WO2015122040A1 - 自走式電気掃除機の充電ユニットと充電システム - Google Patents

自走式電気掃除機の充電ユニットと充電システム Download PDF

Info

Publication number
WO2015122040A1
WO2015122040A1 PCT/JP2014/072181 JP2014072181W WO2015122040A1 WO 2015122040 A1 WO2015122040 A1 WO 2015122040A1 JP 2014072181 W JP2014072181 W JP 2014072181W WO 2015122040 A1 WO2015122040 A1 WO 2015122040A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
unit
vacuum cleaner
charging
self
Prior art date
Application number
PCT/JP2014/072181
Other languages
English (en)
French (fr)
Inventor
匠 首藤
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201480047481.XA priority Critical patent/CN105491933B/zh
Priority to US14/915,700 priority patent/US10199840B2/en
Publication of WO2015122040A1 publication Critical patent/WO2015122040A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/28Installation of the electric equipment, e.g. adaptation or attachment to the suction cleaner; Controlling suction cleaners by electric means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4011Regulation of the cleaning machine by electric means; Control systems and remote control systems therefor
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4013Contaminants collecting devices, i.e. hoppers, tanks or the like
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L11/00Machines for cleaning floors, carpets, furniture, walls, or wall coverings
    • A47L11/40Parts or details of machines not provided for in groups A47L11/02 - A47L11/38, or not restricted to one of these groups, e.g. handles, arrangements of switches, skirts, buffers, levers
    • A47L11/4036Parts or details of the surface treating tools
    • A47L11/4041Roll shaped surface treating tools
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0225Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory involving docking at a fixed facility, e.g. base station or loading bay
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0242Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using non-visible light signals, e.g. IR or UV signals
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0244Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using reflecting strips
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/02Docking stations; Docking operations
    • A47L2201/022Recharging of batteries
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L2201/00Robotic cleaning machines, i.e. with automatic control of the travelling movement or the cleaning operation
    • A47L2201/04Automatic control of the travelling movement; Automatic obstacle detection

Definitions

  • This invention relates to a charging unit (charging base) and a charging system of a self-propelled electric vacuum cleaner.
  • the present invention has been made in consideration of such circumstances, and pays attention to the floor surface detection sensor provided in the self-propelled electric vacuum cleaner, and by using it, the vacuum cleaner can be returned efficiently.
  • a charging unit and a charging system are provided.
  • the present invention relates to a unit for charging a battery of a self-propelled vacuum cleaner that travels on the floor surface based on the outputs of the infrared reflection type floor surface detection sensor and the infrared detection sensor, and an infrared ray for indicating a return path
  • the infrared transmission unit and the infrared absorption unit, the infrared transmission unit and the infrared absorption unit are configured such that the vacuum cleaner detects infrared rays with the infrared detection sensor and the floor surface detection sensor absorbs the infrared rays.
  • the charging unit for a self-propelled electric vacuum cleaner is provided so that it can be returned to the charging unit by detecting the portion.
  • the charging unit since the charging unit includes an infrared transmission unit that emits infrared rays for indicating a return path and an infrared absorption unit, the self-propelled vacuum cleaner detects infrared rays with the detection sensor, By detecting the infrared absorbing portion with the surface detection sensor, it is possible to return to the charging unit with high accuracy and efficiency.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1. It is a perspective view of the upper surface front side of the self-propelled electric vacuum cleaner shown in FIG. It is a perspective view of the bottom face side of the self-propelled electric vacuum cleaner shown in FIG. It is a figure corresponding to FIG. 2 which shows the state which took out the dust collector. It is a principal part enlarged view of the self-propelled vacuum cleaner shown in FIG. It is a block diagram which shows the control system of the self-propelled electric vacuum cleaner shown in FIG. It is a perspective view of the charging unit which concerns on Embodiment 1 of this invention.
  • FIG. 12 is a view corresponding to FIG. 11 of Embodiment 2 of the present invention.
  • FIG. 13 is a diagram corresponding to FIG. 12 of Embodiment 2 of the present invention. It is FIG. 11 corresponding
  • FIG. 13 is a diagram corresponding to FIG. 12 of Embodiment 3 of the present invention. It is FIG. 11 corresponding view of Embodiment 4 of this invention.
  • FIG. 13 is a diagram corresponding to FIG. 12 of Embodiment 4 of the present invention.
  • a charging unit for a self-propelled electric vacuum cleaner is a unit for charging a battery of a self-propelled electric vacuum cleaner that travels on the floor surface based on outputs of an infrared reflection type floor surface detection sensor and an infrared detection sensor.
  • An infrared transmission unit that emits infrared rays for indicating a return path, and an infrared absorption unit, wherein the infrared transmission unit and the infrared absorption unit detect the infrared rays by the cleaner using the infrared detection sensor; and
  • the floor surface detection sensor is installed so as to be able to return to the charging unit by detecting the infrared absorbing portion.
  • the infrared reflection type floor surface detection sensor is, for example, a combination of an infrared light emitting element (LED) and a light receiving element (phototransistor), and the floor surface is irradiated with infrared rays to receive the reflected light. The presence or absence of (step) is detected.
  • LED infrared light emitting element
  • phototransistor phototransistor
  • the infrared absorbing portion has a function of absorbing infrared rays from the floor surface detection sensor, and a sheet-like infrared absorbing member, such as a commercially available graphite sheet, can be installed along the floor surface. Etc. are preferably used.
  • the infrared ray absorbing portion may be composed of a plurality of infrared ray absorbing members arranged along the floor surface in the vicinity of the return path.
  • the infrared absorbing member may be composed of two strip-shaped infrared absorbing members arranged parallel to the return path and along the floor surface.
  • the infrared absorbing portion may be formed of a strip-shaped infrared absorbing member that is disposed perpendicular to the return path and along the floor surface.
  • the band-shaped infrared absorbing member may be composed of a plurality of band-shaped infrared absorbing members arranged in parallel at intervals.
  • the self-propelled vacuum cleaner is provided with an infrared reflection type floor detection sensor, and the charging unit is provided with an infrared absorber.
  • the self-propelled vacuum cleaner absorbs infrared rays by the floor detection sensor.
  • the charging system of the self-propelled electric vacuum cleaner which returns to a charging unit and charges while detecting a part is provided.
  • FIG. 1 is a top rear perspective view of a self-propelled vacuum cleaner according to the present invention
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1
  • FIG. 4 is a bottom perspective view of the self-propelled electric vacuum cleaner shown in FIG. 1
  • FIG. 5 is a diagram showing a state where the dust collector is taken out.
  • a self-propelled electric vacuum cleaner (hereinafter referred to as “vacuum cleaner”) 1 according to Embodiment 1 has a floor surface (surface to be cleaned) F (FIG. 2) at an installed location. While self-propelled, the air containing dust on the floor surface F is sucked and the air from which the dust has been removed is exhausted to clean the floor surface.
  • the vacuum cleaner 1 includes a disk-shaped housing 2, and a rotating brush 9, a side brush 10, a dust box (hereinafter referred to as a dust collector) 30, an electric blower 22, and a pair of drives are provided inside and outside the housing 2.
  • a wheel 29, a rear wheel 26, a front wheel 27, and the like are provided.
  • a portion where the front wheel 27 is disposed is a front portion
  • a portion where the rear wheel 26 is disposed is a rear portion
  • a portion where the dust collecting device 30 is disposed is an intermediate portion.
  • the housing 2 has a circular bottom plate 2 a (FIG. 4) having a suction port 6 formed at a position near the boundary with the intermediate portion in the front portion, and a dust collector 30 with respect to the housing 2.
  • a top plate 2b (FIG. 1) having a lid 3 that opens and closes in the middle is provided, and a side plate 2c provided along the outer periphery of the bottom plate 2a and the top plate 2b.
  • the bottom plate 2a shown in FIG. 4 is formed with a plurality of holes for projecting the lower portions of the front wheel 27, the pair of drive wheels 29 and the rear wheel 26 from the inside of the housing 2 to the outside of the top plate 2b shown in FIG.
  • An exhaust port 7 is formed at the boundary between the front part and the intermediate part.
  • the side plate 2c is divided into two parts in the front-rear direction, and the side front part is provided to be displaceable so as to function as a bumper.
  • an exhaust port 7 is provided in the front portion of the top plate 2 b of the housing 2.
  • the rear portion of the top plate 2b of the housing 2 includes a power switch (push button switch) 62, a start switch operated by the user, a switch for checking the fullness of the dust collection amount described later, and a switch for inputting various other conditions.
  • an infrared detection main sensor 110 is provided at the front end of the top plate 2b of the housing 2, and three infrared detection sub-sensors 111a to 111c and a single one are provided at the front portion of the side plate 2c.
  • An ultrasonic ranging sensor 112 is provided.
  • the infrared detection main sensor 110 can detect infrared rays incident from all directions (360 °), and the infrared detection sub-sensors 111a to 111c can detect infrared rays incident at a predetermined angle from the front. Further, the ultrasonic distance measuring sensor 112 emits ultrasonic waves forward and measures the distance by reflection thereof.
  • the rear portion has a rear storage chamber R3 for storing the control board 15 of the control portion, the battery (storage battery) 14, the charging input terminals 4a and 4b, and the like, and the suction path 11 near the boundary between the front portion and the intermediate portion. And an exhaust passage 12.
  • the suction passage 11 communicates the suction port 6 (FIG. 4) and the intermediate storage chamber R2, and the exhaust passage 12 communicates the intermediate storage chamber R2 and the front storage chamber R1.
  • Each of the storage chambers R1, R2, R3, the suction path 11 and the exhaust path 12 is partitioned by a partition wall 39 provided inside the housing 2 and constituting these spaces.
  • the pair of driving wheels 29 are fixed to a pair of rotating shafts that intersect at right angles with a center line C (FIG. 2) passing through the center of the casing 2, and the casing 2 is rotated when the pair of driving wheels 29 rotate in the same direction.
  • the housing 2 rotates around the center line C.
  • the rotation shafts of the pair of drive wheels 29 are coupled so that rotational force can be obtained individually from the pair of drive wheel motors, and each motor is fixed to the bottom plate 2a of the housing directly or via a suspension mechanism. ing.
  • the pair of driving wheels 29 is arranged in the middle in the front-rear direction with respect to the housing 2, the front wheels 27 are floated from the floor surface F, and the weight of the self-propelled vacuum cleaner 1 is set to the pair of driving wheels 29 and the rear wheels.
  • the weight in the front-rear direction is distributed to the housing 2 so that it can be supported by 26. Thereby, the dust in front of the course can be guided to the suction port 6 without being blocked by the front wheel 27.
  • FIG. 4 is an open surface of a recess 8 (FIG. 2) formed on the bottom surface (bottom plate 2a) of the housing 2 so as to face the floor surface F, and a bottom plate as a suction body is formed in the recess 8. Is inserted into the suction port 6.
  • a rotating brush 9 (FIG. 4) that rotates about an axis parallel to the bottom surface of the housing 2 is provided in the recess 8, and a rotation axis that is perpendicular to the bottom plate 2 a is provided on the left and right sides of the recess 8.
  • the side brush 10 which rotates is provided.
  • the rotating brush 9 is formed by implanting a brush in a spiral shape on the outer peripheral surface of a roller that is a rotating shaft.
  • the side brush 10 is formed by providing four bundles of brushes 10a radially at the lower end of the rotating shaft.
  • the rotary shaft of the rotary brush 9 is connected to a brush drive motor, and the rotary shaft of the side brush 10 is connected to a drive motor of the side brush. Further, as shown in FIG. 3, a brushed brush 65 as a blade-like capturing member is provided at the rear edge of the suction port 6 to capture dust that has not been sucked by the suction port 6 and prevent scattering of dust. ing.
  • control circuit constituting a control system (FIG. 8) to be described later, that is, a microcomputer for controlling the self-propelled vacuum cleaner 1, a drive wheel 29, a rotating brush 9 and the like.
  • a control circuit such as a motor driver circuit for driving each element such as the side brush 10 and the electric blower 22 is provided.
  • Charging input terminals 4a and 4b for charging the battery 14 are provided at the rear end of the side plate 2c of the housing 2 as shown in FIG.
  • the self-propelled electric vacuum cleaner 1 that cleans the room while self-propelled returns to the charging unit (charging base) 40 (FIG. 2) installed in the room.
  • the charging input terminals 4a and 4b come into contact with the output terminals 41a and 41b provided in the charging unit 40, and the battery 14 is charged.
  • the charging stand 40 connected to a commercial power source (outlet) is usually installed along the side wall S in the room.
  • the dust collector 30 shown in FIG. 2 is normally stored in the intermediate storage chamber R2 above the axis of the rotation shaft of both drive wheels 29 in the housing 2 and collected in the dust collector 30. When discarding the dust, the dust collector 30 can be taken in and out by opening the lid 3 of the housing 2 as shown in FIG.
  • An inflow path 34 communicating with the suction path 11 of the housing 2 and the housing 2 in a state where the dust collecting device 30 is housed in the intermediate storage chamber R2 of the housing 2 are disposed at the front portion of the side wall of the dust collecting container 31.
  • An exhaust passage 35 communicating with the exhaust passage 12 is provided.
  • floor surface detection sensors 13a and 13b are installed on both sides of the rear wheel 26, respectively, and floor surface detection is performed on the front side of the pair of drive wheels 29, respectively. Sensors 13c and 13d are installed.
  • the vacuum cleaner 1 detects a large level difference (cliff) on the floor using these during traveling, prevents the vehicle from falling into the large level difference (cliff) and causing the vehicle to become unmovable, and to the charging unit 40 (FIG. 2). At the time of return, as will be described later, the infrared absorbing member is detected using these to check the return path.
  • FIG. 6 is a cross-sectional view showing the configuration of the floor detection sensor 13a.
  • the floor surface detection sensor 13a includes a sensor module 113, and an infrared light emitting element (LED) 114 and a light receiving element (phototransistor) 116 are mounted in the translucent case.
  • LED infrared light emitting element
  • phototransistor phototransistor
  • the infrared light emitted from the infrared light emitting element 114 irradiates the object (floor surface F), and the reflected light is received by the light receiving element 115.
  • the object does not exist within the predetermined irradiation distance or when infrared light is absorbed by the object, the reflected light received is lower than the predetermined value. Therefore, the presence or absence of a floor surface or the presence or absence of an infrared absorbing member is detected.
  • the other floor surface detection sensors 13b to 13d have the same configuration.
  • FIG. 7 is a block diagram showing a control system that controls the vacuum cleaner 1.
  • the control system includes a control unit 54 having a microcomputer comprising a CPU 51, a ROM 52, and a RAM 53, and a motor driver circuit for controlling driving wheel motors 55 and 56 for driving the two driving wheels 29, respectively.
  • a motor driver circuit 68 for controlling the motor 69, a power switch 62, a sensor control unit 66 for driving and controlling various sensors 67, an input unit 63, and a display unit 64 are provided.
  • the various sensors 67 include floor detection sensors 13a to 13d, an ultrasonic distance measuring sensor 112, an infrared detection main sensor 110, and infrared detection subsensors 111a to 111c.
  • the DC motor 69 is a permanent magnet excitation DC motor.
  • the output power of the battery 14 is supplied to the motor driver circuits 57, 92, 59, and 68, and to the control unit 54, the input unit 63, the display unit 64, the sensor control unit 66, and the like. Are also supplied.
  • the CPU 51 of the control unit 54 is a central processing unit that performs arithmetic processing on signals received from the input unit 63 and various sensors 67 based on a program stored in the ROM 52 in advance, and motor driver circuits 57, 92, 59. 68, the display unit 64, and the like.
  • the RAM 53 temporarily stores various commands input by the user from the input unit 63, various operating conditions of the self-propelled electric vacuum cleaner 1, outputs of various sensors 65, and the like.
  • the RAM 53 can store a travel map of the cleaner 1.
  • the travel map is information related to travel such as the travel route and travel speed of the cleaner 1, and can be stored in advance in the RAM 53 by the user, or can be automatically recorded during the cleaning operation of the cleaner 1 itself.
  • the control unit 54 has a function of detecting the terminal voltage of the battery 14 and the like to detect the remaining amount of electricity stored in the battery 14.
  • the casing 2 self-propells within a predetermined range and removes dust on the floor surface F from the inlet 6. Inhale air containing. At this time, the dust on the floor surface F is scraped up by the rotation of the rotating brush 9 and guided to the suction port 6. Further, the dust on the side of the suction port 6 is guided to the suction port 6 by the rotation of the side brush 10.
  • Air containing dust sucked into the housing 2 from the suction port 6 passes through the suction passage 11 of the housing 2 and the inflow passage 34 of the dust collector 30 as indicated by an arrow A1 in FIG. It flows into the dust collecting container 31.
  • the airflow that has flowed into the dust collection container 31 passes through the filter portion 33, flows into the space between the filter portion 33 and the cover portion 32, and is discharged to the exhaust passage 12 through the discharge passage 35. At this time, the dust contained in the airflow in the dust collecting container 31 is captured by the filter unit 33, so that the dust accumulates in the dust collecting container 31.
  • the airflow flowing into the exhaust passage 12 from the dust collector 30 flows into the front storage chamber R1 as shown by the arrow A2 in FIG. 2, and flows through the first exhaust passage and the second exhaust passage (not shown). Then, as indicated by an arrow A3 in FIG. 2, the air is discharged as clean air dust-removed by the filter unit 33 obliquely upward to the rear from the exhaust port 7 provided on the upper surface of the housing 2.
  • the vacuum cleaner 1 moves the center line C by rotating the right and left drive wheels 29 forward in the same direction, moving forward, moving backward in the same direction, moving backward, and rotating in the opposite directions. Turn to the center.
  • the vacuum cleaner 1 can be self-propelled and cleaned, avoiding a big level
  • FIG. 8 is an external perspective view of the charging unit according to Embodiment 1 of the present invention.
  • the charging unit 40 includes a main body 101 and an installation plate 102 of an infrared absorbing member that extends horizontally from the bottom surface of the main body 101.
  • the main body 101 has an output terminal 41a, 41b for outputting charging power in contact with the charging input terminals 4a, 4b (FIG. 1) on the front surface, and an infrared ray for emitting an infrared ray for indicating a return path to the cleaner 1.
  • the transmitter 103 and the ultrasonic receiver 105 for receiving the ultrasonic wave transmitted from the ultrasonic distance sensor 112 (FIG. 3) are provided.
  • substantially square sheet-like infrared absorbing members 115a and 115b are installed on the upper surface of the installation plate 102.
  • Commercially available graphite sheets are used here for the infrared absorbing members 115a and 115b.
  • FIG. 9 is a block diagram showing a control system for controlling the charging unit 40. As shown in the figure, this control system includes a control unit 106, a power conversion unit 107, an infrared transmission unit 103, a connection unit 104, an ultrasonic reception unit 105, and a power outlet 108.
  • this control system includes a control unit 106, a power conversion unit 107, an infrared transmission unit 103, a connection unit 104, an ultrasonic reception unit 105, and a power outlet 108.
  • the control unit 106 includes a microcomputer including a CPU, a ROM, and a RAM.
  • the connection unit 104 includes a detection circuit that detects and notifies the control unit 106 when the charging input terminals 4a and 4b (FIGS. 1 and 2) come into contact with the output terminals 41a and 41b.
  • the power conversion unit 107 converts commercial power (AC100V, 50/60 Hz) input from the commercial power supply 109 via the outlet 108 into charging power (DC24V) and control power (DC5V) for the battery 14 (FIG. 7). It is like that.
  • the converted control power is supplied to the control unit 106, the infrared transmission unit 103, the connection unit 104, and the ultrasonic reception unit 105.
  • connection unit 104 detects the contact operation and notifies the control unit 106, whereby the power conversion unit 107 connects the charging power.
  • the signal is output to the output terminals 41a and 41b via the unit 104.
  • FIG. 10 is an explanatory diagram showing the feedback operation of the vacuum cleaner 1 to the charging unit 40.
  • the charging unit 40 irradiates the vacuum cleaner 1 with infrared IR having a diffusion angle of 20 ° to 30 ° in the direction of the arrow from the infrared transmitter 103 (FIG. 8) in order to show the return path.
  • the controller 54 determines that it is necessary to return to the charging unit 40
  • the cleaner 1 Is present in the irradiation region of the infrared IR as shown in FIG. 10A
  • the infrared detection main sensor 110 detects the infrared IR and temporarily stops. Then, the vehicle rotates on the spot, detects the direction in which the charging unit 40 exists as shown in FIG. 5B, and changes the direction to that direction.
  • the three infrared detection sub-sensors 111a to 111c can detect the infrared IR, and the cleaner 1 travels along the return path indicated by the infrared IR. To do.
  • the infrared IR is changed from continuous light to intermittent light ( Pulsed light).
  • the control unit 54 confirms that the cleaner 1 has correctly traveled along the return path indicated by the infrared IR.
  • the ultrasonic distance measuring sensor 112 detects that the vehicle has further moved forward and has approached the charging unit 40 up to a predetermined distance, the cleaner 1 temporarily stops, rotates by 180 °, and outputs from the charging unit 40.
  • the charging input terminals 4a and 4b (FIG. 1) are made to face the terminals 41a and 41b (FIG. 8).
  • infrared absorbing members 115 a and 115 b are installed on the installation plate 102 of the charging unit 40, thereby accurately positioning the vacuum cleaner 1 with respect to the charging unit 40. .
  • the interval A between the infrared absorbing members 115a and 115b corresponds to the interval B between the floor surface detection sensors 13a and 13b of the cleaner 1. Further, graphite sheets are used for the infrared absorbing members 115a and 115b.
  • FIG. 12 shows a situation in which the cleaner 1 further approaches the charging unit 40 from the position shown in FIG.
  • the floor surface detection sensors 13a and 13b overlap the infrared absorption members 115a and 115b, respectively, and the infrared absorption members 115a and 115b are simultaneously detected by the floor surface detection sensors 13a and 13b. .
  • the control unit 54 determines that the cleaner 1 is correctly traveling along the return path indicated by the infrared IR, and moves backward as it is.
  • the control unit 54 stops the backward movement of the cleaner 1 as soon as charging is started, and continues the charging operation as it is.
  • control unit 54 determines that the cleaner 1 has traveled obliquely with respect to the return path indicated by the infrared IR. Therefore, the controller 54 temporarily retracts the cleaner 1 to the position shown in FIG. 11, calculates a detection timing shift (time difference), and sets the traveling direction of the cleaner 1 as shown in FIG. Correct it.
  • the infrared absorbing member 115b is not detected at all by the floor detecting sensor 13b even after the infrared absorbing member 115a is detected by the floor detecting sensor 13a.
  • control unit 54 determines that the cleaner 1 has shifted in parallel with the return path indicated by the infrared IR. Therefore, the cleaner 1 is once moved forward, and its traveling direction is corrected so as to be as shown in FIG.
  • FIG. 13 is a diagram corresponding to FIG. 11 of this embodiment. That is, in this embodiment, the infrared absorbing members 115a and 115b provided on the installation base 102 of the charging unit 40 in the first embodiment are replaced with belt-shaped infrared absorbing members 115c and 115d, and other configurations. Is equivalent to the first embodiment.
  • the strip-shaped infrared absorbing members 115c and 115d are arranged symmetrically with respect to the return path indicated by the infrared IR, in parallel with a predetermined interval, and along the floor surface F (FIG. 2). Is placed on top.
  • the interval A between the infrared absorbing members 115c and 115d corresponds to the interval B between the floor surface detection sensors 13a and 13b of the cleaner 1.
  • graphite sheets are used for the infrared absorbing members 115c and 115d.
  • FIG. 14 shows a situation in which the cleaner 1 is closer to the charging unit 40 from the position shown in FIG.
  • the floor surface detection sensors 13a and 13b overlap the tips of the infrared absorption members 115c and 115d, respectively, and the infrared absorption members 115c and 115d are simultaneously detected by the floor surface detection sensors 13a and 13b. Is done.
  • the control unit 54 determines that the vacuum cleaner 1 has started to properly travel along the return path indicated by the infrared IR, and further proceeds. However, after that, if for some reason at least one of the floor surface detection sensors 13a and 13b no longer detects the infrared absorbing members 115c and 115d as shown in FIG. 14B, the control unit 54 enters the course of the cleaner 1. Judge that an abnormality has occurred. Therefore, the self-propelled vacuum cleaner 1 is once moved forward to the position shown in FIG. 13, and the traveling direction is corrected so as to be as shown in FIG.
  • the strip-shaped infrared absorbing member 115e is disposed on the installation plate 102 so as to be orthogonal to the return path indicated by the infrared IR and along the floor surface F (FIG. 2).
  • a graphite sheet is also used for the infrared absorbing member 115e.
  • FIG. 16 shows a situation in which the cleaner 1 is further approached from the position shown in FIG. 15 toward the charging unit 40.
  • the infrared absorbing member 115e is simultaneously detected by the floor surface detection sensors 13a and 13b.
  • control unit 54 determines that the self-propelled vacuum cleaner 1 is correctly traveling along the return path indicated by the infrared IR, and further proceeds.
  • FIG. 16 (b) there is a difference in the timing at which the floor surface detection sensors 13a and 13b detect the infrared absorbing member 115e.
  • control unit 54 determines that the cleaner 1 is traveling obliquely with respect to the return path indicated by the infrared IR. Therefore, the control unit 54 temporarily retracts the cleaner 1 to the position shown in FIG. 15, calculates a timing shift (time difference), and corrects the traveling direction as shown in FIG.
  • FIG. 17 is a diagram corresponding to FIG. 15 of this embodiment. That is, in this embodiment, in Embodiment 3, a band-shaped infrared absorbing member (graphite sheet) 115f is added in parallel to the band-shaped infrared absorbing member 115e provided on the installation allowance 102 of the charging unit 40 at a predetermined interval.
  • the other configuration is the same as that of the third embodiment.
  • FIG. 18 shows a situation in which the cleaner 1 is further closer to the charging unit 40 from the position shown in FIG.
  • the first infrared absorbing member 115e is simultaneously detected by the floor surface detection sensors 13a and 13b.
  • the vacuum cleaner 1 is guided by the infrared absorbing member, and can return to the charging unit 40 efficiently and accurately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Electric Vacuum Cleaner (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 赤外線反射型の床面検知センサと赤外線検知センサとの出力に基づいて床面を走行する自走式電気掃除機のバッテリを充電するユニットであって、帰還路を示すための赤外線を出射する赤外線送信部と、赤外線吸収部とを備え、前記赤外線送信部と赤外線吸収部は、前記掃除機が前記赤外線検知センサで赤外線を検知し、かつ、前記床面検知センサで前記赤外線吸収部を検知することにより充電ユニットへ帰還できるように設置されたことを特徴とする自走式電気掃除機用充電ユニット。

Description

自走式電気掃除機の充電ユニットと充電システム
 この発明は自走式電気掃除機の充電ユニット(充電台)と充電システムに関する。
 この発明の背景技術としては、充電台から送信される赤外線を赤外線検知センサによって検知しながら充電台へ帰還するようにした自走式電気掃除機が知られている(例えば、特許文献1参照)。
特開2013-146302号公報
 しかしながら、従来のこのような自走式電気掃除機では、赤外線検知センサのみで充電台への帰還路を検出するためその検出精度が低く、充電台の所望の位置に帰還するのに時間を要することから、その改善が望まれていた。
 この発明はこのような事情を考慮してなされたもので、自走式電気掃除機が備える床面検知センサに着目し、それを利用することにより、掃除機を効率よく帰還させることが可能な充電ユニットと充電システムを提供するものである。
 この発明は、赤外線反射型の床面検知センサと赤外線検知センサとの出力に基づいて床面を走行する自走式電気掃除機のバッテリを充電するユニットであって、帰還路を示すための赤外線を出射する赤外線送信部と、赤外線吸収部とを備え、前記赤外線送信部と赤外線吸収部は、前記掃除機が前記赤外線検知センサで赤外線を検知し、かつ、前記床面検知センサで前記赤外線吸収部を検知することにより充電ユニットへ帰還できるように設置されたことを特徴とする自走式電気掃除機用充電ユニットを提供するものである。
 この発明によれば、充電ユニットが帰還路を示すための赤外線を出射する赤外線送信部と赤外線吸収部とを備えるので、自走式電気掃除機は赤外線を検知センサで赤外線を検知しながら、床面検知センサで赤外線吸収部を検知することにより、精度よく効率的に充電ユニットへ帰還することができる。
この発明の実施形態1に係る自走式電気掃除機の上面後方側の斜視図である。 図1のA-A矢視断面図である。 図1に示す自走式電気掃除機の上面前方側の斜視図である。 図1に示す自走式電気掃除機の底面側の斜視図である。 集塵装置を取り出した状態を示す図2対応図である。 図1に示す自走式電気掃除機の要部拡大図である。 図1に示す自走式電気掃除機の制御系を示すブロック図である。 この発明の実施形態1に係る充電ユニットの斜視図である。 図8に示す充電ユニットの制御系を示すブロック図である。 この発明の実施形態1帰還動作を示す説明図である。 この発明の実施形態1の充電ユニットと自走式電気掃除機を示す上面図である。 この発明の実施形態1の動作の詳細を示す説明図である。 この発明の実施形態2の図11対応図である。 この発明の実施形態2の図12対応図である。 この発明の実施形態3の図11対応図である。 この発明の実施形態3の図12対応図である。 この発明の実施形態4の図11対応図である。 この発明の実施形態4の図12対応図である。
 この発明による自走式電気掃除機用充電ユニットは、赤外線反射型の床面検知センサと赤外線検知センサとの出力に基づいて床面を走行する自走式電気掃除機のバッテリを充電するユニットであって、帰還路を示すための赤外線を出射する赤外線送信部と、赤外線吸収部とを備え、前記赤外線送信部と赤外線吸収部は、前記掃除機が前記赤外線検知センサで赤外線を検知し、かつ、前記床面検知センサで前記赤外線吸収部を検知することにより充電ユニットへ帰還できるように設置されたことを特徴とする。
 ここで、赤外線反射型の床面検知センサとは、例えば赤外線発光素子(LED)と受光素子(フォトトランジスタ)とを組合せ、床面に赤外線を照射させてその反射光を受光することにより床面(段差)の有無を検知するものである。
 また、赤外線吸収部とは、前記床面検知センサからの赤外線を吸収する機能を有するものであり、これには床面に沿って設置できるようにシート状の赤外線吸収部材、例えば市販のグラファイトシートなどが好適に用いられる。
 この発明において、前記赤外線吸収部は、前記帰還路の近傍に前記床面に沿うように配置された複数の赤外線吸収部材からなってもよい。
 前記赤外線吸収部材は、前記帰還路に平行に、かつ、前記床面に沿うように配置された2本の帯状の赤外線吸収部材からなってもよい。
 前記赤外線吸収部は、前記帰還路に直交し、かつ、前記床面に沿うように配置された帯状の赤外線吸収部材からなってもよい。前記帯状の赤外線吸収部材は、間隔を有して平行に配置された複数の帯状の赤外線吸収部材からなってもよい。
 この発明は、別の観点から、自走式電気掃除機に赤外線反射型の床面検知センサを、充電ユニットに赤外線吸収部をそれぞれ設け、自走式電気掃除機は床面検知センサにより赤外線吸収部を検知しながら充電ユニットへ帰還して充電を行う自走式電気掃除機の充電システムを提供するものである。
 以下、図面に示す実施形態を用いてこの発明を詳述する。これによってこの発明が限定されるものではない。
(実施形態1)
(1)自走式電気掃除機の構成
 図1はこの発明に係る自走式電気掃除機の上面後方側斜視図、図2は図1のA-A矢視断面図、図3は図1に示される自走式電気掃除機の上面前方側斜視図、図4は図1に示される自走式電気掃除機の底面側斜視図、図5は集塵装置が取り出された状態を示す図2対応図である。
 図1~図5に示されるように、実施形態1に係る自走式電気掃除機(以下、掃除機という)1は、設置された場所の床面(被清掃面)F(図2)を自走しながら、床面F上の塵埃を含む空気を吸い込み、塵埃を除去した空気を排気することにより床面上を掃除するように構成されている。
 掃除機1は、円盤状の筐体2を備え、この筐体2の内部および外部に、回転ブラシ9、サイドブラシ10、ダストボックス(以下、集塵装置という)30、電動送風機22、一対の駆動輪29、後輪26および前輪27などが設けられている。
 この掃除機1において、前輪27が配置されている部分が前方部、後輪26が配置されている部分が後方部、集塵装置30が配置されている部分が中間部である。
 筐体2は、前方部における中間部との境界付近の位置に形成された吸込口6を有する平面視円形の底板2a(図4)と、筐体2に対して集塵装置30を出し入れする際に開閉する蓋部3を中間部に有している天板2b(図1)と、底板2aおよび天板2bの外周部に沿って設けられた側板2cとを備えている。
 また、図4に示す底板2aには前輪27、一対の駆動輪29および後輪26の下部を筐体2内から外部へ突出させる複数の孔部が形成され、図1に示す天板2bにおける前方部と中間部との境界には排気口7が形成されている。なお、側板2cは、前後に二分割されており、側方前部はバンパーとして機能するように、変位可能に設けられている。
 また、図1に示されるように、筐体2の天板2bにおける前方部には排気口7を備えている。筐体2の天板2bにおける後方部には、電源スイッチ(押釦スイッチ)62と、ユーザーが操作する起動スイッチや後述する集塵量の満杯チェック用のスイッチやその他各種条件を入力するスイッチを備えた入力部(入力パネル)63と、集塵量の満杯の警報を表示したり、掃除機の状況を表示する表示部(表示パネル)64を備えている。
 また、図3に示すように筐体2の天板2bにおける前方部の先端には赤外線検知主センサ110が設けられ、側板2cの前方部には3つの赤外線検知副センサ111a~111cと1つの超音波測距センサ112が設けられている。
 赤外線検知主センサ110は全方向(360°)から入射する赤外線を検知することができ、赤外線検知副センサ111a~111cはそれぞれ前方から所定角度で入射する赤外線を検知することができる。また、超音波測距センサ112は超音波を前方へ出射し、その反射によって距離を測定するようになっている。
 また、図5は集塵装置30を取り出した状態を示す図2対応図である。同図に示されるように、筐体2は、その内部において、前方部に電動送風機22を収納する前方収納室R1を有し、中間部に集塵装置30を収納する中間収納室R2を有する。
 また、後方部に制御部の制御基板15、バッテリー(蓄電池)14、充電用入力端子4a,4b等を収納する後方収納室R3を有し、前方部と中間部との境界付近に吸引路11および排気路12を有している。
 図5に示すように、吸引路11は吸込口6(図4)と中間収納室R2とを連通し、排気路12は中間収納室R2と前方収納室R1とを連通している。なお、これらの各収納室R1、R2、R3、吸引路11および排気路12は、筐体2の内部に設けられてこれらの空間を構成する仕切り壁39によって仕切られている。
 一対の駆動輪29は、筐体2の中心を通る中心線C(図2)と直角に交わる一対の回転軸に固定されており、一対の駆動輪29が同一方向に回転すると筐体2が進退し、各駆動輪29が逆方向に回転すると筐体2が中心線Cの回りに回転する。
 一対の駆動輪29の回転軸は、一対の駆動輪用モータからそれぞれ個別に回転力が得られるように連結されており、各モータは筐体の底板2aに直接またはサスペンション機構を介して固定されている。
 図4の前輪27はローラからなり、進路上に現れた段差に接地し、筐体2が段差を容易に乗り越えられるよう、駆動輪29が接地する床面F(図2)から少し浮き上がるよう筐体2の底板2aの一部に回転可能に設けられている。
 後輪26は自在車輪からなり、駆動輪29が接地する床面Fと接地するよう筐体2の底板2aの一部に回転可能に設けられている。
 このように、筐体2に対して前後方向中間に一対の駆動輪29を配置し、前輪27を床面Fから浮かせ、自走式電気掃除機1の重量を一対の駆動輪29と後輪26によって支持できるよう、筐体2に対して前後方向の重量が配分されている。これにより、進路前方の塵埃を前輪27によって遮ることなく吸込口6に導くことができる。
 図4の吸込口6は、床面Fに対面するよう筐体2の底面(底板2a)に形成された凹部8(図2)の開放面であり、この凹部8に吸口体としてのボトムプレートが嵌め入れられることにより吸込口6が形成される。この凹部8内には、筐体2の底面と平行な軸心の廻りに回転する回転ブラシ9(図4)が設けられ、凹部8の左右両側には底板2aに垂直な回転軸心の廻りに回転するサイドブラシ10が設けられている。
 回転ブラシ9は、回転軸であるローラの外周面に螺旋状にブラシを植設することにより形成されている。サイドブラシ10は、回転軸の下端に4束のブラシ束10aを放射状に設けることにより形成されている。
 なお、回転ブラシ9の回転軸はブラシ駆動モータに連結され、サイドブラシ10の回転軸はサイドブラシの駆動モータに連結されている。
 また、図3に示すように吸込口6の後方の縁には吸込口6で吸い込まれなかった塵埃を捕捉し塵埃の散乱を防止するためのブレード状の捕捉部材としての起毛ブラシ65が設けられている。
 制御基板15(図2,図5)には、後述する制御系(図8)を構成する制御回路、つまり、自走式電気掃除機1を制御するマイクロコンピュータや、駆動輪29、回転ブラシ9、サイドブラシ10、電動送風機22等の各要素を駆動するモータドライバ回路などの制御回路が設けられている。
 筐体2の側板2cの後端には、図4に示すようにバッテリー14の充電を行う充電用入力端子4a,4bが設けられている。室内を自走しながら掃除する自走式電気掃除機1は、室内に設置されている充電ユニット(充電台)40(図2)に帰還する。これにより、充電ユニット40に設けられた出力端子41a,41bに充電用入力端子4a,4bが接触し、バッテリー14の充電が行われる。商用電源(コンセント)に接続される充電台40は、通常、室内の側壁Sに沿って設置される。
 図2に示す集塵装置30は、通常、筐体2内における両駆動輪29の回転軸の軸心よりも上方の中間収納室R2内に収納されており、集塵装置30内に捕集された塵埃を廃棄する際は、図4に示されるように、筐体2の蓋部3を開いて集塵装置30を出し入れすることができる。
 集塵装置30は、図4に示すように、開口部を有する集塵容器31と、集塵容器31の開口部を覆うフィルタ部33と、フィルタ部33と集塵容器31の開口部とを覆うカバー部32とを備えている。カバー部32およびフィルタ部33は、集塵容器31の前側の開口端縁に回動可能に軸支されている。
 集塵容器31の側壁前部には、集塵装置30が筐体2の中間収納室R2内に収納された状態において、筐体2の吸引路11と連通する流入路34と、筐体2の排気路12と連通する排出路35とが設けられている。
(2)床面検知センサの構成
 図4に示すように、後輪26の両側には、それぞれ床面検知センサ13a,13bが設置され、一対の駆動輪29の前方側にはそれぞれ床面検知センサ13c,13dが設置されている。掃除機1は、走行時にこれらを用いて床面の大きい段差(クリフ)を検知し、大きい段差(クリフ)に落込んで走行不能に陥ることを防止すると共に、充電ユニット40(図2)への帰還時には後述するように、これらを用いて赤外線吸収部材を検知し、帰還進路を確認するようになっている。
 図6は床面検知センサ13aの構成を示す断面図である。床面検知センサ13aはセンサモジュール113からなり、センサモジュール113では透光性ケース内に赤外線発光素子(LED)114と受光素子(フォトトランジスタ)116が実装されている。
 赤外線発光素子114から出射された赤外線は対象物(床面F)を照射し、その反射光が受光素子115に受光される。一方、対象物が所定照射距離内に存在しない場合や、赤外線が対象物に吸収される場合には、受光する反射光が所定値よりも低下する。従って、床面の有無や、赤外線の吸収部材の有無が検知される。他の床面検知センサ13b~13dも、同等の構成を有する。
(3)掃除機の制御系の構成
 図7は掃除機1の制御を行う制御系を示すブロック図である。この制御系は同図に示すように、CPU51、ROM52、RAM53からなるマイクロコンピュータを備える制御部54、2つの駆動輪29をそれぞれ駆動するための駆動輪用モータ55,56を制御するモータドライバ回路57、回転ブラシ9を駆動するブラシ駆動モータ58を制御するモータドライバ回路59、2つのサイドブラシ10をそれぞれ駆動する2つの駆動モータ70を制御するモータドライバ回路92、電動送風機22に組込まれた直流モータ69を制御するモータドライバ回路68、電源スイッチ62、各種センサ67を駆動制御するセンサ制御ユニット66、入力部63および表示部64を備える。各種センサ67は、床面検知センサ13a~13d、超音波測距センサ112,赤外線検知主センサ110,赤外線検知副センサ111a~111cを含む。なお、直流モータ69には、永久磁石励磁直流モータが用いられる。
 電源スイッチ62がONになると、バッテリー14の出力電力は、モータドライバ回路57,92,59,68へそれぞれ供給されると共に、制御部54、入力部63、表示部64、センサ制御ユニット66などへもそれぞれ供給される。
 そして、制御部54のCPU51は中央演算処理装置であり、入力部63と各種センサ67から受けた信号を、ROM52に予め記憶されたプログラムに基づいて演算処理し、モータドライバ回路57,92,59、68、表示部64などへ出力するようになっている。
 なお、RAM53は、入力部63からユーザーにより入力される各種指令および自走式電気掃除機1の各種動作条件や各種センサ65の出力などを一時的に記憶するようになっている。
 また、RAM53は、掃除機1の走行マップを記憶することができる。走行マップは、掃除機1の走行経路や走行速度などといった走行に係る情報であり、予めユーザーによってRAM53に記憶させるか、あるいは掃除機1自体が掃除運転中に自動的に記録することができる。
 また、制御部54は、バッテリー14の端子電圧などを検出してバッテリー14の蓄電残量を検出する機能を有する。
(4)掃除機の掃除動作
 このように構成された掃除機1において、ユーザから入力部63を介して掃除運転が指令されると、最初に集塵装置30の有無が確認され、集塵装置30が装着されていると、電動送風機22、駆動輪29、回転ブラシ9およびサイドブラシ10が駆動する。
 これにより、回転ブラシ9、サイドブラシ10、駆動輪29および後輪26が床面Fに接地した状態で、筐体2は所定の範囲を自走しながら吸込口6から床面Fの塵埃を含む空気を吸い込む。このとき、回転ブラシ9の回転によって床面F上の塵埃は掻き上げられて吸込口6に導かれる。また、サイドブラシ10の回転によって吸込口6の側方の塵埃が吸込口6に導かれる。
 吸込口6から筐体2内に吸い込まれた塵埃を含む空気は、図2の矢印A1に示されるように、筐体2の吸引路11を通り、集塵装置30の流入路34を通って集塵容器31内に流入する。集塵容器31内に流入した気流は、フィルタ部33を通過してフィルタ部33とカバー部32との間の空間に流入し、排出路35を通って排気路12へ排出される。この際、集塵容器31内の気流に含まれる塵埃はフィルタ部33によって捕獲されるため、集塵容器31内に塵埃が堆積する。
 集塵装置30から排気路12へ流入した気流は、図2の矢印A2に示されるように前方収納室R1へ流入し、図示しない第1排気路および第2排気路を流通する。そして、筐体2の上面に設けた排気口7から、図2の矢印A3に示されるように、後方の斜め上方にフィルタ部33にて除塵された綺麗な空気として放出される。
 これにより、床面F上の掃除が行われる。このとき、排気口7から後方の斜め上方に向けて排気するので、床面Fの塵埃の巻き上げが防止され、室内の清浄度を向上することができる。
 また、掃除機1は、前述のように、左右の駆動輪29が同一方向に正回転して前進し、同一方向に逆回転して後退し、互いに逆方向に回転することにより中心線Cを中心に旋回する。
 例えば、自走式電気掃除機1は、大きな段差(クリフ)に差しかかったときや掃除領域の周縁に到達した場合および進路上の障害物に衝突した場合、床面検知センサ13a~13d(図4)や図示しないセンサがそれを制御部54(図7)に通知し、駆動輪29が停止し、左右の駆動輪29を互いに逆方向に回転して向きを変える。これにより、掃除機1は、設置場所全体あるいは所望範囲全体に大きい段差や障害物を避けながら自走して掃除することができる。
(5)充電ユニット(充電台)およびその制御系の構成
 図8は、この発明の実施形態1に係る充電ユニットの外観斜視図である。同図に示すように、充電ユニット40は本体101と、本体101の底面から水平に延出する赤外線吸収部材の設置版102とを備える。
 本体101は前面に、充電用入力端子4a,4b(図1)に接触して充電電力を出力するための出力端子41a,41bと、掃除機1へ帰還路を示すための赤外線を出射する赤外線送信部103と、超音波測距センサ112(図3)から発信される超音波を受信するための超音波受信部105を備える。
 また、設置板102の上面には、ほぼ正方形のシート状の赤外線吸収部材115a,115bが設置されている。赤外線吸収部材115a,115bには、ここでは市販のグラファイトシートが用いられる。
 図9は充電ユニット40の制御を行う制御系を示すブロック図である。この制御系は同図に示すように、制御部106,電力変換部107,赤外線送信部103,接続部104,超音波受信部105および電源コンセント108を備える。
 制御部106はCPU、ROM、RAMからなるマイクロコンピュータを備える。接続部104は、出力端子41a,41bに充電用入力端子4a,4b(図1,図2)が接触すると、それを検知して制御部106へ通知する検出回路を備える。
 電力変換部107はコンセント108を介して商用電源109から入力される商用電力(AC100V, 50/60Hz)をバッテリー14(図7)の充電用電力(DC24V)および制御用電力(DC5V)に変換するようになっている。変換された制御用電力は制御部106,赤外線送信部103,接続部104および超音波受信部105へ供給される。
 また、出力端子41a,41bに充電用入力端子4a,4bが接触したとき、接続部104はその接触動作を検出して制御部106へ通知し、それによって電力変換部107は充電用電力を接続部104を介して出力端子41a,41bに出力するようになっている。
 また、超音波受信部105が超音波測距センサ112(図3)から送信される超音波を検出すると、制御部106は超音波受信部105の出力を受けて赤外線送信部103の送信する赤外線を連続光からパルス状の断続光に変換するようになっている。
(6)掃除機の帰還動作
 図10は掃除機1の充電ユニット40への帰還動作を示す説明図である。
 図10において、充電ユニット40は掃除機1にその帰還路を示すために赤外線送信部103(図8)から20°~30°の拡散角を有する赤外線IRを矢印方向に照射している。
 そこで、掃除作業を終了するか、又はバッテリー14の蓄電残量が許容値まで低下して、制御部54(図7)が充電ユニット40へ帰還する必要があると判断した場合に、掃除機1が図10(a)に示すように赤外線IRの照射領域に存在すると、赤外線IRを赤外線検知主センサ110が検知して一旦停止する。そして、その場で自転し、同図(b)に示すように充電ユニット40が存在する方向を検出し、その方向に向きを変える。
 それによって、同図(c)に示すように、3つの赤外線検知副センサ111a~111cが赤外線IRを検知することができるようになり、掃除機1は、赤外線IRが示す帰還路に沿って進行する。そして、掃除機1が充電ユニット40に接近して超音波測距センサ112から出射される超音波が超音波受信部105(図8)に受信されると、赤外線IRが連続光から断続光(パルス光)に変換される。
 断続光を赤外線検知副センサ111a~111cが検知すると、制御部54は掃除機1が赤外線IRが示す帰還路に沿って正しく進行したことを確認する。
 そして、さらに前進し、充電ユニット40に対して所定距離まで接近したことが超音波測距センサ112によって検出されると、掃除機1は一旦停止し、180°だけ自転し、充電ユニット40の出力端子41a,41b(図8)に充電用入力端子4a,4b(図1)を対面させる。
 次に、掃除機1は充電ユニット40に向って後退しながら帰還しようとするが、180°の自転により赤外線検知副センサ111a~111cが赤外線IRを受信できない位置にあるため、それ以降の充電ユニット40への正確な進行が保証されない。
 そこで、この実施形態では、図8に示すように充電ユニット40の設置板102に赤外線吸収部材115a,115bを設置し、これによって掃除機1の充電ユニット40に対する正確な位置決めを行うようにしている。
 図11は図10(d)における充電ユニット40と掃除機1の帰還路の位置関係を示す拡大上面図である。赤外線吸収部材115aと115bは、赤外線IRの送信方向によって示される帰還路に対して対称に間隔Aを有し、かつ、床面F(図2)に沿うように設置板102上に配置されている。
 なお、赤外線吸収部材115aと115bの間隔Aは、掃除機1の床面検知センサ13aと13bの間隔Bに対応する。また、赤外線吸収部材115aと115bにはグラファイトシートが用いられる。
 図12は図11に示す位置から掃除機1が充電ユニット40へさらに接近した状況を示す。図12(a)に示す場合には、赤外線吸収部材115aと115bに床面検知センサ13aと13bがそれぞれ重なっており、床面検知センサ13a,13bによって赤外線吸収部材115aと115bが同時に検知される。
 従って、制御部54は、掃除機1が赤外線IRが示す帰還路に正しく沿って進行していると判断し、そのまま後退させる。そして、充電用入力端子4a,4bがそれぞれ出力端子41a,41bに正しく接触すると、出力端子41a,41bから充電用入力端子4a,4bを介してバッテリー14への充電が開始される。制御部54は、充電が開始されると同時に掃除機1の後退動作を停止させ、そのまま充電動作を継続させる。
 図12(b)に示す場合には、赤外線吸収部材115aは床面検知センサ13aによって検知されているが、赤外線吸収部材115bは、床面検知センサ13bによってそれより遅れて検知される。つまり、両者の検知タイミングにずれが生じている。
 従って、制御部54は掃除機1が赤外線IRによって示される帰還路に対して斜めに進行したものと判断する。そこで、制御部54は、掃除機1を一旦、図11の位置まで後退させ、検知タイミングのずれ(時間差)を算出して掃除機1の進行方向を図12(a)のようになるように修正する。
 図12(c)に示す場合には、赤外線吸収部材115aが床面検知センサ13aによって検知された後も、赤外線吸収部材115bが床面検知センサ13bによって全く検知されない。
 従って、制御部54は掃除機1が赤外線IRによって示される帰還路に平行にずれて進行したものと判断する。そこで、掃除機1を一旦前進させ、その進行方向を、図12(a)のようになるように修正する。
(実施形態2)
 図13はこの実施形態の図11対応図である。つまり、この実施形態では実施形態1において充電ユニット40の設置台102の上に設けられている赤外線吸収部材115a,115bを、帯状の赤外線吸収部材115c,115dに置換したものであり、その他の構成は実施形態1と同等である。
 ここでは、帯状の赤外線吸収部材115c,115dは、赤外線IRが示す帰還路に対して対称に、所定間隔を有して平行に、かつ、床面F(図2)に沿うように設置板102上に配置されている。
 なお、赤外線吸収部材115c,115dの間隔Aは掃除機1の床面検知センサ13aと13bの間隔Bに対応する。また、赤外線吸収部材115cと115dにもグラファイトシートが用いられる。
 図14は、掃除機1が図13に示す位置から充電ユニット40へさらに接近した状況を示す。図14(a)に示す場合には、赤外線吸収部材115cと115dの先端に床面検知センサ13aと13bがそれぞれ重なっており、床面検知センサ13aと13bによって赤外線吸収部材115cと115dが同時に検出される。
 従って、制御部54は掃除機1が赤外線IRによって示される帰還路に沿って正しく進行し始めたものと判断し、さらに進行させる。しかし、その後、何らかの原因により、図14(b)に示すように床面検知センサ13a,13bの少なくとも一方が赤外線吸収部材115c,115dを検知しなくなると、制御部54は掃除機1の進路に異常が生じたと判断する。そこで、自走式電気掃除機1を一旦、図13の位置まで前進させ、その進行方向を図14(a)のようになるように修正する。
(実施形態3)
 図15はこの実施形態の図11対応図である。つまり、この実施形態では実施形態1において充電ユニット40の設置台102上に設けられている赤外線吸収部材115a,115bを、1つの帯状の赤外線吸収部材115eに置換したものであり、その他の構成は実施形態1と同等である。
 ここでは、帯状の赤外線吸収部材115eは、赤外線IRが示す帰還路に直交し、かつ、床面F(図2)に沿うように設置板102上に配置されている。なお、赤外線吸収部材115eにもグラファイトシートが用いられる。
 図16は掃除機1が図15に示す位置から充電ユニット40の方へさらに接近した状況を示す。図16(a)に示す場合には赤外線吸収部材115eが床面検知センサ13a,13bによって同時に検出される。
 従って、制御部54は自走式電気掃除機1が赤外線IRによって示される帰還路に沿って正しく進行していると判断し、さらに進行させる。図16(b)に示す場合には、床面検知センサ13aと13bが赤外線吸収部材115eを検出するタイミングにずれが生じる。
 従って、制御部54は掃除機1が赤外線IRによって示される帰還路に対して斜めに進行していると判断する。そこで、制御部54は掃除機1を一旦、図15の位置まで後退させ、タイミングのずれ(時間差)を算出してその進行方向を図16(a)のようになるように修正する。
(実施形態4)
 図17はこの実施形態の図15対応図である。つまり、この実施形態では実施形態3において、充電ユニット40の設置代102上に設けられている帯状の赤外線吸収部材115eに帯状の赤外線吸収部材(グラファイトシート)115fを平行に所定間隔を隔てて追加したものであり、その他の構成は、実施形態3と同等である。
 図18は掃除機1が図17に示す位置から充電ユニット40の方へさらに接近した状況を示す。図18(a)に示す場合には、最初の赤外線吸収部材115eが床面検知センサ13a,13bによって同時に検出される。
 従って、制御部54は掃除機1が赤外線IRによって示される帰還路に沿って正しく進行していると判断し、さらに後退させる。図18(b)に示す場合には、さらに第2の赤外線吸収部材115fが床面検知センサ13a,13bによって同時に検出される。従って、制御部54は掃除機1が赤外線IRによって示される帰還路に沿って正しく進行していると判断し、さらに後退させる。
なお、図18(a)又は(b)において、床面検知センサ13a,13bの赤外線吸収部材115e又は115fに対する検知タイミングがずれているときには、制御部54は掃除機1を図17の位置まで後退させ、その進行方向を、図18(a)又は(b)のようになるように修正する。
 このように、いずれの実施形態においても、掃除機1は赤外線吸収部材によって誘導され、効率よく正確に充電ユニット40に帰還することができる。
1  自走式電気掃除機
2  筐体
4a  充電用入力端子
4b  充電用入力端子
13a~13d  床面検知センサ
14  バッテリー
40  充電ユニット
41a  出力端子
41b  出力端子
62  電源スイッチ
63  入力部
101  本体
102  設置板
103  赤外線送信部
104  接続部
105  超音波受信部
106  制御部
107  電力変換部
108  コンセント
110  赤外線検知主センサ
111a~111c  赤外線検知副センサ
112  超音波測距センサ
113  センサモジュール
114  赤外線発光素子
115a~115f  赤外線吸収部材
116  受光素子
F  床面
IR  赤外線

Claims (5)

  1.  赤外線反射型の床面検知センサと赤外線検知センサとの出力に基づいて床面を走行する自走式電気掃除機のバッテリを充電するユニットであって、帰還路を示すための赤外線を出射する赤外線送信部と、赤外線吸収部とを備え、前記赤外線送信部と赤外線吸収部は、前記掃除機が前記赤外線検知センサで赤外線を検知し、かつ、前記床面検知センサで前記赤外線吸収部を検知することにより充電ユニットへ帰還できるように設置されたことを特徴とする自走式電気掃除機の充電ユニット。
  2.  前記赤外線吸収部は、前記帰還路の近傍に、前記床面に沿うように配置された複数の赤外線吸収部材からなる請求項1記載の自走式電気掃除機の充電ユニット。
  3.  前記赤外線吸収部材は、前記帰還路に平行に、かつ、前記床面に沿うように配置された複数の帯状の赤外線吸収部材からなる請求項1記載の自走式電気掃除機の充電ユニット。
  4.  前記赤外線吸収部は、前記帰還路に直交し、かつ、前記床面に沿うように配置された帯状の赤外線吸収部材からなる請求項1記載の自走式電気掃除機の充電ユニット。
  5.  自走式電気掃除機に赤外線反射型の床面検知センサを、充電ユニットに赤外線吸収部をそれぞれ設け、自走式電気掃除機は床面検知センサにより赤外線吸収部を検知しながら充電ユニットへ帰還して充電を行う自走式電気掃除機の充電システム。
PCT/JP2014/072181 2014-02-17 2014-08-25 自走式電気掃除機の充電ユニットと充電システム WO2015122040A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480047481.XA CN105491933B (zh) 2014-02-17 2014-08-25 自走式电动吸尘器的充电单元和充电系统
US14/915,700 US10199840B2 (en) 2014-02-17 2014-08-25 Charging unit and charging system for self-propelled electric vacuum cleaner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-027569 2014-02-17
JP2014027569A JP6271284B2 (ja) 2014-02-17 2014-02-17 自走式電気掃除機の充電ユニットと充電システム

Publications (1)

Publication Number Publication Date
WO2015122040A1 true WO2015122040A1 (ja) 2015-08-20

Family

ID=53799796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072181 WO2015122040A1 (ja) 2014-02-17 2014-08-25 自走式電気掃除機の充電ユニットと充電システム

Country Status (4)

Country Link
US (1) US10199840B2 (ja)
JP (1) JP6271284B2 (ja)
CN (1) CN105491933B (ja)
WO (1) WO2015122040A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3166159A1 (fr) * 2015-11-09 2017-05-10 Outils Wolf (Société par Actions Simplifiée) Système de chargement électrique d'un engin autonome
FR3043501A1 (fr) * 2015-11-09 2017-05-12 Wolf Outils Systeme de chargement electrique d'un engin autonome
JP2018007908A (ja) * 2016-07-14 2018-01-18 日立アプライアンス株式会社 自律走行型掃除機システムおよび充電台
CN111276849A (zh) * 2020-03-15 2020-06-12 肖宏丽 一种具有防护功能的机器人用充电装置
JP2021052614A (ja) * 2019-09-27 2021-04-08 株式会社やまびこ 自動走行式のロボット作業機

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017084069A (ja) * 2015-10-27 2017-05-18 株式会社マキタ 自走式集塵ロボット及び反射材、自走式集塵ロボットの走行制御方法
JP2018041253A (ja) * 2016-09-07 2018-03-15 シャープ株式会社 自走式掃除機
US10698411B1 (en) * 2016-12-13 2020-06-30 AI Incorporated Recharge station for mobile robot
WO2018124546A2 (ko) * 2016-12-30 2018-07-05 엘지전자 주식회사 충전 스테이션을 포함하는 로봇 청소기 시스템
KR101897730B1 (ko) * 2016-12-30 2018-09-12 엘지전자 주식회사 로봇 청소기의 충전 스테이션
AU2018204467A1 (en) * 2017-06-27 2019-01-17 Bissell Inc. Supply and/or disposal system for autonomous floor cleaner
CN107171407A (zh) * 2017-07-13 2017-09-15 广东小天才科技有限公司 一种充电底座
JP2020010982A (ja) * 2018-07-20 2020-01-23 パナソニックIpマネジメント株式会社 自走式掃除機
AU2019312668B2 (en) 2018-08-01 2022-12-08 Sharkninja Operating Llc Robotic vacuum cleaner
CN109002043B (zh) * 2018-08-24 2021-06-15 湖南超能机器人技术有限公司 应用于机器人的红外对准信号数据处理方法
JP7113352B2 (ja) * 2018-10-25 2022-08-05 パナソニックIpマネジメント株式会社 移動体保持装置及び制御プログラム
KR20220003780A (ko) * 2020-07-02 2022-01-11 엘지전자 주식회사 로봇 청소기용 충전장치 및 이를 이용한 로봇 청소기의 제어 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062194A1 (en) * 2001-02-07 2002-08-15 Zucchetti Centro Sistemi S.P.A. Automatic floor cleaning device
JP2004136144A (ja) * 2002-10-15 2004-05-13 Matsushita Electric Ind Co Ltd 自動掃除機および自動掃除システム
JP2009038880A (ja) * 2007-08-01 2009-02-19 Panasonic Corp 自律走行装置およびプログラム
JP2009238055A (ja) * 2008-03-28 2009-10-15 Hitachi Appliances Inc 自走式掃除システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492590B1 (ko) * 2003-03-14 2005-06-03 엘지전자 주식회사 로봇의 자동충전 시스템 및 복귀방법
US7332890B2 (en) * 2004-01-21 2008-02-19 Irobot Corporation Autonomous robot auto-docking and energy management systems and methods
JP2006034432A (ja) * 2004-07-23 2006-02-09 Funai Electric Co Ltd 自走式クリーナユニット
JP2006268497A (ja) * 2005-03-24 2006-10-05 Funai Electric Co Ltd 充電式走行システム
CN2868164Y (zh) * 2005-09-22 2007-02-14 浙江大学 自动吸尘器的充电装置
KR100766439B1 (ko) * 2006-03-29 2007-10-12 엘지전자 주식회사 이동로봇의 충전대 복귀 시스템
TWI330305B (en) * 2006-12-28 2010-09-11 Ind Tech Res Inst Method for routing a robotic apparatus to a service station and robotic apparatus service system using thereof
CN101648377A (zh) * 2008-08-11 2010-02-17 悠进机器人股份公司 自动充电式自律移动机器人装置及其自动充电方法
CN201378281Y (zh) * 2009-01-16 2010-01-06 泰怡凯电器(苏州)有限公司 机器人制约系统
TWI387862B (zh) * 2009-11-27 2013-03-01 Micro Star Int Co Ltd 移動裝置及其控制方法
CN102262407B (zh) * 2010-05-31 2016-08-03 恩斯迈电子(深圳)有限公司 引导装置及操作系统
JP2013146302A (ja) * 2012-01-17 2013-08-01 Sharp Corp 自走式電子機器
CN103259302A (zh) * 2012-02-16 2013-08-21 恩斯迈电子(深圳)有限公司 充电站与充电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002062194A1 (en) * 2001-02-07 2002-08-15 Zucchetti Centro Sistemi S.P.A. Automatic floor cleaning device
JP2004136144A (ja) * 2002-10-15 2004-05-13 Matsushita Electric Ind Co Ltd 自動掃除機および自動掃除システム
JP2009038880A (ja) * 2007-08-01 2009-02-19 Panasonic Corp 自律走行装置およびプログラム
JP2009238055A (ja) * 2008-03-28 2009-10-15 Hitachi Appliances Inc 自走式掃除システム

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3166159A1 (fr) * 2015-11-09 2017-05-10 Outils Wolf (Société par Actions Simplifiée) Système de chargement électrique d'un engin autonome
FR3043501A1 (fr) * 2015-11-09 2017-05-12 Wolf Outils Systeme de chargement electrique d'un engin autonome
JP2018007908A (ja) * 2016-07-14 2018-01-18 日立アプライアンス株式会社 自律走行型掃除機システムおよび充電台
JP2021052614A (ja) * 2019-09-27 2021-04-08 株式会社やまびこ 自動走行式のロボット作業機
JP7218265B2 (ja) 2019-09-27 2023-02-06 株式会社やまびこ 自動走行式のロボット作業機
CN111276849A (zh) * 2020-03-15 2020-06-12 肖宏丽 一种具有防护功能的机器人用充电装置
CN111276849B (zh) * 2020-03-15 2021-03-02 肖宏丽 一种具有防护功能的机器人用充电装置

Also Published As

Publication number Publication date
US10199840B2 (en) 2019-02-05
JP2015150275A (ja) 2015-08-24
US20160352112A1 (en) 2016-12-01
CN105491933B (zh) 2017-12-22
CN105491933A (zh) 2016-04-13
JP6271284B2 (ja) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6271284B2 (ja) 自走式電気掃除機の充電ユニットと充電システム
KR101659037B1 (ko) 로봇 청소기, 이를 포함하는 원격 제어 시스템 및 이의 제어 방법
US10542858B2 (en) Self-propelled electronic device and travel method for self-propelled electronic device
WO2013164924A1 (ja) 自走式電子機器
JP6207388B2 (ja) 自走式電気掃除機
US10588475B2 (en) Self-propelled dust-collecting robot and reflection member, and method for controlling running of self-propelled dust-collecting robot
CN107913034B (zh) 电动吸尘器
US10376122B2 (en) Self-propelled electronic device and travel method for said self-propelled electronic device
US20160327954A1 (en) Traveling device
TW201340925A (zh) 電氣吸塵器
JP6757575B2 (ja) 自走式掃除機
JP2014180501A (ja) 自走式掃除機
CN107088026B (zh) 电吸尘器
JP2016143231A (ja) 自走式電子機器
JP2020039456A (ja) 自走式電気掃除機
JP2018041253A (ja) 自走式掃除機
JP6182475B2 (ja) 自走式電気掃除機
WO2016121576A1 (ja) 自走式掃除機
JP3204960U (ja) 落下防止システムを備える自走式掃除機
JP2016220823A (ja) 自走式掃除機
JP2015112204A (ja) 電気掃除機
JP2003050633A (ja) 自立移動装置
JP6155784B2 (ja) 自走式掃除機
JP2018041254A (ja) 自走式掃除機
WO2023166756A1 (ja) 自律走行型掃除機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047481.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882354

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14915700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882354

Country of ref document: EP

Kind code of ref document: A1