WO2015120670A1 - 一种高纯度四环庚烷的连续制备方法 - Google Patents

一种高纯度四环庚烷的连续制备方法 Download PDF

Info

Publication number
WO2015120670A1
WO2015120670A1 PCT/CN2014/078212 CN2014078212W WO2015120670A1 WO 2015120670 A1 WO2015120670 A1 WO 2015120670A1 CN 2014078212 W CN2014078212 W CN 2014078212W WO 2015120670 A1 WO2015120670 A1 WO 2015120670A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reactor
tetracycloheptane
composite catalyst
rectification
Prior art date
Application number
PCT/CN2014/078212
Other languages
English (en)
French (fr)
Inventor
邹吉军
张香文
王莅
王庆法
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Priority to US14/409,448 priority Critical patent/US9944574B2/en
Publication of WO2015120670A1 publication Critical patent/WO2015120670A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/2266Catalytic processes not covered by C07C5/23 - C07C5/31 with hydrides or organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/2213Catalytic processes not covered by C07C5/23 - C07C5/31 with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/222Catalytic processes not covered by C07C5/23 - C07C5/31 with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0205Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
    • B01J31/0208Ketones or ketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Definitions

  • Tetracycloheptane is an important high-energy space fuel with a density of 0.98 g'cm-3 and a water point below -401 C. It can be used in aerospace propulsion systems such as rockets, missiles, satellites and spacecraft, compared with kerosene fuels.
  • the advantage of high energy has the advantage of high safety compared with terpene fuel.
  • Tetracycloheptane is synthesized by photochemical method, using norbornadiene as raw material, ultraviolet light irradiation, organic photosensitizer or solid photocatalyst as a catalyst for the reaction, and tetracycloheptane is formed by intramolecular addition reaction of norbornadiene.
  • the existing photocatalytic norbornadiene isomerization reaction generally uses a high pressure or medium pressure mercury lamp, and the light generates a large amount of heat, which needs to be cooled by a quartz cooling jacket transparent to ultraviolet light.
  • a quartz cooling jacket transparent to ultraviolet light.
  • some side reactions occur, mainly due to the polymerization of the reactants under light induction, formation of cokings and adhesion to the outer surface of the quartz jacket, hindering the transmission of light, and slow or even stop.
  • quartz reactors are difficult to clean, fragile, and costly.
  • U.S. Patent No. 2004/0054244 A1 is to inhibit the coking reaction during the reaction, adding an amine inhibitor to the reactant, and designing a flow-type circulating quartz reactor using a 1300 W medium pressure mercury lamp containing 0.4% ethyl.
  • the reaction solution of the methyl ketone was flowed at a flow rate of 1.2 ml/min, and after the reaction for 25 hours, the conversion rate was close to 100%.
  • the photosensitizer is directly retained in tetracycloheptane and is not purified.
  • German patent DE3625006A1 is designed with a rotating brush that reacts with a photosensitizer. During the reaction, the brush is used to remove the coke on the wall of the quartz.
  • the present invention aims to provide a novel tetracycloheptane preparation process, and realize a continuous preparation method of high-purity tetracycloheptane by reaction and separation and purification integration. Summary of the invention
  • the present invention relates to a continuous preparation method of high-purity tetracycloheptane, which is a reaction-integrated method, comprising the following steps:
  • the reactant norbornadiene is introduced into the reaction "integrated reactor.
  • the outside of the reactor is a stainless steel cylinder, and a quartz tube is arranged inside.
  • the quartz tube is provided with an ultraviolet light source, and the quartz tube and the stainless steel tube are filled with a fine filler and a compounding agent, wherein the rectifying filler and the composite catalyst in the form of particles are mixed together in a disordered form, or the surface of the fine cerium filler is covered with the composite catalyst layer, which is introduced
  • the norbornadiene flows through the surface of the composite catalyst and its internal pores in the form of a liquid film or a gas-liquid mixture, and reacts to form a reaction product including tetracycloheptane and a cok; at the same time,
  • the norbornadiene Under the rectification provided by the reaction "ilt ⁇ integrated reactor, the norbornadiene is gradually moved toward the top of the reaction" and the reaction continues, and the unreacted norbornadiene leaves the top. After condensing, it enters the reaction-prefining integrated reactor as a circulating reactant; the product tetracycloheptane and the cok are moved to the bottom of the reaction integrated reactor under rectification and discharged at the bottom.
  • the distillation was carried out in a distillation pot to obtain a tetracycloheptane having a purity higher than 99.5% at the top of the distillation vessel, and a coke was obtained at the bottom of the distillation vessel.
  • the present invention relates to a process for the continuous preparation of high-purity tetracyclic heptafluorene, which is a method of first reaction-post-rectification, comprising the following steps:
  • the reactant norbornadiene is introduced into the reactor.
  • the outside of the reactor is a stainless steel cylinder, and a quartz tube is arranged inside.
  • the quartz tube is provided with an ultraviolet light source, and a composite catalyst particle is filled between the quartz tube and the stainless steel tube.
  • the introduced precipitation sheet diene flows in the form of a liquid film through the surface of the composite catalyst and its internal pores and reacts to form a reaction product including tetracycloheptane and a cok;
  • the composite catalyst comprises: a solid photocatalyst; which is selected from the group consisting of Ti0 2 , Ti-MCM- 41, Ti-SBA-15, Zn0, W0 3 , Ta 2 0 5 Or SrTi0 3 ; an organic photosensitizer supported on the surface or the channel of the solid photocatalyst, the organic photosensitizer being selected from the group consisting of dibenzophenone, acetophenone, Methyl ketone, tetraethyl ketone, diethyl rice Ketone; The organic photosensitizer accounts for 0.5% to 20% by weight of the solid photocatalyst.
  • the ultraviolet light source is used to provide ultraviolet light to induce luminescence isomerization.
  • the quartz tube itself is chemically inert and has a certain strength to protect the ultraviolet light source, and the quartz tube itself is transparent and is transparent to ultraviolet light.
  • the reaction-prefining integrated reactor or the reactor can be made into a detachable structure as needed, facilitating cleaning and replacement of the catalyst and the rectified packing, or Clean and replace the catalyst, as well as inspect and repair the quartz tube and UV source.
  • the structural parameters of the reaction reactor of the first aspect are as follows:
  • the rectified filler and the composite catalyst filled between the quartz tube and the stainless steel cylinder have a radial thickness of 1 to 10 cm and a height of not less than 100 cm.
  • the specific parameters can be adjusted with the amount of material to be processed.
  • the process of the first embodiment is as follows: the top temperature is 90 ⁇ 95 ⁇ , the bottom temperature is 100 ⁇ 105 ⁇ , the pressure is normal pressure, and the reflux ratio is 0.5 ⁇ 2.
  • the process conditions in the steaming kettle described in the first aspect are as follows: temperature 60 to 65, pressure 90 to 110 mbar.
  • the pressure values described herein are all gauge pressures.
  • the process conditions in the reactor described in the second aspect are as follows:
  • the composite catalyst has a radial thickness of 1 to 10 cm, and the temperature has no special requirements, and the pressure is normal pressure.
  • the process conditions in the fine tower described in the second aspect are as follows:
  • the tower height is not lower than
  • the first temperature is 90 ⁇ 95 ⁇
  • the bottom temperature is 100 ⁇ 1051C
  • the pressure is normal pressure
  • the reflux ratio is 0.5 ⁇ 2.
  • the process conditions in the steaming kettle described in the second aspect are as follows: temperature 60 to 65, and pressure 90 to 110 mbar.
  • the catalyst used in the present invention is a composite catalyst, that is, an organic photosensitizer is combined with a solid photocatalyst, and the inventors have surprisingly found that after the organic photosensitizer is supported on the solid photocatalyst, a certain The synergistic effect can greatly improve the efficiency of the photocatalytic isomerization reaction.
  • the reaction time can be reduced from 20 hours to less than 10 hours in the prior art.
  • the present invention also employs a fixed bed reactor structure in which the reactants flow through the surface of the composite catalyst and its internal pores in the form of a liquid film or a gas-liquid mixture, and the contact area with the catalyst is larger, and the light utilization efficiency is higher.
  • the upper reactor can accelerate the reaction with a higher temperature than the agitation reaction. Since the cooling problem of the light source is not considered, a more powerful light source can be used, so that the reaction can be greatly reduced under the same product yield compared to the conventional stirring reaction. time. Therefore, in the present invention, the one-way residence time of the reactant can be reduced. Less than 40 ⁇ 130 minutes. The reduction in one-way residence time will greatly reduce the coking side reaction, which is beneficial to reduce the formation of coke and maintain the cleanness of the reactor for long-term stable operation.
  • An important feature of the first aspect of the present invention is the use of a reaction-rectification integrated reactor by filling a rectifying filler and a composite catalyst particle between a quartz tube and a stainless steel cylinder, the fine ruthenium filler and the composite catalyst granule being The sequence forms are mixed together, or the surface of the fine ruthenium filler is covered with the composite catalyst layer, so that the reactor can also be used as a refinery tower.
  • the lower boiling point of the precipitation sheet diene is reacted.
  • the top of the device moves and reacts continuously during this process.
  • the rectifying filler may be selected from conventional rectifying packings such as wire mesh corrugated packing, Raschig rings, ⁇ -shaped packings, shaped packings, and the like.
  • These fine ruthenium fillers generally have a large specific surface area and are often frame-shaped hollow structures, which can be mixed with the above composite catalyst particles at a high space utilization rate, or can be subjected to conventional catalyst molding techniques or fixing techniques.
  • the above composite catalyst is directly coated on the surface of the rectified filler, and then the rectified filler and the composite catalyst are charged into a reaction I-integrated reactor for use.
  • a second aspect of the invention is characterized by a conventional pre-reaction finish in which the composite catalyst particles are placed in a reactor and the finely packed filler is placed in a fine column which does not coexist in the same vessel.
  • the specific description of the composite catalyst and the rectification filler is the same as that of the composite catalyst described in the first aspect.
  • Figure 1 is a graph showing the change in the yield of tetracycloheptane over time by the catalyst of the present invention.
  • Fig. 2 is a graph showing the change in the yield of tetracycloheptane over time in the repeated use of the catalyst of the present invention.
  • Figure 3 is a graph of the yield of tetracycloheptane over time for repeated catalyst use. 4 is a schematic flow diagram of a process of the first aspect of the present invention.
  • Figure 5 is a schematic illustration of the process flow of the method of the second aspect of the invention.
  • the selection and matching of specific organic photosensitizers and solid photocatalysts are shown in Table 1 below.
  • the specific preparation process is as follows: The organic photosensitizer is dissolved in an organic solvent (for example, ethanol) to prepare a solution having a mass concentration of 20%, and the solid photocatalyst is dried at 100 C; and the ratio of the organic light mass ratio is 0.5% to 20%. After mixing and stirring for 24 hours, the organic photosensitizer was sufficiently adsorbed on the solid photocatalyst; then, the excess solution was filtered and vacuum dried at 100 Torr for 5 h (no special requirement for vacuum degree), and the composite catalyst of the present invention was obtained. Among them, the catalyst prepared by the method of the present invention is classified into the examples.
  • the yield of tetracycloheptane tends to increase linearly with time, and can reach 95% within 8 hours.
  • This phenomenon may be caused by the presence of photo-generated charges between the organic photosensitizer and the solid photocatalyst. Shifting promotes the separation of charges and increases the efficiency of photogenerated charges for isomerization reactions, but does not rule out other reasons and needs to be explored in the future.
  • Example 2 to 11 of the present invention show that the present invention is a complex!
  • the chemical agent can achieve a tetracycloheptane yield of more than 90% in a relatively low ratio of 2% to 8% by mass to the precipitation tablet diene. This indicates that the composite catalyst of the present invention is very active, so that the amount of the catalyst can be reduced.
  • the reactant precipitation sheet diene was used as the medium directly, and no solvent was used in the reaction. Even under such conditions, the activity of the composite catalyst of the present invention was still high, and each of the comparative examples Catalysts are very inactive.
  • the composite catalyst of the present invention is capable of escaping the dependence on the diluent solvent in the reaction and is advantageous for increasing the amount of reactants that can be handled per unit volume of the catalyst. Further, the composite catalyst of the present invention is in a solid form, which is easy to separate and recover and is used repeatedly.
  • the yield of tetracycloheptane was still high after repeated use of the composite catalyst of the present invention five or six times, indicating that the composite catalyst of the present invention was very stable. This may be because in the process of loading the organic photosensitizer on the solid photocatalyst in the present invention, the two are firmly combined by chemical action, so that the organic photosensitizer is not easily lost to the reaction medium shield. Of course, it is not excluded. Other reasons not known to the inventors have led to the stability of the catalyst of the present invention. The activity stability of the catalyst of the present invention is very advantageous for its industrial use.
  • the high-purity tetracycloheptane continuous preparation method of the present invention - the reaction-fine enthalpy integration process is as shown in FIG. 4, and the reactant norbornadiene is introduced into the reaction "# ⁇ integrated reactor, the reactor
  • the outer part is a stainless steel cylinder with an inner diameter of 6cm and a height of 110cm.
  • the inside is provided with a quartz tube with a diameter of 3cm.
  • the quartz tube is provided with a 6kW linear high-pressure mercury lamp (the length of the lamp is 103cm) as an ultraviolet light source, and the quartz tube and the stainless steel cylinder are filled.
  • the 5%, the weight of the weight of the Ti0 2 is 0.5%, the weight of the weight of the Ti.
  • the volume ratio of the agent is 15%.
  • the reactant norbornadiene is injected into the reactor at a flow rate of 25 ml/min.
  • the water sheet diene flows through the surface of the composite catalyst and its internal pores in the form of a very thin liquid film or gas-liquid mixture, and isomerization reaction occurs under the catalysis of the catalyst and the initiation of ultraviolet light to form tetracycloheptane.
  • a reflux ratio of 0.80 0.80.
  • the bottom temperature is 90-95*C, the bottom temperature is 100-105"C, the pressure is normal pressure, and the reflux ratio is 0.8.
  • the ultraviolet light source is extinguished, the reaction is terminated, and the quartz is taken out.
  • the tube was observed to be still highly transparent, and there was almost no visible sign of the presence of coke on the surface. This shows that the method of the present invention can continuously and stably produce high-purity tetracycloheptane, and the reaction time is longer than the conventional one.
  • the batch method is greatly shortened.
  • the high-purity tetracycloheptane continuous preparation method of the invention has the following steps: the rectification reactor has a height of 80 cm, the quartz tube has a diameter of 3 cm, the stainless steel reactor has an inner diameter of 6 cm, and the quartz tube has a linear electric pressure of 4 kW. A mercury lamp (light length of 75 cm) was used as the ultraviolet light source.
  • the filled catalyst was Ti-SBA-15 (formed into particles having a particle diameter of 2-4 mm) loaded with 10% diethylmethylketone, and the raw material precipitation sheet was flowed by a constant flow pump at a reactant flow rate as shown in Table 2 below. The diene is injected into the reactor.
  • the process conditions in the reactor are as follows: temperature has no special requirements, the pressure is normal pressure, and the residence time is as shown in Table 2 below.
  • the reactor effluent is fed into the refining tower, and the process in the quenching tower The conditions are: tower height llOcm, tower diameter 6cm, tower top temperature 90 ⁇ 95 ⁇ , bottom temperature 100 ⁇ 105"C, pressure is normal pressure, reflux ratio 1, unreacted norbornadiene is steamed from the top of distillation tower Then, it enters the raw material tank and circulates back to the reactor.
  • the tetracyclic heptane and the coking matter are discharged into the distillation still as the fine bottoming material, and are distilled at 60-65 Torr and 90-110 mbar.
  • the heptane distillation rate is also shown in Table 2. After 48 hours of operation, the tetracycloheptane evaporation rate and purity remained constant, indicating that significant coking was formed in the unreactor. The prepared tetracycloheptane was analyzed by gas phase coloring, and the contents are shown in Table 2 below. Table 2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了高纯度四环庚烷的连续制备方法,其可以采用反应 -精馏集成法或先反应后精馏的方法。两种方法都使用了将有机光敏剂负载在固体光催化剂上之后所得到的新型复合催化剂,该催化剂活性高且稳定性好。在反应-精馏集成法中,将该复合催化剂与精馏填料共混使用或者覆盖在精馏填料上,以实现反应与精馏的集成。在先反应后精馏方法中,催化剂和精馏填料分开放置。两种方法都实现了相对短的反应物停留时间,且都得到了高纯度的四环庚烷,并都减少了结焦物的产生量。

Description

一种高纯度四环庚烷的连续制备方法 技术领域
本发明属于四环庚烷合成工艺领域。 四环庚烷是重要的高能航天燃料, 密度达到 0.98 g'cm-3、 水点低于 -401C , 可应用于火箭、 导弹、 卫星和飞船等航天航空推进系统, 与煤 油燃料相比, 具有高能量的优势, 与肼类燃料相比, 具有高安全性的优 势。
四环庚烷采用光化学方法合成,以降冰片二烯为原料、紫外光照射、 有机光敏剂或固体光催化剂作为反应的催化剂,通过降冰片二烯的分子 内加成反应生成四环庚烷。
现有的光催化降冰片二烯异构反应一般使用高压或中压汞灯,光照 产生大量的热量, 需要采用对紫外光透明的石英冷却夹套来冷却。 在光 异构反应过程中, 会发生一些副反应, 主要为反应物在光诱导下聚合, 形成结焦物并附着石英夹套的外表面, 阻碍光的透过, ^^应变慢甚至 停止。 此外, 石英反应器的难以清洗, 易碎, 成本高。
美国专利 US2004/0054244 A1为抑制反应过程中的结焦副反应, 向 反应物中添加胺类抑制剂, 并且设计了一个流动式的循环石英反应器, 采用 1300W中压汞灯, 含有 0.4%乙基米氏酮的反应液以 1.2ml/min的 流速流过, 循环反应 25小时后, 转化率接近 100%。 但该专利方法中, 光敏剂直接保留在四环庚烷中, 不进行提纯。
德国专利 DE3625006A1设计了一个旋转刷子, 采用光敏剂进行反 应, 反应过程中定期使用刷子清除石英器壁上的结焦物。
虽然上述专利在一定程度上抑制了结焦,但仍然存在以下问题:( 1 ) 使用的反应器均为成本较高、 易碎的石英, (2 )而且光敏剂残留在产 物中, 影响四环庚烷的纯度, (3 )从反应原理来看, 要完全抑制反应 结焦是不可能的, 因此, 装置长时间反应后总会有结焦物在反应器壁生 成, (4 )均采用间歇反应, 不利于批量制备。
为了克服上述困难, 本发明旨在提供一条新的四环庚烷制备工艺, 通过反应和分离提纯集成, 实现了一种高纯度四环庚烷的连续制备方 法。 发明内容
第一方面, 本发明涉及一种高纯度四环庚烷的连续制备方法, 其为 反应" #铺集成方法, 包括以下步骤:
a. 将反应物降冰片二烯通入反应" 镏集成反应器中,该反应器外 部为不锈钢筒, 内部设有石英管, 该石英管内设有紫外光源, 石英管与 不锈钢筒之间填充有精镛填料和复 ^^化剂, 其中, 该精馏填料与颗粒 形式的该复合催化剂以无序形式混合在一起,或者所述精镏填料的表面 覆盖有所述复合催化剂层,通入的降冰片二烯以液膜或气液混合物形式 流过该复合催化剂的表面及其内部孔道, 发生反应, 生成包括四环庚烷 和结焦物在内的反应产物; 与此同时,
b. 在该反应" ilt镏集成反应器提供的精馏作用下,降冰片二烯逐步 向该反应" #馏集成反应器的顶部运动并持续反应, 未反应的降冰片二 烯离开该顶部, 经冷凝后作为循环反应物再次进入到该反应-精镏集成 反应器; 产物四环庚烷和结焦物则在精馏作用下向该反应" 馏集成反 应器的底部运动, 并在该底部排出到蒸馏釜中进行蒸镏, 蒸馏釜顶部得 到纯度高于 99. 5%的四环庚烷, 蒸馏釜底得到结焦物。
第二方面, 本发明涉及一种高纯度四环庚垸的连续制备方法, 其为 先反应 -后精馏的方法, 包括以下步骤:
a. 将反应物降冰片二烯通入反应器中,该反应器外部为不锈钢筒, 内部设有石英管, 该石英管内设有紫外光源, 石英管与不锈钢筒之间填 充有复合催化剂颗粒,通入的降水片二烯以液膜形式流过该复合催化剂 的表面及其内部孔道并发生反应,生成包括四环庚烷和结焦物在内的反 应产物; 然后,
b. 所有物料 到精馏塔, 在精馏作用下, 未反应的降冰片二烯 作为塔顶产物离开精馏塔塔顶并作为循环反应物再次进入到前述反应 器中, 四环庚烷和结焦物作为塔底产物离开精嬸塔; 然后,
c 将前述塔底产物进料到蒸馏釜中进行蒸馏, 蒸馏釜顶部得到纯 度高于 99. 5%的四环庚烷, 蒸馏釜底部得到结焦物。
在本发明的第一方面和第二方面中, 所述复合催化剂包括: 固体光 催化剂; 其选自 Ti02、 Ti-MCM- 41、 Ti-SBA- 15、 Zn0、 W03、 Ta205或 SrTi03; 负载在所述固体光催化剂表面或孔道上的有机光敏剂,该有机光敏剂选 自二苯曱酮、 苯乙酮、 米氏酮、 四乙基米氏酮、 二乙基米氏酮; 其中, 有机光敏剂占所述固体光催化剂的 0.5%~20% , 重量百分比。
在本发明的第一方面和第二方面中, 紫外光源用于提供紫外光, 引 发光异构化反应。石英管本身呈化学惰性且具有一定强度, 用于保护紫 外光源, 并且石英管本身透明, 可供紫外光透过。
在本发明的第一方面或第二方面中, 所述反应-精镏集成反应器或 所述反应器可才艮据需要做成可拆卸的结构,便于清洗并更换催化剂和精 馏填料, 或清洗并更换催化剂, 以及检查和维修石英管和紫外光源。
其中第一方面所述的反应"^馏集成反应器的结构参数如下: 石英 管与不锈钢筒之间填充的精馏填料和复合催化剂径向厚度为 1~10厘米, 高度不低于 100cm。 当然, 具体的参数可以随着待处理的物料量进行调 整。
其中第一方面所述的反应" 镏集成反应器内的工艺条件如下: 顶 部温度 90~95Ό, 底部温度 100~105Ό, 压力为常压, 回流比 0. 5~2。
其中第一方面所述的蒸镩釜内的工艺条件如下:温度 60~65 ,压力 90~110毫巴。 本文所述的压力数值皆为表压。
其中第二方面所述的反应器内的工艺条件如下: 复合催化剂径向厚 度为 1~10厘米, 温度无特殊要求, 压力为常压。
其中第二方面所述的精嬸塔内的工艺条件如下: 塔高度不低于
100cm, 顶部温度 90~95Ό, 底部温度 100~1051C, 压力为常压, 回流比 0. 5~2。
其中第二方面所述的蒸饱釜内的工艺条件如下: 温度 60~65 , 压 力 90~110毫巴。
本发明中使用的催化剂为复合型催化剂, 即有机光敏剂与固体光催 化剂相结合,发明人惊讶地发现, 将有机光敏剂负载到所述固体光催化 剂之上之后, 二者之间产生了某种协同效应, 能大幅度提高光催化异构 化反应的效率, 在反应以间歇搅拌方式进行时, 可将反应时间从现有技 术 20小时减少至 10小时以内。 而且, 本发明还采用了固定床的反应器结 构,反应物以液膜或气液混合物形式流过复合催化剂的表面及其内部孔 道, 与催化剂的接触面积更大, 光利用率更高, 加上反应器能够利用比 搅拌反应更高的温度来加速反应, 由于不用考虑光源的冷却问题, 可以 使用功率更大的光源, 使得在相同的产物收率下, 能够比常规的搅拌反 应大大减少反应时间。 因此, 本发明中, 反应物的单程停留时间可以减 少到 40~130分钟。 单程停留时间的减少, 将大大减少结焦副反应, 这有 利于减少结焦物的产生, 维持反应器的清洁以便长期稳定运行。
本发明的第一方面的一个重要的特点是采用了反应-精馏集成反应 器, 通过将石英管与不锈钢筒之间填充精馏填料和复合催化剂颗粒, 该 精镏填料和复合催化剂颗粒以无序形式混合在一起,或者所述精镏填料 的表面覆盖有所述复合催化剂层, 由此使得反应器亦可作为精愤塔使 用, 在反应过程中, 沸点较低的降水片二烯向反应器的顶部运动, 并在 此过程中不断反应,沸点较高的四环庚烷和结焦物则向反应器的底部运 动, 既实现了降冰片二烯异构化为四环庚烷的反应, 又实现了降水片二 烯与反应产物四环庚烷和结焦物的在线及时分离, 结焦物随时产生随时 就被分离出去, 这进一步确保了工艺过程的连续性和稳定性。 其中, 精 馏填料可以选自常规的精馏填料, 例如丝网波紋填料、 拉西环、 Θ形填 料、 异型填料, 等等。 这些精镏填料一般具有比表面积大的特点, 且往 往为框架形空心结构,与上述复合催化剂颗粒能够以很高的空间利用率 混合在一起, 或者, 也可以经过常规的催化剂成型技术或固定技术, 将 上述复合催化剂直接覆盖在所述精馏填料的表面上, 然后将该精馏填料 与复合催化剂装填到反应 I青镏集成反应器中使用。
本发明的第二方面的特点是常规的先反应后精镏,其中复合催化剂 颗粒置于反应器中, 而精镏填料置于精镛塔中, 二者并不共存于同一容 器中。其中复合催化剂和精馏填料的具体说明与第一方面所述的复合催 化剂相同。
附图说明
图 1是本发明的催化剂作用下的四环庚烷收率随时间变化的图。 图 2是本发明的催化剂重复使用下的四环庚烷收率随时间变化的 图。
图 3是对比催化剂重复使用下的四环庚烷收率随时间变化的图。 图 4是本发明的第一方面的方法的工艺流程简图。
图 5是本发明的第二方面的方法的工艺流程简图。
图中各附图标记含义如下:
1、 降冰片二烯; 2、 反应-精馏集成反应器; 3、 蒸馏釜; 4、 高纯 四环庚烷; 5、 不锈钢外壳; 6、 复合催化剂-填料层; 7、 石英管; 8、 紫外光源; 9.降水片二烯储罐; 10.反应器; 11.精馏塔; 12. 结焦物。 具体实施方式
通过以下实施例来进一步说明本发明。 实施例仅仅是示例性的, 而 非限制性的。
1. 复合催化剂的制备
具体的有机光敏剂和固体光催化剂的选择和搭配如下表 1中所示。 具体制备过程如下: 将有机光敏剂溶解于有机溶剂(例如乙醇)中配置 成质量浓度 20%的溶液, 在 100 C下干燥固体光催化剂; 将含有有机光 质量比为 0.5%~20%的比例混合,搅拌 24h,使有机光敏剂充分吸附在固 体光催化剂上; 然后, 将多余溶液过滤、 并在 100Ό下真空干燥 5h (对 真空度没有特殊要求), 则得到本发明所述的复合催化剂。 其中, 由本 发明的方法制备的催化剂被归入实施例中。
2. 催化剂的催化活性实验
将上述各催化剂颗粒按照与降水片二烯的重量比为 2% -10 %的比 例加入到 150ml降冰片二烯中, 在氮气保护和磁力搅拌的条件下, 在 10~70Ό下, 采用 400W高压汞灯照射 8小时, 来发生反应, 定期采用色 谱分析法来分析溶液組成, 并计算目标产物四环庚烷的收率。 不同时间 下的收率如图 1所示, 各催化剂所对应的四环庚烷收率如表 1所示。
此外,还在相同实验条件下测试了单独的有机光敏剂和单独的固体 这些并非由本发明的方法制备的催化剂被归入对比例中。 表 1
催化剂与降
四环庚烷 催化剂 水片二烯的 反应温度
收率 质量比例
0.5%二乙基米
实施例 1 10% 95.1%
氏酮 /Ti02
对比例 1 二乙基米氏酮 10% 50 23% 对比例 2 Ti02 10% 50Ό 16%
0.5%二乙基米氏酮
对比例 3 10% 50Ό 34%
与 Ti02物理混合 2%二乙基米氏
实施例 2 8% 10Ό 94.3% 酮 / Ti-MCM-41
5%二乙基米氏
实施例 3 2% 20 "Ό 93.0% 酮 / Ti-SBA-15
9%二乙基米氏
实施例 4 4% 30 X: 95.4% 酮 /ZnO
12%二乙基米氏
实施例 5 7% 40 *Ό 96.0% 酮 / wo3
15%二乙基米氏
实施例 6 5% 60Ό 92.2% 酮 / Ta205
20%二乙基米氏
实施例 7 2% 70Ό 94.5% 酮 / SrTi03
15%苯乙酮
实施例 8 8% 70Ό 95.3%
/Ti02
10%二苯甲酮 /
实施例 9 5% 40 "Ό 93.7%
wo3
实施例 5%米氏酮 /
7% 50 X: 90.2% 10 Ta205
实施例 2%四乙基米氏
2% 60 X: 92.5% 11 酮 / SrTiQ3
3. 催化剂活性实验结果分析
从图 1可见, 采用本发明的复合催化剂, 四环庚烷的收率随时间呈 线性增长的趋势, 并能够在 8小时以内就达到 95%之高。
从表 1中的实施例 1与对比例 1至对比例 3之间的对比可见,在相同条 件下,本发明的复合催化剂所实现的四环庚烷收率要远远高于单独的有 机光敏剂、单独的固体光催化剂以及有机光敏剂与固体光催化剂的简单 的物理混合物。 这表明, 经过本发明的方法制备的复合催化剂, 在将有 机光敏剂负载到固体光催化剂表面或孔道内部上的过程中,二者绝非简 单的一种物质均匀地物理分散在另一种物质表面上那样的简单过程, 而 是二者之间发生了某种相互作用, 产生了巨大的 1+1>2的协同效果。 对 此现象,可能原因是有机光敏剂与固体光催化剂之间存在光生电荷的迁 移, 促进了电荷的分离并提高光生电荷用于异构反应的效率, 但不排除 存在其他原因, 有待于今后做更多的探索。
表 1中示出的本发明的实施例 2至实施例 11的实验结果也表明,本发 明的复^!化剂,在与降水片二烯的质量比为 2%-8%的较低比例范围内, 在 10- 70 之间, 都能实现大于 90%的四环庚烷收率。 这说明本发明的复 合催化剂活性非常高, 故可以减少催化剂的用量。
从催化活性实验^^来看, 直接以反应物降水片二烯作为介质, 反 应中没有使用任何溶剂, 即便在这样的条件下, 本发明的复合催化剂活 性仍然很高, 而对比例中的各催化剂则活性很差。 这说明本发明的复合 催化剂能够摆脱反应中对稀释溶剂的依赖,有利于提高单位体积催化剂 所能处理的反应物的量。 且本发明的复合催化剂为固体形式, 便于分离 回收并反复使用。
从图 2可见, 本发明的复合催化剂在重复使用五六次后, 四环庚烷 的收率仍较高, 这说明本发明的复合催化剂活性非常稳定。 这可能是因 为本发明中将有机光敏剂负载在固体光催化剂上的过程中,二者通过化 学作用牢固结合, 致使有机光敏剂不容易流失到反应介盾中所导致, 当 然,不排除还有发明人尚未知晓的其他原因导致了本发明的催化剂的稳 定性。 本发明的催化剂活性稳定性非常有利于其在工业上使用。
从图 3可见, 单独的有机光敏剂由于溶解在反应溶液中, 无法重复 利用, 单独的固体光催化剂虽然能够重复利用, 但活性呈不断下降的趋 势,有机光敏剂与固体光催化剂的简单的物理混合物在第一次反应后的 四环庚烷的收率迅速下降到固体光催化剂的水平,说明其中的有机光敏 剂已经流失, 这说明对比例的催化剂的活性损失较大, 不适合工业上反 复使用。
4.本发明的高纯度四环庚烷连续制备方法一反应 -精镛集成法 工艺流程如图 4所示,将反应物降冰片二烯通入反应" #镏集成反应 器中, 该反应器外部为内径 6cm的不锈钢筒, 高度为 110cm, 内部设有直 径 3cm的石英管, 该石英管内设有 6kW线状高压汞灯(灯长度为 103cm ) 作为紫外光源,石英管与不锈钢筒之间填充有表面覆盖有复合催化剂的 丝网波紋填料, 其中复合催化剂为负载在 TiOJ的二乙基米氏酮, 二乙 基米氏酮的负载量为 Ti02重量的 0. 5%, 复^^化剂占^的体积比为 15%. 将反应物降冰片二烯以 25ml/min的流速注入反应器中, 通入的降 水片二烯以极薄的液膜或气液混合物形式流过该复合催化剂的表面及 其内部孔道, 在催化剂的催化作用和紫外光的引发下发生异构化反应, 生成包括四环庚烷和结焦物在内的反应产物; 反应 -精馏集成反应器内 的工艺条件是, 顶部温度为 90- 95*C, 底部温度为 100- 105"C, 压力为常 压, 回流比 0. 8。 在该反应" 馏集成反应器提供的精馏作用下, 未反应 的降水片二烯逐步向该反应 -精馏集成反应器的顶部运动并离开该顶 部, 经外部冷凝器冷凝后作为循环反应物再次进入到该反应 -精馏集成 反应器; 产物四环庚烷和结焦物则在精馏作用下向该反应" 馏集成反 应器的底部运动, 并在该底部排出到蒸嬸釜中进行减压蒸嬸, 该蒸馏釜 内温度为 60~65 *Ό ,压力为 90~110毫巴,在该蒸嬸釜顶部以 20ml/min的蒸 出速率得到高纯四环庚烷(气相色谱分析, 纯度为 99. 6% ) , 蒸馏釜底 得到结焦物, 将结焦物排放出去。 整个系统运转 48小时后, 四环庚烷蒸 出速度和纯度保持恒定, 说明反应 -精馏集成反应器内未累积明显结焦 物,整个系统运行 500小时后, 四环庚烷蒸出速度降为 18.7ml/min,产出 的四环庚烷的纯度略微降低到 99.5% , 但这仍然能满足纯度要求。 运行 500小时后熄灭紫外光源结束反应, 取出石英管查看, 发现其仍然是高 度透明的, 表面上几乎看不到有结焦物存在的迹象。 这说明本发明的方 法确实能够连续且稳定地生产高纯度的四环庚烷,且反应时间比传统的 间歇法要大大缩短。
5.本发明的高纯度四环庚烷连续制备方法一先反应后精馏法 反应器高度为 80cm, 石英灯管直径为 3cm, 不锈钢反应器内径为 6cm, 该石英管内设有 4kW线状高压汞灯(灯长度为 75cm )作为紫外光 源。 填充的催化剂为负载了 10%二乙基米氏酮的 Ti-SBA-15 (成型为粒 径 2-4mm的颗粒), 用恒流泵以如下表 2所示的反应物流速将原料降 水片二烯注入反应器中, 反应器中工艺条件为: 温度无特殊要求, 压力 为常压, 停留时间如下表 2所示, 反应器流出物进料到精饱塔中, 精嬸 塔中的工艺条件为, 塔高 llOcm, 塔径 6cm, 塔顶温度 90~95Ό, 塔底 温度 100~105"C, 压力为常压, 回流比 1, 未反应的降冰片二烯从精馏 塔塔顶蒸出, 然后进入原料罐中循环回到反应器中, 四环庚烷和结焦物 则作为精镏塔塔底物料排放至蒸馏釜中在 60~65Ό和 90~110毫巴下进 行蒸馏, 四环庚烷蒸出速度也见下表 2。 运转 48h后, 四环庚烷蒸出速 度和纯度保持恒定, 说明未反应器内生成明显结焦物。 用气相色潘对制备的四环庚烷进行分析, 含量如下表 2所示。 表 2
Figure imgf000011_0001

Claims

1.一种高纯度四环庚烷的连续制备方法, 包括以下步骤:
a.将反应物降冰片二烯通入反应-精馏集成反应器中, 该反应器外 部为不锈钢筒, 内部设有石英管, 该石英管内设有紫外光源, 石英管与 不锈钢筒之间填充有精馏填料和复 ^^化剂, 其中, 该精馏填料与颗粒 形式的该复合催化剂以无序形式混合在一起,或者所述精馏填料的表面 覆盖有所述复合催化剂层,通入的降冰片二烯以液膜或气液混合物形式 流过该复合催化剂的表面及其内部孔道, 发生反应, 生成包括四环庚烷 和结焦物在内的反应产物; 与此同时,
b.在该反应 -精馏集成反应器提供的精镏作用下, 降冰片二烯逐步 向该反应-精馏集成反应器的顶部运动并持续反应, 未反应的降冰片二 烯离开该顶部, 经冷凝后作为循环反应物再次进入到该反应-精馏集成 反应器; 产物四环庚烷和结焦物则在精镏作用下向该反应 -精馏集成反 应器的底部运动, 并在该底部排出到蒸镏釜中进行蒸馏, 蒸馏釜顶部得 到纯度高于 99.5%的四环庚烷, 蒸嬸釜底部得到结焦物。
2.权利要求 1的方法, 其中所述复合催化剂包括:
固体光催化剂; 其选自 Ti02、 Ti-MCM-41、 Ti-SBA-15, ZnO、 W03、 Ta205或 SrTi03;
负载在所述固体光催化剂表面或孔道上的有机光敏剂, 该有机光 敏剂选自二苯曱酮、 苯乙酮、 米氏酮、 四乙基米氏酮、 二乙基米氏酮; 其中,有机光敏剂占所述固体光催化剂的 0.5%~20% ,重量百分 比。
3.权利要求 1的方法,其中所述反应-精馏集成反应器内的工艺条件 如下:顶部温度 90~95Ό,底部温度 100~105Ό,压力为常压,回流比 0.5~2。
4. 权利要求 1的方法, 其中所述蒸傭釜内的工艺条件如下: 温度 60~65"C,压力 90~110毫巴, 表压。
5.一种高纯度四环庚烷的连续制备方法, 包括以下步骤:
a.将反应物降冰片二烯通入反应器中, 该反应器外部为不锈钢筒, 内部设有石英管, 该石英管内设有紫外光源, 石英管与不锈钢筒之间填 充有复合催化剂颗粒,通入的降水片二烯以液膜形式流过该复合催化剂 的表面及其内部孔道并发生反应,生成包括四环庚烷和结焦物在内的反 应产物; 然后,
b.所有物料进料到精馏塔,在精镏作用下,未反应的降水片二烯作 为塔顶产物离开精馏塔塔顶并作为循环反应物再次进入到前述反应器 中, 四环庚烷和结焦物作为塔底产物离开精镛塔; 然后,
C.将前述塔底产物进料到蒸馏釜中进行蒸馏,蒸镏釜顶部得到纯度 高于 99.5%的四环庚垸, 蒸馏釜底部得到结焦物。
6.权利要求 5的方法, 其中所述复^ *化剂包括:
固体光催化剂; 其选自 Ti02、 Ti-MCM-41、 Ti-SBA-15, ZnO、 W03、 Ta205或 SrTi03;
负载在所述固体光催化剂表面或孔道上的有机光敏剂,该有机光 敏剂选自二苯甲酮、 苯乙酮、 米氏酮、 四乙基米氏酮、 二乙基米氏酮; 其中,有机光敏剂占所述固体光催化剂的 0.5% ~20%,重量百分 比。
7.权利要求 5的方法, 其中所述反应器内的工艺^ ^如下: 温度无 特殊要求, 压力为常压。
8.权利要求 5的方法, 其中所述精馏塔内的工艺条件如下: 塔高度 不低于 100cm, 顶部温度 90~95Ό, 底部温度 100~105Ό, 压力为常压, 回流比 0.5~2。
9.权利要求 5的方法, 其中所述蒸嬸釜内的工艺条件如下: 温度 60-65 C , 压力 90~110毫巴, 表压。
PCT/CN2014/078212 2014-02-17 2014-05-23 一种高纯度四环庚烷的连续制备方法 WO2015120670A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/409,448 US9944574B2 (en) 2014-02-17 2014-05-23 Continuous preparation method of high-purity quadricyclane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410052297.6 2014-02-17
CN201410052297.6A CN103787819B (zh) 2014-02-17 2014-02-17 一种高纯度四环庚烷的连续制备方法

Publications (1)

Publication Number Publication Date
WO2015120670A1 true WO2015120670A1 (zh) 2015-08-20

Family

ID=50663938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078212 WO2015120670A1 (zh) 2014-02-17 2014-05-23 一种高纯度四环庚烷的连续制备方法

Country Status (3)

Country Link
US (1) US9944574B2 (zh)
CN (1) CN103787819B (zh)
WO (1) WO2015120670A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103787819B (zh) * 2014-02-17 2016-04-06 天津大学 一种高纯度四环庚烷的连续制备方法
WO2015176307A1 (zh) * 2014-05-23 2015-11-26 天津大学 一种自燃液体推进剂组合物
CN103964982A (zh) * 2014-05-23 2014-08-06 天津大学 一种自燃液体推进剂组合物
CN114247413B (zh) * 2021-12-29 2024-03-19 郑州中科新兴产业技术研究院 一种连续反应精馏装置及其工作方法
CN115557826A (zh) * 2022-10-09 2023-01-03 天津大学 异戊二烯二聚体的制备方法、燃料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3625006A1 (de) * 1985-10-26 1987-04-30 Basf Ag Photoreaktor fuer photochemische synthesen
US20040031675A1 (en) * 2000-06-07 2004-02-19 Exciton, Inc. Process of quadricyclane production
US20040054244A1 (en) * 2000-06-07 2004-03-18 Exciton, Inc. Process of quadricyclane production
CN103787819A (zh) * 2014-02-17 2014-05-14 天津大学 一种高纯度四环庚烷的连续制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350291A (en) * 1964-09-25 1967-10-31 Ibm Method of preparing strained polycyclic hydrocarbons
DE2222368A1 (de) * 1972-05-06 1973-11-22 Basf Ag Verfahren zur herstellung von 1methyl-3-phenyl-indanen
US4394858A (en) * 1980-12-31 1983-07-26 Standard Oil Company Photochemical conversion and storage of light energy by endoergic isomerizations
US4725342A (en) * 1986-11-10 1988-02-16 Yale University Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes
IT1232340B (it) * 1989-09-26 1992-01-28 Enichem Sintesi Composizione di combustibile ad elevato contenuto energetico, contenente quadriciclano
US5545790A (en) * 1993-12-09 1996-08-13 Mobil Oil Corporation Process for the catalytic cyclodimerization of cyclic olefins
WO2003006413A1 (fr) * 2001-07-12 2003-01-23 Daikin Industries, Ltd. Procede de production de derives fluores du norbornene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3625006A1 (de) * 1985-10-26 1987-04-30 Basf Ag Photoreaktor fuer photochemische synthesen
US20040031675A1 (en) * 2000-06-07 2004-02-19 Exciton, Inc. Process of quadricyclane production
US20040054244A1 (en) * 2000-06-07 2004-03-18 Exciton, Inc. Process of quadricyclane production
CN103787819A (zh) * 2014-02-17 2014-05-14 天津大学 一种高纯度四环庚烷的连续制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GU, LING ET AL.: "Photocatalytic Isomerization of Norbornadiene over Y Zeolites", REACT. KINET. CATAL. LETT., vol. 95, no. 1, 31 December 2008 (2008-12-31), pages 145, XP019648686, DOI: doi:10.1007/s11144-008-5326-2 *
SMITH, C.D.: "Quadricyclane", ORGANIC SYNTHESES, COLL., vol. 6, 31 December 1988 (1988-12-31), pages 962 *

Also Published As

Publication number Publication date
CN103787819B (zh) 2016-04-06
US20160340273A1 (en) 2016-11-24
CN103787819A (zh) 2014-05-14
US9944574B2 (en) 2018-04-17

Similar Documents

Publication Publication Date Title
AU2014334214B2 (en) Method and device for the plasma-catalytic conversion of materials
WO2015120670A1 (zh) 一种高纯度四环庚烷的连续制备方法
JP6258973B2 (ja) 塩素化炭化水素の生成プロセス
CN1890203A (zh) 制备三环癸烷二醛的方法
CN104387236B (zh) 一种丙炔醇、1,4-丁炔二醇和乌洛托品三联产连续生产方法
CN103253676B (zh) 一种三氯氢硅的制备方法
US9346724B2 (en) Method for preparing 2,3,3,3-tetrafluoropropene
CN104710402B (zh) 一种二环己基冠醚的合成方法
CN1264789C (zh) 烯丙基醇的异构化
JP2019501914A (ja) ハロゲン化アルカンを調製するための改善されたプロセス
JP4344915B2 (ja) パーフルオロアルキン化合物の製造方法
KR101639487B1 (ko) 공정 단순화를 위한 트랜스-1,4-사이클로헥산디메탄올 제조장치
JP2014012663A (ja) フルフラールの精製方法
CN109305897B (zh) 一种高产率1,3-二苯基丙二酮类化合物的生产工艺
KR101871641B1 (ko) 이소부틸렌 제조용 촉매 및 이소부틸렌의 제조 방법
TWI547478B (zh) 乙酸正丙酯之製法和乙酸烯丙酯之製法
CN105622549A (zh) 一种改性纳米γ-氧化铝催化制备高纯度四氢呋喃的方法
CN1181058A (zh) 生产环丙烷甲醛的方法
RU2752947C1 (ru) Устройство для модификации катализатора на основе молекулярного сита и способ
JP6089037B2 (ja) シス−ローズオキシドの生成方法
JP2013091621A (ja) 超臨界水を用いた反応プロセス
JP6677255B2 (ja) ハロゲン化アクリル酸エステル誘導体の製造方法
JP6462498B2 (ja) 不飽和アルコールの製造方法及び触媒
WO2022270409A1 (ja) 一酸化炭素の製造方法及び製造装置
WO2022209360A1 (ja) 一酸化炭素を製造する方法、及び一酸化炭素製造装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14409448

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882255

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14882255

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 25.10.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14882255

Country of ref document: EP

Kind code of ref document: A1