WO2015120692A1 - 一种多西他赛纳米聚合物胶束冻干制剂及其制备方法 - Google Patents

一种多西他赛纳米聚合物胶束冻干制剂及其制备方法 Download PDF

Info

Publication number
WO2015120692A1
WO2015120692A1 PCT/CN2014/082290 CN2014082290W WO2015120692A1 WO 2015120692 A1 WO2015120692 A1 WO 2015120692A1 CN 2014082290 W CN2014082290 W CN 2014082290W WO 2015120692 A1 WO2015120692 A1 WO 2015120692A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene glycol
glycol monomethyl
monomethyl ether
docetaxel
polylactic acid
Prior art date
Application number
PCT/CN2014/082290
Other languages
English (en)
French (fr)
Inventor
阮君山
杜鹏飞
王立勉
周欢
Original Assignee
苏州海特比奥生物技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州海特比奥生物技术有限公司 filed Critical 苏州海特比奥生物技术有限公司
Priority to US14/897,488 priority Critical patent/US10066052B2/en
Priority to JP2016522249A priority patent/JP6147427B2/ja
Publication of WO2015120692A1 publication Critical patent/WO2015120692A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/664Polyesters containing oxygen in the form of ether groups derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/81Preparation processes using solvents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones

Definitions

  • the invention belongs to the technical field of medicine, and in particular relates to a docetaxel nano polymer micelle freeze-dried preparation and a preparation method thereof.
  • Docetaxel also known as docetaxel, has a molecular formula of C 43 H 53 N0 14 and a molecular weight of 807.88. It is a paclitaxel antineoplastic agent that binds to free tubulin and promotes tubulin assembly. Stable microtubules, while inhibiting their depolymerization, result in the loss of normal function of microtubule bundles and microtubule fixation, thereby inhibiting cell mitosis and exerting anti-tumor effects. Clinically used for breast cancer, non-small cell lung cancer, pancreatic cancer, soft tissue sarcoma, head and neck cancer, stomach cancer, ovarian cancer and prostate cancer, both drugs alone and in combination have significant effects.
  • docetaxel has the disadvantages of poor water solubility, short half-life and high toxicity, which limits its clinical application.
  • domestic and foreign marketed docetaxel injection dissolves docetaxel in Tween-80.
  • Tween-80 In clinical applications, it is necessary to strictly use a special injection medium to make the dilution operation strict and the use method cumbersome.
  • the preparation contains a large amount of Tween, which may cause adverse reactions such as hemolysis and allergy. It is necessary to take dexamethasone and other drugs in advance to prevent and treat the drug. The clinical drug is inconvenient and the drug safety is low. So far, this problem has not been solved well.
  • Nano-polymer micelles are drug-loading systems developed in recent years for poorly soluble drugs, having a core-shell structure in which the core is a hydrophobic portion and the shell is a hydrophilic portion.
  • Polymer micelles can encapsulate poorly soluble drugs in the core to achieve solubilization of poorly soluble drugs.
  • the polymer micelle drug-loading system is highly safe because it selects biodegradable materials as materials. Therefore, as an encapsulating auxiliary material for poorly soluble drugs, it has a good application prospect.
  • Polyethylene glycol monomethyl ether-polylactic acid block polymer and docetaxel-prepared micelles have been tried in many techniques to solve this problem.
  • CN201110105540 discloses a polyethylene glycol monomethyl ether- Polylactic acid block polymer and docetaxel prepared micelles solve the problem of solubilization of docetaxel.
  • CN201010114289 discloses a technique for improving the stability of micelles after reconstitution by adding amino acids to polymer micelles, but the added substances are more demanding for industrial production, and the added stabilizers are increased.
  • the cumbersomeness of the preparation process, and the addition of amino acids and the like have a degrading effect on the main drug, and are not suitable for the production of large production. Summary of the invention
  • the present invention provides a docetaxel nano polymer micelle lyophilized preparation, wherein the docetaxel nano polymer micelle has a higher encapsulation efficiency after being dispersed with water. 90% of the time can reach more than 12 hours.
  • Another technical problem to be solved by the present invention is to provide a method for preparing the above docetaxel nanopolymer micelle lyophilized preparation and an application thereof.
  • a docetaxel nanopolymer micelle lyophilized preparation comprising polyethylene glycol monomethyl ether-polylactic acid block copolymer carrier material and docetaxel, docetaxel wrapped in a carrier
  • the mass ratio of docetaxel to the carrier material is 0.01 to 0.15
  • the polyethylene glycol monomethyl ether-polylactic acid block copolymer is D, L-lactide and polyethylene glycol single
  • the block copolymer formed by ring-opening polymerization of methyl ether has a mass ratio of polyethylene glycol monomethyl ether to D, L-lactide of 1:0.55-0.65 or 1:0.73-0.89 or 1:0.91-0.99.
  • the mass ratio of the polyethylene glycol monomethyl ether to the D, L-lactide has a great influence on the encapsulation efficiency of the synthesized block copolymer after water reconstitution after forming a micelle, so the polycondensation is strictly controlled.
  • the amount of ethylene glycol monomethyl ether and D, L-lactide is strictly controlled.
  • the mass ratio of the docetaxel to the carrier material is from 0.02 to 0.09.
  • the polyethylene glycol monomethyl ether has a molecular weight of from 1,000 to 20,000. Preferably, the polyethylene glycol monomethyl ether has a molecular weight of 2,000 or 5,000.
  • the invention also provides a preparation method of the above docetaxel nano polymer micelle lyophilized preparation, comprising the following steps:
  • the micelle solution prepared in the step (2) is sterilized by filtration and freeze-dried to obtain a docetaxel nano polymer micelle lyophilized preparation.
  • the polyethylene glycol monomethyl ether-polylactic acid block copolymer carrier material is prepared by the following method: weigh the formula amount of D, L-lactide and polyethylene glycol monomethyl ether for use, The formulated amount of polyethylene glycol monomethyl ether was vacuum dried in the reactor at 60-130 ° C for 2-8 h, replaced with nitrogen, then the formula amount of D, L-lactide was added, and then the catalyst stannous octoate was added.
  • the quality of stannous octoate accounts for 0.05% ⁇ 0.5wt% of the total mass of D, L-lactide and polyethylene glycol monomethyl ether, and then vacuum is applied to maintain the reaction temperature at 60 ⁇ 130 °C, to D, L After all the lactide has been melted, replace it with nitrogen three times, then vacuum again to ensure that the reactor is under negative pressure, sealed or protected by nitrogen, then warmed to 125 ⁇ 150 °C, the reaction is 6 ⁇ 20 h, the reaction is completed, and the reaction is light.
  • the organic solvent is any one or more of acetonitrile, methanol, acetone, dichloromethane, dimethylformamide, dimethyl hydrazine, tetrahydrofuran, acetone, short-chain fatty alcohol and ethyl acetate.
  • the organic solvent is used in an amount of 0.2 to 1 ml of an organic solvent per gram of the pale yellow clear viscous liquid.
  • the organic solvent is any one of acetonitrile, methanol, acetone or ethyl acetate.
  • anhydrous glacial ether is used in an amount of 5-10 ml of anhydrous glacial ether per gram of pale yellow clear viscous liquid.
  • water is added to the drug film in an amount of from 2 to 40 ml of water per gram of the polyethylene glycol monomethyl ether polylactic acid block copolymer carrier material, more preferably per gram of polyethylene glycol monomethyl ether.
  • the polylactic acid block copolymer carrier material is added with 5 to 25 ml of water.
  • the conditions for removing the organic solvent by rotary evaporation are: rotation speed 10 to 150 rpm, temperature 20 to 80 ° C, time l ⁇ 4ho
  • the block copolymer prepared by using a suitable mass ratio of polyethylene glycol monomethyl ether and D, L-lactide is used as a carrier material, and at the same time, a ratio of a suitable drug to a carrier material is selected, so that
  • the prepared docetaxel nano-polymer micelle lyophilized preparation can have an encapsulation efficiency of more than 90% after water dispersing for more than 12 hours, and the effect is far superior to the ordinary lyophilized preparation, which is in line with the actual situation of clinical drug application. To meet clinical requirements.
  • docetaxel is better encapsulated by the carrier, thereby improving stability.
  • Figure 1 is a CDCl ⁇ H NMR spectrum of a polyethylene glycol monomethyl ether polylactic acid block copolymer
  • Figure 2 is a GPC spectrum of polyethylene glycol monomethyl ether polylactic acid block copolymer
  • Figure 3 is a CDC1 3 1H NMR spectrum of the docetaxel polymer micelle lyophilized preparation
  • Figure 4 is a D 2 0 1H NMR spectrum of the docetaxel polymer micelle lyophilized preparation
  • Figure 5 is a CDC1 3 1H NMR spectrum of a polyethylene glycol monomethyl ether polylactic acid block copolymer
  • Figure 6 is an infrared spectrum of polyethylene glycol monomethyl ether polylactic acid block copolymer
  • Figure 7 is the infrared spectrum of docetaxel
  • Figure 8 is an infrared spectrum of docetaxel polymer micelles
  • Figure 9 is a thermal scan of docetaxel
  • Figure 10 is a thermal scanning spectrum of a polyethylene glycol monomethyl ether polylactic acid block copolymer
  • Figure 11 is a thermal scanning chromatogram of docetaxel polymer micelles.
  • Figure 1 is a graph showing the characterization of various hydrogens in a polyethylene glycol monomethyl ether-polylactic acid block copolymer, demonstrating the synthesis of a polyethylene glycol monomethyl ether-polylactic acid block copolymer.
  • the test results of Fig. 2 are as follows: Mp: 6330; Mn : 5887; Mw: 6374; Mz: 6873; Mz +1 : 7393; Mv: 6301; PDI: 1.08272.
  • Example 2 Preparation of Polyethylene Glycol Monomethyl Ether-Polylactic Acid Block Polymer.
  • a docetaxel nano polymer micelle lyophilized preparation was prepared according to the amount in Table 1, wherein the rotation speed was controlled between 10 and 150 rpm, and the temperature was between 20 and 80 °C. , time l ⁇ 4h.
  • Example 32 400 6 400 4000
  • Example 33 1 0.65 400 36 Methanol 600 5000
  • Example 34 400 60 800 6000
  • Example 35 400 8 400 4000 Short chain
  • Example 36 1:0.60 400 40 600 5000 Fatty alcohol
  • Example 37 400 55 800 6000
  • Example 38 400 4 400 4000 Short chain
  • Example 39 1:0.55 400 36 600 5000 Fatty alcohol
  • FIG. 3 is a CDC1 3 1H NMR spectrum of the docetaxel nanopolymer micelle lyophilized preparation prepared in Example 11
  • Figure 4 is a D of the docetaxel polymer micelle lyophilized preparation prepared in Example 11.
  • FIG. 5 is a CDC1 3 1H NMR spectrum of the polyethylene glycol monomethyl ether polylactic acid block copolymer prepared in Example 1. The results showed that docetaxel was encapsulated in the core of the micelle, and the characteristic absorption peak of docetaxel in the ⁇ NMR spectrum of the micelle was not observed.
  • Example 11 A small amount of the docetaxel nanopolymer micelle lyophilized preparation prepared in Example 11, the docetaxel and the polyethylene glycol monomethyl ether polylactic acid prepared in Example 1 were subjected to Fourier transform infrared spectroscopy. Scanning, the results are shown in Figures 6, 7, and 8, demonstrating that docetaxel is encapsulated in the core of the micelle without the characteristic absorption peak of docetaxel in the infrared spectrum of the micelle.
  • Example 12 A small amount of the docetaxel nanopolymer micelle lyophilized preparation prepared in Example 11, the docetaxel, and the polyethylene glycol monomethyl ether polylactic acid prepared in Example 1 were subjected to thermal analysis scanning, and the results were as follows. As shown in Fig. 9, Fig. 10 and Fig. 11, it was proved that docetaxel was encapsulated in the core of the micelle, and the characteristic absorption peak of docetaxel in the thermal scanning spectrum of the micelle was not observed.
  • Example 42 Detection results of encapsulation efficiency at different times after reconstitution of docetaxel nanopolymer micelle lyophilized preparation.
  • a reference drug was prepared in accordance with the prescription 17 (mass ratio of polyethylene glycol to polylactic acid of 1:1.2, drug loading of 6%) in Example 1 disclosed in CN201110105540.2.
  • a docetaxel nanopolymer micelle lyophilized preparation was prepared according to Example 11 of the present invention.
  • the experimental group was subjected to three parallel experiments, which were labeled as Example 11-1, Example 11-2, and Example 11- 3.
  • the preparations of the control group and the experimental group were dissolved in physiological saline to a concentration of 1 mg/ml (based on docetaxel) and the encapsulation efficiency was measured at room temperature (25 ⁇ 2 ° C) at different times. The results are shown in Table 2.
  • the encapsulation efficiency of the micelles by high-speed centrifugation (10000 r/min, lOmin), wherein the encapsulation ratio (1-free drug/total drug) X 100%.
  • the chromatographic conditions for the determination of the encapsulation efficiency of docetaxel polymer micelles were as follows: ODS was used as a filler, and O.043 mol/L ammonium acetate aqueous solution-acetonitrile (45:55) was used as a mobile phase, and the detection wavelength was 230 nm. The number of theoretical plates should be no less than 2000 according to the Docetaxel peak.
  • the encapsulation efficiency of the experimental group was still greater than 90% at 12h, while the control group had a burst at 0.5h.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Medicinal Preparation (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polyethers (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种多西他赛纳米聚合物胶束冻干制剂,所述冻干制剂包括聚乙二醇单甲醚-聚乳酸嵌段共聚物载体材料和多西他赛,多西他赛包裹于载体材料中,其中多西他赛与载体材料的质量比为0.01-0.15;所述的聚乙二醇单甲醚-聚乳酸嵌段共聚物为D,L-丙交酯与聚乙二醇单甲醚开环聚合形成的嵌段共聚物,聚乙二醇单甲醚与D,L-丙交酯的质量比为1:0.55-0.65或1:0.73-0.89或1:0.91-0.99.本发明还提供了上述嵌段共聚物的制备方法。以此嵌段共聚物作为载体制备药物胶束,可以是制备的药物胶束用水复溶后包封率大于90%的时间可以达到12个小时以上。

Description

一种多西他赛纳米聚合物胶束冻干制剂及其制备方法
技术领域
本发明属于医药技术领域, 具体地涉及一种多西他赛纳米聚合物胶束冻干制剂及 其制备方法。
背景技术
多西他赛 (docetaxel,DTX)亦称为多烯紫杉醇,分子式 C43H53N014,分子量为 807.88, 为紫杉醇类抗肿瘤药, 其可与游离的微管蛋白结合, 促进微管蛋白装配成稳定的微管, 同时抑制其解聚, 导致丧失了正常功能的微管束的产生和微管的固定, 从而抑制细胞的 有丝分裂, 发挥抗肿瘤作用。 临床用于乳腺癌、 非小细胞肺癌、 胰腺癌、 软组织肉瘤、 头颈癌、 胃癌、 卵巢癌和前列腺癌等, 单独用药和联合用药均有显著疗效。
但是, 多西他赛同时又具有水溶性差、 半衰期短及毒性大等缺点, 这就限制了它在 临床上的应用。 目前, 国内及国外市售的多西他赛注射液将多西他赛溶解于吐温 -80中, 临床应用中需要严格使用专用的注射用溶媒将其稀释操作要求严格且使用方法繁琐。并 且制剂中含有大量的吐温易引起溶血及过敏等不良反应, 需提前服用地塞米松等药物防 治, 临床用药不方便, 用药安全性低。 迄今为止, 此问题并未得到较好解决。
纳米聚合物胶束是近年来发展起来的针对难溶性药物的载药系统, 具有核-壳状结 构, 其中核为疏水性部分, 壳为亲水性部分。 聚合物胶束可以将难溶性药物包裹于核部 分达到对难溶性药物的增溶。 与常用的增溶剂和潜溶剂相比, 由于聚合物胶束载药系统 选择生物降解性材料为材料, 其安全性较高。 因此作为难溶性药物的包载辅料具有很好 的应用前景。 多项技术中将聚乙二醇单甲醚-聚乳酸嵌段聚合物和多西他赛制备成的胶 束, 试图解决这一难题, 如 CN201110105540公开了一种聚乙二醇单甲醚-聚乳酸嵌段聚 合物和多西他赛制备成的胶束, 解决了多西他赛的增溶性问题。
然而, 现有的聚乙二醇单甲醚 -聚乳酸嵌段聚合物和多西他赛制备成的胶束, 用水 分散后的稳定性较差, 很短时间药物就出现了泄露, 使得在临床应用时因其物理稳定性 不高而无法进一步推广和真正应用。 为了解决这一问题 CN201010114289公开了一种技 术通过在聚合物胶束中添加氨基酸的方法来提高胶束复溶后的稳定性,但是添加的物质 对于工业化生产要求较高, 并且添加的稳定剂增加了制剂工艺的繁琐性, 同时添加的氨 基酸等对主药有着降解作用, 不适合大生产的生产。 发明内容
发明目的: 为解决现有技术中存在的技术问题, 本发明提出一种多西他赛纳米聚合 物胶束冻干制剂,该多西他赛纳米聚合物胶束用水分散后其包封率大于 90%的时间可以 达到 12小时以上。
本发明要解决的另一个技术问题是提供上述多西他赛纳米聚合物胶束冻干制剂的 制备方法及其应用。
技术内容: 为实现上述技术目的, 本发明采取如下技术方案:
一种多西他赛纳米聚合物胶束冻干制剂, 所述冻干制剂包括聚乙二醇单甲醚 -聚乳 酸嵌段共聚物载体材料和多西他赛, 多西他赛包裹于载体材料中, 其中多西他赛与载体 材料的质量比为 0.01~0.15; 所述的聚乙二醇单甲醚-聚乳酸嵌段共聚物为 D,L-丙交酯与 聚乙二醇单甲醚开环聚合形成的嵌段共聚物,聚乙二醇单甲醚与 D,L-丙交酯的质量比为 1:0.55-0.65或 1:0.73~0.89或 1:0.91~0.99。 所述聚乙二醇单甲醚与 D,L-丙交酯的质量比 对合成后的嵌段共聚物在形成胶束后水复溶后的包封率影响很大, 因此要严格控制聚乙 二醇单甲醚与 D,L-丙交酯的用量。
优选地, 所述多西他赛与载体材料的质量比为 0.02~0.09。
所述聚乙二醇单甲醚的分子量为 1000~20000, 优选地, 聚乙二醇单甲醚的分子量 2000或 5000。
本发明还提出了上述多西他赛纳米聚合物胶束冻干制剂的制备方法, 包括如下步 骤:
( 1 ) 合成聚乙二醇单甲醚-聚乳酸嵌段共聚物载体材料;
(2)采用薄膜水化法制备载药胶束水溶液: 将配方量的多西他赛和步骤(1 )制备 的聚乙二醇单甲醚 -聚乳酸嵌段共聚物载体材料溶于有机溶剂中, 混合摇匀, 旋转蒸发 除去有机溶剂, 得到药物和载体材料的凝胶状药膜, 然后向药膜中加入水溶解分散所述 药膜, 制得胶束溶液; 其中, 所述的有机溶剂为乙腈、 甲醇、 丙酮、 二氯甲垸、 二甲基 甲酰胺、 二甲亚飒、 四氢呋喃、 丙酮、 短链脂肪醇和乙酸乙酯中的任意一种或几种, 有 机溶剂的用量为每克聚乙二醇单甲醚聚乳酸嵌段共聚物载体材料中加入 0.5~2ml的有机 溶剂, 优选地, 所述的有机溶剂为二氯甲垸、 甲醇、 丙酮或乙酸乙酯中的任意一种。
(3 )将步骤(2) 制得的胶束溶液经过滤除菌、 冷冻干燥后得到多西他赛纳米聚合 物胶束冻干制剂。 具体地, 所述聚乙二醇单甲醚-聚乳酸嵌段共聚物载体材料的通过下述方法制备: 称取配方量的 D,L-丙交酯和聚乙二醇单甲醚备用, 将配方量的聚乙二醇单甲醚在 60~130°C下在反应器中真空干燥 2~8h, 氮气置换, 然后加入配方量的 D,L-丙交酯, 再 投入催化剂辛酸亚锡, 辛酸亚锡的质量占 D,L-丙交酯和聚乙二醇单甲醚总质量的 0.05%~0.5wt%, 接着抽真空, 维持反应温度在 60~130°C, 待 D,L-丙交酯全部熔融后, 氮气置换三次, 然后再抽真空, 保证反应器中为负压, 密闭或氮气保护, 然后升温至 125~150°C, 反应 6~20 h, 反应完毕, 得淡黄色澄明粘稠的液体; 向所述淡黄色澄明粘 稠的液体中加入有机溶剂进行溶解, 搅拌 30~50min, 然后继续加入无水冰乙醚搅拌 20~40min, 在 0~5°C下静置 12~24h后, 抽滤后真空干燥, 即得聚乙二醇单甲醚-聚乳酸 嵌段共聚物。 其中, 所述的有机溶剂为乙腈、 甲醇、 丙酮、 二氯甲垸、 二甲基甲酰胺、 二甲亚飒、 四氢呋喃、 丙酮、 短链脂肪醇和乙酸乙酯中的任意一种或几种, 有机溶剂的 用量为每克淡黄色澄明粘稠的液体中加入 0.2~lml的有机溶剂, 优选地, 所述的有机溶 剂为乙腈、 甲醇、 丙酮或乙酸乙酯中的任意一种。 其中, 无水冰乙醚的用量为每克淡黄 色澄明粘稠的液体加入 5~10ml无水冰乙醚。
优选地, 向药膜中加入水的用量为每克聚乙二醇单甲醚聚乳酸嵌段共聚物载体材料 加入 2~40ml的水, 更为优选地为每克聚乙二醇单甲醚聚乳酸嵌段共聚物载体材料加入 5~25ml的水。
优选地, 在步骤(2) 中, 旋转蒸发去除有机溶剂的条件为: 旋转速度 10~150 rpm, 温度 20~80°C, 时间 l~4ho
有益效果:本发明的通过采用合适质量比的聚乙二醇单甲醚与 D,L-丙交酯制备的嵌 段共聚物为载体材料, 同时, 选择合适的药物与载体材料的比例, 使得制备出的多西他 赛纳米聚合物胶束冻干制剂水分散后包封率大于 90%的时间可以达到 12小时以上, 效 果远远优于普通的冻干制剂, 符合临床药品应用的实际情况, 从而满足临床的要求。 通 过优选胶束的分子量和载药量,使得多西他赛更好的被载体所包裹,从而提高了稳定性。 附图说明
图 1为聚乙二醇单甲醚聚乳酸嵌段共聚物的 CDCl^HNMR图谱;
图 2为聚乙二醇单甲醚聚乳酸嵌段共聚物 GPC图谱;
图 3为多西他赛聚合物胶束冻干制剂的 CDC13 1HNMR图谱; 图 4为多西他赛聚合物胶束冻干制剂的 D20 1HNMR图谱; 图 5为聚乙二醇单甲醚聚乳酸嵌段共聚物的 CDC13 1HNMR图谱;
图 6为聚乙二醇单甲醚聚乳酸嵌段共聚物红外光谱;
图 7为多西他赛的红外光谱;
图 8为多西他赛聚合物胶束红外图谱;
图 9为多西他赛的热扫描图谱;
图 10为聚乙二醇单甲醚聚乳酸嵌段共聚物热扫描图谱;
图 11为多西他赛聚合物胶束热扫描图谱。
具体实施方式 以下通过试验例的形式对本发明的上述内容再作进一步的详细说明,但不应将此理 解为本发明上述主题的范围仅限于以下的实例,凡基于本发明上述内容所实现的技术均 属于本发明的范围。
实施例 1 聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 51.07g D,L-丙交酯和 50.57g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000在 100°C下真空干燥 7 h, 氮气置换, 加入 D,L-丙交酯, 投入 0.2g催化剂辛酸 亚锡, 抽真空至真空度为 0.096Mpa, 密闭, 维持反应温度在 100°C, 待 D,L-丙交酯全部 熔融后, 氮气置换三次, 再抽真空, 保证反应器中为负压, 密闭, 升温至 140°C, 反应 12h, 反应完毕, 得淡黄色澄明粘稠的液体。
(2) 向步骤 (1 ) 得到的淡黄色澄明粘稠的液体中加入二氯甲垸, 加入 25ml的二 氯甲垸,搅拌 30min;然后加入 510 ml无水冰乙醚,搅拌 30min;然后在 0°C下静置 12h, 抽滤真空干燥, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 按上述操作过程, 进行三次精 制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 75%。 得到的聚合物用核磁共 振和凝胶色谱法进行表征, 结果如图 1和图 2。 图 1为聚乙二醇单甲醚-聚乳酸嵌段共聚 物中各种氢的表征, 证明合成了聚乙二醇单甲醚-聚乳酸嵌段共聚物。 图 2 的检测结果 如下: Mp:6330; Mn: 5887; Mw: 6374; Mz:6873; Mz+1:7393;Mv: 6301; PDI: 1.08272。 实施例 2聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 48.77g D,L-丙交酯和 51.27g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 120°C真空干燥 5 h, 氮气置换, 投入 D,L-丙交酯, 然后投入 0.048g催化剂 辛酸亚锡, 抽真空至真空度为 0.095Mpa, 维持反应温度在 120°C, 待 D,L-丙交酯全部熔 融后,氮气置换 3次,然后再抽真空,保证反应器中为负压,氮气保护,然后升温至 140°C, 反应 14h, 反应完毕, 得淡黄色澄明的液体。
(2) 向上述淡黄色澄明液体中加入 29 ml二氯甲垸进行溶解, 搅拌溶解; 然后加 入 586 ml冰无水乙醚, 搅拌 30 min; 5°C下静置 12 h, 然后抽滤真空干燥。 按上述操作 过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 85%。
实施例 3聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 47.53g D,L-丙交酯和 52.17g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 130°C真空干燥 7 h, 氮气置换, 投入 0.3g催化剂辛酸亚锡, 然后投入 D,L- 丙交酯, 抽真空至真空度为 0.093Mpa, 维持反应温度在 130°C, 待 D,L-丙交酯全部熔融 后, 氮气置换 3次, 再抽真空, 保证反应器中为负压, 密闭, 然后升温至 150°C, 反应 6 h, 反应完毕, 得淡黄色澄明的液体。
(2) 向步骤 (1 ) 中的淡黄色澄明的液体中加入 45ml二氯甲垸, 搅拌溶解; 然后 加入 550 ml冰无水乙醚, 搅拌 30min; 0°C下静置 12 h, 然后抽滤真空干燥。 按上述操 作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 80%。 实施例 4聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 47.11g D,L-丙交酯和 52.85g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 120°C真空干燥 4h, 然后投入投入 D,L-丙交酯, 再加入 0.4g催化剂辛酸亚 锡, 抽真空至真空度为 0.093Mpa, 维持反应温度在 120°C, 待 D,L-丙交酯全部熔融后, 再抽真空保证反应器中为负压, 密闭, 升温至 130°C, 反应 18h, 反应完毕, 得淡黄色 澄明粘稠的液体。
(2) 向步骤 (1 ) 得到的淡黄色澄明粘稠液体中加入 40ml二氯甲垸进行溶解, 搅 拌 30min; 然后加入 500ml无水冰乙醚体积, 搅拌 30min; 在 0°C静置 12h, 然后抽滤真 空干燥, 按上述操作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总 收率约为 80%。
实施例 5 聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 45.91g D,L-丙交酯和 54.06g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 120°C真空干燥 3 h, 氮气置换, 然后投入 D,L-丙交酯, 再投入 0.25g催化 剂辛酸亚锡, 抽真空, 维持反应温度在 120°C, 待 D,L-丙交酯全部熔融后, 氮气置换 3 次, 保证反应器中为负压, 密闭, 升温至 140°C, 反应 12h, 反应完毕, 得淡黄色澄明 粘稠的液体。
(2)向步骤( 1 )中得到的淡黄色澄明粘稠的液体中加入 50ml二氯甲垸,搅拌 30min; 然后加入 500ml无水冰乙醚体积, 搅拌 30min; 在 0°C静置 12h, 然后抽滤真空干燥, 按上述操作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 75%。
实施例 6 聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 44.45g D,L-丙交酯和 55.68g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 110°C真空干燥 5h, 氮气置换, 然后投入 D,L-丙交酯, 再投入 0.36g催化 剂辛酸亚锡, 抽真空至真空度为 0.09 Mpa, 维持反应温度在 110°C, 待 D,L-丙交酯全部 熔融后, 再抽真空, 保证反应器中为负压, 密闭, 控制升温至 140°C, 反应 14h, 反应 完毕, 得淡黄色澄明粘稠的液体。
(2)向步骤( 1 )中得到的淡黄色澄明粘稠的液体中加入 60ml二氯甲垸,搅拌 30min; 然后加入 660ml无水冰乙醚, 搅拌 30min; 在 0°C静置 12h, 然后抽滤真空干燥, 按上 述操作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 80%。 实施例 7 聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 39.51g D,L-丙交酯和 61.77g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 100°C真空干燥 6 h, 氮气置换, 然后投入 D,L-丙交酯, 再投入 0.08g催化 剂辛酸亚锡, 抽真空至真空度为 0.098Mpa, 维持反应温度在 100°C, 待 D,L-丙交酯全部 熔融后, 再抽真空, 保证反应器中为负压, 密闭, 控制升温至 140°C, 反应 12h, 反应 完毕, 得淡黄色澄明粘稠的液体。
(2)向步骤(1 )得到的淡黄色澄明粘稠的液体中加入 50ml二氯甲垸,搅拌 30min; 然后加入 540ml无水冰乙醚, 搅拌 30min; 在 0°C静置 12h, 然后抽滤真空干燥, 按上 述操作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 70%。 实施例 8 聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 42.17g D,L-丙交酯和 57.89g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 100°C真空干燥 8h, 氮气置换, 投入 D,L-丙交酯, 再投入 0.45g催化剂辛 酸亚锡, 抽真空至真空度为 0.095Mpa, 维持反应温度在 100°C, 待 D,L-丙交酯全部熔融 后, 再抽真空, 保证反应器中为负压, 密闭, 控制升温至 130°C, 反应 10 h, 反应完毕, 得淡黄色澄明粘稠的液体。
(2) 向步骤 (1 ) 得到的淡黄色澄明粘稠的液体中加入 75ml二氯甲垸进行溶解, 搅拌 30min; 然后加入 720ml无水冰乙醚体积, 搅拌 30min; 在 0°C静置 12h, 然后抽滤 真空干燥, 按上述操作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 80%。
实施例 9聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 37.53g D,L-丙交酯和 62.71g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 110°C真空干燥 6 h, 氮气置换, 然后投入 D,L-丙交酯, 再投入 O.lg催化剂 辛酸亚锡, 抽真空至真空度为 0.085 Mpa, 维持反应温度在 110°C, 待 D,L-丙交酯全部 熔融后, 再抽真空, 保证反应器中为负压, 密闭, 控制升温至 140°C, 反应 6h, 反应完 毕, 得淡黄色澄明粘稠的液体。
(2)向步骤(1 )得到的淡黄色澄明粘稠的液体中加入 40ml二氯甲垸,搅拌 30min; 然后加入 556ml无水冰乙醚, 搅拌 30min; 在 0°C静置 12 h, 然后抽滤真空干燥, 按上 述操作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 80%。 实施例 10 聚乙二醇单甲醚-聚乳酸嵌段聚合物的制备。
( 1 ) 称取 35.54g D,L-丙交酯和 64.68g聚乙二醇单甲醚 2000备用, 将聚乙二醇单 甲醚 2000于 100°C真空干燥 7h, 氮气置换, 投入 D,L-丙交酯, 再投入 0.08g催化剂辛 酸亚锡, 抽真空至真空度为 0.098Mpa, 氮气置换, 维持反应温度在 100°C, 待 D,L-丙交 酯全部熔融后, 再抽真空, 氮气保护, 控制升温至 140°C, 反应 12h, 反应完毕, 得淡 黄色澄明粘稠的液体。
(2) 向步骤 (1 ) 得到的淡黄色澄明粘稠的液体中加入 35ml二氯甲垸进行溶解, 搅拌 30min;然后按无水冰乙醚体积和淡黄色澄明粘稠的液体产物重量即 ml/g的比为 5: 1加入无水冰乙醚进行析出, 搅拌 30min; 0°C静置 12h, 然后抽滤真空干燥, 按上述操 作过程, 进行三次精制, 得聚乙二醇单甲醚-聚乳酸嵌段共聚物, 总收率约为 85%。 实施例 11多西他赛纳米聚合物胶束冻干制剂的制备。
( 1 ) 取多西他赛 20g, 实施例 1 制备的聚乙二醇单甲醚 -聚乳酸嵌段聚合物 400g (mPEG20oo: PLA=1:0.99), 水 4000 ml, 有机溶剂乙腈 400ml, 备用。
(2) 向备用的多西他赛中加入 1000ml乙腈, 进行超声溶解; 然后加入 400g聚乙 二醇单甲醚-聚乳酸嵌段聚合物, 继续溶解, 无菌过滤; 然后在 50°C、 80 r/min的转速下 旋蒸 2h, 蒸去乙腈得到多西他赛聚合物凝胶膜, 快速加入 4000g的 50°C的水进行涡旋 水化, 待完全水化后迅速将胶束溶液温度降至 5°C, 得胶束溶液, 然后无菌过滤, 分装, 冻干。 实施例 12~40 多西他赛纳米聚合物胶束冻干制剂的制备。
参照实施例 11的制备方法, 按照表 1中的用量制备多西他赛纳米聚合物胶束冻干 制剂, 其中, 旋转速度控制在 10~150 rpm之间, 温度在 20~80°C之间, 时间 l~4h。
表 1
Figure imgf000010_0001
实施例 32 400 6 400 4000 实施例 33 1:0.65 400 36 甲醇 600 5000 实施例 34 400 60 800 6000 实施例 35 400 8 400 4000 短链
实施例 36 1:0.60 400 40 600 5000 脂肪醇
实施例 37 400 55 800 6000 实施例 38 400 4 400 4000 短链
实施例 39 1:0.55 400 36 600 5000 脂肪醇
实施例 40 400 40 800 6000
实施例 41 多西他赛纳米聚合物胶束冻干制剂的表征。
( 1 ) 图 3为实施例 11制备的多西他赛纳米聚合物胶束冻干制剂的 CDC13 1HNMR 图谱, 图 4为实施例 11制备的多西他赛聚合物胶束冻干制剂的 D20 1HNMR图谱, 图 5 为实施例 1制备的聚乙二醇单甲醚聚乳酸嵌段共聚物的 CDC13 1HNMR图谱。结果表明 多西他赛被包裹在胶束核心, 未见胶束的 ^NMR图谱中多西他赛的特征吸收峰。
(2)取少量的实施例 11制备的多西他赛纳米聚合物胶束冻干制剂、 多西他赛和实 施例 1制备的聚乙二醇单甲醚聚乳酸进行傅里叶变换红外光谱扫描, 结果如图 6、 图 7 和图 8所示, 证明多西他赛被包裹在胶束核心, 未见胶束的红外图谱中多西他赛的特征 吸收峰。
(3 )取少量的实施例 11制备的多西他赛纳米聚合物胶束冻干制剂、 多西他赛和实 施例 1制备的聚乙二醇单甲醚聚乳酸进行热分析扫描,结果如图 9、 图 10和图 11所示, 证明多西他赛被包裹在胶束核心, 未见胶束的热扫描图谱中多西他赛的特征吸收峰。 实施例 42多西他赛纳米聚合物胶束冻干制剂复溶后不同时间包封率检测结果。
按照 CN201110105540.2公开的实施例 1 中的处方 17 (聚乙二醇与聚乳酸的质量比为 1:1.2, 载药量为 6% )制备对照药。 按照本发明实施例 11制备多西他赛纳米聚合物胶束 冻干制剂, 为实验组, 实验组做 3个平行实验, 标记为实施例 11-1、 实施例 11-2和实 施例 11-3。 分别取对照组和实验组制剂加入生理盐水溶解, 至浓度 lmg/ml (以多西他 赛计) 放置室温 (25±2°C ) 下于不同的时间检测其包封率。 结果见表 2。 采用高速离心法 (10000r/min, lOmin) 胶束的包封率, 其中, 包封率 = ( 1-游离药 物 /总药物) X 100%。 HPLC 测定多西他赛聚合物胶束的包封率时所用色谱条件为: 以 ODS为填充剂, O.043mol/L醋酸铵水溶液 -乙腈(45: 55)为流动相,检测波长为 230nm。 理论板数按多西他赛峰计算应不低于 2000。
表 2多西他赛纳米聚合物胶束冻干制剂复溶后不同时间包封率检测结果
Figure imgf000012_0001
如表 2所示, 实验组药物在 12h时候其包封率仍大于 90%, 而对照组药物在 0.5h 时候就发生了突释。

Claims

1、 一种多西他赛纳米聚合物胶束冻干制剂, 其特征在于, 所述冻干制剂包括聚乙 二醇单甲醚-聚乳酸嵌段共聚物载体材料和多西他赛, 多西他赛包裹于载体材料中, 其 中多西他赛与载体材料的质量比为 0.01~0.15; 所述的聚乙二醇单甲醚-聚乳酸嵌段共聚 物为 D,L-丙交酯与聚乙二醇单甲醚开环聚合形成的嵌段共聚物,聚乙二醇单甲醚与 D,L- 丙交酯的质量比为 1:0.55-0.65或 1:0.73-0.89或 1:0.91 0.99。
2、 根据权利要求 1所述的多西他赛纳米聚合物胶束冻干制剂, 其特征在于, 所述 的多西他赛与载体材料的质量比为 0.02~0.09。
3、 根据权利要求 1所述的多西他赛纳米聚合物胶束冻干制剂, 其特征在于, 所述 聚乙二醇单甲醚的分子量为 1000~20000。
4、 权利要求 1所述的多西他赛纳米聚合物胶束冻干制剂的制备方法, 其特征在于, 包括如下步骤:
( 1 ) 合成聚乙二醇单甲醚-聚乳酸嵌段共聚物载体材料;
(2)采用薄膜水化法制备载药胶束水溶液: 将配方量的多西他赛和步骤(1 )制备 的聚乙二醇单甲醚 -聚乳酸嵌段共聚物载体材料溶于有机溶剂中, 混合摇匀, 旋转蒸发 除去有机溶剂, 得到药物和载体材料的凝胶状药膜, 然后向药膜中加入水溶解分散所述 药膜, 制得胶束溶液;
(3 )将步骤(2) 制得的胶束溶液经过滤除菌、 冷冻干燥后得到多西他赛纳米聚合 物胶束冻干制剂。
5、 根据权利要求 4所述的制备方法, 其特征在于, 所述聚乙二醇单甲醚-聚乳酸嵌 段共聚物载体材料的通过下述方法制备:称取配方量的 D,L-丙交酯和聚乙二醇单甲醚备 用, 将配方量的聚乙二醇单甲醚在 60~130°C下在反应器中真空干燥 2~8h, 氮气置换, 然后加入配方量的 D,L-丙交酯, 再投入催化剂辛酸亚锡, 辛酸亚锡的质量占 D,L-丙交 酯和聚乙二醇单甲醚总质量的 0.05%~0.5wt%,接着抽真空,维持反应温度在 60~130°C, 待 D,L-丙交酯全部熔融后, 氮气置换三次, 然后再抽真空, 保证反应器中为负压, 密闭 或氮气保护, 然后升温至 125~150°C, 反应 6~20 h, 反应完毕, 得淡黄色澄明粘稠的液 体; 向所述淡黄色澄明粘稠的液体中加入有机溶剂进行溶解, 搅拌 30~50min, 然后继 续加入无水冰乙醚搅拌 20~40min, 在 0~5°C下静置 12~24h后, 抽滤后真空干燥, 即得 聚乙二醇单甲醚-聚乳酸嵌段共聚物。
6、 根据权利要求 5所述的方法, 其特征在于, 所述的有机溶剂为乙腈、 甲醇、 丙 酮、 二氯甲垸、 二甲基甲酰胺、 二甲亚飒、 四氢呋喃、 丙酮、 短链脂肪醇和乙酸乙酯中 的任意一种或几种, 有机溶剂的用量为每克淡黄色澄明粘稠的液体中加入 0.2~lml的有 机溶剂。
7、 根据权利要求 5 所述的方法, 其特征在于, 每克淡黄色澄明粘稠的液体加入 5~10ml无水冰乙醚。
8、 根据权利要求 4所述的制备方法, 其特征在于, 步骤 (2) 中所述的有机溶剂选 自乙腈、 甲醇、 丙酮、 二氯甲垸、 二甲基甲酰胺、 二甲亚飒、 四氢呋喃、 丙酮、 短链脂 肪醇、 乙酸乙酯中的任意一种或几种, 有机溶剂的用量为每克聚乙二醇单甲醚聚乳酸嵌 段共聚物载体材料中加入 0.5~2 ml的有机溶剂。
9、 根据权利要求 4所述的制备方法, 其特征在于, 步骤 (2) 中, 向药膜中加入水 的用量为每克聚乙二醇单甲醚聚乳酸嵌段共聚物载体材料中加入 2~40ml的水。
10、 根据权利要求 4所述的制备方法, 其特征在于, 步骤 (2) 中, 旋转蒸发去除 有机溶剂的条件为: 旋转速度 10~150 rpm, 温度 20~80°C, 时间 l~4h。
PCT/CN2014/082290 2014-02-14 2014-07-16 一种多西他赛纳米聚合物胶束冻干制剂及其制备方法 WO2015120692A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/897,488 US10066052B2 (en) 2014-02-14 2014-07-16 Docetaxel nano-polymer micelle lyophilized preparation and preparation method thereof
JP2016522249A JP6147427B2 (ja) 2014-02-14 2014-07-16 ドセタキセルのナノポリマーミセルの凍結乾燥製剤の調製方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410050783 2014-02-14
CN201410050783.4 2014-02-14
CN201410326208.2 2014-07-10
CN201410326208.2A CN104758256B (zh) 2014-02-14 2014-07-10 一种多西他赛纳米聚合物胶束冻干制剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2015120692A1 true WO2015120692A1 (zh) 2015-08-20

Family

ID=53640592

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2014/082290 WO2015120692A1 (zh) 2014-02-14 2014-07-16 一种多西他赛纳米聚合物胶束冻干制剂及其制备方法
PCT/CN2014/082293 WO2015120693A1 (zh) 2014-02-14 2014-07-16 一种聚乙二醇单甲醚-聚乳酸嵌段共聚物及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082293 WO2015120693A1 (zh) 2014-02-14 2014-07-16 一种聚乙二醇单甲醚-聚乳酸嵌段共聚物及其制备方法

Country Status (4)

Country Link
US (2) US9683073B2 (zh)
JP (2) JP6250802B2 (zh)
CN (2) CN104758256B (zh)
WO (2) WO2015120692A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101748191B1 (ko) * 2015-07-28 2017-06-19 주식회사 삼양바이오팜 보관 안정성이 향상된 약학 조성물 및 그의 제조 방법
US20170028068A1 (en) 2015-07-29 2017-02-02 Samyang Biopharmaceuticals Corporation Pharmaceutical composition with improved storage stability and method for preparing the same
CN105343000A (zh) * 2015-10-16 2016-02-24 姚俊华 一种多西他赛胶束聚合物的制备方法和应用
CN106995528B (zh) * 2016-01-26 2020-01-10 浙江大学 一种聚乙二醇单甲醚-聚乳酸嵌段共聚物的精制方法
CN106361697B (zh) * 2016-08-26 2019-06-07 四川兴康脉通医疗器械有限公司 一种含有布洛芬的载紫杉醇胶束聚合物、制剂及制备方法
WO2018047074A1 (en) 2016-09-07 2018-03-15 Cadila Healthcare Limited Sterile injectable compositions comprising drug micelles
CN106589337B (zh) * 2016-12-12 2019-07-02 上海交通大学医学院附属第九人民医院 可降解生物薄膜、其制备方法以及硝唑类缓释制剂
CN108309936B (zh) * 2018-04-02 2020-04-28 新疆农业大学 载番茄红素自组装纳米胶束及其制备方法
CN108498854B (zh) * 2018-04-27 2021-06-15 温州医科大学附属第二医院(温州医科大学附属育英儿童医院) 一种负载纳米缓释药物胶束和载银微球的膨胀海绵及其制备方法及用途
CN109172520A (zh) * 2018-09-11 2019-01-11 沈阳东星医药科技有限公司 一种紫杉烷类衍生物tm-2胶束注射液及其制备方法与应用
CN110917149A (zh) * 2018-12-26 2020-03-27 银谷制药有限责任公司 一种包载难溶性抗肿瘤药物的聚合物胶束冻干制剂
CN110358063B (zh) * 2019-04-19 2021-10-19 深圳普洛美康材料有限公司 嵌段共聚物mPEG-b-PLA的制备方法
CN110585140A (zh) * 2019-07-08 2019-12-20 苏州海特比奥生物技术有限公司 一种和厚朴酚纳米聚合物胶束冻干制剂及其制备方法
CN110922816B (zh) * 2019-12-06 2021-07-23 山东方大杭萧钢构科技有限公司 一种低voc含量的水性膨胀钢结构防火涂料及其制备方法
CN111888523A (zh) * 2020-09-08 2020-11-06 尹振宇 一种用于改善肌肤的聚乳酸凝胶的制备方法
CN114712312B (zh) * 2020-12-18 2023-10-24 浙江圣兆药物科技股份有限公司 一种控制微球活性成分释放的方法
CN113197852B (zh) * 2021-04-20 2022-12-09 上海应用技术大学 大麻二酚纳米胶束制剂及其制备方法
CN113476402B (zh) * 2021-07-05 2023-08-01 苏州大学 一种多西他赛胶束纳米药物及其制备方法与应用
CN117999304A (zh) * 2021-09-03 2024-05-07 南京再明医药有限公司 一种疏水性药物聚合物胶束及其制备方法
WO2023082634A1 (zh) * 2021-11-10 2023-05-19 渼颜空间(河北)生物科技有限公司 一种可生物降解的共聚物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101804021A (zh) * 2010-04-21 2010-08-18 山东大学 载多烯紫杉醇纳米粒混合胶束制剂及冻干剂的制备方法
CN101972480A (zh) * 2010-01-19 2011-02-16 南京泛太化工医药研究所 以氨基酸为稳定剂的多西他赛聚合物胶束药物组合物
CN102219892A (zh) * 2010-06-30 2011-10-19 上海谊众生物技术有限公司 聚乙二醇单甲醚-dl-聚乳酸嵌段共聚物的制备方法
CN102885772A (zh) * 2012-09-29 2013-01-23 山东大学 一种载多烯紫杉醇混合胶束制剂及其制备方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010022708A (ko) * 1997-08-08 2001-03-26 프레드한 아룬디프 에스 약물 수송에 이용할 수 있는 생분해가능한 주사용 블록공중합체 겔
KR100360827B1 (ko) * 1999-08-14 2002-11-18 주식회사 삼양사 난용성 약물을 가용화하기 위한 고분자 조성물 및 그의 제조방법
KR100446101B1 (ko) * 2000-12-07 2004-08-30 주식회사 삼양사 수난용성 약물의 서방성 제형 조성물
CN1206002C (zh) * 2002-12-02 2005-06-15 天津大学 组合聚合物药物胶束及其制备方法
US20040247624A1 (en) * 2003-06-05 2004-12-09 Unger Evan Charles Methods of making pharmaceutical formulations for the delivery of drugs having low aqueous solubility
TW200624464A (en) * 2004-12-31 2006-07-16 Ind Tech Res Inst Amphiphilic block copolymer and pharmaceutical formulation comprising the same
CN100352508C (zh) * 2005-01-17 2007-12-05 涂家生 一种眼用嵌段聚合物
KR101024742B1 (ko) * 2007-12-31 2011-03-24 주식회사 삼양사 탁산 함유 양친성 블록 공중합체 미셀 조성물 및 그 제조방법
JP2010059354A (ja) * 2008-09-05 2010-03-18 Kyoto Institute Of Technology ポリ乳酸組成物
JP5449388B2 (ja) * 2008-11-21 2014-03-19 サミャン バイオファーマシューティカルズ コーポレイション 耐性がん治療用高分子ミセル組成物及びその製造方法
CN101422615B (zh) * 2008-12-09 2013-01-23 沈阳药科大学 一种冬凌草甲素聚合物胶束给药制剂及制备方法
EP2201935B1 (en) * 2008-12-26 2020-07-08 Samyang Biopharmaceuticals Corporation Polymeric micelle composition containing a poorly soluble drug and preparation method of the same
CN101444510B (zh) * 2008-12-31 2011-03-09 南京卡文迪许生物工程技术有限公司 含有伏立康唑的药物制剂及其制备方法
US8883955B2 (en) * 2009-06-19 2014-11-11 Toyo Engineering Corporation Method for producing polylactic acid
EP2460539A4 (en) * 2009-07-31 2013-12-04 Xi An Libang Medical Technology Co Ltd MEDICAMENT IN THE FORM OF NANO OR MICROBALLS, METHOD FOR THE PRODUCTION THEREOF AND COMPOSITION THEREOF AND USE THEREOF
CN101732234A (zh) * 2010-01-19 2010-06-16 山东大学 载有多西他赛的嵌段聚合物胶束冻干制剂的制备方法
CN102181048B (zh) * 2011-03-11 2015-02-25 上海谊众生物技术有限公司 一种生物医用聚醚/聚酯嵌段共聚物的制备方法
CN102218027B (zh) * 2011-04-22 2014-07-02 上海谊众生物技术有限公司 一种包载难溶性抗肿瘤药物的聚合物胶束冻干制剂
CN102266294B (zh) * 2011-07-25 2012-12-05 浙江大学 一种包载亲水性药物的微球制剂及其制备方法
CN102274163B (zh) * 2011-08-12 2013-01-02 山东大学 一种姜黄素纳米胶束制剂及其制备方法
CN103772686B (zh) * 2012-10-26 2015-01-07 苏州雷纳药物研发有限公司 一种两亲性嵌段共聚物及其制备方法、以及该共聚物与抗肿瘤药物形成的胶束载药系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972480A (zh) * 2010-01-19 2011-02-16 南京泛太化工医药研究所 以氨基酸为稳定剂的多西他赛聚合物胶束药物组合物
CN101804021A (zh) * 2010-04-21 2010-08-18 山东大学 载多烯紫杉醇纳米粒混合胶束制剂及冻干剂的制备方法
CN102219892A (zh) * 2010-06-30 2011-10-19 上海谊众生物技术有限公司 聚乙二醇单甲醚-dl-聚乳酸嵌段共聚物的制备方法
CN102885772A (zh) * 2012-09-29 2013-01-23 山东大学 一种载多烯紫杉醇混合胶束制剂及其制备方法

Also Published As

Publication number Publication date
US20160137775A1 (en) 2016-05-19
WO2015120693A1 (zh) 2015-08-20
JP2016528187A (ja) 2016-09-15
CN104761710B (zh) 2016-06-29
CN104758256A (zh) 2015-07-08
JP2016523302A (ja) 2016-08-08
JP6250802B2 (ja) 2017-12-20
US9683073B2 (en) 2017-06-20
US10066052B2 (en) 2018-09-04
CN104758256B (zh) 2016-05-04
US20160128940A1 (en) 2016-05-12
JP6147427B2 (ja) 2017-06-14
CN104761710A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2015120692A1 (zh) 一种多西他赛纳米聚合物胶束冻干制剂及其制备方法
Danafar Study of the composition of polycaprolactone/poly (ethylene glycol)/polycaprolactone copolymer and drug-to-polymer ratio on drug loading efficiency of curcumin to nanoparticles
Khan et al. Process optimization of ecological probe sonication technique for production of rifampicin loaded niosomes
Wan et al. Structure‐guided engineering of cytotoxic cabazitaxel for an adaptive nanoparticle formulation: Enhancing the drug safety and therapeutic efficacy
CN110218312B (zh) 具有高效药物负载性能的聚合物的制备方法
CN103768013A (zh) 以精制两亲性嵌段共聚物为载体的紫杉醇聚合物胶束
Yang et al. l-Carnitine conjugated chitosan-stearic acid polymeric micelles for improving the oral bioavailability of paclitaxel
CN106317416B (zh) 一种双pH响应的两亲性共聚物及其制备方法和用途
Hu et al. Core cross-linked polyphosphoester micelles with folate-targeted and acid-cleavable features for pH-triggered drug delivery
CN105232459B (zh) 一种复溶自组装的水难溶性药物聚合物胶束组合物及其制备方法
WO2009084801A1 (en) Amphiphilic block copolymer micelle composition containing taxane and manufacturing process of the same
Jiang et al. Facile Fabrication of Thermo‐Responsive and Reduction‐Sensitive Polymeric Micelles for Anticancer Drug Delivery
Gu et al. Reverse micelles based on biocompatible β-cyclodextrin conjugated polyethylene glycol block polylactide for protein delivery
Ma et al. Iminoboronate-based dual-responsive micelles via subcomponent self-assembly for hydrophilic 1, 2-diol-containing drug delivery
Jin et al. Rational design of shear-thinning supramolecular hydrogels with porphyrin for controlled chemotherapeutics release and photodynamic therapy
Hu et al. Paclitaxel prodrug nanoparticles combining chemical conjugation and physical entrapment for enhanced antitumor efficacy
Ye et al. Development of a pluronic-zein-curcumin drug delivery system with effective improvement of hydrophilicity, stability and sustained-release
CN103159959A (zh) 一种m-plga-tpgs星型两亲性共聚物及其制备方法与应用
CN106995528B (zh) 一种聚乙二醇单甲醚-聚乳酸嵌段共聚物的精制方法
Zhang et al. Preparation of core cross-linked PCL-PEG-PCL micelles for doxorubicin delivery in vitro
Cunningham et al. Polymers made of bile acids: From soft to hard biomaterials
Liu et al. pH responsive self-assembly and drug release behavior of aliphatic liquid crystal block polycarbonate with pendant cholesteryl groups
CN110585140A (zh) 一种和厚朴酚纳米聚合物胶束冻干制剂及其制备方法
Chen et al. Indometacin-loaded micelles based on star-shaped PLLA-TPGS copolymers: effect of arm numbers on drug delivery
He et al. Photo-cross-linked poly (ether amine) micelles for controlled drug release

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882723

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14897488

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016522249

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882723

Country of ref document: EP

Kind code of ref document: A1