CN103787819A - 一种高纯度四环庚烷的连续制备方法 - Google Patents

一种高纯度四环庚烷的连续制备方法 Download PDF

Info

Publication number
CN103787819A
CN103787819A CN201410052297.6A CN201410052297A CN103787819A CN 103787819 A CN103787819 A CN 103787819A CN 201410052297 A CN201410052297 A CN 201410052297A CN 103787819 A CN103787819 A CN 103787819A
Authority
CN
China
Prior art keywords
reaction
quadricyclane
reactor
norbornadiene
composite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410052297.6A
Other languages
English (en)
Other versions
CN103787819B (zh
Inventor
邹吉军
张香文
王莅
王庆法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201410052297.6A priority Critical patent/CN103787819B/zh
Publication of CN103787819A publication Critical patent/CN103787819A/zh
Priority to PCT/CN2014/078212 priority patent/WO2015120670A1/zh
Priority to US14/409,448 priority patent/US9944574B2/en
Application granted granted Critical
Publication of CN103787819B publication Critical patent/CN103787819B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/2266Catalytic processes not covered by C07C5/23 - C07C5/31 with hydrides or organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0237Amines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0239Quaternary ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0271Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/2213Catalytic processes not covered by C07C5/23 - C07C5/31 with metal oxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/222Catalytic processes not covered by C07C5/23 - C07C5/31 with crystalline alumino-silicates, e.g. molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/52Isomerisation reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0205Oxygen-containing compounds comprising carbonyl groups or oxygen-containing derivatives, e.g. acetals, ketals, cyclic peroxides
    • B01J31/0208Ketones or ketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of zinc, cadmium or mercury
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/34Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/36Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of vanadium, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24
    • C07C2531/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups C07C2531/02 - C07C2531/24 of titanium, zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了高纯度四环庚烷的连续制备方法,其可以采用反应-精馏集成法或先反应后精馏的方法。两种方法都使用了将有机光敏剂负载在固体光催化剂上之后所得到的新型复合催化剂,该催化剂活性高且稳定性好。在反应-精馏集成法中,将该复合催化剂与精馏填料共混使用或者覆盖在精馏填料上,以实现反应与精馏的集成。在先反应后精馏方法中,催化剂和精馏填料分开放置。两种方法都实现了相对短的反应物停留时间,且都得到了高纯度的四环庚烷,并都减少了结焦物的产生量。

Description

一种高纯度四环庚烷的连续制备方法
技术领域
本发明属于四环庚烷合成工艺领域。
背景技术
四环庚烷是重要的高能航天燃料,密度达到0.98g·cm-3、冰点低于-40℃,可应用于火箭、导弹、卫星和飞船等航天航空推进系统,与煤油燃料相比,具有高能量的优势,与肼类燃料相比,具有高安全性的优势。
四环庚烷采用光化学方法合成,以降冰片二烯为原料、紫外光照射、有机光敏剂或固体光催化剂作为反应的催化剂,通过降冰片二烯的分子内加成反应生成四环庚烷。
现有的光催化降冰片二烯异构反应一般使用高压或中压汞灯,光照产生大量的热量,需要采用对紫外光透明的石英冷却夹套来冷却。在光异构反应过程中,会发生一些副反应,主要为反应物在光诱导下聚合,形成结焦物并附着石英夹套的外表面,阻碍光的透过,使反应变慢甚至停止。此外,石英反应器的难以清洗,易碎,成本高。
美国专利US2004/0054244A1为抑制反应过程中的结焦副反应,向反应物中添加胺类抑制剂,并且设计了一个流动式的循环石英反应器,采用1300W中压汞灯,含有0.4%乙基米氏酮的反应液以1.2ml/min的流速流过,循环反应25小时后,转化率接近100%。但该专利方法中,光敏剂直接保留在四环庚烷中,不进行提纯。
德国专利DE3625006A1设计了一个旋转刷子,采用光敏剂进行反应,反应过程中定期使用刷子清除石英器壁上的结焦物。
虽然上述专利在一定程度上抑制了结焦,但仍然存在以下问题:(1)、使用的反应器均为成本较高、易碎的石英,(2)而且光敏剂残留在产物中,影响四环庚烷的纯度,(3)从反应原理来看,要完全抑制反应结焦是不可能的,因此,装置长时间反应后总会有结焦物在反应器壁生成,(4)均采用间歇反应,不利于批量制备。
为了克服上述困难,本发明旨在提供一条新的四环庚烷制备工艺,通过反应和分离提纯集成,实现了一种高纯度四环庚烷的连续制备方法。
发明内容
第一方面,本发明涉及一种高纯度四环庚烷的连续制备方法,其为反应-精馏集成方法,包括以下步骤:
a.将反应物降冰片二烯通入反应-精馏集成反应器中,该反应器外部为不锈钢筒,内部设有石英管,该石英管内设有紫外光源,石英管与不锈钢筒之间填充有精馏填料和复合催化剂,其中,该精馏填料与颗粒形式的该复合催化剂以无序形式混合在一起,或者所述精馏填料的表面覆盖有所述复合催化剂层,通入的降冰片二烯以液膜或气液混合物形式流过该复合催化剂的表面及其内部孔道,发生反应,生成包括四环庚烷和结焦物在内的反应产物;与此同时,
b.在该反应-精馏集成反应器提供的精馏作用下,降冰片二烯逐步向该反应-精馏集成反应器的顶部运动并持续反应,未反应的降冰片二烯离开该顶部,经冷凝后作为循环反应物再次进入到该反应-精馏集成反应器;产物四环庚烷和结焦物则在精馏作用下向该反应-精馏集成反应器的底部运动,并在该底部排出到蒸馏釜中进行蒸馏,蒸馏釜顶部得到纯度高于99.5%的四环庚烷,蒸馏釜底得到结焦物。
第二方面,本发明涉及一种高纯度四环庚烷的连续制备方法,其为先反应-后精馏的方法,包括以下步骤:
a.将反应物降冰片二烯通入反应器中,该反应器外部为不锈钢筒,内部设有石英管,该石英管内设有紫外光源,石英管与不锈钢筒之间填充有复合催化剂颗粒,通入的降冰片二烯以液膜形式流过该复合催化剂的表面及其内部孔道并发生反应,生成包括四环庚烷和结焦物在内的反应产物;然后,
b.所有物料进料到精馏塔,在精馏作用下,未反应的降冰片二烯作为塔顶产物离开精馏塔塔顶并作为循环反应物再次进入到前述反应器中,四环庚烷和结焦物作为塔底产物离开精馏塔;然后,
c.将前述塔底产物进料到蒸馏釜中进行蒸馏,蒸馏釜顶部得到纯度高于99.5%的四环庚烷,蒸馏釜底部得到结焦物。
在本发明的第一方面和第二方面中,所述复合催化剂包括:固体光催化剂;其选自TiO2、Ti-MCM-41、Ti-SBA-15、ZnO、WO3、Ta2O5或SrTiO3;负载在所述固体光催化剂表面或孔道上的有机光敏剂,该有机光敏剂选自二苯甲酮、苯乙酮、米氏酮、四乙基米氏酮、二乙基米氏酮;其中,有机光敏剂占所述固体光催化剂的0.5%~20%,重量百分比。
在本发明的第一方面和第二方面中,紫外光源用于提供紫外光,引发光异构化反应。石英管本身呈化学惰性且具有一定强度,用于保护紫外光源,并且石英管本身透明,可供紫外光透过。
在本发明的第一方面或第二方面中,所述反应-精馏集成反应器或所述反应器可根据需要做成可拆卸的结构,便于清洗并更换催化剂和精馏填料,或清洗并更换催化剂,以及检查和维修石英管和紫外光源。
其中第一方面所述的反应-精馏集成反应器的结构参数如下:石英管与不锈钢筒之间填充的精馏填料和复合催化剂径向厚度为1~10厘米,高度不低于100cm。当然,具体的参数可以随着待处理的物料量进行调整。
其中第一方面所述的反应-精馏集成反应器内的工艺条件如下:顶部温度90~95℃,底部温度100~105℃,压力为常压,回流比0.5~2。
其中第一方面所述的蒸馏釜内的工艺条件如下:温度60~65℃,压力90~110毫巴。本文所述的压力数值皆为表压。
其中第二方面所述的反应器内的工艺条件如下:复合催化剂径向厚度为1~10厘米,温度无特殊要求,压力为常压。
其中第二方面所述的精馏塔内的工艺条件如下:塔高度不低于100cm,顶部温度90~95℃,底部温度100~105℃,压力为常压,回流比0.5~2。
其中第二方面所述的蒸馏釜内的工艺条件如下:温度60~65℃,压力90~110毫巴。
本发明中使用的催化剂为复合型催化剂,即有机光敏剂与固体光催化剂相结合,发明人惊讶地发现,将有机光敏剂负载到所述固体光催化剂之上之后,二者之间产生了某种协同效应,能大幅度提高光催化异构化反应的效率,在反应以间歇搅拌方式进行时,可将反应时间从现有技术20小时减少至10小时以内。而且,本发明还采用了固定床的反应器结构,反应物以液膜或气液混合物形式流过复合催化剂的表面及其内部孔道,与催化剂的接触面积更大,光利用率更高,加上反应器能够利用比搅拌反应更高的温度来加速反应,由于不用考虑光源的冷却问题,可以使用功率更大的光源,使得在相同的产物收率下,能够比常规的搅拌反应大大减少反应时间。因此,本发明中,反应物的单程停留时间可以减少到40~130分钟。单程停留时间的减少,将大大减少结焦副反应,这有利于减少结焦物的产生,维持反应器的清洁以便长期稳定运行。
本发明的第一方面的一个重要的特点是采用了反应-精馏集成反应器,通过将石英管与不锈钢筒之间填充精馏填料和复合催化剂颗粒,该精馏填料和复合催化剂颗粒以无序形式混合在一起,或者所述精馏填料的表面覆盖有所述复合催化剂层,由此使得反应器亦可作为精馏塔使用,在反应过程中,沸点较低的降冰片二烯向反应器的顶部运动,并在此过程中不断反应,沸点较高的四环庚烷和结焦物则向反应器的底部运动,既实现了降冰片二烯异构化为四环庚烷的反应,又实现了降冰片二烯与反应产物四环庚烷和结焦物的在线及时分离,结焦物随时产生随时就被分离出去,这进一步确保了工艺过程的连续性和稳定性。其中,精馏填料可以选自常规的精馏填料,例如丝网波纹填料、拉西环、θ形填料、异型填料,等等。这些精馏填料一般具有比表面积大的特点,且往往为框架形空心结构,与上述复合催化剂颗粒能够以很高的空间利用率混合在一起,或者,也可以经过常规的催化剂成型技术或固定技术,将上述复合催化剂直接覆盖在所述精馏填料的表面上,然后将该精馏填料与复合催化剂装填到反应-精馏集成反应器中使用。
本发明的第二方面的特点是常规的先反应后精馏,其中复合催化剂颗粒置于反应器中,而精馏填料置于精馏塔中,二者并不共存于同一容器中。其中复合催化剂和精馏填料的具体说明与第一方面所述的复合催化剂相同。
附图说明
图1是本发明的催化剂作用下的四环庚烷收率随时间变化的图。
图2是本发明的催化剂重复使用下的四环庚烷收率随时间变化的图。
图3是对比催化剂重复使用下的四环庚烷收率随时间变化的图。
图4是本发明的第一方面的方法的工艺流程简图。
图5是本发明的第二方面的方法的工艺流程简图。
图中各附图标记含义如下:
1、降冰片二烯;2、反应-精馏集成反应器;3、蒸馏釜;4、高纯四环庚烷;5、不锈钢外壳;6、复合催化剂-填料层;7、石英管;8、紫外光源;9.降冰片二烯储罐;10.反应器;11.精馏塔;12.结焦物。
实施例
通过以下实施例来进一步说明本发明。实施例仅仅是示例性的,而非限制性的。
1.复合催化剂的制备
具体的有机光敏剂和固体光催化剂的选择和搭配如下表1中所示。具体制备过程如下:将有机光敏剂溶解于有机溶剂(例如乙醇)中配置成质量浓度20%的溶液,在100℃下干燥固体光催化剂;将含有有机光敏剂的溶液和干燥后的固体光催化剂按照有机光敏剂与固体光催化剂质量比为0.5%~20%的比例混合,搅拌24h,使有机光敏剂充分吸附在固体光催化剂上;然后,将多余溶液过滤、并在100℃下真空干燥5h(对真空度没有特殊要求),则得到本发明所述的复合催化剂。其中,由本发明的方法制备的催化剂被归入实施例中。
2.催化剂的催化活性实验
将上述各催化剂颗粒按照与降冰片二烯的重量比为2%~10%的比例加入到150ml降冰片二烯中,在氮气保护和磁力搅拌的条件下,在10~70℃下,采用400W高压汞灯照射8小时,来发生反应,定期采用色谱分析法来分析溶液组成,并计算目标产物四环庚烷的收率。不同时间下的收率如图1所示,各催化剂所对应的四环庚烷收率如表1所示。
此外,还在相同实验条件下测试了单独的有机光敏剂和单独的固体光催化剂以及有机光敏剂与固体光催化剂的简单的物理混合物的活性,这些并非由本发明的方法制备的催化剂被归入对比例中。
表1
3.催化剂活性实验结果分析
从图1可见,采用本发明的复合催化剂,四环庚烷的收率随时间呈线性增长的趋势,并能够在8小时以内就达到95%之高。
从表1中的实施例1与对比例1至对比例3之间的对比可见,在相同条件下,本发明的复合催化剂所实现的四环庚烷收率要远远高于单独的有机光敏剂、单独的固体光催化剂以及有机光敏剂与固体光催化剂的简单的物理混合物。这表明,经过本发明的方法制备的复合催化剂,在将有机光敏剂负载到固体光催化剂表面或孔道内部上的过程中,二者绝非简单的一种物质均匀地物理分散在另一种物质表面上那样的简单过程,而是二者之间发生了某种相互作用,产生了巨大的1+1>2的协同效果。对此现象,可能原因是有机光敏剂与固体光催化剂之间存在光生电荷的迁移,促进了电荷的分离并提高光生电荷用于异构反应的效率,但不排除存在其他原因,有待于今后做更多的探索。
表1中示出的本发明的实施例2至实施例11的实验结果也表明,本发明的复合催化剂,在与降冰片二烯的质量比为2%-8%的较低比例范围内,在10-70℃之间,都能实现大于90%的四环庚烷收率。这说明本发明的复合催化剂活性非常高,故可以减少催化剂的用量。
从催化活性实验条件来看,直接以反应物降冰片二烯作为介质,反应中没有使用任何溶剂,即便在这样的条件下,本发明的复合催化剂活性仍然很高,而对比例中的各催化剂则活性很差。这说明本发明的复合催化剂能够摆脱反应中对稀释溶剂的依赖,有利于提高单位体积催化剂所能处理的反应物的量。且本发明的复合催化剂为固体形式,便于分离回收并反复使用。
从图2可见,本发明的复合催化剂在重复使用五六次后,四环庚烷的收率仍较高,这说明本发明的复合催化剂活性非常稳定。这可能是因为本发明中将有机光敏剂负载在固体光催化剂上的过程中,二者通过化学作用牢固结合,致使有机光敏剂不容易流失到反应介质中所导致,当然,不排除还有发明人尚未知晓的其他原因导致了本发明的催化剂的稳定性。本发明的催化剂活性稳定性非常有利于其在工业上使用。
从图3可见,单独的有机光敏剂由于溶解在反应溶液中,无法重复利用,单独的固体光催化剂虽然能够重复利用,但活性呈不断下降的趋势,有机光敏剂与固体光催化剂的简单的物理混合物在第一次反应后的四环庚烷的收率迅速下降到固体光催化剂的水平,说明其中的有机光敏剂已经流失,这说明对比例的催化剂的活性损失较大,不适合工业上反复使用。
4.本发明的高纯度四环庚烷连续制备方法—反应‐精馏集成法
工艺流程如图4所示,将反应物降冰片二烯通入反应-精馏集成反应器中,该反应器外部为内径6cm的不锈钢筒,高度为110cm,内部设有直径3cm的石英管,该石英管内设有6kW线状高压汞灯(灯长度为103cm)作为紫外光源,石英管与不锈钢筒之间填充有表面覆盖有复合催化剂的丝网波纹填料,其中复合催化剂为负载在TiO2上的二乙基米氏酮,二乙基米氏酮的负载量为TiO2重量的0.5%,复合催化剂占填料的体积比为15%。将反应物降冰片二烯以25ml/min的流速注入反应器中,通入的降冰片二烯以极薄的液膜或气液混合物形式流过该复合催化剂的表面及其内部孔道,在催化剂的催化作用和紫外光的引发下发生异构化反应,生成包括四环庚烷和结焦物在内的反应产物;反应-精馏集成反应器内的工艺条件是,顶部温度为90-95℃,底部温度为100-105℃,压力为常压,回流比0.8。在该反应-精馏集成反应器提供的精馏作用下,未反应的降冰片二烯逐步向该反应-精馏集成反应器的顶部运动并离开该顶部,经外部冷凝器冷凝后作为循环反应物再次进入到该反应-精馏集成反应器;产物四环庚烷和结焦物则在精馏作用下向该反应-精馏集成反应器的底部运动,并在该底部排出到蒸馏釜中进行减压蒸馏,该蒸馏釜内温度为60~65℃,压力为90~110毫巴,在该蒸馏釜顶部以20ml/min的蒸出速率得到高纯四环庚烷(气相色谱分析,纯度为99.6%),蒸馏釜底得到结焦物,将结焦物排放出去。整个系统运转48小时后,四环庚烷蒸出速度和纯度保持恒定,说明反应‐精馏集成反应器内未累积明显结焦物,整个系统运行500小时后,四环庚烷蒸出速度降为18.7ml/min,产出的四环庚烷的纯度略微降低到99.5%,但这仍然能满足纯度要求。运行500小时后熄灭紫外光源结束反应,取出石英管查看,发现其仍然是高度透明的,表面上几乎看不到有结焦物存在的迹象。这说明本发明的方法确实能够连续且稳定地生产高纯度的四环庚烷,且反应时间比传统的间歇法要大大缩短。
5.本发明的高纯度四环庚烷连续制备方法—先反应后精馏法
反应器高度为80cm,石英灯管直径为3cm,不锈钢反应器内径为6cm,该石英管内设有4kW线状高压汞灯(灯长度为75cm)作为紫外光源。填充的催化剂为负载了10%二乙基米氏酮的Ti‐SBA‐15(成型为粒径2‐4mm的颗粒),用恒流泵以如下表2所示的反应物流速将原料降冰片二烯注入反应器中,反应器中工艺条件为:温度无特殊要求,压力为常压,停留时间如下表2所示,反应器流出物进料到精馏塔中,精馏塔中的工艺条件为,塔高110cm,塔径6cm,塔顶温度90~95℃,塔底温度100~105℃,压力为常压,回流比1,未反应的降冰片二烯从精馏塔塔顶蒸出,然后进入原料罐中循环回到反应器中,四环庚烷和结焦物则作为精馏塔塔底物料排放至蒸馏釜中在60~65℃和90~110毫巴下进行蒸馏,四环庚烷蒸出速度也见下表2。运转48h后,四环庚烷蒸出速度和纯度保持恒定,说明未反应器内生成明显结焦物。
用气相色谱对制备的四环庚烷进行分析,含量如下表2所示。
表2
Figure BDA0000466358750000081
Figure BDA0000466358750000091

Claims (9)

1.一种高纯度四环庚烷的连续制备方法,包括以下步骤:
a.将反应物降冰片二烯通入反应-精馏集成反应器中,该反应器外部为不锈钢筒,内部设有石英管,该石英管内设有紫外光源,石英管与不锈钢筒之间填充有精馏填料和复合催化剂,其中,该精馏填料与颗粒形式的该复合催化剂以无序形式混合在一起,或者所述精馏填料的表面覆盖有所述复合催化剂层,通入的降冰片二烯以液膜或气液混合物形式流过该复合催化剂的表面及其内部孔道,发生反应,生成包括四环庚烷和结焦物在内的反应产物;与此同时,
b.在该反应-精馏集成反应器提供的精馏作用下,降冰片二烯逐步向该反应-精馏集成反应器的顶部运动并持续反应,未反应的降冰片二烯离开该顶部,经冷凝后作为循环反应物再次进入到该反应-精馏集成反应器;产物四环庚烷和结焦物则在精馏作用下向该反应-精馏集成反应器的底部运动,并在该底部排出到蒸馏釜中进行蒸馏,蒸馏釜顶部得到纯度高于99.5%的四环庚烷,蒸馏釜底部得到结焦物。
2.权利要求1的方法,其中所述复合催化剂包括:
固体光催化剂;其选自TiO2、Ti-MCM-41、Ti-SBA-15、ZnO、WO3、Ta2O5或SrTiO3
负载在所述固体光催化剂表面或孔道上的有机光敏剂,该有机光敏剂选自二苯甲酮、苯乙酮、米氏酮、四乙基米氏酮、二乙基米氏酮;
其中,有机光敏剂占所述固体光催化剂的0.5%~20%,重量百分比。
3.权利要求1的方法,其中所述反应-精馏集成反应器内的工艺条件如下:顶部温度90~95℃,底部温度100~105℃,压力为常压,回流比0.5~2。
4.权利要求1的方法,其中所述蒸馏釜内的工艺条件如下:温度60~65℃,压力90~110毫巴,表压。
5.一种高纯度四环庚烷的连续制备方法,包括以下步骤:
a.将反应物降冰片二烯通入反应器中,该反应器外部为不锈钢筒,内部设有石英管,该石英管内设有紫外光源,石英管与不锈钢筒之间填充有复合催化剂颗粒,通入的降冰片二烯以液膜形式流过该复合催化剂的表面及其内部孔道并发生反应,生成包括四环庚烷和结焦物在内的反应产物;然后,
b.所有物料进料到精馏塔,在精馏作用下,未反应的降冰片二烯作为塔顶产物离开精馏塔塔顶并作为循环反应物再次进入到前述反应器中,四环庚烷和结焦物作为塔底产物离开精馏塔;然后,
c.将前述塔底产物进料到蒸馏釜中进行蒸馏,蒸馏釜顶部得到纯度高于99.5%的四环庚烷,蒸馏釜底部得到结焦物。
6.权利要求5的方法,其中所述复合催化剂包括:
固体光催化剂;其选自TiO2、Ti-MCM-41、Ti-SBA-15、ZnO、WO3、Ta2O5或SrTiO3
负载在所述固体光催化剂表面或孔道上的有机光敏剂,该有机光敏剂选自二苯甲酮、苯乙酮、米氏酮、四乙基米氏酮、二乙基米氏酮;
其中,有机光敏剂占所述固体光催化剂的0.5%~20%,重量百分比。
7.权利要求5的方法,其中所述反应器内的工艺条件如下:温度无特殊要求,压力为常压。
8.权利要求5的方法,其中所述精馏塔内的工艺条件如下:塔高度不低于100cm,顶部温度90~95℃,底部温度100~105℃,压力为常压,回流比0.5~2。
9.权利要求5的方法,其中所述蒸馏釜内的工艺条件如下:温度60~65℃,压力90~110毫巴,表压。
CN201410052297.6A 2014-02-17 2014-02-17 一种高纯度四环庚烷的连续制备方法 Active CN103787819B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410052297.6A CN103787819B (zh) 2014-02-17 2014-02-17 一种高纯度四环庚烷的连续制备方法
PCT/CN2014/078212 WO2015120670A1 (zh) 2014-02-17 2014-05-23 一种高纯度四环庚烷的连续制备方法
US14/409,448 US9944574B2 (en) 2014-02-17 2014-05-23 Continuous preparation method of high-purity quadricyclane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410052297.6A CN103787819B (zh) 2014-02-17 2014-02-17 一种高纯度四环庚烷的连续制备方法

Publications (2)

Publication Number Publication Date
CN103787819A true CN103787819A (zh) 2014-05-14
CN103787819B CN103787819B (zh) 2016-04-06

Family

ID=50663938

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410052297.6A Active CN103787819B (zh) 2014-02-17 2014-02-17 一种高纯度四环庚烷的连续制备方法

Country Status (3)

Country Link
US (1) US9944574B2 (zh)
CN (1) CN103787819B (zh)
WO (1) WO2015120670A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964982A (zh) * 2014-05-23 2014-08-06 天津大学 一种自燃液体推进剂组合物
WO2015120670A1 (zh) * 2014-02-17 2015-08-20 天津大学 一种高纯度四环庚烷的连续制备方法
WO2015176307A1 (zh) * 2014-05-23 2015-11-26 天津大学 一种自燃液体推进剂组合物
CN115557826A (zh) * 2022-10-09 2023-01-03 天津大学 异戊二烯二聚体的制备方法、燃料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114247413B (zh) * 2021-12-29 2024-03-19 郑州中科新兴产业技术研究院 一种连续反应精馏装置及其工作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076813A (en) * 1989-09-26 1991-12-31 Enichem Synthesis S.P.A. High-energy-content fuel composition containing quadricyclane
US20040054244A1 (en) * 2000-06-07 2004-03-18 Exciton, Inc. Process of quadricyclane production

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3350291A (en) * 1964-09-25 1967-10-31 Ibm Method of preparing strained polycyclic hydrocarbons
DE2222368A1 (de) * 1972-05-06 1973-11-22 Basf Ag Verfahren zur herstellung von 1methyl-3-phenyl-indanen
US4394858A (en) * 1980-12-31 1983-07-26 Standard Oil Company Photochemical conversion and storage of light energy by endoergic isomerizations
DE3625006A1 (de) * 1985-10-26 1987-04-30 Basf Ag Photoreaktor fuer photochemische synthesen
US4725342A (en) * 1986-11-10 1988-02-16 Yale University Photochemical dimerization and functionalization of alkanes, ethers, primary alcohols and silanes
US5545790A (en) * 1993-12-09 1996-08-13 Mobil Oil Corporation Process for the catalytic cyclodimerization of cyclic olefins
US6635152B1 (en) * 2000-06-07 2003-10-21 Exciton, Inc. Process of driving a non-polymerization solution-phase photochemical transformation
CN1527808A (zh) * 2001-07-12 2004-09-08 ͬ�Ϳ�ҵ��ʽ���� 含氟降冰片烯衍生物的制备方法
CN103787819B (zh) 2014-02-17 2016-04-06 天津大学 一种高纯度四环庚烷的连续制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5076813A (en) * 1989-09-26 1991-12-31 Enichem Synthesis S.P.A. High-energy-content fuel composition containing quadricyclane
US20040054244A1 (en) * 2000-06-07 2004-03-18 Exciton, Inc. Process of quadricyclane production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘芳等: "降冰片二烯异构化反应中敏化剂的研究进展", 《化学工业与工程》, vol. 24, no. 4, 31 July 2007 (2007-07-31), pages 350 - 355 *
张晓华等: "降冰片二烯类太阳能储存材料的研究进展", 《天津化工》, no. 6, 31 December 2000 (2000-12-31), pages 1 - 3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015120670A1 (zh) * 2014-02-17 2015-08-20 天津大学 一种高纯度四环庚烷的连续制备方法
US9944574B2 (en) 2014-02-17 2018-04-17 Tianjin University Continuous preparation method of high-purity quadricyclane
CN103964982A (zh) * 2014-05-23 2014-08-06 天津大学 一种自燃液体推进剂组合物
WO2015176307A1 (zh) * 2014-05-23 2015-11-26 天津大学 一种自燃液体推进剂组合物
CN115557826A (zh) * 2022-10-09 2023-01-03 天津大学 异戊二烯二聚体的制备方法、燃料及其制备方法

Also Published As

Publication number Publication date
WO2015120670A1 (zh) 2015-08-20
US9944574B2 (en) 2018-04-17
CN103787819B (zh) 2016-04-06
US20160340273A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
CN103787819B (zh) 一种高纯度四环庚烷的连续制备方法
CN1609082A (zh) 由叔丁醇制备异丁烯的方法
CN102875469B (zh) 采用径向移动床反应器制备己内酰胺的方法
CN104761429A (zh) 一种生产碳酸二甲酯和乙二醇的工艺
CN104387236B (zh) 一种丙炔醇、1,4-丁炔二醇和乌洛托品三联产连续生产方法
CN103143381B (zh) 一种碳氮材料固载杂多酸催化剂及烯烃环氧化合成的方法
CN101970385B (zh) 烯烃的精制方法及精制装置
TW201811670A (zh) 寡聚矽烷之製造方法
CN110437200B (zh) 基于二氧化碳原料的碳酸丙烯酯制备方法
Yu et al. Cleaner and atomic economy production of hydroxylamine hydrochloride under solvent-free conditions through process intensification
EP3088381B1 (en) Method for preparing polyoxymethylene dimethyl ether carbonyl compound and methyl methoxyacetate
JP2011236208A (ja) C1−c4亜硝酸アルキルの生成方法
CN103819301B (zh) 一种光催化降冰片二烯异构化制备四环庚烷的复合催化剂及其制备方法
CN105732257A (zh) 一种混合二甲苯的分离方法
CN104692991A (zh) 氘代乙烯制备方法
CN102786425A (zh) 生产β-羟乙基乙二胺的方法
CN102964246A (zh) 草酸二烷基酯或/和碳酸二烷基酯的制造方法及制造装置
KR101871641B1 (ko) 이소부틸렌 제조용 촉매 및 이소부틸렌의 제조 방법
CN107814782B (zh) 一种催化氨氧化制备5-羟甲基-2-呋喃腈的方法
CN102050706B (zh) 一种固体酸催化甲醇脱水连续生产二甲醚的方法
CN114887636A (zh) 一种介孔可调的大比表面氧化物固体酸催化剂及其制备方法和应用
Yan et al. Highly efficient two‐stage ring‐opening of epichlorohydrin with carboxylic acid in a microreaction system
Songthammawat et al. 4b-Aryltetrahydroindeno [1, 2-a] indenes by Acid-Catalyzed Transannular Cyclization of Benzannulated Cyclooctene Alcohols
RU2752947C1 (ru) Устройство для модификации катализатора на основе молекулярного сита и способ
CN1183123C (zh) 烯烃环氧化的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant