WO2016174760A1 - 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法 - Google Patents

駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法 Download PDF

Info

Publication number
WO2016174760A1
WO2016174760A1 PCT/JP2015/062949 JP2015062949W WO2016174760A1 WO 2016174760 A1 WO2016174760 A1 WO 2016174760A1 JP 2015062949 W JP2015062949 W JP 2015062949W WO 2016174760 A1 WO2016174760 A1 WO 2016174760A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive control
vibration
icon
area
operation input
Prior art date
Application number
PCT/JP2015/062949
Other languages
English (en)
French (fr)
Inventor
裕一 鎌田
弘樹 内田
遠藤 康浩
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2015/062949 priority Critical patent/WO2016174760A1/ja
Publication of WO2016174760A1 publication Critical patent/WO2016174760A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means

Definitions

  • the present invention relates to a drive control device, an electronic device, a drive control program, and a drive control method.
  • a tactile sensation providing apparatus that includes a touch sensor that detects contact and a tactile sensation providing unit that presents a tactile sensation to a contact target that contacts the touch sensor.
  • the tactile sensation providing apparatus is configured such that when the touch sensor detects a slide operation by the contact object, the contact during the slide operation is continuously performed according to the position of the contact object during the slide operation while presenting a tactile sensation.
  • the apparatus further includes a control unit that controls the tactile sensation providing unit to present different tactile sensations to the target.
  • the tactile sensation providing apparatus further includes a display unit that displays a map, and a storage unit that stores map data including characteristic information of each location on the map.
  • the control unit performs the slide according to the characteristic information of the place on the map corresponding to the position of the contact object during the slide operation.
  • the tactile sensation providing unit is controlled so as to present different tactile sensations to the contact target being operated.
  • the characteristic information is altitude information (see, for example, Patent Document 1).
  • Conventional tactile sensation presentation devices change the tactile sensation according to altitude information of a place displayed on a map. For example, when executing various applications on an electronic device such as a tablet computer or a smartphone terminal The operability cannot be improved.
  • a drive control device includes a display unit, a top panel provided on a display surface side of the display unit and having an operation surface, and coordinates for detecting coordinates of operation input performed on the operation surface.
  • a drive control device for driving the vibration element of an electronic apparatus including a detection unit and a vibration element that generates vibration on the operation surface, the drive control device being disposed in the display unit and different from each other when the operation input is performed Is stored in association with an arrangement position of a plurality of images for performing the operation and a vibration pattern of a drive signal for generating a natural vibration of an ultrasonic band on the operation surface in accordance with the degree of temporal change in the position of the operation input.
  • FIG. 1 is a perspective view illustrating an electronic device according to a first embodiment.
  • FIG. 3 is a plan view showing the electronic device of the first embodiment.
  • FIG. 3 is a diagram illustrating a cross section taken along the line AA of the electronic device illustrated in FIG. 2. It is a figure which shows the wave front formed in parallel with the short side of a top panel among the standing waves which arise in a top panel by the natural vibration of an ultrasonic band. It is a figure explaining a mode that the dynamic friction force applied to the fingertip which performs operation input changes with the natural vibration of the ultrasonic band produced on the top panel of an electronic device.
  • 1 is a diagram illustrating a configuration of an electronic device according to a first embodiment.
  • FIG. 6 is a diagram illustrating an example of an operation when the vibration element is not driven in the electronic device of Embodiment 1.
  • FIG. 6 is a diagram illustrating an operation example of the electronic device of Embodiment 1.
  • FIG. 10 is a diagram illustrating a modification example of the operation of the electronic device of the first embodiment.
  • 4 is a diagram illustrating data stored in a memory of the electronic device according to the first embodiment.
  • FIG. 4 is a diagram illustrating data stored in a memory of the electronic device according to the first embodiment.
  • FIG. 4 is a diagram illustrating data stored in a memory of the electronic device according to the first embodiment.
  • FIG. It is a figure which shows the area
  • FIG. 10 is a diagram illustrating an example of a display on an electronic device in Embodiment 2.
  • FIG. 10 is a diagram illustrating an operation example of the electronic device of Embodiment 2.
  • FIG. 6 is a diagram illustrating data stored in a memory of an electronic device according to a second embodiment.
  • FIG. 6 is a diagram illustrating data stored in a memory of an electronic device according to a second embodiment.
  • FIG. 6 is a diagram illustrating data stored in a memory of an electronic device according to a second embodiment.
  • FIG. 6 is a diagram illustrating data stored in a memory of an electronic device according to a second embodiment.
  • FIG. 6 is a flowchart illustrating processing executed by a drive control unit of a drive control device for an electronic device according to a second embodiment.
  • FIG. 12 is a plan view showing an operating state of an electronic device according to a modification of the first and second embodiments.
  • FIG. 1 is a perspective view showing an electronic apparatus 100 according to the first embodiment.
  • the electronic device 100 is, for example, a smartphone terminal or a tablet computer using a touch panel as an input operation unit. Since the electronic device 100 only needs to be a device having a touch panel as an input operation unit, the electronic device 100 is a device that is installed and used in a specific place such as a portable information terminal or an ATM (Automatic Teller Machine). May be.
  • a smartphone terminal or a tablet computer using a touch panel as an input operation unit. Since the electronic device 100 only needs to be a device having a touch panel as an input operation unit, the electronic device 100 is a device that is installed and used in a specific place such as a portable information terminal or an ATM (Automatic Teller Machine). May be.
  • ATM Automatic Teller Machine
  • the input operation unit 101 of the electronic device 100 is provided with a display panel below the touch panel.
  • Various buttons 102A or sliders 102B or the like (hereinafter referred to as GUI operation unit 102) using a GUI (Graphic User Interface) are provided on the display panel. Is displayed).
  • the user of the electronic device 100 usually touches the input operation unit 101 with a fingertip in order to operate the GUI operation unit 102.
  • FIG. 2 is a plan view showing the electronic device 100 of the first embodiment
  • FIG. 3 is a view showing a cross section taken along the line AA of the electronic device 100 shown in FIG. 2 and 3, an XYZ coordinate system that is an orthogonal coordinate system is defined as shown.
  • the electronic device 100 includes a housing 110, a top panel 120, a double-sided tape 130, a vibration element 140, a touch panel 150, a display panel 160, and a substrate 170.
  • the housing 110 is made of, for example, resin, and as shown in FIG. 3, the substrate 170, the display panel 160, and the touch panel 150 are disposed in the recess 110 ⁇ / b> A, and the top panel 120 is bonded by the double-sided tape 130. .
  • the top panel 120 is a thin flat plate member that is rectangular in plan view, and is made of transparent glass or reinforced plastic such as polycarbonate.
  • the surface of the top panel 120 (the surface on the Z-axis positive direction side) is an example of an operation surface on which the user of the electronic device 100 performs operation input.
  • the vibration element 140 is bonded to the surface on the negative side of the Z axis, and four sides in a plan view are bonded to the housing 110 with a double-sided tape 130.
  • the double-sided tape 130 only needs to be able to bond the four sides of the top panel 120 to the housing 110, and does not have to be a rectangular ring as shown in FIG.
  • the touch panel 150 is disposed on the Z-axis negative direction side of the top panel 120.
  • the top panel 120 is provided to protect the surface of the touch panel 150. Further, another panel or a protective film may be provided on the surface of the top panel 120.
  • the top panel 120 vibrates when the vibration element 140 is driven in a state where the vibration element 140 is bonded to the surface in the negative Z-axis direction.
  • the top panel 120 is vibrated at the natural vibration frequency of the top panel 120 to generate a standing wave in the top panel 120.
  • the vibration element 140 is bonded to the top panel 120, it is actually preferable to determine the natural vibration frequency in consideration of the weight of the vibration element 140 and the like.
  • the vibration element 140 is bonded along the short side extending in the X axis direction on the Y axis positive direction side on the Z axis negative direction side surface of the top panel 120.
  • the vibration element 140 may be an element that can generate vibrations in an ultrasonic band.
  • an element including a piezoelectric element such as a piezoelectric element can be used.
  • the vibration element 140 is driven by a drive signal output from a drive control unit described later.
  • the amplitude (intensity) and frequency of vibration generated by the vibration element 140 are set by the drive signal. Further, on / off of the vibration element 140 is controlled by a drive signal.
  • an ultrasonic band means a frequency band about 20 kHz or more, for example.
  • the frequency at which the vibration element 140 vibrates is equal to the frequency of the top panel 120. Driven.
  • the touch panel 150 is disposed on the display panel 160 (Z-axis positive direction side) and below the top panel 120 (Z-axis negative direction side).
  • the touch panel 150 is an example of a coordinate detection unit that detects a position where the user of the electronic device 100 touches the top panel 120 (hereinafter referred to as an operation input position).
  • GUI operation unit On the display panel 160 below the touch panel 150, various buttons and the like (hereinafter referred to as GUI operation unit) by GUI are displayed. For this reason, the user of the electronic device 100 usually touches the top panel 120 with a fingertip in order to operate the GUI operation unit.
  • the touch panel 150 may be a coordinate detection unit that can detect the position of an operation input to the user's top panel 120, and may be, for example, a capacitance type or resistance film type coordinate detection unit.
  • a mode in which the touch panel 150 is a capacitive coordinate detection unit will be described. Even if there is a gap between the touch panel 150 and the top panel 120, the capacitive touch panel 150 can detect an operation input to the top panel 120.
  • the top panel 120 may be integrated with the touch panel 150.
  • the surface of the touch panel 150 becomes the surface of the top panel 120 shown in FIGS. 2 and 3, and an operation surface is constructed.
  • the structure which excluded the top panel 120 shown in FIG.2 and FIG.3 may be sufficient.
  • the surface of the touch panel 150 constructs the operation surface.
  • the member having the operation surface may be vibrated by the natural vibration of the member.
  • the touch panel 150 when the touch panel 150 is a capacitance type, the touch panel 150 may be disposed on the top panel 120. Also in this case, the surface of the touch panel 150 constructs the operation surface. Moreover, when the touch panel 150 is a capacitance type, the structure which excluded the top panel 120 shown in FIG.2 and FIG.3 may be sufficient. Also in this case, the surface of the touch panel 150 constructs the operation surface. In this case, the member having the operation surface may be vibrated by the natural vibration of the member.
  • the display panel 160 may be a display unit that can display an image, such as a liquid crystal display panel or an organic EL (Electroluminescence) panel.
  • the display panel 160 is installed on the substrate 170 (Z-axis positive direction side) by a holder or the like (not shown) inside the recess 110A of the housing 110.
  • the display panel 160 is driven and controlled by a driver IC (Integrated Circuit), which will be described later, and displays a GUI operation unit, images, characters, symbols, graphics, and the like according to the operation status of the electronic device 100.
  • driver IC Integrated Circuit
  • the substrate 170 is disposed inside the recess 110 ⁇ / b> A of the housing 110.
  • a display panel 160 and a touch panel 150 are disposed on the substrate 170.
  • the display panel 160 and the touch panel 150 are fixed to the substrate 170 and the housing 110 by a holder or the like (not shown).
  • the drive control unit mounted on the substrate 170 drives the vibration element 140, and the top panel 120. Is vibrated at the frequency of the ultrasonic band.
  • the frequency of this ultrasonic band is a resonance frequency of a resonance system including the top panel 120 and the vibration element 140 and causes the top panel 120 to generate a standing wave.
  • the electronic device 100 provides tactile sensation to the user through the top panel 120 by generating a standing wave in the ultrasonic band.
  • FIG. 4 is a diagram showing a wave front formed in parallel to the short side of the top panel 120 among standing waves generated in the top panel 120 due to the natural vibration of the ultrasonic band
  • FIG. 4A is a side view.
  • (B) is a perspective view. 4A and 4B, XYZ coordinates similar to those in FIGS. 2 and 3 are defined.
  • the amplitude of the standing wave is exaggerated for ease of understanding.
  • the vibration element 140 is omitted.
  • 4A and 4B are waveforms when the number of periods k is 10, as an example.
  • the period number k is 10.
  • the natural frequency f is 33.5 [kHz].
  • a drive signal having a frequency of 33.5 [kHz] may be used.
  • the top panel 120 is a flat plate member.
  • the vibration element 140 see FIGS. 2 and 3
  • the top panel 120 is changed to (A) and (B) in FIG. By bending as shown, a standing wave is generated on the surface.
  • the two vibration elements 140 may be used.
  • the other vibration element 140 is bonded to the surface of the top panel 120 on the Z-axis negative direction side along the short side extending in the X-axis direction on the Y-axis negative direction side. That's fine.
  • the two vibration elements 140 may be arranged so as to be axially symmetric with respect to a center line parallel to the two short sides of the top panel 120 as a symmetry axis.
  • the two vibrating elements 140 when the two vibrating elements 140 are driven, they may be driven in the same phase when the number of periods k is an integer, and in the opposite phase when the number of periods k is a decimal (a number including an integer part and a decimal part). What is necessary is just to drive.
  • FIG. 5 is a diagram illustrating a state in which the dynamic friction force applied to the fingertip that performs the operation input changes due to the natural vibration of the ultrasonic band generated in the top panel 120 of the electronic device 100.
  • the user performs an operation input to move the finger along the arrow from the back side of the top panel 120 to the near side while touching the top panel 120 with the fingertip.
  • the vibration is turned on / off by turning on / off the vibration element 140 (see FIGS. 2 and 3).
  • the natural vibration of the ultrasonic band occurs in the entire top panel 120 as shown in FIG. 4, but in FIGS. 5A and 5B, the user's finger is on the front side from the back side of the top panel 120.
  • the operation pattern which switches on / off of a vibration during moving to is shown.
  • the vibration is off when the user's finger is on the back side of the top panel 120, and the vibration is on in the middle of moving the finger to the near side.
  • the vibration is turned on when the user's finger is on the back side of the top panel 120, and the vibration is turned off in the middle of moving the finger to the near side. Yes.
  • the dynamic frictional force applied to the fingertip is large in the range indicated in gray on the back side of the top panel 120, and the dynamic frictional force applied to the fingertip is small in the range indicated in white on the near side of the top panel 120.
  • the user who performs an operation input to the top panel 120 senses a decrease in the dynamic friction force applied to the fingertip and perceives the ease of slipping of the fingertip when the vibration is turned on. It will be. At this time, the user feels that a concave portion exists on the surface of the top panel 120 when the dynamic friction force decreases due to the surface of the top panel 120 becoming smoother.
  • the dynamic friction force applied to the fingertip is small in the range shown in white on the front side of the top panel 120, and the dynamic friction force applied to the fingertip is large in the range shown in gray on the front side of the top panel 120.
  • the user who performs an operation input to the top panel 120 senses an increase in the dynamic friction force applied to the fingertip when the vibration is turned off, You will perceive the feeling of being caught. And when a dynamic friction force becomes high because it becomes difficult to slip a fingertip, it will feel like a convex part exists in the surface of the top panel 120.
  • FIG. 6 is a diagram illustrating a configuration of the electronic device 100 according to the first embodiment.
  • the electronic device 100 includes a vibration element 140, an amplifier 141, a touch panel 150, a driver IC (Integrated Circuit) 151, a display panel 160, a driver IC 160A, a control unit 200, a sine wave generator 310, and an amplitude modulator 320.
  • a vibration element 140 an amplifier 141, a touch panel 150, a driver IC (Integrated Circuit) 151, a display panel 160, a driver IC 160A, a control unit 200, a sine wave generator 310, and an amplitude modulator 320.
  • the control unit 200 includes an application processor 220, a communication processor 230, a drive control unit 240, and a memory 250.
  • the control unit 200 is realized by an IC chip, for example.
  • the drive control unit 240, the sine wave generator 310, and the amplitude modulator 320 constitute the drive control device 300.
  • the application processor 220, the communication processor 230, the drive control unit 240, and the memory 250 are realized by one control unit 200.
  • the drive control unit 240 is provided outside the control unit 200. It may be provided as an IC chip or a processor.
  • data necessary for drive control of the drive control unit 240 is stored in a memory different from the memory 250 and provided in the drive control device 300. That's fine.
  • the casing 110, the top panel 120, the double-sided tape 130, and the substrate 170 are omitted.
  • the amplifier 141, the driver IC 151, the driver IC 160A, the drive control unit 240, the memory 250, the sine wave generator 310, and the amplitude modulator 320 will be described.
  • the amplifier 141 is disposed between the drive control device 300 and the vibration element 140, and amplifies the drive signal output from the drive control device 300 to drive the vibration element 140.
  • the driver IC 151 is connected to the touch panel 150, detects position data indicating a position where an operation input to the touch panel 150 has been performed, and outputs the position data to the control unit 200. As a result, the position data is input to the application processor 220 and the drive control unit 240. Note that inputting position data to the drive control unit 240 is equivalent to inputting position data to the drive control apparatus 300.
  • the driver IC 160A is connected to the display panel 160, inputs the drawing data output from the drive control device 300 to the display panel 160, and causes the display panel 160 to display an image based on the drawing data. As a result, a GUI operation unit or an image based on the drawing data is displayed on the display panel 160.
  • Application processor 220 performs processing for executing various applications of electronic device 100.
  • the communication processor 230 executes processes necessary for the electronic device 100 to perform communication such as 3G (Generation), 4G (Generation), LTE (Long Term Evolution), and WiFi.
  • the drive control unit 240 outputs amplitude data to the amplitude modulator 320 when predetermined conditions are met.
  • the amplitude data is data representing an amplitude value for adjusting the strength of the drive signal used for driving the vibration element 140.
  • the amplitude value is set according to the temporal change degree of the position data.
  • the speed with which the user's fingertip moves along the surface of the top panel 120 is used as the degree of temporal change in the position data.
  • the moving speed of the user's fingertip is calculated by the drive control unit 240 based on the temporal change degree of the position data input from the driver IC 151.
  • the frequency of the amplitude fluctuation of the natural vibration of the ultrasonic band generated on the top panel 120 based on the amplitude data is set to a frequency of about 1 kHz or less so that a human can feel it with the tactile sensation of the fingertip.
  • the drive control device 300 of the first embodiment vibrates the top panel 120 in order to change the dynamic friction force applied to the fingertip when the user's fingertip moves along the surface of the top panel 120. Since the dynamic friction force is generated when the fingertip is moving, the drive control unit 240 vibrates the vibration element 140 when the moving speed becomes equal to or higher than a predetermined threshold speed. Further, the drive control device 300 according to the first embodiment outputs amplitude data to the amplitude modulator 320 when the position of the fingertip where the operation input is performed is within a predetermined region where vibration is to be generated.
  • Whether or not the position of the fingertip that performs the operation input is within a predetermined region where the vibration is to be generated is based on whether or not the position of the fingertip that performs the operation input is within the predetermined region where the vibration is to be generated. Determined.
  • the position on the display panel 160 such as a GUI operation unit to be displayed on the display panel 160, an area for displaying an image, or an area representing the entire page is specified by area data representing the area.
  • area data representing the area.
  • the area data exists for all GUI operation units displayed on the display panel 160, areas for displaying images, or areas representing the entire page.
  • the flick operation is an operation of moving a fingertip along a surface of the top panel 120 for a relatively short distance so as to be repelled (snapped).
  • a swipe operation is performed.
  • the swipe operation is an operation of moving a fingertip along a relatively long distance so as to sweep along the surface of the top panel 120.
  • the swipe operation is performed, for example, when turning a photo in addition to turning the page.
  • a drag operation for dragging the slider is performed.
  • the operation input for moving the fingertip touching the surface of the top panel 120 such as a flick operation, a swipe operation, and a drag operation given as an example here, is used depending on the type of display by the application. For this reason, when determining whether or not the position of the fingertip for performing the operation input is within a predetermined region where vibration is to be generated, the type of application in which the electronic device 100 is activated is related.
  • the drive control unit 240 determines whether or not the position represented by the position data input from the driver IC 151 is within a predetermined area where vibration is to be generated, using the area data.
  • the data indicating the type of application, the area data indicating the GUI operation unit or the like where the operation input is performed, and the data associated with the pattern data indicating the vibration pattern are stored in the memory 250.
  • the data used by the drive control unit 240 of the first embodiment will be described later with reference to FIGS.
  • the drive control unit 240 calculates the change in the position of the fingertip during the required time from when the position data is input to the drive control device 300 from the driver IC 151 until the drive signal is calculated based on the position data. In order to interpolate, the following processing is performed.
  • the drive control device 300 performs calculation every predetermined control cycle. The same applies to the drive control unit 240. For this reason, if the required time from when the position data is input from the driver IC 151 to the drive control device 300 until the drive control unit 240 calculates the drive signal based on the position data is ⁇ t, the required time ⁇ t is the control time. Equal to the period.
  • the moving speed of the fingertip starts from the point (x1, y1) represented by the position data input from the driver IC 151 to the drive control device 300, and the end point (x2, y1) after the required time ⁇ t has elapsed. It can be obtained as the velocity of the vector y2).
  • the memory 250 stores data and programs necessary for the application processor 220 to execute the application, data and programs necessary for the communication processing by the communication processor 230, and the like.
  • the memory 250 stores data used by the drive control unit 240 of the first embodiment.
  • the sine wave generator 310 generates a sine wave necessary for generating a drive signal for vibrating the top panel 120 at a natural frequency. For example, when the top panel 120 is vibrated at a natural frequency f of 33.5 [kHz], the frequency of the sine wave is 33.5 [kHz].
  • the sine wave generator 310 inputs an ultrasonic band sine wave signal to the amplitude modulator 320.
  • the amplitude modulator 320 modulates the amplitude of the sine wave signal input from the sine wave generator 310 using the amplitude data input from the drive control unit 240 to generate a drive signal.
  • the amplitude modulator 320 modulates only the amplitude of the sine wave signal in the ultrasonic band input from the sine wave generator 310, and generates the drive signal without modulating the frequency and phase.
  • the drive signal output by the amplitude modulator 320 is an ultrasonic band sine wave signal obtained by modulating only the amplitude of the ultrasonic band sine wave signal input from the sine wave generator 310. Note that when the amplitude data is zero, the amplitude of the drive signal is zero. This is equivalent to the amplitude modulator 320 not outputting a drive signal.
  • FIG. 7 is a diagram illustrating an example of an operation when the vibration element 140 is not driven in the electronic device 100 according to the first embodiment.
  • FIG. 7 shows a display on the display panel 160 of the electronic device 100 (see FIGS. 1 to 3).
  • Various icons are displayed on the display panel 160.
  • a touch panel 150 and a top panel 120 are overlaid on the display panel 160.
  • FIG. 7 shows four regions 162A, 162B, 162C, and 162D.
  • the four areas 162A to 162D are areas corresponding to icon sizes, and there are icons that can be arranged in the areas 162A to 162D and icons that cannot be arranged.
  • the user is dragging the calendar icon 161 to move it to the area 162C.
  • the size of the icon 161 is equal to the size of the fingertip. Therefore, the icon 161 may be hidden behind the fingertip and it may be difficult to accurately grasp the position of the region 162C.
  • the area 162C is an area where the icon 161 can be dropped. For example, if the area 162C is an area where the icon 161 cannot be dropped, and the user drops the icon 161 into the area 162C, the icon 161 is ejected from the area 162C.
  • the user cannot immediately recognize whether or not the area 162C is an area where the icon 161 cannot be dropped, and may drop it again into the area 162C.
  • Electronic device 100 of Embodiment 1 vibrates vibration element 140 when the user drags calendar icon 161 and icon 161 enters the area 162C in order to improve operability. .
  • the vibration element 140 is driven with a different pattern (vibration pattern) depending on whether or not the region 162C is a region where the icon 161 can be dropped.
  • the user can immediately identify whether or not the area 162C is an area where the icon 161 can be dropped, based on the difference in tactile sensation obtained with the fingertip, thereby improving the operability.
  • the top panel is driven by the drive signal output from the amplitude modulator 320 based on the amplitude data output from the drive control unit 240.
  • the vibration generated in 120 will be described.
  • FIG. 8 is a diagram illustrating an operation example of the electronic device 100 according to the first embodiment.
  • the horizontal axis represents the time axis
  • the vertical axis represents the amplitude value of the amplitude data.
  • the moving speed of the fingertip when the user performs a drag operation is substantially constant.
  • the area 162C illustrated in FIG. 7 is an area where the icon 161 can be dropped
  • the area 162D is an area where the icon 161 cannot be dropped.
  • the electronic device 100 drives the vibration element 140 with a vibration pattern whose amplitude changes with time, and when the icon 161 is dragged in the region 162D, the electronic device 100 The vibration element 140 is driven with an amplitude vibration pattern.
  • the drive control unit 240 determines that the icon 161 is dragged in the area 162D where the icon 161 cannot be dropped,
  • the vibration element 140 is driven with a constant vibration pattern with an amplitude of A1.
  • the drive control unit 240 drives the vibration element 140 with a constant vibration pattern with an amplitude of A1 until time t2.
  • the user can recognize by tactile sensation that the icon 161 is in the area 162D where the icon 161 cannot be dropped.
  • the vibration element 140 is driven with a vibration pattern whose amplitude changes with time.
  • the user's fingertip is provided with a tactile sensation that touches the irregularities intermittently, and the user can recognize by tactile sensation that the icon 161 is in the dropable area 162C. it can.
  • vibration element 140 may be driven by the vibration pattern shown in FIG. 9 instead of the vibration pattern shown in FIG.
  • FIG. 9 is a diagram illustrating a modified example of the operation of the electronic device 100 according to the first embodiment.
  • the amplitude of the vibration pattern whose amplitude changes with time is set to be small, and the amplitude of the vibration pattern having a constant amplitude is set to zero (a constant value).
  • the amplitude of the vibration pattern whose amplitude changes with time is small enough to provide a rough tactile sensation due to unevenness by the squeeze effect, and the minimum amplitude is substantially zero.
  • the user can identify the regions 162C and 162D by tactile sensation as follows.
  • the drive control unit 240 does not drive the vibration element 140 because the amplitude of the vibration pattern is zero. In other words, the vibration element 140 is driven with a vibration pattern having an amplitude of zero.
  • the user can recognize by tactile sensation that the icon 161 is in the area 162D where the icon 161 cannot be dropped.
  • the vibration element 140 is driven with a vibration pattern whose amplitude changes with time.
  • the user's fingertip is provided with a tactile sensation that touches the rough surface by intermittently repeating the unevenness, and the user confirms that the icon 161 is in the dropable area 162C. Can be recognized by tactile sensation.
  • 10 to 12 are diagrams showing data stored in the memory 250 of the electronic device 100 according to the first embodiment.
  • FIG. 10 shows data in a table format in which the function ID (Identification) is associated with the area data.
  • the function ID is an identifier assigned to various functions that can be used in various applications of the electronic device 100.
  • the area data is data representing an area assigned to each function ID.
  • the function having the function ID F1 is a function for notifying the user that a drag operation is being performed in an area where an icon can be dropped.
  • the function having the function ID F2 is a function for notifying the user that a drag operation is being performed in an area where the icon cannot be dropped.
  • the area data EQ (S1) is associated with the function having the function ID F1
  • the area data EQ (NOT_S1) is associated with the function having the function ID F2.
  • the area data EQ (NOT_S1) is an area given by the negative logic of the area data EQ (S1), and represents an area other than the area given by the area data EQ (S1).
  • S1 is a region ID.
  • FIG. 10 shows data in a table format in which the function ID is associated with the waveform data string.
  • the function whose function ID is F1 is associated with the waveform data string w1
  • the function whose function ID is F2 is associated with the waveform data string w2.
  • the waveform data string is data in which amplitude values representing the vibration patterns shown in FIGS. 8 and 9 are arranged in time series.
  • the waveform data string w1 [A11, A12,...] Is assigned to the function having the function ID F1
  • the waveform data string w1 [A11, A12,...] Is a vibration pattern in which the amplitude at times t2 to t3 shown in FIG.
  • the waveform data string w2 [A21, A22,...] Is a vibration pattern having a constant amplitude at times t1 to t2 shown in FIG.
  • FIG. 12 shows data in a table format in which the region ID, the shape, and the shape data are associated with each other.
  • the area data ID is an identifier assigned to an area occupied by an icon or the like displayed on the display area of the display panel 160.
  • the shape represents the shape of an area such as an icon specified by the area ID.
  • a shape called a rectangular matrix is associated with the region whose region ID is S1.
  • the shape of a rectangular matrix represents the shape of an area defined in the row direction and the column direction.
  • the shape data includes a start point, an end point, a margin, and an effective matrix of an area represented by the shape data.
  • the starting point ps1 (X ps1, Y ps1 )
  • the end point pe1 (X pe1, Y pe1 )
  • a margin m1 X1
  • an effective matrix e1 (e.
  • FIG. 13 is used to explain the start point, end point, margin, and effective matrix included in the shape data.
  • FIG. 13 is a diagram showing an area represented by shape data in the touch panel 150 and the display panel 160.
  • region 162C An example of the region whose region ID is S1 (see FIG. 12) is a region 162C shown in FIG.
  • the shape of the region 162 is a rectangular matrix.
  • the area 162 includes four icon areas 162A to 162D arranged in one row and four columns.
  • the upper left of the display panel 160 is the origin.
  • the effective matrix e1 is matrix data representing the status of whether or not icons can be arranged in the four icon areas 162A to 162D arranged in one row and four columns within the area 162.
  • the area 162 includes four icon areas 162A to 162D arranged in one row and four columns, the effective matrix is represented by a determinant of one row and four columns.
  • the four values included in the valid matrix indicate the status of whether icons can be placed in the areas 162A to 162D, respectively.
  • a value of “0” means that an icon can be arranged.
  • a value of “1” means that an icon cannot be placed.
  • an icon can be arranged in the area 162C, but an icon can be placed in the areas 162A, 162B, and 162D. Indicates that cannot be placed.
  • Whether or not an icon can be arranged means whether or not an icon can be dropped. That is, each value of the effective matrix indicates whether the icon can be dropped or not dropped by moving the icon by a drag operation.
  • FIG. 14 is a diagram showing data in a table format in which icon names and icon IDs are associated with each other.
  • FIG. 14 shows an icon ID (icon_id001) assigned to the icon 161 (see FIG. 7) as an example.
  • the icon ID is associated with each element of the effective matrix and represents the icon ID of the icon arranged in the area where the icon represented by the effective matrix can be arranged.
  • the above-described 1-by-4 effective matrix (3) is assigned to the areas 162A to 162D shown in FIG. 13, and when the icon 161 is dropped in the area 162C, the effective matrix In (3), the value in the first row and the third column becomes “1”, and changes to the next effective matrix (4).
  • the icon ID (icon_id001) shown in FIG. 14 is associated with the value “1” in the first row and the third column of the effective matrix (4).
  • the area 162C becomes an area that cannot be dropped when the icon 161 is dropped.
  • FIG. 15 is a flowchart illustrating processing executed by the drive control unit 240 of the drive control apparatus 300 of the electronic device 100 according to the first embodiment.
  • the OS (Operating System) of the electronic device 100 executes control for driving the electronic device 100 every predetermined control cycle. For this reason, the drive control apparatus 300 performs a calculation for every predetermined control period. The same applies to the drive control unit 240, and the drive control unit 240 repeatedly executes the flow shown in FIG. 15 at predetermined control cycles.
  • the required time ⁇ t is the control time. Approximately equal to the period.
  • One cycle time of the control cycle is handled as corresponding to a required time ⁇ t from when the position data is input from the driver IC 151 to the drive control device 300 until the drive signal is calculated based on the position data. it can.
  • the drive control unit 240 starts the process shown in FIG. 15 when an icon drag operation is performed by an operation input to the top panel 120 in a state where the power of the electronic device 100 is turned on (step S1).
  • Whether or not the icon has been dragged depends on whether or not the position data is continuously changed by monitoring the position data input from the driver IC 151 in the mode in which the icon can be moved. What is necessary is just to judge.
  • the drive control unit 240 may determine that a drag operation has been performed when the position data has changed by a predetermined distance or more, and start the process shown in FIG.
  • the drive control unit 240 determines whether or not the area can be dropped (step S2). That is, the drive control unit 240 determines whether or not the position of the operation input when the icon drag operation is performed is an area where the icon can be dropped with reference to the data shown in FIGS. That's fine.
  • the drive control unit 240 reads the area data corresponding to the function ID of the application being executed with reference to the data shown in FIG. 10, and refers to the data shown in FIG. Read ID, shape, and shape data. Further, the icon ID associated with the effective matrix included in the shape data is read out.
  • the icon specified by the icon ID is a droppable area.
  • the drive control unit 240 determines that the drop is possible in step S2 (S2: YES)
  • the drive control unit 240 drives the vibration element 140 with a vibration pattern whose amplitude changes with time (step S3).
  • the vibration pattern whose amplitude changes with time is, for example, a vibration pattern as shown at times t2 to t3 in FIGS. Thereby, the user can recognize that the icon can be dropped with a rough tactile sensation due to repeated unevenness.
  • the drive control unit 240 determines whether or not there is an operation input (step S4). Whether or not there is an operation input may be determined by whether or not position data is input from the driver IC 151. If position data is not input from the driver IC 151, it may be determined that there is no operation input. Note that the absence of the operation input means that the icon has been dropped from the state where the drag operation has been performed.
  • step S5 When the drive control unit 240 determines that there is no operation input (S4: YES), the drive control unit 240 stops the vibration element 140 (step S5). This is because there is no need to drive the vibration element 140 because no operation input is performed.
  • the drive control unit 240 ends a series of operations.
  • the drive control unit 240 determines that the drop is not possible (S2: NO) in step S2, the drive control unit 240 drives the vibration element 140 with a vibration pattern having a constant amplitude (step S6).
  • the vibration pattern with a constant amplitude is, for example, a vibration pattern with a constant amplitude, as shown at times t1 to t2 in FIGS.
  • step S6 the drive control unit 240 advances the flow to step S4.
  • step S4 If the drive control unit 240 determines that there is an operation input in step S4 (S4: NO), the flow returns to step S2.
  • the destination of the icon is a dropable area or a non-dropable area.
  • different types of vibration are generated in the top panel 120.
  • the user can determine whether or not the icon can be dropped based on the difference in touch obtained with the fingertip. Therefore, it is possible to provide the drive control device 300, the electronic device 100, the drive control program, and the drive control method with improved operability.
  • vibration is generated when the destination of the icon is a droppable area, and vibration is not generated when the icon is not dropable (the amplitude is zero). Including cases. On the contrary, there is a case where no vibration is generated when the destination of the icon is a droppable area (amplitude is zero), and a vibration is generated when the icon cannot be dropped.
  • the present invention is not limited to these cases, and the vibration element 140 may be driven with a different vibration pattern when an icon is dragged in a region where another function is executed.
  • FIG. 16 is a diagram illustrating an example of display on the electronic device 100 according to the second embodiment.
  • the display panel 160 shows a home area 163, a folder area 164, and a deletion area 165. Note that a touch panel 150 and a top panel 120 are overlaid on the display panel 160.
  • the home area 163 is an area obtained by removing 16 folder areas 164 and one deletion area 165 from the entire display area of the display panel 160.
  • the folder area 164 is 16 areas arranged in 4 rows and 4 columns on the display panel 160 as an example.
  • the folder area 164 is an area where icons can be placed. In FIG. 16, for convenience of explanation, among the 16 folder areas 164, the remaining 15 folder areas 164 other than the upper right folder area 164 where the TV icon is arranged are indicated by broken lines, but the folder area 164 is displayed. Not.
  • Each folder area 164 is an area where icons can be dropped.
  • a plurality of icons may be arranged in one folder area 164.
  • the deletion area 165 is an area that is arranged above the 16 folder areas 164, and is an area that is displayed when an icon is dragged closer.
  • the deletion area 165 is not displayed when the icons are not brought close to each other.
  • the deletion area 165 is an area where icons can be dropped.
  • the user drags the icon 166 in the shape of a robot from the home area 163 to the deletion area 165 through the folder area 164 as indicated by an arrow.
  • the top panel is driven by the drive signal output from the amplitude modulator 320 based on the amplitude data output from the drive control unit 240.
  • the vibration generated in 120 will be described.
  • FIG. 17 is a diagram illustrating an operation example of the electronic device 100 according to the second embodiment.
  • the horizontal axis represents the time axis
  • the vertical axis represents the amplitude value of the amplitude data.
  • the moving speed of the fingertip when the user performs a drag operation is substantially constant.
  • the electronic device 100 drives the vibration element 140 with a vibration pattern having a constant amplitude.
  • dragging the icon 166 in the folder area 164 drives the vibration element 140 with a vibration pattern whose amplitude changes with time, and dragging the icon 166 in the deletion area 165 does not drive the vibration element 140.
  • the drive control unit 240 determines that the icon 166 is dragged in the home area 163, and the amplitude is constant at A1.
  • the vibration element 140 is driven with the vibration pattern.
  • the user can recognize by touch that the icon 166 is in the home area 163.
  • the drive control unit 240 determines that the icon 166 is dragged in the folder area 164, and the vibration element has a vibration pattern in which the amplitude changes with time. 140 is driven.
  • the user's fingertip is provided with a tactile sensation that touches irregularities intermittently, and the user can recognize that the icon 166 is in the folder area 164 by tactile sensation.
  • the drive control unit 240 determines that the icon 166 is dragged in the home area 163, and the amplitude is A1 and constant vibration.
  • the vibration element 140 is driven by the pattern.
  • the user can recognize from the tactile sensation that the icon 166 is in the home area 163 by a smooth tactile sensation with an amplitude A1 and a constant vibration pattern.
  • the drive control unit 240 determines that the icon 166 is dragged in the deletion area 165, and sets the amplitude to zero. For this reason, the vibration element 140 is not driven.
  • the user drops the icon 166 into the deletion area 165 at time t25.
  • the drive control unit 240 changes the vibration pattern depending on the region where the icon 166 is dragged. For this reason, the user can immediately identify that the icon 166 has entered a region having a different function according to the difference in tactile sensation obtained with the fingertip, and can improve the operability.
  • 18 to 20 are diagrams illustrating data stored in the memory 250 of the electronic device 100 according to the second embodiment.
  • FIG. 18 shows data in a table format in which the function ID is associated with the area data.
  • the function whose function ID is F21 is a function that notifies the user that a drag operation is being performed within the home area 163.
  • the function having the function ID F22 is a function for notifying the user that a drag operation is being performed within the folder area 164.
  • the function having the function ID F23 is a function for notifying the user that a drag operation is being performed within the deletion area 165.
  • area data EQ (S21 ⁇ NOT_S22 ⁇ NOT_S23) is associated with the function with the function ID F21
  • area data EQ (S22) is associated with the function with the function ID F22
  • area data EQ (S23) is associated with the function having the function ID F23.
  • the area data EQ (S21 ⁇ NOT_S22 ⁇ NOT_S23) represents an area obtained by removing the area given by the area data EQ (S22) and the area data EQ (S23) from the area given by the area data EQ (S21). .
  • S21 is an area ID assigned to the entire area of the display area of the display panel 160.
  • S22 and S23 are area IDs assigned to the folder area 164 and the deletion area 165, respectively.
  • FIG. 19 shows data in a table format in which the function ID is associated with the waveform data string.
  • a waveform data string w21 is associated with the function having the function ID F21
  • a waveform data string w22 is associated with the function having the function ID F22.
  • a waveform data string w23 is associated with the function having the function ID F23.
  • the waveform data string w21 is [A1, A1,...].
  • the waveform data string w22 is [A1, A2,...], And is a waveform data string whose amplitude changes randomly in time.
  • the waveform data string w23 is [0, 0,..., 0], and is a waveform data string in which the amplitude is held at 0 over time.
  • the waveform data string w23 [0, 0,..., 0] is a vibration pattern from time t24 to t25.
  • FIG. 20 shows data in a table format in which the region ID, the shape, and the shape data are associated with each other.
  • the area having the area IDs S21 and S23 is associated with a rectangular shape.
  • the shape of a rectangle represents the shape of a rectangular area defined by the start point and the vertex.
  • a shape called a rectangular matrix is associated with the region whose region ID is S22.
  • the shape of a rectangular matrix represents the shape of an area defined in the row direction and the column direction.
  • the region whose region ID is S21 represents, for example, the entire display region of the display panel 160.
  • the effective matrix e22 is, for example, matrix data indicating the status of whether icons can be arranged in 16 folder areas 164 arranged in 4 rows and 4 columns, and is expressed by an effective matrix (5).
  • the area whose area ID is S23 represents the deletion area 165, for example.
  • FIG. 21 is a flowchart illustrating processing executed by the drive control unit 240 of the drive control device 300 of the electronic device 100 according to the second embodiment.
  • the drive control unit 240 starts the processing shown in FIG. 21 when an icon drag operation is performed by an operation input to the top panel 120 in a state where the power of the electronic device 100 is turned on (step S121).
  • the drive control unit 240 determines the area (step S122). That is, the drive control unit 240 refers to the data shown in FIG. 18 and FIG. 20 for the position of the operation input when the icon drag operation is performed, and the home area 163, the folder area 164, or the deletion area 165. What is necessary is just to determine.
  • step S123A If the drive control part 240 determines with it being the home area
  • the drive control unit 240 determines that the folder region 164 is in step S2
  • the drive control unit 240 drives the vibration element 140 with a vibration pattern in which the amplitude changes with time (step S123B).
  • This vibration pattern is, for example, a vibration pattern whose amplitude changes with time as shown at times t22 to t23 in FIG. Thereby, the user can recognize that it is the folder area 164 with a rough tactile sensation due to repeated unevenness.
  • the drive control unit 240 determines whether or not there is an operation input after completing the process of step S123A or S123B (step S124).
  • the absence of the operation input means that the icon has been dropped from the state where the drag operation has been performed.
  • step S125 If the drive control part 240 determines that there is no operation input (S124: YES), it will stop the vibration element 140 (step S125). This is because there is no need to drive the vibration element 140 because no operation input is performed.
  • the drive control unit 240 ends a series of operations.
  • step S2 determines with it being the deletion area
  • step S124 determines that there is an operation input in step S124 (S124: NO)
  • the drive control unit 240 returns the flow to step S122.
  • the user can determine in which of the areas having different functions (home area 163, folder area 164, deletion area 165) the icon has entered, depending on the tactile sensation obtained with the fingertip. Therefore, it is possible to provide the drive control device 300, the electronic device 100, the drive control program, and the drive control method with improved operability.
  • FIG. 22 is a plan view showing an operation state of the electronic device 100C according to the modification of the first and second embodiments.
  • the electronic device 100C includes a housing 110, a top panel 120C, a double-sided tape 130, a vibration element 140, a touch panel 150, a display panel 160, and a substrate 170.
  • top panel 120C is curved glass.
  • the top panel 120C is curved so that the central portion in plan view protrudes in the positive direction of the Z axis.
  • FIG. 22 shows the cross-sectional shape of the top panel 120C in the YZ plane, and the cross-sectional shape in the XZ plane is also the same.
  • a good tactile sensation can be provided by using the curved glass top panel 120C. This is particularly effective when the actual shape of an object displayed as an image is curved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

操作性を改善する駆動制御装置を提供する。 駆動制御装置は、表示部と、前記表示部の表示面側に配設され、操作面を有するトップパネルと、前記操作面に行われる操作入力の座標を検出する座標検出部と、前記操作面に振動を発生させる振動素子とを含む電子機器の前記振動素子を駆動する駆動制御装置であって、前記表示部に配置され、前記操作入力が行われると互いに異なる機能を実行する複数の画像の配置位置と、前記操作入力の位置の時間的変化度合に応じて前記操作面に超音波帯の固有振動を発生させる駆動信号の振動パターンとを関連付けたデータを格納する格納部と、前記操作入力によってドラッグされるアイコンの位置を含む前記画像の配置位置に対応する前記駆動信号の振動パターンを選択して、前記振動素子を駆動する駆動制御部とを含み、前記振動パターンは、前記画像によって異なる。

Description

駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
 本発明は、駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法に関する。
 従来より、接触を検出するタッチセンサと、前記タッチセンサに接触する接触対象に触感を呈示する触感呈示部とを備える触感呈示装置がある。触感呈示装置は、前記タッチセンサが前記接触対象によるスライド操作を検出した場合に、連続的に触感を呈示しながら当該スライド操作中の前記接触対象の位置に応じて、当該スライド操作中の前記接触対象に異なる触感を呈示するように前記触感呈示部を制御する制御部をさらに備える。
 触感呈示装置は、さらに、前記タッチセンサに重ねて配される、地図を表示する表示部と、前記地図上における各場所の特性情報を含んだ地図データを記憶する記憶部と、を備える。前記制御部は、前記タッチセンサが前記接触対象による前記スライド操作を検出した場合に、当該スライド操作中の前記接触対象の位置に対応する前記地図上における場所の前記特性情報に応じて、当該スライド操作中の前記接触対象に異なる触感を呈示するように前記触感呈示部を制御する。前記特性情報は高度情報である(例えば、特許文献1参照)。
国際公開第2015/002520号
 従来の触感呈示装置は、地図上に表示される場所の高度情報に応じて触感を変化させるものであり、例えば、タブレットコンピュータ又はスマートフォン端末機のような電子機器で様々なアプリケーションを実行する際の操作性を改善することはできない。
 そこで、操作性を改善する駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法を提供することを目的とする。
 本発明の実施の形態の駆動制御装置は、表示部と、前記表示部の表示面側に配設され、操作面を有するトップパネルと、前記操作面に行われる操作入力の座標を検出する座標検出部と、前記操作面に振動を発生させる振動素子とを含む電子機器の前記振動素子を駆動する駆動制御装置であって、前記表示部に配置され、前記操作入力が行われると互いに異なる機能を実行する複数の画像の配置位置と、前記操作入力の位置の時間的変化度合に応じて前記操作面に超音波帯の固有振動を発生させる駆動信号の振動パターンとを関連付けたデータを格納する格納部と、前記操作入力によってドラッグされるアイコンの位置を含む前記画像の配置位置に対応する前記駆動信号の振動パターンを選択して、前記振動素子を駆動する駆動制御部とを含み、前記振動パターンは、前記画像によって異なる。
 操作性を改善する駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法を提供することができる。
実施の形態1の電子機器を示す斜視図である。 実施の形態1の電子機器を示す平面図である。 図2に示す電子機器のA-A矢視断面を示す図である。 超音波帯の固有振動によってトップパネルに生じる定在波のうち、トップパネルの短辺に平行に形成される波頭を示す図である。 電子機器のトップパネルに生じさせる超音波帯の固有振動により、操作入力を行う指先に掛かる動摩擦力が変化する様子を説明する図である。 実施の形態1の電子機器の構成を示す図である。 実施の形態1の電子機器で振動素子を駆動しない場合における動作の一例を示す図である。 実施の形態1の電子機器の動作例を示す図である。 実施の形態1の電子機器の動作の変形例を示す図である。 実施の形態1の電子機器のメモリに格納されるデータを示す図である。 実施の形態1の電子機器のメモリに格納されるデータを示す図である。 実施の形態1の電子機器のメモリに格納されるデータを示す図である。 タッチパネル及びディスプレイパネルにおける形状データが表す領域を示す図である。 アイコン名とアイコンIDとを関連付けたテーブル形式のデータを示す図である。 実施の形態1の電子機器の駆動制御装置の駆動制御部が実行する処理を示すフローチャートである。 実施の形態2の電子機器の表示の一例を示す図である。 実施の形態2の電子機器の動作例を示す図である。 実施の形態2の電子機器のメモリに格納されるデータを示す図である。 実施の形態2の電子機器のメモリに格納されるデータを示す図である。 実施の形態2の電子機器のメモリに格納されるデータを示す図である。 実施の形態2の電子機器の駆動制御装置の駆動制御部が実行する処理を示すフローチャートである。 実施の形態1及び2の変形例の電子機器の動作状態を示す平面図である。
 以下、本発明の駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法を適用した実施の形態について説明する。
 <実施の形態1>
 図1は、実施の形態1の電子機器100を示す斜視図である。
 電子機器100は、一例として、タッチパネルを入力操作部とする、スマートフォン端末機、又は、タブレット型コンピュータである。電子機器100は、タッチパネルを入力操作部とする機器であればよいため、例えば、携帯情報端末機、又は、ATM(Automatic Teller Machine)のように特定の場所に設置されて利用される機器であってもよい。
 電子機器100の入力操作部101は、タッチパネルの下にディスプレイパネルが配設されており、ディスプレイパネルにGUI(Graphic User Interface)による様々なボタン102A、又は、スライダー102B等(以下、GUI操作部102と称す)が表示される。
 電子機器100の利用者は、通常、GUI操作部102を操作するために、指先で入力操作部101に触れる。
 次に、図2を用いて、電子機器100の具体的な構成について説明する。
 図2は、実施の形態1の電子機器100を示す平面図であり、図3は、図2に示す電子機器100のA-A矢視断面を示す図である。なお、図2及び図3では、図示するように直交座標系であるXYZ座標系を定義する。
 電子機器100は、筐体110、トップパネル120、両面テープ130、振動素子140、タッチパネル150、ディスプレイパネル160、及び基板170を含む。
 筐体110は、例えば、樹脂製であり、図3に示すように凹部110Aに基板170、ディスプレイパネル160、及びタッチパネル150が配設されるとともに、両面テープ130によってトップパネル120が接着されている。
 トップパネル120は、平面視で長方形の薄い平板状の部材であり、透明なガラス、又は、ポリカーボネートのような強化プラスティックで作製される。トップパネル120の表面(Z軸正方向側の面)は、電子機器100の利用者が操作入力を行う操作面の一例である。
 トップパネル120は、Z軸負方向側の面に振動素子140が接着され、平面視における四辺が両面テープ130によって筐体110に接着されている。なお、両面テープ130は、トップパネル120の四辺を筐体110に接着できればよく、図3に示すように矩形環状である必要はない。
 トップパネル120のZ軸負方向側にはタッチパネル150が配設される。トップパネル120は、タッチパネル150の表面を保護するために設けられている。なお、トップパネル120の表面に、さらに別なパネル又は保護膜等が設けられていてもよい。
 トップパネル120は、Z軸負方向側の面に振動素子140が接着された状態で、振動素子140が駆動されることによって振動する。実施の形態1では、トップパネル120の固有振動周波数でトップパネル120を振動させて、トップパネル120に定在波を生じさせる。ただし、トップパネル120には振動素子140が接着されているため、実際には、振動素子140の重さ等を考慮した上で、固有振動周波数を決めることが好ましい。
 振動素子140は、トップパネル120のZ軸負方向側の面において、Y軸正方向側において、X軸方向に伸延する短辺に沿って接着されている。振動素子140は、超音波帯の振動を発生できる素子であればよく、例えば、ピエゾ素子のような圧電素子を含むものを用いることができる。
 振動素子140は、後述する駆動制御部から出力される駆動信号によって駆動される。振動素子140が発生する振動の振幅(強度)及び周波数は駆動信号によって設定される。また、振動素子140のオン/オフは駆動信号によって制御される。
 なお、超音波帯とは、例えば、約20kHz以上の周波数帯をいう。実施の形態1の電子機器100では、振動素子140が振動する周波数は、トップパネル120の振動数と等しくなるため、振動素子140は、トップパネル120の固有振動数で振動するように駆動信号によって駆動される。
 タッチパネル150は、ディスプレイパネル160の上(Z軸正方向側)で、トップパネル120の下(Z軸負方向側)に配設されている。タッチパネル150は、電子機器100の利用者がトップパネル120に触れる位置(以下、操作入力の位置と称す)を検出する座標検出部の一例である。
 タッチパネル150の下にあるディスプレイパネル160には、GUIによる様々なボタン等(以下、GUI操作部と称す)が表示される。このため、電子機器100の利用者は、通常、GUI操作部を操作するために、指先でトップパネル120に触れる。
 タッチパネル150は、利用者のトップパネル120への操作入力の位置を検出できる座標検出部であればよく、例えば、静電容量型又は抵抗膜型の座標検出部であればよい。ここでは、タッチパネル150が静電容量型の座標検出部である形態について説明する。タッチパネル150とトップパネル120との間に隙間があっても、静電容量型のタッチパネル150は、トップパネル120への操作入力を検出できる。
 また、ここでは、タッチパネル150の入力面側にトップパネル120が配設される形態について説明するが、トップパネル120はタッチパネル150と一体的であってもよい。この場合、タッチパネル150の表面が図2及び図3に示すトップパネル120の表面になり、操作面を構築する。また、図2及び図3に示すトップパネル120を省いた構成であってもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、この場合には、操作面を有する部材を、当該部材の固有振動で振動させればよい。
 また、タッチパネル150が静電容量型の場合は、トップパネル120の上にタッチパネル150が配設されていてもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、タッチパネル150が静電容量型の場合は、図2及び図3に示すトップパネル120を省いた構成であってもよい。この場合も、タッチパネル150の表面が操作面を構築する。また、この場合には、操作面を有する部材を、当該部材の固有振動で振動させればよい。
 ディスプレイパネル160は、例えば、液晶ディスプレイパネル又は有機EL(Electroluminescence)パネル等の画像を表示できる表示部であればよい。ディスプレイパネル160は、筐体110の凹部110Aの内部で、図示を省略するホルダ等によって基板170の上(Z軸正方向側)に設置される。
 ディスプレイパネル160は、後述するドライバIC(Integrated Circuit)によって駆動制御が行われ、電子機器100の動作状況に応じて、GUI操作部、画像、文字、記号、図形等を表示する。
 基板170は、筐体110の凹部110Aの内部に配設される。基板170の上には、ディスプレイパネル160及びタッチパネル150が配設される。ディスプレイパネル160及びタッチパネル150は、図示を省略するホルダ等によって基板170及び筐体110に固定されている。
 基板170には、後述する駆動制御装置の他に、電子機器100の駆動に必要な種々の回路等が実装される。
 以上のような構成の電子機器100は、トップパネル120に利用者の指が接触し、指先の移動を検出すると、基板170に実装される駆動制御部が振動素子140を駆動し、トップパネル120を超音波帯の周波数で振動させる。この超音波帯の周波数は、トップパネル120と振動素子140とを含む共振系の共振周波数であり、トップパネル120に定在波を発生させる。
 電子機器100は、超音波帯の定在波を発生させることにより、トップパネル120を通じて利用者に触感を提供する。
 次に、図4を用いて、トップパネル120に発生させる定在波について説明する。
 図4は、超音波帯の固有振動によってトップパネル120に生じる定在波のうち、トップパネル120の短辺に平行に形成される波頭を示す図であり、図4の(A)は側面図、(B)は斜視図である。図4の(A)、(B)では、図2及び図3と同様のXYZ座標を定義する。なお、図4の(A)、(B)では、理解しやすさのために、定在波の振幅を誇張して示す。また、図4の(A)、(B)では振動素子140を省略する。
 トップパネル120のヤング率E、密度ρ、ポアソン比δ、長辺寸法l、厚さtと、長辺方向に存在する定在波の周期数kとを用いると、トップパネル120の固有振動数(共振周波数)fは次式(1)、(2)で表される。定在波は1/2周期単位で同じ波形を有するため、周期数kは、0.5刻みの値を取り、0.5、1、1.5、2・・・となる。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 なお、式(2)の係数αは、式(1)におけるk以外の係数をまとめて表したものである。
 図4の(A)、(B)に示す定在波は、一例として、周期数kが10の場合の波形である。例えば、トップパネル120として、長辺の長さlが140mm、短辺の長さが80mm、厚さtが0.7mmのGorilla(登録商標)ガラスを用いる場合には、周期数kが10の場合に、固有振動数fは33.5[kHz]となる。この場合は、周波数が33.5[kHz]の駆動信号を用いればよい。
 トップパネル120は、平板状の部材であるが、振動素子140(図2及び図3参照)を駆動して超音波帯の固有振動を発生させると、図4の(A)、(B)に示すように撓むことにより、表面に定在波が生じる。
 なお、ここでは、1つの振動素子140がトップパネル120のZ軸負方向側の面において、Y軸正方向側において、X軸方向に伸延する短辺に沿って接着される形態について説明するが、振動素子140を2つ用いてもよい。2つの振動素子140を用いる場合は、もう1つの振動素子140をトップパネル120のZ軸負方向側の面において、Y軸負方向側において、X軸方向に伸延する短辺に沿って接着すればよい。この場合に、2つの振動素子140は、トップパネル120の2つの短辺に平行な中心線を対称軸として、軸対称になるように配設すればよい。
 また、2つの振動素子140を駆動する場合は、周期数kが整数の場合は同一位相で駆動すればよく、周期数kが小数(整数部と小数部を含む数)の場合は逆位相で駆動すればよい。
 次に、図5を用いて、電子機器100のトップパネル120に生じさせる超音波帯の固有振動について説明する。
 図5は、電子機器100のトップパネル120に生じさせる超音波帯の固有振動により、操作入力を行う指先に掛かる動摩擦力が変化する様子を説明する図である。図5の(A)、(B)では、利用者が指先でトップパネル120に触れながら、指をトップパネル120の奥側から手前側に矢印に沿って移動する操作入力を行っている。なお、振動のオン/オフは、振動素子140(図2及び図3参照)をオン/オフすることによって行われる。
 また、図5の(A)、(B)では、トップパネル120の奥行き方向において、振動がオフの間に指が触れる範囲をグレーで示し、振動がオンの間に指が触れる範囲を白く示す。
 超音波帯の固有振動は、図4に示すようにトップパネル120の全体に生じるが、図5の(A)、(B)には、利用者の指がトップパネル120の奥側から手前側に移動する間に振動のオン/オフを切り替える動作パターンを示す。
 このため、図5の(A)、(B)では、トップパネル120の奥行き方向において、振動がオフの間に指が触れる範囲をグレーで示し、振動がオンの間に指が触れる範囲を白く示す。
 図5の(A)に示す動作パターンでは、利用者の指がトップパネル120の奥側にあるときに振動がオフであり、指を手前側に移動させる途中で振動がオンになっている。
 一方、図5の(B)に示す動作パターンでは、利用者の指がトップパネル120の奥側にあるときに振動がオンであり、指を手前側に移動させる途中で振動がオフになっている。
 ここで、トップパネル120に超音波帯の固有振動を生じさせると、トップパネル120の表面と指との間にスクイーズ効果による空気層が介在し、指でトップパネル120の表面をなぞったときの動摩擦係数が低下する。
 従って、図5の(A)では、トップパネル120の奥側にグレーで示す範囲では、指先に掛かる動摩擦力は大きく、トップパネル120の手前側に白く示す範囲では、指先に掛かる動摩擦力は小さくなる。
 このため、図5の(A)に示すようにトップパネル120に操作入力を行う利用者は、振動がオンになると、指先に掛かる動摩擦力の低下を感知し、指先の滑り易さを知覚することになる。このとき、利用者はトップパネル120の表面がより滑らかになることにより、動摩擦力が低下するときに、トップパネル120の表面に凹部が存在するように感じる。
 一方、図5の(B)では、トップパネル120の奥前側に白く示す範囲では、指先に掛かる動摩擦力は小さく、トップパネル120の手前側にグレーで示す範囲では、指先に掛かる動摩擦力は大きくなる。
 このため、図5の(B)に示すようにトップパネル120に操作入力を行う利用者は、振動がオフになると、指先に掛かる動摩擦力の増大を感知し、指先の滑り難さ、あるいは、引っ掛かる感じを知覚することになる。そして、指先が滑りにくくなることにより、動摩擦力が高くなるときに、トップパネル120の表面に凸部が存在するように感じる。
 以上より、図5の(A)と(B)の場合は、利用者は指先で凹凸を感じ取ることができる。このように人間が凹凸の知覚することは、例えば、"触感デザインのための印刷物転写法とSticky-band Illusion"(第11回計測自動制御学会システムインテグレーション部門講演会論文集 (SI2010, 仙台)____174-177, 2010-12)に記載されている。また、"Fishbone Tactile Illusion"(日本バーチャルリアリティ学会第10 回大会論文集(2005 年9 月))にも記載されている。
 なお、ここでは、振動のオン/オフを切り替える場合の動摩擦力の変化について説明したが、これは、振動素子140の振幅(強度)を変化させた場合も同様である。
 次に、図6を用いて、実施の形態1の電子機器100の構成について説明する。
 図6は、実施の形態1の電子機器100の構成を示す図である。
 電子機器100は、振動素子140、アンプ141、タッチパネル150、ドライバIC(Integrated Circuit)151、ディスプレイパネル160、ドライバIC160A、制御部200、正弦波発生器310、及び振幅変調器320を含む。
 制御部200は、アプリケーションプロセッサ220、通信プロセッサ230、駆動制御部240、及びメモリ250を有する。制御部200は、例えば、ICチップで実現される。
 また、駆動制御部240、正弦波発生器310、及び振幅変調器320は、駆動制御装置300を構築する。なお、ここでは、アプリケーションプロセッサ220、通信プロセッサ230、駆動制御部240、及びメモリ250が1つの制御部200によって実現される形態について説明するが、駆動制御部240は、制御部200の外部に別のICチップ又はプロセッサとして設けられていてもよい。この場合には、メモリ250に格納されているデータのうち、駆動制御部240の駆動制御に必要なデータは、メモリ250とは別のメモリに格納して、駆動制御装置300の内部に設ければよい。
 図6では、筐体110、トップパネル120、両面テープ130、及び基板170(図2参照)は省略する。また、ここでは、アンプ141、ドライバIC151、ドライバIC160A、駆動制御部240、メモリ250、正弦波発生器310、及び振幅変調器320について説明する。
 アンプ141は、駆動制御装置300と振動素子140との間に配設されており、駆動制御装置300から出力される駆動信号を増幅して振動素子140を駆動する。
 ドライバIC151は、タッチパネル150に接続されており、タッチパネル150への操作入力があった位置を表す位置データを検出し、位置データを制御部200に出力する。この結果、位置データは、アプリケーションプロセッサ220と駆動制御部240に入力される。なお、位置データが駆動制御部240に入力されることは、位置データが駆動制御装置300に入力されることと等価である。
 ドライバIC160Aは、ディスプレイパネル160に接続されており、駆動制御装置300から出力される描画データをディスプレイパネル160に入力し、描画データに基づく画像をディスプレイパネル160に表示させる。これにより、ディスプレイパネル160には、描画データに基づくGUI操作部又は画像等が表示される。
 アプリケーションプロセッサ220は、電子機器100の種々のアプリケーションを実行する処理を行う。
 通信プロセッサ230は、電子機器100が3G(Generation)、4G(Generation)、LTE(Long Term Evolution)、WiFi等の通信を行うために必要な処理を実行する。
 駆動制御部240は、所定の条件が揃った場合に、振幅データを振幅変調器320に出力する。振幅データは、振動素子140の駆動に用いる駆動信号の強度を調整するための振幅値を表すデータである。振幅値は、位置データの時間的変化度合に応じて設定される。
 ここで、位置データの時間的変化度合としては、利用者の指先がトップパネル120の表面に沿って移動する速度を用いる。利用者の指先の移動速度は、ドライバIC151から入力される位置データの時間的な変化度合に基づいて、駆動制御部240が算出する。
 なお、振幅データによってトップパネル120に生じる超音波帯の固有振動の振幅の変動の周波数は、人間が指先の触感で感じ取ることができるように、約1kHz以下の周波数に設定される。
 また、実施の形態1の駆動制御装置300は、利用者の指先がトップパネル120の表面に沿って移動したときに、指先に掛かる動摩擦力を変化させるためにトップパネル120を振動させる。動摩擦力は、指先が移動しているときに発生するため、駆動制御部240は、移動速度が所定の閾値速度以上になったときに、振動素子140を振動させる。 また、実施の形態1の駆動制御装置300は、操作入力を行う指先の位置が、振動を発生させるべき所定の領域内にある場合に、振幅データを振幅変調器320に出力する。
 操作入力を行う指先の位置が振動を発生させるべき所定の領域内にあるかどうかは、操作入力を行う指先の位置が、振動を発生させるべき所定の領域の内部にあるか否かに基づいて判定される。
 ここで、ディスプレイパネル160に表示するGUI操作部、画像を表示する領域、又は、ページ全体を表す領域等のディスプレイパネル160上における位置は、当該領域を表す領域データによって特定される。領域データは、すべてのアプリケーションにおいて、ディスプレイパネル160に表示されるすべてのGUI操作部、画像を表示する領域、又は、ページ全体を表す領域について存在する。
 トップパネル120の表面に触れた指先を移動させる操作入力の種類としては、例えば、GUI操作部を操作する際には、所謂フリック操作がある。フリック操作は、指先をトップパネル120の表面に沿って、はじく(スナップする)ように比較的短い距離移動させる操作である。
 また、ページを捲る場合には、例えば、スワイプ操作を行う。スワイプ操作は、指先をトップパネル120の表面に沿って掃くように比較的長い距離移動させる操作である。スワイプ操作は、ページを捲る場合の他に、例えば、写真を捲る場合に行われる。また、GUI操作部によるスライダー(図1のスライダー102B参照)をスライドさせる場合、又は、アイコンを移動させる場合には、スライダーをドラッグするドラッグ操作が行われる。
 ここで一例として挙げるフリック操作、スワイプ操作、及びドラッグ操作のように、トップパネル120の表面に触れた指先を移動させる操作入力は、アプリケーションによる表示の種類によって使い分けられる。このため、操作入力を行う指先の位置が、振動を発生させるべき所定の領域内にあるかどうかを判定する際には、電子機器100が起動しているアプリケーションの種類が関係することになる。
 駆動制御部240は、領域データを用いて、ドライバIC151から入力される位置データが表す位置が、振動を発生させるべき所定の領域の内部にあるか否かを判定する。
 アプリケーションの種類を表すデータと、操作入力が行われるGUI操作部等を表す領域データと、振動パターンを表すパターンデータとを関連付けたデータ等は、メモリ250に格納されている。メモリ250に格納されるデータのうち、実施の形態1の駆動制御部240が用いるデータについては、図10乃至図12を用いて後述する。
 また、駆動制御部240は、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動信号が算出されるまでの所要時間の間における指先の位置の変化分を補間するために、次の処理を行う。
 駆動制御装置300は、所定の制御周期毎に演算を行う。これは駆動制御部240も同様である。このため、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動制御部240が駆動信号を算出するまでの所要時間をΔtとすると、所要時間Δtは、制御周期に等しい。
 ここで、指先の移動速度は、ドライバIC151から駆動制御装置300に入力される位置データが表す点(x1、y1)を始点とし、所要時間Δtが経過した後の指先の位置を終点(x2、y2)とするベクトルの速度として求めることができる。
 メモリ250は、アプリケーションプロセッサ220がアプリケーションの実行に必要とするデータ及びプログラム、及び、通信プロセッサ230が通信処理に必要とするデータ及びプログラム等を格納する。
 また、メモリ250は、実施の形態1の駆動制御部240が用いるデータを格納する。
 正弦波発生器310は、トップパネル120を固有振動数で振動させるための駆動信号を生成するのに必要な正弦波を発生させる。例えば、トップパネル120を33.5[kHz]の固有振動数fで振動させる場合は、正弦波の周波数は、33.5[kHz]となる。正弦波発生器310は、超音波帯の正弦波信号を振幅変調器320に入力する。
 振幅変調器320は、駆動制御部240から入力される振幅データを用いて、正弦波発生器310から入力される正弦波信号の振幅を変調して駆動信号を生成する。振幅変調器320は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調し、周波数及び位相は変調せずに、駆動信号を生成する。
 このため、振幅変調器320が出力する駆動信号は、正弦波発生器310から入力される超音波帯の正弦波信号の振幅のみを変調した超音波帯の正弦波信号である。なお、振幅データがゼロの場合は、駆動信号の振幅はゼロになる。これは、振幅変調器320が駆動信号を出力しないことと等しい。
 図7は、実施の形態1の電子機器100で振動素子140を駆動しない場合における動作の一例を示す図である。図7には、電子機器100(図1乃至3参照)のディスプレイパネル160の表示を示す。ディスプレイパネル160には、様々なアイコンが表示されている。また、ディスプレイパネル160には、タッチパネル150とトップパネル120が重ねられている。
 図7には、4つの領域162A、162B、162C、162Dを示す。4つの領域162A~162Dは、アイコンのサイズに対応した領域であり、領域162A~162Dに配置できるアイコンと、配置できないアイコンとがある。
 図7において、利用者はカレンダーのアイコン161を領域162Cに移動させるためにドラッグしている。このようにアイコン161を指先でドラッグするときに、アイコン161のサイズは指先のサイズと同等であるため、アイコン161が指先に隠れて、領域162Cの位置を正確に把握しにくい場合がある。
 また、領域162Cがアイコン161をドロップ可能な領域であるのかどうかが利用者に分かり難い。例えば、領域162Cがアイコン161をドロップ不可能な領域である場合に、利用者がアイコン161を領域162Cにドロップすると、アイコン161が領域162Cからはじき出される。
 このような場合に、利用者は領域162Cがアイコン161をドロップ不可能な領域であるのかどうかを即座に認識することはできず、再度領域162Cにドロップする場合が有り得る。
 実施の形態1の電子機器100は、操作性を改善するために、利用者がカレンダーのアイコン161をドラッグしていて、アイコン161が領域162Cの内部に入ったときに、振動素子140を振動させる。
 そして、領域162Cがアイコン161をドロップ可能な領域であるのかどうかによって、異なるパターン(振動パターン)で振動素子140を駆動する。
 このため、利用者は、指先で得る触感の違いによって、領域162Cがアイコン161をドロップ可能な領域であるのかどうかを即座に識別することができ、操作性を改善することができる。
 ここで、図8を用いて、アイコン161を移動させるためにドラッグ操作が行われた場合に、駆動制御部240が出力する振幅データに基づいて振幅変調器320から出力される駆動信号によってトップパネル120に生じる振動について説明する。
 図8は、実施の形態1の電子機器100の動作例を示す図である。図8において、横軸は時間軸を表し、縦軸は振幅データの振幅値を表す。また、ここでは、利用者がドラッグ操作を行う際の指先の移動速度は略一定であることとする。また、ここでは、図7に示す領域162Cはアイコン161をドロップ可能な領域であり、領域162Dはアイコン161をドロップ不可能な領域であることとして説明する。
 前提条件として、電子機器100は、領域162Cの中でアイコン161をドラッグすると、振幅が時間的に変化する振動パターンで振動素子140を駆動し、領域162Dの中でアイコン161をドラッグすると、一定の振幅の振動パターンで振動素子140を駆動することとする。
 時刻t1において、利用者が領域162Dの中でアイコン161のドラッグ操作を開始すると、駆動制御部240は、アイコン161をドロップ不可能な領域162Dの中でアイコン161がドラッグされていると判定し、振幅がA1で一定の振動パターンで振動素子140を駆動する。
 ここでは、アイコン161が領域162Dの中に入った状態で、時刻t2まで利用者がドラッグ操作を行っていることとする。このため、駆動制御部240は、時刻t2まで、振幅がA1で一定の振動パターンで振動素子140を駆動する。
 一定の振幅A1の振動パターンで振動素子140が駆動されると、トップパネル120の表面と指との間にスクイーズ効果による空気層が介在し、指でトップパネル120の表面をなぞったときの動摩擦係数が低下する。
 このため、利用者は、アイコン161をドロップ不可能な領域162Dの中にあることを触感で認識することができる。
 また、時刻t2において、利用者がドラッグしているアイコン161が領域162Dから領域162Cに入ると、振幅が時間的に変化する振動パターンで振動素子140が駆動される。
 このため、利用者の指先には、断続的に凹凸に触れてざらざらしたような触感が提供され、利用者は、アイコン161がドロップ可能な領域162Cの中にあることを触感で認識することができる。
 利用者は、時刻t3でアイコン161を領域162Cにドロップする。ドロップする際には、指先がトップパネル120から離れるため、時刻t3の直後の時刻t4に振幅はゼロになり、振動素子140は駆動されなくなる。
 なお、図8に示すような振動パターンの代わりに、図9に示す振動パターンで振動素子140を駆動してもよい。
 図9は、実施の形態1の電子機器100の動作の変形例を示す図である。
 図9では、振幅が時間的に変化する振動パターンの振幅が小さく設定されるとともに、振幅が一定の振動パターンの振幅がゼロ(一定値)に設定されている。振幅が時間的に変化する振動パターンの振幅は、スクイーズ効果で凹凸によるざらざらした触感を提供できる程度に小さくされており、最小の振幅は略ゼロである。
 このような振動パターンを用いて振動素子140を駆動すると、利用者は次のようにして触感で領域162Cと162Dを識別することができる。
 時刻t1においてアイコン161が領域162Dの中に入ると、駆動制御部240は、振動パターンの振幅がゼロであるため、振動素子140を駆動しない。換言すれば、振幅がゼロの振動パターンで振動素子140が駆動される。
 振動素子140が駆動されない場合には、スクイーズ効果は得られないため、トップパネル120の表面をなぞったときの動摩擦係数は、軽減されない。
 このため、利用者は、アイコン161をドロップ不可能な領域162Dの中にあることを触感で認識することができる。
 また、時刻t2において、利用者がドラッグしているアイコン161が領域162Dから領域162Cに入ると、振幅が時間的に変化する振動パターンで振動素子140が駆動される。
 このため、利用者の指先には、断続的に凹凸が繰り返されることによるざらざらした面に触れたような触感が提供され、利用者は、アイコン161がドロップ可能な領域162Cの中にあることを触感で認識することができる。
 利用者は、時刻t3でアイコン161を領域162Cにドロップする。ドロップする際には、指先がトップパネル120から離れるため、時刻t3の直後の時刻t4に振幅はゼロになり、振動素子140は駆動されなくなる。
 図9に示す振動パターンは、図8に示す振動パターンに比べて振幅が小さいので、消費エネルギーを削減することができる。
 次に、図10乃至図12を用いて、実施の形態1の電子機器100で用いるデータについて説明する。
 図10乃至図12は、実施の形態1の電子機器100のメモリ250に格納されるデータを示す図である。
 図10には、機能ID(Identification)と領域データとを関連付けたテーブル形式のデータを示す。機能IDは、電子機器100の各種アプリケーションの中で利用可能な様々な機能に対して割り振られる識別子である。領域データは、各機能IDに割り当てられる領域を表すデータである。
 ここでは、一例として、機能IDがF1の機能は、アイコンをドロップ可能な領域の中でドラッグ操作を行っていることを利用者に伝える機能である。また、機能IDがF2の機能は、アイコンをドロップ不可能な領域の中でドラッグ操作を行っていることを利用者に伝える機能である。
 図10では、機能IDがF1の機能には、領域データEQ(S1)が関連付けられており、機能IDがF2の機能には、領域データEQ(NOT_S1)が関連付けられている。なお、領域データEQ(NOT_S1)は、領域データEQ(S1)の否定論理で与えられる領域であり、領域データEQ(S1)で与えられる領域以外の領域を表す。また、S1は、領域IDである。
 すなわち、図10に示すデータは、領域データEQ(S1)によって表される領域では、アイコンのドロップが可能であることと、領域データEQ(NOT_S1)によって表される領域では、アイコンのドロップが不可能であることとを表す。

 図11には、機能IDと、波形データ列とを関連付けたテーブル形式のデータを示す。機能IDがF1の機能には、波形データ列w1が関連付けられており、機能IDがF2の機能には、波形データ列w2が関連付けられている。
 波形データ列は、図8及び図9に示す振動パターンを表す振幅値を時系列的に並べたデータである。
 一例として、機能IDがF1の機能には、波形データ列w1=[A11、A12、・・・]が割り当てられており、機能IDがF2の機能には、波形データ列w2=[A21、A22、・・・]が割り当てられている。
 例えば、波形データ列w1=[A11、A12、・・・]は、図8に示す時刻t2~t3の振幅が時間的に変化する振動パターンである。また、波形データ列w2=[A21、A22、・・・]は、図8に示す時刻t1~t2の振幅が一定の振動パターンである。
 図12には、領域IDと、形状と、形状データとを関連付けたテーブル形式のデータを示す。
 領域データIDは、ディスプレイパネル160の表示領域に表示されるアイコン等が占める領域に割り振られる識別子である。
 形状は、領域IDによって特定されるアイコン等の領域の形状を表す。一例として、領域IDがS1の領域には、矩形マトリクスという形状が関連付けられている。矩形マトリクスという形状は、行方向と列方向に規定される領域の形状を表す。
 形状データは、形状データが表す領域の始点、終点、マージン、及び有効行列を含む。図12では、一例として、始点ps1=(Xps1,Yps1)、終点pe1=(Xpe1,Ype1)、マージンm1=X1、及び有効行列e1を示す。
 ここで、形状データに含まれる始点、終点、マージン、及び有効行列を説明するために図13を用いる。
 図13は、タッチパネル150及びディスプレイパネル160における形状データが表す領域を示す図である。
 領域IDがS1(図12参照)の領域の一例は、図13に示す領域162Cである。領域162の形状は、矩形マトリクスである。領域162は、1行4列で配列される4つのアイコン用の領域162A~162Dを含む。
 ここでは、一例として、ディスプレイパネル160の左上を原点とする。領域162の始点162Sは、領域162の左上の頂点である。すなわち、始点ps1=(Xps1,Yps1)は、例えば、図13に示す領域162の左上の頂点の座標を表す。
 また、領域162の終点162Eは、領域162の右下の頂点である。すなわち、終点pe1=(Xpe1,Ype1)は、例えば、図13に示す領域162の右下の頂点の座標を表す。
 マージンm1は、4つのアイコン用の領域162A~162Dの間の横方向の間隔を示す。すなわち、マージンm1=X1は、4つのアイコン用の領域162A~162Dの間の横方向の間隔がX1であることを示す。
 有効行列e1は、領域162の内部で1行4列で配列される4つのアイコン用の領域162A~162Dにアイコンを配置できるかどうかのステイタスを表す行列データである。ここでは、領域162が1行4列で配列される4つのアイコン用の領域162A~162Dを含むため、有効行列は1行4列の行列式で表される。
 有効行列が含む4つの値は、それぞれ、領域162A~162Dにアイコンを配置できるかどうかのステイタスを表す。値が'0'であることはアイコンを配置できることを意味する。値が'1'であることはアイコンを配置できないことを意味する。
 例えば、次のような有効行列(3)の場合は、1行3列目の値が'0'であるため、領域162Cにはアイコンを配置できるが、領域162A、162B、及び162Dにはアイコンを配置できないことを表す。
Figure JPOXMLDOC01-appb-M000003
 なお、アイコンを配置できるかどうかとは、アイコンをドロップできるかどうかという意味である。すなわち、有効行列の各値は、アイコンをドラッグ操作で移動させて、アイコンをドロップ可能かドロップ不可能かを表す。
 図14は、アイコン名とアイコンIDとを関連付けたテーブル形式のデータを示す図である。図14には、一例として、アイコン161(図7参照)に割り当てられたアイコンID(icon_id001)を示す。アイコンIDは、有効行列の各要素と関連付けられており、有効行列が表すアイコンを配置可能な領域に配置されているアイコンのアイコンIDを表す。
 具体的には、例えば、上述のような1行4列の有効行列(3)が、図13に示す領域162A~162Dに割り当てられており、アイコン161が領域162Cにドロップされると、有効行列(3)は1行3列目の値が'1'になり、次の有効行列(4)に変化する。
Figure JPOXMLDOC01-appb-M000004
 そして、有効行列(4)の1行3列目の値の'1'には、図14に示すアイコンID(icon_id001)が関連付けられる。領域162Cは、アイコン161がドロップされることにより、ドロップ不可能な領域になる。
 このように、有効行列の各要素が'1'である場合には、配置されているアイコンのアイコンIDが関連付けられている。
 図15は、実施の形態1の電子機器100の駆動制御装置300の駆動制御部240が実行する処理を示すフローチャートである。
 電子機器100のOS(Operating System)は、所定の制御周期毎に電子機器100を駆動するための制御を実行する。このため、駆動制御装置300は、所定の制御周期毎に演算を行う。これは駆動制御部240も同様であり、駆動制御部240は、図15に示すフローを所定の制御周期毎に繰り返し実行する。
 ここで、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動制御部240が駆動信号を算出するまでの所要時間をΔtとすると、所要時間Δtは、制御周期に略等しい。
 制御周期の1周期の時間は、ドライバIC151から駆動制御装置300に位置データが入力されてから、当該位置データに基づいて駆動信号が算出されるまでの所要時間Δtに相当するものとして取り扱うことができる。
 駆動制御部240は、電子機器100の電源がオンにされた状態で、トップパネル120への操作入力によってアイコンのドラッグ操作が行われると、図15に示す処理をスタートさせる(ステップS1)。
 アイコンのドラッグ操作が行われたかどうかは、アイコンを移動させることができるモードにおいて、駆動制御部240がドライバIC151から入力される位置データを監視し、位置データが連続的に変化しているかどうかで判定すればよい。例えば、駆動制御部240は、位置データが所定の距離以上変化した場合に、ドラッグ操作が行われたと判定して、図15に示す処理を開始すればよい。
 駆動制御部240は、ドロップ可能な領域であるかどうかを判定する(ステップS2)。すなわち、駆動制御部240は、アイコンのドラッグ操作が行われているときの操作入力の位置が、図10及び図12に示すデータを参照して、アイコンをドロップできる領域であるかどうかを判定すればよい。
 例えば、駆動制御部240は、図10に示すデータを参照して、実行しているアプリケーションの機能IDに対応する領域データを読み出し、図12に示すデータを参照して、領域データに対応する領域ID、形状、及び形状データを読み出す。また、形状データに含まれる有効行列に関連付けられたアイコンIDを読み出す。
 そして、形状データに含まれる有効行列の値に基づいて、アイコンIDによって特定されるアイコンがドロップ可能な領域であるかどうかを判定すればよい。
 駆動制御部240は、ステップS2でドロップ可能(S2:YES)と判定すると、振幅が時間的に変化する振動パターンで振動素子140を駆動する(ステップS3)。振幅が時間的に変化する振動パターンは、例えば、図8及び図9の時刻t2~t3に示すような振動パターンである。これにより、利用者は、凹凸が繰り返されることによるざらざらした触感で、アイコンをドロップ可能であることを認識することができる。
 次いで、駆動制御部240は、操作入力がないかどうかを判定する(ステップS4)。操作入力がないかどうかは、ドライバIC151から位置データが入力されるかどうかで判定すればよい。ドライバIC151から位置データが入力されない場合に、操作入力がないと判定すればよい。なお、操作入力がなくなることは、ドラッグ操作が行われていた状態から、アイコンがドロップされたことを意味する。
 駆動制御部240は、操作入力がない(S4:YES)と判定すると、振動素子140を停止する(ステップS5)。操作入力が行われていないため、振動素子140を駆動する必要がないからである。
 以上により、駆動制御部240は、一連の操作を終了する。
 なお、駆動制御部240は、ステップS2でドロップ不可能(S2:NO)と判定すると、振幅が一定の振動パターンで振動素子140を駆動する(ステップS6)。振幅が一定の振動パターンは、例えば、図8及び図9の時刻t1~t2に示すように、振幅が一定の振動パターンである。
 図8のように、振幅A1で一定の振動パターンの場合は、スクイーズ効果によって指先に掛かる動摩擦力は低下し、利用者に指先が滑る感覚を提供することができる。これにより、利用者は、アイコンをドロップ不可能であることを認識できる。
 また、図9に示すように振幅がゼロで一定の振動パターンの場合は、振動が発生しないことにより、利用者は、アイコンをドロップ不可能であることを認識できる。
 なお、ステップS6の処理が終了すると、駆動制御部240は、フローをステップS4に進行させる。
 また、駆動制御部240は、ステップS4で操作入力がある(S4:NO)と判定すると、フローをステップS2にリターンする。
 以上、実施の形態1によれば、利用者がアイコンを移動させるためにドラッグ操作をしているときに、アイコンの移動先がドロップ可能な領域である場合と、ドロップ不可能な領域である場合とで、トップパネル120に種類が異なる振動を発生させる。
 このため、利用者は、指先で得る触感の違いによって、アイコンをドロップ可能であるかどうかを判断することができる。従って、操作性を改善した駆動制御装置300、電子機器100、駆動制御プログラム、及び駆動制御方法を提供することができる。
 なお、種類が異なる振動を発生させることには、アイコンの移動先がドロップ可能な領域である場合に振動を発生させて、ドロップ不可能な領域である場合に振動を発生させない(振幅がゼロ)場合を含む。また、この逆に、アイコンの移動先がドロップ可能な領域である場合に振動を発生させずに(振幅がゼロ)、ドロップ不可能な領域である場合に振動を発生させる場合を含む。
 また、以上では、機能IDがF1でアイコンをドロップ可能にする機能を実行する領域162Cと、機能IDがF2でアイコンをドロップ不可能にする機能を実行する領域との中でアイコンをドラッグする場合に、振動パターンが異なる形態について説明した。
 しかしながら、これらの場合に限られず、他の機能を実行する領域の中でアイコンをドラッグした場合に、さらに異なる振動パターンで振動素子140を駆動してもよい。
 <実施の形態2>
 実施の形態2では、アイコン161をさらに多くの領域にドラッグする場合について説明する。実施の形態2の電子機器100及び駆動制御装置300は、実施の形態1の電子機器100及び駆動制御装置300と同様である。このため、実施の形態2では、図6を援用する。以下、実施の形態1との相違点を中心に説明する。
 図16は、実施の形態2の電子機器100の表示の一例を示す図である。ディスプレイパネル160には、ホーム領域163、フォルダ領域164、削除領域165を示す。なお、ディスプレイパネル160には、タッチパネル150とトップパネル120が重ねられている。
 ホーム領域163は、ディスプレイパネル160の全体の表示領域から、16個のフォルダ領域164と、1個の削除領域165とを除いた領域である。
 フォルダ領域164は、ディスプレイパネル160に、一例として、4行4列で配置される16個の領域である。フォルダ領域164は、アイコンを配置できる領域である。図16では、説明の便宜上、16個のフォルダ領域164のうち、テレビのアイコンが配置された右上のフォルダ領域164以外の残りの15個のフォルダ領域164を破線で示すが、フォルダ領域164は表示されない。各フォルダ領域164は、アイコンをドロップ可能な領域である。
 なお、1つのフォルダ領域164に、複数のアイコンを配置できるようにしてもよい。
 削除領域165は、16個のフォルダ領域164の上側に配置される領域であり、アイコンをドラッグして近づけると表示される領域である。削除領域165は、アイコンを近づけないときは、表示されない。削除領域165は、アイコンをドロップ可能な領域である。
 図16において、利用者はロボットの形状をしたアイコン166をホーム領域163からフォルダ領域164を経て、削除領域165まで移動させるために、矢印で示すようにドラッグしている。
 ここで、図17を用いて、アイコン166を移動させるためにドラッグ操作が行われた場合に、駆動制御部240が出力する振幅データに基づいて振幅変調器320から出力される駆動信号によってトップパネル120に生じる振動について説明する。
 図17は、実施の形態2の電子機器100の動作例を示す図である。図17において、横軸は時間軸を表し、縦軸は振幅データの振幅値を表す。また、ここでは、利用者がドラッグ操作を行う際の指先の移動速度は略一定であることとする。
 前提条件として、電子機器100は、ホーム領域163の中でアイコン166をドラッグすると、一定の振幅の振動パターンで振動素子140を駆動することとする。
 また、フォルダ領域164の中でアイコン166をドラッグすると、振幅が時間的に変化する振動パターンで振動素子140を駆動し、削除領域165の中でアイコン166をドラッグすると、振動素子140を駆動しないこととする。
 時刻t21において、利用者がホーム領域163の中でアイコン166のドラッグ操作を開始すると、駆動制御部240は、ホーム領域163の中でアイコン166がドラッグされていると判定し、振幅がA1で一定の振動パターンで振動素子140を駆動する。
 一定の振幅A1の振動パターンで振動素子140が駆動されると、トップパネル120の表面と指との間にスクイーズ効果による空気層が介在し、指でトップパネル120の表面をなぞったときの動摩擦係数が低下する。
 このため、利用者は、アイコン166がホーム領域163の中にあることを触感で認識することができる。
 時刻t22においてアイコン166がフォルダ領域164の中に入ると、駆動制御部240は、フォルダ領域164の中でアイコン166がドラッグされていると判定し、振幅が時間的に変化する振動パターンで振動素子140を駆動する。
 このため、利用者の指先には、断続的に凹凸に触れてざらざらしたような触感が提供され、利用者は、アイコン166がフォルダ領域164の中にあることを触感で認識することができる。
 時刻t23において、利用者が再びホーム領域163の中でアイコン166をドラッグすると、駆動制御部240は、ホーム領域163の中でアイコン166がドラッグされていると判定し、振幅がA1で一定の振動パターンで振動素子140を駆動する。
 このため、利用者は、振幅A1で一定の振動パターンによる滑らかな触感によって、アイコン166がホーム領域163の中にあることを触感で認識することができる。
 時刻t24においてアイコン166が削除領域165の中に入ると、駆動制御部240は、削除領域165の中でアイコン166がドラッグされていると判定し、振幅をゼロに設定する。このため、振動素子140は駆動されなくなる。
 利用者は、時刻t25でアイコン166を削除領域165にドロップする。
 以上のように、駆動制御部240は、アイコン166がドラッグされる領域によって振動パターンを変える。このため、利用者は、指先で得る触感の違いによって、アイコン166が機能の異なる領域に入ったことを即座に識別することができ、操作性を改善することができる。
 次に、図18乃至図20を用いて、実施の形態2の電子機器100で用いるデータについて説明する。
 図18乃至図20は、実施の形態2の電子機器100のメモリ250に格納されるデータを示す図である。
 図18には、機能IDと領域データとを関連付けたテーブル形式のデータを示す。ここでは、一例として、機能IDがF21の機能は、ホーム領域163の領域内でドラッグ操作を行っていることを利用者に伝える機能である。
 また、機能IDがF22の機能は、フォルダ領域164の領域内でドラッグ操作を行っていることを利用者に伝える機能である。
 また、機能IDがF23の機能は、削除領域165の領域内でドラッグ操作を行っていることを利用者に伝える機能である。
 図18では、機能IDがF21の機能には、領域データEQ(S21∧NOT_S22∧NOT_S23)が関連付けられており、機能IDがF22の機能には、領域データEQ(S22)が関連付けられている。また、機能IDがF23の機能には、領域データEQ(S23)が関連付けられている。
 なお、領域データEQ(S21∧NOT_S22∧NOT_S23)は、領域データEQ(S21)で与えられる領域から、領域データEQ(S22)と領域データEQ(S23)とで与えられる領域を除いた領域を表す。
 また、S21は、ディスプレイパネル160の表示領域の全体の領域に割り当てられた領域IDである。S22及びS23は、それぞれ、フォルダ領域164及び削除領域165に割り当てられた領域IDである。
 図19には、機能IDと、波形データ列とを関連付けたテーブル形式のデータを示す。機能IDがF21の機能には、波形データ列w21が関連付けられており、機能IDがF22の機能には、波形データ列w22が関連付けられている。また、機能IDがF23の機能には、波形データ列w23が関連付けられている。
 一例として、波形データ列w21は[A1、A1、・・・]である。波形データ列w22は[A1、A2、・・・]であり、振幅が時間的にランダムに変化する波形データ列である。また、波形データ列w23は[0、0、・・・、0]であり、時間の経過に対して振幅が0に保持される波形データ列である。
 例えば、波形データ列w21=[A1、A1、・・・]は、図17に示す時刻t21~t22と時刻t23~t24の振動パターンである。また、波形データ列w22=[A1、A2、・・・]は、図17に示す時刻t22~t23の振動パターンである。また、波形データ列w23=[0、0、・・・、0]は、時刻t24~t25の振動パターンである。
 図20には、領域IDと、形状と、形状データとを関連付けたテーブル形式のデータを示す。
 一例として、領域IDがS21とS23の領域には、矩形という形状が関連付けられている。矩形という形状は、始点と頂点によって規定される四角形の領域の形状を表す。
 また、領域IDがS22の領域には、矩形マトリクスという形状が関連付けられている。矩形マトリクスという形状は、行方向と列方向に規定される領域の形状を表す。
 図20では、一例として、領域IDがS21の領域は、始点ps21=(Xps21,Yps21)と終点pe21=(Xpe21,Ype21)とを形状データとして有する。領域IDがS21の領域は、例えば、ディスプレイパネル160の全体の表示領域を表す。
 また、領域IDがS22の領域は、始点ps22=(Xps22,Yps22)、終点pe22=(Xpe22,Ype22)、マージンm2=X2、及び有効行列e22とを形状データとして有する。
 有効行列e22は、例えば、4行4列で配列される16個のフォルダ領域164にアイコンを配置できるかどうかのステイタスを表す行列データであり、有効行列(5)で表される。
Figure JPOXMLDOC01-appb-M000005
 なお、有効行列e22の各要素には、実施の形態1において有効行列の各要素とアイコンIDを関連付けたのと同様に、アイコンIDを関連付けておけばよい。
 また、領域IDがS23の領域は、始点ps23=(Xps23,Yps23)と終点pe23=(Xpe23,Ype23)とを形状データとして有する。領域IDがS23の領域は、例えば、削除領域165を表す。
 図21は、実施の形態2の電子機器100の駆動制御装置300の駆動制御部240が実行する処理を示すフローチャートである。
 駆動制御部240は、電子機器100の電源がオンにされた状態で、トップパネル120への操作入力によってアイコンのドラッグ操作が行われると、図21に示す処理をスタートさせる(ステップS121)。
 駆動制御部240は、領域を判定する(ステップS122)。すなわち、駆動制御部240は、アイコンのドラッグ操作が行われているときの操作入力の位置が、図18及び図20に示すデータを参照して、ホーム領域163、フォルダ領域164、又は削除領域165のいずれであるのかを判定すればよい。
 駆動制御部240は、ステップS2でホーム領域163であると判定すると、振幅が一定の振動パターンで振動素子140を駆動する(ステップS123A)。例えば、図17の時刻t21~t22と時刻t23~t24に示すように、振幅が一定の振動パターンで振動素子140を駆動する振動パターンである。
 また、駆動制御部240は、ステップS2でフォルダ領域164であると判定すると、振幅が時間的に変化する振動パターンで振動素子140を駆動する(ステップS123B)。この振動パターンは、例えば、図17の時刻t22~t23に示すように、振幅が時間的に変化する振動パターンである。これにより、利用者は、凹凸が繰り返されることによるざらざらした触感で、フォルダ領域164であることを認識することができる。
 駆動制御部240は、ステップS123A又はS123Bの処理を終えると、操作入力がないかどうかを判定する(ステップS124)。操作入力がなくなることは、ドラッグ操作が行われていた状態から、アイコンがドロップされたことを意味する。
 駆動制御部240は、操作入力がない(S124:YES)と判定すると、振動素子140を停止する(ステップS125)。操作入力が行われていないため、振動素子140を駆動する必要がないからである。
 以上により、駆動制御部240は、一連の操作を終了する。
 なお、駆動制御部240は、ステップS2で削除領域165であると判定すると、振幅をゼロに設定し、振動素子140を停止する(ステップS123C)。この場合は、駆動制御部240は、フローを終了する。
 また、駆動制御部240は、駆動制御部240は、ステップS124で操作入力がある(S124:NO)と判定すると、フローをステップS122にリターンする。
 以上、実施の形態2によれば、利用者がアイコンを移動させるためにドラッグ操作をしているときに、操作入力の位置が含まれる領域の種類によって、トップパネル120に種類が異なる振動を発生させる。
 このため、利用者は、指先で得る触感の違いによって、互いに機能の異なる領域(ホーム領域163、フォルダ領域164、削除領域165)のいずれにアイコンが入ったかを判断することができる。従って、操作性を改善した駆動制御装置300、電子機器100、駆動制御プログラム、及び駆動制御方法を提供することができる。
 図22は、実施の形態1及び2の変形例の電子機器100Cの動作状態を示す平面図である。
 電子機器100Cは、筐体110、トップパネル120C、両面テープ130、振動素子140、タッチパネル150、ディスプレイパネル160、及び基板170を含む。
 図22に示す電子機器100Cは、トップパネル120Cが曲面ガラスであること以外は、図3に示す実施の形態1の電子機器100の構成と同様である。
 トップパネル120Cは、平面視における中央部がZ軸正方向側に突出するように湾曲している。図22には、トップパネル120CのYZ平面における断面形状を示すが、XZ平面における断面形状も同様である。
 このように、曲面ガラスのトップパネル120Cを用いることにより、良好な触感を提供できる。特に、画像として表示する物体の実物の形状が湾曲している場合に有効的である。
 以上、本発明の例示的な実施の形態の駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。
 100 電子機器
 110 筐体
 120 トップパネル
 130 両面テープ
 140 振動素子
 150 タッチパネル
 160 ディスプレイパネル
 170 基板
 200 制御部
 220 アプリケーションプロセッサ
 230 通信プロセッサ
 240 駆動制御部
 250 メモリ
 300 駆動制御装置
 310 正弦波発生器
 320 振幅変調器

Claims (10)

  1.  表示部と、前記表示部の表示面側に配設され、操作面を有するトップパネルと、前記操作面に行われる操作入力の座標を検出する座標検出部と、前記操作面に振動を発生させる振動素子とを含む電子機器の前記振動素子を駆動する駆動制御装置であって、
     前記表示部に配置され、前記操作入力が行われると互いに異なる機能を実行する複数の画像の配置位置と、前記操作入力の位置の時間的変化度合に応じて前記操作面に超音波帯の固有振動を発生させる駆動信号の振動パターンとを関連付けたデータを格納する格納部と、
     前記操作入力によってドラッグされるアイコンの位置を含む前記画像の配置位置に対応する前記駆動信号の振動パターンを選択して、前記振動素子を駆動する駆動制御部と
     を含み、
     前記振動パターンは、前記画像によって異なる、駆動制御装置。
  2.  前記互いに異なる機能は、前記アイコンをドロップ可能にする機能と、前記アイコンをドロップ不可能にする機能とを含み、
     前記駆動制御部は、前記アイコンをドロップ可能にする機能を実行する画像の配置位置に前記操作入力によってドラッグされるアイコンの位置が含まれる場合と、前記アイコンをドロップ不可能にする機能を実行する画像の配置位置に前記操作入力によってドラッグされるアイコンの位置が含まれる場合とで、異なる前記振動パターンを選択して、前記振動素子を駆動する、請求項1記載の駆動制御装置。
  3.  前記振動パターンは、時間の変化に応じて前記固有振動の強度を変化させるパターンである、請求項1又は2記載の駆動制御装置。
  4.  前記振動パターンは、一定の振幅の前記駆動信号で前記振動素子を駆動するパターンである、請求項1又は2記載の駆動制御装置。
  5.  前記複数の画像は、それぞれ、複数のGUI操作部を表す画像である、請求項1乃至4のいずれか一項記載の駆動制御装置。
  6.  前記駆動制御部は、前記駆動信号の振幅を制御することによって、前記固有振動の強度が変化するように前記振動素子を駆動する、請求項1乃至5のいずれか一項記載の駆動制御装置。
  7.  前記固有振動は、前記トップパネルの固有振動である、請求項1乃至6のいずれか一項記載の駆動制御装置。
  8.  前記表示部と、
     前記トップパネルと、
     前記座標検出部と、
     前記振動素子と、
     請求項1乃至7のいずれか一項記載の駆動制御装置と
     を含む電子機器。
  9.  表示部と、前記表示部の表示面側に配設され、操作面を有するトップパネルと、前記操作面に行われる操作入力の座標を検出する座標検出部と、前記操作面に振動を発生させる振動素子とを含む電子機器の前記振動素子を駆動する駆動制御プログラムであって、
     前記表示部に配置され、前記操作入力が行われると互いに異なる機能を実行する複数の画像の配置位置と、前記操作入力の位置の時間的変化度合に応じて前記操作面に超音波帯の固有振動を発生させる駆動信号の振動パターンとを関連付けたデータを格納する格納部を有するコンピュータに、
     前記操作入力によってドラッグされるアイコンの位置を含む前記画像の配置位置に対応する前記駆動信号の振動パターンを選択して、前記振動素子を駆動することを実行させる、駆動制御プログラム。
  10.  表示部と、前記表示部の表示面側に配設され、操作面を有するトップパネルと、前記操作面に行われる操作入力の座標を検出する座標検出部と、前記操作面に振動を発生させる振動素子とを含む電子機器の前記振動素子を駆動する駆動制御方法であって、
     前記表示部に配置され、前記操作入力が行われると互いに異なる機能を実行する複数の画像の配置位置と、前記操作入力の位置の時間的変化度合に応じて前記操作面に超音波帯の固有振動を発生させる駆動信号の振動パターンとを関連付けたデータを格納する格納部を有するコンピュータが、
     前記操作入力によってドラッグされるアイコンの位置を含む前記画像の配置位置に対応する前記駆動信号の振動パターンを選択して、前記振動素子を駆動する、駆動制御方法。
PCT/JP2015/062949 2015-04-30 2015-04-30 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法 WO2016174760A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062949 WO2016174760A1 (ja) 2015-04-30 2015-04-30 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/062949 WO2016174760A1 (ja) 2015-04-30 2015-04-30 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法

Publications (1)

Publication Number Publication Date
WO2016174760A1 true WO2016174760A1 (ja) 2016-11-03

Family

ID=57199127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062949 WO2016174760A1 (ja) 2015-04-30 2015-04-30 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法

Country Status (1)

Country Link
WO (1) WO2016174760A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142938A1 (ja) * 2018-01-22 2019-07-25 株式会社丸和製作所 触覚付与装置およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107140A (ja) * 2004-10-05 2006-04-20 Sony Corp 触覚機能付きの入出力装置及び電子機器
JP2014102819A (ja) * 2012-11-20 2014-06-05 Immersion Corp ガイド及び静電的摩擦との協力のための触覚的な手がかり(HapticCues)を提供する方法及び装置
WO2015045059A1 (ja) * 2013-09-26 2015-04-02 富士通株式会社 駆動制御装置、電子機器、及び駆動制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107140A (ja) * 2004-10-05 2006-04-20 Sony Corp 触覚機能付きの入出力装置及び電子機器
JP2014102819A (ja) * 2012-11-20 2014-06-05 Immersion Corp ガイド及び静電的摩擦との協力のための触覚的な手がかり(HapticCues)を提供する方法及び装置
WO2015045059A1 (ja) * 2013-09-26 2015-04-02 富士通株式会社 駆動制御装置、電子機器、及び駆動制御方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142938A1 (ja) * 2018-01-22 2019-07-25 株式会社丸和製作所 触覚付与装置およびプログラム
JP2019128657A (ja) * 2018-01-22 2019-08-01 株式会社丸和製作所 触覚付与装置およびプログラム
US11054909B2 (en) 2018-01-22 2021-07-06 Maruwa Corporation Tactile sense provision apparatus and a control method

Similar Documents

Publication Publication Date Title
JP5780368B1 (ja) 駆動制御装置、電子機器、及び駆動制御方法
JP6183476B2 (ja) 電子機器及び駆動制御方法
WO2015045063A1 (ja) 駆動制御装置、電子機器、及び駆動制御方法
JP6332476B2 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
US20160349846A1 (en) Electronic device, input apparatus, and drive controlling method
US20180024638A1 (en) Drive controlling apparatus, electronic device, computer-readable recording medium, and drive controlling method
CN108292177B (zh) 电子设备
JPWO2015121958A1 (ja) 電子機器、入力装置、及び電子機器の駆動制御方法
JP6123850B2 (ja) 駆動制御装置、電子機器、及び駆動制御方法
JPWO2019092821A1 (ja) 駆動制御装置、電子機器、及び、駆動制御方法
JP6819783B2 (ja) 駆動制御装置、電子機器、及び駆動制御方法
WO2015121972A1 (ja) 駆動制御装置、電子機器、システム、及び駆動制御方法
US10359850B2 (en) Apparatus and method for switching vibration at panel surface
WO2016174760A1 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
WO2016092644A1 (ja) 電子機器及び駆動制御方法
WO2016178289A1 (ja) 電子機器及び振動制御プログラム
JP6512299B2 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
JP6399216B2 (ja) 駆動制御装置、電子機器、駆動制御プログラム、及び駆動制御方法
AU2015202408B2 (en) Drive controlling apparatus, electronic device and drive controlling method
JPWO2019130504A1 (ja) 電子機器
JP2016161953A (ja) 電子機器及び接触座標決定プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15890743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15890743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP