WO2015122361A1 - 流通反応器を用いたケトマロン酸化合物の連続製造方法 - Google Patents

流通反応器を用いたケトマロン酸化合物の連続製造方法 Download PDF

Info

Publication number
WO2015122361A1
WO2015122361A1 PCT/JP2015/053334 JP2015053334W WO2015122361A1 WO 2015122361 A1 WO2015122361 A1 WO 2015122361A1 JP 2015053334 W JP2015053334 W JP 2015053334W WO 2015122361 A1 WO2015122361 A1 WO 2015122361A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow reactor
reaction
acid diester
group
compound
Prior art date
Application number
PCT/JP2015/053334
Other languages
English (en)
French (fr)
Inventor
真樹 谷
Original Assignee
イハラケミカル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イハラケミカル工業株式会社 filed Critical イハラケミカル工業株式会社
Priority to JP2015562799A priority Critical patent/JP6017710B2/ja
Priority to CN201580008270.XA priority patent/CN105980345B/zh
Priority to EP15748585.5A priority patent/EP3109227B1/en
Priority to KR1020167024819A priority patent/KR102134407B1/ko
Priority to AU2015216279A priority patent/AU2015216279B2/en
Priority to US15/119,310 priority patent/US10035753B2/en
Priority to ES15748585T priority patent/ES2805462T3/es
Publication of WO2015122361A1 publication Critical patent/WO2015122361A1/ja
Priority to IL247284A priority patent/IL247284B/en
Priority to US16/021,429 priority patent/US20180305290A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/313Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of doubly bound oxygen containing functional groups, e.g. carboxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J14/00Chemical processes in general for reacting liquids with liquids; Apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1818Tubular reactors in series
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2415Tubular reactors
    • B01J19/242Tubular reactors in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/31Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by introduction of functional groups containing oxygen only in singly bound form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/716Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature

Definitions

  • the present invention relates to a continuous production method for producing a ketomalonic acid compound such as a ketomalonic acid diester by reacting a malonic acid compound such as a malonic acid diester with chlorite.
  • Ketomalonic acid diester is a derivative of malonic acid having a keto group and is an important intermediate in organic synthesis.
  • ketomalonic acid diester is a compound useful as a raw material in the production of pyrazin-2-one-3-carboxylic acid ester derivatives by reaction with diamines (see Patent Documents 1-4 and 1-2). ). This reaction is used in the production of pharmaceuticals, agricultural chemicals, etc., particularly as a method for producing a quinoxalinone derivative from an aromatic diamine.
  • a method in which a compound in which the active methylene portion of the malonic acid diester is substituted with bromine is reacted with silver nitrate (see, for example, Non-Patent Document 7), and a compound in which the active methylene portion of the malonic acid diester is substituted with an azo group A method of reacting with oxirane (for example, see Non-Patent Document 8), a method of reacting a compound in which the active methylene moiety of malonic acid diester is substituted with a methylene group with ozone (for example, see Non-Patent Documents 5 and 9), malonic acid A method of producing a ketomalonic acid diester such as a method of reacting a compound in which the active methylene portion of the diester is substituted with a hydroxyl group in the presence of a noble metal catalyst (see, for example, Patent Document 5) is also known.
  • Patent Document 6 Furthermore, a method of reacting malonic acid diester with chlorite has been reported (see Patent Document 6). Although the method described in Patent Document 6 is superior to the prior art known before Patent Document 6, it has been found that there are many problems in implementation on an industrial scale.
  • the inventors of the present invention have studied an industrial production method according to the method described in Patent Document 6, and there is a possibility of explosion in an implementation on a scaled-up industrial scale, not only environmental pollution, Operation on a safe and stable industrial scale was very difficult.
  • the present inventors have examined the cause of the explosion in detail, and as a result, it has been found that a large amount of explosive chlorine dioxide is generated in the reaction system, and it has been found that explosion occurs due to this chlorine dioxide. Further, when the reaction is carried out while removing chlorine dioxide generated during the reaction, the yield is remarkably lowered. Therefore, the problem cannot be solved only by removing chlorine dioxide from the reaction system. Therefore, the present inventors tried a continuous reaction on a microscale using a microreactor.
  • the reaction in the microreactor is small-scale, and even if it explodes, it does not stop at a small-scale explosion and is relatively safe. In addition, the mixing performance is superior to the batch method. Therefore, when the method described in Patent Document 6 was performed using a microreactor having a groove diameter of about 200 micrometers, the conversion rate was 0%, and a preferable result was not obtained. Even when the reaction temperature was 100 ° C. or higher, the conversion rate was only about 1%.
  • An object of the present invention is to provide a method for continuously producing an industrially useful ketomalonic acid compound such as a ketomalonic acid diester or a hydrate thereof on an industrial scale, and a production apparatus therefor.
  • Another object of the present invention is to provide a method for stably and stably producing an industrially useful ketomalonic acid compound such as a ketomalonic acid diester or a hydrate thereof on an industrial scale, and a production apparatus therefor. There is to do.
  • Still another object of the present invention is to provide an industrially useful ketomalonic acid compound such as a ketomalonic acid diester or a hydrate thereof on an industrial scale, stably and stably at a high conversion rate or high yield. And providing a manufacturing apparatus therefor.
  • the present inventors further provide a method for industrially producing a large amount of a ketomalonic acid compound such as ketomalonic acid diester or a hydrate thereof by reacting malonic acid diester with chlorite.
  • this chemical reaction has an induction period, and the reaction with a short residence time does not proceed sufficiently by simply mixing raw materials, and furthermore, a relatively small reaction tube is used.
  • a relatively small reaction tube is used.
  • the reaction between malonic acid diester and chlorite is divided into two or more stages.
  • the present invention uses a malonic acid diester, a carboxylic acid compound, and a chlorous acid compound as raw material compounds, mixes these raw material compounds, and continuously supplies these mixtures to the flow reactor.
  • the present invention relates to a method for continuously producing a ketomalonic acid diester or a hydrate thereof.
  • the present invention relates to the continuous production method, wherein the flow reactor is one or more tubular flow reactors.
  • the present invention provides: (A) a step of mixing a malonic acid diester, a carboxylic acid compound, and a chlorite compound, (B) supplying the mixed mixture to the flow reactor, and (C) reacting the mixture in a flow reactor, It is related with the method of manufacturing continuously the corresponding ketomalonic acid diester or its hydrate.
  • the present invention relates to the continuous production method, wherein the flow reactor is one or two or more flow reactors, more specifically, a tubular flow reactor.
  • the present invention further includes the steps (A) to (C), (D) a step of further aging the reaction mixture obtained in the step of reacting the mixture; In which a corresponding ketomalonic acid diester or a hydrate thereof is continuously produced.
  • the present invention relates to the continuous production method, wherein the aging step (D) is performed in one or more tubular flow reactors.
  • this invention relates to the said continuous manufacturing method whose process of aging of (D) is a cooling process by air cooling or water cooling.
  • the present invention further includes the steps (A) to (C) or the steps (A) to (D). (E) quenching the reaction; In which a corresponding ketomalonic acid diester or a hydrate thereof is continuously produced.
  • the present invention relates to the continuous production method, wherein the quenching step (E) is performed by feeding a quench solution by a T-tube or the like.
  • the present invention also relates to the continuous production method, wherein the quenching step (E) is performed in one or more tubular flow reactors.
  • the present invention relates to the continuous production method, wherein the quenching step (E) is a cooling step such as air cooling or water cooling. And this invention relates to the said continuous manufacturing method whose quenching liquid is the aqueous solution of a sulfite and / or an alkali metal hydroxide.
  • the present invention provides the steps (A) to (C), the steps (A) to (C) and (E), the steps (A) to (D), or the steps (A) to (A).
  • step E) (F) separating the ketomalonic acid diester or its hydrate from the obtained reaction mixture, In which a corresponding ketomalonic acid diester or a hydrate thereof is continuously produced.
  • the present invention relates to the continuous production method, wherein the separating step (F) is performed by an extraction operation using an extraction solvent.
  • this invention relates to the said continuous manufacturing method in which the process of isolate
  • R may be the same or different, and may have an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or a substituent.
  • An aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent may be shown, or two Rs may be bonded to each other to form a ring with adjacent oxygen atoms.
  • a malonic acid diester represented by these.
  • the corresponding ketomalonic acid diester is represented by the following general formula (2):
  • the present invention provides (G) a mixing unit for mixing a malonic acid diester, a carboxylic acid compound, and a chlorous acid compound; (H) a temperature raising unit for raising the temperature of the mixed mixture, and (I) a reaction part for reacting the mixture heated at the temperature raising part,
  • the present invention relates to a continuous production apparatus, wherein the section is one or two or more tubular flow reactors.
  • the present invention provides the continuous production, wherein the mixing part of (G) includes a mixing part for mixing the carboxylic acid compound and the chlorite compound, and a mixing part for mixing the malonic acid diester into the mixture. Relates to the device.
  • the present invention provides the continuous production, wherein the mixing part of (G) includes a mixing part for mixing the malonic acid diester and the carboxylic acid compound, and a mixing part for mixing the chlorite compound in the mixture. Relates to the device.
  • this invention relates to the said continuous manufacturing apparatus in which the mixing part of (G) contains the mixing part for mixing a chlorite compound with the mixture of a malonic acid diester and a carboxylic acid compound.
  • the present invention provides the above (G) to (I), (J) An aging part for further aging the reaction mixture obtained in the step of reacting the mixture, And the aging part is one or more tubular flow reactors.
  • the present invention provides the above (G) to (I) or the above (G) to (J), (K) a quenching part for quenching the reaction, And the quench part is one or more tubular flow reactors.
  • the present invention relates to the continuous production apparatus, wherein the quenching section (K) includes a device for feeding a quenching liquid such as a T-shaped tube.
  • the present invention provides the above-mentioned parts (G) to (I), the above-mentioned parts (G) to (I) and (K), the above-mentioned parts (G) to (J), or the above-mentioned (G) to ( In part K), (L) a separation unit for separating the ketomalonic acid diester or its hydrate from the obtained reaction mixture; It is related with the said continuous manufacturing apparatus formed by containing.
  • the present invention relates to the continuous production apparatus, wherein the separation unit (L) includes an extraction operation unit using an extraction solvent. Moreover, this invention relates to the said continuous manufacturing apparatus with which the isolation
  • the present invention relates to the continuous production apparatus, wherein the malonic acid diester in the continuous production apparatus of the present invention is a malonic acid diester represented by the general formula (1).
  • the present invention also relates to the continuous production apparatus, wherein the corresponding ketomalonic acid diester in the continuous production apparatus of the present invention is a ketomalonic acid diester represented by the general formula (2).
  • the present invention provides an industrial production method and a production apparatus therefor, which make it possible to produce a ketomalonic acid compound such as a ketomalonic acid diester efficiently, safely and stably in large quantities.
  • the method for producing a ketomalonic acid compound such as a ketomalonic acid diester of the present invention is a method in which the active methylene moiety of the malonic acid diester does not need to be modified in advance, and the active methylene moiety of the malonic acid diester is directly oxidized in one step. It is an industrially superior method that does not require special and expensive reactants and does not require expensive catalysts or transition metals such as precious metals.
  • ketomalonic acid compounds such as ketomalonic acid diester can be produced safely and stably continuously. be able to. It is for the first time provided by the present invention that the production method by the oxidation reaction of the method of the present invention can be carried out continuously while controlling the risk of explosion. Since the present invention continuously reacts in a relatively narrow distribution channel, even if an explosion occurs due to an explosive substance that is a by-product, the explosion is extremely small and hinders continuous operation. Stable operation is possible, not the scale that gives Further, in the present invention, in order to continuously react in a relatively narrow flow path, a temperature rising part is provided so that the reaction proceeds stably. Thereby, it became possible to produce the target substance efficiently.
  • the raw materials and reagents used are all compounds widely used in organic synthesis, and are safe and easily available.
  • the apparatus of the present invention does not require special processing and can be manufactured using easily available materials.
  • the quenching process for detoxifying an unreacted reagent and the by-product substance can be provided, waste disposal is easy, it is environmentally friendly, and industrial utility value is high.
  • the method of the present invention can select mild reaction conditions without requiring high temperature and high pressure, and continuously produce ketomalonic acid compounds such as ketomalonic acid diesters under simple conditions suitable for industrialization. can do.
  • the method of the present invention can be operated continuously, there is little production unevenness by batch method (batch method), and the quality of the produced material can be kept constant.
  • the continuous production method of the present invention is not only extremely useful as an industrial production method, but also ketomalonic acid compounds such as ketomalonic acid diesters that are extremely useful as various industrial raw materials can be stably produced in large quantities at low cost.
  • the present invention provides an industrial production method that can be supplied.
  • FIG. 1 schematically shows the outline of the reaction apparatus of the present invention.
  • the raw material compounds are respectively supplied from the raw material supply ports 1 to 3, and the mixture mixed in the mixer 11 is supplied to the tubular flow reactor 12 for reaction, and the reaction mixture after the reaction is recovered from the outlet 4.
  • the FIG. 2 schematically shows an outline of the reaction apparatus of the present invention when two flow reactors 22 and 23 are used.
  • FIG. 3 schematically shows an outline of the reaction apparatus of the present invention in the case where a flow reactor 33 for the aging process is further provided in the apparatus shown in FIG.
  • FIG. 4 schematically shows an outline of the reaction apparatus of the present invention in the case where a flow reactor 44 for the quenching process is further provided in the apparatus shown in FIG.
  • FIG. 5 schematically shows the outline of the reaction apparatus of the present invention in the case where the apparatus shown in FIG. 4 is further provided with a separation and purification apparatus 55 for the separation process of the target product.
  • FIG. 6 schematically shows the outline of the reaction apparatus of the present invention used in Example 13 and the like.
  • the raw material mixture is introduced into a tubular flow reactor 62 having a bath 64 and then introduced into a tubular flow reactor 63 having a water bath 65 and aged.
  • FIG. 7 schematically shows the outline of the reaction apparatus of the present invention used in Example 57 and the like.
  • the raw material mixture is introduced into a tubular flow reactor 72 having a bath 75, then introduced into a tubular flow reactor 73 having a water bath 76, and discharged from the tubular flow reactor 73 into the reaction mixture from the container 5.
  • a tubular flow reactor 74 having a water bath 77 are mixed and introduced into a tubular flow reactor 74 having a water bath 77.
  • the reaction product discharged from the tubular flow reactor 74 is accumulated in the container 4 through the pipe.
  • step of mixing (A) is performed by a step of mixing a malonic acid diester and a carboxylic acid compound, and a step of mixing a chlorite compound in the mixture.
  • step of mixing (A) is performed by a step of mixing a chlorite compound with a mixture of a malonic acid diester and a carboxylic acid compound.
  • step (D) a step of further aging the reaction mixture obtained in the step of reacting the mixture;
  • the second flow reactor is one or more tubular flow reactors.
  • the aging step (D) is a cooling step by air cooling or water cooling.
  • (E) a step of mixing the quench liquid to quench the reaction,
  • the quenching step of (E) is performed in one or more third flow reactors.
  • the third flow reactor is one or more tubular flow reactors.
  • the quenching step of (E) is performed by feeding the quenching solution through a T-tube or the like.
  • quenching step (E) is a cooling step such as air cooling or water cooling.
  • quench solution is an aqueous solution of sulfite and / or alkali metal hydroxide.
  • Steps (A) to (C), steps (A) to (C) and (E), steps (A) to (D), or steps (A) to (E) In addition to the process, (F) separating the ketomalonic acid diester or its hydrate from the obtained reaction mixture,
  • the step of separating (F) comprises a further purification step.
  • R may be the same or different, and may have an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or a substituent.
  • An aromatic hydrocarbon group or an aromatic heterocyclic group which may have a substituent may be shown, or two Rs may be bonded to each other to form a ring with adjacent oxygen atoms.
  • R has the same meaning as described above.
  • the mixing part of (G) includes a mixing part for mixing the carboxylic acid compound and the chlorite compound, and a mixing part for mixing the malonic acid diester with the mixture. Or the continuous manufacturing apparatus as described in [80].
  • the mixing part of (G) includes a mixing part for mixing the malonic acid diester and the carboxylic acid compound, and a mixing part for mixing the chlorite compound in the mixture [79] Or the continuous manufacturing apparatus as described in [80].
  • (K) a quenching part for quenching the reaction
  • the continuous production apparatus according to any one of [79] to [94], comprising: [96] The continuous production apparatus according to [95], wherein the quench unit is one or more flow reactors. [97] The continuous production apparatus according to [96], wherein the flow reactor is one or more tubular flow reactors. [98] The continuous production apparatus according to any one of [95] to [97], wherein the quenching section of (K) includes an apparatus for feeding a quenching liquid such as a T-shaped tube. .
  • C a -C b means that the number of carbon atoms is ab.
  • C 1 -C 4 means having 1 to 4 carbon atoms.
  • alkyl group examples include a C 1 -C 6 alkyl group, preferably a C 1 -C 4 alkyl group.
  • the C 1 -C 6 alkyl group means a linear or branched alkyl group having 1 to 6 carbon atoms.
  • the C 1 -C 4 alkyl group means a linear or branched alkyl group having 1 to 4 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl and the like, preferably methyl, ethyl, propyl, isopropyl, butyl, sec-butyl, isobutyl, tert-butyl, more preferably methyl, ethyl, propyl, isopropyl, and still more preferably methyl, ethyl.
  • Examples of the cycloalkyl group include a C 3 to C 6 cycloalkyl group.
  • the C 3 -C 6 cycloalkyl group means a cycloalkyl group having 3 to 6 carbon atoms.
  • Specific examples of the C 3 -C 6 cycloalkyl group include cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl.
  • aromatic hydrocarbon group examples include aromatic hydrocarbon groups having 6 to 12 carbon atoms. Specific examples of the aromatic hydrocarbon group include phenyl, 1-naphthyl, 2-naphthyl, biphenyl and the like. The aromatic hydrocarbon group is preferably phenyl.
  • the aromatic heterocyclic group has, for example, one or more (eg 1 to 4, preferably 1 or 2) nitrogen atom, oxygen atom and sulfur atom in addition to the carbon atom.
  • examples thereof include 5- to 10-membered, preferably 5- to 7-membered aromatic heterocyclic groups.
  • Specific examples of the aromatic heterocyclic group include a furyl group, a thienyl group, a pyrazolyl group, a pyridyl group, and a quinolinyl group. More specific examples of the aromatic heterocyclic group include 2- or 3-furyl, 2- or 3-thienyl, 1-, 3-, 4- or 5-pyrazolyl, 2-, 3- or 4-pyridyl. , 2- or 8-quinolyl and the like.
  • Preferable examples of the aromatic heterocyclic group include 2- or 4-pyridyl, more preferably 2-pyridyl.
  • haloalkyl group examples include a C 1 -C 4 haloalkyl group.
  • the C 1 -C 4 haloalkyl group means a linear or branched alkyl group having 1 to 4 carbon atoms substituted by the same or different 1 to 9 halogen atoms (wherein the halogen atom Has the same meaning as above.)
  • Examples of the C 1 -C 4 haloalkyl group include fluoromethyl, chloromethyl, bromomethyl, difluoromethyl, trifluoromethyl, chlorodifluoromethyl, 1-fluoroethyl, 2-fluoroethyl, 1-chloroethyl, 2-chloroethyl, 2 , 2,2-trifluoroethyl, pentafluoroethyl, 3-fluoropropyl, 3-chloropropyl, 2,2,3,3,3-pentafluoropropyl, heptafluoropropyl, 2,2,
  • alkoxy group examples include C 1 -C 4 alkoxy groups.
  • a C 1 -C 4 alkoxy group means a (C 1 -C 4 alkyl) -O— group (where C 1 -C 4 alkyl has the same meaning as described above).
  • a C 1 -C 4 alkoxy group is methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, isobutoxy, or tert-butoxy.
  • substituent “which may have a substituent” examples include, for example, a halogen atom, an alkyl group, a cycloalkyl group, a haloalkyl group, a hydroxyl group, an alkoxy group, an aromatic hydrocarbon group, an aromatic heterocyclic group, and the like. Is mentioned. Here, these all have the same meaning as described above.
  • substituent of the alkyl group include halogen atoms such as chlorine and fluorine, cycloalkyl groups such as cyclohexyl group, alkoxy groups such as hydroxyl group and methoxy group, and aromatic hydrocarbon groups such as phenyl group.
  • the halogen atom is a fluorine atom, a chlorine atom, a bromine atom or an iodine atom.
  • Two Rs may be bonded to each other to form a ring with adjacent oxygen atoms
  • two R groups are linked to form a divalent group and form a ring with adjacent oxygen atoms It is to be.
  • the divalent group formed by linking two Rs include an alkylene group having 1 to 6 carbon atoms which may have a substituent, such as a methylene group and an ethylene group.
  • the alkylene group may have a substituent as described above, for example, a halogen atom, an alkyl group, a cycloalkyl group, a haloalkyl group, an alkoxy group, an aromatic hydrocarbon group and the like.
  • the malonic acid diester used as a raw material compound in the method of the present invention may be free malonic acid, but a diester is preferred from the standpoint of availability and ease of handling.
  • diesters are advantageous in handling on an industrial scale, and in the method of the present invention, they are indicated as malonic acid diesters, but also include free malonic acid.
  • raw material compound represented by the general formula (1) used as a raw material of the method of the present invention
  • R in the general formula (1) may be the same or different, and may have an alkyl group that may have a substituent, a cycloalkyl group that may have a substituent, or a substituent.
  • An aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, and two Rs may be bonded to each other to form a ring with adjacent oxygen atoms.
  • R in the general formula (1) are each independently a C 1 to C 4 alkyl group optionally having a phenyl group, more preferably methyl, ethyl, propyl, isopropyl, benzyl, Preferred are methyl, ethyl and benzyl, and particularly preferred are methyl and ethyl.
  • malonic acid diester represented by the general formula (1) include, for example, dimethyl malonate, diethyl malonate, dipropyl malonate, diisopropyl malonate, dibutyl malonate, diisobutyl malonate, di-malonate.
  • Preferred malonic acid diesters are dialkyl malonates that may have a substituent on the alkyl group (eg, dimethyl malonate, diethyl malonate, dipropyl malonate, diisopropyl malonate, dibutyl malonate, diisobutyl malonate, malonic acid).
  • a substituent on the alkyl group eg, dimethyl malonate, diethyl malonate, dipropyl malonate, diisopropyl malonate, dibutyl malonate, diisobutyl malonate, malonic acid.
  • the malonic acid diester (raw material compound) represented by the general formula (1) is a known compound or can be produced from a known compound by a known method (for example, esterification of malonic acid by a conventional method). .
  • the malonic acid diester (raw material compound) represented by the general formula (1) can be used alone or as a mixture of any ratio of two or more malonic acid diesters.
  • ketomalonic acid diester As described above, the malonic acid diester used as a raw material compound in the method of the present invention does not exclude free malonic acid. Accordingly, the “corresponding ketomalonic acid diester” that is the product of the method of the present invention also includes free ketomalonic acid as a product corresponding to free malonic acid. Next, the ketomalonic acid diester represented by the general formula (2), which is an object produced by the method of the present invention, will be described.
  • R in the general formula (2) may be the same or different, and may have an alkyl group which may have a substituent, a cycloalkyl group which may have a substituent, or a substituent.
  • An aromatic hydrocarbon group which may have a substituent or an aromatic heterocyclic group which may have a substituent, and two Rs may be bonded to each other to form a ring with adjacent oxygen atoms.
  • R in the general formula (2) are each independently a C 1 -C 4 alkyl group optionally having a phenyl group, more preferably methyl, ethyl, propyl, isopropyl, benzyl, Preferred are methyl, ethyl and benzyl, and particularly preferred are methyl and ethyl.
  • ketomalonic acid diester represented by the general formula (2) include, for example, dimethyl ketomalonate, diethyl ketomalonate, dipropyl ketomalonate, diisopropyl ketomalonate, dibutyl ketomalonate, diisobutyl ketomalonate, di-ketomalonic acid di- sec-butyl, ketomalonic acid di-tert-butyl, ketomalonic acid dipentyl, ketomalonic acid dihexyl, ketomalonic acid dicyclopropyl, ketomalonic acid dicyclopentyl, ketomalonic acid dicyclohexyl, ketomalonic acid diphenyl, ketomalonic acid di (4-pyridyl), ketomalonic acid Di (2-pyridyl), methyl ethyl ketomalonate, methyl propyl ketomalonate, methyl-tert-butyl ketomalonate, ethylpropyl ketomalonate, ethyl ketomalonate-tert-
  • ketomalonic acid diesters include dialkyl ketomalonate that may have a substituent on the alkyl group (eg, dimethyl ketomalonate, diethyl ketomalonate, dipropyl ketomalonate, diisopropyl ketomalonate, dibutyl ketomalonate, diisobutyl ketomalonate, ketomalonic acid) Di-sec-butyl, di-tert-butyl ketomalonate, dipentyl ketomalonate, dihexyl ketomalonate, methyl ethyl ketomalonate, methylpropyl ketomalonate, methyl-tert-butyl ketomalonate, ethylpropyl ketomalonate, ethyl ketomalonate-tert -Butyl, dibenzyl ketomalonate, benzylmethyl ketomalonate, benzylethyl ketomalonate, etc., more preferably dimethyl ketomalonate, diethyl ketomalonate,
  • ketomalonic acid diester represented by the general formula (2) produced by the method of the present invention may be used alone or as a mixture in any proportion.
  • the ketomalonic acid diester represented by the general formula (2) produced by the method of the present invention is a compound having a keto group between two ester groups or the like, in other words, an electron withdrawing at a position adjacent to the keto group.
  • a compound having a group. Therefore, the ketomalonic acid diester represented by the general formula (2) is represented by the following general formula (3) in the presence of water.
  • a hydrate of ketomalonic acid diester represented by This hydrate can be converted to a ketomalonic acid diester represented by the general formula (2) of keto type by performing a dehydration treatment such as a heat treatment, if necessary.
  • a dehydration treatment such as a heat treatment
  • Such a reversible reaction is similar to the general properties of hydrated bodies such as chloral hydrate.
  • the reaction of the present invention when the reaction of the present invention is carried out in the presence of water, the product is obtained in the form of a hydrate of a ketomalonic acid diester represented by the general formula (3).
  • the reaction of the present invention when the reaction of the present invention is carried out under anhydrous conditions, the product is obtained in the form of a ketomalonic acid diester represented by the general formula (2).
  • the reaction of the present invention is carried out in the presence of water and the product is to be isolated in the form of a ketomalonic acid diester represented by the general formula (2)
  • the post-treatment after the reaction Specifically, for example, by performing a dehydration treatment such as azeotropic dehydration with toluene, the product can be easily obtained in the form of a ketomalonic acid diester represented by the general formula (2).
  • the form of the product to be isolated is changed to that of the ketomalonic acid diester represented by the general formula (2).
  • Either a shape or a hydrated form of a ketomalonic acid diester represented by the general formula (3) can be used.
  • chlorous acid compound Chlorous acid compound
  • chlorous acid compound Chlorous acid compound
  • chlorite compounds selected from chlorous acid or chlorite are used.
  • the chlorite may be a salt formed by chlorite ions and cations, but is not limited thereto.
  • the cation include a metal cation and an onium cation, but are not limited thereto.
  • the metal cation include alkali metal ions such as lithium ion, sodium ion, potassium ion, or cesium ion; alkaline earth metal ions such as magnesium ion, calcium ion, or barium ion; earth metal ions such as aluminum ion; zinc Examples include zinc group ions such as ions; transition metal ions such as copper ions, silver ions, nickel ions, manganese ions, and iron ions, but are not limited thereto.
  • onium cations include ammonium ions (NH 4 + ); tetramethylammonium ions, tetrabutylammonium ions, tetraoctylammonium ions, trimethylbutylammonium ions, trimethyloctylammonium ions, tributylmethylammonium ions, and trioctylmethylammonium ions.
  • the quaternary phosphonium ion which has group can be illustrated, it is not limited to these.
  • the salt (amine salt) of chlorous acid and amines can also be illustrated.
  • Examples of amines that form salts include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, butylamine, dibutylamine, tributylamine, diisopropylethylamine, hydrazine, methylhydrazine, Examples include, but are not limited to, pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, quinoline, aniline, or N, N-diethylaniline. is not. These chlorites may be anhydrous or hydrated. These chlorites may be single salts or double salts.
  • chlorite compound examples include, for example, chlorous acid; alkali metal chlorite including lithium chlorite, sodium chlorite, sodium chlorite trihydrate, potassium chlorite and the like. Salt; Chlorine including magnesium chlorite, magnesium chlorite trihydrate, calcium chlorite, calcium chlorite trihydrate, barium chlorite, or barium chlorite dihydrate Acid alkaline earth metal salts; Earth chlorite metal salts such as aluminum chlorite; Zinc chlorite group salts such as zinc chlorite dihydrate; Copper chlorite (II), Copper chlorite (III), chlorite transition metal salts such as silver chlorite, nickel chlorite dihydrate, or manganese chlorite; ammonium chlorite; chlorite quaternary such as tetramethylammonium chlorite Ammonium salt; chlorous acid ( , 4-dinitrophenyl) quaternary phosphonium salts such as triethylphosphonium; methylamine chlorite, tripropy
  • the chlorite compound is preferably a chlorite, more preferably an alkali metal chlorite or an alkaline earth metal chlorite.
  • Alkali metal chlorites are more preferred, sodium chlorite or potassium chlorite is more preferred, and the use of sodium chlorite is more preferred.
  • These chlorous acid compounds can be used in any form such as a liquid or solid containing only a chlorite compound, or an aqueous solution or a solution of a solvent other than water. Examples of solvents other than water include, but are not limited to, solvents that can be used in the method of the present invention described later.
  • the chlorous acid compound is preferably supplied as an aqueous solution.
  • concentration of the chlorous acid compound in the case of an aqueous solution is not particularly limited, but 5% by mass to 80% by mass, 5% by mass to 60% by mass, 5% by mass to 50% by mass, 5% by mass to 40% by mass, 5% to 30%, 5% to 25%, preferably 10% to 80%, 10% to 60%, 10% to 50%, 10% to 40% by weight
  • Examples include a range of 10% by mass to 30% by mass, 10% by mass to 25% by mass, and 10% by mass to 20% by mass.
  • the molar ratio of the chlorite compound used is any molar ratio relative to the raw material compound represented by the general formula (1), but the raw material compound is represented by the general formula (1).
  • the chlorite compound is usually 1.0-15.0 mol, 1.0-10.0 mol, 1.0-5.0 mol, relative to 1 mol of the raw material compound, Preferably 1.2 to 15.0 mol, 1.2 to 10.0 mol, 1.2 to 5.0 mol, more preferably 1.5 to 15.0 mol, 1.5 to 10.0 mol, A range of 1.5 to 5.0 mol, more preferably 1.5 to 3.5 mol can be exemplified.
  • the method of the present invention is preferably carried out in the presence of a carboxylic acid compound. Then, the carboxylic acid compound in this invention is demonstrated.
  • the method of the present invention is preferably carried out in the presence of one or more carboxylic acid compounds selected from the group consisting of carboxylic acids, carboxylate salts, and carboxylic anhydrides as the acid.
  • Particularly preferred carboxylic acid compounds in the method of the present invention include carboxylic acids.
  • Examples of the carboxylic acid in the method of the present invention include organic carboxylic acids such as aliphatic carboxylic acids, alicyclic carboxylic acids, aromatic carboxylic acids, and heterocyclic carboxylic acids.
  • As preferable carboxylic acid the following general formula (4),
  • R 1 is a hydrogen atom, an optionally substituted alkyl group, an optionally substituted cyclic alkyl group, an optionally substituted phenyl group, or an optionally substituted aromatic group. Represents a heterocyclic group.
  • the carboxylic acid represented by these is mentioned.
  • R 1 in the general formula (4) is a hydrogen atom; for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, a linear or branched C 1 -C 6 alkyl group such as an n-hexyl group (the linear or branched alkyl group is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec Linear or branched C 1 -C 6 alkyl groups such as -butyl, t-butyl, n-pentyl and n-hexyl; cyclic C such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl 3 to C 6 alkyl group; hydroxyl group; for example, linear or branched C
  • a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, and cyclohexyl group, a cyclic C 3 ⁇ C 6 alkyl group (the cyclic alkyl group is, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-pentyl group, n-hexyl group)
  • a linear or branched C 1 -C 6 alkyl group such as: a cyclic C 3 -C 6 alkyl group such as a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group; a hydroxyl group; for example, a methoxy group, an ethoxy group, n- propoxy group, such as an isopropoxy group,
  • a 5- to 7-membered heteroaryl group having 1 to 3 heteroatoms selected from the group consisting of oxygen atoms, nitrogen atoms, and sulfur atoms such as pyridyl groups and furanyl groups (the heteroaryl groups) Is, for example, linear or branched C, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, t-butyl, n-pentyl, n-hexyl, etc.
  • cyclic C 3 to C 6 alkyl group such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group
  • hydroxyl group for example, methoxy group, ethoxy group, n-propoxy group, isopropoxy group etc., straight-chain or branched C 1 ⁇ C 6 alkoxy group
  • a bromine, chlorine, fluorine, halogen atom such as iodine
  • aryl groups such as phenyl group; e.g. Pyridyl, which may have a substituent such as a heteroaryl group such as a furyl group.
  • Examples of the carboxylate in the method of the present invention include salts of the carboxylic acid compound represented by the general formula (4).
  • Examples of the metal atom in the metal ion for forming a salt include an alkali metal atom such as a lithium atom, a sodium atom or a potassium atom; an alkaline earth metal atom such as a magnesium atom, a calcium atom or a barium atom; Earth metal atom; zinc group atom such as zinc atom; transition metal atom such as copper atom, silver atom, nickel atom, lead atom, manganese atom or iron atom can be exemplified, but are not limited thereto is not.
  • ammonium ion (NH 4 + ); tetramethylammonium ion, tetrabutylammonium ion, tetraoctylammonium ion, trimethylbutylammonium ion, trimethyloctylammonium ion, tributylmethylammonium ion
  • quaternary ammonium ion having a linear or branched C 1 -C 8 alkyl group or phenyl group such as trioctylmethylammonium ion; a linear or branched C ion such as tetramethylphosphonium ion, tetrabutylphosphonium ion or tetraphenylphosphonium ion
  • examples thereof include, but are not limited to, quaternary phosphonium ions having a 1 to C 8 alkyl group or a phenyl group.
  • carboxylate the salt (carboxylic acid amine salt) of carboxylic acid and amines can also be illustrated.
  • the amines that form carboxylates include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, butylamine, dibutylamine, tributylamine, diisopropylethylamine, pyridine, quinoline. , Isoquinoline, aniline, N, N-diethylaniline and the like, but are not limited thereto.
  • Examples of the carboxylic acid anhydride in the method of the present invention include an anhydride of the carboxylic acid compound represented by the general formula (4).
  • the carboxylic acid anhydride may be formed only from the same carboxylic acid, or may be a carboxylic acid anhydride formed from different carboxylic acids.
  • Such a carboxylic acid anhydride is preferably one that generates free carboxylic acid in water or a hydrous solvent system.
  • carboxylic acid compounds selected from the group consisting of carboxylic acid, carboxylate salt, and carboxylic anhydride in the method of the present invention include, for example, acetic acid, propionic acid, and the like.
  • Carboxylic acid alkali metal salts such as sodium acetate, sodium propionate, potassium acetate, and potassium propionate
  • alkaline earth metal salts of carboxylic acid such as magnesium acetate, magnesium propionate, calcium acetate, and calcium propionate
  • ammonium acetate Carboxylic acid quaternary ammonium salts such as ammonium propionate and tetrabutylammonium acetate
  • carboxylic acid quaternary phosphonium salts such as tetrabutylphosphonium acetate
  • carboxylic acid amine salts such as triethylamine acetate and pyridine acetate
  • acetic anhydride and propion anhydride It can be mentioned carboxylic acid anhydr
  • the carboxylic acid compound selected from the group consisting of carboxylic acid, carboxylate, and carboxylic anhydride is used alone or in combination of two or more different arbitrary carboxylic acid compounds in any proportion. Can be used.
  • a carboxylic acid or a carboxylic acid anhydride can be mentioned as a preferable one, more preferably a carboxylic acid can be mentioned, and still more preferably an aliphatic carboxylic acid such as acetic acid.
  • aliphatic carboxylic acid anhydrides such as acetic anhydride can be exemplified, and aliphatic carboxylic acids such as acetic acid can be particularly preferably exemplified, but are not limited thereto.
  • a preferable combination of carboxylic acid compounds includes a combination of carboxylic acid and carboxylate, and a more preferable combination is carboxylic acid and carboxylic acid alkali.
  • a combination of metal salts can be mentioned, and a combination of an aliphatic carboxylic acid and a salt thereof such as a combination of acetic acid and sodium acetate or a combination of acetic acid and potassium acetate can be mentioned, but is limited by these.
  • Preferred specific examples of the carboxylic acid compound in the reaction of the present invention include acetic acid only, propionic acid only, acetic anhydride only, a combination of acetic acid and sodium acetate, or a combination of acetic acid and potassium acetate, more preferably acetic acid only, acetic acid.
  • the amount of the carboxylic acid compound used in the method of the present invention may be any as long as the reaction proceeds sufficiently, but is 0.01% with respect to 1 mol of malonic diester represented by the general formula (1).
  • an acid it can also serve as the solvent mentioned later by using a large excess amount.
  • solvent The method of the present invention can be carried out without a solvent, but can also be carried out in the presence of a solvent.
  • an aqueous solvent can be used as the solvent in the method of the present invention.
  • an aqueous solvent can be used as the solvent in the method of the present invention.
  • the above-mentioned chlorous acid compound is used as an aqueous solution, it can be carried out sufficiently only with an aqueous solvent derived from an aqueous solution of a chlorous acid compound. Furthermore, it can also carry out using solvents other than water.
  • Examples of the solvent other than water used in the reaction of the present invention include, for example, carboxylic acids (for example, acetic acid, propionic acid, etc., preferably acetic acid); acid anhydrides (for example, acetic anhydride, propionic anhydride, etc., preferably Acetic anhydride); Nitriles (eg, acetonitrile, propionitrile, etc., preferably acetonitrile); Alcohols (eg, methanol, ethanol, propanol, isopropanol, butanol, tert-butanol, ethylene glycol, etc., preferably methanol); Carvone Acid esters (for example, acetate esters, specifically, methyl acetate, ethyl acetate, butyl acetate, etc., preferably ethyl acetate); carbonates (for example, ethylene carbonate, propylene carbonate, etc.); ketones (for example, , Acetone, ethy
  • Halogenated aliphatic hydrocarbons for example, dichloromethane, chloroform, carbon tetrachloride, 1,2-dichloroethane, and the like, preferably dichloromethane
  • These solvents can be used alone or as a mixed solvent having an arbitrary mixing ratio.
  • a polar solvent is preferably used from the viewpoints of affinity between the raw material compound and the chlorite compound, reactivity, and the like.
  • Preferred polar solvents include water, carboxylic acids, nitriles, ketones, alcohols, esters, carbonates, acid anhydrides, amides, sulfoxides, sulfones, or a mixed solvent thereof. it can. More preferably, water, carboxylic acids, nitriles, amides, sulfones, or a mixed solvent thereof, more preferably water, carboxylic acids, nitriles, amides, or a mixed solvent thereof, more preferably water. , Nitriles, amides, or mixed solvents thereof, particularly preferably water, amides, or mixed solvents thereof.
  • the polar solvent is a solvent having a relative dielectric constant of 5 or more.
  • the relative permittivity is a value described in the Chemical Society of Japan, “Chemical Handbook” (Basic), Rev. 5, I-770-777, Maruzen, 2004.
  • the solvent used in the method of the present invention is preferably a polar solvent having a relative dielectric constant of 5 or more, more preferably a polar solvent having a relative dielectric constant of 7 or more, further preferably a polar solvent having a relative dielectric constant of 17 or more, and a relative dielectric constant of Twenty or more polar solvents are particularly preferred.
  • polar solvent selected from one or more of the group consisting of water, acetic acid, acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, and dimethyl sulfoxide.
  • a polar solvent preferably a polar solvent selected from one or more of the group consisting of water, acetic acid, acetonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, and N-methylpyrrolidone; more preferably A polar solvent selected from one or more of the group consisting of water, acetic acid, acetonitrile, and N, N-dimethylformamide; more preferably, 1 of the group consisting of water, acetonitrile, and N, N-dimethylformamide
  • the form of the product to be isolated is expressed by the form of the ketomalonic acid diester represented by the general formula (2) or the general formula (3).
  • the reaction of the present invention is preferably carried out in the presence of an aqueous solvent, since any desired form of the hydrate of ketomalonic acid diester can be obtained.
  • the amount of the solvent in the reaction of the present invention may be any amount as long as the fluidity of the reaction system can be sufficiently ensured.
  • the general formula (1) In the range of 0.01 to 10 L, preferably 0.05 to 5 L, more preferably 0.2 to 3 L, and still more preferably 0.5 to 2 L with respect to 1 mol of the raw material compound represented by It is not limited to these.
  • the reactor is roughly classified into a batch type (batch type) and a continuous type, and the continuous type reactor is a reactor for continuously feeding raw materials, reacting, and recovering a reaction mixture simultaneously.
  • a flow reactor as a continuous reactor.
  • the flow reactor is a reactor capable of continuously supplying raw materials, continuously performing a reaction, and continuously recovering a reaction mixture.
  • Flow reactors are roughly classified into tubular flow reactors (including tube-type flow reactors) and tank-type flow reactors, and any of them can perform a continuous reaction.
  • the flow reactor of the present invention may be provided with temperature control means for controlling the temperature of the flow reactor.
  • a temperature control unit for heating and cooling may be provided.
  • the temperature controller may be any suitable one, and examples of temperature controllers include baths and jackets, preferably baths.
  • the bus may be of any suitable type, for example, “residence type” or “flow type (circulation type)”, “open type” or “sealed type” It may be.
  • the material of the flow reactor is not particularly limited as long as it is not affected by the raw material and the solvent. Examples thereof include glass (silicon, quartz), porcelain (cordierite, ceramics) and the like.
  • the continuous reaction of the present invention does not exclude implementation in a tank-type flow reactor, but a preferable flow reactor includes a tubular flow reactor.
  • the tubular flow reactor of the present invention may be any one that can continuously circulate a liquid or gas-liquid mixture, and the cross-sectional shape of the tube is circular, rectangular, polygonal, elliptical, etc. Either of these may be sufficient and what combined these shapes may be sufficient.
  • the material of the tube is not particularly limited as long as it is not affected by the raw material and the solvent. For example, metal (various alloys such as titanium, nickel, stainless steel, Hastelloy C), resin (fluororesin), glass ( (Silicon, quartz), porcelain (cordierite, ceramics) and the like can be mentioned.
  • the tubular flow reactor of the present invention may also be provided with temperature control means for controlling the temperature.
  • a temperature control unit for heating and cooling may be provided.
  • the temperature controller may be any suitable one, and examples of temperature controllers include baths and jackets, preferably baths.
  • the bus may be of any suitable type, for example, “residence type” or “flow type (circulation type)”, “open type” or “sealed type” It may be.
  • a flow reaction apparatus provided with a temperature control means is used, temperature control in the reaction apparatus becomes easy and reactions and treatments can be performed more safely.
  • a reaction apparatus such as a spiral type, a shell and tube type, and a plate heat exchange type can be used.
  • a preferable arrangement method includes a tubular reactor in which tubes are arranged in a coil shape.
  • the number of tubes may be one, or a plurality of two or more tubes may be bundled regularly or irregularly at an appropriate interval.
  • description will be made based on a tubular flow reactor having one tube for convenience. However, when it is desired to increase production efficiency, two or more tubes are used according to the description of this specification. It is also possible to use a tubular flow reactor in which the above are bundled regularly or irregularly at appropriate intervals.
  • the tubular flow reactor of the present invention may have a mixer as necessary.
  • the mixer is not particularly limited as long as it has a function capable of continuously mixing two or more fluids such as gas and liquid, or liquid and liquid.
  • the equivalent diameter of the tube in the tubular reactor of the present invention is not particularly limited as long as the liquid or gas-liquid mixture can be continuously circulated, but in the chemical reaction of the present invention, it is gaseous. It is preferable that it is 0.5 mm or more from the viewpoint of production efficiency. Moreover, in the chemical reaction of the present invention, an explosive by-product may be generated, so that a tube having an excessively large equivalent diameter is not preferable.
  • Preferred equivalent diameters include 0.5 mm to 50 mm, 0.5 mm to 30 mm, 0.5 mm to 10 mm, more preferably about 1 mm to 50 mm, 1 mm to 30 mm, 1 mm to 10 mm, and 3 mm to 10 mm.
  • the “equivalent diameter (De)” in the present invention is a value defined by the following equation.
  • De 4 ⁇ Af / Wp (In the formula, Af represents the cross-sectional area of the flow path, and Wp represents the wet edge length.)
  • Af represents the cross-sectional area of the flow path
  • Wp represents the wet edge length.
  • the length of the tube of the tubular flow reactor of the present invention is not particularly limited as long as the raw material compound is heated within a range where a sufficient reaction can be performed or a target treatment is possible, and the equivalent diameter of the tube is not limited. It is possible to design appropriately in consideration of the above. For example, when a tube having an equivalent diameter of about 1 mm to 6 mm is used, 1 m or more, 2 m or more, 3 m or more, 5 m or more, preferably 5 m to 50 m, 5 m to 30 m, 5 m to 20 m, more preferably 7 m to 50 m.
  • a tube having an equivalent diameter of about 6 mm to 10 mm is used, 1 m or more, 2 m or more, 3 m or more, 5 m or more, preferably 5 m to 50 m, 5 m to 40 m, 5 m to 30 m, more preferably 7 m to 50 m. 7 m to 40 m, 7 m to 30 m, more preferably 9 m to 50 m, 9 m to 40 m, and 9 m to 30 m.
  • the flow rate in the flow reactor of the present invention depends on the equivalent diameter of the tube, but is usually 0.5 m / min or more, preferably 1.0 m / min or more, more preferably 5 m / min. Min. Or more, more preferably 5 m / min to 50 m / min, particularly preferably about 10 m / min to 40 m / min.
  • FIGS. 1 to 5 The reaction apparatus of the present invention is illustrated in FIGS. 1 to 5 in order to explain the reaction apparatus, but the reaction apparatus of the present invention is not limited thereto.
  • FIG. 1 is the most typical example of the reactor of the present invention.
  • the three raw material compounds are supplied from the raw material supply ports 1 to 3, respectively.
  • three kinds of raw material compounds are shown to be supplied from different supply ports, but it is not always necessary to supply the three kinds separately.
  • malonic acid diester, carboxylic acid compound, and chlorous acid compound are respectively supplied from the supply ports 1 to 3 to the mixer 11 and mixed.
  • the order of mixing is not particularly limited, and the carboxylic acid compound and the chlorite compound may be mixed, and then the malonic acid diester may be mixed with this mixture, or the malonic acid diester and carboxylic acid compound may be mixed, Subsequently, a chlorous acid compound can also be mixed with this mixture.
  • the malonic acid diester and the carboxylic acid compound are mixed in advance, the mixture is supplied from the supply port 1, and the aqueous solution of the chlorite compound is supplied from the supply port 2 and mixed. . In this case, the supply port 3 is not used.
  • the malonic acid diester, the carboxylic acid compound, and the chlorite compound can be mixed in the molar ratio described above.
  • the molar ratio thereof can be selected in the range of 1 mol: 0.01 to 50 mol: 1 to 15 mol.
  • This mixing process is the same in FIGS. 2 to 5 below.
  • the mixture mixed in the mixer 11 is supplied to the tubular flow reactor 12 to be reacted.
  • the reaction mixture that has finished the reaction is recovered from the outlet 4.
  • the tubular flow reactor 12 can be conceptually divided into a temperature raising part and a reaction part.
  • the temperature raising portion although it depends on the equivalent diameter and flow velocity of the tube, the length of the tube is 2 m or more, preferably 3 m or more, more preferably 5 m or more. Note that if the temperature of the raw material compound is increased before the raw material compound is introduced into the tubular flow reactor, the temperature raising portion will not be necessary.
  • about 2 m to 10 m, preferably 3 m to 7 m, and more preferably about 3 m to 5 m is the length of the temperature raising portion required for temperature raising.
  • the length of the tube is required to be 1 m or more, 2 m or more, 3 m or more, 5 m or more, or 10 m or more. More specifically, for example, about 3 m to 20 m, 3 m to 15 m, 3 m to 10 m, or about 4 m to 20 m, 4 m to 15 m, or 4 m to 10 m is the length of the reaction part necessary for the reaction.
  • the equivalent diameter of the tube of the tubular flow reactor 12 is 0.5 mm to 50 mm, 0.5 mm to 30 mm, 0.5 mm to 10 mm, preferably 1 mm to 50 mm, 1 mm to 30 mm, 1 mm to 10 mm, 3 mm to 10 mm. Is mentioned.
  • the length of the tube of the tubular flow reactor 12 is 5 m or more, preferably 5 m to 50 m, 5 m to 30 m, 5 m to 20 m, preferably 7 m to 50 m, 7 m to 30 m, 7 m to 20 m, more preferably 9 m to Examples include ranges of 50 m, 9 m to 30 m, and 9 m to 20 m.
  • the flow rate of the tubular flow reactor 12 is preferably 5 m / min or more, more preferably 5 m / min to 50 m / min, still more preferably about 10 m / min to 40 m / min.
  • the residence time in the tubular flow reactor 12 is usually 10 seconds or longer, preferably 10 seconds to 200 seconds, preferably 10 seconds to 150 seconds, 10 seconds to 120 seconds, although it depends on the flow rate and the equivalent diameter. Seconds, more preferably 15 seconds to 200 seconds, 15 seconds to 150 seconds, and 15 seconds to 120 seconds.
  • the tubular flow reactor 12 is provided with a temperature control unit (for example, a bus for controlling the temperature), and a preferable temperature control unit (for example, a bus for controlling the temperature) has a temperature of 60. C.
  • the temperature of the mixture in the tubular flow reactor 12 is, for example, 60 ° C. to 250 ° C., 80 ° C. to 250 ° C., 90 ° C. to 250 ° C., preferably 60 ° C. to 200 ° C., 80 ° C. to 200 ° C., 90 ° C.
  • the temperature control there is a method of measuring the temperature of the mixture in the tubular flow reactor 12 and adjusting the temperature of the temperature control unit so that this temperature becomes the above-mentioned temperature.
  • the average pressure in the tubular flow reactor 12 in the present invention is, for example, 0.03 MPa to 1.0 MPa, 0.03 MPa to 0.9 MPa, preferably 0.05 MPa to 0.8 MPa, 0.05 MPa to 0.7 MPa, 0.04 MPa to 1.0 MPa, 0.04 MPa to 0.9 MPa, more preferably 0.09 MPa to 0.3 MPa, 0.1 MPa to 0.3 MPa, 0.04 MPa to 0.8 MPa, 0.04 MPa A range of up to 0.7 MPa can be mentioned, but is not limited thereto.
  • FIG. 1 shows an example in which there is one flow reactor
  • the flow reactor can be divided into two or more and operated.
  • FIG. 2 shows an example in which two flow reactors 22 and 23 are used.
  • the mixture of raw material compounds mixed in the mixer 21 is supplied to the first flow reactor 22 and then to the flow reactor 23.
  • the temperature of the mixture is raised to the reaction temperature.
  • the heated mixture can be supplied to the next flow reactor 23 to be reacted, and the reaction mixture can be recovered from the outlet 4.
  • the first flow reactor 22 is a flow reactor for the temperature raising section, preferably a tubular flow reactor, and the length of the tube is 2 m or more, depending on the equivalent diameter and flow rate of the tube, Preferably it is 3 m or more, more preferably 5 m or more. More specifically, for example, it is about 2 m to 10 m, preferably 3 m to 7 m, more preferably about 3 m to 5 m.
  • the next flow reactor 23 is a flow reactor for the reaction section, preferably a tubular flow reactor, and the length of the tube depends on the equivalent diameter and flow rate of the tube, but it is 3 m or more, 5 m More than 10 m or more is necessary.
  • reaction conditions such as temperature conditions are the same as those in FIG.
  • reaction conditions such as temperature conditions are the same as those in FIG.
  • the order of the mixer 21 and the first flow reactor 22 is changed. That is, before mixing the raw material compounds, the temperature of each raw material compound is raised by the flow reactor 22, and then the heated raw material compounds are mixed to react them. There is also a method of supplying the mixture to the flow reactor 23. However, this not only complicates the apparatus but also raises the temperature of the chlorous acid compound alone, which is not a preferred embodiment.
  • FIG. 3 shows an example in which a flow reactor 33 for the aging process of the apparatus shown in FIG. 1 is further provided.
  • the operation of the mixer 31 and the flow reactor 32 until they are supplied to the flow reactor 33 for the aging process is the same as in the case of FIG.
  • the reaction between malonic diester and chlorite is divided into two or more stages, the first stage reaction needs to be heated to high temperature, but the last stage reaction need not necessarily be heated. It was estimated that there was no. This is presumably because the reaction at the first stage is an exothermic reaction, and after the exothermic reaction proceeds, the reaction temperature can be maintained by the reaction heat of the reaction mixture without heating from the outside.
  • the flow reactor 33 is preferably a tubular flow reactor.
  • the equivalent diameter of the tube of the tubular flow reactor 33 may be the same as the equivalent diameter of the tube of the tubular flow reactor 32, but is preferably smaller than that of the tube of the tubular flow reactor 32. It may be about half of the equivalent diameter.
  • the length of the tube of the tubular flow reactor 33 is preferably about 3 m to 30 m, 3 m to 15 m, or 3 m to 10 m.
  • the flow rate of the tubular flow reactor 33 is substantially the same as the flow rate of the tubular flow reactor 32.
  • the tubular flow reactor 33 is not particularly required to have a temperature control unit (for example, a bath for controlling the temperature), but it is preferable to provide a temperature control unit for cooling.
  • a preferred temperature control unit is a bath, more preferably a water-cooled bath.
  • the type of the bath may be any appropriate type, for example, “residence type” or “flow type (circulation type)”, and in addition, for example, “open type” Or “sealed”.
  • water cooling uses, for example, a liquid composed of a single component such as water and alcohol as an antifreeze solution, or a mixed liquid as an antifreeze solution such as an aqueous alcohol solution, a saline solution, and an aqueous calcium chloride solution.
  • alcohol include ethylene glycol, propylene glycol and the like.
  • FIG. 4 shows an example in which a flow reactor 44 for the quenching process is further provided in the apparatus shown in FIG.
  • the operations up to the mixer 41, the flow reactor 42, and the flow reactor 43 until they are supplied to the flow reactor 44 for the quenching process are the same as in the case of FIG.
  • the target reaction is completed by the apparatus shown in FIG. 3, the reaction mixture contains unreacted raw material compounds, explosive substances by-produced, and the like. It is this quenching process that safely processes these materials. That is, this quenching step is a step of decomposing unreacted chlorite and by-product chlorine dioxide.
  • the chemical formula of the decomposing reaction estimated when an aqueous solution of Na 2 SO 3 and NaOH is used as the quenching solution is shown below.
  • the flow reactor 44 is preferably a tubular flow reactor.
  • the quench liquid is not particularly limited as long as it contains an unreacted chlorite and by-product chlorine dioxide in the reaction mixture, and preferred quench liquid includes, for example, sulfite.
  • the quenching liquid is fed to the reaction tube by, for example, a T-shaped tube or a Y-shaped tube and mixed.
  • the T-shaped tube and Y-shaped tube for mixing are preferably provided in front of the tubular flow reactor 44, but are not limited thereto.
  • the equivalent diameter of the tube of the tubular flow reactor 44 may be the same as the equivalent diameter of the tube of the tubular flow reactor 42, but is preferably smaller than that of the tube of the tubular flow reactor 42. It may be about half of the equivalent diameter.
  • the tube length of the tubular flow reactor 44 is preferably about 3 m to 30 m, 3 m to 15 m, or 3 m to 10 m.
  • the flow rate of the tubular flow reactor 44 is substantially the same as the flow rate of the tubular flow reactor 42.
  • the tubular flow reactor 44 is not particularly required to have a temperature control unit (for example, a bus for controlling the temperature), but it is preferable to provide a temperature control unit for cooling.
  • a preferred temperature control unit is a bath, more preferably a water-cooled bath.
  • FIG. 5 shows an example in which the apparatus shown in FIG. 4 is further provided with a separation / purification apparatus 55 for the separation process of the object.
  • the operations up to the mixer 51, the flow reactor 52, the flow reactor 53, and the flow reactor 54 in the quenching process until they are supplied to the separation and purification device 55 are the same as in the case of FIG.
  • the treatment by the separation / purification device 55 may be carried out by a batch type (batch type) or by using a tank-type flow reactor.
  • the product is represented by the general formula (3 It is obtained in the form of a ketomalonic acid diester hydrate represented by formula (2), and is obtained in the form of a ketomalonic acid diester represented by the general formula (2) when carried out under non-aqueous conditions.
  • the reaction since the reaction is carried out in the presence of an aqueous solvent, the product is obtained in the form of a ketomalonic acid diester hydrate represented by the general formula (3).
  • the ketomalonic acid diester hydrate is subjected to a dehydration treatment such as azeotropic dehydration with toluene.
  • the hydrated body can be dehydrated and easily converted into a ketomalonic acid diester represented by the general formula (2). That is, in the method of the present invention, by appropriately selecting the reaction solvent and the post-treatment method after the reaction, the form of the isolated product is changed to the form of the ketomalonic acid diester represented by the general formula (2).
  • the reaction of the present invention is preferably carried out in the presence of an aqueous solvent, since any desired form of the ketomalonic acid diester hydrate represented by the general formula (3) can be obtained.
  • an aqueous solvent since any desired form of the ketomalonic acid diester hydrate represented by the general formula (3) can be obtained.
  • separating the ketomalonic-acid diester hydrate represented by General formula (3) from a reaction mixture the method of performing an extraction process using extraction solvents, such as ethyl acetate, etc. are mentioned.
  • the continuous reaction apparatus of the present invention is a continuous reaction apparatus comprising a raw material compound mixer and a flow reactor for continuous reaction, preferably a tubular flow reactor, comprising a malonic acid diester and a carboxylic acid compound. And a continuous reaction apparatus for producing a corresponding ketomalonic acid diester or a hydrate thereof using a chlorous acid compound as a raw material compound.
  • the continuous reaction apparatus of the present invention has a relatively large equivalent diameter of 0.5 mm to 0.5 mm in order to efficiently produce a ketomalonic acid diester or a hydrated body thereof.
  • the second characteristic is that it is 50 mm.
  • the third feature is that it has a temperature raising portion for raising the temperature of the mixture of raw materials in a short time.
  • the temperature raising part is a part of the flow reactor, and there may be a temperature rising part and a reaction part in one flow reactor, or a flow reaction for the temperature rising part and the reaction part.
  • the vessels may be arranged continuously or separately.
  • Conversion rate The conversion rate was calculated by the following method. Conversion rate calculation method: Calculation was performed using a value obtained by subtracting the solvent peak from the area percentage value obtained by gas chromatography (GC) analysis.
  • GC analysis conditions Equipment: GC-2010 (manufactured by Shimadzu Corporation) Column: DB-1 (Agilent J & W) Temperature rising condition: 80 ° C. (0 min) ⁇ 10 ° C./min ⁇ 200° C. (2 min) Injection temperature: 300 ° C Detector temperature: 320 ° C Detection method: FID Analytical sample preparation method: A small amount of the reaction mixture obtained by the method of the present invention was sampled, and an appropriate amount of ethyl acetate was added thereto. The obtained sample was sufficiently stirred and then allowed to stand. The upper organic layer was separated and used as an analytical sample for gas chromatography.
  • the pressure was measured by the following method. An average value of pressure in a steady state (reaction stable stage) was calculated from a data group obtained from a diaphragm type pressure gauge provided in the reactor. Pressure gauge: Diaphragm pressure gauge PK-1 and / or diaphragm digital pressure gauge DDIT (both manufactured by Daiichi Keiki Seisakusho Co., Ltd.).
  • Example 1 Metal using microreactor
  • Two microreactors manufactured by YMC, mixer helix type
  • the discharge port of the first microreactor was connected to one supply port of the second microreactor using a tube.
  • a Teflon (registered trademark) tube having a diameter of 1.0 mm and a length of 9 m was connected to the discharge port of the second microreactor, and the Teflon (registered trademark) tube was used as a reaction tube.
  • the 9 m Teflon (registered trademark) tube was immersed in a silicone oil bath so that it could be heated.
  • the first microreactor is heated to 80 ° C., the silicon oil bath is heated to 130 ° C., and 25% sodium chlorite aqueous solution and acetic acid are supplied from the two supply ports of the first micro reactor using syringe pumps, respectively. Then, diethyl malonate was supplied without solvent from another supply port of the second microreactor using a syringe pump.
  • the feed ratio was such that the volume ratio of diethyl malonate: acetic acid: 25% sodium chlorite aqueous solution was 1: 3: 3.
  • the flow rate in the Teflon tube was 0.74 m / min. When the reaction mixture emerging from the outlet of the Teflon (registered trademark) tube was analyzed by gas chromatography, the conversion of diethyl malonate was 63.70%.
  • Example 2 Using the apparatus used in Example 1, neither the first microreactor nor the second microreactor was heated to room temperature, and the silicone oil bath was heated to 95 ° C. 25% sodium chlorite aqueous solution and acetic acid are respectively supplied from the two supply ports of the first microreactor with the use of a syringe, and diethyl malonate is solvent-free using a syringe pump from the other supply port of the second microreactor. Supplied with. The feed ratio was such that diethyl malonate: acetic acid: 25% aqueous sodium chlorite solution was 1: 1: 10 by volume. The flow rate in the Teflon tube was 1.27 m / min. When the reaction mixture emerging from the outlet of the Teflon (registered trademark) tube was analyzed by gas chromatography, the conversion of diethyl malonate was 86.50%.
  • Comparative Example 1 Two microreactors (manufactured by YMC, mixer helix type) were prepared, and the discharge port of the first microreactor was connected to one supply port of the second microreactor using a tube.
  • the Teflon (registered trademark) tube connected in Example 1 was not used.
  • the first and second microreactors are heated to 80 ° C., and 25% aqueous sodium chlorite solution and acetic acid are respectively supplied from the two supply ports of the first microreactor using a syringe pump. Diethyl malonate was supplied without solvent using a syringe pump from another supply port.
  • the supply ratio was 1: 1: 1 by volume ratio of diethyl malonate: acetic acid: 25% sodium chlorite aqueous solution.
  • the flow rate was 0.32 m / min.
  • Comparative Example 2 In Comparative Example 1, the treatment was performed in the same manner as in Comparative Example 1 except that the second microreactor was heated to 120 ° C. and the flow rate was 0.96 m / min. It was only 1.42%.
  • Examples 3 to 6 In order to make one microreactor, a mixture of acetic acid and diethyl malonate in a weight ratio of diethyl malonate: acetic acid of 5: 1 was prepared in advance from one supply port, and this mixture was supplied. A 25% sodium chlorite aqueous solution was supplied from the other supply port of the microreactor. A tube having a diameter of 1 mm and a length of 9 m was connected to the discharge port of the microreactor in the same manner as in Example 1 so that it could be heated with a silicon oil bath. The respective conversion rates were measured by changing the molar ratio of sodium chlorite to diethyl malonate, flow rate, microreactor temperature, and bath temperature. The results are shown in Table 1 below.
  • Example 7 In Examples 1 to 6, a commercially available 25% aqueous sodium chlorite solution was used, but it was examined whether the reaction would proceed even if it was diluted and used as a 15% aqueous sodium chlorite solution. Using the same apparatus as in Example 3, the temperature of the microreactor was 20 ° C., the temperature of the bath was 80 ° C., and diethyl malonate: acetic acid: 15% sodium chlorite aqueous solution in a volume ratio of 1: 0.2. The reaction was conducted in the same manner as in Example 3 so that 6.7 was obtained. The average flow rate was 3.02 m / min. The conversion was 99.46%, and the desired diethyl ketomalonate could be obtained from the reaction mixture in a yield of 85.0%.
  • Example 8 The reaction was conducted in the same manner as in Example 7 except that the microreactor was kept at room temperature. The conversion was 92.89%.
  • Example 9 From the above results, the reaction did not occur in the microreactor and only had a function for mixing. Therefore, the mixing was performed using a T-shaped tube instead of the microreactor.
  • a plunger pump for HPLC was used instead of the syringe pump.
  • the reaction tube was also set to 20 m, and a 10 m tube was attached to the tip of the reaction tube for further cooling (cooling).
  • the temperature of the bath of the reaction tube was set to 80 ° C., and the molar ratio of sodium chlorite to diethyl malonate was set to 2.0, which was supplied to the T-tube.
  • the average flow rate was 12.01 m / min.
  • the conversion was 97.36%.
  • Example 10 In order to confirm whether or not the reaction in a plurality of reaction tubes was possible, the mixed raw material mixture was branched into two lines by a T-shaped tube, and the same operation as in Example 9 was performed. As a result, each conversion was 96.34%. This indicates that the method of the present invention can be branched into a plurality of reaction tubes and allowed to react simultaneously in each reaction tube.
  • Example 11 The reaction was carried out in the same manner as in Example 9 except that the length of the reaction tube was 10 m, the temperature of the reaction tube bath was 110 ° C., and a 10% sodium chlorite aqueous solution was used. The average flow rate was 5.01 m / min. The conversion was 97.29%. Although a small-scale explosion seems to have occurred in the reaction tube, it was at a level with no problems and could be operated safely.
  • Example 12 The reaction was carried out in the same manner as in Example 11 except that the 10 m cooling pipe at the end of the reaction pipe was divided into 5 m and 5 m, and one 5 m portion was not cooled but water-cooled. The conversion rate was 99.13%. Similar to Example 11, a number of small explosions were observed.
  • the reaction of the present invention does not proceed, but by providing an induction period until a reaction occurs in a long reaction tube (providing a temperature raising part), It has been found that practical conversion is achieved. However, it was found that an explosion occurred when the bath temperature was raised, although it was small. Therefore, a reaction was attempted using a metal tubular flow reactor having excellent pressure resistance.
  • An outline of the apparatus is shown in FIG.
  • the container 1 contains a raw material sodium chlorite aqueous solution
  • the container 2 contains a mixture of the raw material diethyl malonate and acetic acid in a weight ratio of 5: 1 (molar ratio 1: 0.5). ing.
  • each supplied raw material is mixed by the mixer 61.
  • the mixed mixture is introduced into a tubular flow reactor 62 made of a titanium tube having an inner diameter of 3.15 mm.
  • the tubular flow reactor 62 is accommodated in a bus 64.
  • the reaction mixture discharged from the tubular flow reactor 62 is then introduced into a tubular flow reactor 63 which is also made of a titanium tube having an inner diameter of 3.15 mm.
  • the tubular flow reactor 63 is accommodated in a water bath 65 for water cooling.
  • the temperature of the water cooling heat medium was set to 25 ° C. unless otherwise specified.
  • the reaction mixture discharged from the tubular flow reactor 63 is accumulated in the container 4 through the pipe.
  • the tubes of the tubular flow reactor 62 and the tubular flow reactor 63 are both coiled.
  • the following production experiment was conducted using this reaction apparatus. The results of the experiment are shown in the following tables.
  • the “molar ratio” in each table is the molar ratio of sodium chlorite to diethyl malonate
  • the “average flow rate” is the average value of the flow rate in the entire tube
  • the unit is m / min.
  • the length of the reaction tube is the length of the tube in the tubular flow reactor 62
  • the heat transfer time (seconds) indicates the time (second) that is staying in the tubular flow reactor 62
  • the “length of the cooling pipe” indicates the length of the pipe in the tubular flow reactor 63.
  • Examples 13-15 The concentration of sodium chlorite aqueous solution used as a raw material was examined. The reaction was performed using sodium chlorite aqueous solutions having concentrations of 25%, 15%, and 10%. The results are shown in Table 2 below.
  • the bath temperature should be 80 ° C. or higher, preferably 100 ° C. or higher.
  • the flow rate was increased and the tube length of the tubular flow reactor 62 was set to 10 m, and the reaction in a short time at a high temperature was examined.
  • Example 29-35 an experiment was conducted on the pressure in the tube using a tube-type flow reactor 62 having a tube length of 10 m.
  • Example 34 a T-shaped connector is used instead of the mixer of the mixer 61.
  • Table 5 The results are shown in Table 5 below.
  • Examples 40-52 Next, the influence of the molar ratio of sodium chlorite to diethyl malonate was examined. Examples 40 to 45 are cases where the bath temperature is 102 ° C., and Examples 46 to 50 are cases where the bath temperature is 112 ° C. In Examples 51 and 52, the bath temperature is 102 ° C., but the flow rate is slow. The results are shown in Table 7 below.
  • Example 53 Next, an experiment was conducted in which the length of the tube of the tubular flow reactor 62 was 5 m. In Example 53, the length of the tube was 10 m. In Examples 54 to 56, the length was 5 m under the same conditions. However, in order to make the residence time 10 seconds or more, the flow rate is slightly slow. The results are shown in Table 8 below.
  • Examples 57-60 In the apparatus up to Example 56, the reaction mixture cooled in the tubular flow reactor 63 was directly discharged. However, this reaction mixture contains not only unreacted sodium chlorite but also by-produced gaseous chlorine dioxide and is discharged at the same time. If gaseous chlorine dioxide is discharged and full of high-concentration chlorine dioxide, there is a risk of explosion. Also, low concentrations of chlorine dioxide are useful as bleaching agents, bactericides and disinfectants, but the emission of high concentrations of chlorine dioxide may not be favorable to the environment. Therefore, it was decided to provide means for quenching these sodium chlorite and chlorine dioxide.
  • the reactor used in this example is shown in FIG.
  • the container 1 contains a raw material sodium chlorite aqueous solution
  • the container 2 contains a mixture of the raw material diethyl malonate and acetic acid in a weight ratio of 5: 1 (molar ratio 1: 0.5). ing.
  • These raw materials are supplied via pumps 79 and 78, respectively.
  • Each supplied raw material is mixed by the mixer 71.
  • the mixed mixture is introduced into a tubular flow reactor 72 made of a titanium tube having an inner diameter of 3.15 mm.
  • the tubular flow reactor 72 is accommodated in a bath 75.
  • the reaction mixture discharged from the tubular flow reactor 72 is then introduced into a tubular flow reactor 73 which is also made of a titanium tube having an inner diameter of 3.15 mm.
  • the tubular flow reactor 73 is accommodated in a water bath 76 for water cooling.
  • the quench mixture from the container 5 is mixed with the reaction mixture discharged from the tubular flow reactor 73 by a T-shaped tube and introduced into the tubular flow reactor 74.
  • the tubular flow reactor 74 is accommodated in a water bath 77 for water cooling. Then, in the tubular flow reactor 74, unreacted sodium chlorite in the reaction mixture and by-produced chlorine dioxide react with the components of the quench liquid to decompose these sodium chlorite and chlorine dioxide. To do.
  • the processing liquid discharged from the tubular flow reactor 74 is accumulated in the container 4 through the piping.
  • Example 57 sodium sulfite was mixed with a sodium sulfite aqueous solution having a molar ratio of 0.57 with respect to sodium chlorite as a quenching liquid and cooled in a water bath 77 (25 ° C.). No gas was detected. However, in Example 58, when the same amount of sodium sulfite aqueous solution as in Example 57 was mixed and the water bath 77 was treated under ice-cooled (5 ° C.) conditions, chlorine dioxide gas was detected from this treated solution.
  • Example 59 since sodium sulfite alone is not necessarily sufficient, in Example 59, as a quenching solution, sodium sulfite is 0.38 in molar ratio with respect to sodium chlorite, and sodium hydroxide is changed to sodium chlorite. A mixed aqueous solution containing 0.23 in molar ratio was used. The water bath 77 was ice-cooled (5 ° C.) as in Example 58, but chlorine dioxide gas was not detected from this treatment solution.
  • Example 60 a mixed aqueous solution containing sodium sulfite in a molar ratio of 0.51 with respect to sodium chlorite and sodium hydroxide in a molar ratio of 0.31 with respect to sodium chlorite is used as a quenching solution,
  • chlorine dioxide gas was not detected from the treatment liquid as in Example 59.
  • Chlorine dioxide gas was quantified by oxidation-reduction titration (detection limit 54.6 ppm), and sodium chlorite was quantified by using a sodium chlorite pack test (Kyoritsu Riken, type WAK-NaClO 2 ). (Detection limit 5 ppm).
  • Example 57 to 60 the temperature of the reaction mixture was measured near the outlet of the tubular flow reactor 72.
  • the temperature of the reaction mixture in the vicinity of the outlet of the tubular flow reactor 72 was in the range of about 95 to 150 ° C. after the start of operation, and the steady operation was possible at almost 140 ⁇ 5 ° C.
  • the bath is used for heating at least at the start of the reaction. However, it was estimated that the latter half of the reaction tube was functioning for cooling.
  • Examples 57 to 60 a tube having a diameter of 3.15 mm was used.
  • Examples 61 to 63 a tube having a diameter of 6 mm, which is about twice as large, was used. Even in the case of a tube having a diameter of 6 mm, the reaction proceeded similarly in a safe manner, and very good results were obtained. This indicates that a large amount of ketomalonic acid diester can be produced on an industrial scale in the continuous production method of the present invention.
  • the method of the present invention can be used as a raw material when producing a pyrazin-2-one-3-carboxylic acid ester derivative by reacting with a diamine, and as a raw material compound when producing a quinoxalinone derivative from an aromatic diamine.
  • the present invention provides a continuous method for producing a ketomalonic acid compound such as a ketomalonic acid diester or a hydrate thereof, which is used in the production of food and agricultural chemicals.
  • the method of the present invention is suitable for a method for industrially producing a large amount of an efficient, safe and stable ketomalonic acid diester represented by the general formula (2) or a hydrate thereof, including pharmaceuticals and agricultural chemicals. Useful in the organic chemical industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 本発明は、工業的に有用なケトマロン酸ジエステル等のケトマロン酸化合物又はその抱水体を、工業的な規模で安全に安定して連続的に製造する方法を提供することにある。 本発明は、マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を原料化合物として、これらの原料化合物を混合して、これらの混合物を流通反応器に連続的に供給して、対応するケトマロン酸ジエステル又はその抱水体を連続して製造する方法、及びそのための連続製造装置に関する。

Description

流通反応器を用いたケトマロン酸化合物の連続製造方法
 本発明は、マロン酸ジエステル等のマロン酸化合物を亜塩素酸塩と反応させることによるケトマロン酸ジエステル等のケトマロン酸化合物を製造するための連続製造方法に関する。
 ケトマロン酸ジエステルは、ケト基を有するマロン酸の誘導体であり有機合成の重要な中間体となる化合物類である。特に、ケトマロン酸ジエステルは、ジアミン類との反応によるピラジン-2-オン-3-カルボン酸エステル誘導体の製造における原料として有用な化合物である(特許文献1-4、及び非特許文献1-2参照)。この反応は、特に芳香族ジアミンからキノキサリノン誘導体を製造する方法として、医薬及び農薬等の製造に利用されている。
 従来、マロン酸ジエステルからのケトマロン酸ジエステルの合成方法として、直接的方法又は間接的方法が報告されている。しかし、それらのいずれも問題点がある。マロン酸ジエステルからのケトマロン酸ジエステルの合成方法として、例えば、マロン酸ジエステルを、二酸化セレン(例えば、非特許文献3参照)、三酸化二窒素(例えば、非特許文献4参照)、三酸化クロム(例えば、非特許文献6参照)等の酸化剤により酸化することによるケトマロン酸ジエステルを生成する方法が知られている。しかし、それらのいずれも試薬の重篤な毒性又は扱い難さ等の問題点がある。
 また、マロン酸ジエステルの活性メチレン部分が臭素により置換された化合物を硝酸銀と反応させる方法(例えば、非特許文献7参照)、マロン酸ジエステルの活性メチレン部分がアゾ基により置換された化合物をジメチルジオキシランと反応させる方法(例えば、非特許文献8参照)、マロン酸ジエステルの活性メチレン部分がメチレン基により置換された化合物をオゾンと反応させる方法(例えば、非特許文献5及び9参照)、マロン酸ジエステルの活性メチレン部分が水酸基により置換された化合物を貴金属触媒の存在下で反応させる方法(例えば、特許文献5参照)等のケトマロン酸ジエステルを生成する方法も知られている。しかし、これらの方法ではマロン酸ジエステルよりはるかに高価なタルトロン酸を原料として用いるという難点、又はマロン酸ジエステルの活性メチレン部分をあらかじめ修飾する必要がある。したがって、これらの方法では経済的及び操作的に問題点がある。加えて、これらの方法では高価な試薬を用いる、特殊な反応剤を用いる、高価な触媒を用いる、又は遷移金属を用いる等の問題点がある。
 さらに、マロン酸ジエステルを亜塩素酸塩と反応させる方法が報告されている(特許文献6参照)。特許文献6に記載された方法は、特許文献6以前に知られていた従来技術よりも優れているが、工業的な規模での実施には多くの課題があることが見出された。
米国特許第6329389号明細書 米国特許第6348461号明細書 米国特許第4296114号明細書 WO 2005/21547号公報 特開平8-151346号公報 WO 2010/150548号公報
J. W. Clark-Lewis, et al., J. Chem. Soc., 1957, 430-439. Fumio Yoneda, et al., J. Chem. Soc. Perkin Transactions 1, 1987, 75-83. S. Astin, et al., J. Chem. Soc., 1933, 391-394. A. W. Dox, Organic Syntheses, 4, 1925, 27-28. Encyclopedia of Reagents for Organic Synthesis, 3711 (2001). Liang Xian liu et al., Chinese Chemical Letters, 3, 1992, 585-588. Chem. Abstr., 123:256144. Antonio Saba, Synthetic Communications, 24, 695-699 (1994). Lutz F., et al., Organic Syntheses, 71,214-219 (1993).
 本発明者らは、前記特許文献6に記載の方法による工業的な製造方法を検討してきたところ、スケールアップした工業的規模での実施においては爆発の可能性があり、環境汚染のみならず、安全で安定した工業的な規模での操業は非常に困難であった。本発明者らは、爆発の原因について詳細に検討してきたところ、反応系に多量の爆発性の二酸化塩素が発生していることが判明し、この二酸化塩素により爆発が生じることを見出した。また、反応中に発生する二酸化塩素を除去しながら反応を行うと、収率が著しく低下することから、反応系から二酸化塩素を除去しただけでは問題を解決することはできなかった。
 そこで、本発明者らは、マイクロリアクタを用いたマイクロスケールでの連続反応を試みた。マイクロリアクタでの反応は小規模であり、爆発しても小規模な爆発に止まり比較的安全であるだけでなく、混合性能などで回分式(バッチ式)に優る。そこで、溝径約200マイクロメートルのマイクロリアクタを用いて、前記特許文献6に記載の方法を行ってみたが、転化率は0%であり、好ましい結果は得られなかった。反応温度を100℃以上としても転化率は約1%程度に過ぎなかった。
 本発明の目的は、工業的に有用なケトマロン酸ジエステル等のケトマロン酸化合物又はその抱水体を、工業的な規模で連続的に製造する方法及びそのための製造装置を提供することにある。
 本発明の他の目的は、工業的に有用なケトマロン酸ジエステル等のケトマロン酸化合物又はその抱水体を、工業的な規模で安全に安定して連続的に製造する方法及びそのための製造装置を提供することにある。
 本発明のさらに他の目的は、工業的に有用なケトマロン酸ジエステル等のケトマロン酸化合物又はその抱水体を、工業的な規模で安全に安定して、かつ高転化率又は高収率で連続的に製造する方法及びそのための製造装置を提供することにある。
 上記のような状況に鑑み、マロン酸ジエステルを亜塩素酸塩と反応させて、ケトマロン酸ジエステル等のケトマロン酸化合物又はその抱水体を工業的に大量に製造する方法について、本発明者らがさらに鋭意研究を重ねた結果、この化学反応には誘導期が存在し、単に原料物質を混合しただけでは短時間の滞留時間での反応は十分に進行しないこと、さらに、比較的小さな反応管を用いた場合には、高温で反応を行っても大規模な爆発の危険性が少なく、高温で短時間の滞留時間で十分に反応が進行することを見出した。そして、マロン酸ジエステルと亜塩素酸塩との反応は、2段階又はそれ以上の段階に分かれており、最初の段階の反応を短時間で開始させるためには高温にする必要が有り、原料物質を短時間で高温に昇温することにより、短い滞留時間内で効率よく流通反応器により連続的に反応を行うことができることを見出し、本発明を完成するに至った。
 また、この化学反応では、反応中にガスが発生し、反応混合物が気液混合物として存在していると考えられるにもかかわらず、意外にも、比較的直径の大きな反応管で反応を進行させても安全で安定した連続反応を行うことができることを見出した。
 即ち、本発明は、マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を原料化合物として、これらの原料化合物を混合して、これらの混合物を流通反応器に連続的に供給して、対応するケトマロン酸ジエステル又はその抱水体を連続して製造する方法に関する。
 本発明は、前記の流通反応器が、1つ又は2つ以上の管型流通反応器である、前記連続製造方法に関する。
 より詳細には、本発明は、
(A)マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を混合する工程、
(B)混合された混合物を、流通反応器に供給する工程、並びに、
(C)流通反応器で混合物を反応させる工程、
を含有してなる、対応するケトマロン酸ジエステル又はその抱水体を連続して製造する方法に関する。
 本発明は、前記の流通反応器が、1つ又は2つ以上の流通反応器、より詳細には管型流通反応器である、前記連続製造方法に関する。
 また、本発明は、前記(A)から(C)の工程に、さらに、
(D)混合物を反応させる工程で得られた反応混合物を、さらに熟成させる工程、
を包含してなる、対応するケトマロン酸ジエステル又はその抱水体の連続製造方法に関する。
 本発明は、(D)の熟成させる工程が、1つ又は2つ以上の管型流通反応器で行われる、前記連続製造方法に関する。
 また、本発明は、(D)の熟成させる工程が、空冷又は水冷などによる冷却工程である、前記連続製造方法に関する。
 また、本発明は、前記(A)から(C)の工程、又は前記(A)から(D)の工程に、さらに、
(E)反応をクエンチする工程、
を包含してなる、対応するケトマロン酸ジエステル又はその抱水体の連続製造方法に関する。
 本発明は、(E)のクエンチする工程が、T字管などによりクエンチ液を液送されて行われる、前記連続製造方法に関する。
 また、本発明は、(E)のクエンチする工程が、1つ又は2つ以上の管型流通反応器で行われる、前記連続製造方法に関する。
 本発明は、(E)のクエンチする工程が、空冷又は水冷などによる冷却工程である、前記連続製造方法に関する。
 そして、本発明は、クエンチ液が亜硫酸塩及び/又はアルカリ金属水酸化物の水溶液である、前記連続製造方法に関する。
 また、本発明は、前記(A)から(C)の工程、前記(A)から(C)及び(E)の工程、前記(A)から(D)の工程、又は前記(A)から(E)の工程に、さらに、
(F)得られた反応混合物からケトマロン酸ジエステル又はその抱水体を分離する工程、
を包含してなる、対応するケトマロン酸ジエステル又はその抱水体の連続製造方法に関する。
 本発明は、(F)の分離する工程が、抽出溶媒を用いた抽出操作により行われる、前記連続製造方法に関する。
 また、本発明は、(E)の分離する工程が、さらに精製する工程を包含する、前記連続製造方法に関する。
 より詳細には、本発明は、前記マロン酸ジエステルが、次の一般式(1)
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、同一又は相異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい芳香族炭化水素基、若しくは置換基を有していてもよい芳香族複素環基を示すか、又は、2つのRが互いに結合して隣接する酸素原子と共に環を形成してもよい。)
で表されるマロン酸ジエステルである、前記連続製造方法に関する。
 また、本発明は、前記対応するケトマロン酸ジエステルが、次の一般式(2)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは前記と同じ意味を示す。)
で表されるケトマロン酸ジエステルである、前記連続製造方法に関する。
 さらに、本発明は、
(G)マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を混合するための混合部、
(H)混合された混合物を、昇温させるための昇温部、並びに、
(I)昇温部で昇温された混合物を反応させるための反応部、
を含有してなる、マロン酸ジエステルを原料化合物として対応するケトマロン酸ジエステル又はその抱水体を連続して製造するための連続製造装置であって、(H)の昇温部及び(I)の反応部が、1つ又は2つ以上の管型流通反応器であることを特徴とする連続製造装置に関する。
 本発明は、(G)の混合部が、カルボン酸化合物及び亜塩素酸化合物を混合するための混合部、並びに、この混合物にマロン酸ジエステルを混合するための混合部、を含む、前記連続製造装置に関する。
 本発明は、(G)の混合部が、マロン酸ジエステル及びカルボン酸化合物を混合するための混合部、並びに、この混合物に亜塩素酸化合物を混合するための混合部、を含む、前記連続製造装置に関する。
 また、本発明は、(G)の混合部が、マロン酸ジエステル及びカルボン酸化合物の混合物に亜塩素酸化合物を混合するための混合部、を含む、前記連続製造装置に関する。
 また、本発明は、前記(G)から(I)の部分に、さらに、
(J)混合物を反応させる工程で得られた反応混合物を、さらに熟成させるための熟成部、
を含有してなり、当該熟成部が、1つ又は2つ以上の管型流通反応器である、前記連続製造装置に関する。
 また、本発明は、前記(G)から(I)の部分、又は前記(G)から(J)の部分に、さらに、
(K)反応をクエンチするためのクエンチ部、
を含有してなり、当該クエンチ部が、1つ又は2つ以上の管型流通反応器である、前記連続製造装置に関する。
 本発明は、(K)のクエンチ部が、T字管などのクエンチ液を液送するための装置を含有している、前記連続製造装置に関する。
 また、本発明は、前記(G)から(I)の部分、前記(G)から(I)及び(K)の部分、前記(G)から(J)の部分、又は前記(G)から(K)の部分に、さらに、
(L)得られた反応混合物からケトマロン酸ジエステル又はその抱水体を分離するための分離部、
を含有してなる、前記連続製造装置に関する。
 本発明は、(L)の分離部が、抽出溶媒による抽出操作部を含有している、前記連続製造装置に関する。
 また、本発明は、(L)の分離部が、さらに精製部を含有してなる、前記連続製造装置に関する。
 より詳細には、本発明は、本発明の連続製造装置における前記マロン酸ジエステルが、前記の一般式(1)で表されるマロン酸ジエステルである、前記連続製造装置に関する。
 また、本発明は、本発明の連続製造装置における前記対応するケトマロン酸ジエステルが、前記の一般式(2)で表されるケトマロン酸ジエステルである、前記連続製造装置に関する。
 本発明は、ケトマロン酸ジエステル等のケトマロン酸化合物を効率よく、かつ安全に安定して大量に生産することを可能にする工業的な製造方法及びそのための製造装置を提供するものである。
 本発明のケトマロン酸ジエステル等のケトマロン酸化合物の製造方法は、マロン酸ジエステルの活性メチレン部分をあらかじめ修飾する必要がなく、マロン酸ジエステルの活性メチレン部位を一段階で直接酸化する方法であり、さらに、特殊で高価な反応剤を必要とせず、高価な触媒や貴金属のような遷移金属を必要とせず、工業的に優れた方法である。
 マロン酸ジエステルの活性メチレン部位を、亜塩素酸塩を用いて、特に酸の存在下で亜塩素酸塩を用いて、直接酸化する方法は、爆発性の物質を副生し、爆発の危険性があることから工業的に大量生産することが困難であったが、本発明の方法によれば、安全に安定して連続的に効率的に大量のケトマロン酸ジエステル等のケトマロン酸化合物を生産することができる。本発明の方法の酸化反応による製造方法を、爆発の危険性を制御して連続的に行えることは、本発明により初めて提供されるものである。
 本発明は、比較的細い流通経路内で連続して反応させるために、仮に副生する爆発性の物質による爆発が発生したとしても、その爆発は極めて小規模なものであり、連続操業に支障を与える規模ではなく、安定した操業が可能である。
 また、本発明は、比較的細い流通経路内で連続して反応させるために、昇温部を設けて安定して反応が進行するようにされている。これにより、効率よく目的物質を製造することが可能となった。
 さらに、本発明では、使用される原料物質や試薬などはいずれも有機合成において汎用されている化合物であり、安全で入手が容易である。また、本発明の装置も、特殊な加工を必要とせず、入手の容易な材料を用いて製造することができる。
 そして、本発明では、未反応の試薬や副生する物質を無害化するためのクエンチ工程を設けることができ、廃棄物処理が容易で環境にもやさしく、工業的な利用価値が高い。
 さらに、本発明の方法は、高温及び高圧を必要とせずに、穏やかな反応条件を選択することができ、工業化に適した簡便な条件で、ケトマロン酸ジエステル等のケトマロン酸化合物を連続して製造することができる。
 また、本発明の方法は、連続して操業できることから、回分式(バッチ式)による製造むらが生じることが少なく、製造された物質の品質を一定に保つこともできる。
 以上のように、本発明の連続製造方法は工業的な製造方法として極めて有用であるばかりでなく、各種の工業原料として極めて有用なケトマロン酸ジエステル等のケトマロン酸化合物を、安価に安定して大量に供給し得る工業的な製造方法を提供するものである。
図1は、本発明の反応装置の概要を模式的に示したものである。原料化合物は原料供給口1~3からそれぞれ供給され、混合器11で混合された混合物は、管型流通反応器12に供給されて反応し、反応を終えた反応混合物は、出口4から回収される。 図2は、2個の流通反応器22及び23を使用した場合の、本発明の反応装置の概要を模式的に示したものである。 図3は、図1に示した装置に、さらに熟成工程のための流通反応器33を設けた場合の、本発明の反応装置の概要を模式的に示したものである。 図4は、図3に示した装置に、さらにクエンチ工程のための流通反応器44を設けた場合の、本発明の反応装置の概要を模式的に示したものである。 図5は、図4に示した装置に、さらに目的物の分離工程のための分離精製装置55を設けた場合の、本発明の反応装置の概要を模式的に示したものである。 図6は、実施例13等で用いた本発明の反応装置の概要を模式的に示したものである。原料混合物は、バス64を有する管型流通反応器62に導入され、次いで水浴65を有する管型流通反応器63に導入されて熟成される。 図7は、実施例57等で用いた本発明の反応装置の概要を模式的に示したものである。原料混合物は、バス75を有する管型流通反応器72に導入され、次いで水浴76を有する管型流通反応器73に導入され、管型流通反応器73から排出された反応混合物に、容器5からのクエンチ液が混合されて、水浴77を有する管型流通反応器74に導入される。管型流通反応器74から排出された反応生成物は配管を通して容器4に蓄積される。
 本発明をより詳細に説明すれば、以下のとおりである。
[1]マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を原料化合物として、これらの原料化合物を混合して、これらの混合物を流通反応器に連続的に供給して、対応するケトマロン酸ジエステル又はその抱水体を連続して製造する方法。
[2]原料化合物の混合が、カルボン酸化合物及び亜塩素酸化合物を混合する工程、並びに、この混合物にマロン酸ジエステルを混合する工程により行われる、前記[1]に記載の方法。
[3]原料化合物の混合が、マロン酸ジエステル及びカルボン酸化合物を混合する工程、並びに、この混合物に亜塩素酸化合物を混合する工程により行われる、前記[1]に記載の方法。
[4]原料化合物の混合が、マロン酸ジエステル及びカルボン酸化合物の混合物に、亜塩素酸化合物を混合する工程により行われる、前記[1]に記載の方法。
[5]亜塩素酸化合物が、亜塩素酸化合物の水溶液として供給される、前記[1]から[4]のいずれか1項に記載の方法。
[6]亜塩素酸化合物の水溶液における、亜塩素酸化合物の濃度が、5質量%から30質量%である、前記[5]に記載の方法。
[7]カルボン酸化合物が、溶媒と共に供給される、前記[1]から[6]のいずれか1項に記載の方法。
[8]カルボン酸化合物の溶媒が、水である前記[7]に記載の方法。
[9]マロン酸ジエステル、又はマロン酸ジエステルとカルボン酸化合物との混合物が、溶媒と共に供給される、前記[1]から[8]のいずれか1項に記載の方法。
[10]溶媒が、極性溶媒である、前記[9]に記載の方法。
[11]極性溶媒が、水、酢酸、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドンからなる群の1種又は2種以上から選ばれる、前記[10]に記載の方法。
[12]溶媒が、2種以上の溶媒の混合溶媒である、前記[9]から[11]のいずれか1項に記載の方法。
[13]マロン酸ジエステル、又はマロン酸ジエステルとカルボン酸化合物との混合物が、無溶媒で供給される、前記[1]から[6]のいずれか1項に記載の方法。
[14]流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[1]から[13]のいずれか1項に記載の方法。
[15]管型流通反応器の管の長さが、5m以上である、前記[14]に記載の方法。
[16]管型流通反応器の管の長さが、7m~30mである、前記[15]に記載の方法。
[17]流通反応器の等価直径が、0.5mm~50mmである、前記[1]から[16]のいずれか1項に記載の方法。
[18]流通反応器の等価直径が、0.5mm~10mmである、前記[1]から[16]のいずれか1項に記載の方法。
[19]流通反応器に、温度を制御するための温度制御部が設けられている、前記[1]から[18]のいずれか1項に記載の方法
[20]流通反応器に設けられた温度制御部が、バスである、前記[19]に記載の方法。
[21]流通反応器に設けられた温度制御部の温度が、80℃以上である、前記[19]又は[20]に記載の方法。
[22]流通反応器に設けられた温度制御部の温度が、90℃~150℃である、前記[19]から[21]のいずれか1項に記載の方法。
[23]流通反応器が、原料の混合物を昇温させるための昇温部と、昇温した混合物を反応させる反応部を含有している、前記[1]から[22]のいずれか1項に記載の方法。
[24]流通反応器で得られた反応混合物を、さらに第二の流通反応器に供給して、反応混合物を熟成させる、前記[1]から[23]のいずれか1項に記載の方法。
[25]第二の流通反応器が、1つ又は2つ以上の管型流通反応器で行われる、前記[24]に記載の方法。
[26]第二の流通反応器が、空冷又は水冷などにより冷却されている、前記[24]又は[25]に記載の方法。
[27]流通反応器で得られた反応混合物、又は第二の流通反応器で熟成された反応混合物が、さらに、反応をクエンチするためにクエンチ液と混合され、第三の流通反応器に供給されて反応を停止させる、前記[1]から[26]のいずれか1項に記載の方法。
[28]第三の流通反応器に供給する前に、T字管などによりクエンチ液が液送されて反応混合物と混合される、前記[27]に記載の方法。
[29]第三の流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[27]又は[28]に記載の方法。
[30]第三の流通反応器が、空冷又は水冷などにより冷却されている、前記[27]から[29]のいずれか1項に記載の方法。
[31]クエンチ液が、亜硫酸塩及び/又はアルカリ金属水酸化物の水溶液である、前記[27]から[30]のいずれか1項に記載の方法。
[32]さらに、前記[1]から[31]のいずれか1項に記載の方法で得られた反応混合物からケトマロン酸ジエステル又はその抱水体を分離する、前記[1]から[31]のいずれか1項に記載の方法。
[33]反応混合物からの分離が、抽出溶媒を用いた抽出操作により行われる、前記[32]に記載の方法。
[34]分離する工程が、さらに精製する工程を包含する、前記[32]又は[33]に記載の方法。
[35](A)マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を混合する工程、
(B)混合された混合物を、流通反応器に供給する工程、並びに、
(C)流通反応器で混合物を反応させる工程、
を含有してなる、対応するケトマロン酸ジエステル又はその抱水体を連続して製造する方法。
[36](A)の混合する工程が、カルボン酸化合物及び亜塩素酸化合物を混合する工程、並びに、この混合物にマロン酸ジエステルを混合する工程により行われる、前記[35]に記載の方法。
[37](A)の混合する工程が、マロン酸ジエステル及びカルボン酸化合物を混合する工程、並びに、この混合物に亜塩素酸化合物を混合する工程により行われる、前記[35]に記載の方法。
[38](A)の混合する工程が、マロン酸ジエステル及びカルボン酸化合物の混合物に、亜塩素酸化合物を混合する工程により行われる、前記[35]に記載の方法。
[39]亜塩素酸化合物が、亜塩素酸化合物の水溶液として供給される、前記[35]から[38]のいずれか1項に記載の方法。
[40]亜塩素酸化合物の水溶液における、亜塩素酸化合物の濃度が、5質量%から30質量%である、前記[39]に記載の方法。
[41]カルボン酸化合物が、溶媒と共に供給される、前記[35]から[40]のいずれか1項に記載の方法。
[42]カルボン酸化合物の溶媒が、水である前記[41]に記載の方法。
[43]マロン酸ジエステル、又はマロン酸ジエステルとカルボン酸化合物との混合物が、溶媒と共に供給される、前記[35]から[42]のいずれか1項に記載の方法。
[44]溶媒が、極性溶媒である、前記[43]に記載の方法。
[45]極性溶媒が、水、酢酸、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドンからなる群の1種又は2種以上から選ばれる、前記[44]に記載の方法。
[46]溶媒が、2種以上の溶媒の混合溶媒である、前記[43]から[45]のいずれか1項に記載の方法。
[47]マロン酸ジエステル、又はマロン酸ジエステルとカルボン酸化合物との混合物が、無溶媒で供給される、前記[35]から[40]のいずれか1項に記載の方法。
[48]流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[35]から[47]のいずれか1項に記載の方法。
[49]管型流通反応器の管の長さが、5m以上である、前記[48]に記載の方法。
[50]管型流通反応器の管の長さが、7m~30mである、前記[48]に記載の方法。
[51]流通反応器の等価直径が、0.5mm~50mmである、前記[35]から[50]のいずれか1項に記載の方法。
[52]流通反応器の等価直径が、0.5mm~10mmである、前記[35]から[50]のいずれか1項に記載の方法。
[53]流通反応器に、温度を制御するための温度制御部が設けられている、前記[35]から[52]のいずれか1項に記載の方法。
[54]流通反応器に設けられた温度制御部が、バスである、前記[53]に記載の方法。
[55]流通反応器に設けられた温度制御部の温度が、80℃以上である、前記[53]又は[54]に記載の方法。
[56]流通反応器に設けられた温度制御部の温度が、90℃~150℃である、前記[53]から[55]のいずれか1項に記載の方法。
[57]前記(A)から(C)の工程に、さらに、
(D)混合物を反応させる工程で得られた反応混合物を、さらに熟成させる工程、
を含有してなる、前記[35]から[56]のいずれか1項に記載の方法。
[58](D)の熟成させる工程が、1つ又は2つ以上の第二の流通反応器で行われる、前記[57]に記載の方法。
[59]第二の流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[58]に記載の方法。
[60](D)の熟成させる工程が、空冷又は水冷などによる冷却工程である、前記[57]から[59]のいずれか1項に記載の方法。
[61]前記(A)から(C)の工程、又は前記(A)から(D)の工程に、さらに、
(E)クエンチ液を混合して、反応をクエンチする工程、
を含有してなる、前記[35]から[60]のいずれか1項に記載の方法。
[62](E)のクエンチする工程が、1つ又は2つ以上の第三の流通反応器で行われる、前記[61]に記載の方法。
[63]第三の流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[62]に記載の方法。
[64](E)のクエンチする工程が、T字管などによりクエンチ液を液送されて行われる、前記[61]から[63]のいずれか1項に記載の方法。
[65](E)のクエンチする工程が、空冷又は水冷などによる冷却工程である、前記[61]から[64]のいずれか1項に記載の方法。
[66]クエンチ液が、亜硫酸塩及び/又はアルカリ金属水酸化物の水溶液である、前記[61]から[65]のいずれか1項に記載の方法。
[67]前記(A)から(C)の工程、前記(A)から(C)及び(E)の工程、前記(A)から(D)の工程、又は前記(A)から(E)の工程に、さらに、
(F)得られた反応混合物からケトマロン酸ジエステル又はその抱水体を分離する工程、
を含有してなる、前記[35]から[66]のいずれか1項に記載の方法。
[68](F)の分離する工程が、抽出溶媒を用いた抽出操作により行われる、前記[67]に記載の方法。
[69](F)の分離する工程が、さらに精製する工程を包含する、前記[67]又は[68]に記載の方法。
[70]マロン酸ジエステルが、次の一般式(1)、
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、同一又は相異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい芳香族炭化水素基、若しくは置換基を有していてもよい芳香族複素環基を示すか、又は、2つのRが互いに結合して隣接する酸素原子と共に環を形成してもよい。)
で表されるマロン酸ジエステルである、前記[1]から[69]のいずれか1項に記載の方法。
[71]ケトマロン酸ジエステルが、次の一般式(2)、
Figure JPOXMLDOC01-appb-C000006
(式中、Rは前記と同じ意味を示す。)
で表されるケトマロン酸ジエステルである、前記[1]から[70]のいずれか1項に記載の方法。
[72]亜塩素酸化合物が、亜塩素酸塩である、前記[1]から[71]のいずれか1項に記載の方法。
[73]亜塩素酸塩が、亜塩素酸アルカリ金属塩又は亜塩素酸アルカリ土類金属塩である、前記[72]に記載の方法。
[74]亜塩素酸アルカリ金属塩が、亜塩素酸ナトリウムである、前記[73]に記載の方法。
[75]カルボン酸化合物が、カルボン酸、カルボン酸塩、及びカルボン酸無水物からなる群から選択される1種又は2種以上の酸としてのカルボン酸化合物である、前記[1]から[74]のいずれか1項に記載の方法。
[76]カルボン酸化合物が、カルボン酸及びカルボン酸アルカリ金属塩を、併用するものである、前記[75]に記載の方法。
[77]カルボン酸化合物が、カルボン酸である、前記[75]に記載の方法。
[78]カルボン酸が、酢酸である、前記[75]又は[77]に記載の方法。
[79](G)マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を混合するための混合部、
(H)混合された混合物を、昇温させるための昇温部、並びに、
(I)昇温部で昇温された混合物を反応させるための反応部、
を含有してなる、マロン酸ジエステルを原料化合物として対応するケトマロン酸ジエステル又はその抱水体を連続して製造するための連続製造装置であって、(H)の昇温部及び(I)の反応部が、1つ又は2つ以上の流通反応器であることを特徴とする連続製造装置。
[80]流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[79]に記載の連続製造装置。
[81](G)の混合部が、カルボン酸化合物及び亜塩素酸化合物を混合するための混合部、並びに、この混合物にマロン酸ジエステルを混合するための混合部、を含む、前記[79]又は[80]に記載の連続製造装置。
[82](G)の混合部が、マロン酸ジエステル及びカルボン酸化合物を混合するための混合部、並びに、この混合物に亜塩素酸化合物を混合するための混合部、を含む、前記[79]又は[80]に記載の連続製造装置。
[83](G)の混合部が、マロン酸ジエステル及びカルボン酸化合物の混合物と、亜塩素酸化合物を混合するための混合部、を含む、前記[79]又は[80]に記載の連続製造装置。
[84]管型流通反応器の等価直径が、0.5mm~50mmである、前記[80]から[83]のいずれか1項に記載の連続製造装置。
[85]管型流通反応器の等価直径が、0.5mm~10mmである、前記[80]から[83]のいずれか1項に記載の連続製造装置。
[86]管型流通反応器の管の長さが、5m以上である、前記[80]から[85]のいずれか1項に記載の連続製造装置。
[87]管型流通反応器の管の長さが、7m~30mである、前記[80]から[85]のいずれか1項に記載の連続製造装置。
[88]昇温部と反応部が、ひとつの管型流通反応器に内在している、前記[80]から[87]のいずれか1項に記載の連続製造装置。
[89]昇温部と反応部が、それぞれ別個の複数の管型流通反応器で形成されている、前記[80]から[87]のいずれか1項に記載の連続製造装置。
[90]流通反応器に、温度を制御するための温度制御部が設けられている、前記[79]から[89]のいずれか1項に記載の連続製造装置。
[91]流通反応器に設けられた温度制御部が、温度を制御するためのバスである、前記[90]に記載の連続製造装置。
[92]前記(G)から(I)の部分に、さらに、
(J)混合物を反応させる工程で得られた反応混合物を、さらに熟成させるための熟成部、
を含有している、前記[79]から[91]のいずれか1項に記載の連続製造装置。
[93]当該熟成部が、1つ又は2つ以上の流通反応器である、前記[92]に記載の連続製造装置。
[94]流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[93]に記載の連続製造装置。
[95]前記(G)から(I)の部分、又は前記(G)から(J)の部分に、さらに、
(K)反応をクエンチするためのクエンチ部、
を含有している、前記[79]から[94]のいずれか1項に記載の連続製造装置。
[96]当該クエンチ部が、1つ又は2つ以上の流通反応器である、前記[95]に記載の連続製造装置。
[97]流通反応器が、1つ又は2つ以上の管型流通反応器である、前記[96]に記載の連続製造装置。
[98](K)のクエンチ部が、T字管などのクエンチ液を液送するための装置を含有している、前記[95]から[97]のいずれか1項に記載の連続製造装置。
[99]前記(G)から(I)の部分、前記(G)から(I)及び(K)の部分、前記(G)から(J)の部分、又は前記(G)から(K)の部分に、さらに、
(L)得られた反応混合物からケトマロン酸ジエステル又はその抱水体を分離するための分離部、
を含有してなる、前記[79]から[98]のいずれか1項に記載の連続製造装置。
[100](L)の分離部が、抽出溶媒による抽出操作部を含有している、前記[99]に記載の連続製造装置。
[101](L)の分離部が、さらに精製部を含有してなる、前記[99]又は[100]に記載の連続製造装置。
[102]前記マロン酸ジエステルが、前記の一般式(1)で表されるマロン酸ジエステルである、前記[79]から[101]のいずれか1項に記載の連続製造装置。
[103]ケトマロン酸ジエステルが、前記の一般式(2)で表されるケトマロン酸ジエステルである、前記[79]から[102]のいずれか1項に記載の連続製造装置。
 本明細書において用いられる用語及び記号について以下に説明する。
 「C~C」とは炭素原子数がa~b個であることを意味する。例えば、「C-C」とは炭素原子数が1~4であることを意味する。
 アルキル基としては、例えば、C~Cアルキル基、好ましくはC~Cアルキル基等が挙げられる。C~Cアルキル基とは、炭素原子数が1~6の直鎖状又は分岐鎖状のアルキル基を意味する。C~Cアルキル基とは、炭素原子数が1~4の直鎖状又は分岐鎖状のアルキル基を意味する。アルキル基としては、具体的には、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、イソブチル、tert-ブチル、ペンチル、ヘキシル等、好ましくは、メチル、エチル、プロピル、イソプロピル、ブチル、sec-ブチル、イソブチル、tert-ブチル、より好ましくは、メチル、エチル、プロピル、イソプロピル、さらに好ましくは、メチル、エチルが挙げられる。
 シクロアルキル基としては、例えば、C~Cシクロアルキル基等が挙げられる。C~Cシクロアルキル基とは、炭素原子数が3~6のシクロアルキル基を意味する。C~Cシクロアルキル基としては、具体的には、例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルが挙げられる。
 芳香族炭化水素基としては、例えば、炭素原子数6~12個の芳香族炭化水素基等が挙げられる。芳香族炭化水素基の具体的な例としては、フェニル、1-ナフチル、2-ナフチル、ビフェニル等が挙げられる。芳香族炭化水素基は好ましくはフェニルである。
 芳香族複素環基としては、例えば、炭素原子以外に1個以上の(例えば1~4個の、好ましくは、1又は2個の)窒素原子、酸素原子及び硫黄原子から選ばれるヘテロ原子を有する5~10員環の、好ましくは5から7員環の芳香族複素環基等が挙げられる。芳香族複素環基の具体的な例としては、フリル基、チエニル基、ピラゾリル基、ピリジル基、キノリニル基等が挙げられる。芳香族複素環基のさらに具体的な例としては、2-又は3-フリル、2-又は3-チエニル、1-,3-,4-又は5-ピラゾリル、2-,3-又は4-ピリジル、2-又は8-キノリル等が挙げられる。芳香族複素環基の好ましい例としては、2-又は4-ピリジル、より好ましくは2-ピリジルが挙げられる。
 ハロアルキル基としては、例えば、C~Cハロアルキル基等が挙げられる。C~Cハロアルキル基とは、同一又は異なる1~9のハロゲン原子により置換された炭素原子数が1~4の直鎖状又は分岐鎖状のアルキル基を意味する(ここで、ハロゲン原子は前述と同じ意味を有する。)。C~Cハロアルキル基としては、例えば、フルオロメチル、クロロメチル、ブロモメチル、ジフルオロメチル、トリフルオロメチル、クロロジフルオロメチル、1-フルオロエチル、2-フルオロエチル、1-クロロエチル、2-クロロエチル、2,2,2-トリフルオロエチル、ペンタフルオロエチル、3-フルオロプロピル、3-クロロプロピル、2,2,3,3,3-ペンタフルオロプロピル、ヘプタフルオロプロピル、2,2,2-トリフルオロ-1-トリフルオロメチルエチル、4-フルオロブチル、4-クロロブチル、2,2,3,3,4,4,4-へプタフルオロブチル、ノナフルオロブチル、2,2,2-トリフルオロ-1,1-ジ(トリフルオロメチル)エチル等が挙げられる。
 アルコキシ基としては、例えば、C~Cアルコキシ基等が挙げられる。C~Cアルコキシ基とは、(C~Cアルキル)-O-基を意味する(ここで、C~Cアルキルは前述と同じ意味を有する。)。C~Cアルコキシ基とは、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、sec-ブトキシ、イソブトキシ、又はtert-ブトキシである。
「置換基を有していてもよい」の置換基としては、例えば、ハロゲン原子、アルキル基、シクロアルキル基、ハロアルキル基、ヒドロキシル基、アルコキシ基、芳香族炭化水素基、芳香族複素環基等が挙げられる。ここで、これらはいずれも前述と同じ意味を有する。例えば、アルキル基の置換基としては、塩素やフッ素などのハロゲン原子、シクロヘキシル基などのシクロアルキル基、ヒドロキル基、メトキシ基などのアルコキシ基、フェニル基などの芳香族炭化水素基などが挙げられる。
 ハロゲン原子とは、フッ素原子、塩素原子、臭素原子又はヨウ素原子を示す。
 「2つのRが互いに結合して隣接する酸素原子と共に環を形成してもよい」とは、2つのR基が連結して2価の基を形成して、隣接する酸素原子と共に環を形成することである。2つのRが連結して形成される2価の基としては、置換基を有していてもよい炭素数1から6のアルキレン基、例えば、メチレン基、エチレン基などが挙げられる。アルキレン基は前記したような置換基、例えば、ハロゲン原子、アルキル基、シクロアルキル基、ハロアルキル基、アルコキシ基、芳香族炭化水素基等を有していてもよい。
 (マロン酸ジエステル)
 本発明の方法の原料化合物として用いられるマロン酸ジエステルは、遊離のマロン酸であってもよいが、入手の容易さや取り扱いの容易さからジエステルが好ましい。特に、工業的な規模での取り扱いにおいてはジエステルが有利であり、本発明の方法においてはマロン酸ジエステルとして表示するが、遊離のマロン酸も包含している。
 次に、本発明の方法の原料として用いる、上記した一般式(1)で表されるマロン酸ジエステル(以下、「原料化合物」と記載することがある。)について説明する。
 一般式(1)中のRは、同一又は相異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を示し、2つのRが互いに結合して隣接する酸素原子と共に環を形成してもよい。
 一般式(1)におけるRの好ましい例としては、それぞれ独立して、フェニル基を有していてもよいC~Cアルキル基、より好ましくは、メチル、エチル、プロピル、イソプロピル、ベンジル、さらに好ましくは、メチル、エチル、ベンジル、特に好ましくは、メチル、エチルが挙げられる。
 一般式(1)で表されるマロン酸ジエステルとしては、具体的には、例えば、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジイソブチル、マロン酸ジ-sec-ブチル、マロン酸ジ-tert-ブチル、マロン酸ジペンチル、マロン酸ジヘキシル、マロン酸ジシクロプロピル、マロン酸ジシクロペンチル、マロン酸ジシクロヘキシル、マロン酸ジフェニル、マロン酸ジ(4-ピリジル)、マロン酸ジ(2-ピリジル)、マロン酸メチルエチル、マロン酸メチルプロピル、マロン酸メチル-tert-ブチル、マロン酸エチルプロピル、マロン酸エチル-tert-ブチル、マロン酸メチルフェニル、マロン酸メチル(4-ピリジル)、マロン酸メチル(2-ピリジル)、マロン酸ジベンジル、マロン酸ベンジルメチル、マロン酸ベンジルエチル等が挙げられるが、これらに限定されるものではない。
 好ましいマロン酸ジエステルとしては、アルキル基に置換基を有してもよいマロン酸ジアルキル(例、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジイソブチル、マロン酸ジ-sec-ブチル、マロン酸ジ-tert-ブチル、マロン酸ジペンチル、マロン酸ジヘキシル、マロン酸メチルエチル、マロン酸メチルプロピル、マロン酸メチル-tert-ブチル、マロン酸エチルプロピル、マロン酸エチル-tert-ブチル、マロン酸ジベンジル、マロン酸ベンジルメチル、マロン酸ベンジルエチル等)、より好ましくは、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジイソブチル、マロン酸ジ-sec-ブチル、マロン酸ジ-tert-ブチル、マロン酸メチル-tert-ブチル、マロン酸エチル-tert-ブチル、マロン酸ジベンジル、マロン酸ベンジルメチル、マロン酸ベンジルエチル、さらに好ましくは、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、マロン酸ジブチル、マロン酸ジ-tert-ブチル、マロン酸メチル-tert-ブチル、マロン酸エチル-tert-ブチル、マロン酸ジベンジル、マロン酸ベンジルメチル、マロン酸ベンジルエチル、さらに好ましくは、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジプロピル、マロン酸ジイソプロピル、特に好ましくは、マロン酸ジメチル、マロン酸ジエチルが挙げられる。
 一般式(1)で表されるマロン酸ジエステル(原料化合物)は、公知の化合物か、又は公知の化合物から公知の方法(例えば、常法によるマロン酸のエステル化等)により製造することができる。
 なお、一般式(1)で表されるマロン酸ジエステル(原料化合物)は、単独で又は2種以上のマロン酸ジエステルの任意の割合の混合物として用いることができる。
 (ケトマロン酸ジエステル)
 前記してきたように、本発明の方法の原料化合物として用いられるマロン酸ジエステルは、遊離のマロン酸を排除するものではない。したがって、本発明の方法による生成物である「対応するケトマロン酸ジエステル」も、遊離のマロン酸に対応する生成物としての遊離のケトマロン酸を同様に包含している。
 次に、本発明の方法により製造される目的物である一般式(2)で表されるケトマロン酸ジエステルについて説明する。
 一般式(2)中のRは、同一又は相異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい芳香族炭化水素基、又は置換基を有していてもよい芳香族複素環基を示し、2つのRが互いに結合して隣接する酸素原子と共に環を形成してもよい。
 一般式(2)におけるRの好ましい例としては、それぞれ独立して、フェニル基を有していてもよいC~Cアルキル基、より好ましくは、メチル、エチル、プロピル、イソプロピル、ベンジル、さらに好ましくは、メチル、エチル、ベンジル、特に好ましくは、メチル、エチルが挙げられる。
 一般式(2)で表されるケトマロン酸ジエステルとしては、具体的には、例えば、ケトマロン酸ジメチル、ケトマロン酸ジエチル、ケトマロン酸ジプロピル、ケトマロン酸ジイソプロピル、ケトマロン酸ジブチル、ケトマロン酸ジイソブチル、ケトマロン酸ジ-sec-ブチル、ケトマロン酸ジ-tert-ブチル、ケトマロン酸ジペンチル、ケトマロン酸ジヘキシル、ケトマロン酸ジシクロプロピル、ケトマロン酸ジシクロペンチル、ケトマロン酸ジシクロヘキシル、ケトマロン酸ジフェニル、ケトマロン酸ジ(4-ピリジル)、ケトマロン酸ジ(2-ピリジル)、ケトマロン酸メチルエチル、ケトマロン酸メチルプロピル、ケトマロン酸メチル-tert-ブチル、ケトマロン酸エチルプロピル、ケトマロン酸エチル-tert-ブチル、ケトマロン酸メチルフェニル、ケトマロン酸メチル(4-ピリジル)、ケトマロン酸メチル(2-ピリジル)、ケトマロン酸ジベンジル、ケトマロン酸ベンジルメチル、ケトマロン酸ベンジルエチル等が挙げられるが、これらに限定されるものではない。
 好ましいケトマロン酸ジエステルとしては、アルキル基に置換基を有してもよいケトマロン酸ジアルキル(例、ケトマロン酸ジメチル、ケトマロン酸ジエチル、ケトマロン酸ジプロピル、ケトマロン酸ジイソプロピル、ケトマロン酸ジブチル、ケトマロン酸ジイソブチル、ケトマロン酸ジ-sec-ブチル、ケトマロン酸ジ-tert-ブチル、ケトマロン酸ジペンチル、ケトマロン酸ジヘキシル、ケトマロン酸メチルエチル、ケトマロン酸メチルプロピル、ケトマロン酸メチル-tert-ブチル、ケトマロン酸エチルプロピル、ケトマロン酸エチル-tert-ブチル、ケトマロン酸ジベンジル、ケトマロン酸ベンジルメチル、ケトマロン酸ベンジルエチル等)、より好ましくは、ケトマロン酸ジメチル、ケトマロン酸ジエチル、ケトマロン酸ジプロピル、ケトマロン酸ジイソプロピル、ケトマロン酸ジブチル、ケトマロン酸ジイソブチル、ケトマロン酸ジ-sec-ブチル、ケトマロン酸ジ-tert-ブチル、ケトマロン酸メチル-tert-ブチル、ケトマロン酸エチル-tert-ブチル、ケトマロン酸ジベンジル、ケトマロン酸ベンジルメチル、ケトマロン酸ベンジルエチル、さらに好ましくは、ケトマロン酸ジメチル、ケトマロン酸ジエチル、ケトマロン酸ジプロピル、ケトマロン酸ジイソプロピル、ケトマロン酸ジブチル、ケトマロン酸ジ-tert-ブチル、ケトマロン酸メチル-tert-ブチル、ケトマロン酸エチル-tert-ブチル、ケトマロン酸ジベンジル、ケトマロン酸ベンジルメチル、ケトマロン酸ベンジルエチル、さらに好ましくは、ケトマロン酸ジメチル、ケトマロン酸ジエチル、ケトマロン酸ジプロピル、ケトマロン酸ジイソプロピル、特に好ましくは、ケトマロン酸ジメチル、ケトマロン酸ジエチルが挙げられる。
 なお、本発明の方法により製造される一般式(2)で表されるケトマロン酸ジエステルは、単独又はいかなる割合の混合物であってもよい。
 (抱水体)
 次に、本発明の方法により製造される目的物である一般式(2)で表されるケトマロン酸ジエステルの抱水体について説明する。
 本発明の方法により生成する一般式(2)で表されるケトマロン酸ジエステルは、2個のエステル基等の間にケト基を有する化合物であり、言い換えれば、ケト基に隣接する位置に電子吸引基を有する化合物である。したがって、一般式(2)で表されるケトマロン酸ジエステルは、水の存在下においては次の一般式(3)
Figure JPOXMLDOC01-appb-C000007
 (式中、Rは前記と同じ意味を示す。)
で表されるケトマロン酸ジエステルの抱水体を形成する。この抱水体は、必要に応じて、例えば加熱処理等の脱水処理を行うことにより、ケト型の一般式(2)で表されるケトマロン酸ジエステルとすることができる。このような可逆反応は、抱水クロラールのような抱水体の一般的な性質と同様である。
 一般に、本発明の反応を水の存在下で実施すると生成物は一般式(3)で表されるケトマロン酸ジエステルの抱水体の形で得られる。他方で、一般に、本発明の反応を無水条件下で実施すると、生成物は一般式(2)で表されるケトマロン酸ジエステルの形で得られる。
 さらに、本発明の反応を水の存在下で実施して、かつ一般式(2)で表されるケトマロン酸ジエステルの形で生成物を単離したい場合には、反応後の後処理において、具体的には、例えば、トルエンとの共沸脱水のような脱水処理を行うことにより一般式(2)で表されるケトマロン酸ジエステルの形で生成物を容易に得ることができる。
 すなわち、本発明の方法においては、反応溶媒又は反応後の後処理の方法を適切に選択することにより、単離される生成物の形態を、前記一般式(2)で表されるケトマロン酸ジエステルの形、又は前記一般式(3)で表されるケトマロン酸ジエステルの抱水体の形のいずれか所望の形とすることができる。
 (亜塩素酸化合物)
 続いて、本発明の方法に用いる亜塩素酸化合物について説明する。
 本発明の方法には、亜塩素酸又は亜塩素酸塩から選択される1種又は2種以上の亜塩素酸化合物が用いられる。
 亜塩素酸塩としては、亜塩素酸イオンとカチオンが形成する塩を示すことができるが、これらに限定されるものではない。
 カチオンとしては、金属カチオン又はオニウムカチオンを例示することができるが、これらに限定されるものではない。
 金属カチオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン、又はセシウムイオン等のアルカリ金属イオン;マグネシウムイオン、カルシウムイオン、又はバリウムイオン等のアルカリ土類金属イオン;アルミニウムイオン等の土類金属イオン;亜鉛イオン等の亜鉛族イオン;銅イオン、銀イオン、ニッケルイオン、マンガンイオン、又は鉄イオン等の遷移金属イオンを例示することができるが、これらに限定されるものではない。
 オニウムカチオンとしては、アンモニウムイオン(NH );テトラメチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラオクチルアンモニウムイオン、トリメチルブチルアンモニウムイオン、トリメチルオクチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、トリオクチルメチルアンモニウムイオン等の直鎖若しくは分岐C~Cアルキル基又はフェニル基を有する4級アンモニウムイオン;テトラメチルホスホニウムイオン、テトラブチルホスホニウムイオン、テトラフェニルホスホニウムイオン等の直鎖若しくは分岐C~Cアルキル基又はフェニル基を有する4級ホスホニウムイオンを例示することができるが、これらに限定されるものではない。
 更には、亜塩素酸塩としては、亜塩素酸とアミン類の塩(アミン塩)も例示することができる。
 塩を形成するアミン類としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ヒドラジン、メチルヒドラジン、ピリジン、2-メチルピリジン、3-メチルピリジン、4-メチルピリジン、2,4-ジメチルピリジン、キノリン、アニリン、又はN,N-ジエチルアニリン等を例示することができるが、これらに限定されるものではない。
 これらの亜塩素酸塩は無水物であっても水和物であってもよい。
 これらの亜塩素酸塩は単塩であっても複塩であってもよい。
 亜塩素酸化合物としては、具体的には例えば、亜塩素酸;亜塩素酸リチウム、亜塩素酸ナトリウム、亜塩素酸ナトリウム三水和物、又は亜塩素酸カリウム等を包含する亜塩素酸アルカリ金属塩;亜塩素酸マグネシウム、亜塩素酸マグネシウム三水和物、亜塩素酸カルシウム、亜塩素酸カルシウム三水和物、亜塩素酸バリウム、又は亜塩素酸バリウム二水和物等を包含する亜塩素酸アルカリ土類金属塩;亜塩素酸アルミニウム等の亜塩素酸土類金属塩;亜塩素酸亜鉛二水和物等の亜塩素酸亜鉛族塩;亜塩素酸銅(II)、亜塩素酸銅(III)、亜塩素酸銀、亜塩素酸ニッケル二水和物、又は亜塩素酸マンガン等の亜塩素酸遷移金属塩;亜塩素酸アンモニウム;亜塩素酸テトラメチルアンモニウム等の亜塩素酸4級アンモニウム塩;亜塩素酸(2,4-ジニトロフェニル)トリエチルホスホニウム等の亜塩素酸4級ホスホニウム塩;メチルアミン亜塩素酸塩、トリプロピルアミン亜塩素酸塩、ヒドラジン亜塩素酸塩、ピリジン亜塩素酸塩、4-メチルピリジン亜塩素酸塩、2,4-ジメチルピリジン亜塩素酸塩、キノリン亜塩素酸塩等の亜塩素酸アミン塩;KClO・NaClO、Cu(ClO・2KClO・2HO、Cu(ClO・Mg(ClO・8HO、又はCu(ClO・Ba(ClO・4HO等の複塩等を挙げることができるが、これらに限定されるものではない。
 これらの亜塩素酸化合物は公知化合物である。
 これらの亜塩素酸化合物は、単独で、又は2種以上を任意の割合で混用してもよい。
 入手性や取り扱いの簡便さ、及び反応性等の観点からは、亜塩素酸化合物としては、亜塩素酸塩が好ましく、亜塩素酸アルカリ金属塩又は亜塩素酸アルカリ土類金属塩がより好ましく、亜塩素酸アルカリ金属塩が更に好ましく、亜塩素酸ナトリウム又は亜塩素酸カリウムが更に好ましく、亜塩素酸ナトリウムの使用が更に好ましい。
 これらの亜塩素酸化合物は、亜塩素酸化合物のみの液体若しくは固体、又は水溶液若しくは水以外の溶媒の溶液等、如何なる形態でも使用することができる。水以外の溶媒としては後述する本発明の方法に用いることができる溶媒を例示することができるが、これらに限定されるものではない。
 入手性や取り扱いの簡便さ、及び反応性等の観点からは、亜塩素酸化合物は水溶液として供給するのが好ましい。水溶液とした場合の亜塩素酸化合物の濃度は特に制限はないが、5質量%~80質量%、5質量%~60質量%、5質量%~50質量%、5質量%~40質量%、5質量%~30質量%、5質量%~25質量%、好ましくは、10質量%~80質量%、10質量%~60質量%、10質量%~50質量%、10質量%~40質量%、10質量%~30質量%、10質量%~25質量%、10質量%~20質量%の範囲を例示できる。
 本発明の反応における、亜塩素酸化合物の使用モル比は、一般式(1)で表される原料化合物に対して如何なるモル比でも反応が進行するが、原料化合物が、一般式(1)で表される化合物であるとき、原料化合物1モルに対して、亜塩素酸化合物が、通常1.0~15.0モル、1.0~10.0モル、1.0~5.0モル、好ましくは1.2~15.0モル、1.2~10.0モル、1.2~5.0モル、より好ましくは1.5~15.0モル、1.5~10.0モル、1.5~5.0モル、さらに好ましくは1.5~3.5モルの範囲を例示できる。
 (カルボン酸化合物)
 本発明の方法は、カルボン酸化合物の存在下で行うのが好ましい。
 続いて、本発明におけるカルボン酸化合物について説明する。
 本発明の方法は、酸として、カルボン酸、カルボン酸塩、及びカルボン酸無水物からなる群から選択される1種又は2種以上のカルボン酸化合物の存在下で行われるのが好ましい。
 本発明の方法における、特に好ましいカルボン酸化合物としては、カルボン酸が挙げられる。本発明の方法におけるカルボン酸としては、脂肪族カルボン酸、脂環式カルボン酸、芳香族カルボン酸、複素環式カルボン酸などの有機カルボン酸が挙げられる。好ましいカルボン酸としては、次の一般式(4)、
      R-COOH       (4)
(式中、Rは水素原子、置換されてもよいアルキル基、置換されてもよい環状アルキル基、又は置換基を有してもよいフェニル基、又は置換基を有してもよい芳香族複素環基を示す。)
で表されるカルボン酸が挙げられる。
 一般式(4)中のRは、水素原子;例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等の、直鎖又は分岐C~Cアルキル基(該直鎖又は分岐アルキル基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等の、直鎖又は分岐C~Cアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の、環状C~Cアルキル基;ヒドロキシル基;例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等の、直鎖又は分岐C~Cアルコキシ基;例えば、フェニル基等のアリール基;例えば、ピリジル基、フリル基等のヘテロアリール基等の置換基を有していてもよい。);シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の、環状C~Cアルキル基(該環状アルキル基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等の、直鎖又は分岐C~Cアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の、環状C~Cアルキル基;ヒドロキシル基;例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等の、直鎖又は分岐C~Cアルコキシ基;例えば、フェニル基等のアリール基;例えば、ピリジル基、フリル基等のヘテロアリール基等の置換基を有していてもよい。);フェニル基(該フェニル基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等の、直鎖又は分岐C~Cアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の、環状C~Cアルキル基;ヒドロキシル基;例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等の、直鎖又は分岐C~Cアルコキシ基;臭素、塩素、フッ素、ヨウ素等のハロゲン原子;例えば、フェニル基等のアリール基;例えば、ピリジル基、フリル基等のヘテロアリール基等の置換基を有していてもよい。);又は、例えば、ピリジル基、フラニル基等の酸素原子、窒素原子、及び硫黄原子からなる群から選ばれる1~3個のヘテロ原子を有する5~7員のヘテロアリール基(該ヘテロアリール基は、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基等の、直鎖又は分岐C~Cアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等の、環状C~Cアルキル基;ヒドロキシル基;例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基等の、直鎖又は分岐C~Cアルコキシ基;臭素、塩素、フッ素、ヨウ素等のハロゲン原子;例えば、フェニル基等のアリール基;例えば、ピリジル基、フリル基等のヘテロアリール基等の置換基を有していてもよい。)である。
 本発明の方法におけるカルボン酸塩としては、前記した一般式(4)で表されるカルボン酸化合物の塩が挙げられる。塩を形成するための金属イオンにおける金属原子としては、リチウム原子、ナトリウム原子、又はカリウム原子等のアルカリ金属原子;マグネシウム原子、カルシウム原子、又はバリウム原子等のアルカリ土類金属原子;アルミニウム原子等の土類金属原子;亜鉛原子等の亜鉛族原子;銅原子、銀原子、ニッケル原子、鉛原子、マンガン原子、又は鉄原子等の遷移金属原子を例示することができるが、これらに限定されるものではない。
 また、塩を形成するためのオニウムカチオンとしては、アンモニウムイオン(NH );テトラメチルアンモニウムイオン、テトラブチルアンモニウムイオン、テトラオクチルアンモニウムイオン、トリメチルブチルアンモニウムイオン、トリメチルオクチルアンモニウムイオン、トリブチルメチルアンモニウムイオン、トリオクチルメチルアンモニウムイオン等の直鎖若しくは分岐C~Cアルキル基又はフェニル基を有する4級アンモニウムイオン;テトラメチルホスホニウムイオン、テトラブチルホスホニウムイオン、テトラフェニルホスホニウムイオン等の直鎖若しくは分岐C~Cアルキル基又はフェニル基を有する4級ホスホニウムイオンを例示することができるが、これらに限定されるものではない。
 更には、カルボン酸塩としては、カルボン酸とアミン類の塩(カルボン酸アミン塩)も例示することができる。
 カルボン酸塩を形成するアミン類としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ブチルアミン、ジブチルアミン、トリブチルアミン、ジイソプロピルエチルアミン、ピリジン、キノリン、イソキノリン、アニリン、又はN,N-ジエチルアニリン等を例示することができるが、これらに限定されるものではない。
 本発明の方法におけるカルボン酸無水物としては、前記した一般式(4)で表されるカルボン酸化合物の無水物が挙げられる。カルボン酸無水物は、同じカルボン酸のみから形成されていてもよいし、また、異なるカルボン酸から形成されるカルボン酸無水物であってもよい。このようなカルボン酸無水物は、水又は含水溶媒系において、遊離のカルボン酸を生成させるものが好ましい。
 本発明の方法における、カルボン酸、カルボン酸塩、及びカルボン酸無水物からなる群から選択される1種又は2種以上のカルボン酸化合物としては、具体的には、例えば、酢酸、プロピオン酸等のカルボン酸;酢酸ナトリウム、プロピオン酸ナトリウム、酢酸カリウム、プロピオン酸カリウム等のカルボン酸アルカリ金属塩;酢酸マグネシウム、プロピオン酸マグネシウム、酢酸カルシウム、プロピオン酸カルシウム等のカルボン酸アルカリ土類金属塩;酢酸アンモニウム、プロピオン酸アンモニウム、酢酸テトラブチルアンモニウム等のカルボン酸4級アンモニウム塩;酢酸テトラブチルホスホニウム等のカルボン酸4級ホスホニウム塩;トリエチルアミン酢酸塩、ピリジン酢酸塩等のカルボン酸アミン塩;無水酢酸、無水プロピオン酸等のカルボン酸無水物を挙げることができるが、これらによって限定されるものではない。
 本発明の方法における、カルボン酸、カルボン酸塩、及びカルボン酸無水物からなる群から選択されるカルボン酸化合物は、単独で、又は異なる2以上の任意のカルボン酸化合物を任意の割合で組み合わせて使用することができる。
 当該カルボン酸化合物を単独で使用するときは、好ましいものとしてはカルボン酸又はカルボン酸無水物を挙げることができ、より好ましくはカルボン酸を挙げることができ、更に好ましくは酢酸などの脂肪族カルボン酸又は無水酢酸などの脂肪族カルボン酸無水物を挙げることができ、特に好ましくは酢酸などの脂肪族カルボン酸を挙げることができるが、これらによって限定されるものではない。
 当該カルボン酸化合物の異なる2種以上を組み合わせて使用するときは、好ましいカルボン酸化合物の組み合わせとして、カルボン酸とカルボン酸塩の組み合わせを挙げることができ、より好ましい組み合わせとして、カルボン酸とカルボン酸アルカリ金属塩の組み合わせを挙げることができ、さらに好ましくは酢酸と酢酸ナトリウムの組み合わせ、酢酸と酢酸カリウムの組み合わせなどの脂肪族カルボン酸とその塩との組み合わせを挙げることができるが、これらによって限定されるものではない。
 本発明の反応におけるカルボン酸化合物の好ましい具体的な例としては、酢酸のみ、プロピオン酸のみ、無水酢酸のみ、酢酸と酢酸ナトリウムの組み合わせ、又は酢酸と酢酸カリウムの組み合わせ、より好ましくは酢酸のみ、酢酸と酢酸ナトリウムの組み合わせ、又は酢酸と酢酸カリウムの組み合わせ、さらに好ましくは酢酸のみ、又は酢酸と酢酸ナトリウムの組み合わせ、特に好ましくは酢酸のみを挙げることができるが、これらに限定されるものではない。
 当該カルボン酸化合物の、本発明の方法における使用量は、反応が充分に進行する量であれば何れでもよいが、一般式(1)で表されるマロン酸ジエステル1モルに対して0.01~50モル、0.1~50モル、0.4~50モル、好ましくは0.01~10モル、0.1~10モル、0.4~10モル、より好ましくは0.01~5モル、0.1~5モル、0.4~5モル、さらに好ましくは0.01~2モル、0.1~2モル、0.4~2モルの範囲を例示できるが、カルボン酸化合物としてカルボン酸を使用する場合は、大過剰量用いることにより後述する溶媒を兼ねることもできる。
 (溶媒)
 本発明の方法は、無溶媒でも実施できるが、溶媒の存在下に実施することもできる。
 本発明の方法における溶媒としては、例えば水溶媒で実施することができる。前述の亜塩素酸化合物を水溶液として用いる場合は、亜塩素酸化合物の水溶液に由来する水溶媒のみでも充分行うことができる。更に、水以外の他の溶媒を用いて行うこともできる。
 本発明の反応に用いる水以外の他の溶媒としては、例えば、カルボン酸類(例えば、酢酸、プロピオン酸等、好ましくは酢酸);酸無水物類(例えば、無水酢酸、無水プロピオン酸等、好ましくは無水酢酸);ニトリル類(例えば、アセトニトリル、プロピオニトリル等、好ましくはアセトニトリル);アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert-ブタノール、エチレングリコール等、好ましくはメタノール);カルボン酸エステル類(例えば、酢酸エステル類等、具体的には、酢酸メチル、酢酸エチル、酢酸ブチル等、好ましくは酢酸エチル);炭酸エステル類(例えば、エチレンカーボネート、プロピレンカーボネート等);ケトン類(例えば、アセトン、エチルメチルケトン、イソプロルメチルピケトン、イソブチルメチルケトン(MIBK)、シクロヘキサノン等、好ましくは、アセトン、イソブチルメチルケトン);アミド類(例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)等、好ましくは、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、より好ましくはN,N-ジメチルホルムアミド);アルキル尿素類(例えば、テトラメチル尿素、N,N’-ジメチルイミダゾリジノン(DMI)等、好ましくはN,N’-ジメチルイミダゾリジノン);リン酸アミド類(例えば、ヘキサメチルホスホリックトリアミド(HMPA)等);スルホキシド類(例えば、ジメチルスルホキシド等);スルホン類(例えば、スルホラン、ジメチルスルホン等);エ-テル類(例えば、テトラヒドロフラン(THF)、2-メチルテトラヒドロフラン、1,4-ジオキサン、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジ-tert-ブチルエーテル、ジフェニルエーテル、シクロペンチルメチルエーテル(CPME)、メチル-tert-ブチルエーテル、1,2-ジメトキシエタン(DME)、ジグリム(diglyme)等、好ましくはテトラヒドロフラン);芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、クメン、トリメチルベンゼン等、好ましくは、トルエン、キシレン);ハロゲン化芳香族炭化水素類(例えば、クロロベンゼン、ジクロロベンゼン、トリクロロベンゼン等、好ましくはクロロベンゼン);脂肪族炭化水素類(例えば、ペンタン、ヘキサン、オクタン、デカン、ドデカン、イソドデカン、ヘキサデカン、イソヘキサデカン、シクロヘキサン、エチルシクロヘキサン、メチルデカリン、ジメチルデカリン等);ハロゲン化脂肪族炭化水素類(例えば、ジクロロメタン、クロロホルム、四塩化炭素、1,2-ジクロロエタン等、好ましくはジクロロメタン)が挙げられるが、これらに限定されるものではない。これらの溶媒は単独で、又は任意の混合割合の混合溶媒として用いることができる。
 本発明の反応に用いる溶媒としては、原料化合物と亜塩素酸化合物との親和性、反応性等の観点から、極性溶媒を用いることが好ましい。
 好ましい極性溶媒としては、水、カルボン酸類、ニトリル類、ケトン類、アルコール類、エステル類、炭酸エステル類、酸無水物類、アミド類、スルホキシド類、スルホン類、又はそれらの混合溶媒を挙げることができる。より好ましくは、水、カルボン酸類、ニトリル類、アミド類、スルホン類、又はそれらの混合溶媒、更に好ましくは、水、カルボン酸類、ニトリル類、アミド類、又はそれらの混合溶媒、更に好ましくは、水、ニトリル類、アミド類、又はそれらの混合溶媒、特に好ましくは、水、アミド類、又はそれらの混合溶媒を挙げることができる。
 ここでいう極性溶媒とは、比誘電率が5以上である溶媒とする。ここに、比誘電率は、日本化学会編、「化学便覧」(基礎編)、改訂5版、I-770~777頁、丸善、2004年記載の値とする。本発明の方法に用いる溶媒は比誘電率が5以上の極性溶媒が好ましく、比誘電率が7以上の極性溶媒がより好ましく、比誘電率が17以上の極性溶媒が更に好ましく、比誘電率が20以上の極性溶媒が特に好ましい。
 極性溶媒の具体的な例は、水、酢酸、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、及びジメチルスルホキシドからなる群の1種又は2種以上から選ばれる極性溶媒;好ましくは、水、酢酸、アセトニトリル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドンからなる群の1種又は2種以上から選ばれる極性溶媒;より好ましくは、水、酢酸、アセトニトリル、及びN,N-ジメチルホルムアミドからなる群の1種又は2種以上から選ばれる極性溶媒;さらに好ましくは、水、アセトニトリル、及びN,N-ジメチルホルムアミドからなる群の1種又は2種以上から選ばれる極性溶媒;さらに好ましくは、水、及びN,N-ジメチルホルムアミドからなる群の1種又は2種から選ばれる極性溶媒;特に好ましくは、水又は水を含有する溶媒系が挙げられる。水は簡便で安価であり好ましい。
 反応後の後処理の方法を適切に選択することにより、単離される生成物の形態を、前記一般式(2)で表されるケトマロン酸ジエステルの形、又は前記一般式(3)で表されるケトマロン酸ジエステルの抱水体の形のいずれか所望の形とできることからも、本発明の反応は、水溶媒存在下で行うことが好ましい。
 本発明の反応における溶媒量としては、反応系の流動性が充分に確保できる限りは、如何なる量でもよいが、反応性、副生成物抑制、及び経済効率等の観点から、一般式(1)で表される原料化合物1モルに対して、0.01~10L、好ましくは0.05~5L、より好ましくは0.2~3L、さらに好ましくは0.5~2Lの範囲を例示できるが、これらに限定されるものではない。
 (流通反応器)
 反応器は、回分式(バッチ式)と連続式に大別され、連続式の反応器とは、原料の供給、反応、反応混合物の回収を連続的に同時に進行させるための反応器である。連続式の反応器として、流通反応器(フローリアクタ)がある。流通反応器は、原料を連続して供給し、連続して反応を行い、反応混合物を連続して回収することができる反応器である。流通反応器は、管型流通反応器(チューブ型流通反応器を含む)と槽型流通反応器に大別されるが、いずれも連続式で反応を行うことができる。
 本発明の流通反応器は、流通反応器の温度を制御する温度制御手段が設けられていてもよく、例えば、加熱や冷却のための温度制御部が設けられていてもよい。温度制御部は適切な如何なるものであってもよく、温度制御部の例は、バス及びジャケット等、好ましくはバスを包含する。バスの様式は、適切な如何なる様式であってもよく、例えば、「滞留型」であっても「流動型(循環型)」であってもよく、「開放型」であっても「密閉型」であってもよい。また、流通反応器の材質としては、原料物質、溶媒に侵されないものであれば特に制限はなく、例えば、金属(チタン、ニッケル、ステンレス、ハステロイCなどの各種合金)、樹脂(フッ素樹脂)、ガラス(シリコン、石英)、磁器(コージェライト、セラミックス)等が挙げられる。
 本発明の連続式の反応は、槽型流通反応器での実施を排除するものではないが、好ましい流通反応器としては管型流通反応器が挙げられる。本発明の管型流通反応器は、液状又は気液状の混合物を連続して流通させることができるものであればよく、管の断面の形状は円管状、角管状、多角形管状、楕円管状等のいずれであってもよく、これらの形状を組み合わせたものであってもよい。また、管の材質としては、原料物質、溶媒に侵されないものであれば特に制限はなく、例えば、金属(チタン、ニッケル、ステンレス、ハステロイCなどの各種合金)、樹脂(フッ素樹脂)、ガラス(シリコン、石英)、磁器(コージェライト、セラミックス)等が挙げられるが、耐圧性に優れた金属製が好ましい。本発明の管型流通反応器も温度を制御する温度制御手段が設けられていてもよく、例えば、加熱や冷却のための温度制御部が設けられていてもよい。温度制御部は適切な如何なるものであってもよく、温度制御部の例は、バス及びジャケット等、好ましくはバスを包含する。バスの様式は、適切な如何なる様式であってもよく、例えば、「滞留型」であっても「流動型(循環型)」であってもよく、「開放型」であっても「密閉型」であってもよい。温度制御手段が設けられている流通反応装置を使用すると、反応装置内の温度制御が容易になり、より安全に反応や処理を行うことができる。このような流通反応装置として、スパイラル型、シェルアンドチューブ型、プレート熱交換型などの反応装置を使用することができる。
 本発明の管型流通反応器における管の配置方法としては特に制限はなく、例えば、直線状であってもよいし、曲線状であってもよいし、コイル状であってもよい。好ましい配置法としては、管をコイル状に配置した管型反応器が挙げられる。また、管は1本であってもよいが、2本以上の複数の管を適当な間隔で規則的又は不規則的に束ねたものであってもよい。本明細書では、便宜のために1本の管を有する管型流通反応器に基づいて説明するが、生産効率を上げたい場合には、本明細書の説明に従って、2本以上の複数の管を適当な間隔で規則的又は不規則的に束ねた管型流通反応器を用いることもできる。
 また、本発明の管型流通反応器は、必要に応じて、混合器を有していてもよい。混合器は、気体と液体又は液体と液体など2種以上の流体を連続的に混合できる機能を有するものであれば特に制限はなく、例えば、Y字型混合器、T字型混合器、十字型混合器、パイプライン型混合器(スタティックミキサー等を含むラインミキサー)等が挙げられる。本発明の好ましい態様としては、原料化合物の全てを流通反応器に供給する前に混合器で混合した混合物を、流通反応器に供給する方法が挙げられるので、特別な場合の態様を除き、混合器を内包する流通反応器を用いる必要はない。
 本発明の管型反応器における管の等価直径としては、液状又は気液状の混合物が連続して流通することができる大きさであれば特に制限はないが、本発明の化学反応においては気体状の副生物が生成することもあり、また生産効率の点からも、0.5mm以上であることが好ましい。また、本発明の化学反応においては爆発性の副生物が生成することがあるので、余り大きな等価直径を有する管は好ましくない。好ましい等価直径としては、0.5mm~50mm、0.5mm~30mm、0.5mm~10mm、より好ましくは1mm~50mm、1mm~30mm、1mm~10mm、3mm~10mm程度が挙げられる。
 本発明における「等価直径(De)」とは、次の式で定義される値である。
     De = 4・Af/Wp
(式中、Afは流路断面積を示し、Wpは濡れ縁長さを示す。)
 例えば、半径rの円管状の管の等価直径は、
     De = 4・πr/2πr
        = 2r
となる。
 本発明の管型流通反応器の管の長さは、原料化合物が昇温されて十分な反応ができる範囲、又は目的の処理が可能となる範囲であれば特に制限はなく、管の等価直径との兼ね合いにおいて適宜設計することができる。例えば、等価直径が1mm~6mm程度の管を用いた場合には、1m以上、2m以上、3m以上、5m以上、好ましくは5m~50m、5m~30m、5m~20m、より好ましくは7m~50m、7m~30m、7m~20m、更に好ましくは9m~50m、9m~30m、9m~20mの範囲で適宜設定することができる。また、等価直径が6mm~10mm程度の管を用いた場合には、1m以上、2m以上、3m以上、5m以上、好ましくは5m~50m、5m~40m、5m~30m、より好ましくは7m~50m、7m~40m、7m~30m、更に好ましくは9m~50m、9m~40m、9m~30mの範囲で適宜設定することができる。
 本発明の方法を効率的に行うためには、高温で反応させる必要があるので、そのために昇温させる必要が有り、等価直径が1mm~6mm又は6mm~10mm程度の管を用いた場合には、流速との兼ね合いもあるが一般的には5m以上の長さが必要とされる。
 本発明の流通反応器、好ましくは管型流通反応器における流速は、管の等価直径にもよるが、通常は0.5m/分以上、好ましくは1.0m/分以上、より好ましくは5m/分以上、さらに好ましくは5m/分~50m/分、特に好ましくは10m/分~40m/分程度が挙げられる。
 (反応装置)
 本発明の反応装置を説明するために図1~図5に例示するが、本発明の反応装置はこれらに限定されるものではない。
 図1は、本発明の反応装置のもっとも典型的な例である。
 3種の原料化合物は原料供給口1~3からそれぞれ供給される。図1~図5の例では、3種類の原料化合物がそれぞれ別の供給口から供給されるように図示されているが、必ずしも3種類を別々に供給する必要は無く、これらの中の2種を予め混合したものを供給することもできる。
 図1の例では、マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を、それぞれ供給口1~3から混合器11に供給し、これらを混合する。混合する順序は特に制限はなく、カルボン酸化合物及び亜塩素酸化合物を混合し、次いで、この混合物にマロン酸ジエステルを混合してもよいし、また、マロン酸ジエステル及びカルボン酸化合物を混合し、次いで、この混合物に亜塩素酸化合物を混合することもできる。より好ましい態様としては、マロン酸ジエステル及びカルボン酸化合物を予め混合しておいて、この混合物を供給口1から供給し、亜塩素酸化合物の水溶液を供給口2から供給して混合することもできる。この場合には、供給口3は使用されない。
 マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物は、前記したモル比で混合することができる。例えば、これらのモル比が、1モル:0.01~50モル:1~15モルの範囲で選定できる。
 この混合工程は以下の図2~図5においても同様である。
 混合器11で混合された混合物は、管型流通反応器12に供給されて反応させられる。反応を終えた反応混合物は、出口4から回収される。
 管型流通反応器12は、概念的に、昇温部と反応部に分けて考えられる。昇温部としては、管の等価直径や流速にもよるが、管の長さが、2m以上、好ましくは3m以上、より好ましくは5m以上必要である。なお、管型流通反応器に原料化合物が導入される前に、原料化合物が昇温されている場合は、昇温部は必要ではなくなるであろう。より具体的には、例えば、約2m~10m、好ましくは3m~7m、より好ましくは3m~5m程度が昇温に必要な昇温部の長さである。反応部としては、管の等価直径や流速にもよるが、管の長さが、1m以上、2m以上、3m以上、5m以上、又は10m以上必要である。より具体的には、例えば、約3m~20m、3m~15m、3m~10m、又は約4m~20m、4m~15m、4m~10m程度が反応に必要な反応部の長さである。
 管型流通反応器12の管の等価直径としては、0.5mm~50mm、0.5mm~30mm、0.5mm~10mm、好ましくは1mm~50mm、1mm~30mm、1mm~10mm、3mm~10mm程度が挙げられる。
 管型流通反応器12の管の長さとしては、5m以上、好ましくは5m~50m、5m~30m、5m~20m、好ましくは7m~50m、7m~30m、7m~20m、より好ましくは9m~50m、9m~30m、9m~20mの範囲が挙げられる。
 管型流通反応器12の流速としては、5m/分以上であることが好ましく、より好ましくは5m/分~50m/分、さらに好ましくは10m/分~40m/分程度が挙げられる。
 管型流通反応器12での滞留時間としては、流速や等価直径の大きさにもよるが、通常は、10秒以上、好ましくは10秒~200秒、10秒~150秒、10秒~120秒、より好ましくは15秒~200秒、15秒~150秒、15秒~120秒程度である。
 管型流通反応器12には、温度制御部(例えば、温度を制御するためのバス)が設けられており、好ましい温度制御部(例えば、温度を制御するためのバス)の温度としては、60℃~200℃、80℃~200℃、90℃~200℃、より好ましくは80℃~150℃、90℃~150℃、さらに好ましくは100℃~150℃、100℃~140℃程度が挙げられる。
 管型流通反応器12内の混合物の温度としては、例えば、60℃~250℃、80℃~250℃、90℃~250℃、好ましくは60℃~200℃、80℃~200℃、90℃~200℃、さらに好ましくは80℃~170℃、90℃~170℃、さらに好ましくは80℃~160℃、90℃~160℃、さらに好ましくは80℃~150℃、90℃~150℃、100℃~150℃、特に好ましくは120℃~150℃、130℃~150℃の範囲が挙げられるが、これらに限定されるものではない。温度制御の好ましい態様としては、管型流通反応器12内の混合物の温度を測定し、この温度が前記の温度になるように温度制御部の温度を調整する方法が挙げられる。また、反応混合物の温度を管型流通反応器12の流出口付近で測定し、この温度が前記の温度になるように温度制御部の温度を調整する方法も挙げられる。
 また、本発明における管型流通反応器12内の平均圧力としては、例えば、0.03MPa~1.0MPa、0.03MPa~0.9MPa、好ましくは0.05MPa~0.8MPa、0.05MPa~0.7MPa、0.04MPa~1.0MPa、0.04MPa~0.9MPa、より好ましくは0.09MPa~0.3MPa、0.1MPa~0.3MPa、0.04MPa~0.8MPa、0.04MPa~0.7MPaの範囲が挙げられるが、これらに限定されるものではない。
 図1は、流通反応器が1個の場合の例であるが、流通反応器を2個以上に分割して操作することもできる。図2は、2個の流通反応器22及び23を使用した場合の例である。
 図1の場合と同様に混合器21で混合された原料化合物の混合物が、最初の流通反応器22に供給され、次いで流通反応器23に供給される。最初の流通反応器22では混合物を反応温度まで昇温する。次いで、昇温された混合物を次の流通反応器23に供給して反応させて、反応混合物を出口4から回収することもできる。
 最初の流通反応器22は、昇温部のための流通反応器であり、好ましくは管型流通反応器であり、管の長さは、管の等価直径や流速にもよるが、2m以上、好ましくは3m以上、より好ましくは5m以上必要である。より具体的には、例えば、約2m~10m、好ましくは3m~7m、より好ましくは3m~5m程度である。
 次の流通反応器23は、反応部のための流通反応器であり、好ましくは管型流通反応器であり、管の長さは、管の等価直径や流速にもよるが、3m以上、5m以上、又は10m以上必要である。より具体的には、例えば、約3m~20m、3m~15m、3m~10m、又は約4m~20m、4m~15m、4m~10m程度である。
 温度条件などの反応条件は、前記の図1の場合と同様である。
 図2に示される反応経路の変形として、混合器21と最初の流通反応器22の順序を入れ替えた態様もある。即ち、原料化合物を混合する前に、流通反応器22により、それぞれの原料化合物を昇温し、次いで昇温された原料化合物を混合して、これらを反応させるために昇温された原料化合物の混合物を、流通反応器23に供給する方法もある。しかし、装置が複雑となるだけでなく、亜塩素酸化合物を単独で昇温することになり、好ましい態様ではない。
 図3は、図1に示した装置の、さらに熟成工程のための流通反応器33を設けた場合の例である。熟成工程のための流通反応器33に供給されるまでの混合器31及び流通反応器32の操作は、前記図1の場合と同様である。
 マロン酸ジエステルと亜塩素酸塩との反応は、2段階又はそれ以上の段階に分かれており、最初の段階の反応は高温に加熱する必要が有るが、最後の段階の反応は必ずしも加熱する必要がないとも推定された。これは、最初の段階の反応が発熱反応であり、この発熱反応が進行した後は、外部から加熱しなくても反応混合物の反応熱で反応温度を保つことができるからであると考えられる。したがって、高温での反応が完了した後、低温で滞留させることにより、熱効率が良く、さらに転化率を向上させることができるとも考えられた。この低温での滞留を行う工程が、熟成工程である。
 流通反応器33は、管型流通反応器が好ましい。
 管型流通反応器33の管の等価直径は、管型流通反応器32の管の等価直径と同じであってもよいが、それよりも小さい方が好ましく、管型流通反応器32の管の等価直径の半分程度であってもよい。
 管型流通反応器33の管の長さとしては、3m~30m、3m~15m、3m~10m程度が好ましい。
 管型流通反応器33の流速は、管型流通反応器32の流速とほぼ同じである。
 管型流通反応器33は、温度制御部(例えば、温度を制御するためのバス)は特に必要は無いが、冷却のための温度制御部を設けるのが好ましい。好ましい温度制御部はバスであり、より好ましくは水冷バスである。
 本明細書において、バスの様式は、適切な如何なる様式であってもよく、例えば「滞留型」であっても「流動型(循環型)」であってもよく、加えて、例えば「開放型」であっても「密閉型」であってもよい。本明細書において、「水冷」とは、例えば、熱媒体に水、不凍液としてのアルコールなどの単一成分からなる液体、またはアルコール水溶液、食塩水、塩化カルシウム水溶液などの不凍液としての混合液体を用いる冷却方法を意味し、ここでアルコールの例としては、エチレングリコール、プロピレングリコール等を包含する。
 図4は、図3に示した装置に、さらにクエンチ工程のための流通反応器44を設けた場合の例である。クエンチ工程のための流通反応器44に供給されるまでの混合器41、流通反応器42、及び流通反応器43までの操作は、前記図3の場合と同様である。
 図3に示される装置により、目的の反応は完了しているが、反応混合物は、未反応の原料化合物や副生する爆発性の物質などを含有している。これらの物質を安全に処理するのが、このクエンチ工程である。
 即ち、このクエンチ工程では、未反応の亜塩素酸塩及び副生する二酸化塩素を分解する工程である。クエンチ液としてNaSO及びNaOHの水溶液を使用した場合の推定される分解反応の化学式を次に例示する。
  NaClO + 2NaSO → 2NaSO + NaCl
  ClO   + NaOH + 3/2NaSO 
     → 3/2NaSO + NaCl + 1/2HO + 1/2O
 このようにして、反応混合物中の未反応の亜塩素酸塩及び発生する二酸化塩素を分解することにより、反応混合物中からの分離精製処理を容易にするだけでなく、排水処理をすることができ、環境への漏出を減少させることができる。
 流通反応器44は、管型流通反応器が好ましい。
 クエンチ液は、反応混合物中の未反応の亜塩素酸塩及び副生する二酸化塩素を分解することができるものを含有していれば特に制限はないが、好ましいクエンチ液としては、例えば、亜硫酸塩及び/又はアルカリ金属水酸化物の水溶液が挙げられる。
 クエンチ液は、例えば、T字管やY字管などにより反応管に液送されて、混合される。混合のためのT字管やY字管などは、管型流通反応器44の前に設けるのが好ましいが、これに限定されるものではない。
 管型流通反応器44の管の等価直径は、管型流通反応器42の管の等価直径と同じであってもよいが、それよりも小さい方が好ましく、管型流通反応器42の管の等価直径の半分程度であってもよい。
 管型流通反応器44の管の長さとしては、3m~30m、3m~15m、3m~10m程度が好ましい。
 管型流通反応器44の流速は、管型流通反応器42の流速とほぼ同じである。
 管型流通反応器44は、温度制御部(例えば、温度を制御するためのバス)は特に必要は無いが、冷却のための温度制御部を設けるのが好ましい。好ましい温度制御部はバスであり、より好ましくは水冷バスである。
 図5は、図4に示した装置に、さらに目的物の分離工程のための分離精製装置55を設けた場合の例である。分離精製装置55に供給されるまでの混合器51、流通反応器52、流通反応器53、及びクエンチ工程の流通反応器54までの操作は、前記図4の場合と同様である。
 分離精製装置55による処理は、回分式(バッチ式)で行ってもよいし、槽型流通反応器を用いて行うこともできる。
 本発明のマロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を原料化合物として、対応するケトマロン酸ジエステル又はその抱水体を製造する方法を、水溶媒存在下で実施すると生成物は一般式(3)で表されるケトマロン酸ジエステル抱水体の形で得られ、非水条件下で実施すると一般式(2)で表されるケトマロン酸ジエステルの形で得られる。
 本発明の方法の好ましい態様では、水溶媒存在下での反応であるから、生成物は一般式(3)で表されるケトマロン酸ジエステル抱水体の形で得られることになる。得られたケトマロン酸ジエステル抱水体を、一般式(2)で表されるケトマロン酸ジエステルとするためには、ケトマロン酸ジエステル抱水体を、例えばトルエンとの共沸脱水の如き脱水処理を行うことにより抱水体を脱水して、容易に一般式(2)で表されるケトマロン酸ジエステルとすることができる。すなわち、本発明方法においては、反応溶媒及び反応後の後処理の方法を適切に選択することにより、単離される生成物の形態を、前記一般式(2)で表されるケトマロン酸ジエステルの形、又は前記一般式(3)で表されるケトマロン酸ジエステル抱水体の形のいずれか所望の形とできることからも、本発明の反応は、水溶媒存在下で行うことが好ましい。
 なお、反応混合物から一般式(3)で表されるケトマロン酸ジエステル抱水体を分離する方法としては、酢酸エチルなどの抽出溶媒を用いて、抽出処理する方法などが挙げられる。
 (連続反応装置)
 本発明の連続反応装置は、原料化合物の混合器、及び連続反応のための流通反応器、好ましくは管型流通反応器を含有してなる連続反応装置であって、マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を原料化合物として、対応するケトマロン酸ジエステル又はその抱水体を製造するための連続反応装置であることを第一の特徴とするものである。
 また、本発明の連続反応装置は、ケトマロン酸ジエステル又はその抱水体を効率的に製造するために、流通反応器、好ましくは管型流通反応器の管の等価直径が比較的大きく0.5mm~50mmとなっていることを第二の特徴とするものである。
 さらに、原料の混合物を短時間で高温にするための昇温部を有していることを第三の特徴とするものである。昇温部は流通反応器の一部であって一つの流通反応器中に昇温部と反応部があってもよいし、昇温部のための流通反応器と反応部のための流通反応器が連続して又は別個に配置されていてもよい。
 次に、実施例を挙げて本発明化合物の製造方法を具体的に説明するが、本発明は、これら実施例によって何ら限定されるものではない。
 以下の実施例におけるガスクロマトグラフィー(GC)分析方法、及び流速の測定方法は以下の方法により行われた。
 (ガスクロマトグラフィー(GC)分析方法)
 GC分析方法に関しては、必要に応じて、以下の文献を参照することができる。
(a):(社)日本化学会編、「新実験化学講座9 分析化学 II」、第60~86頁(1977年)、発行者 飯泉新吾、丸善株式会社(例えば、カラムに使用可能な固定相液体に関しては、第66頁を参照できる。)
(b):(社)日本化学会編、「実験化学講座20-1 分析化学」第5版、第121~129頁(2007年)、発行者 村田誠四郎、丸善株式会社(例えば、中空キャピラリー分離カラムの具体的な使用方法に関しては、第124~125頁を参照できる。)
(転化率)
 転化率は次の方法により、算出した。
転化率の算出方法:
 ガスクロマトグラフィー(GC)分析により得られる面積百分率の値から溶媒のピークを差し引いた値を用いて算出した。
GC分析条件:
 機器:GC-2010(株式会社島津製作所製)
 カラム:DB-1(Aglient J&W)
 昇温条件:80℃(0min)→10℃/min→200℃(2min)
 インジェクション温度:300℃
 検出器温度:320℃
 検出方法:FID
分析サンプルの調製方法:
 本発明の方法によって得られた反応混合物を少量サンプリングし、そこに適切な量の酢酸エチルを添加した。得られたサンプルを十分に撹拌した後、静置した。上層の有機層を分離して、ガスクロマトグラフィー用分析サンプルとした。
 (流速の測定方法)
 実際の流速を直接計測することが困難なため、流速は次の方法により算出された。
 反応操作前後の各原料の重量を天秤等の重量計により計量した。それらの重量差(kg)を各原料の密度(kg/m)で除することにより体積差(m)に換算し、操作時間(分)で除することにより、流量(m/分)を算出した。得られた流量を反応管の平均断面積(m)で除することにより平均流速(m/分)を算出した。ただし、実際の流速は、反応混合物が気液混合状態であることから変動し、安定した測定値を得ることは困難であった。従って、算出した平均流速は参考値であって、実際の流速とは必ずしも一致するとは限らない。
 (圧力の測定方法)
 圧力は、次の方法により計測した。
 反応装置に備え付けた隔膜式圧力計より得られたデータ群より、定常状態(反応安定段階)における圧力の平均値を算出した。
 圧力計:隔膜式圧力計PK-1及び/又は隔膜式デジタル圧力計DDIT(いずれも株式会社第一計器製作所製)。
 実施例1
 (マイクロリアクタを用いた方法)
 マイクロリアクタ(YMC社製、ミキサhelixタイプ)を2台用意し、第一のマイクロリアクタの排出口を、第二のマイクロリアクタの一方の供給口にチューブを用いて接続した。第二のマイクロリアクタの排出口に、直径1.0mm、長さ9mのテフロン(登録商標)製のチューブを接続して、当該テフロン(登録商標)製のチューブを反応管とした。当該9mのテフロン(登録商標)チューブをシリコンオイルバスに浸して加熱可能にした。
 第一のマイクロリアクタを80℃に加熱し、シリコンオイルバスを130℃に加熱して、シリンジポンプを用いて第一のマイクロリアクタの2つの供給口から、それぞれ25%亜塩素酸ナトリウム水溶液及び酢酸を供給し、第二のマイクロリアクタのもう一つの供給口からシリンジポンプを用いてマロン酸ジエチルを無溶媒で供給した。
 供給比は、容積比で、マロン酸ジエチル:酢酸:25%亜塩素酸ナトリウム水溶液が、1:3:3となるようにした。
 テフロン(登録商標)チューブにおける流速は、0.74m/分であった。テフロン(登録商標)チューブの排出口から出てくる反応混合物をガスクロマトグラフィーで分析したところ、マロン酸ジエチルの転化率は、63.70%であった。
 実施例2
 実施例1で使用した装置を用いて、第一及び第二のマイクロリアクタのいずれも加熱せずに室温のままとして、シリコンオイルバスを95℃に加熱して、実施例1と同様に、シリンジポンプを用いて第一のマイクロリアクタの2つの供給口から、それぞれ25%亜塩素酸ナトリウム水溶液及び酢酸を供給し、第二のマイクロリアクタのもう一つの供給口からシリンジポンプを用いてマロン酸ジエチルを無溶媒で供給した。
 供給比は、容積比で、マロン酸ジエチル:酢酸:25%亜塩素酸ナトリウム水溶液が、1:1:10となるようにした。
 テフロン(登録商標)チューブにおける流速は、1.27m/分であった。テフロン(登録商標)チューブの排出口から出てくる反応混合物をガスクロマトグラフィーで分析したところ、マロン酸ジエチルの転化率は、86.50%であった。
 比較例1
 マイクロリアクタ(YMC社製、ミキサhelixタイプ)を2台用意し、第一のマイクロリアクタの排出口を、第二のマイクロリアクタの一方の供給口にチューブを用いて接続した。実施例1で接続したテフロン(登録商標)チューブは使用しなかった。
 第一及び第二のマイクロリアクタを80℃に加熱して、シリンジポンプを用いて第一のマイクロリアクタの2つの供給口から、それぞれ25%亜塩素酸ナトリウム水溶液及び酢酸を供給し、第二のマイクロリアクタのもう一つの供給口からシリンジポンプを用いてマロン酸ジエチルを無溶媒で供給した。
 供給比は、容積比で、マロン酸ジエチル:酢酸:25%亜塩素酸ナトリウム水溶液が、1:1:1となるようにした。流速は、0.32m/分であった。
 第二のマイクロリアクタの排出口から出てくる反応混合物をガスクロマトグラフィーで分析したところ、マロン酸ジエチルの転化率は、0.29%に過ぎなかった。
 比較例2
 比較例1において、第二のマイクロリアクタを120℃に加熱したこと、及び流速は0.96m/分であったこと以外は、比較例1と同様に処理したところ、マロン酸ジエチルの転化率は、1.42%に過ぎなかった。
 比較例1及び2の結果からも明らかなように、マイクロリアクタのみでは反応は進行しなかった。しかし、9mの反応管を用いて昇温することにより、反応する可能性があることがわかった。
 また、条件を種々検討した結果、亜塩素酸ナトリウムは、過剰量が必要であることも判明した。
 実施例3~6
 マイクロリアクタを1台とするために、一方の供給口から酢酸とマロン酸ジエチルの、マロン酸ジエチル:酢酸が重量比で5:1とした混合物を予め調製し、この混合物を供給することにした。マイクロリアクタの他の供給口から25%亜塩素酸ナトリウム水溶液を供給した。マイクロリアクタの排出口には、実施例1と同様に直径1mm、長さ9mのチューブを接続し、シリコンオイルバスで加熱できるようにした。
 亜塩素酸ナトリウムのマロン酸ジエチルに対するモル比、流速、マイクロリアクタの温度、及びバスの温度を変えて、それぞれの転化率を測定した。
 結果を次の表1に示す。
Figure JPOXMLDOC01-appb-T000008
 これらの結果から、反応管を使用することにより、実用的な転化率を達成できることがわかった。
 実施例7
 実施例1~6では市販の25%亜塩素酸ナトリウム水溶液を使用してきたが、これを薄めて15%亜塩素酸ナトリウム水溶液として使用しても反応が進行するか否かを検討した。
 実施例3と同じ装置を使用して、マイクロリアクタの温度を20℃とし、バスの温度を80℃として、マロン酸ジエチル:酢酸:15%亜塩素酸ナトリウム水溶液を容積比で、1:0.2:6.7となるようにして、実施例3と同様に反応させた。平均流速は3.02m/分であった。転化率は99.46%であり、反応混合物から収率85.0%で目的のケトマロン酸ジエチルを得ることができた。
 実施例8
 マイクロリアクタを室温のままとした以外は実施例7と同様に反応させた。転化率は92.89%であった。
 実施例9
 以上の結果から、マイクロリアクタでは反応は起こっておらず、単に混合のための機能しかなかったので、マイクロリアクタに代えてT字管により混合を行った。ポンプもシリンジポンプに代えてHPLC用のプランジャーポンプを使用した。また、反応管も20mにし、その先に、さらに冷却(放冷)のため10mのチューブを付けた。反応管のバスの温度を80℃にして、亜塩素酸ナトリウムのマロン酸ジエチルに対するモル比を2.0として、T字管に供給した。平均流速は12.01m/分であった。転化率は、97.36%であった。
 実施例10
 複数の反応管での反応が可能であるか否かを確認するために、混合された原料混合物をT字管により2系列に分岐させて、実施例9と同様に行った。その結果、それぞれの転化率は、96.34%であった。
 このことは、本発明の方法が複数の反応管に分岐させて、それぞれの反応管で同時に反応させることができることを示している。
 実施例11
 反応管の長さを10mとし、反応管のバスの温度を110℃として、10%亜塩素酸ナトリウム水溶液を使用した以外は実施例9と同様にして、反応させた。平均流速は5.01m/分であった。転化率は97.29%であった。反応管の中で小規模の爆発が発生したようであるが、問題がないレベルであり、安全に操作できた。
 実施例12
 反応管の先の10mの冷却管を5mと5mに分割し、一方の5m部分を放冷ではなく、水冷とした以外は、実施例11と同様に反応させた。転化率は、99.13%であった。実施例11と同様に多数の小規模の爆発が観察された。
 以上のことから、マイクロリアクタのような短い流路しかない反応系では、本発明の反応は進行しないが、長い反応管により反応が起こるまでの誘導期を設ける(昇温部を設ける)ことにより、実用的な転化率を達成することがわかった。しかし、バス温度を高くすると小規模ではあるが、爆発が発生することもわかった。
 そこで、耐圧性に優れた金属製の管型流通反応器による反応を試みた。
 装置の概要を図6に示す。容器1には原料の亜塩素酸ナトリウム水溶液が入れられており、容器2には原料のマロン酸ジエチルと酢酸の重量比で5:1(モル比で1:0.5)の混合物が入れられている。これらの原料はポンプ67及び66を介してそれぞれ供給される。供給された各原料は混合器61により混合される。混合された混合物は、内径3.15mmのチタン製の管でできている管型流通反応器62に導入される。管型流通反応器62はバス64の中に収納されている。管型流通反応器62から排出された反応混合物は、次に同じく内径3.15mmのチタン製の管でできている管型流通反応器63に導入される。管型流通反応器63は、水冷のための水浴65に収納されている。本明細書の実施例において水冷を行うときは、水冷の熱媒体(冷媒)の温度は、特に指定しない限りは25℃に設定された。管型流通反応器63から排出された反応混合物は配管を通して容器4に蓄積される。管型流通反応器62及び管型流通反応器63の管はいずれもコイル状に巻かれている。
 この反応装置を用いて、以下の製造実験を行った。
 実験の結果を以下の各表に示す。各表中の「モル比」は、マロン酸ジエチルに対する亜塩素酸ナトリウムのモル比であり、「平均流速」は管全体における流速の平均値であり単位はm/分である。「反応管の長さ」は管型流通反応器62における管の長さであり、「伝熱時間(秒)」は管型流通反応器62に滞留している時間(秒)を示し、「冷却管の長さ」は管型流通反応器63における管の長さを示している。
 実施例13~15
 原料として使用する亜塩素酸ナトリウム水溶液の濃度について検討した。亜塩素酸ナトリウム水溶液の濃度が、25%、15%、及び10%のものを用いて反応を行った。
 結果を次の表2に示す。
Figure JPOXMLDOC01-appb-T000009
 この結果、いずれの亜塩素酸ナトリウム水溶液の濃度においても、実用的な転化率に達することが示された。
 実施例16~21
 次に管型流通反応器62のバスの温度による影響を検討した。
 バスの温度を82℃~112℃に変えた。結果を次の表3に示す。
Figure JPOXMLDOC01-appb-T000010
 この結果、バスの温度が80℃以上であれば、転化率は低いが、すべての例で反応の進行は見られた。したがって、バスの温度が80℃以上、好ましくは100℃以上であればよいことがわかった。
 また、実施例16~18は、流速を早くして、管型流通反応器62の管の長さを10mとして、高温で短時間での反応を検討したものである。
 実施例22~28
 次に流速による影響を検討した。
 7m/分から40m/分の範囲において検討した。結果を次の表4に示す。
Figure JPOXMLDOC01-appb-T000011
 これらの結果、バスの温度が112℃の場合については、流速の変化により転化率への影響は余り見られなかった。
 実施例29~35
 次に、管内の圧力について、管型流通反応器62の管の長さが10mのものを用いて実験を行った。実施例34は、混合器61のミキサに代えて、T字コネクタが使用されている。しかし、この変更による影響が殆ど無いことは既に確認されている。
 結果を次の表5に示す。
Figure JPOXMLDOC01-appb-T000012
 管内の圧力が高い方が良い結果となる傾向にあるが、特に大きな影響は見られなかった。
 加えて、本明細書中の全ての実施例を見返すと、管内の平均圧力は、0.044~0.694MPaが観察された。
 実施例36~39
 次に管型流通反応器62の管の長さについての影響を10mの場合と15mの場合について検討した。結果を次の表6に示す。
Figure JPOXMLDOC01-appb-T000013
 管が長くなれば、それに伴って滞留時間が長くなり、転化率も高くなる傾向がみられた。しかし、経済的効率等の観点から、あまり長すぎない適度な管の長さに調整することが好ましい。
 実施例40~52
 次に、亜塩素酸ナトリウムのマロン酸ジエチルに対するモル比の影響について検討した。実施例40~45はバスの温度が102℃の場合であり、実施例46~50はバスの温度が112℃の場合である。実施例51及び52は、バスの温度は102℃であるが、流速を遅くしている例である。
 結果を次の表7に示す。
Figure JPOXMLDOC01-appb-T000014
 この結果は、モル比が大きくなれば、転化率も高くなる傾向にあるが、モル比は2前後程度で十分であることを示している。実施例52にみられるように、モル比を3以上として、流速を遅くしてみても、転化率はモル比が2前後の場合と同様であった。
 実施例53~56
 次に、管型流通反応器62の管の長さを5mとした実験を行った。実施例53は管の長さが10mの場合であるが、実施例54~56は同様な条件下で5mとした。ただし、滞留時間を10秒以上とするために流速は少し遅くしている。
 結果を次の表8に示す。
Figure JPOXMLDOC01-appb-T000015
 この結果、管の長さが5mであっても反応は進行するが、十分な転化率とはならない場合があることがわかった。この原因の詳細は明らかではないが、この反応が管型流通反応器62の管の全体で起こっているのではなく、管型流通反応器62の入口部分では反応の開始に必要な活性化状態になる準備が行われていると考えられる。そして、その準備が完了した段階で反応が開始されると考えられる。したがって、この反応は原料化合物を混合して加熱すればすぐに開始されるものではなく、一定の誘導期を必要とする反応であると考えられる。
 回分式(バッチ式)での反応では、この誘導期の存在についての考察は特に必要とはされないが、連続式の場合には非常に重要な問題となることが判明したのである。前記した比較例1及び2で良い結果が得られなかったのも、この誘導期を維持することができなかったからであろうと考えられる。
 したがって、これらの実施例の結果から、連続式で反応を行う場合には、この誘導期を維持するための一定の管の長さが必要であると考えられる。本明細書では、この誘導期を維持するための部分を「昇温部」と命名している。このために、管型流通反応器62の管の全長は、この誘導期を維持するために必要な「昇温部」と、誘導期の後の反応が開始される部分の「反応部」に分けて考えることができることになる。
 実施例57~60
 実施例56までの装置では、管型流通反応器63で冷却された反応混合物が直接流出されていた。しかし、この反応混合物は、未反応の亜塩素酸ナトリウムだけでなく、副生した気体状の二酸化塩素も含有しており、同時に排出されることになる。気体状の二酸化塩素が排出されて、高濃度の二酸化塩素が充満すれば爆発の危険性が生じることになる。また、低濃度の二酸化塩素は漂白剤や、殺菌剤及び消毒剤としても有用であるが、高濃度の二酸化塩素の排出は、環境に対しても好ましくないであろう。したがって、これらの亜塩素酸ナトリウム及び二酸化塩素などをクエンチする手段を設けることにした。
 この実施例で使用された反応装置を図7に示す。
 容器1には原料の亜塩素酸ナトリウム水溶液が入れられており、容器2には原料のマロン酸ジエチルと酢酸の重量比で5:1(モル比で1:0.5)の混合物が入れられている。これらの原料はポンプ79及び78を介してそれぞれ供給される。供給された各原料は混合器71により混合される。混合された混合物は、内径3.15mmのチタン製の管でできている管型流通反応器72に導入される。管型流通反応器72はバス75の中に収納されている。管型流通反応器72から排出された反応混合物は、次に同じく内径3.15mmのチタン製の管でできている管型流通反応器73に導入される。管型流通反応器73は、水冷のための水浴76に収納されている。管型流通反応器73から排出された反応混合物に、T字管により容器5からのクエンチ液が混合されて、管型流通反応器74に導入される。管型流通反応器74は水冷のための水浴77に収納されている。そして、管型流通反応器74において、反応混合物中の未反応の亜塩素酸ナトリウムと副生した二酸化塩素と、クエンチ液の成分が反応して、これらの亜塩素酸ナトリウム及び二酸化塩素などを分解する。管型流通反応器74から排出された処理液は配管を通して容器4に蓄積される。容器4には窒素ガスなどの不活性ガスが配管6から吹き込まれ、容器4の中のガスが配管7から排出されている。管型流通反応器72、管型流通反応器73、及び管型流通反応器74の管はいずれもコイル状に巻かれている。80は安全弁である。
 実施例57~60の操業条件を次の表9に示す。
Figure JPOXMLDOC01-appb-T000016
 実施例57では、亜硫酸ナトリウムを亜塩素酸ナトリウムに対してモル比で0.57となる亜硫酸ナトリウム水溶液をクエンチ液として混合し、水浴77で冷却(25℃)したところ、処理液からは二酸化塩素ガスは検出されなかった。しかし、実施例58では、実施例57と同量の亜硫酸ナトリウム水溶液を混合し、水浴77を氷冷(5℃)条件として処理したところ、この処理液からは二酸化塩素ガスが検出された。
 このように、亜硫酸ナトリウムのみでは必ずしも十分ではないので、実施例59では、クエンチ液として、亜硫酸ナトリウムを亜塩素酸ナトリウムに対してモル比で0.38と、水酸化ナトリウムを亜塩素酸ナトリウムに対してモル比で0.23含有している混合水溶液を使用した。水浴77は、実施例58と同様に、氷冷(5℃)条件としたが、この処理液からは二酸化塩素ガスは検出されなかった。
 また、亜硫酸ナトリウムを亜塩素酸ナトリウムに対してモル比で0.51と、水酸化ナトリウムを亜塩素酸ナトリウムに対してモル比で0.31含有している混合水溶液をクエンチ液として使用し、水浴77は水冷(25℃)条件とした実施例60も、実施例59と同様に処理液から二酸化塩素ガスは検出されなかった。
 なお、二酸化塩素ガスは、酸化還元滴定により定量し(検出限界54.6ppm)、亜塩素酸ナトリウムは、亜塩素酸ナトリウムパックテスト(共立理化学研究所、形式WAK-NaClO)を用いて定量した(検出限界5ppm)。
 実施例57~60では、反応混合物の温度を管型流通反応器72の流出口付近で測定した。管型流通反応器72の流出口付近の反応混合物の温度は、運転開始後ほぼ95~150℃の範囲内であり、ほとんど140±5℃で定常運転することができた。ここで、バスは、少なくとも反応開始時においては、加熱のために使用される。しかし、反応管の後半部分では冷却のために機能していると推定された。
 実施例61~63
 次に、図7に示す反応装置において、管型流通反応器72のチタン製の管として、直径6mmの管を使用して、次の表10に記載の製造実験を行った。クエンチ液としては、20%亜硫酸ナトリウム水溶液と25%水酸化ナトリウム水溶液の1:1混合物を使用した。
 結果を表10に示す。
Figure JPOXMLDOC01-appb-T000017
 実施例57~60では、直径3.15mmの管が使用されたが、実施例61~63では約2倍の直径6mmの管が使用された。直径が6mmの管であっても、同様に安全に反応が進行し、非常に良い結果が得られた。
 このことは、本発明の連続製造方法において、工業的規模で大量のケトマロン酸ジエステルを製造することが可能であることを示すものである。
 本発明の方法は、ジアミンと反応させてピラジン-2-オン-3-カルボン酸エステル誘導体を製造するときの原料として、また、芳香族ジアミンから、キノキサリノン誘導体を製造する時の原料化合物として、医薬や農薬などの製造に利用されているケトマロン酸ジエステル等のケトマロン酸化合物又はその抱水体の連続的な製造方法を提供する。本発明の方法は、効率的かつ安全で安定した一般式(2)で表されるケトマロン酸ジエステル又はその抱水体を工業的に大量に製造する方法に適しており、医薬や農薬などを含めた有機化学産業において有用である。

Claims (21)

  1.  (A)マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を混合する工程、
     (B)混合された混合物を、流通反応器に供給する工程、並びに、
     (C)流通反応器で混合物を反応させる工程、
    を含有してなる、対応するケトマロン酸ジエステル又はその抱水体を連続して製造する方法。
  2.  亜塩素酸化合物が、亜塩素酸化合物の水溶液として供給される、請求項1に記載の方法。
  3.  マロン酸ジエステル、又はマロン酸ジエステルとカルボン酸化合物との混合物が、無溶媒で供給される、請求項1又は2に記載の方法。
  4.  流通反応器が、1つ又は2つ以上の管型流通反応器である、請求項1から3のいずれか1項に記載の方法。
  5.  流通反応器に、温度を制御するための温度制御部が設けられている、請求項1から4のいずれか1項に記載の方法。
  6.  流通反応器に設けられた温度制御部が、バスであって、当該バスの温度が80℃以上である、請求項5に記載の方法。
  7.  前記(A)から(C)の工程に、さらに、
     (D)混合物を反応させる工程で得られた反応混合物を、さらに熟成させる工程、
    を含有してなる、請求項1から6のいずれか1項に記載の方法。
  8.  (D)の熟成させる工程が、1つ又は2つ以上の第二の流通反応器で行われる、請求項7に記載の方法。
  9.  前記(A)から(C)の工程、又は前記(A)から(D)の工程に、さらに、
     (E)クエンチ液を混合して、反応をクエンチする工程、
    を含有してなる、請求項1から8のいずれか1項に記載の方法。
  10.  (E)のクエンチする工程が、1つ又は2つ以上の第三の流通反応器で行われ、当該第三の流通反応器が、1つ又は2つ以上の管型流通反応器である、請求項9に記載の方法。
  11.  クエンチ液が、亜硫酸塩及び/又はアルカリ金属水酸化物の水溶液である、請求項9又は10に記載の方法。
  12.  マロン酸ジエステルが、次の一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、同一又は相異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい芳香族炭化水素基、若しくは置換基を有していてもよい芳香族複素環基を示すか、又は、2つのRが互いに結合して隣接する酸素原子と共に環を形成してもよい。)
    で表されるマロン酸ジエステルである、請求項1から11のいずれかに記載の方法。
  13.  ケトマロン酸ジエステルが、次の一般式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Rは、同一又は相異なっていてもよく、置換基を有していてもよいアルキル基、置換基を有していてもよいシクロアルキル基、置換基を有していてもよい芳香族炭化水素基、若しくは置換基を有していてもよい芳香族複素環基を示すか、又は、2つのRが互いに結合して隣接する酸素原子と共に環を形成してもよい。)
    で表されるケトマロン酸ジエステルである、請求項1から12のいずれかに記載の方法。
  14.  (1)マロン酸ジエステル、カルボン酸化合物、及び亜塩素酸化合物を混合するための混合部、
     (2)混合された混合物を、昇温させるための昇温部、並びに、
     (3)昇温部で昇温された混合物を反応させるための反応部、
    を含有してなる、マロン酸ジエステルを原料化合物として対応するケトマロン酸ジエステル又はその抱水体を連続して製造するための連続製造装置であって、(2)の昇温部及び(3)の反応部が、1つ又は2つ以上の流通反応器であることを特徴とする連続製造装置。
  15.  流通反応器が、1つ又は2つ以上の管型流通反応器である、請求項14に記載の連続製造装置。
  16.  管型流通反応器の等価直径が、0.5mm~50mmである、請求項15に記載の連続製造装置。
  17.  昇温部と反応部が、ひとつの管型流通反応器に内在している、請求項14から16のいずれか1項に記載の連続製造装置。
  18.  前記(1)から(3)の部分に、さらに、
    (4)混合物を反応させる工程で得られた反応混合物を、さらに熟成させるための熟成部、
    を含有している、請求項14から17のいずれか1項に記載の連続製造装置。
  19.  当該熟成部が、1つ又は2つ以上の管型流通反応器である、請求項18に記載の連続製造装置。
  20.  前記(1)から(3)の部分、又は前記(1)から(4)の部分に、さらに、
     (5)反応をクエンチするためのクエンチ部、
    を含有している、請求項14から19のいずれか1項に記載の連続製造装置。
  21.  当該クエンチ部が、1つ又は2つ以上の管型流通反応器である、請求項20に記載の連続製造装置。
PCT/JP2015/053334 2014-02-17 2015-02-06 流通反応器を用いたケトマロン酸化合物の連続製造方法 WO2015122361A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2015562799A JP6017710B2 (ja) 2014-02-17 2015-02-06 流通反応器を用いたケトマロン酸化合物の連続製造方法
CN201580008270.XA CN105980345B (zh) 2014-02-17 2015-02-06 使用流动反应器的酮基丙二酸化合物的连续制造方法
EP15748585.5A EP3109227B1 (en) 2014-02-17 2015-02-06 Method for continuously producing ketomalonic acid compound using flow reactor
KR1020167024819A KR102134407B1 (ko) 2014-02-17 2015-02-06 유통 반응기를 사용한 케토말론산 화합물의 연속 제조방법
AU2015216279A AU2015216279B2 (en) 2014-02-17 2015-02-06 Method for continuously producing ketomalonic acid compound using flow reactor
US15/119,310 US10035753B2 (en) 2014-02-17 2015-02-06 Method for continuously producing ketomalonic acid compound using flow reactor
ES15748585T ES2805462T3 (es) 2014-02-17 2015-02-06 Procedimiento para producir continuamente compuesto de ácido cetomalónico utilizando un reactor de flujo
IL247284A IL247284B (en) 2014-02-17 2016-08-15 A method for the continuous preparation of a ketomalonic acid compound using a flow reactor
US16/021,429 US20180305290A1 (en) 2014-02-17 2018-06-28 Method for continuously producing ketomalonic acid compound using flow reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014027231 2014-02-17
JP2014-027231 2014-02-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/119,310 A-371-Of-International US10035753B2 (en) 2014-02-17 2015-02-06 Method for continuously producing ketomalonic acid compound using flow reactor
US16/021,429 Division US20180305290A1 (en) 2014-02-17 2018-06-28 Method for continuously producing ketomalonic acid compound using flow reactor

Publications (1)

Publication Number Publication Date
WO2015122361A1 true WO2015122361A1 (ja) 2015-08-20

Family

ID=53800108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053334 WO2015122361A1 (ja) 2014-02-17 2015-02-06 流通反応器を用いたケトマロン酸化合物の連続製造方法

Country Status (10)

Country Link
US (2) US10035753B2 (ja)
EP (1) EP3109227B1 (ja)
JP (1) JP6017710B2 (ja)
KR (1) KR102134407B1 (ja)
CN (1) CN105980345B (ja)
AU (1) AU2015216279B2 (ja)
ES (1) ES2805462T3 (ja)
IL (1) IL247284B (ja)
TW (1) TWI679191B (ja)
WO (1) WO2015122361A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105237A1 (ja) * 2016-12-05 2018-06-14 クミアイ化学工業株式会社 トリオキソプロパン化合物の製造法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108212044B (zh) * 2018-01-30 2024-04-26 凯莱英医药化学(阜新)技术有限公司 金属-溴代芳烃的连续置换反应设备、连续置换方法及二者的应用
CN110452119A (zh) * 2019-08-30 2019-11-15 苏州汉德创宏生化科技有限公司 一种酮基丙二酸二乙酯单水合物的合成方法
CN115646377A (zh) * 2022-11-16 2023-01-31 陕西延长石油(集团)有限责任公司 一种连续化生产α-烷基酯的反应系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112647A (ja) * 1984-06-20 1986-01-21 モンテデイソン・エツセ・ピ・ア カルボニル化合物の製造法
WO2010150548A1 (ja) * 2009-06-26 2010-12-29 イハラケミカル工業株式会社 ケトマロン酸化合物又はその抱水体の製造法
WO2015008629A1 (ja) * 2013-07-19 2015-01-22 イハラケミカル工業株式会社 ケトマロン酸化合物の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4061378A (en) * 1977-10-19 1980-04-17 Merck & Co., Inc. 1-azabicyclo (3.2.0) hept-2-enes
EP0008864A1 (en) 1978-08-15 1980-03-19 FISONS plc Pyridopyrazine and quinoxaline derivatives, processes for their preparation, and pharmaceutical compositions containing them
CH652709A5 (de) * 1983-01-06 1985-11-29 Lonza Ag Verfahren zur herstellung von estern der mesoxalsaeure.
JPH08151346A (ja) 1994-11-25 1996-06-11 Kao Corp ケトマロン酸の製造方法
CA2302161A1 (en) 1997-09-01 1999-03-11 Kyorin Pharmaceutical Co., Ltd. 6,7-asymmetrically disubstituted quinoxalinecarboxylic acid derivatives, addition salts thereof, and processes for the preparation of both
CA2327695A1 (en) 1998-04-08 1999-10-21 Takeda Chemical Industries, Ltd. Amine compounds, their production and their use as somatostatin receptor antagonists or agonists
WO2005021547A2 (en) 2003-08-28 2005-03-10 Pharmaxis Pty Ltd. Heterocyclic cannabinoid cb2 receptor antagonists
EP2404666A1 (fr) * 2010-07-09 2012-01-11 Rhodia Opérations Module de transformation continue d'au moins un produit fluide, unité et procédé associés.
CN201692802U (zh) * 2010-06-08 2011-01-05 上海三爱富新材料股份有限公司 用于连续生产六氟环氧丙烷的设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6112647A (ja) * 1984-06-20 1986-01-21 モンテデイソン・エツセ・ピ・ア カルボニル化合物の製造法
WO2010150548A1 (ja) * 2009-06-26 2010-12-29 イハラケミカル工業株式会社 ケトマロン酸化合物又はその抱水体の製造法
WO2015008629A1 (ja) * 2013-07-19 2015-01-22 イハラケミカル工業株式会社 ケトマロン酸化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3109227A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105237A1 (ja) * 2016-12-05 2018-06-14 クミアイ化学工業株式会社 トリオキソプロパン化合物の製造法
JPWO2018105237A1 (ja) * 2016-12-05 2019-10-24 クミアイ化学工業株式会社 トリオキソプロパン化合物の製造法
JP7030059B2 (ja) 2016-12-05 2022-03-04 クミアイ化学工業株式会社 トリオキソプロパン化合物の製造法

Also Published As

Publication number Publication date
CN105980345B (zh) 2019-12-20
EP3109227A4 (en) 2017-09-13
JP6017710B2 (ja) 2016-11-02
IL247284A0 (en) 2016-09-29
JPWO2015122361A1 (ja) 2017-03-30
AU2015216279B2 (en) 2018-01-18
CN105980345A (zh) 2016-09-28
ES2805462T3 (es) 2021-02-12
US10035753B2 (en) 2018-07-31
IL247284B (en) 2020-04-30
US20180305290A1 (en) 2018-10-25
TW201538474A (zh) 2015-10-16
EP3109227B1 (en) 2020-04-08
AU2015216279A1 (en) 2016-09-08
KR20160122770A (ko) 2016-10-24
TWI679191B (zh) 2019-12-11
EP3109227A1 (en) 2016-12-28
US20170008829A1 (en) 2017-01-12
KR102134407B1 (ko) 2020-07-15

Similar Documents

Publication Publication Date Title
US20180305290A1 (en) Method for continuously producing ketomalonic acid compound using flow reactor
JP2007105668A (ja) 気液反応方法及びそのための装置
RU2532906C2 (ru) Способ получения соединений, являющихся производными кетомалоновой кислоты, или их гидратов
Krtschil et al. Flow Chemistry of the Kolbe‐Schmitt Synthesis from Resorcinol: Process Intensification by Alternative Solvents, New Reagents and Advanced Reactor Engineering
JP2016510328A (ja) フローシステムを用いた5−ニトロテトラゾレートを調製するための簡易な方法
JP7030059B2 (ja) トリオキソプロパン化合物の製造法
Lu et al. Evaluation of an improved epichlorohydrin synthesis from dichloropropanol using a microchemical system
JP5921500B2 (ja) ケトマロン酸化合物の製造方法
US9550731B2 (en) Method for phase transfer synthesis of organic peroxides
JP2005314373A (ja) 酸化反応方法
JPS6335617B2 (ja)
TWI734776B (zh) 硝基苯化合物的製造方法
CN110590711B (zh) 一种六氟环氧丙烷的制备方法
JP2007261991A (ja) 4,4”−ジホルミルテルフェニル類の製造方法
JPS6247867B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15748585

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015562799

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 247284

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 15119310

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015748585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015748585

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167024819

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015216279

Country of ref document: AU

Date of ref document: 20150206

Kind code of ref document: A