判定した場合、ECU12はステップをステップS250に移行させる。
 一方、低速側閾値Naに不感回転数幅Nh分を加算した回転数以上、かつ高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下の回転数Nでエンジン1の運転が所定時間継続していないと判定した場合、ECU12は回転数判定処理Aを終了してステップをステップS400に移行させる(図3参照)。
 ステップS250において、ECU12は、回転数Nが、アイドル運転状態とするための条件を満たしていると判定し、回転数判定処理Aを終了してステップをステップS200に移行させる(図3参照)。
 ステップS310において、ECU12は、取得した回転数Nが高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下の回転数から上昇してきたか否か判定する。
 その結果、回転数Nが高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下の回転数から上昇してきたと判定した場合、ECU12はステップをステップS240に移行させる。
 一方、回転数Nが高速側閾値Nbから不感回転数幅Nh分を減算した回転数以下の回転数から上昇してきていないと判定した場合、ECU12はステップをステップS330に移行させる。
 ステップS320において、ECU12は、取得した回転数Nが低速側閾値Naから不感回転数幅Nh分を加算した回転数以上の回転数から低下してきたか否か判定する。
 その結果、取得した回転数Nが低速側閾値Naから不感回転数幅Nh分を加算した回転数以上の回転数から低下してきたと判定した場合、ECU12はステップをステップS240に移行させる。
 一取得した回転数Nが低速側閾値Naから不感回転数幅Nh分を加算した回転数以上の回転数から低下してきていないと判定した場合、ECU12はステップをステップS330に移行させる。
 ステップS330において、ECU12は、回転数Nが、アイドル運転状態とするための条件を満たしていないと判定し、回転数判定処理Aを終了してステップをステップS400に移行させる(図3参照)。
 図3に示すように、ステップS400において、ECU12は、噴射量判定処理Bを開始し、ステップをステップS410に移行させる(図5参照)。
 図5に示すように、ステップS410において、ECU12は、取得した噴射量Fが低噴射量側閾値Fa(n)以上かつ高噴射量側閾値Fb(n)以下であるか否か判定する。
 その結果、噴射量Fが低噴射量側閾値Fa(n)以上かつ高噴射量側閾値Fb(n)以下であると判定した場合、ECU12はステップをステップS420に移行させる。
 一方、低噴射量側閾値Fa(n)以上かつ高噴射量側閾値Fb(n)以下でないと判定した場合、ECU12はステップをステップS530に移行させる。
 ステップS420において、ECU12は、取得した噴射量Fが低噴射量側閾値Fa(n)に不感噴射量幅Fh分を加算した噴射量以上であるか否か判定する。
 その結果、噴射量Fが低噴射量側閾値Fa(n)に不感噴射量幅Fh分を加算した噴射量以上であると判定した場合、ECU12はステップをステップS430に移行させる。
 一方、噴射量Fが低噴射量側閾値Fa(n)に不感噴射量幅Fh分を加算した噴射量以上でないと判定した場合、ECU12はステップをステップS520に移行させる。
 ステップS430において、ECU12は、取得した噴射量Fが高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下であるか否か判定する。
 その結果、噴射量Fが高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下であると判定した場合、ECU12はステップをステップS440に移行させる。
 一方、噴射量Fが高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下でないと判定した場合、ECU12はステップをステップS510に移行させる。
 ステップS440において、ECU12は、低噴射量側閾値Fa(n)に不感噴射量幅Fh分を加算した噴射量以上、かつ高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下の噴射量Fでエンジン1の運転が所定時間継続しているか否か判定する。
 その結果、低噴射量側閾値Fa(n)に不感噴射量幅Fh分を加算した噴射量以上、かつ高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下の噴射量Fでエンジン1の運転が所定時間継続していると判定した場合、ECU12はステップをステップS250に移行させる。
 一方、低噴射量側閾値Fa(n)に不感噴射量幅Fh分を加算した噴射量以上、かつ高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下の噴射量Fでエンジン1の運転が所定時間継続していないと判定した場合、ECU12は噴射量判定処理Bを終了してステップをステップS170に移行させる(図3参照)。
 ステップS450において、ECU12は、噴射量Fが、アイドル運転状態とするための条件を満たしていると判定し、噴射量判定処理Bを終了してステップをステップS170に移行させる(図3参照)。
 ステップS510において、ECU12は、取得した噴射量Fが高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下の噴射量から増加してきたか否か判定する。
 その結果、噴射量Fが高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下の噴射量から増加してきたと判定した場合、ECU12はステップをステップS440に移行させる。
 一方、噴射量Fが高噴射量側閾値Fb(n)から不感噴射量幅Fh分を減算した噴射量以下の噴射量から増加してきていないと判定した場合、ECU12はステップをステップS530に移行させる。
 ステップS520において、ECU12は、取得した噴射量Fが低噴射量側閾値Fa(n)から不感噴射量幅Fh分を加算した噴射量以上の噴射量から減少してきたか否か判定する。
 その結果、取得した噴射量Fが低噴射量側閾値Fa(n)から不感噴射量幅Fh分を加算した噴射量以上の噴射量から減少してきたと判定した場合、ECU12はステップをステップS440に移行させる。
 一取得した噴射量Fが低噴射量側閾値Fa(n)から不感噴射量幅Fh分を加算した噴射量以上の噴射量から減少してきていないと判定した場合、ECU12はステップをステップS530に移行させる。
 ステップS530において、ECU12は、噴射量Fが、アイドル運転状態とするための条件を満たしていないと判定し、噴射量判定処理Bを終了してステップをステップS170に移行させる(図3参照)。
 この様に構成することで、エンジン1の回転数Nと燃料の噴射量Fとからアイドル運転領域が設定される。そして、閾値の近辺で回転数Nや燃料の噴射量Fが変動しても安定的に運転状態が認識される。さらに、一時的にアイドル運転領域に該当する運転状態になってもアイドル状態と判断されない。また、エンジン1の使用用途によって、適切なアイドル運転領域が設定される。これにより、図示しないアクセルの操作状態に関わらずアイドル状態であるか否かを判断してEGR弁10を制御することができる。
 次に、EGR弁10の開弁制御について、図6を用いて説明する。
 図6(a)に示すように、ECU12は、運転時間T1においてエンジン1の運転状態がアイドル運転条件を満たすと、EGR弁10を制御するため任意に設定可能なカウントアップ時間をかけてカウントアップを開始する。ECU12は、運転時間T2においてカウント時間が所定時間に到達するとEGR弁10を閉状態にする。ECU12は、運転時間T3においてエンジン1の運転状態がアイドル運転条件を満たさなくなると、任意に設定可能なカウントダウン時間をかけてカウントダウンを開始する。
 図6(b)に示すEGR弁制御の第一実施形態として、ECU12は、運転時間T2においてEGR弁10を最大閉弁速度にて閉弁させる。そして、ECU12は、運転時間T3においてEGR弁10を最大開弁速度にて開弁させる。すなわち、ECU12は、エンジン1の運転状態がアイドル運転条件を満たさなくなるとEGR弁10を即開弁させる。
 図6(c)に示すEGR弁制御の第二実施形態として、ECU12は、運転時間T2においてEGR弁10を最大閉弁速度にて閉弁させる。そして、ECU12は、運転時間T4においてEGR弁10を最大開弁速度にて開弁させる。すなわち、ECU12は、エンジン1の運転状態がアイドル運転条件を満たさなくなると任意に設定可能なカウントダウン時間経過後にEGR弁10を即開弁させる。
 図6(d)に示すEGR弁制御の第三実施形態として、ECU12は、運転時間T2においてEGR弁10を最大閉弁速度にて閉弁させる。そして、ECU12は、運転時間T3においてEGR弁10を任意に設定される開弁速度にて開弁を開始させる。すなわち、ECU12は、エンジン1の運転状態がアイドル運転条件を満たさなくなるとEGR弁10を任意の時間をかけて開弁させる。
 本発明は、EGR装置に利用することが可能である。
 1     エンジン
 8     EGR装置
 10    EGR弁
 N     回転数
 Na    低速側閾値
 Nb    高速側閾値
 Fa(n) 低噴射量側閾値
 Fb(n) 高噴射量側閾値
 F     噴射量

Claims (5)

  1.  エンジンの排気の一部をEGRガスとしてエンジンの吸気に還流させるEGR装置であって、
     エンジンの回転数が低速側閾値から高速側閾値までの間にあり、かつ燃料の噴射量が回転数毎に設定される低噴射量側閾値から高噴射量側閾値までの間にある場合、EGRガスの流量を制限するEGR弁を閉弁させるEGR装置。
  2.  不感回転数幅と不感噴射量幅とが更に設定され、
     前記回転数が前記低速側閾値Naから不感回転数幅Nhよりも上昇し、または回転数が前記高速側閾値から不感回転数幅よりも低下し、かつ前記噴射量が前記低噴射量側閾値から不感噴射量幅よりも上昇し、または噴射量が前記高噴射量側閾値から不感噴射量幅よりも低下すると前記EGR弁を閉弁させる請求項1に記載のEGR装置。
  3.  前記回転数が所定時間以上、前記低速側閾値Naから前記高速側閾値Nbまでの間にあり、かつ前記噴射量が所定時間以上、前記低噴射量側閾値から前記高噴射量側閾値までの間にある場合、前記EGR弁を閉弁させる請求項1に記載のEGR装置。
  4.  前記回転数が所定時間以上、前記低速側閾値Naから前記高速側閾値Nbまでの間にあり、かつ前記噴射量が所定時間以上、前記低噴射量側閾値から前記高噴射量側閾値までの間にある場合、前記EGR弁を閉弁させる請求項2に記載のEGR装置。
  5.  前記低速側閾値と、前記高速側閾値と、前記低噴射量側閾値と、前記高噴射量側閾値とがそれぞれ複数設定され、前記エンジンの使用用途によって選択的に切り替わる請求項1から請求項4までのいずれか一項に記載のEGR装置。
PCT/JP2015/052423 2014-02-20 2015-01-29 Egr装置 WO2015125576A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2939190A CA2939190A1 (en) 2014-02-20 2015-01-29 Egr device
US15/120,096 US10634074B2 (en) 2014-02-20 2015-01-29 EGR device
KR1020167025671A KR101827513B1 (ko) 2014-02-20 2015-01-29 Egr 장치
EP15752606.2A EP3135894B1 (en) 2014-02-20 2015-01-29 Egr device
CN201580009902.4A CN106030077B (zh) 2014-02-20 2015-01-29 Egr装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-031006 2014-02-20
JP2014031006A JP6126025B2 (ja) 2014-02-20 2014-02-20 Egr装置

Publications (1)

Publication Number Publication Date
WO2015125576A1 true WO2015125576A1 (ja) 2015-08-27

Family

ID=53878089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052423 WO2015125576A1 (ja) 2014-02-20 2015-01-29 Egr装置

Country Status (7)

Country Link
US (1) US10634074B2 (ja)
EP (1) EP3135894B1 (ja)
JP (1) JP6126025B2 (ja)
KR (1) KR101827513B1 (ja)
CN (1) CN106030077B (ja)
CA (1) CA2939190A1 (ja)
WO (1) WO2015125576A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10801433B2 (en) * 2018-04-24 2020-10-13 GM Global Technology Operations LLC Systems and methods for determining irregular fuel requests during engine idle conditions

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160052A (ja) * 1983-03-03 1984-09-10 Aisin Seiki Co Ltd 内燃機関の回転数およびegr制御装置
JPH0216319A (ja) * 1988-07-04 1990-01-19 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH0643251U (ja) * 1992-01-20 1994-06-07 株式会社ウオルブローファーイースト ロータリスロツトル弁式気化器のニードルピン調整機構
JP2000045797A (ja) * 1998-08-04 2000-02-15 Hino Motors Ltd ディーゼルエンジンのアイドル回転制御装置
JP2001526355A (ja) * 1997-12-10 2001-12-18 エクソンモービル リサーチ アンド エンジニアリング カンパニー 膨脹行程時の炭化水素噴射による圧縮噴射エンジン内のnoからno2への変換制御
JP2003097308A (ja) * 2001-09-20 2003-04-03 Nissan Motor Co Ltd 内燃機関の制御装置
JP2005282477A (ja) * 2004-03-30 2005-10-13 Isuzu Motors Ltd 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2011185171A (ja) * 2010-03-09 2011-09-22 Toyota Motor Corp 排気再循環機構の制御装置
JP2012225309A (ja) * 2011-04-21 2012-11-15 Toyota Motor Corp 二次空気供給システム
JP2013113093A (ja) * 2011-11-24 2013-06-10 Toyota Motor Corp 排気再循環機構の制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254264A (ja) 1985-09-02 1987-03-09 Konishiroku Photo Ind Co Ltd 感光性平版印刷版の処理方法
JPS6254264U (ja) 1985-09-24 1987-04-03
JPH08270454A (ja) 1995-03-30 1996-10-15 Toyota Motor Corp 可変容量ターボチャージャ
JPH10103119A (ja) 1996-09-30 1998-04-21 Mazda Motor Corp 排気還流装置付ディーゼルエンジンの制御装置
JP3500951B2 (ja) * 1998-03-09 2004-02-23 株式会社日立製作所 ノンスロットル式の圧縮着火式内燃機関およびその制御方法
JP4395681B2 (ja) 2000-07-18 2010-01-13 マツダ株式会社 ディーゼルエンジンの制御装置
US6681564B2 (en) * 2001-02-05 2004-01-27 Komatsu Ltd. Exhaust gas deNOx apparatus for engine
DE10253297A1 (de) * 2002-11-15 2004-06-09 Daimlerchrysler Ag Vorrichtung zum Steuern und/oder Regeln der einer Brennkraftmaschine zugeführten Kraftstoffmenge
JP4385962B2 (ja) * 2004-09-14 2009-12-16 トヨタ自動車株式会社 内燃機関の制御装置
ATE385286T1 (de) 2005-10-05 2008-02-15 Delphi Tech Inc Steuerung und steuerungsverfahren zum umschalten zwischen verschiedenen motorbetriebsarten
JP2010216392A (ja) 2009-03-17 2010-09-30 Honda Motor Co Ltd 内燃機関の制御装置
DE112009005459B4 (de) 2009-12-21 2017-06-14 Fujitsu Limited Motorsteuerprogramm, Verfahren und Vorrichtung
WO2012150619A1 (ja) * 2011-05-02 2012-11-08 トヨタ自動車株式会社 内燃機関の運転制御方法
JP5907339B2 (ja) * 2011-05-27 2016-04-26 株式会社デンソー 内燃機関の筒内流入egrガス流量推定装置
JP5673356B2 (ja) * 2011-05-27 2015-02-18 株式会社デンソー 内燃機関の制御装置
JP5668934B2 (ja) * 2011-06-24 2015-02-12 株式会社デンソー 内燃機関のegr制御装置
JP5752517B2 (ja) * 2011-08-03 2015-07-22 トヨタ自動車株式会社 内燃機関の制御装置
US9068502B2 (en) * 2011-09-13 2015-06-30 Caterpillar Inc. EGR flow measurement
US9032941B2 (en) * 2012-11-27 2015-05-19 GM Global Technology Operations LLC Method for controlling exhaust gas re-circulation system in an internal combustion engine
JP6221321B2 (ja) * 2013-04-17 2017-11-01 株式会社デンソー 内燃機関の制御装置
JP2015113790A (ja) * 2013-12-12 2015-06-22 トヨタ自動車株式会社 内燃機関の制御装置
WO2015092937A1 (ja) * 2013-12-20 2015-06-25 トヨタ自動車株式会社 内燃機関の排気浄化装置

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59160052A (ja) * 1983-03-03 1984-09-10 Aisin Seiki Co Ltd 内燃機関の回転数およびegr制御装置
JPH0216319A (ja) * 1988-07-04 1990-01-19 Nissan Motor Co Ltd 内燃機関の排気浄化装置
JPH0643251U (ja) * 1992-01-20 1994-06-07 株式会社ウオルブローファーイースト ロータリスロツトル弁式気化器のニードルピン調整機構
JP2001526355A (ja) * 1997-12-10 2001-12-18 エクソンモービル リサーチ アンド エンジニアリング カンパニー 膨脹行程時の炭化水素噴射による圧縮噴射エンジン内のnoからno2への変換制御
JP2000045797A (ja) * 1998-08-04 2000-02-15 Hino Motors Ltd ディーゼルエンジンのアイドル回転制御装置
JP2003097308A (ja) * 2001-09-20 2003-04-03 Nissan Motor Co Ltd 内燃機関の制御装置
JP2005282477A (ja) * 2004-03-30 2005-10-13 Isuzu Motors Ltd 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2011185171A (ja) * 2010-03-09 2011-09-22 Toyota Motor Corp 排気再循環機構の制御装置
JP2012225309A (ja) * 2011-04-21 2012-11-15 Toyota Motor Corp 二次空気供給システム
JP2013113093A (ja) * 2011-11-24 2013-06-10 Toyota Motor Corp 排気再循環機構の制御装置

Also Published As

Publication number Publication date
CN106030077B (zh) 2019-07-30
EP3135894A1 (en) 2017-03-01
KR101827513B1 (ko) 2018-02-08
JP6126025B2 (ja) 2017-05-10
EP3135894A4 (en) 2018-01-10
CA2939190A1 (en) 2015-08-27
EP3135894B1 (en) 2019-03-13
CN106030077A (zh) 2016-10-12
JP2015155667A (ja) 2015-08-27
US10634074B2 (en) 2020-04-28
US20170058794A1 (en) 2017-03-02
KR20160120342A (ko) 2016-10-17

Similar Documents

Publication Publication Date Title
US10393044B2 (en) Control device for engine and control method for engine
JP2007023973A (ja) 内燃機関の制御装置
JP2006194143A (ja) エンジンの制御装置
WO2015125576A1 (ja) Egr装置
US6640791B2 (en) EGR valve control apparatus
CN105003345A (zh) 内燃机及其控制方法
JP2016108978A (ja) 内燃機関の空熱比学習制御装置
JP2010127134A (ja) エンジンの筒内egr率推定装置及び筒内egr率推定方法並びに点火時期制御装置及び点火時期制御方法
JP2010096003A (ja) 制御装置
US10815850B2 (en) Method for catalyst purge control based on engine temperature and vehicle using the same
JP2005299553A (ja) 自動適合装置
JP2017072076A (ja) 内燃機関の制御装置
JP2007056778A (ja) 点火プラグのくすぶり解消制御装置
JP6480762B2 (ja) 内燃機関の制御装置
JP2009209704A (ja) 車両用エンジンの燃料噴射制御装置
JP5223972B2 (ja) 車載ディーゼル機関の制御装置
JP2007247582A (ja) 内燃機関の出力制御装置
JP6658251B2 (ja) 内燃機関装置
JP6170846B2 (ja) Egr装置
JP2015102055A (ja) 内燃機関の燃料噴射制御装置
JP2011132885A (ja) 内燃機関の異常検出方法
WO2017033635A1 (ja) エンジンの制御装置
JP2008088955A (ja) 内燃機関の始動制御装置
JP2005226478A (ja) 内燃機関の制御装置
JP2007198211A (ja) 燃料供給量制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15752606

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2939190

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15120096

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015752606

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015752606

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167025671

Country of ref document: KR

Kind code of ref document: A