WO2015121963A1 - ゲームコントローラ - Google Patents
ゲームコントローラ Download PDFInfo
- Publication number
- WO2015121963A1 WO2015121963A1 PCT/JP2014/053444 JP2014053444W WO2015121963A1 WO 2015121963 A1 WO2015121963 A1 WO 2015121963A1 JP 2014053444 W JP2014053444 W JP 2014053444W WO 2015121963 A1 WO2015121963 A1 WO 2015121963A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- top panel
- operation input
- vibration element
- game controller
- control unit
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/25—Output arrangements for video game devices
- A63F13/28—Output arrangements for video game devices responding to control signals received from the game device for affecting ambient conditions, e.g. for vibrating players' seats, activating scent dispensers or affecting temperature or light
- A63F13/285—Generating tactile feedback signals via the game input device, e.g. force feedback
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/21—Input arrangements for video game devices characterised by their sensors, purposes or types
- A63F13/211—Input arrangements for video game devices characterised by their sensors, purposes or types using inertial sensors, e.g. accelerometers or gyroscopes
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/21—Input arrangements for video game devices characterised by their sensors, purposes or types
- A63F13/214—Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/20—Input arrangements for video game devices
- A63F13/21—Input arrangements for video game devices characterised by their sensors, purposes or types
- A63F13/214—Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads
- A63F13/2145—Input arrangements for video game devices characterised by their sensors, purposes or types for locating contacts on a surface, e.g. floor mats or touch pads the surface being also a display device, e.g. touch screens
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/40—Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment
- A63F13/42—Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle
- A63F13/426—Processing input control signals of video game devices, e.g. signals generated by the player or derived from the environment by mapping the input signals into game commands, e.g. mapping the displacement of a stylus on a touch screen to the steering angle of a virtual vehicle involving on-screen location information, e.g. screen coordinates of an area at which the player is aiming with a light gun
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/016—Input arrangements with force or tactile feedback as computer generated output to the user
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/03—Arrangements for converting the position or the displacement of a member into a coded form
- G06F3/033—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
- G06F3/0354—Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
- G06F3/03547—Touch pads, in which fingers can move on a surface
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0487—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
- G06F3/0488—Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/10—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
- A63F2300/105—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals using inertial sensors, e.g. accelerometers, gyroscopes
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/10—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals
- A63F2300/1068—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by input arrangements for converting player-generated signals into game device control signals being specially adapted to detect the point of contact of the player on a surface, e.g. floor mat, touch pad
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/30—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by output arrangements for receiving control signals generated by the game device
- A63F2300/308—Details of the user interface
Definitions
- the present invention relates to a game controller.
- display means Conventionally, display means, contact detection means for detecting a contact state of a user's operation part to the display means, and tactile vibration that gives a predetermined tactile sensation to the operation part in contact with the display means.
- tactile sensation providing device including tactile sensation vibration generating means to be generated (for example, see Patent Document 1).
- the tactile sensation providing apparatus further includes vibration waveform data generation means for generating waveform data for generating the tactile vibration based on the detection result by the contact detection means.
- the tactile sensation providing apparatus further performs a modulation process on the waveform data generated by the vibration waveform data generation unit using an ultrasonic wave as a carrier wave, and converts the ultrasonic modulation signal generated by the modulation process into the tactile sensation.
- Ultrasonic modulation means for outputting to the tactile sensation vibration generating means as a signal for generating vibration.
- the ultrasonic modulation means performs either frequency modulation or phase modulation.
- the ultrasonic modulation means further performs amplitude modulation.
- the ultrasonic frequency of the conventional tactile sensation presenting device only needs to be higher than the audible band (approximately 20 kHz or more), and the ultrasonic frequency itself is not particularly devised, so that a good tactile operation feeling can be obtained. May not be available. This is the same even when a conventional tactile sensation providing apparatus is used as a game controller.
- an object is to provide a game controller that can provide a good tactile feeling.
- a game controller includes a housing, a touch panel disposed in an opening of the housing, a vibration element that generates vibration on an operation surface that performs operation input on the touch panel, and the operation surface. And a drive control unit for driving the vibration element with a drive signal for generating the natural vibration of the ultrasonic band.
- FIG. 3 is a view showing a cross section taken along the line AA in FIG. 2; It is a figure which shows the wave front formed in parallel with the short side of the top panel 120 among the standing waves produced in the top panel 120 by the natural vibration of an ultrasonic band. It is a figure explaining a mode that the dynamic friction force applied to the fingertip which performs operation input changes with the natural vibration of the ultrasonic band produced in the top panel 120 of the game controller. It is a figure which shows the structure of the game controller 100 of embodiment.
- FIG. 1 It is a figure which shows the state which performs operation input on the surface of the top panel 120 of the game controller 100 of embodiment. It is a figure which shows the operation example of the game controller 100 of embodiment. 4 is a flowchart illustrating processing executed by a drive control unit 240 of the game controller 100 according to the first embodiment. It is a figure which shows the state which performs operation input on the surface of the top panel 120 of the game controller 100 of embodiment. It is a figure which shows the operation example of the game controller 100 of embodiment. It is a figure which shows the state which performs operation input on the surface of the top panel 120 of the game controller 100 of embodiment. It is a figure which shows the operation example of the game controller 100 of embodiment.
- FIG. 1 is a perspective view showing a game controller 100 according to the embodiment.
- the game controller 100 includes a casing 110 and two touch panels 150.
- the game controller 100 is a so-called remote controller connected to the game machine main body by wire or wireless.
- the game controller 100 is used to operate the game machine main body by a user performing an operation input on the touch panel 150 with a fingertip or the like. Since there are two touch panels 150, the user can operate the two touch panels 150 with the left and right hands while holding the game controller 100 with both hands.
- the game controller 100 may include, for example, an acceleration sensor or a gyro sensor.
- the game machine main body in addition to operating the game machine main body via the touch panel 150, the game machine main body can also be operated by changing the angle of the game controller 100 or shaking the game controller 100.
- the game controller 100 may be provided with a button.
- FIG. 2 is a plan view showing a configuration of the touch panel 150 and its periphery of the game controller 100 according to the embodiment
- FIG. 3 is a diagram showing a cross section taken along the line AA in FIG.
- the touch panel 150 shown in FIG. 2 and its peripheral configuration correspond to one of the two touch panels 150 shown in FIG. 1 and its peripheral configuration. 2 and 3, an XYZ coordinate system that is an orthogonal coordinate system is defined as shown.
- the game controller 100 includes a housing 110, a top panel 120, a double-sided tape 130, a vibration element 140, a touch panel 150, and a substrate 170.
- the housing 110 is made of, for example, resin, and as shown in FIG. 3, the substrate 170 and the touch panel 150 are disposed in the recess 110 ⁇ / b> A, and the top panel 120 is bonded by the double-sided tape 130.
- the housing 110 has a rectangular opening formed by the recess 110A. In FIG. 2, this opening substantially coincides with the rectangular opening of the rectangular annular double-sided tape 130.
- the touch panel 150 is located inside the rectangular opening of the recess 110 ⁇ / b> A.
- the top panel 120 is a thin flat plate member that is rectangular in plan view, and is made of glass or a reinforced plastic such as polycarbonate.
- the surface of the top panel 120 (the surface on the Z-axis positive direction side) is an example of an operation surface on which a user of the game controller 100 performs operation input.
- the vibration element 140 is bonded to the surface on the negative side of the Z axis, and four sides in a plan view are bonded to the housing 110 with a double-sided tape 130.
- the double-sided tape 130 only needs to be able to bond the four sides of the top panel 120 to the housing 110, and does not have to be a rectangular ring as shown in FIG.
- the touch panel 150 is disposed on the Z-axis negative direction side of the top panel 120.
- the top panel 120 is provided to protect the surface of the touch panel 150. Further, another panel or a protective film may be provided on the surface of the top panel 120.
- the top panel 120 vibrates when the vibration element 140 is driven in a state where the vibration element 140 is bonded to the surface in the negative Z-axis direction.
- the top panel 120 is vibrated at the natural vibration frequency of the top panel 120 to generate a standing wave in the top panel 120.
- the vibration element 140 since the vibration element 140 is bonded to the top panel 120, it is actually preferable to determine the natural vibration frequency in consideration of the weight of the vibration element 140 and the like.
- the vibration element 140 is bonded along the short side extending in the X axis direction on the Y axis positive direction side on the Z axis negative direction side surface of the top panel 120.
- the vibration element 140 may be an element that can generate vibrations in an ultrasonic band.
- an element including a piezoelectric element such as a piezoelectric element can be used.
- the vibration element 140 is driven by a drive signal output from a drive control unit described later.
- the amplitude (intensity) and frequency of vibration generated by the vibration element 140 are set by the drive signal. Further, on / off of the vibration element 140 is controlled by a drive signal.
- an ultrasonic band means a frequency band about 20 kHz or more, for example.
- the frequency at which the vibration element 140 vibrates is equal to the frequency of the top panel 120, so the vibration element 140 is driven by a drive signal so as to vibrate at the natural frequency of the top panel 120. Is done.
- the touch panel 150 is disposed on the substrate 170 (Z-axis positive direction side) and below the top panel 120 (Z-axis negative direction side).
- the touch panel 150 is an example of a coordinate detection unit that detects a position where the user of the game controller 100 touches the top panel 120 (hereinafter referred to as an operation input position).
- the touch panel 150 may be a coordinate detection unit that can detect the position of an operation input to the user's top panel 120, and may be, for example, a capacitance type or resistance film type coordinate detection unit.
- a mode in which the touch panel 150 is a capacitive coordinate detection unit will be described. Even if there is a gap between the touch panel 150 and the top panel 120, the capacitive touch panel 150 can detect an operation input to the top panel 120.
- the top panel 120 may be integrated with the touch panel 150.
- the surface of the touch panel 150 becomes the surface of the top panel 120 shown in FIGS. 2 and 3, and an operation surface is constructed.
- the structure which excluded the top panel 120 shown in FIG.2 and FIG.3 may be sufficient.
- the surface of the touch panel 150 constructs the operation surface.
- the member having the operation surface may be vibrated by the natural vibration of the member.
- the touch panel 150 when the touch panel 150 is a capacitance type, the touch panel 150 may be disposed on the top panel 120. Also in this case, the surface of the touch panel 150 constructs the operation surface. Moreover, when the touch panel 150 is a capacitance type, the structure which excluded the top panel 120 shown in FIG.2 and FIG.3 may be sufficient. Also in this case, the surface of the touch panel 150 constructs the operation surface. In this case, the member having the operation surface may be vibrated by the natural vibration of the member.
- the substrate 170 is disposed inside the recess 110 ⁇ / b> A of the housing 110.
- a touch panel 150 is disposed on the substrate 170.
- the touch panel 150 is fixed to the substrate 170 and the housing 110 by a holder or the like not shown.
- the board 170 is mounted with various circuits and the like necessary for driving the game controller 100 in addition to the drive control device described later.
- the drive control unit mounted on the substrate 170 drives the vibration element 140, and the top panel 120. Is vibrated at the frequency of the ultrasonic band.
- the frequency of this ultrasonic band is a resonance frequency of a resonance system including the top panel 120 and the vibration element 140 and causes the top panel 120 to generate a standing wave.
- the game controller 100 provides tactile sensation to the user through the top panel 120 by generating a standing wave of an ultrasonic band.
- FIG. 4 is a diagram showing a wave front formed in parallel to the short side of the top panel 120 among standing waves generated in the top panel 120 due to the natural vibration of the ultrasonic band
- FIG. 4A is a side view.
- (B) is a perspective view. 4A and 4B, XYZ coordinates similar to those in FIGS. 2 and 3 are defined.
- the amplitude of the standing wave is exaggerated for ease of understanding.
- the vibration element 140 is omitted.
- 4A and 4B are waveforms when the number of periods k is 10, as an example.
- the period number k is 10.
- the natural frequency f is 33.5 [kHz].
- a drive signal having a frequency of 33.5 [kHz] may be used.
- the top panel 120 is a flat plate member.
- the vibration element 140 see FIGS. 2 and 3
- the top panel 120 is changed to (A) and (B) in FIG. By bending as shown, a standing wave is generated on the surface.
- one vibration element 140 is bonded along the short side extending in the X-axis direction on the Y-axis positive direction side on the surface of the top panel 120 on the Z-axis negative direction side.
- Two vibration elements 140 may be used.
- the other vibration element 140 is bonded to the surface of the top panel 120 on the Z-axis negative direction side along the short side extending in the X-axis direction on the Y-axis negative direction side. That's fine.
- the two vibration elements 140 may be disposed so as to be symmetric with respect to the center line parallel to the two short sides of the top panel 120.
- the two vibration elements 140 when the two vibration elements 140 are driven, they may be driven in the same phase when the period number k is an integer, and may be driven in the opposite phase when the period number k is an odd number.
- FIG. 5 is a diagram for explaining a state in which the dynamic friction force applied to the fingertip that performs the operation input changes due to the natural vibration of the ultrasonic band generated on the top panel 120 of the game controller 100.
- the user performs an operation input to move the finger along the arrow from the back side of the top panel 120 to the near side while touching the top panel 120 with the fingertip.
- the vibration is turned on / off by turning on / off the vibration element 140 (see FIGS. 2 and 3).
- the natural vibration of the ultrasonic band occurs in the entire top panel 120 as shown in FIG. 4, but in FIGS. 5A and 5B, the user's finger is on the front side from the back side of the top panel 120.
- the operation pattern which switches on / off of a vibration during moving to is shown.
- the vibration is off when the user's finger is on the back side of the top panel 120, and the vibration is on in the middle of moving the finger to the near side.
- the vibration is turned on when the user's finger is on the back side of the top panel 120, and the vibration is turned off in the middle of moving the finger to the near side. Yes.
- the dynamic frictional force applied to the fingertip is large in the range indicated in gray on the back side of the top panel 120, and the dynamic frictional force applied to the fingertip is small in the range indicated in white on the near side of the top panel 120.
- the user who performs an operation input to the top panel 120 senses a decrease in the dynamic friction force applied to the fingertip and perceives the ease of slipping of the fingertip when the vibration is turned on. It will be. At this time, the user feels that a concave portion exists on the surface of the top panel 120 when the dynamic friction force decreases due to the surface of the top panel 120 becoming smoother.
- the dynamic friction force applied to the fingertip is small in the range shown white on the back side of the top panel 120, and the dynamic friction force applied to the fingertip is large in the range shown in gray on the near side of the top panel 120. Become.
- the user who performs an operation input to the top panel 120 senses an increase in the dynamic friction force applied to the fingertip when the vibration is turned off, You will perceive the feeling of being caught. And when a dynamic friction force becomes high because it becomes difficult to slip a fingertip, it will feel like a convex part exists in the surface of the top panel 120.
- FIG. 6 is a diagram illustrating a configuration of the game controller 100 according to the embodiment.
- FIG. 6 shows a game machine main body 500 and a display panel 510 connected to the game controller 100 in a wired or wireless manner.
- the game controller 100 includes a vibration element 140, an amplifier 141, a touch panel 150, a driver IC (Integrated Circuit) 151, a control device 200, a sine wave generator 310, and an amplitude modulator 320.
- the control device 200 includes a control processor 220, a drive control unit 240, and a memory 250.
- the control device 200 is realized by an IC chip, for example.
- the drive control unit 240 may be connected to another IC chip or the outside of the control device 200. It may be provided as a processor. In this case, among the data stored in the memory 250, data necessary for drive control of the drive control unit 240 may be stored in a memory different from the memory 250.
- the casing 110, the top panel 120, the double-sided tape 130, and the substrate 170 are omitted.
- the amplifier 141, the driver IC 151, the control processor 220, the drive control unit 240, the memory 250, the sine wave generator 310, and the amplitude modulator 320 will be described.
- the amplifier 141 is disposed between the amplitude modulator 320 and the vibration element 140 and drives the vibration element 140 by amplifying the drive signal output from the amplitude modulator 320.
- the driver IC 151 is connected to the touch panel 150, detects position data indicating a position where an operation input to the touch panel 150 has been performed, and outputs the position data to the control device 200. As a result, the position data is input to the control processor 220 and the drive control unit 240.
- the control processor 220 performs control processing other than the control processing performed by the drive control unit 240 in the control processing of the game controller 100.
- the drive control unit 240 outputs amplitude data representing the amplitude to the amplitude modulator 320.
- the amplitude data is data representing an amplitude value for adjusting the strength of the drive signal used for driving the vibration element 140.
- Amplitude data representing the amplitude may be stored in the memory 250.
- the game controller 100 of the embodiment vibrates the top panel 120 in order to change the dynamic friction force applied to the fingertip when the user's fingertip moves along the surface of the top panel 120.
- Examples of the operation input for moving the fingertip that touches the surface of the top panel 120 include so-called flick operation, swipe operation, and drag operation.
- the flick operation is an operation of moving the fingertip along the surface of the top panel 120 for a relatively short distance so as to be repelled (snapped).
- the swipe operation is an operation of moving a fingertip along a relatively long distance so as to sweep along the surface of the top panel 120.
- the drag operation is an operation of moving a fingertip along the surface of the top panel 120 while selecting a button or the like, for example, when sliding a button or the like displayed on the display panel 510.
- the operation input for moving the fingertip touching the surface of the top panel 120 such as a flick operation, a swipe operation, and a drag operation given as an example here, is used depending on the type of display by the application. For this reason, when determining whether or not the position of the fingertip for performing the operation input is within a predetermined area where vibration is to be generated, the type of application in which the game controller 100 is activated is related.
- the memory 250 stores amplitude data representing the amplitude and pattern data representing the vibration pattern. Further, in the memory 250, among these data, data that need to be associated may be associated with each other using, for example, an identifier or the like to form data in a table format.
- the memory 250 stores data, programs, and the like necessary for the control processor 220 to execute control processing.
- the sine wave generator 310 generates a sine wave necessary for generating a drive signal for vibrating the top panel 120 at a natural frequency. For example, when the top panel 120 is vibrated at a natural frequency f of 33.5 [kHz], the frequency of the sine wave is 33.5 [kHz].
- the sine wave generator 310 inputs an ultrasonic band sine wave signal to the amplitude modulator 320.
- the amplitude modulator 320 modulates the amplitude of the sine wave signal input from the sine wave generator 310 using the amplitude data input from the drive control unit 240 to generate a drive signal.
- the amplitude modulator 320 modulates only the amplitude of the sine wave signal in the ultrasonic band input from the sine wave generator 310, and generates the drive signal without modulating the frequency and phase.
- the drive signal output by the amplitude modulator 320 is an ultrasonic band sine wave signal obtained by modulating only the amplitude of the ultrasonic band sine wave signal input from the sine wave generator 310. Note that when the amplitude data is zero, the amplitude of the drive signal is zero. This is equivalent to the amplitude modulator 320 not outputting a drive signal.
- the game controller 100 is connected to the game machine body 500 wirelessly by a cable or the like, or a wireless LAN (Local Area Network) or Bluetooth (registered trademark).
- a user who operates the game machine main body 500 performs an operation input on the top panel 120 of the game controller 100.
- the game controller 100 transmits an operation signal representing the content of the operation input performed on the surface of the top panel 120 to the game machine body 500, and the game machine body 500 is displayed on the display panel 510 as the video game progresses. In addition to controlling the image, control based on an operation signal input from the game controller 100 is performed.
- an operation input performed on an arbitrary position on the surface of the top panel 120 is performed.
- the start point corresponds to a display position such as an object, a pointer, or a cursor.
- the movement of the operation input performed on the top panel 120 corresponds to the movement of an object, a pointer, a cursor, or the like. That is, the movement with respect to the start point of the operation input corresponds to a relative movement of an object, a pointer, a cursor, or the like in the display screen of the display panel 510.
- the game controller 100 receives coordinate data representing the coordinate position in the screen of the image related to the driving of the vibration element 140 from the data necessary for the screen control performed by the game machine body 500 from the game machine body 500. Is done.
- the drive controller 240 of the game controller 100 drives the vibration element 140 in accordance with an operation input to the surface of the top panel 120, and drives the vibration element 140 in accordance with coordinate data input from the game machine body 500.
- FIG. 7 is a diagram illustrating a state in which operation input is performed on the surface of the top panel 120 of the game controller 100 according to the embodiment.
- a touch panel 150 (see FIGS. 2 and 3) is disposed on the back side of the top panel 120.
- FIG. 8 is a diagram illustrating an operation example of the game controller 100 according to the embodiment.
- FIG. 8 shows a drive pattern in which the vibration element 140 is driven in accordance with the operation input shown in FIG.
- the horizontal axis represents the time axis
- the vertical axis represents the amplitude value of the amplitude data.
- the vibration element 140 when an operation input is performed along the surface of the top panel 120 as indicated by an arrow, the vibration element 140 is turned on when the operation input starts and moves from the operation input start point 121. When the amount reaches a predetermined movement amount, the vibration element 140 is turned off.
- the operation of the vibration element 140 in the case shown in FIG. 7 is as shown in FIG. 8, when an operation input is performed at time t1, the drive control unit 240 outputs amplitude data with an amplitude value of A1, and the vibration element 140 Is turned on.
- the operation input position is stopped without moving from time t1 to t2. Since operation input is performed between times t1 and t2, the drive control unit 240 continues to output amplitude data with an amplitude value of A1, and the vibration element 140 is held in an on state.
- the drive control unit 240 When the position of the operation input starts to move at time t2, the drive control unit 240 continues to output amplitude data whose amplitude value is A1, and the vibration element 140 is held in the on state. Since the dynamic friction coefficient applied to the user's fingertip is reduced by the squeeze effect, the fingertip can easily move on the surface of the top panel 120.
- the drive control unit 240 sets the amplitude value of the amplitude data to 0. Set to. Thereby, the vibration element 140 is turned off.
- the vibration element 140 is turned off only during the period TP1.
- the period TP1 is about 50 milliseconds, for example.
- the drive control unit 240 outputs amplitude data whose amplitude value is A1, and the vibration element 140 is turned on again.
- the drive control unit 240 sets the amplitude value of the amplitude data to 0. Set to. Thereby, the vibration element 140 is turned off, and the user feels that a convex portion exists on the surface of the top panel 120 due to an increase in the dynamic frictional force applied to the fingertip.
- the vibration element 140 is turned off only during the period TP1.
- the drive control unit 240 outputs amplitude data whose amplitude value is A1, and the vibration element 140 is turned on again.
- the drive control unit 240 sets the amplitude value of the amplitude data to 0. Set to. Thereby, the vibration element 140 is turned off, and the user feels that a convex portion exists on the surface of the top panel 120 due to an increase in the dynamic frictional force applied to the fingertip.
- the vibration element 140 is turned off only during the period TP1.
- the drive control unit 240 outputs amplitude data whose amplitude value is A1, and the vibration element 140 is turned on again.
- the drive control unit 240 continues to output amplitude data with an amplitude value of A1, and the vibration element 140 Is kept on.
- the drive control unit 240 sets the amplitude value of the amplitude data to 0, and the vibration element 140 is turned off.
- FIG. 9 is a flowchart showing processing executed by the drive control unit 240 of the game controller 100 of the first embodiment.
- the OS (Operating System) of the game controller 100 executes control for driving the game controller 100 at every predetermined control cycle. For this reason, the drive control part 240 repeatedly performs the flow shown in FIG. 9 for every predetermined control period.
- the drive control unit 240 does not output amplitude data, and the drive element 140 is turned off.
- the drive control unit 240 starts the process when the game controller 100 is turned on.
- the drive control unit 240 determines whether or not there is an operation input (step S1). The presence / absence of an operation input may be determined based on whether or not position data is input from the driver IC 151 (see FIG. 6).
- the drive control unit 240 determines that there is an operation input (S1: YES)
- the drive control unit 240 drives the vibration element 140 using a drive signal having an amplitude A1 (step S2).
- the natural vibration of the ultrasonic band is generated in the top panel 120.
- the drive control unit 240 determines that there is an operation input, the drive control unit 240 stores the coordinates at which the operation input is started as a starting point. As the coordinates at which the operation input is started, position data input first from the driver IC 151 (see FIG. 6) may be used.
- step S3 the drive control unit 240 determines whether or not there is an operation input. This is to determine whether the operation input is continued.
- the drive control unit 240 determines whether the movement amount from the start point of the operation input has reached any relative position (step S4).
- One of the relative positions is a position of three broken lines L1, L2, and L3 with respect to the start point 121 shown in FIG. 7, and is a position determined by the distance in the movement direction of the operation input from the start point 121.
- the relative position with respect to the starting point 121 is determined by the distance between the starting point 121 and each of the three broken lines L1, L2, and L3 in the movement direction of the operation input indicated by the arrow.
- the drive control unit 240 determines that the movement amount from the start point of the operation input has reached one of the relative positions (S4: YES)
- the drive control unit 240 turns off the drive signal over the period TP1 (step S5).
- the natural vibration of the ultrasonic band of the top panel 120 is turned off over the period TP1.
- the period TP1 is set to 50 milliseconds, for example.
- the drive control part 240 returns a flow to step S3, after the process of step S5 is complete
- step S1 determines with there being no operation input in step S1 (S1: NO)
- the drive control part 240 will perform the process of step S1 repeatedly. This is because the series of processing illustrated in FIG. 9 is processing that starts when an operation input is performed.
- step S3 determines in step S3 that there is no operation input (S3: NO)
- the series of processing ends end.
- the vibration element 140 is turned off.
- step S4 If the drive control unit 240 determines in step S4 that it has not reached any relative position (S4: NO), it returns the flow to step S3.
- the position of the operation input reaches the broken line L1 at time t3
- the position of the operation input reaches the broken line L2 at time t4
- the position of the operation input reaches the broken line L3 at time t5. Is reached when the flow proceeds as follows.
- the drive control unit 240 determines YES in step S1, and the vibration element 140 is turned on in step S2.
- the drive control unit 240 determines YES in step S3 and determines NO in step S4. That is, from time t1 to time t2, the subroutine processing in steps S3 and S4 is repeatedly executed. From time t1 to time t2, the vibration element 140 is kept on.
- the drive control unit 240 determines YES in step S4, and moves the vibration element 140 over the period TP1 in step S5. Turn off. Note that when the period TP ⁇ b> 1 elapses from the time t ⁇ b> 3, the drive control unit 240 turns on the vibration element 140.
- the drive control unit 240 determines YES in step S4, and turns off the vibration element 140 over the period TP1 in step S5.
- the drive control unit 240 turns on the vibration element 140.
- the drive control unit 240 determines YES in step S4, and turns off the vibration element 140 over the period TP1 in step S5.
- the drive control unit 240 turns on the vibration element 140.
- the drive control unit 240 determines NO in step S4, and from time t6 to t7, the subroutine processing in steps S3 and S4 is repeatedly executed, and the vibration element 140 is turned on. Kept in a state. This is because the operation input continues.
- the drive control unit 240 determines NO in step S3, and the series of processes ends (end). Thereby, the vibration element 140 is turned off.
- the vibration element 140 is moved from time t3 over the period TP1.
- the drive control unit 240 determines NO in step S ⁇ b> 3
- the series of processing ends without the vibration element 140 being turned on again (end).
- the control cycle of the series of processes shown in FIG. 9 may be set shorter than the period TP1.
- the distance between the starting point 121 and each of the three broken lines L1, L2, and L3 in the movement direction of the operation input indicated by the arrow in FIG. 7 is, for example, a unit in the operation when the user plays the video game. You only have to set the operation amount.
- the unit operation amount can be set to an amount corresponding to one scale such as an operation amount of the steering wheel, an accelerator opening degree, and a brake strength. .
- the unit operation amount is set in this way, a tactile sensation with a convex portion on the user's fingertip can be provided every time the operation amount reaches the unit operation amount, and a good operation feeling can be realized.
- FIG. 10 is a diagram illustrating a state in which operation input is performed on the surface of the top panel 120 of the game controller 100 according to the embodiment.
- a touch panel 150 (see FIGS. 2 and 3) is disposed on the back side of the top panel 120.
- FIG. 11 is a diagram illustrating an operation example of the game controller 100 according to the embodiment.
- FIG. 11 shows a drive pattern in which the vibration element 140 is driven in accordance with the operation input shown in FIG.
- the horizontal axis represents the time axis
- the vertical axis represents the amplitude value of the amplitude data.
- an operation input by a drag operation is performed along the surface of the top panel 120 as indicated by an arrow, and an object such as a vehicle or a person displayed on the display panel 510 is moved.
- the drive control unit 240 turns on the vibration element 140 for a very short period.
- the processing as described above is performed based on, for example, data representing the relative positional relationship between the current display position of the object displayed on the display screen of the display panel 510 and a predetermined point in the traveling direction of the object. This can be realized by calculating the coordinates of predetermined positions P1 and P2 with respect to the current operation input position of the panel 120.
- the position of the operation input is It passes through predetermined positions P1 and P2 on the top panel 120.
- the drive control unit 240 turns on the vibration element 140 for a very short period of time, so that the object becomes a predetermined point. The user can be made to perceive through the tactile sensation.
- the predetermined point on the display screen of the display panel 510 may be set to, for example, a boundary between regions on the display screen or a point to which points are given by passage.
- the drive control unit 240 When an operation input is performed at time t11, the drive control unit 240 outputs amplitude data having an amplitude value of 0, and the vibration element 140 is off.
- the operation input position is stopped without moving from time t11 to t12. Between the times t11 and t12, the vibration element 140 is held in an off state.
- the drive control unit 240 sets the amplitude value of the amplitude data to A1 over a very short period TP11. Set. Thereby, the vibration element 140 is turned on over the period TP11.
- the vibration element 140 When the vibration element 140 is turned on, the coefficient of dynamic friction applied to the user's fingertip is reduced by the squeeze effect, so that the fingertip can easily move on the surface of the top panel 120.
- the drive control unit 240 sets the amplitude value of the amplitude data to 0. Thereby, the vibration element 140 is turned off, and the user feels that a convex portion exists on the surface of the top panel 120 due to an increase in the dynamic frictional force applied to the fingertip.
- the period TP11 during which the vibration element 140 is turned on is, for example, about 100 milliseconds.
- the drive control unit 240 determines the amplitude of the amplitude data over a very short period TP11. Set the value to A1. Thereby, the vibration element 140 is turned on over the period TP11.
- the vibration element 140 When the vibration element 140 is turned on, the coefficient of dynamic friction applied to the user's fingertip is reduced by the squeeze effect, so that the fingertip can easily move on the surface of the top panel 120.
- the drive control unit 240 sets the amplitude value of the amplitude data to 0. Thereby, the vibration element 140 is turned off, and the user feels that a convex portion exists on the surface of the top panel 120 due to an increase in the dynamic frictional force applied to the fingertip.
- the position of the operation input does not move at time t16, the operation input is performed with the fingertip touching the surface of the top panel 120 until time t17, and the vibration element 140 is held in the off state.
- the fingertip is separated from the surface of the top panel 120 and no operation input is performed.
- FIG. 12 is a diagram illustrating a state in which operation input is performed on the surface of the top panel 120 of the game controller 100 according to the embodiment.
- a touch panel 150 (see FIGS. 2 and 3) is disposed on the back side of the top panel 120.
- FIG. 13 is a diagram illustrating an operation example of the game controller 100 according to the embodiment.
- FIG. 13 shows a drive pattern in which the vibration element 140 is driven in accordance with the operation input shown in FIG.
- the horizontal axis represents the time axis
- the vertical axis represents the amplitude value of the amplitude data.
- an operation input by a drag operation is performed along the surface of the top panel 120 as indicated by an arrow, and an object such as a vehicle or a person displayed on the display panel 510 is moved.
- the drive control unit 240 turns on the vibration element 140 using amplitude data whose amplitude changes randomly in time.
- the dynamic friction force applied to the fingertip varies in accordance with the temporal change in the amplitude data.
- the amplitude is large, the dynamic friction force is relatively low, and when the amplitude is small, the dynamic friction force is relatively large.
- Such a temporal fluctuation of the dynamic frictional force can provide the user's fingertip with a feeling that unevenness portions having a random height are present on the surface of the top panel 120.
- the user's fingertip is provided with a feeling that the surface of the top panel 120 is rough.
- amplitude data whose amplitude changes randomly in time as described above is used. It is only necessary to drive the vibration element 140 by using it.
- the vibration element 140 may be driven using amplitude data such that an amplitude value is output in time series using a random number.
- Data may be stored in the memory 250 (see FIG. 6).
- the drive control unit 240 drives the vibration element 140 using amplitude data whose amplitude changes randomly in time. The user can perceive that the object has passed through the section with many obstacles through tactile sensation.
- the drive control unit 240 When an operation input is performed at time t21, the drive control unit 240 outputs amplitude data having an amplitude value of 0, and the vibration element 140 is off.
- the operation input position is stopped without moving from time t21 to t22. Between the times t21 and t22, the vibration element 140 is held in the off state.
- the drive control unit 240 When the position of the operation input starts to move at time t22, and when the position of the operation input reaches the start point of the section S (see FIG. 12) at time t23, the drive control unit 240 has amplitude data whose amplitude changes randomly in time. Then, the vibration element 140 is driven.
- the driving of the vibration element 140 by the amplitude data whose amplitude changes randomly in time continues from time t23 to t24. Then, at time t24, the drive control unit 240 turns off the vibration element 140.
- the vibration element 140 When the vibration element 140 is turned on, the coefficient of dynamic friction applied to the user's fingertip is reduced by the squeeze effect, so that the fingertip can easily move on the surface of the top panel 120.
- the drive control unit 240 uses amplitude data whose amplitude changes randomly in time, and thus the surface of the top panel 120 seems to be rough on the fingertip of the user. A unique feel is provided.
- the drive control unit 240 may set an amplitude value according to the temporal change degree of the position data.
- the drive control unit 240 may calculate the moving speed of the user's fingertip based on the temporal change degree of the position data input from the driver IC 151.
- the game controller 100 of the embodiment reduces the amplitude value as the moving speed increases and decreases the moving speed in order to make the tactile sensation that the user senses from the fingertip constant regardless of the moving speed of the fingertip. As the amplitude value increases.
- the data representing the relationship between the amplitude data representing the amplitude value and the moving speed may be stored in the memory 250.
- amplitude value A is used using following Formula (3). May be calculated.
- the amplitude value A calculated by Equation (3) decreases as the moving speed increases, and increases as the moving speed decreases.
- A0 is the amplitude reference value
- V is the moving speed of the fingertip
- a is a predetermined constant.
- the drive control unit 240 vibrates the vibration element 140 when the moving speed becomes equal to or higher than a predetermined threshold speed.
- the amplitude value represented by the amplitude data output by the drive control unit 240 is zero when the moving speed is less than the predetermined threshold speed, and when the moving speed is equal to or higher than the predetermined threshold speed, the amplitude value is determined according to the moving speed. Set to the amplitude value.
- the moving speed is equal to or higher than a predetermined threshold speed, the higher the moving speed, the smaller the amplitude value is set, and the lower the moving speed is, the larger the amplitude value is set.
- the drive control unit 240 reads amplitude data representing an amplitude value corresponding to the moving speed from the memory 250 and outputs the amplitude data to the amplitude modulator 320 when the moving speed of the fingertip is equal to or higher than a predetermined threshold speed.
- FIG. 14 is a diagram showing data representing the relationship between the amplitude data representing the amplitude value stored in the memory 250 and the moving speed.
- the amplitude value is set to 0, and the moving speed V is more than b1 and less than b2 (b1 ⁇ V ⁇ b2).
- the amplitude value is set to A1
- the moving speed V is not less than b2 and less than b3 (b2 ⁇ V ⁇ b3), the amplitude value is set to A2.
- the amplitude value of the drive pattern shown in FIGS. 8 and 11 can be set as the data shown in FIG. 14 according to the moving speed of the fingertip.
- the natural friction of the ultrasonic band of the top panel 120 is generated to change the dynamic friction force applied to the fingertip of the user, so that a good tactile sensation is provided to the user. Can do.
- the game controller 100 generates a drive signal by modulating only the amplitude of the sine wave of the ultrasonic band generated by the sine wave generator 310 by the amplitude modulator 320.
- the frequency of the sine wave of the ultrasonic band generated by the sine wave generator 310 is equal to the natural frequency of the top panel 120, and this natural frequency is set in consideration of the vibration element 140.
- the drive signal is generated by modulating only the amplitude by the amplitude modulator 320 without modulating the frequency or phase of the sine wave of the ultrasonic band generated by the sine wave generator 310.
- the natural vibration of the ultrasonic band of the top panel 120 can be generated in the top panel 120, and the coefficient of dynamic friction when the surface of the top panel 120 is traced with a finger using the air layer due to the squeeze effect is obtained. It can be reliably lowered. Further, the sticky-band ⁇ ⁇ ⁇ Illusion effect or the Fishbone Tactile Illusion effect can provide the user with a good tactile sensation such that the surface of the top panel 120 is uneven.
- the mode in which the vibration element 140 is switched on / off in order to provide the user with a tactile sensation such that the top panel 120 has unevenness has been described.
- To turn off the vibrating element 140 is to set the amplitude value represented by the drive signal for driving the vibrating element 140 to zero.
- the vibration element 140 does not necessarily have to be turned off from on.
- a state in which the vibration element 140 is driven with a small amplitude may be used.
- the user may be provided with a tactile sensation such that the top panel 120 has irregularities as in the case where the vibration element 140 is turned off.
- the vibration element 140 is driven by a drive signal that switches the strength of vibration of the vibration element 140.
- the strength of the natural vibration generated in the top panel 120 is switched, and it is possible to provide a tactile sensation such that the user's fingertip has unevenness.
- the vibration element 140 is turned off when the vibration is weakened in order to switch the strength of vibration of the vibration element 140, the vibration element 140 is switched on / off. Switching the vibration element 140 on / off is to drive the vibration element 140 intermittently.
- the degree of decreasing the amplitude value of the amplitude data may be adjusted according to the moving speed of the fingertip.
- FIG. 15 is a diagram showing a driving pattern for adjusting the degree of decreasing the amplitude value of the amplitude data depending on the moving speed of the fingertip.
- the drive pattern shown in FIG. 15A shows the time when the amplitude value is reduced to increase the dynamic friction force applied to the fingertip from the state where the amplitude value is set to A1 and the vibration element 140 is turned on. At t31 and time t32n, the amplitude value is decreased to A01. As an example, the amplitude value A01 is 1/5 of the amplitude value.
- the amplitude value is set to A1 and the vibration element 140 is turned on, the amplitude value is decreased to increase the dynamic friction force applied to the fingertip.
- the amplitude value is reduced to A02.
- the amplitude value A02 is 4/5 of the amplitude value.
- the driving pattern shown in FIG. 15A is applied to the fingertip.
- the amplitude value is decreased to increase the dynamic friction force, the amplitude value is decreased to A01.
- the amplitude value is decreased to A02 when the amplitude value is decreased in order to increase the dynamic friction force applied to the fingertip by using the driving pattern shown in FIG.
- the game controller 100 including the two touch panels 150 has been described as illustrated in FIG. 1, but one touch panel 150 may be provided.
- FIG. 16 is a diagram illustrating a game controller 100A according to a modification of the embodiment.
- Game controller 100A includes one touch panel 150 disposed in the opening of housing 110B.
- the housing 110B is also provided with a button 111A.
- the housing 110B is a vertically long type, and the lower side in the figure may be held with one hand and the touch panel 150 provided on the upper side may be operated with the other hand.
- the game controller 100A has a shape that is particularly suitable for operation with the index finger of the other hand.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- User Interface Of Digital Computer (AREA)
Abstract
良好な触感の操作感を提供できるゲームコントローラを提供することを課題とする。 ゲームコントローラは、筐体と、前記筐体の開口部に配設されるタッチパネルと、前記タッチパネルに操作入力を行う操作面に振動を発生させる振動素子と、前記操作面に超音波帯の固有振動を発生させる駆動信号で前記振動素子を駆動する駆動制御部とを含む。
Description
本発明は、ゲームコントローラに関する。
従来より、表示手段と、使用者の操作部位の前記表示手段への接触状態を検出する接触検出手段と、前記表示手段に接触している前記操作部位に対し、所定の触感を与える触感振動を発生させる触感振動発生手段とを備える触感呈示装置がある(例えば、特許文献1参照)。
この触感呈示装置は、さらに、前記接触検出手段による検出結果に基づいて、前記触感振動を発生させるための波形データを生成する振動波形データ生成手段を備える。また、この触感呈示装置は、さらに、前記振動波形データ生成手段により生成された前記波形データに対し超音波を搬送波として変調処理を行い、該変調処理により生成された超音波変調信号を、前記触感振動を発生させるための信号として前記触感振動発生手段に出力する超音波変調手段とを備える。
また、前記超音波変調手段は、周波数変調又は位相変調のどちらか一方を行う。また、前記超音波変調手段は、更に振幅変調を行う。
ところで、従来の触感呈示装置の超音波の周波数は、可聴帯域より高い周波数(およそ20kHz以上)であればよく、超音波の周波数自体に特に工夫はなされていないため、良好な触感の操作感を提供できないおそれがある。また、これは、従来の触感呈示装置をゲームコントローラに用いても同様である。
そこで、良好な触感の操作感を提供できるゲームコントローラを提供することを目的とする。
本発明の実施の形態のゲームコントローラは、筐体と、前記筐体の開口部に配設されるタッチパネルと、前記タッチパネルに操作入力を行う操作面に振動を発生させる振動素子と、前記操作面に超音波帯の固有振動を発生させる駆動信号で前記振動素子を駆動する駆動制御部とを含む。
良好な触感の操作感を提供できるゲームコントローラを提供することができる。
以下、本発明のゲームコントローラを適用した実施の形態について説明する。
<実施の形態>
図1は、実施の形態のゲームコントローラ100を示す斜視図である。
図1は、実施の形態のゲームコントローラ100を示す斜視図である。
ゲームコントローラ100は、筐体110及び2つのタッチパネル150を含む。ゲームコントローラ100は、有線又は無線によってゲーム機本体に接続される、所謂リモートコントローラである。
ゲームコントローラ100は、利用者がタッチパネル150に指先等で操作入力を行うことにより、ゲーム機本体の操作を行うものである。タッチパネル150は、2つあるため、利用者がゲームコントローラ100を両手で持った状態で、2つのタッチパネル150を左右の手で操作することができる。
なお、ゲームコントローラ100には、例えば、加速度センサ又はジャイロセンサが内蔵されいてもよい。この場合は、タッチパネル150を介してゲーム機本体を操作することに加えて、ゲームコントローラ100の角度を変えたり、ゲームコントローラ100を振ったりすることによっても、ゲーム機本体を操作することができる。
また、ゲームコントローラ100には、ボタンが設けられていてもよい。
次に、図2を用いて、ゲームコントローラ100のタッチパネル150の周辺の具体的な構成について説明する。
図2は、実施の形態のゲームコントローラ100のタッチパネル150及びその周辺の構成を示す平面図であり、図3は、図2のA-A矢視断面を示す図である。図2に示すタッチパネル150及びその周辺の構成は、図1に示す2つのタッチパネル150のうちの一方と、その周辺の構成に対応する。なお、図2及び図3では、図示するように直交座標系であるXYZ座標系を定義する。
ゲームコントローラ100は、筐体110、トップパネル120、両面テープ130、振動素子140、タッチパネル150、及び基板170を含む。
筐体110は、例えば、樹脂製であり、図3に示すように凹部110Aに基板170及びタッチパネル150が配設されるとともに、両面テープ130によってトップパネル120が接着されている。なお、筐体110に平面視で矩形状の凹部110Aを形成することにより、筐体110には凹部110Aによって形成される矩形状の開口が存在する。この開口は、図2では矩形環状の両面テープ130の矩形状の開口と略一致している。図2では、タッチパネル150は、凹部110Aの矩形状の開口の内側に位置している。
トップパネル120は、平面視で長方形の薄い平板状の部材であり、ガラス、又は、ポリカーボネートのような強化プラスティックで作製される。トップパネル120の表面(Z軸正方向側の面)は、ゲームコントローラ100の利用者が操作入力を行う操作面の一例である。
トップパネル120は、Z軸負方向側の面に振動素子140が接着され、平面視における四辺が両面テープ130によって筐体110に接着されている。なお、両面テープ130は、トップパネル120の四辺を筐体110に接着できればよく、図3に示すように矩形環状である必要はない。
トップパネル120のZ軸負方向側にはタッチパネル150が配設される。トップパネル120は、タッチパネル150の表面を保護するために設けられている。なお、トップパネル120の表面に、さらに別なパネル又は保護膜等が設けられていてもよい。
トップパネル120は、Z軸負方向側の面に振動素子140が接着された状態で、振動素子140が駆動されることによって振動する。実施の形態では、トップパネル120の固有振動周波数でトップパネル120を振動させて、トップパネル120に定在波を生じさせる。ただし、トップパネル120には振動素子140が接着されているため、実際には、振動素子140の重さ等を考慮した上で、固有振動周波数を決めることが好ましい。
振動素子140は、トップパネル120のZ軸負方向側の面において、Y軸正方向側において、X軸方向に伸延する短辺に沿って接着されている。振動素子140は、超音波帯の振動を発生できる素子であればよく、例えば、ピエゾ素子のような圧電素子を含むものを用いることができる。
振動素子140は、後述する駆動制御部から出力される駆動信号によって駆動される。振動素子140が発生する振動の振幅(強度)及び周波数は駆動信号によって設定される。また、振動素子140のオン/オフは駆動信号によって制御される。
なお、超音波帯とは、例えば、約20kHz以上の周波数帯をいう。実施の形態のゲームコントローラ100では、振動素子140が振動する周波数は、トップパネル120の振動数と等しくなるため、振動素子140は、トップパネル120の固有振動数で振動するように駆動信号によって駆動される。
タッチパネル150は、基板170の上(Z軸正方向側)で、トップパネル120の下(Z軸負方向側)に配設されている。タッチパネル150は、ゲームコントローラ100の利用者がトップパネル120に触れる位置(以下、操作入力の位置と称す)を検出する座標検出部の一例である。
タッチパネル150は、利用者のトップパネル120への操作入力の位置を検出できる座標検出部であればよく、例えば、静電容量型又は抵抗膜型の座標検出部であればよい。ここでは、タッチパネル150が静電容量型の座標検出部である形態について説明する。タッチパネル150とトップパネル120との間に隙間があっても、静電容量型のタッチパネル150は、トップパネル120への操作入力を検出できる。
また、ここでは、タッチパネル150の入力面側にトップパネル120が配設される形態について説明するが、トップパネル120はタッチパネル150と一体的であってもよい。この場合、タッチパネル150の表面が図2及び図3に示すトップパネル120の表面になり、操作面を構築する。また、図2及び図3に示すトップパネル120を省いた構成であってもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、この場合には、操作面を有する部材を、当該部材の固有振動で振動させればよい。
また、タッチパネル150が静電容量型の場合は、トップパネル120の上にタッチパネル150が配設されていてもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、タッチパネル150が静電容量型の場合は、図2及び図3に示すトップパネル120を省いた構成であってもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、この場合には、操作面を有する部材を、当該部材の固有振動で振動させればよい。
基板170は、筐体110の凹部110Aの内部に配設される。基板170の上にはタッチパネル150が配設される。タッチパネル150は、図示を省略するホルダ等によって基板170及び筐体110に固定されている。
基板170には、後述する駆動制御装置の他に、ゲームコントローラ100の駆動に必要な種々の回路等が実装される。
以上のような構成のゲームコントローラ100は、トップパネル120に利用者の指が接触し、指先の移動を検出すると、基板170に実装される駆動制御部が振動素子140を駆動し、トップパネル120を超音波帯の周波数で振動させる。この超音波帯の周波数は、トップパネル120と振動素子140とを含む共振系の共振周波数であり、トップパネル120に定在波を発生させる。
ゲームコントローラ100は、超音波帯の定在波を発生させることにより、トップパネル120を通じて利用者に触感を提供する。
次に、図4を用いて、トップパネル120に発生させる定在波について説明する。
図4は、超音波帯の固有振動によってトップパネル120に生じる定在波のうち、トップパネル120の短辺に平行に形成される波頭を示す図であり、図4の(A)は側面図、(B)は斜視図である。図4の(A)、(B)では、図2及び図3と同様のXYZ座標を定義する。なお、図4の(A)、(B)では、理解しやすさのために、定在波の振幅を誇張して示す。また、図4の(A)、(B)では振動素子140を省略する。
トップパネル120のヤング率E、密度ρ、ポアソン比δ、長辺寸法l、厚さtと、長辺方向に存在する定在波の周期数kとを用いると、トップパネル120の固有振動数(共振周波数)fは次式(1)、(2)で表される。定在波は1/2周期単位で同じ波形を有するため、周期数kは、0.5刻みの値を取り、0.5、1、1.5、2・・・となる。
図4の(A)、(B)に示す定在波は、一例として、周期数kが10の場合の波形である。例えば、トップパネル120として、長辺の長さlが140mm、短辺の長さが80mm、厚さtが0.7mmのGorilla(登録商標)ガラスを用いる場合には、周期数kが10の場合に、固有振動数fは33.5[kHz]となる。この場合は、周波数が33.5[kHz]の駆動信号を用いればよい。
トップパネル120は、平板状の部材であるが、振動素子140(図2及び図3参照)を駆動して超音波帯の固有振動を発生させると、図4の(A)、(B)に示すように撓むことにより、表面に定在波が生じる。
なお、ここでは、1つの振動素子140がトップパネル120のZ軸負方向側の面において、Y軸正方向側において、X軸方向に伸延する短辺に沿って接着される形態について説明するが、振動素子140を2つ用いてもよい。2つの振動素子140を用いる場合は、もう1つの振動素子140をトップパネル120のZ軸負方向側の面において、Y軸負方向側において、X軸方向に伸延する短辺に沿って接着すればよい。この場合に、2つの振動素子140は、トップパネル120の2つの短辺に平行な中心線に対して対称になるように配設すればよい。
また、2つの振動素子140を駆動する場合は、周期数kが整数の場合は同一位相で駆動すればよく、周期数kが奇数の場合は逆位相で駆動すればよい。
次に、図5を用いて、ゲームコントローラ100のトップパネル120に生じさせる超音波帯の固有振動について説明する。
図5は、ゲームコントローラ100のトップパネル120に生じさせる超音波帯の固有振動により、操作入力を行う指先に掛かる動摩擦力が変化する様子を説明する図である。図5の(A)、(B)では、利用者が指先でトップパネル120に触れながら、指をトップパネル120の奥側から手前側に矢印に沿って移動する操作入力を行っている。なお、振動のオン/オフは、振動素子140(図2及び図3参照)をオン/オフすることによって行われる。
また、図5の(A)、(B)では、トップパネル120の奥行き方向において、振動がオフの間に指が触れる範囲をグレーで示し、振動がオンの間に指が触れる範囲を白く示す。
超音波帯の固有振動は、図4に示すようにトップパネル120の全体に生じるが、図5の(A)、(B)には、利用者の指がトップパネル120の奥側から手前側に移動する間に振動のオン/オフを切り替える動作パターンを示す。
このため、図5の(A)、(B)では、トップパネル120の奥行き方向において、振動がオフの間に指が触れる範囲をグレーで示し、振動がオンの間に指が触れる範囲を白く示す。
図5の(A)に示す動作パターンでは、利用者の指がトップパネル120の奥側にあるときに振動がオフであり、指を手前側に移動させる途中で振動がオンになっている。
一方、図5の(B)に示す動作パターンでは、利用者の指がトップパネル120の奥側にあるときに振動がオンであり、指を手前側に移動させる途中で振動がオフになっている。
ここで、トップパネル120に超音波帯の固有振動を生じさせると、トップパネル120の表面と指との間にスクイーズ効果による空気層が介在し、指でトップパネル120の表面をなぞったときの動摩擦係数が低下する。
従って、図5の(A)では、トップパネル120の奥側にグレーで示す範囲では、指先に掛かる動摩擦力は大きく、トップパネル120の手前側に白く示す範囲では、指先に掛かる動摩擦力は小さくなる。
このため、図5の(A)に示すようにトップパネル120に操作入力を行う利用者は、振動がオンになると、指先に掛かる動摩擦力の低下を感知し、指先の滑り易さを知覚することになる。このとき、利用者はトップパネル120の表面がより滑らかになることにより、動摩擦力が低下するときに、トップパネル120の表面に凹部が存在するように感じる。
一方、図5の(B)では、トップパネル120の奥側に白く示す範囲では、指先に掛かる動摩擦力は小さく、トップパネル120の手前側にグレーで示す範囲では、指先に掛かる動摩擦力は大きくなる。
このため、図5の(B)に示すようにトップパネル120に操作入力を行う利用者は、振動がオフになると、指先に掛かる動摩擦力の増大を感知し、指先の滑り難さ、あるいは、引っ掛かる感じを知覚することになる。そして、指先が滑りにくくなることにより、動摩擦力が高くなるときに、トップパネル120の表面に凸部が存在するように感じる。
以上より、図5の(A)と(B)の場合は、利用者は指先で凹凸を感じ取ることができる。このように人間が凹凸の知覚することは、例えば、"触感デザインのための印刷物転写法とSticky-band Illusion"(第11回計測自動制御学会システムインテグレーション部門講演会論文集 (SI2010, 仙台)____174-177, 2010-12)に記載されている。また、"Fishbone Tactile Illusion"(日本バーチャルリアリティ学会第10 回大会論文集(2005 年9 月))にも記載されている。
なお、ここでは、振動のオン/オフを切り替える場合の動摩擦力の変化について説明したが、これは、振動素子140の振幅(強度)を変化させた場合も同様である。
次に、図6を用いて、実施の形態のゲームコントローラ100の構成について説明する。
図6は、実施の形態のゲームコントローラ100の構成を示す図である。図6には、ゲームコントローラ100と有線又は無線で接続されるゲーム機本体500とディスプレイパネル510を示す。
ゲームコントローラ100は、振動素子140、アンプ141、タッチパネル150、ドライバIC(Integrated Circuit)151、制御装置200、正弦波発生器310、及び振幅変調器320を含む。
制御装置200は、制御プロセッサ220、駆動制御部240、及びメモリ250を有する。制御装置200は、例えば、ICチップで実現される。
なお、ここでは、制御プロセッサ220、駆動制御部240、及びメモリ250が1つの制御装置200によって実現される形態について説明するが、駆動制御部240は、制御装置200の外部に別のICチップ又はプロセッサとして設けられていてもよい。この場合には、メモリ250に格納されているデータのうち、駆動制御部240の駆動制御に必要なデータは、メモリ250とは別のメモリに格納すればよい。
図6では、筐体110、トップパネル120、両面テープ130、及び基板170(図2参照)は省略する。また、ここでは、アンプ141、ドライバIC151、制御プロセッサ220、駆動制御部240、メモリ250、正弦波発生器310、及び振幅変調器320について説明する。
アンプ141は、振幅変調器320と振動素子140との間に配設されており、振幅変調器320から出力される駆動信号を増幅して振動素子140を駆動する。
ドライバIC151は、タッチパネル150に接続されており、タッチパネル150への操作入力があった位置を表す位置データを検出し、位置データを制御装置200に出力する。この結果、位置データは、制御プロセッサ220と駆動制御部240に入力される。
制御プロセッサ220は、ゲームコントローラ100の制御処理のうち、駆動制御部240が行う制御処理以外を行う。
駆動制御部240は、振幅を表す振幅データを振幅変調器320に出力する。振幅データは、振動素子140の駆動に用いる駆動信号の強度を調整するための振幅値を表すデータである。振幅を表す振幅データは、メモリ250に格納しておけばよい。
また、実施の形態のゲームコントローラ100は、利用者の指先がトップパネル120の表面に沿って移動したときに、指先に掛かる動摩擦力を変化させるためにトップパネル120を振動させる。
トップパネル120の表面に触れた指先を移動させる操作入力の種類としては、例えば、所謂フリック操作、スワイプ操作、及びドラッグ操作がある。
フリック操作は、指先をトップパネル120の表面に沿って、はじく(スナップする)ように比較的短い距離移動させる操作である。スワイプ操作は、指先をトップパネル120の表面に沿って掃くように比較的長い距離移動させる操作である。また、ドラッグ操作は、例えば、ディスプレイパネル510に表示されたボタン等をスライドさせる場合に、ボタン等を選択しながら指先をトップパネル120の表面に沿って移動させる操作である。
ここで一例として挙げるフリック操作、スワイプ操作、及びドラッグ操作のように、トップパネル120の表面に触れた指先を移動させる操作入力は、アプリケーションによる表示の種類によって使い分けられる。このため、操作入力を行う指先の位置が、振動を発生させるべき所定の領域内にあるかどうかを判定する際には、ゲームコントローラ100が起動しているアプリケーションの種類が関係することになる。
メモリ250は、振幅を表す振幅データと、振動パターンを表すパターンデータとを格納する。また、メモリ250の内部では、これらのデータのうち、関連づけが必要なデータ同士については、例えば、識別子等を用いて関連付けてテーブル形式のデータにしておけばよい。
また、メモリ250は、制御プロセッサ220が制御処理の実行に必要とするデータ及びプログラム等を格納する。
正弦波発生器310は、トップパネル120を固有振動数で振動させるための駆動信号を生成するのに必要な正弦波を発生させる。例えば、トップパネル120を33.5[kHz]の固有振動数fで振動させる場合は、正弦波の周波数は、33.5[kHz]となる。正弦波発生器310は、超音波帯の正弦波信号を振幅変調器320に入力する。
振幅変調器320は、駆動制御部240から入力される振幅データを用いて、正弦波発生器310から入力される正弦波信号の振幅を変調して駆動信号を生成する。振幅変調器320は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調し、周波数及び位相は変調せずに、駆動信号を生成する。
このため、振幅変調器320が出力する駆動信号は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調した超音波帯の正弦波信号である。なお、振幅データがゼロの場合は、駆動信号の振幅はゼロになる。これは、振幅変調器320が駆動信号を出力しないことと等しい。
また、ゲームコントローラ100は、ケーブル等、又は、無線LAN(Local Area Network)あるいはBluetooth(登録商標)等によって無線でゲーム機本体500に接続される。ゲーム機本体500を動作させる利用者は、ゲームコントローラ100のトップパネル120に操作入力を行う。
ゲームコントローラ100は、トップパネル120の表面に行われる操作入力の内容を表す操作信号をゲーム機本体500に送信し、ゲーム機本体500は、ビデオゲームの進行に伴ってディスプレイパネル510に表示される画像の制御を行うとともに、ゲームコントローラ100から入力される操作信号に基づく制御を行う。
例えば、ディスプレイパネル510に表示される乗り物あるいは人のようなオブジェクト、又は、ポインタあるいはカーソル等を移動させる操作を行う場合には、トップパネル120の表面の任意の位置に対して行われる操作入力の始点は、オブジェクト、ポインタ、又はカーソル等の表示位置に対応する。
そして、トップパネル120に対して行われる操作入力の移動は、オブジェクト、ポインタ、又はカーソル等の移動に対応する。すなわち、操作入力の始点に対する移動は、ディスプレイパネル510の表示画面の中におけるオブジェクト、ポインタ、又はカーソル等の相対的な移動に対応する。
また、ゲームコントローラ100には、ゲーム機本体500が行う画面の制御に必要なデータのうち、振動素子140の駆動に関係する画像の画面内における座標位置を表す座標データがゲーム機本体500から入力される。
ゲームコントローラ100の駆動制御部240は、トップパネル120の表面への操作入力に応じて振動素子140を駆動するとともに、ゲーム機本体500から入力される座標データに応じて振動素子140を駆動する。
図7は、実施の形態のゲームコントローラ100のトップパネル120の表面に操作入力を行う状態を示す図である。なお、図7には図示しないが、トップパネル120の裏側には、タッチパネル150(図2及び3参照)が配設されている。
図8は、実施の形態のゲームコントローラ100の動作例を示す図である。図8には、図7に示す操作入力に応じて振動素子140が駆動される駆動パターンを示す。図8では、横軸は時間軸を表し、縦軸は振幅データの振幅値を表す。
図7に示すように、トップパネル120の表面に沿って矢印で示すように操作入力が行われた場合に、操作入力が始まった時点で振動素子140をオンにし、操作入力の始点121から移動量が所定の移動量に到達したときに、振動素子140をオフにする。
例えば、図7に示す始点121からドラッグ操作が行われると振動素子140をオンにして、操作入力の位置が3本の破線L1、L2、L3で示す位置を通過するときに、振動素子140をオフにする。
なお、図7に示す3本の破線L1、L2、L3は、操作入力の移動方向における始点121からの移動量を示すために表したものであり、ここで判定する移動量は、始点121に対する相対的な移動量である。
図7に示す場合の振動素子140の動作は、図8に示すように、時刻t1で操作入力が行われることにより、駆動制御部240は振幅値がA1の振幅データを出力し、振動素子140がオンになる。
操作入力の位置は、時刻t1~t2までは移動せずに停止している。時刻t1~t2の間は、操作入力が行われているため、駆動制御部240は振幅値がA1の振幅データを出力し続け、振動素子140はオンの状態に保持される。
時刻t2で操作入力の位置が移動し始めると、駆動制御部240は振幅値がA1の振幅データを出力し続け、振動素子140はオンの状態に保持される。利用者の指先にかかる動摩擦係数はスクイーズ効果によって低下するため、指先はトップパネル120の表面を移動しやすい状態になる。
時刻t3で操作入力の移動量が始点121(図7参照)から1本目の破線L1までの長さに対応する所定の移動量に達すると、駆動制御部240は、振幅データの振幅値を0に設定する。これにより、振動素子140はオフにされる。
振動素子140がオフになると、利用者は指先に掛かる動摩擦力の増大を感知し、指先の滑り難さ、あるいは、引っ掛かる感じを知覚することになる。そして、指先が滑りにくくなることにより、動摩擦力が高くなるときに、トップパネル120の表面に凸部が存在するように感じる。
振動素子140をオフにするのは、期間TP1の間だけである。期間TP1は、例えば、50ミリ秒程度である。期間TP1が過ぎると、駆動制御部240は振幅値がA1の振幅データを出力し、再び振動素子140はオンになる。
そして、時刻t4で操作入力の移動量が始点121(図7参照)から2本目の破線L2までの長さに対応する移動量に達すると、駆動制御部240は、振幅データの振幅値を0に設定する。これにより、振動素子140はオフにされ、利用者は指先に掛かる動摩擦力の増大により、トップパネル120の表面に凸部が存在するように感じる。
振動素子140をオフにするのは、期間TP1の間だけである。期間TP1が過ぎると、駆動制御部240は振幅値がA1の振幅データを出力し、再び振動素子140はオンになる。
そして、時刻t5で操作入力の移動量が始点121(図7参照)から3本目の破線L3までの長さに対応する移動量に達すると、駆動制御部240は、振幅データの振幅値を0に設定する。これにより、振動素子140はオフにされ、利用者は指先に掛かる動摩擦力の増大により、トップパネル120の表面に凸部が存在するように感じる。
振動素子140をオフにするのは、期間TP1の間だけである。期間TP1が過ぎると、駆動制御部240は振幅値がA1の振幅データを出力し、再び振動素子140はオンになる。
時刻t6で操作入力が移動しなくなり、時刻t7まで指先がトップパネル120の表面に触れて操作入力が行われるため、駆動制御部240は振幅値がA1の振幅データを出力し続け、振動素子140はオンの状態に保持される。
そして、時刻t7で指先がトップパネル120の表面から離れて操作入力が行われなくなると、駆動制御部240は、振幅データの振幅値を0に設定し、振動素子140はオフにされる。
図9は、実施の形態1のゲームコントローラ100の駆動制御部240が実行する処理を示すフローチャートである。
ゲームコントローラ100のOS(Operating System)は、所定の制御周期毎にゲームコントローラ100を駆動するための制御を実行する。このため、駆動制御部240は、図9に示すフローを所定の制御周期毎に繰り返し実行する。
まず、処理が開始される前の状態では、駆動制御部240は振幅データを出力しておらず、駆動素子140はオフにされている。
駆動制御部240は、ゲームコントローラ100の電源がオンにされることにより、処理をスタートさせる。
駆動制御部240は、操作入力があるかどうかを判定する(ステップS1)。操作入力の有無は、ドライバIC151(図6参照)から位置データが入力されるかどうかで判定すればよい。
駆動制御部240は、操作入力があったと判定すると(S1:YES)、振幅A1の駆動信号を用いて振動素子140を駆動する(ステップS2)。これにより、トップパネル120に超音波帯の固有振動が生じる。
なお、駆動制御部240は、操作入力があると判定すると、操作入力が開始された座標を始点として記憶する。操作入力が開始された座標としては、ドライバIC151(図6参照)から最初に入力される位置データを用いればよい。
次いで、駆動制御部240は、操作入力があるかどうかを判定する(ステップS3)。操作入力が継続しているかどうかを判定するためである。
駆動制御部240は、操作入力がある(S3:YES)と判定すると、操作入力の始点からの移動量が、いずれかの相対位置に到達したかどうかを判定する(ステップS4)。いずれかの相対位置とは、図7に示す始点121に対する3本の破線L1、L2、L3の位置であり、始点121から操作入力の移動方向における距離で決まる位置である。図7では、矢印で示す操作入力の移動方向における始点121と3本の破線L1、L2、L3の各々との間の距離によって、始点121に対する相対位置が決まる。
駆動制御部240は、操作入力の始点からの移動量が、いずれかの相対位置に到達した(S4:YES)と判定すると、駆動信号を期間TP1にわたってオフにする(ステップS5)。これにより、トップパネル120の超音波帯の固有振動は期間TP1にわたってオフにされる。期間TP1は、上述したように、例えば50ミリ秒に設定される。
駆動制御部240は、ステップS5の処理が終了すると、フローをステップS3にリターンする。
なお、駆動制御部240は、ステップS1において、操作入力がないと判定すると(S1:NO)、ステップS1の処理を繰り返し実行する。図9に示す一連の処理は、操作入力が行われることによって始まる処理だからである。
また、駆動制御部240は、ステップS3において操作入力がない(S3:NO)と判定すると、一連の処理を終了する(エンド)。一連の処理が終了すると、振動素子140はオフにされる。
また、駆動制御部240は、ステップS4において、いずれの相対位置にも到達していない(S4:NO)と判定すると、フローをステップS3にリターンする。
以上のような一連の処理は、ゲームコントローラ100の電源がオンにされている間は繰り返し実行される。
ここで、図7及び図8に示したように、時刻t3で操作入力の位置が破線L1に達し、時刻t4で操作入力の位置が破線L2に達し、時刻t5で操作入力の位置が破線L3に達する場合は、次のようにフローが進む場合である。
まず、時刻t1で操作入力が行われることにより、駆動制御部240はステップS1でYESと判定し、ステップS2で振動素子140がオンされる。
次いで、時刻t1~t2までは操作入力の位置が移動せずに停止するため、駆動制御部240はステップS3でYESと判定し、ステップS4ではNOと判定する。すなわち、時刻t1~t2までは、ステップS3及びS4によるサブルーチンの処理が繰り返し実行される。なお、時刻t1~t2までは、振動素子140はオンの状態に保持される。
そして、時刻t2で操作入力の位置が移動し始めて時刻t3で操作入力の位置が破線L1に達すると、駆動制御部240はステップS4でYESと判定し、ステップS5で振動素子140を期間TP1にわたってオフにする。なお、時刻t3から期間TP1が経過すると、駆動制御部240は振動素子140をオンにする。
その後、時刻t4で操作入力の位置が破線L2に達すると、駆動制御部240はステップS4でYESと判定し、ステップS5で振動素子140を期間TP1にわたってオフにする。時刻t4から期間TP1が経過すると、駆動制御部240は振動素子140をオンにする。
さらに、その後、時刻t5で操作入力の位置が破線L3に達すると、駆動制御部240はステップS4でYESと判定し、ステップS5で振動素子140を期間TP1にわたってオフにする。時刻t5から期間TP1が経過すると、駆動制御部240は振動素子140をオンにする。
時刻t6で操作入力の位置が停止すると、駆動制御部240はステップS4でNOと判定し、時刻t6~t7までは、ステップS3及びS4によるサブルーチンの処理が繰り返し実行され、振動素子140はオンの状態に保持される。操作入力は引き続き行われているからである。
そして、時刻t7で操作入力が行われなくなると、駆動制御部240はステップS3でNOと判定し、一連の処理が終了する(エンド)。これにより、振動素子140はオフにされる。
なお、例えば、時刻t3で操作入力の位置が破線L1に達した時点で利用者の指がトップパネル120から離れて操作入力が行われなくなった場合は、時刻t3から期間TP1にわたって振動素子140がオフにされている間に、駆動制御部240がステップS3でNOと判定することにより、再度振動素子140がオンにされることなく、一連の処理が終了する(エンド)。このため、図9に示す一連の処理の制御周期を期間TP1より短く設定知れ置けばよい。
なお、図7に矢印で示す操作入力の移動方向における始点121と3本の破線L1、L2、L3の各々との間の距離は、例えば、利用者がビデオゲームをプレイする際の操作における単位操作量に設定しておけばよい。例えば、ビデオゲームが自動車を運転するゲームである場合には、単位操作量は、ハンドルを操作する量、アクセルの開度、ブレーキの強度等の一目盛り分に対応する量に設定することができる。
このように単位操作量を設定すれば、操作量が単位操作量に達する度に、利用者の指先に凸部がある触感を提供でき、良好な操作感を実現できる。
図10は、実施の形態のゲームコントローラ100のトップパネル120の表面に操作入力を行う状態を示す図である。なお、トップパネル120の裏側には、タッチパネル150(図2及び3参照)が配設される。
図11は、実施の形態のゲームコントローラ100の動作例を示す図である。図11には、図10に示す操作入力に応じて振動素子140が駆動される駆動パターンを示す。図11では、横軸は時間軸を表し、縦軸は振幅データの振幅値を表す。
図10に示すように、トップパネル120の表面に沿って矢印で示すようにドラッグ操作による操作入力が行われており、ディスプレイパネル510に表示される乗り物又は人のようなオブジェクトを移動させているとする。
そして、操作入力の位置がトップパネル120上の所定の位置P1、P2を通過するときに、ごく短い期間だけ駆動制御部240が振動素子140をオンにする。
このように振動素子140を駆動すると、ごく短い期間だけ振動素子140がオンになる間に指先にかかる動摩擦力が低下し、オフにされると指先にかかる動摩擦力が増大するため、凸部が存在するような良好な感触を利用者の指先に提供できる。
上述のような処理は、例えば、ディスプレイパネル510の表示画面に表示されるオブジェクトの現在の表示位置と、オブジェクトの進行方向における所定の地点との相対的な位置関係を表すデータに基づいて、トップパネル120の現在の操作入力の位置に対する所定の位置P1、P2の座標を演算することによって実現できる。
このようにすれば、ゲームコントローラ100でビデオゲームをプレイしている利用者の操作入力によってディスプレイパネル510の表示画面中をオブジェクトが移動し、所定の地点を通過するときに、操作入力の位置はトップパネル120上の所定の位置P1、P2を通過することになる。
従って、操作入力によって移動するオブジェクトがディスプレイパネル510の表示画面中の所定の地点を通過するときに、駆動制御部240がごく短い期間だけ振動素子140をオンにすることにより、オブジェクトが所定の地点を通過したことを触感を通じて利用者に知覚させることができる。
ディスプレイパネル510の表示画面における所定の地点は、例えば、表示画面における領域同士の境界、又は、通過によってポイントを付与する地点等に設定すればよい。
図10に示す場合の振動素子140の動作は、図11を用いて説明すると次の通りである。
時刻t11で操作入力が行われることにより、駆動制御部240は振幅値が0の振幅データを出力し、振動素子140はオフである。
操作入力の位置は、時刻t11~t12までは移動せずに停止している。時刻t11~t12の間は、振動素子140はオフの状態に保持される。
時刻t12で操作入力の位置が移動し始め、時刻t13で操作入力の位置が位置P1(図10参照)に達すると、駆動制御部240は、ごく短い期間TP11にわたって振幅データの振幅値をA1に設定する。これにより、振動素子140は期間TP11にわたってオンにされる。
振動素子140はオンにされると、利用者の指先にかかる動摩擦係数はスクイーズ効果によって低下するため、指先はトップパネル120の表面を移動しやすい状態になる。
そして、時刻t14で期間TP11が終了すると、駆動制御部240は、振幅データの振幅値を0に設定する。これにより、振動素子140はオフにされ、利用者は指先に掛かる動摩擦力の増大により、トップパネル120の表面に凸部が存在するように感じる。
なお、振動素子140をオンにする期間TP11は、例えば、100ミリ秒程度である。
そして、時刻t14から時刻t15まで操作入力の位置が移動し、時刻t15で操作入力の位置が位置P2(図10参照)に達すると、駆動制御部240は、ごく短い期間TP11にわたって振幅データの振幅値をA1に設定する。これにより、振動素子140は期間TP11にわたってオンにされる。
振動素子140はオンにされると、利用者の指先にかかる動摩擦係数はスクイーズ効果によって低下するため、指先はトップパネル120の表面を移動しやすい状態になる。
そして、期間TP11が終了すると、駆動制御部240は、振幅データの振幅値を0に設定する。これにより、振動素子140はオフにされ、利用者は指先に掛かる動摩擦力の増大により、トップパネル120の表面に凸部が存在するように感じる。
さらに、時刻t16で操作入力の位置が移動しなくなり、時刻t17まで指先がトップパネル120の表面に触れて操作入力が行われ、振動素子140はオフの状態に保持される。
そして、時刻t17で指先がトップパネル120の表面から離れて操作入力が行われなくなる。
図12は、実施の形態のゲームコントローラ100のトップパネル120の表面に操作入力を行う状態を示す図である。なお、トップパネル120の裏側には、タッチパネル150(図2及び3参照)が配設される。
図13は、実施の形態のゲームコントローラ100の動作例を示す図である。図13には、図12に示す操作入力に応じて振動素子140が駆動される駆動パターンを示す。図13では、横軸は時間軸を表し、縦軸は振幅データの振幅値を表す。
図12に示すように、トップパネル120の表面に沿って矢印で示すようにドラッグ操作による操作入力が行われており、ディスプレイパネル510に表示される乗り物又は人のようなオブジェクトを移動させているとする。
そして、操作入力の位置がトップパネル120上の所定の区間Sを通過する間に、駆動制御部240が振幅が時間的にランダムに変化する振幅データを用いて振動素子140をオンにする。
このように振動素子140を駆動すると、振幅データの時間的な変化に合わせて指先にかかる動摩擦力が変動する。振幅が大きいときは動摩擦力が比較的低くなり、振幅が小さいときは動摩擦力が比較的大きくなる。
このような動摩擦力の時間的な変動により、トップパネル120の表面にランダムな高さの凹凸部が存在するような感触を利用者の指先に提供できる。利用者の指先には、トップパネル120の表面がざらざらしているような感触が提供される。
例えば、ディスプレイパネル510の表示画面に表示される乗り物又は人のようなオブジェクトが、障害物の多い区間を通過するような場合に、上述のように振幅が時間的にランダムに変化する振幅データを用いて振動素子140を駆動すればよい。
ディスプレイパネル510の表示画面に表示されるオブジェクトの現在の表示位置と、表示画面に表示される障害物の多い区間の始点及び終点の位置との相対的な位置関係を表すデータに基づいて、トップパネル120の現在の操作入力の位置に対する区間Sの始点及び終点の座標を演算することにより、トップパネル120における所定の位置P1、P2の座標を求めることができる。
また、振幅を時間的にランダムに変化させるには、例えば、乱数を用いて振幅値が時系列的に出力されるような振幅データを用いて振動素子140を駆動すればよく、このような振幅データはメモリ250(図6参照)に格納しておけばよい。
このようにすれば、ゲームコントローラ100でビデオゲームをプレイしている利用者の操作入力によってディスプレイパネル510の表示画面中をオブジェクトが移動し、障害物の多い区間を通過するときに、操作入力の位置はトップパネル120上の区間Sを通過することになる。
従って、オブジェクトがディスプレイパネル510の表示画面中の障害物の多い区間を通過するときに、振幅が時間的にランダムに変化する振幅データを用いて駆動制御部240が振動素子140を駆動することにより、オブジェクトが障害物の多い区間を通過したことを触感を通じて利用者に知覚させることができる。
図12に示す場合の振動素子140の動作は、図13を用いて説明すると次の通りである。
時刻t21で操作入力が行われることにより、駆動制御部240は振幅値が0の振幅データを出力し、振動素子140はオフである。
操作入力の位置は、時刻t21~t22までは移動せずに停止している。時刻t21~t22の間は、振動素子140はオフの状態に保持される。
時刻t22で操作入力の位置が移動し始め、時刻t23で操作入力の位置が区間Sの始点(図12参照)に達すると、駆動制御部240は、振幅が時間的にランダムに変化する振幅データで振動素子140を駆動する。
振幅が時間的にランダムに変化する振幅データによる振動素子140の駆動は、時刻t23~t24まで続く。そして、時刻t24で駆動制御部240は振動素子140をオフにする。
振動素子140はオンにされると、利用者の指先にかかる動摩擦係数はスクイーズ効果によって低下するため、指先はトップパネル120の表面を移動しやすい状態になる。
また、時刻t23~t24までの期間に、駆動制御部240は、振幅が時間的にランダムに変化する振幅データを用いるため、利用者の指先には、トップパネル120の表面がざらざらしているような感触が提供される。
時刻t24で振動素子140がオフにされた後は、時刻t25まで操作入力が行われ、駆動制御部240は、振幅データの振幅値を0に設定する。
そして、時刻t25で操作入力が行われなくなる。
また、駆動制御部240は、上述のような処理に加えて、位置データの時間的変化度合に応じて振幅値を設定してもよい。
ここで、位置データの時間的変化度合としては、利用者の指先がトップパネル120の表面に沿って移動する速度を用いる。利用者の指先の移動速度は、ドライバIC151から入力される位置データの時間的な変化度合に基づいて、駆動制御部240が算出すればよい。
実施の形態のゲームコントローラ100は、一例として、指先の移動速度に関わらずに利用者が指先から感知する触感を一定にするために、移動速度が高いほど振幅値を小さくし、移動速度が低いほど振幅値を大きくする。
このような振幅値を表す振幅データと移動速度との関係を表すデータは、メモリ250に格納しておけばよい。
なお、ここでは、振幅値を表す振幅データと移動速度との関係を表すデータを用いて移動速度に応じた振幅値を設定する形態について説明するが、次式(3)を用いて振幅値Aを算出してもよい。式(3)で算出される振幅値Aは、移動速度が高いほど小さくなり、移動速度が低いほど大きくなる。
駆動制御部240は、移動速度が所定の閾値速度以上になったときに、振動素子140を振動させる。
従って、駆動制御部240が出力する振幅データが表す振幅値は、移動速度が所定の閾値速度未満のときはゼロであり、移動速度が所定の閾値速度以上になると、移動速度に応じて所定の振幅値に設定される。移動速度が所定の閾値速度以上のときには、移動速度が高いほど振幅値は小さく設定され、移動速度が低いほど振幅値を大きく設定される。
駆動制御部240は、指先の移動速度が所定の閾値速度以上である場合に、移動速度に応じた振幅値を表す振幅データをメモリ250から読み出して、振幅変調器320に出力する。
図14は、メモリ250に格納される振幅値を表す振幅データと移動速度との関係を表すデータを示す図である。
図14に示すデータによれば、移動速度Vが0以上b1未満(0≦V<b1)のときは振幅値を0に設定し、移動速度Vがb1以上b2未満(b1≦V<b2)のときは振幅値をA1に設定し、移動速度Vがb2以上b3未満(b2≦V<b3)のときは、振幅値をA2に設定することになる。
例えば、図8及び図11に示す駆動パターンの振幅値を指先の移動速度に応じて、図14に示すデータのように設定することができる。
以上、実施の形態のゲームコントローラ100によれば、トップパネル120の超音波帯の固有振動を発生させて利用者の指先に掛かる動摩擦力を変化させるので、利用者に良好な触感を提供することができる。
また、実施の形態のゲームコントローラ100は、正弦波発生器310で発生される超音波帯の正弦波の振幅のみを振幅変調器320で変調することによって駆動信号を生成している。正弦波発生器310で発生される超音波帯の正弦波の周波数は、トップパネル120の固有振動数に等しく、また、この固有振動数は振動素子140を加味して設定している。
すなわち、正弦波発生器310で発生される超音波帯の正弦波の周波数又は位相を変調することなく、振幅のみを振幅変調器320で変調することによって駆動信号を生成している。
従って、トップパネル120の超音波帯の固有振動をトップパネル120に発生させることができ、スクイーズ効果による空気層の介在を利用して、指でトップパネル120の表面をなぞったときの動摩擦係数を確実に低下させることができる。また、Sticky-band Illusion効果、又は、Fishbone Tactile Illusion効果により、トップパネル120の表面に凹凸が存在するような良好な触感を利用者に提供することができる。
また、以上では、トップパネル120に凹凸が存在するような触感を利用者に提供するために、振動素子140のオン/オフを切り替える形態について説明した。振動素子140をオフにするとは、振動素子140を駆動する駆動信号が表す振幅値をゼロにすることである。
しかしながら、このような触感を提供するために、必ずしも振動素子140をオンからオフにする必要はない。例えば、振動素子140のオフの状態の代わりに、振幅を小さくして振動素子140を駆動する状態を用いてもよい。例えば、振幅を1/5程度に小さくすることにより、振動素子140をオンからオフにする場合と同様に、トップパネル120に凹凸が存在するような触感を利用者に提供してもよい。
この場合は、振動素子140の振動の強弱を切り替えるような駆動信号で振動素子140を駆動することになる。この結果、トップパネル120に発生する固有振動の強弱が切り替えられ、利用者の指先に凹凸が存在するような触感を提供することができる。
振動素子140の振動の強弱を切り替えるために、振動を弱くする際に振動素子140をオフにすると、振動素子140のオン/オフを切り替えることになる。振動素子140のオン/オフを切り替えることは、振動素子140を断続的に駆動することである。
また、トップパネル120に凹凸が存在するような触感を提供する際に、指先の移動速度に応じて、振幅データの振幅値を小さくする度合を調整してもよい。
図15は、指先の移動速度によって振幅データの振幅値を小さくする度合を調整する駆動パターンを示す図である。
図15の(A)に示す駆動パターンは、振幅値をA1に設定して振動素子140をオンにしている状態から、指先にかかる動摩擦力を増大させるために振幅値を小さくする際に、時刻t31と時刻t32nにおいて、振幅値をA01まで低下させる。振幅値A01は、一例として、振幅値の1/5である。
一方、図15の(B)に示す駆動パターンは、振幅値をA1に設定して振動素子140をオンにしている状態から、指先にかかる動摩擦力を増大させるために振幅値を小さくする際に、時刻t31と時刻t32nにおいて、振幅値をA02まで低下させる。振幅値A02は、一例として、振幅値の4/5である。
例えば、移動速度が高いときの方が、凹凸の触感が指先に伝わり易い傾向があるため、移動速度が所定値より高い場合は、図15の(A)の駆動パターンを用いて、指先にかかる動摩擦力を増大させるために振幅値を小さくする際に、振幅値をA01まで低下させる。
また、移動速度が所定値以下場合は、図15の(B)の駆動パターンを用いて、指先にかかる動摩擦力を増大させるために振幅値を小さくする際に、振幅値をA02まで低下させる。
以上のように指先の移動速度に応じて振幅データの振幅値を調整することにより、指先の移動速度に応じて異なる触感を利用者に提供することができる。
また、以上では、図1に示すように、2つのタッチパネル150を含むゲームコントローラ100について説明したが、タッチパネル150は1つであってもよい。
図16は、実施の形態の変形例によるゲームコントローラ100Aを示す図である。ゲームコントローラ100Aは、筐体110Bの開口部に配設される1つのタッチパネル150を含む。筐体110Bには、ボタン111Aも設けられている。筐体110Bは縦長タイプであり、図中の下側を片方の手で持ち、上側に設けられたタッチパネル150を他方の手で操作すればよい。ゲームコントローラ100Aは、他方の手の人差し指で操作するのに特に適した形状である。
以上、本発明の例示的な実施の形態のゲームコントローラについて説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
100、100A ゲームコントローラ
110、110B 筐体
120 トップパネル
130 両面テープ
140 振動素子
150 タッチパネル
170 基板
200 制御部
220 制御プロセッサ
240 駆動制御部
250 メモリ
310 正弦波発生器
320 振幅変調器
110、110B 筐体
120 トップパネル
130 両面テープ
140 振動素子
150 タッチパネル
170 基板
200 制御部
220 制御プロセッサ
240 駆動制御部
250 メモリ
310 正弦波発生器
320 振幅変調器
Claims (6)
- 筐体と、
前記筐体の開口部に配設されるタッチパネルと、
前記タッチパネルに操作入力を行う操作面に振動を発生させる振動素子と、
前記操作面に超音波帯の固有振動を発生させる駆動信号で前記振動素子を駆動する駆動制御部と
を含む、ゲームコントローラ。 - 前記駆動制御部は、前記操作面への操作入力の位置及び当該位置の時間的変化度合に応じて、前記固有振動の強度が変化するように前記振動素子を駆動する、請求項1記載のゲームコントローラ。
- 前記駆動制御部は、前記操作入力の位置が、当該操作入力の始点に対する所定距離の位置を通過するときに、前記固有振動の強度を変化させる、請求項1又は2記載のゲームコントローラ。
- 前記駆動制御部は、前記操作入力の位置が、ゲームの画像データによる表示内容の中の所定の位置を通過するときに、前記固有振動の強度を変化させる、請求項1乃至3のいずれか一項記載のゲームコントローラ。
- 前記駆動信号は、一定の周波数と一定の位相で前記操作面に超音波帯の固有振動を発生させる駆動信号である、請求項1乃至4のいずれか一項記載のゲームコントローラ。
- 前記タッチパネルは、平面視で長辺と短辺を有する長方形であり、前記駆動制御部が前記駆動信号で前記振動素子を駆動すると、前記長辺の方向に振幅が変化する定在波が前記操作面に生じる、請求項1乃至5のいずれか一項記載のゲームコントローラ。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015562636A JP6319327B2 (ja) | 2014-02-14 | 2014-02-14 | ゲームコントローラ |
PCT/JP2014/053444 WO2015121963A1 (ja) | 2014-02-14 | 2014-02-14 | ゲームコントローラ |
US15/227,460 US10576369B2 (en) | 2014-02-14 | 2016-08-03 | Game controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/053444 WO2015121963A1 (ja) | 2014-02-14 | 2014-02-14 | ゲームコントローラ |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/227,460 Continuation US10576369B2 (en) | 2014-02-14 | 2016-08-03 | Game controller |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015121963A1 true WO2015121963A1 (ja) | 2015-08-20 |
Family
ID=53799730
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/053444 WO2015121963A1 (ja) | 2014-02-14 | 2014-02-14 | ゲームコントローラ |
Country Status (3)
Country | Link |
---|---|
US (1) | US10576369B2 (ja) |
JP (1) | JP6319327B2 (ja) |
WO (1) | WO2015121963A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2015121955A1 (ja) * | 2014-02-14 | 2017-03-30 | 富士通株式会社 | 電子機器、入力装置、及び駆動制御方法 |
US10814222B2 (en) | 2018-09-21 | 2020-10-27 | Logitech Europe S.A. | Gaming controller with adaptable input configurations |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06285259A (ja) * | 1993-03-31 | 1994-10-11 | Sega Enterp Ltd | 液晶コントローラ |
JP2001255993A (ja) * | 2000-03-10 | 2001-09-21 | Japan Science & Technology Corp | 弾性波を用いたコンピュータ入出力装置 |
JP2006068210A (ja) * | 2004-09-01 | 2006-03-16 | Nintendo Co Ltd | ゲーム装置およびゲームプログラム |
US20080122797A1 (en) * | 2006-11-29 | 2008-05-29 | Samsung Electronics Co., Ltd. | Apparatus, method, and medium for outputting tactile feedback on display device |
JP2010231609A (ja) * | 2009-03-27 | 2010-10-14 | Hitachi Maxell Ltd | 触感呈示装置及び方法 |
JP2011501298A (ja) * | 2007-10-18 | 2011-01-06 | マイクロソフト コーポレーション | 音声、視覚、および触覚のフィードバックを使用した三次元オブジェクトシュミレーション |
JP2012027765A (ja) * | 2010-07-26 | 2012-02-09 | Ricoh Co Ltd | タッチパネル装置、これを含むタッチパネル付き表示装置、及びタッチパネル装置の制御方法 |
JP2013168124A (ja) * | 2012-02-15 | 2013-08-29 | Immersion Corp | モバイルデバイス上での共有されたフィードバックのための双方向性モデル |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3949912B2 (ja) * | 2000-08-08 | 2007-07-25 | 株式会社エヌ・ティ・ティ・ドコモ | 携帯型電子機器、電子機器、振動発生器、振動による報知方法および報知制御方法 |
US8525778B2 (en) * | 2007-03-21 | 2013-09-03 | Northwestern University | Haptic device with controlled traction forces |
US8780053B2 (en) * | 2007-03-21 | 2014-07-15 | Northwestern University | Vibrating substrate for haptic interface |
WO2007111909A2 (en) * | 2006-03-24 | 2007-10-04 | Northwestern University | Haptic device with indirect haptic feedback |
JP5343871B2 (ja) | 2009-03-12 | 2013-11-13 | 株式会社リコー | タッチパネル装置、これを含むタッチパネル付き表示装置、及びタッチパネル装置の制御方法 |
US9746923B2 (en) * | 2009-03-12 | 2017-08-29 | Immersion Corporation | Systems and methods for providing features in a friction display wherein a haptic effect is configured to vary the coefficient of friction |
JP5697521B2 (ja) | 2011-04-07 | 2015-04-08 | 京セラ株式会社 | 文字入力装置、文字入力制御方法および文字入力プログラム |
JP5689362B2 (ja) * | 2011-05-23 | 2015-03-25 | 株式会社東海理化電機製作所 | 入力装置 |
JP2013097438A (ja) * | 2011-10-28 | 2013-05-20 | Mitsubishi Electric Corp | 触覚提示装置 |
US20120223880A1 (en) * | 2012-02-15 | 2012-09-06 | Immersion Corporation | Method and apparatus for producing a dynamic haptic effect |
US9330544B2 (en) * | 2012-11-20 | 2016-05-03 | Immersion Corporation | System and method for simulated physical interactions with haptic effects |
US9041647B2 (en) * | 2013-03-15 | 2015-05-26 | Immersion Corporation | User interface device provided with surface haptic sensations |
US9588586B2 (en) * | 2014-06-09 | 2017-03-07 | Immersion Corporation | Programmable haptic devices and methods for modifying haptic strength based on perspective and/or proximity |
-
2014
- 2014-02-14 WO PCT/JP2014/053444 patent/WO2015121963A1/ja active Application Filing
- 2014-02-14 JP JP2015562636A patent/JP6319327B2/ja active Active
-
2016
- 2016-08-03 US US15/227,460 patent/US10576369B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06285259A (ja) * | 1993-03-31 | 1994-10-11 | Sega Enterp Ltd | 液晶コントローラ |
JP2001255993A (ja) * | 2000-03-10 | 2001-09-21 | Japan Science & Technology Corp | 弾性波を用いたコンピュータ入出力装置 |
JP2006068210A (ja) * | 2004-09-01 | 2006-03-16 | Nintendo Co Ltd | ゲーム装置およびゲームプログラム |
US20080122797A1 (en) * | 2006-11-29 | 2008-05-29 | Samsung Electronics Co., Ltd. | Apparatus, method, and medium for outputting tactile feedback on display device |
JP2011501298A (ja) * | 2007-10-18 | 2011-01-06 | マイクロソフト コーポレーション | 音声、視覚、および触覚のフィードバックを使用した三次元オブジェクトシュミレーション |
JP2010231609A (ja) * | 2009-03-27 | 2010-10-14 | Hitachi Maxell Ltd | 触感呈示装置及び方法 |
JP2012027765A (ja) * | 2010-07-26 | 2012-02-09 | Ricoh Co Ltd | タッチパネル装置、これを含むタッチパネル付き表示装置、及びタッチパネル装置の制御方法 |
JP2013168124A (ja) * | 2012-02-15 | 2013-08-29 | Immersion Corp | モバイルデバイス上での共有されたフィードバックのための双方向性モデル |
Non-Patent Citations (1)
Title |
---|
MASASHI NAKATANI ET AL.: "Convex and Concave Perception Induced by a Fishbone Tactile Illusion", THE VIRTUAL REALITY SOCIETY OF JAPAN DAI 10 KAI KINEN TAIKAI RONBUN SHOROKUSHU, 27 September 2005 (2005-09-27), pages 530 - 533 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015121963A1 (ja) | 2017-03-30 |
US20160339339A1 (en) | 2016-11-24 |
JP6319327B2 (ja) | 2018-05-09 |
US10576369B2 (en) | 2020-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6351964B2 (ja) | 入力装置 | |
WO2015045063A1 (ja) | 駆動制御装置、電子機器、及び駆動制御方法 | |
JP6147656B2 (ja) | 入力装置 | |
JP2019515370A (ja) | 人間コンピュータインタフェースシステム | |
JP6332476B2 (ja) | 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法 | |
EP3333674A1 (en) | Systems and methods for compliance simulation with haptics | |
MX2014009990A (es) | Aparato de control de accionador, dispositivo electronico y metodo de control del accionador. | |
US20160349847A1 (en) | Electronic device, input apparatus, and drive controlling method | |
JP2014222488A (ja) | 描画装置及び描画システム | |
KR101081586B1 (ko) | 촉감제시 인터페이스 장치 | |
JP2017138737A (ja) | 入力装置、表示装置および入力装置の制御方法 | |
US20180024638A1 (en) | Drive controlling apparatus, electronic device, computer-readable recording medium, and drive controlling method | |
WO2015121955A1 (ja) | 電子機器、入力装置、及び駆動制御方法 | |
JP6599242B2 (ja) | 入力装置 | |
US20200264705A1 (en) | Information processing apparatus and electronic device | |
JP6319327B2 (ja) | ゲームコントローラ | |
JP2013156686A (ja) | オブジェクトの高さに応じた触覚振動を付与可能なユーザインタフェース装置、触覚振動付与方法及びプログラム | |
JP6589995B2 (ja) | 電子機器、及び、電子機器の駆動制御方法 | |
JP2014142869A (ja) | 情報処理装置、情報処理方法、プログラム及び記録媒体 | |
KR20110072211A (ko) | 터치 스크린 장치 | |
US20180067559A1 (en) | Electronic apparatus and non-transitory recording medium having stored therein | |
JP2019105969A (ja) | 入力装置 | |
WO2016174760A1 (ja) | 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法 | |
JP6904222B2 (ja) | 駆動制御装置、電子機器、及び、駆動制御方法 | |
AU2015202408B2 (en) | Drive controlling apparatus, electronic device and drive controlling method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14882637 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015562636 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14882637 Country of ref document: EP Kind code of ref document: A1 |