WO2015119247A1 - 鋼線 - Google Patents

鋼線 Download PDF

Info

Publication number
WO2015119247A1
WO2015119247A1 PCT/JP2015/053387 JP2015053387W WO2015119247A1 WO 2015119247 A1 WO2015119247 A1 WO 2015119247A1 JP 2015053387 W JP2015053387 W JP 2015053387W WO 2015119247 A1 WO2015119247 A1 WO 2015119247A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wire
less
pearlite
wire
steel
Prior art date
Application number
PCT/JP2015/053387
Other languages
English (en)
French (fr)
Inventor
大輔 平上
真 小此木
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to US15/115,952 priority Critical patent/US10081846B2/en
Priority to KR1020167021061A priority patent/KR101860246B1/ko
Priority to EP15746150.0A priority patent/EP3103891B1/en
Priority to CN201580007165.4A priority patent/CN105960477B/zh
Priority to JP2015561057A priority patent/JP6237794B2/ja
Publication of WO2015119247A1 publication Critical patent/WO2015119247A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/10Ferrous alloys, e.g. steel alloys containing cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/30Ferrous alloys, e.g. steel alloys containing chromium with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/44Yarns or threads characterised by the purpose for which they are designed
    • D02G3/48Tyre cords
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2001Wires or filaments
    • D07B2201/2014Compound wires or compound filaments
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3035Pearlite
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3053Steel characterised by the carbon content having a medium carbon content, e.g. greater than 0,5 percent and lower than 0.8 percent respectively HT wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel
    • D07B2205/3046Steel characterised by the carbon content
    • D07B2205/3057Steel characterised by the carbon content having a high carbon content, e.g. greater than 0,8 percent respectively SHT or UHT wires

Definitions

  • the present invention relates to a steel wire that is a material of a high-strength steel cord used as a reinforcing material for rubber products such as automobile tires, high-pressure rubber hoses, and conveyor belts.
  • steel cords made of chemical fibers such as rayon, nylon, polyester, or steel wires are used as reinforcing materials.
  • These reinforcing materials play the role of the framework of automobile tires, and have a great influence on the fuel consumption, high-speed durability, and steering stability of a vehicle equipped with the automobile tires.
  • the use ratio of steel cords as a reinforcing material has increased.
  • a steel cord having a twisted wire structure in which a plurality of steel strands (filaments) are twisted is widely proposed.
  • Such a steel cord is manufactured through the following processes. First, dry drawing is performed on a wire having a wire diameter of 5 to 6 mm to obtain a steel wire having a wire diameter of about 1.0 to 4.0 mm. The steel wire is softened by performing a heat treatment called patenting treatment on the steel wire. Then, brass plating is formed on the surface of the softened steel wire, and wet drawing (finish drawing) is further performed on the steel wire to obtain a filament having a wire diameter of about 0.1 to 0.5 mm. And the steel cord of a strand wire structure is manufactured by carrying out the strand wire process of the filament obtained in this way. The brass plating is formed in order to improve the adhesion between the rubber and the steel cord.
  • the present invention has been made in view of the above-described situation, and provides a steel wire having high strength, excellent workability, and capable of stably producing a high-strength steel cord. Objective.
  • the gist of the present invention for solving the above problems is as follows.
  • a component composition is the mass%, C: 0.70% or more and 1.20% or less, Si: 0.15% or more and 0.60% or less, Mn: 0.10% to 1.00%, N: 0.0010% to 0.0050%, Al: 0% to 0.010%, Ti: 0% to 0.10%, Cr: 0% 0.50% or less, Co: 0% or more and 0.50% or less, V: 0% or more and 0.50% or less, Cu: 0% or more and 0.20% or less, Nb: 0% or more and 0.100% or less , Mo: 0% to 0.20%, W: 0% to 0.200%, B: 0% to 0.0030%, REM: 0% to 0.0050%, Ca: 0% or more 0.0050% or less, Mg: 0% or more and 0.0050% or less, and Zr: 0% or more and 0.0100% or less, the balance being e and impurities, the wire diameter R of
  • the thickness of the soft portion may be not less than 10 ⁇ m and not more than 0.08 ⁇ Rmm.
  • the average lamella spacing from the surface of the steel wire to the portion having a depth of 5 ⁇ m and the average lamella spacing at the center of the steel wire may be 40 nm or less.
  • the component composition is, by mass, Ti: 0.005% or more and 0.10% or less, Cr: more than 0% 0.50% or less, Co: more than 0% to 0.50% or less, V: more than 0% to 0.50% or less, Cu: more than 0% to 0.20% or less, Nb: more than 0% to 0.100% or less, Mo: more than 0% to 0.20% or less, W: more than 0% to 0.20% or less, B: more than 0% to 0.0030% or less, REM: more than 0% to 0.0050% or less, Ca: 0.0005% One or more of more than 0.0050%, Mg: more than 0.0005% and 0.0050% or less, and Zr: more than 0.0005% and 0.0100% or less may be included.
  • the steel wire having the above-described configuration has a soft portion, and in this soft portion, the average lamella spacing is finer than that of the center portion of the steel wire, and the average lamella spacing in the center portion of the steel wire and the surface to depth of the steel wire.
  • the difference from the average lamella spacing in the 5 ⁇ m region is 60 nm or less.
  • the Vickers hardness of the soft part of the steel wire which has the above-mentioned structure is Hv30 or more lower than the Vickers hardness in the depth of 1/4 of the wire diameter R of a steel wire. The lower the Vickers hardness, the higher the ductility.
  • the present inventors have found that a steel wire having such a soft part on its surface has a tensile strength increased by a central part having a high hardness, and a ductility is remarkably improved by a soft part having a low hardness. Furthermore, the inventors reduced the cementite thickness in the pearlite structure by making the average lamella spacing of the pearlite from the surface of the steel wire to a depth of 5 ⁇ m smaller than the average lamella spacing of the pearlite at the center of the steel wire. It has been found that the cementite cracks that become the starting point of the disconnection become fine. In finish wire drawing and stranded wire processing, the soft part of the steel wire is mainly deformed. Good workability is required for steel wires for steel cords.
  • the above-mentioned composition it can control that defects, such as a crack, occur in a steel wire in finish wire drawing and strand wire processing. Since the steel wire having the above-described steel wire can be satisfactorily processed by twisting, it is possible to provide a high-quality steel cord in which the occurrence of twisting defects is suppressed by the above-described configuration.
  • the component composition of the steel wire which has the above-mentioned structure is the mass%, C: 0.70% or more and 1.20% or less, Si: 0.15% or more and 0.60% or less, Mn: 0.10% 1.00% or less, N: 0.0010% or more and 0.0050% or less, Al: 0% or more and 0.010% or less, Ti: 0% or more and 0.10% or less, Cr: 0% or more and 0.50 or less %: Co: 0% to 0.50%, V: 0% to 0.50%, Cu: 0% to 0.20%, Nb: 0% to 0.100%, Mo: 0 % To 0.20%, W: 0% to 0.200%, B: 0% to 0.0030%, REM: 0% to 0.0050%, Ca: 0% to 0.0050%
  • Mg 0% to 0.0050% and Zr: 0% to 0.0100%, with the balance being Fe Are as fine impurities, tissue in the center of the steel wire having
  • the thickness of the soft part of the steel wire having the above-described configuration is 5 ⁇ m or more and 0.1 ⁇ R mm.
  • R is the diameter (wire diameter) of the steel wire. Since the thickness of the soft part is 5 ⁇ m or more, the steel wire having the above-described configuration has sufficiently good workability and suppresses the occurrence of defects such as cracks in finish drawing and stranded wire processing. Is done. Moreover, since the thickness of a soft part is 0.1xRmm or less, the tensile strength of the steel wire which has the above-mentioned structure is kept high, and the intensity
  • the steel wire 10 which concerns on this embodiment is used as a raw material at the time of manufacturing the high intensity
  • the steel wire 10 has a wire diameter R of 1.0 mm ⁇ R ⁇ 3.5 mm, the component composition is mass%, and C: 0.70% or more and 1.20% or less, Si: 0.15% to 0.60%, Mn: 0.10% to 1.00%, N: 0.0010% to 0.0050%, Al: 0% to 0.010%, Ti: 0% to 0.10%, Cr: 0% to 0.50%, Co: 0% to 0.50%, V: 0% to 0.50%, Cu: 0% to 0 20% or less, Nb: 0% to 0.100%, Mo: 0% to 0.20%, W: 0% to 0.200%, B: 0% to 0.0030%, REM : 0% to 0.0050%, Ca: 0% to 0.0050%, Mg: 0% to 0.0050%, and r: 0% or more include 0.0100% or less, the balance being the Fe and impurities.
  • the steel wire 10 which concerns on this embodiment has the soft part 11 and the center part 12, as shown in FIG.
  • the soft part 11 is formed along the outer periphery of the steel wire 10.
  • the Vickers hardness of the soft part 11 is Hv30 or more lower than the Vickers hardness at a depth of 1/4 of the wire diameter R of the steel wire 10, and the thickness of the soft part is 5 ⁇ m or more and 0.1 ⁇ Rmm or less.
  • the average lamella spacing of the pearlite from the surface of the steel wire 10 to a depth of 5 ⁇ m is smaller than the average lamella spacing of the pearlite at the center of the steel wire 10, and the average lamella of pearlite from the surface of the steel wire 10 to a depth of 5 ⁇ m.
  • the difference between the distance and the average lamella distance of the pearlite at the center of the steel wire 10 is not less than 3.0 nm and not more than 60.0 nm. Furthermore, the tensile strength of the steel wire 10 is 1100 MPa or more.
  • the steel wire 10 according to the present embodiment has a soft portion 11 formed along the outer periphery thereof.
  • a region softer than the Vickers hardness at a depth of 1 ⁇ 4 of the wire diameter R of the steel wire by Hv30 or more is defined as the soft portion 11. That is, the Vickers hardness of the soft part 11 is Hv30 or less lower than the Vickers hardness at a depth of 1/4 of the wire diameter R of the steel wire.
  • symbol 16 shows the location of 1/4 depth of the wire diameter R of a steel wire.
  • the part which is not the soft part 11 among the steel wires 10 which concern on this embodiment is defined as the center part 12.
  • FIG. The difference between the hardness of the soft portion 11 and the hardness of the central portion 12 is due to the difference in dislocation density and the form of cementite.
  • the structure of the central portion 12 includes 95 to 100% pearlite, and the structure of the soft portion 11 also includes a similar amount of pearlite, but most of the dislocations introduced into the structure after the pearlite transformation are in the soft portion 11. Has been removed.
  • the soft part 11 has a ductility higher than that of the central part 12 because its hardness is lower than that of the central part 12.
  • the thickness t of the soft part 11 of the steel wire 10 according to the present embodiment is in the range of 5 ⁇ m ⁇ t ⁇ 0.1 ⁇ Rmm. That is, in the steel wire 10 according to the present embodiment, a region that is softer than the Vickers hardness of the portion 16 having a depth of 1/4 of the wire diameter R by Hv30 or more is in a region from the outer peripheral surface of the steel wire 10 to the depth t. Is formed. For example, when the wire diameter R is 3.0 mm, the thickness t of the soft part 11 is not less than 5 ⁇ m and not more than 0.3 mm (300 ⁇ m).
  • the steel wire 10 Since the soft part 11 having higher ductility than the center part 12 is formed along the outer periphery of the steel wire 10, the steel wire 10 is mainly used in finish wire drawing and stranded wire processing in which significant deformation is applied to the outer periphery. Demonstrates good workability.
  • the central portion 12 since the central portion 12 has a sufficiently high hardness, the steel wire 10 has a high tensile strength of 1100 MPa or more.
  • the thickness t of the soft part 11 is 5 ⁇ m or less, processing defects such as disconnection tend to occur in finish wire drawing and stranded wire processing.
  • the thickness t of the soft part 11 exceeds 0.1 ⁇ R mm, the tensile strength decreases.
  • the thickness t of the soft part 11 is set in the range of 5 ⁇ m ⁇ t ⁇ 0.1 ⁇ Rmm.
  • a preferable range of the thickness t of the soft part 11 is 10 ⁇ m or more and 0.08 ⁇ R mm or less.
  • the method for measuring the thickness of the soft portion 11 of the steel wire 10 according to the present embodiment is not particularly limited.
  • the thickness of the soft part 11 can be determined from the hardness distribution in the depth direction of the steel wire 10 obtained by measuring the hardness of the steel wire 10. For example, by appropriately preparing a cut surface (C cross section) obtained by cutting the steel wire 10 perpendicularly to the wire drawing direction, and continuously measuring the hardness from the outer periphery to the center of the cut surface, FIG.
  • the graph which shows the relationship between the depth and the hardness of the steel wire 10 as shown in FIG. From this graph, it can be seen that the thickness of the region lower than the Vickers hardness at the depth of 1/4 of the wire diameter R of the steel wire 10 by Hv30 or more.
  • the measurement points can be set as shown in FIG. 4 or FIG.
  • a hardness at a depth of 1 ⁇ m can be obtained by measuring the hardness at intervals of 2 ⁇ m along the major axis of the cross section.
  • the structure of the center portion 12 of the steel wire 10 according to the present embodiment includes 95-100% pearlite in terms of area ratio.
  • the structure of the central portion 12 contains 95% or more of pearlite so that the tensile strength of the steel wire 10 is 1100 MPa or more, and the workability of the steel wire 10 in the finishing wire drawing step S07 described later is improved. It is essential. Since it is preferable that the amount of pearlite is large, the upper limit of the amount of pearlite in the central portion 12 of the steel wire 10 is 100%.
  • Pseudo pearlite is a structure composed of granular cementite and granular ferrite, and is a normal pearlite having a shape in which layered cementite and layered ferrite overlap (perlite 20 shown in FIG. 8). Differentiated. “Perlite” according to the present embodiment means “normal pearlite”. Although it is not necessary to define the amount of pearlite in the soft portion 11 of the steel wire, it is usually a value similar to the amount of pearlite in the central portion 12 of the steel wire.
  • the means for measuring the amount of pearlite in the central portion 12 of the steel wire 10 is not particularly limited. For example, by polishing and etching the C cross section of the steel wire 10, a pearlite structure of the C cross section of the steel wire 10 is revealed, and then an optical micrograph or an electron micrograph of the C cross section is taken, and The amount of pearlite may be obtained by obtaining the area of pearlite contained.
  • the location at which the optical micrograph or electron micrograph of the C cross section is taken is, for example, 45 degrees with respect to the center of the steel wire 10 at the center of the C cross section of the steel wire 10 and 1 ⁇ 4 depth of the C cross section of the steel wire 10. It is preferable that the number of pearlites at these photographing locations is determined and the average value of the amount of pearlite at each location is the pearlite amount of the steel wire 10.
  • the average lamella spacing of pearlite from the surface to the depth of 5 ⁇ m of the steel wire 10 according to this embodiment is smaller than the average lamella spacing of pearlite at the center of the steel wire 10.
  • the difference between the average lamella spacing of pearlite from the surface of the steel wire 10 to a depth of 5 ⁇ m and the average lamella spacing of pearlite at the center of the steel wire 10 hereinafter sometimes abbreviated as “average lamella spacing difference”).
  • interval of the soft part 11 is smaller than the center average lamella space
  • the cementite in the pearlite is refined and the ductility is increased.
  • dislocations are introduced into the steel wire 10 by heat treatment for reducing the average lamella spacing, and this dislocation reduces the ductility of the steel wire 10.
  • the effect of introducing dislocations exceeds the effect of cementite refinement, so that the ductility of the steel wire 10 is lowered.
  • most of the dislocations disappear due to surface layer heating described later.
  • the average lamella spacing of the pearlite of the steel wire 10 according to the present embodiment is reduced, the influence of dislocation introduction is suppressed, so that an effect of improving ductility by cementite refinement can be obtained.
  • the average lamella spacing difference is less than 3 nm, cementite in the pearlite from the surface to a depth of 5 ⁇ m is not sufficiently refined, so that the ductility of the surface layer portion of the steel wire 10 is lowered and workability is lowered.
  • the lower limit of the difference in average lamella spacing is preferably 5 nm, 8 nm, or 10 nm.
  • the present inventors have found that delamination occurs at a high frequency when the average lamellar spacing difference of the steel wire 10 exceeds 60 nm. Therefore, in the steel wire 10 which concerns on this embodiment, it is necessary to make an average lamella space
  • the upper limit value of the difference in average lamella spacing is preferably 40 nm, 30 nm, or 25 nm.
  • the surface average lamella spacing measurement region 14 is a square of 5 ⁇ m in length and breadth, and one side of this square coincides with the surface of the steel wire 10.
  • the electron micrograph may be a square of 5 ⁇ m in length and breadth, and one side of the photograph may be matched with the surface of the steel wire 10, and this photograph may be used as the surface average lamella spacing measurement region 14.
  • the pearlite having the smallest lamella interval is selected from the plurality of pearlites included in the surface layer average lamella interval measurement region 14 and included in this pearlite 20.
  • the line segment 23 having a length of 2 ⁇ m perpendicular to the ferrite phase layer 21 and the cementite phase layer 22 is drawn, the number of the cementite phase layers 22 intersecting the line segment 23 is counted, and the length of the line segment (2 ⁇ m) Is divided by the number of the layers 22 of the cementite phase to obtain the lamella interval related to the surface average lamella interval measurement region 14.
  • the average lamellar spacing of the pearlite from the surface of the steel wire 10 to a depth of 5 ⁇ m is obtained by obtaining the lamellar spacing for each of the eight surface layer average lamellar spacing measuring regions 14 and averaging the lamella spacing.
  • Each of the twelve central average lamella interval measurement regions 15 have one of the line segments connecting the midpoints of the opposing sides coincide with the central axis of the steel wire 10.
  • Eight of the twelve center average lamella distance measurement regions 15 are ones of the line segments connecting the midpoints of the opposite sides, and the region having a depth of 1/4 of the wire diameter R from the surface of the steel wire 10.
  • Match. The values obtained by obtaining the lamella intervals for each of the 12 center average lamella interval measurement regions 15 and averaging these lamella intervals can be regarded as the average lamella interval at the center of the steel wire 10.
  • the average lamella spacing may be measured in a cross section (C cross section) perpendicular to the drawing direction of the steel wire 10.
  • C cross section cross section
  • the method for obtaining the average lamella spacing of the pearlite from the surface of the steel wire 10 to the portion having a depth of 5 ⁇ m is the same as the measurement method on the L cross section.
  • the center average lamella interval measurement region 15 for obtaining the average lamella interval at the center of the steel wire 10 is set to 1 ⁇ 4 depth of the central axis of the steel wire 10 and the wire diameter R of the steel wire 10. It can be arranged in the place.
  • the lamellar spacing in this embodiment is an average value of the distances between the center lines of the cementite phase layers 22 adjacent to each other with the ferrite phase layer 21 interposed therebetween.
  • C is an element that improves the strength of the steel wire 10.
  • the C content is preferably set to around 0.80%.
  • the steel wire 10 becomes hypoeutectoid steel and steel with a large amount of non-pearlite structure.
  • the C content exceeds 1.20%, proeutectoid cementite is precipitated, and the workability of the steel wire 10 may be reduced. For this reason, C content was set in the range of 0.70% or more and 1.20% or less.
  • Si 0.15% to 0.60%
  • Si is an element that is effective for deoxidation of the steel wire 10, and further has an effect of improving the strength of the steel wire 10 by being dissolved in ferrite.
  • Si content is less than 0.15%, there exists a possibility that the effect
  • Si content exceeds 0.60%, the workability of the steel wire 10 may be reduced. For this reason, Si content was set in the range of 0.15% or more and 0.60% or less.
  • a preferable lower limit value of the Si content is 0.20%, and a preferable upper limit value of the Si content is 0.50%.
  • Mn 0.10 to 1.00%
  • Mn is effective for deoxidation of the steel wire 10, and further has an action of fixing S in the steel wire 10 and suppressing embrittlement of the steel.
  • Mn content is less than 0.10%, there exists a possibility that the effect
  • Mn content exceeds 1.00%, the workability of the steel wire 10 may be reduced. For this reason, Mn content was set in the range of 0.10% or more and 1.00% or less.
  • N is an element that forms a nitride when combined with Al and / or Ti.
  • This nitride has the effect of suppressing the coarsening of austenite contained in the intermediate steel wire before the start of the patenting step S04 described later.
  • the average lamella spacing difference of the steel wire 10 can be suppressed to 60 nm or less as described later, and the pearlite of the steel wire 10 is refined to improve the ductility of the steel wire 10. Can be made.
  • N content is less than 0.0010%, there exists a possibility that the effect
  • N content exceeds 0.0050%, there exists a possibility that the ductility of the steel wire 10 may fall. For this reason, N content was set in the range of 0.0010% or more and 0.0050% or less.
  • the preferable lower limit of N content is 0.0015%, and the preferable upper limit of N content is 0.0045%.
  • P and S may be contained in the steel wire 10 as impurities. Although it is not necessary to specify the contents of P and S in particular, in order to give the steel wire 10 the same level of ductility as that of the conventional steel wire, the contents of P and S are set to 0% or more and 0.02 respectively. % Or less, more preferably 0% or more and 0.01% or less, respectively. Such contents of S and P are considered to be impurities.
  • the steel wire 10 according to this embodiment further includes Al, Ti, Cr, Co, V, Cu, Nb, Mo, W, B, REM, and Ca as selective components. , Mg, Zr may be contained.
  • the numerical limitation range of the selected component and the reason for limitation will be described.
  • the described% is mass%.
  • the upper limit value of the Al content is preferably 0.010%. Moreover, it is good also considering the upper limit of Al content as 0.008%. Since Al does not need to be included in the steel wire 10 according to the present embodiment, the lower limit value of the Al content is 0%. However, Al has a function of forming a nitride by being combined with N, and this nitride suppresses the average lamella spacing difference to 60 nm or less as described above, and the ductility of the steel wire 10 by refining the pearlite. Has the effect of improving. In order to obtain these effects, the lower limit value of the Al content may be 0.003%.
  • the lower limit value of the Ti content is 0%.
  • Ti is an element having a deoxidizing action.
  • Ti has a function of forming a nitride by being combined with N, and this nitride suppresses the average lamella spacing difference to 60 nm or less as described above, and the ductility of the steel wire 10 by refining pearlite. Has the effect of improving. In order to obtain these effects, 0.005% or more of Ti may be contained.
  • the upper limit of the Ti content is preferably 0.100%.
  • the lower limit value of the Cr content is 0%.
  • Cr has an effect of improving the tensile strength of the steel wire 10 by reducing the average lamella spacing of pearlite.
  • the Cr content is preferably more than 0%, and more preferably 0.0010% or more.
  • the Cr content is more than 0.50%, pearlite transformation is suppressed and austenite may remain in the structure of the intermediate steel wire during the patenting treatment. Residual austenite becomes a supercooled structure such as martensite and bainite after the patenting treatment, and deteriorates the properties of the steel wire 10.
  • the Cr content is preferably 0.50% or less.
  • the lower limit value of the Co content is 0%.
  • Co is an element having an effect of improving the properties of the steel wire 10 by suppressing the precipitation of proeutectoid cementite.
  • the Co content is preferably more than 0%, and more preferably 0.0010% or more.
  • the Co content is preferably 0.50% or less, and more preferably 0.40% or less.
  • V (V: 0% to 0.50%) Since V may not be included in the steel wire 10 according to the present embodiment, the lower limit value of the V content is 0%. However, V has a function of forming fine carbonitride by being combined with N. As described above, this nitride has an effect of suppressing the difference in average lamella spacing to 60 nm or less and an effect of improving the ductility of the steel wire 10 by refining pearlite. In order to obtain these effects, the V content is preferably more than 0%, and more preferably 0.0010% or more. On the other hand, when the V content is more than 0.50%, the amount of carbonitride formed may be excessive, and the particle size of the carbonitride may be increased. Such carbonitrides may reduce the ductility of the steel wire. Therefore, the V content is preferably 0.50% or less, and more preferably 0.40% or less.
  • the lower limit value of the Cu content is 0%.
  • Cu is an element that improves the corrosion resistance of the steel wire 10.
  • the Cu content is preferably more than 0%, and more preferably 0.0001% or more.
  • the Cu content is preferably 0.20% or less, and more preferably 0.10% or less.
  • Nb 0% to 0.100% Since Nb may not be included in the steel wire 10 according to the present embodiment, the lower limit value of the Nb content is 0%. However, Nb has the effect of increasing the corrosion resistance of the steel wire 10. Nb has a function of forming carbides and / or nitrides. As described above, this carbide and / or nitride has an effect of suppressing the difference in average lamella spacing to 60 nm or less and an effect of improving the ductility of the steel wire 10 by refining pearlite. In order to obtain these effects, the Nb content is preferably more than 0%, and more preferably 0.0005% or more.
  • the Nb content is more than 0.100%, austenite may remain due to suppression of pearlite transformation during the patenting process. Residual austenite becomes a supercooled structure such as martensite and bainite after the patenting treatment, and deteriorates the properties of the steel wire 10. Therefore, the Nb content is preferably 0.100% or less, and more preferably 0.050% or less.
  • Mo 0% to 0.20% Since Mo may not be included in the steel wire 10 according to the present embodiment, the lower limit value of the Mo content is 0%. However, Mo is an element that concentrates at the pearlite growth interface and suppresses the growth of pearlite by the so-called solution drag effect. Thereby, a pearlite can be refined
  • the Mo content is more than 0.20%, the pearlite growth is excessively suppressed, the patenting process takes a long time, and the productivity of the steel wire 10 may be reduced. Moreover, when Mo content is more than 0.20%, coarse Mo carbide precipitates, and the wire drawing workability of the steel wire 10 may deteriorate. Therefore, the Mo content is preferably 0.20% or less, and more preferably 0.06% or less.
  • W 0% to 0.200% Since W may not be included in the steel wire 10 according to the present embodiment, the lower limit value of the W content is 0%.
  • W like Mo, is an element that concentrates at the pearlite growth interface and suppresses the growth of pearlite by the so-called solution drag effect. Thereby, a pearlite can be refined
  • W is an element that reduces the non-pearlite structure that adversely affects the properties of the steel wire 10 by suppressing the formation of ferrite. In order to obtain these effects, the W content is preferably more than 0%, and more preferably 0.0005% or more.
  • the W content is more than 0.200%, the pearlite growth is excessively suppressed, and it takes a long time for the patenting process, which may lead to a decrease in the productivity of the steel wire 10.
  • W content is more than 0.200%, coarse W carbide precipitates, and the wire drawing workability of the steel wire 10 may deteriorate. Accordingly, the W content is preferably 0.200% or less, and more preferably 0.060% or less.
  • the lower limit value of the B content is 0%.
  • B is an element that suppresses the formation of non-pearlite structures such as ferrite, pseudo pearlite, and bainite.
  • B has a function of forming carbide and / or nitride. As described above, this carbide and / or nitride has an effect of suppressing the difference in average lamella spacing to 60 nm or less and an effect of improving the ductility of the steel wire 10 by refining pearlite.
  • the B content is preferably more than 0%, more preferably 0.0004% or more, or 0.0006% or more.
  • the B content is preferably 0.0030% or less, more preferably 0.0025% or less, 0.0015% or less, or 0.0012% or less.
  • the lower limit of the REM content is 0%.
  • REM is a deoxidizing element.
  • REM is an element that renders S, an impurity, harmless by forming sulfides.
  • the REM content is preferably more than 0%, and more preferably 0.0005% or more.
  • the REM content is preferably 0.0050% or less, and more preferably 0.0020% or less.
  • REM is a generic name for a total of 17 elements including 15 elements from lanthanum with atomic number 57 to lutesium with 71, plus scandium with atomic number 21 and yttrium with atomic number 39.
  • REM is supplied in the form of misch metal, which is a mixture of these elements, and is added to the steel.
  • the content of REM mentioned above is the total content of these elements.
  • the lower limit value of the Ca content is 0%.
  • Ca is an element that reduces hard alumina inclusions that deteriorate the properties of the steel wire 10.
  • Ca is an element that generates fine oxides. This fine oxide refines the pearlite block size of the steel wire 10, thereby improving the ductility of the steel wire 10.
  • the Ca content is preferably more than 0.0005%.
  • the Ca content is preferably 0.0050% or less, and more preferably 0.0040% or less. Note that, under normal operating conditions, Ca may be contained at about 0.0003%.
  • the lower limit value of the Mg content is 0%.
  • Mg is an element that generates fine oxides. This fine oxide refines the pearlite block size of the steel wire 10, thereby improving the ductility of the steel wire 10.
  • the Mg content is preferably more than 0.0005%.
  • the Mg content is preferably 0.0050% or less, and more preferably 0.0040% or less. Note that, under normal operating conditions, Mg may be contained in an amount of about 0.0001%.
  • the lower limit value of the Zr content is 0%.
  • Zr crystallizes as ZrO and becomes a crystallization nucleus of austenite. Therefore, Zr is an element that increases the equiaxed ratio of austenite and refines austenite grains.
  • the pearlite block size of the steel wire 10 is refined by refining the austenite before the patenting treatment, and thereby the ductility of the steel wire 10. Will improve.
  • the Zr content is preferably more than 0.0005%.
  • the Zr content is more than 0.0100%, a coarse oxide may be formed, causing disconnection when the steel wire 10 is drawn. Therefore, the Zr content is preferably 0.0100% or less, and more preferably 0.0050% or less.
  • the balance of the component composition of the steel wire 10 according to the present embodiment includes Fe and impurities.
  • Impurities are components that are mixed due to various factors of raw materials such as ore or scrap, or manufacturing processes when industrially manufacturing steel materials, and adversely affect the characteristics of the steel wire 10 according to the present embodiment. It means that it is allowed in the range that does not give.
  • the tensile strength of the steel wire 10 according to this embodiment is 1100 MPa or more.
  • a steel cord obtained using a steel wire 10 having a tensile strength of 1100 MPa or more is suitable as a reinforcing material for rubber products such as automobile tires, high-pressure rubber hoses, and conveyor belts.
  • the manufacturing method of the steel wire 10 according to the present embodiment has been descaled in order to obtain an intermediate steel wire and a step of descaling the wire to remove the oxide scale on the surface of the wire (descaling step S01).
  • a step of rough-drawing the wire (rough drawing step S02), a step of heating the rough-drawn intermediate steel wire (heating step S03), and a step of performing a patenting treatment on the heated intermediate steel wire (patent A heating step S04), a step of surface heating the patented intermediate steel wire (surface layer heating step S05), and a step of cooling the surface heated intermediate steel wire (cooling step S06).
  • the intermediate steel wire is a steel wire 10 being manufactured. Surface heating is heating only the surface layer of the steel wire.
  • the manufacturing method of the filament obtained using the steel wire 10 which concerns on this embodiment finishes the process (brass plating process S07) of carrying out the brass plating of the steel wire 10 which concerns on this embodiment, and finishes the steel wire 10 by which brass plating was carried out.
  • a wire drawing step finish wire drawing step S08).
  • strength steel cord obtained using the steel wire 10 which concerns on this embodiment performs the process (stranded wire processing process S09) which performs a strand wire to the filament obtained using the steel wire 10 which concerns on this embodiment. Including.
  • the wire which has the component composition mentioned above is used as a raw material.
  • the kind of wire is not particularly limited, it is preferably a hot rolled wire.
  • the diameter of the wire is not particularly limited, but is preferably about 5.5 mm.
  • the oxide scale formed on the surface of the wire is removed by chemical treatment such as pickling or mechanical treatment. Such processing is called descaling.
  • the descaling method is not particularly limited.
  • the wire rod from which the oxide scale has been removed is roughly drawn, thereby forming an intermediate steel wire having a wire diameter of 1.0 mm to 3.5 mm (rough drawing step S02).
  • the method of rough drawing is not particularly limited, but the rough drawing is preferably performed by dry drawing.
  • the steel wire finally obtained that is, the steel wire 10 according to the present embodiment
  • the steel wire may be referred to as an intermediate steel wire.
  • Heating step S03 Next, both the central portion and the soft portion of the intermediate steel wire obtained in the rough wire drawing step S02 are heated within a temperature range of 850 ° C. to 1350 ° C. (heating step S03).
  • the heating step S03 the structure of the intermediate steel wire becomes austenite, and this austenite undergoes pearlite transformation in the patenting step S04 described later. Therefore, the state of pearlite contained in the final steel wire obtained after the patenting step S04 is affected by the state of austenite generated in the intermediate steel wire in the heating step S03.
  • the heating temperature in the heating step S03 is less than 850 ° C.
  • cementite remains undissolved in the intermediate steel wire, and further, ferrite is generated in the intermediate steel wire.
  • a sufficient amount of austenite cannot be obtained, a sufficient amount of pearlite cannot be generated in the intermediate steel wire in the subsequent patenting step S04, and the amount of pearlite in the structure of the center portion of the final steel wire is small. Below 95%.
  • the heating temperature in the heating step S03 is higher than 1350 ° C., the austenite grain size becomes coarse and the hardenability is improved, so that the average lamellar spacing difference of the final steel wire may exceed 60 nm.
  • FIG. 10 is a schematic CCT diagram (Continuous-Cooling-Transformation diagram) of the steel wire according to the present embodiment.
  • Two curves from Ps to Pf are transformation curves indicating the start and end of the pearlite transformation.
  • the left transformation curve is a transformation curve relating to an intermediate steel wire having a small austenite grain size
  • the right transformation curve is a transformation curve relating to an intermediate steel wire having a large austenite grain size.
  • the transformation curve related to the intermediate steel wire with the larger austenite grain size is located on the right side.
  • Two curves extending from the upper left to the lower right of the CCT diagram are curves indicating the cooling state of the intermediate steel wire in the patenting step S04 performed after the heating step S03.
  • the left curve is a curve indicating the cooling state of the surface layer of the intermediate steel wire
  • the right curve is a curve indicating the cooling state of the center of the intermediate steel wire.
  • T 1 described in FIG. 10 is the temperature at which the transformation curve relating to the intermediate steel wire having a small austenite grain size first intersects with the curve indicating the cooling state of the surface layer of the intermediate steel wire, and the middle having the small austenite grain size.
  • the difference between the temperature at which the transformation curve for the steel wire and the curve indicating the cooling state at the center of the intermediate steel wire first intersect, that is, the difference in the pearlite transformation start temperature at the surface layer and center of the intermediate steel wire with a small austenite grain size is there.
  • the difference between the temperature at which the transformation curve related to the steel wire and the curve indicating the cooling state at the center of the intermediate steel wire first intersect, that is, the difference in the pearlite transformation start temperature at the surface layer and center of the intermediate steel wire having a large austenite grain is there.
  • T 2 is greater than T 1.
  • the austenite of the intermediate steel wire heated in the heating step S03 is coarsened
  • the subsequent patenting step S04 the difference in average lamella spacing between the intermediate steel wire surface layer and the center of the intermediate steel wire is increased
  • the difference in the average lamella spacing between the final steel wire surface layer and the final steel wire center also increases.
  • the present inventors have found that when the heating temperature exceeds 1350 ° C., the average lamellar spacing difference of the final steel wire is 60 nm due to the coarsening of the austenite grain size of the intermediate steel wire. It has been found that there is a very high risk of this. For the reasons described above, it is necessary to set the heating temperature in the heating step S03 to 850 ° C. to 1350 ° C.
  • Patenting process S04 a patenting process is performed in which the intermediate steel wire heated in the heating step S03 is immersed in a molten lead bath (lead bath) after the heating step S03 is completed (patenting step S04).
  • the temperature of the lead bath is 530 ° C. or more and 580 ° C. or less, and the time for immersing the intermediate steel wire in the lead bath is 5 to 45 seconds.
  • the time between the end of the heating step S03 and the start of the patenting step S04 is about 5 seconds.
  • Patenting may be performed using molten salt instead of molten lead.
  • the reason for defining the temperature of molten lead in the patenting step S04 is as follows.
  • the temperature of the lead bath is less than 530 ° C.
  • a bainite structure is generated in the surface layer of the intermediate steel wire, and thereby the tensile strength of the final steel wire is lowered.
  • the temperature of a lead bath exceeds 580 degreeC, the tensile strength of the last steel wire falls.
  • the temperature of the lead bath is preferably set to 530 ° C. or higher and 580 ° C. or lower.
  • the reason why the intermediate steel wire is immersed in the lead bath in the patenting step S04 is as follows.
  • the immersion time is less than 5 seconds, the pearlite transformation is not completely completed, and the pearlite fraction of the final steel wire is lowered.
  • immersion time is 45 second or more, a part of cementite in the lamella of pearlite is parted, and thereby the tensile strength of the final steel wire is lowered.
  • the intermediate steel wire taken out from the lead bath in the patenting step S04 is then cooled to room temperature.
  • the cooling rate at this time is 10 ° C./second or more.
  • the cooling rate of the intermediate steel wire is less than 10 ° C./second, the strength of the final steel wire may be reduced.
  • the surface layer heating step S05 it is necessary to sufficiently heat the surface layer of the intermediate steel wire and suppress the temperature rise inside the intermediate steel wire as much as possible.
  • the inside of the intermediate steel wire is excessively heated, the final steel wire having the soft portion 11 having a thickness of 5 ⁇ m or more cannot be obtained.
  • the best heating method for forming the predetermined soft portion 11 is high-frequency heating.
  • the frequency of the high frequency applied to the intermediate steel wire needs to be 50 kHz or more.
  • the inside of the intermediate steel wire is also heated, so that the final steel wire having the soft part 11 having a thickness of 5 ⁇ m or more cannot be obtained.
  • the upper limit value of the high frequency applied to the intermediate steel wire is not particularly limited, but it is preferable to set the upper limit value of the high frequency to about 100 kHz in consideration of equipment capacity. Since high-frequency heating can be performed by continuously passing the intermediate steel wire through the high-frequency coil, production efficiency is favorable in addition to the above-described heating rate, which is preferable. Moreover, since uniform heating can be performed by high frequency heating, the depth of the soft part 11 obtained by high frequency heating is substantially constant.
  • the surface temperature of the intermediate steel wire needs to be 500 ° C. or higher.
  • the surface temperature of the intermediate steel wire is less than 500 ° C., dislocations on the surface layer of the intermediate steel wire are not sufficiently removed, so that the soft portion 11 having a thickness of 5 ⁇ m or more cannot be formed.
  • the surface temperature of the intermediate steel wire exceeds 700 ° C. in the surface layer heating step S05, the cementite in the pearlite lamella is divided and spheroidized, thereby reducing the tensile strength of the final steel wire.
  • the heating time in the surface layer heating step S05 needs to be within 5 seconds.
  • the heating time is the time for the intermediate steel wire to pass through the high frequency coil, and this time is obtained by dividing the length of the high frequency coil by the passing speed of the intermediate steel wire. It is not necessary to define the temperature at which surface heating starts. However, in order to make the surface temperature of the intermediate steel wire 500 ° C. or higher within 5 seconds, it is desirable that the temperature at which the surface layer heating is started be 10 ° C. or higher.
  • the soft portion 11 having a thickness of 5 ⁇ m or more and 0.1 ⁇ R mm or less is used. Can not form.
  • the intermediate steel wire in which only the surface layer is heated in the surface layer heating step S05 is cooled in the cooling step S06.
  • the surface temperature of the intermediate steel wire needs to be 500 ° C. or less within 3.0 seconds after the completion of the surface layer heating step S05.
  • the surface temperature of the intermediate steel wire is set to 500 ° C. or less within 2.0 seconds after the completion of the surface layer heating step S05.
  • the surface layer heating step S05 is performed by high frequency heating
  • the time point when the surface layer heating step S05 ends is the time point when the intermediate steel wire leaves the high frequency heating coil. If the above-mentioned cooling conditions are not achieved, the inside of the intermediate steel wire is also softened, so that the soft part 11 having a thickness of 5 ⁇ m or more and 0.1 ⁇ Rmm or less cannot be formed.
  • the cooling means in the cooling step S06 is not particularly limited as long as the above cooling conditions are achieved. If the surface heating temperature in the surface layer heating step S05 is about 500 ° C. or slightly higher than 500 ° C., the above cooling conditions can be achieved by air cooling. However, due to disturbance factors such as ambient temperature, the surface temperature of the intermediate steel wire at the end of the surface heating step S05 is unexpectedly much higher than 500 ° C., thereby achieving the above cooling conditions by air cooling. There are cases where it is not possible. On the other hand, the above-mentioned cooling conditions can be reliably achieved by water-cooling the intermediate steel wire within 3.0 seconds after the surface layer heating step S05 ends.
  • the steel wire 10 (final steel wire) according to the present embodiment is manufactured by the above-described S01 to S06. Note that it is not preferable to perform additional heat treatment on the steel wire 10 after the cooling step S06 is completed. When the inside of the steel wire 10 is heated by the additional heat treatment, the hardness of the inside of the steel wire 10 is lowered and the soft part 11 having a thickness of 5 ⁇ m or more and 0.1 ⁇ Rmm or less may be lost. is there.
  • the steel wire 10 according to the present embodiment is preferably subjected to brass plating on the surface (brass plating step S07). Brass plating is formed in order to improve adhesion between rubber and a steel cord.
  • FIG. 13 is a graph showing the relationship between the amount of wire drawing strain applied to the steel wire and the hardness of the central portion 12 and the hardness of the soft portion 11.
  • FIG. 13 shows that the difference between the hardness of the central portion 12 and the hardness of the soft portion 11 increases as the wire drawing strain increases.
  • the steel wire 10 which concerns on this embodiment, the manufacturing method of the steel wire 10 which concerns on this embodiment, and the method of creating a steel cord using the steel wire 10 which concerns on this embodiment were demonstrated.
  • the steel wire 10 according to the present embodiment configured as described above has a soft part 11 and a center part 12, and the soft part 11 has a lower Vickers hardness than the center part 12, and the Vickers of the soft part 11.
  • the difference between the hardness and the Vickers hardness at a quarter depth of the diameter R of the steel wire 10 is Hv30 or more.
  • the ductility is improved in the soft part 11, and the tensile strength is kept high in the central part 12.
  • the steel wire 10 which concerns on this embodiment it is suppressed that defects, such as a crack, generate
  • the component composition of the steel wire 10 which concerns on this embodiment is the mass%, C: 0.70% or more and 1.20% or less, Si: 0.15% or more and 0.60% or less, Mn: 0.10 %: 1.00% or less, N: 0.0010% or more, 0.0050% or less, Al: 0% or more, 0.010% or less, Ti: 0% or more, 0.10% or less, Cr: 0% or more, 0.
  • the tissue of the central portion 12 of the steel wire 10 according to the present embodiment are contained in a proportion of less than 100% 95% perlite by area%. Therefore, the tensile strength is kept sufficiently high in the central portion 12 of the steel wire 10 according to the present embodiment, and the steel cord manufactured using the steel wire 10 according to the present embodiment also has a high tensile strength. Can have.
  • the finishing wire drawing step S08 and the stranded wire processing step S09 it is possible to suppress the occurrence of defects such as cracks and to sufficiently ensure the strength of the steel wire 10.
  • the manufacturing method of the steel wire 10 which concerns on this embodiment is surface layer heating which heats the surface temperature of a steel wire to 500 degreeC or more by performing the high frequency heating of the frequency of 50 kHz or more to the steel wire which passed through the patenting process step S04, for example. Step S05 is included. Therefore, according to the manufacturing method of the steel wire 10 according to the present embodiment, a temperature difference is generated between the inside of the steel wire and the surface layer, and the soft portion 11 and the central portion 12 having different hardness and lamella spacing are formed. It becomes possible to do.
  • the steel wire 10 which concerns on this embodiment was demonstrated, this invention is not limited to this, It can change suitably in the range which does not deviate from the technical idea of the invention.
  • the thickness of the soft part is not limited to this embodiment.
  • the wire diameter of the wire, the wire diameter of the filament, and the like are not limited to the present embodiment, and may be appropriately changed.
  • Steel wires having the component compositions shown in Table 1-1, Table 1-2, Table 2-1, and Table 2-2 were produced.
  • the amounts of P and S contained in the component compositions of the steel wires of Examples 1 to 25 and the steel wires of Comparative Examples 26 to 46 were at a level that can be regarded as impurities.
  • the steel wires of Examples 1 to 25 and the steel wires of Comparative Examples 26 to 36 were produced by the steel wire manufacturing method according to this embodiment described above.
  • the steel wire of the comparative example 37 was produced by the manufacturing method based on the manufacturing method of the steel wire which concerns on this embodiment mentioned above except the surface layer heating process S05 being abbreviate
  • the steel wire of Comparative Example 38 is produced by a manufacturing method based on the above-described manufacturing method of the steel wire according to the present embodiment except that the heating temperature in the heating step S03 is 1380 ° C. (that is, higher than 1350 ° C.). did.
  • the steel wire of Comparative Example 39 is produced by a manufacturing method based on the above-described manufacturing method of the steel wire according to the present embodiment except that the heating temperature in the heating step S03 is 830 ° C. (that is, less than 850 ° C.). did.
  • the steel wire of Comparative Example 40 is the same as the steel wire manufacturing method according to the present embodiment described above except that the immersion time in the lead bath in the patenting step S04 is 4 seconds (that is, less than 5 seconds).
  • the steel wire of Comparative Example 41 is the same as the steel wire manufacturing method according to the present embodiment described above except that the immersion time in the lead bath in the patenting step S04 is 50 seconds (that is, more than 45 seconds). It was produced by a compliant manufacturing method.
  • the steel wire of Comparative Example 42 is the same as the above-described embodiment except that the cooling rate after immersion in the lead bath in the patenting step S04 is 8 ° C./second (ie, less than 10 ° C./second). It produced by the manufacturing method based on the manufacturing method of the steel wire which concerns.
  • the steel wire of Comparative Example 43 is manufactured in accordance with the above-described method for manufacturing a steel wire according to the present embodiment except that the frequency of the high-frequency heating performed in the surface layer heating step S05 is 30 kHz (that is, less than 50 kHz). Prepared by the method.
  • the steel wire of Comparative Example 44 is a manufacturing method based on the above-described manufacturing method of the steel wire according to the present embodiment except that the surface heating temperature in the surface heating step S05 is 480 ° C. (that is, less than 500 ° C.). It was produced by.
  • the steel wire of Comparative Example 45 is a manufacturing method based on the above-described manufacturing method of the steel wire according to the present embodiment except that the surface heating temperature in the surface heating step S05 is 730 ° C. (that is, more than 700 ° C.). It was produced by.
  • the steel wire of Comparative Example 46 is the steel wire according to this embodiment described above, except that the time until the surface layer temperature in the cooling step S06 becomes 500 ° C. or less is 4 seconds (that is, more than 2 seconds). It produced by the manufacturing method based on a manufacturing method.
  • the tensile strength TS was evaluated.
  • the amount of pearlite at the center of the steel wire is the amount of pearlite at the center of the C cross section of the steel wire and at 8 locations arranged at 45 degrees with respect to the steel wire center at 1 ⁇ 4 depth of the C cross section of the steel wire. The average value was used.
  • the amount of pearlite at each measurement location was determined based on an optical micrograph or SEM photograph of a C cross section of a steel wire in which a pearlite structure was revealed.
  • the soft part thickness was determined based on the hardness distribution in the depth direction of the steel wire obtained by measuring the hardness of the steel wire.
  • the surface layer hardness was an average value of Vickers hardness at 8 locations arranged at every 45 degrees with respect to the center of the steel wire at a depth of 2 ⁇ m from the surface of the steel wire.
  • the center hardness is a portion having a depth of 1/4 of the wire diameter R of the steel wire from the surface of the steel wire, and 8 locations arranged every 45 degrees with respect to the center of the steel wire, and the center of the steel wire It was set as the average value of Vickers hardness.
  • the surface layer average lamella spacing was determined by the procedure described below. First, a pearlite structure was revealed on the L cross section of the steel wire.
  • the surface layer average lamella interval measurement region was a square of 5 ⁇ m in length and width, and one side of the square was made to coincide with the surface of the steel wire.
  • a pearlite having the smallest lamella interval is selected from among a plurality of pearlites included in the surface average lamella interval measurement region, and the ferrite phase layer and the cementite phase included in the pearlite are selected.
  • the surface average is obtained by drawing a line segment with a length of 2 ⁇ m perpendicular to the layer, counting the number of cementite phase layers intersecting this line segment, and dividing the length of the line segment (2 ⁇ m) by the number of cementite phase layers.
  • the lamella interval related to the lamella interval measurement region was determined.
  • the average lamella spacing of pearlite from the surface of the steel wire to a depth of 5 ⁇ m was obtained by determining the lamella spacing for each of the eight surface layer average lamella spacing measurement regions and averaging the lamella spacing.
  • the center average lamella spacing was determined by the procedure described below.
  • an L cross section of a steel wire is prepared, an electron micrograph of a region including the central axis of the steel wire, and a 1/4 depth of the wire diameter R of the steel wire.
  • region containing a location was image
  • regions which are 5 micrometers in length and width square was calculated
  • one of the line segments connecting the midpoints of the opposing sides coincided with the central axis of the steel wire.
  • the average lamella spacing at the center of the steel wire was obtained by obtaining the lamella spacing for each of the 12 central average lamella spacing measurement regions and averaging these lamella spacings.
  • the presence or absence of delamination was determined by conducting a twist test on the steel wire. When a torsion test is performed on a steel wire with delamination, the fracture surface caused by torsion fracture is not a shear fracture surface but a fracture surface along a vertical crack. By inspecting with, it is possible to determine the presence or absence of delamination.
  • the tensile strength TS was obtained by a tensile test in accordance with JIS Z 2241 “Tensile test method for metal material”. The evaluation results are shown in Table 1-3 and Table 2-3.
  • the pearlite fraction of Comparative Example 26 in which the C content was insufficient was less than 95 area%. Thereby, the tensile strength of the comparative example 26 became lower than 1100 MPa.
  • the tensile strength of Comparative Example 28 in which the Si content was insufficient was lower than 1100 MPa.
  • Comparative Example 27 in which the C content was excessive and in Comparative Example 29 in which the Si content was excessive delamination occurred due to a decrease in workability.
  • Comparative Example 30 in which the Mn content was insufficient deoxidation and S fixation were not sufficiently performed, and thus delamination occurred.
  • Comparative Example 31 in which the Mn content was excessive delamination occurred due to a decrease in workability.
  • Comparative Example 32 in which the Mo content was excessive, delamination occurred because the wire drawing workability decreased due to precipitation of Mo carbides.
  • Comparative Example 33 in which the Al content was excessive, delamination occurred due to the occurrence of alumina inclusions that caused the ductility deterioration and the wire drawing deterioration of the steel wire.
  • Comparative Example 34 in which the B content was excessive, delamination occurred due to the generation of coarse Fe 23 (CB) 6 that caused a reduction in the ductility of the steel wire.
  • Comparative Example 35 in which the N content was excessive, a decrease in ductility occurred, and thus delamination occurred.
  • Comparative Example 36 in which the contents of Cr and Mo were excessive, a large amount of upper bainite or martensite was generated, and the pearlite fraction was lowered and the wire drawing workability was lowered, so that delamination occurred. .
  • Comparative Example 37 In Comparative Example 37 in which the surface layer heating was not performed, since the soft part was not formed, the workability was lowered and delamination occurred.
  • Comparative Example 38 In Comparative Example 38, in which the heating temperature before patenting was excessive, the average lamellar gap difference was excessive, so delamination occurred.
  • Comparative Example 39 in which the heating temperature before patenting was insufficient, delamination occurred because the amount of pearlite decreased and the wire drawing workability decreased.
  • the steel wire of Comparative Example 40 In the steel wire of Comparative Example 40 in which the immersion time in the lead bath in patenting was insufficient, the pearlite fraction was reduced and delamination occurred.
  • the tensile strength was as high as 1150 MPa or more, and no delamination was observed.
  • a steel wire having high strength and excellent workability can be provided.
  • Such a steel wire is suitable for producing a high-strength steel cord with a high yield.
  • the steel wire according to the present invention has industrial applicability because the high-strength steel cord is very useful for promoting the reduction in fuel consumption of automobiles by reducing the weight of automobile tires.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Textile Engineering (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

本発明は、捻り欠陥の発生が抑えられた高品質のスチールコード用の鋼線であり、所定の成分組成を有し、鋼線の線径Rが1.0mm以上3.5mm以下、引張強さが1100MPa以上である。鋼線の外周に沿って軟質部が形成されており、軟質部のビッカース硬度は、鋼線の線径Rの1/4の深さにおけるビッカース硬度よりもHv30以上低く、軟質部の厚さは、5μm以上0.1×Rmm以下である。鋼線の中心部の組織は、パーライトを面積%で95%以上100%以下の割合で含有している。鋼線の表面から深さ5μmまでのパーライトの平均ラメラ間隔は、鋼線の中心のパーライトの平均ラメラ間隔よりも小さく、それらの間隔の差が3nm以上60nm以下である。

Description

鋼線
 本発明は、自動車用タイヤ、高圧ゴムホース、コンベアベルト等のゴム製品の補強材として用いられる高強度スチールコードの材料である鋼線に関するものである。
 本願は、2014年2月6日に、日本に出願された特願2014-021684号に基づき優先権を主張し、その内容をここに援用する。
 例えば、自動車用タイヤ等のゴム製品においては、補強材として、レーヨン、ナイロン、ポリエステル等の化学繊維、または鋼線からなるスチールコードが用いられている。これらの補強材は、自動車用タイヤの骨格の役割を果たすものであり、この自動車用タイヤを装着した車両の燃費、高速耐久性、および操縦安定性に大きな影響を与えるものである。近年では、これらの特性を向上させる観点から、補強材としてスチールコードの使用割合が増加している。
 ここで、スチールコードは、例えば特許文献1、2に開示されているように、複数の鋼素線(フィラメント)を撚り合わせた撚り線構造とされたものが広く提案されている。このようなスチールコードは、次のような工程を経て製造される。まず、線径5~6mmの線材に対して乾式伸線を行って、線径1.0~4.0mm程度の鋼線を得る。この鋼線にパテンティング処理と呼ばれる熱処理を実施して、鋼線を軟化させる。そして、軟化した鋼線の表面にブラスめっきを形成し、さらに、鋼線に湿式伸線(仕上伸線)を行って、線径約0.1~0.5mmのフィラメントを得る。そして、このようにして得られたフィラメントを撚り線加工することによって、撚り線構造のスチールコードが製造されることになる。なお、ブラスめっきは、ゴムとスチールコードとの密着性を高めるために形成されるものである。
日本国特開2005-054260号公報 日本国特開2005-036356号公報
 上述のように、スチールコードを製造する際には、線径1.0~4.0mm程度の鋼線に対して湿式伸線(仕上伸線)及び撚り線加工が施されることになるので、スチールコード用の鋼線には、良好な加工性が要求されることになる。一方、近年では、環境負荷低減の観点から、自動車の低燃費化を推進するために自動車用タイヤの軽量化が進められており、それに伴ってスチールコード及びスチールコード用フィラメントに対して、高強度化が要求されている。
 しかし、高強度のスチールコード及びスチールコード用フィラメントを形成するために、鋼線の強度を向上させた場合には、鋼線の延性が不足し、鋼線の加工性が低下することになる。このため、高強度化された鋼線には、湿式伸線(仕上伸線)加工及び撚り線加工において、割れ等の欠陥が発生するという問題があった。また、鋼線の強度が高い場合、撚り線加工を良好に行うことができず、撚り欠陥が発生するおそれがあった。このように、従来は、高強度化と加工性とを両立したスチールコード用鋼線を得ることができず、高強度のスチールコードを安定して製造することができなかった。
 本発明は、前述した状況に鑑みてなされたものであって、強度が高く、かつ、加工性に優れ、高強度のスチールコードを安定して製造することが可能な鋼線を提供することを目的とする。
 上記課題を解決するための、本発明の要旨は以下の通りである。
 (1)本発明の一態様に係る鋼線は、成分組成が、質量%で、C:0.70%以上1.20%以下、Si:0.15%以上0.60%以下、Mn:0.10%以上1.00%以下、N:0.0010%以上0.0050%以下、Al:0%以上0.010%以下、Ti:0%以上0.10%以下、Cr:0%以上0.50%以下、Co:0%以上0.50%以下、V:0%以上0.50%以下、Cu:0%以上0.20%以下、Nb:0%以上0.100%以下、Mo:0%以上0.20%以下、W:0%以上0.200%以下、B:0%以上0.0030%以下、REM:0%以上0.0050%以下、Ca:0%以上0.0050%以下、Mg:0%以上0.0050%以下、およびZr:0%以上0.0100%以下を含み、残部がFe及び不純物からなり、前記鋼線の線径Rが1.0mm以上3.5mm以下であり、前記鋼線の外周に沿って軟質部が形成されており、前記軟質部のビッカース硬度は、前記鋼線の前記線径Rの1/4の深さにおける前記ビッカース硬度よりもHv30以上低く、前記軟質部の厚さが、5μm以上0.1×Rmm以下であり、前記軟質部以外の前記鋼線の組織は、パーライトを面積%で95%以上100%以下の割合で含有しており、前記鋼線の表面から深さ5μmまでの前記パーライトの平均ラメラ間隔は、前記鋼線の中心の前記パーライトの前記平均ラメラ間隔よりも小さく、前記鋼線の前記表面から深さ5μmまでの前記パーライトの前記平均ラメラ間隔と前記鋼線の前記中心の前記パーライトの前記平均ラメラ間隔との差が3nm以上60nm以下であり、さらに、引張強さが1100MPa以上である。
 (2)上記(1)に記載の鋼線において、前記軟質部の厚さが、10μm以上0.08×Rmm以下であってもよい。
 (3)上記(1)または(2)に記載の鋼線において、鋼線の前記表面から深さ5μmの前記箇所までの前記平均ラメラ間隔と前記鋼線の前記中心の前記平均ラメラ間隔との差が40nm以下であってもよい。
 (4)上記(1)~(3)のいずれか一項に記載の鋼線において、前記成分組成が、質量%で、Ti:0.005%以上0.10%以下、Cr:0%超0.50%以下、Co:0%超0.50%以下、V:0%超0.50%以下、Cu:0%超0.20%以下、Nb:0%超0.100%以下、Mo:0%超0.20%以下、W:0%超0.20%以下、B:0%超0.0030%以下、REM:0%超0.0050%以下、Ca:0.0005%超0.0050%以下、Mg:0.0005%超0.0050%以下、およびZr:0.0005%超0.0100%以下のうちの1種または2種以上を含んでいてもよい。
 上述の構成を有する鋼線は、軟質部を有し、この軟質部では、鋼線の中心部に比べて平均ラメラ間隔が細かく、鋼線の中心部の平均ラメラ間隔と鋼線の表面~深さ5μmの領域の平均ラメラ間隔との差が60nm以下である。また、上述の構成を有する鋼線の軟質部のビッカース硬さは、鋼線の線径Rの1/4の深さにおけるビッカース硬さよりもHv30以上低い。ビッカース硬さが低い方が、延性が高くなる。本発明者らは、このような軟質部をその表面に有する鋼線は、硬度が高い中心部によって引張強度が高められ、且つ硬度が低い軟質部によって延性が著しく向上することを見出した。さらに発明者らは、鋼線の表面から深さ5μmまでのパーライトの平均ラメラ間隔を、鋼線の中心のパーライトの平均ラメラ間隔よりも微細化することにより、パーライト組織中のセメンタイト厚みが微細となり、断線の起点となるセメンタイトの割れが微細となることを知見した。仕上伸線加工および撚り線加工においては、鋼線の軟質部が主に変形させられる。スチールコード用の鋼線には良好な加工性が求められる。上述の構成によれば、仕上伸線加工及び撚り線加工において、割れ等の欠陥が鋼線に発生することを抑制できる。上述の鋼線を有する鋼線には、撚り線加工を良好に行うことができるので、上述の構成によって、撚り欠陥の発生が抑えられた高品質のスチールコードを提供することが可能となる。
 また、上述の構成を有する鋼線の成分組成は、質量%で、C:0.70%以上1.20%以下、Si:0.15%以上0.60%以下、Mn:0.10%以上1.00%以下、N:0.0010%以上0.0050%以下、Al:0%以上0.010%以下、Ti:0%以上0.10%以下、Cr:0%以上0.50%以下、Co:0%以上0.50%以下、V:0%以上0.50%以下、Cu:0%以上0.20%以下、Nb:0%以上0.100%以下、Mo:0%以上0.20%以下、W:0%以上0.200%以下、B:0%以上0.0030%以下、REM:0%以上0.0050%以下、Ca:0%以上0.0050%以下、Mg:0%以上0.0050%以下、およびZr:0%以上0.0100%以下を含み、残部がFe及び不純物とされており、上述の構成を有する鋼線の中心部の組織は、パーライト組織を面積%で95%以上100%以下の割合で含有している。上述の構成を有する鋼線の中心部は、十分に高い引張強度を有する。従って、上述の構成を有する鋼線を用いれば、スチールコードの軽量化が可能となる。
 また、上述の構成を有する鋼線の軟質部の厚さは、5μm以上0.1×Rmmである。上述したように、Rとは鋼線の径(線径)である。軟質部の厚さが5μm以上とされているので、上述の構成を有する鋼線は十分に良好な加工性を有し、仕上伸線加工及び撚り線加工において、割れ等の欠陥の発生が抑制される。また、軟質部の厚さが0.1×Rmm以下とされているので、上述の構成を有する鋼線の引張強さが高く保たれ、スチールコードの強度を十分に確保することができる。なお、軟質部の厚さとは、鋼線の線径Rの1/4の深さにおけるビッカース硬さよりもHv30以上低いビッカース硬さを有する領域の厚さである。
 本発明によれば、強度が高く、かつ、加工性に優れ、高強度のスチールコードを安定して製造することが可能な鋼線を提供することが可能となる。
本実施形態に係る鋼線のC断面図である。 本実施形態に係る鋼線の硬度分布を模式的に示すグラフである。 本実施形態に係る鋼線の硬度分布グラフの作成方法の一例を説明する図である。 本実施形態に係る鋼線の硬度分布グラフの作成方法の一例を説明する図である。 本実施形態に係る鋼線の硬度分布グラフの作成方法の一例を説明する図である。 本実施形態に係る鋼線の平均ラメラ間隔差の計測方法の一例を説明する図である。 本実施形態に係る鋼線の平均ラメラ間隔差の計測方法の一例を説明する図である。 本実施形態に係る鋼線の平均ラメラ間隔の計測方法の一例を説明する図である。 本実施形態に係る鋼線の製造方法を示すフロー図である。 本実施形態に係る鋼線の概略的なCCT線図である。 パーライト鋼の熱処理温度と硬さとの関係を示す概念図である。 表層熱処理後の本実施形態に係る鋼線の冷却方法を説明する図である。 本実施形態に係る鋼線の加工硬化曲線の概念図である。
 以下に、本発明の一実施形態に係る鋼線について、添付した図面を参照して説明する。本実施形態に係る鋼線10は、自動車用タイヤ等のゴム製品の補強材として使用される高強度スチールコードを製造する際の原材料として用いられるものである。
 本実施形態に係る鋼線10は、その線径Rが1.0mm≦R≦3.5mmとされており、成分組成が、質量%で、C:0.70%以上1.20%以下、Si:0.15%以上0.60%以下、Mn:0.10%以上1.00%以下、N:0.0010%以上0.0050%以下、Al:0%以上0.010%以下、Ti:0%以上0.10%以下、Cr:0%以上0.50%以下、Co:0%以上0.50%以下、V:0%以上0.50%以下、Cu:0%以上0.20%以下、Nb:0%以上0.100%以下、Mo:0%以上0.20%以下、W:0%以上0.200%以下、B:0%以上0.0030%以下、REM:0%以上0.0050%以下、Ca:0%以上0.0050%以下、Mg:0%以上0.0050%以下、およびZr:0%以上0.0100%以下を含み、残部がFe及び不純物とされている。
 そして、本実施形態に係る鋼線10は、図1に示すように、軟質部11と中心部12とを有している。軟質部11は、鋼線10の外周に沿って形成されている。軟質部11のビッカース硬度は、鋼線10の線径Rの1/4の深さにおけるビッカース硬度よりもHv30以上低く、軟質部の厚さは、5μm以上0.1×Rmm以下である。さらに、鋼線10の表面から深さ5μmまでのパーライトの平均ラメラ間隔は、鋼線10の中心のパーライトの平均ラメラ間隔よりも小さく、鋼線10の表面から深さ5μmまでのパーライトの平均ラメラ間隔と鋼線10の中心のパーライトの平均ラメラ間隔との差が3.0nm以上60.0nm以下である。さらに、鋼線10の引張強さは1100MPa以上である。
(軟質部11の硬度:鋼線の線径Rの1/4の深さにおけるビッカース硬度よりもHv30以上低い)
 図1に示されているように、本実施形態に係る鋼線10は、その外周に沿って形成された軟質部11を有する。本実施形態に係る鋼線10では、鋼線の線径Rの1/4の深さにおけるビッカース硬度よりもHv30以上柔らかい領域が、軟質部11と定義される。すなわち、軟質部11のビッカース硬度は、鋼線の線径Rの1/4の深さにおけるビッカース硬度よりもHv30以上低い。図1において、符号16が付された破線は、鋼線の線径Rの1/4の深さの箇所を示す。また、本実施形態に係る鋼線10のうち軟質部11ではない部分が、中心部12と定義される。軟質部11の硬度と中心部12との硬度の差は、転位密度、およびセメンタイトの形態の差に起因する。中心部12の組織は95~100%のパーライトを含み、軟質部11の組織も同様の量のパーライトを含むが、パーライト変態後の組織に導入されている転位の大半が、軟質部11においては除去されている。軟質部11は、その硬度が中心部12よりも低いので、中心部12よりも高い延性を有する。
(軟質部11の厚さ:5μm以上0.1×Rmm以下)
 本実施形態に係る鋼線10の軟質部11の厚さtは、5μm≦t≦0.1×Rmmの範囲内とされている。すなわち、本実施形態に係る鋼線10では、線径Rの1/4の深さの箇所16のビッカース硬さよりもHv30以上軟らかい領域が、鋼線10の外周面から深さtまでの領域に形成されている。例えば、線径Rが3.0mmである場合、軟質部11の厚さtは5μm以上0.3mm(300μm)以下である。中心部12よりも高い延性を有する軟質部11が鋼線10の外周に沿って形成されているので、鋼線10は、主に外周に著しい変形が加えられる仕上伸線加工および撚り線加工において、良好な加工性を発揮する。一方、中心部12が十分に高い硬度を有しているので、鋼線10は、1100MPa以上の高い引張強さを有している。軟質部11の厚さtが5μm以下である場合、仕上伸線加工および撚り線加工等において、断線等の加工不良が生じやすくなる。また、軟質部11の厚さtが0.1×Rmm超となった場合、引張強さが低下する。従って、軟質部11の厚さtを5μm≦t≦0.1×Rmmの範囲内とする。軟質部11の厚さtの好ましい範囲は10μm以上0.08×Rmm以下である。
 本実施形態に係る鋼線10の軟質部11の厚さの測定方法は特に限定されない。例えば、軟質部11の厚さは、鋼線10の硬度を測定することにより得られる、鋼線10の深さ方向の硬度分布から判定することができる。例えば、鋼線10を伸線方向に垂直に切断することにより得られる切断面(C断面)を適宜調製し、切断面の外周から中心に向けて連続的に硬度測定を行うことにより、図2に示されるような、鋼線10の深さと硬度との関係を示すグラフが得られる。このグラフから、鋼線10の線径Rの1/4の深さにおけるビッカース硬度よりもHv30以上低い領域の厚さがわかる。
 軟質部11の厚さの測定精度を高めるためには、硬度測定点の数を増やすことが望ましい。一方、ビッカース硬度測定を1試料に対して複数回行う場合、測定点同士を、測定点に形成される圧痕13の対角線長さの約2倍以上離隔させることが必要とされる。先の測定の際の圧痕13の形成によって、圧痕13の周囲の硬度が上昇するので、後の測定を先の測定時の圧痕13の近傍で行った場合、正確な測定値が得られない。測定点の個数を増やすために、測定点を図4または図5に示されるように設定することができる。通常は、硬度の深さ方向の分布を測定する際には、連続的な測定を、鋼線10の外周から中心に向かう1本の直線に沿って実施する(図3参照)。このような測定は、測定作業の効率を向上させることができる。しかし、本実施形態に係る鋼線10の軟質部11の深さを求める際には、図4または図5に示されるように、測定を鋼線10の外周から中心に向かう複数の直線に沿って実施することが好ましい。これにより、測定点同士の間隔を狭めることなく測定点の個数を増やすことができる。また、測定点の個数を増やすために、硬度の測定を、鋼線10を伸線方向に対して30°の角度で切断することにより得られる断面において行ってもよい。この断面の長径に沿って、測定点同士の間隔が2μmである硬度測定をすることにより、深さ1μm毎の硬度が得られる。本実施形態に係る鋼線10の軟質部11の深さを十分に高い精度で測定するためには、硬度測定の深さ間隔を1μm以下にすることが好ましく、また、この深さ間隔を達成するためにビッカース硬度測定の際の荷重、測定点の設定方法、および測定面の作成方法などを適宜調節することが好ましい。
(鋼線の中心部の組織:95面積%以上100面積%以下のパーライトを含有)
 本実施形態に係る鋼線10の中心部12の組織(すなわち、鋼線10の軟質部11以外の組織)は、面積率で、95~100%のパーライトを含む。中心部12の組織が95%以上のパーライトを含有することは、鋼線10の引張強度を1100MPa以上とし、且つ後述する仕上伸線工程S07などでの鋼線10の加工性を良くするために必須である。パーライト量が多い方が好ましいので、鋼線10の中心部12におけるパーライト量の上限値は100%である。マルテンサイト、ベイナイト、セメンタイト、および疑似パーライト等の、パーライト以外の組織の含有は、パーライト量の規定が満たされている限り許容される。疑似パーライトとは、粒状のセメンタイトと粒状のフェライトとから構成される組織であり、層状のセメンタイトと層状のフェライトとが重なっている形状を有する通常のパーライト(図8に示されるパーライト20)とは区別される。本実施形態に係る「パーライト」とは、「通常のパーライト」を意味する。鋼線の軟質部11のパーライト量を規定する必要はないが、通常、鋼線の中心部12のパーライト量と同様の値となる。
 鋼線10の中心部12におけるパーライト量を測定する手段は特に限定されない。例えば、鋼線10のC断面に研磨およびエッチングを行うことにより、鋼線10のC断面のパーライト組織を現出させ、次いでC断面の光学顕微鏡写真または電子顕微鏡写真を撮影し、そしてこの写真に含まれるパーライトの面積を求めることにより、パーライト量を求めても良い。C断面の光学顕微鏡写真または電子顕微鏡写真を撮影する箇所は、例えば、鋼線10のC断面の中心と、鋼線10のC断面の1/4深さにおける、鋼線10の中心に関して45度ごとに配置された8箇所とし、これら撮影箇所におけるパーライト量を求め、各箇所におけるパーライト量の平均値を鋼線10のパーライト量とすることが好ましい。
(鋼線の表面から深さ5μmまでのパーライトの平均ラメラ間隔:鋼線の中心の平均ラメラ間隔よりも小さく、平均ラメラ間隔の差が3nm以上60nm以下)
 本実施形態に係る鋼線10の、表面から深さ5μmまでのパーライトの平均ラメラ間隔は、鋼線10の中心におけるパーライトの平均ラメラ間隔よりも小さい。また、鋼線10の表面から深さ5μmまでのパーライトの平均ラメラ間隔と、鋼線10の中心におけるパーライトの平均ラメラ間隔との差(以下、「平均ラメラ間隔差」と略する場合がある)は、3nm以上60nm以下である。なお、鋼線10の表面から深さ5μmまでの領域は、軟質部11に含まれる。従って、本実施形態に係る鋼線10においては、軟質部11の平均ラメラ間隔が中心の平均ラメラ間隔よりも小さい。
 平均ラメラ間隔が小さくなると、パーライト中のセメンタイトが微細化することにより、延性が増大する。一方、平均ラメラ間隔を小さくするための熱処理によって鋼線10に転位が導入され、この転位は鋼線10の延性を低下させる。一般的に、鋼線10のパーライトの平均ラメラ間隔を小さくした場合には、転位導入の影響がセメンタイト微細化の影響を上回るので、鋼線10の延性が低下する。しかし、本実施形態に係る鋼線10の軟質部11においては、大部分の転位が、後述する表層加熱によって消滅している。従って、本実施形態に係る鋼線10のパーライトの平均ラメラ間隔を小さくした場合、転位導入の影響が抑制されているので、セメンタイト微細化による延性向上効果が得られる。平均ラメラ間隔差が3nm未満である場合、表面から深さ5μmまでのパーライト中のセメンタイトが十分に微細化されないので、鋼線10の表層部の延性が低下し、加工性が低下する。平均ラメラ間隔の差の下限値は、好ましくは5nm、8nmまたは10nmである。
 一方、平均ラメラ間隔差が大きすぎる場合、鋼線10の変形が不均一になり、デラミネーションが生じやすくなる。本発明者らは、鋼線10の平均ラメラ間隔差が60nm超である場合、デラミネーションが高い頻度で発生することを知見した。従って、本実施形態に係る鋼線10において、平均ラメラ間隔差を60nm以下とする必要がある。平均ラメラ間隔の差の上限値は、好ましくは40nm、30nm、または25nmである。
 鋼線10の表面から深さ5μmまでのパーライトの平均ラメラ間隔は、以下に説明する手順により求めればよい。まず、鋼線10の伸線方向に平行であり、かつ鋼線10の中心軸を通る断面(L断面)を作成する。このL断面を、ピクラールを用いてエッチングすることにより、L断面にパーライト組織を現出させる。次に、このL断面における、鋼線10の表面から深さ5μmまでを含む領域の電子顕微鏡写真を撮影する。そして、この写真から、図6に示される表層平均ラメラ間隔測定領域14を切り出す。表層平均ラメラ間隔測定領域14は、縦横5μmの正方形であり、この正方形の1つの辺は、鋼線10の表面と一致している。なお、電子顕微鏡写真を縦横5μmの正方形とし、写真の1つの辺を鋼線10の表面と一致させ、この写真を表層平均ラメラ間隔測定領域14としてもよい。次に、図8に示されているように、表層平均ラメラ間隔測定領域14に含まれる複数のパーライトのうち最もラメラ間隔が小さいパーライト(図8のパーライト20)を選択し、このパーライト20に含まれるフェライト相の層21およびセメンタイト相の層22に直交する長さ2μmの線分23を引き、この線分23と交差するセメンタイト相の層22の数を数え、線分の長さ(2μm)をセメンタイト相の層22の数で割ることにより、表層平均ラメラ間隔測定領域14に係るラメラ間隔を求める。8つの表層平均ラメラ間隔測定領域14それぞれにかかるラメラ間隔を求め、これらラメラ間隔を平均することにより、鋼線10の表面から深さ5μmまでのパーライトの平均ラメラ間隔が得られる。
 鋼線10の中心の平均ラメラ間隔は、以下に説明する手順により求めればよい。上述の、鋼線10の表層部の平均ラメラ間隔の測定方法と同様に、鋼線10のL断面を調製し、鋼線10の中心軸、および鋼線の線径Rの1/4深さの箇所を含む領域の電子顕微鏡写真を含む領域の電子顕微鏡写真を撮影する。次いで、縦横5μmの正方形である12箇所の中心平均ラメラ間隔測定領域15に係るラメラ間隔を求める。12箇所の中心平均ラメラ間隔測定領域15のうち4箇所は、その向かい合う辺の中点同士を結ぶ線分のうち片方が、鋼線10の中心軸と一致している。12箇所の中心平均ラメラ間隔測定領域15のうち8箇所は、その向かい合う辺の中点同士を結ぶ線分のうち片方が、鋼線10の表面から線径Rの1/4深さの領域と一致している。12箇所の中心平均ラメラ間隔測定領域15それぞれに係るラメラ間隔を求め、これらラメラ間隔を平均することにより得られる値を、鋼線10の中心の平均ラメラ間隔とみなすことができる。
 平均ラメラ間隔を、鋼線10の伸線方向に垂直な断面(C断面)において測定してもよい。図7に図示されているように、C断面で測定を行う場合、鋼線10の表面から深さ5μmの箇所までのパーライトの平均ラメラ間隔を求める方法は、L断面における測定方法と同じである。C断面で測定を行う場合、鋼線10の中心の平均ラメラ間隔を求めるための中心平均ラメラ間隔測定領域15を、鋼線10の中心軸および鋼線10の線径Rの1/4深さの箇所に配置することができる。なお、本実施形態におけるラメラ間隔とは、フェライト相の層21を挟んで隣りあうセメンタイト相の層22の中心線間の距離の平均値である。
 次に、本実施形態に係る鋼線10において、成分組成を上述のように限定した理由について説明する。
(C:0.70%以上1.20%以下)
 Cは、鋼線10の強度を向上させる元素である。共析組織であるパーライト組織を得るためには、C含有量を0.80%近傍とすることが好ましい。C含有量が0.70%未満である場合、鋼線10が亜共析鋼となり、非パーライト組織が多く存在する鋼になる。一方、C含有量が1.20%を超える場合、初析セメンタイトが析出し、鋼線10の加工性が低下するおそれがある。このため、C含有量を、0.70%以上1.20%以下の範囲内に設定した。
(Si:0.15%以上0.60%以下)
 Siは、鋼線10の脱酸のために有効であり、さらに、フェライト中に固溶して鋼線10の強度を向上させる作用を有する元素である。ここで、Si含有量が0.15%未満である場合、上述した作用が十分に得られないおそれがある。一方、Si含有量が0.60%を超える場合、鋼線10の加工性が低下するおそれがある。このため、Si含有量を、0.15%以上0.60%以下の範囲内に設定した。Si含有量の好ましい下限値は0.20%であり、Si含有量の好ましい上限値は0.50%である。
(Mn:0.10以上1.00%以下)
 Mnは、鋼線10の脱酸のために有効であり、さらに、鋼線10中のSを固定して鋼の脆化を抑制する作用を有する。ここで、Mn含有量が0.10%未満である場合、上述した作用が十分に得られないおそれがある。一方、Mn含有量が1.00%を超える場合、鋼線10の加工性が低下するおそれがある。このため、Mn含有量を、0.10%以上1.00%以下の範囲内に設定した。
(N:0.0010%以上0.0050%以下)
 Nは、Alおよび/またはTiと結びつくことにより窒化物を形成する元素である。この窒化物は、後述するパテンティング工程S04の開始前の中間鋼線に含まれるオーステナイトの粗大化を抑制する作用を有する。オーステナイトの粗大化を抑制することにより、後述するように鋼線10の平均ラメラ間隔差を60nm以下に抑制することができ、さらに、鋼線10のパーライトを微細化して鋼線10の延性を向上させることができる。N含有量が0.0010%未満である場合、上述した作用が十分に得られないおそれがある。一方、N含有量が0.0050%を超える場合、鋼線10の延性が低下するおそれがある。このため、N含有量を、0.0010%以上0.0050%以下の範囲内に設定した。N含有量の好ましい下限値は0.0015%であり、N含有量の好ましい上限値は0.0045%である。
 PおよびSは、不純物として鋼線10に含まれる場合がある。PおよびSの含有量を特に規定する必要はないが、従来の鋼線と同水準の延性を鋼線10に付与するためには、PおよびSの含有量を、それぞれ0%以上0.02%以下とすることが望ましく、それぞれ0%以上0.01%以下とすることがさらに好ましい。このような含有量のSおよびPは、不純物であるとみなされる。
 上記した基本成分及び不純物元素の他に、本実施形態に係る鋼線10は、さらに、選択成分として、Al、Ti、Cr、Co、V、Cu、Nb、Mo、W、B、REM、Ca、Mg、Zrのうちの少なくとも1つを含有してもよい。以下に、選択成分の数値限定範囲とその限定理由とを説明する。ここで、記載する%は、質量%である。
(Al:0%以上0.010%以下)
 Alは、硬質であり変形が生じにくいアルミナ系介在物となり、この介在物は鋼線10の延性劣化と伸線性劣化とを引き起こすおそれがある。従って、Al含有量の上限値を0.010%とすることが好ましい。また、Al含有量の上限値を0.008%としてもよい。Alは、本実施形態に係る鋼線10に含まれなくてもよいので、Al含有量の下限値は0%である。しかしながら、AlはNと結びつくことにより窒化物を形成する働きを有し、この窒化物は上述のように平均ラメラ間隔差を60nm以下に抑制する効果と、パーライトを微細化して鋼線10の延性を向上させる効果とを有する。これら効果を得るために、Al含有量の下限値を0.003%としてもよい。
(Ti:0以上0.100%以下)
 Tiは、本実施形態に係る鋼線10に含まれなくてもよいので、Ti含有量の下限値は0%である。しかし、Tiは、脱酸作用を有する元素である。また、TiはNと結びつくことにより窒化物を形成する働きを有し、この窒化物は上述のように平均ラメラ間隔差を60nm以下に抑制する効果と、パーライトを微細化して鋼線10の延性を向上させる効果とを有する。これら効果を得るために、Tiを0.005%以上含有してもよい。一方、Ti含有量が0.100%を超える場合、粗大な炭窒化物(TiCN等)が形成されることによって加工性が低下するおそれがある。従って、Ti含有量の上限を、0.100%とすることが好ましい。
(Cr:0%以上0.50%以下)
 Crは、本実施形態に係る鋼線10に含まれなくてもよいので、Cr含有量の下限値は0%である。しかしCrは、パーライトの平均ラメラ間隔を微細化することにより鋼線10の引張強度を向上させる効果を有する。この効果を得るためには、Cr含有量が0%超であることが好ましく、0.0010%以上であることがさらに好ましい。一方、Cr含有量が0.50%超である場合、パーライト変態が抑制されることによりパテンティング処理中の中間鋼線の組織にオーステナイトが残留するおそれがある。残留オーステナイトは、パテンティング処理後にマルテンサイトおよびベイナイトなどの過冷組織となり、鋼線10の特性を悪化させる。また、0.50%超のCrは、メカニカルデスケーリングによる表面酸化物の除去が困難になる場合がある。従って、Cr含有量が0.50%以下であることが好ましい。
(Co:0%以上0.50%以下)
 Coは、本実施形態に係る鋼線10に含まれなくてもよいので、Co含有量の下限値は0%である。しかしCoは、初析セメンタイトの析出を抑制することにより鋼線10の特性を向上させる効果を有する元素である。この効果を得るためには、Co含有量が0%超であることが好ましく、0.0010%以上であることがさらに好ましい。一方、Co含有量が0.50%超である場合、上述の効果が飽和して、過剰な生産コストが生じる場合がある。従って、Co含有量が0.50%以下であることが好ましく、0.40%以下であることがさらに好ましい。
(V:0%以上0.50%以下)
 Vは、本実施形態に係る鋼線10に含まれなくてもよいので、V含有量の下限値は0%である。しかしVは、Nと結びつくことにより微細な炭窒化物を形成する働きを有する。この窒化物は上述のように平均ラメラ間隔差を60nm以下に抑制する効果と、パーライトを微細化して鋼線10の延性を向上させる効果とを有する。これらの効果を得るためには、V含有量が0%超であることが好ましく、0.0010%以上であることがさらに好ましい。一方、V含有量が0.50%超である場合、炭窒化物の形成量が過剰となるおそれがあり、さらに炭窒化物の粒子径が大きくなるおそれがある。このような炭窒化物は鋼線の延性を低下させる場合がある。従って、V含有量が0.50%以下であることが好ましく、0.40%以下であることがさらに好ましい。
(Cu:0%以上0.20%以下)
 Cuは、本実施形態に係る鋼線10に含まれなくてもよいので、Cu含有量の下限値は0%である。しかしCuは、鋼線10の耐食性を高める元素である。この効果を得るためには、Cu含有量が0%超であることが好ましく、0.0001%以上であることがさらに好ましい。一方、Cu含有量が0.20%超である場合、CuとSとが反応することにより粒界にCuSが偏析し、このCuSが鋼線10に疵を発生させる場合がある。従ってCu含有量が0.20%以下であることが好ましく、0.10%以下であることがさらに好ましい。
(Nb:0%以上0.100%以下)
 Nbは、本実施形態に係る鋼線10に含まれなくてもよいので、Nb含有量の下限値は0%である。しかしNbは、鋼線10の耐食性を高める効果がある。また、Nbは、炭化物および/または窒化物を形成する働きを有する。この炭化物および/または窒化物は上述のように平均ラメラ間隔差を60nm以下に抑制する効果と、パーライトを微細化して鋼線10の延性を向上させる効果とを有する。これらの効果を得るためには、Nb含有量が0%超であることが好ましく、0.0005%以上であることがさらに好ましい。一方、Nb含有量が0.100%超である場合、パテンティング処理中のパーライト変態が抑制されることによりオーステナイトが残留するおそれがある。残留オーステナイトは、パテンティング処理後にマルテンサイトおよびベイナイトなどの過冷組織となり、鋼線10の特性を悪化させる。従って、Nb含有量が0.100%以下であることが好ましく、0.050%以下であることがさらに好ましい。
(Mo:0%以上0.20%以下)
 Moは、本実施形態に係る鋼線10に含まれなくてもよいので、Mo含有量の下限値は0%である。しかしMoは、パーライト成長界面に濃縮し、いわゆるソリュートドラッグ効果によりパーライトの成長を抑制する元素である。これにより、パーライトを微細化し、鋼線10の強度を向上させることができる。また、Moは、フェライト生成を抑制することにより、鋼線10の特性に悪影響を与える非パーライト組織を低減させる元素である。これらの効果を得るためには、Mo含有量が0%超であることが好ましく、0.0010%以上、または0.005%以上であることがさらに好ましい。一方、Mo含有量が0.20%超である場合、パーライト成長が過剰に抑制され、パテンティング処理に長時間を要し、鋼線10の生産性の低下を招く場合がある。また、Mo含有量が0.20%超である場合、粗大なMo炭化物が析出し、鋼線10の伸線加工性が低下する場合がある。従って、Mo含有量が0.20%以下であることが好ましく、0.06%以下であることがさらに好ましい。
(W:0%以上0.200%以下)
 Wは、本実施形態に係る鋼線10に含まれなくてもよいので、W含有量の下限値は0%である。しかしWは、Moと同様に、パーライト成長界面に濃縮し、いわゆるソリュートドラッグ効果によりパーライトの成長を抑制する元素である。これにより、パーライトを微細化し、鋼線10の強度を向上させることができる。また、Wは、フェライト生成を抑制することにより、鋼線10の特性に悪影響を与える非パーライト組織を低減させる元素である。これらの効果を得るためには、W含有量が0%超であることが好ましく、0.0005%以上であることがさらに好ましい。一方、W含有量が0.200%超である場合、パーライト成長が過剰に抑制され、パテンティング処理に長時間を要し、鋼線10の生産性の低下を招く場合がある。また、W含有量が0.200%超である場合、粗大なW炭化物が析出し、鋼線10の伸線加工性が低下する場合がある。従って、W含有量が0.200%以下であることが好ましく、0.060%以下であることがさらに好ましい。
(B:0%以上0.0030%以下)
 Bは、本実施形態に係る鋼線10に含まれなくてもよいので、B含有量の下限値は0%である。しかしBは、フェライト、擬似パーライト、ベイナイト等の非パーライト組織の生成を抑制する元素である。また、Bは、炭化物および/または窒化物を形成する働きを有する。この炭化物および/または窒化物は上述のように平均ラメラ間隔差を60nm以下に抑制する効果と、パーライトを微細化して鋼線10の延性を向上させる効果とを有する。これらの効果を得るためには、B含有量が0%超であることが好ましく、0.0004%以上、または0.0006%以上であることがさらに好ましい。一方、B含有量が0.0030%超である場合、粗大なFe23(CB)の析出を促進し、鋼線10の延性に悪影響を及ぼす場合がある。従って、B含有量が0.0030%以下であることが好ましく、0.0025%以下、0.0015%以下、または0.0012%以下であることがさらに好ましい。
(REM:0%以上0.0050%以下)
 REM(Rare Earth Metal)は、本実施形態に係る鋼線10に含まれなくてもよいので、REM含有量の下限値は0%である。しかしREMは、脱酸元素である。また、REMは、硫化物を形成することで、不純物であるSを無害化する元素である。この効果を得るためには、REM含有量が0%超であることが好ましく、0.0005%以上であることがさらに好ましい。一方、REM含有量が0.0050%超である場合、粗大な酸化物が形成されて、鋼線10の伸線時に断線を引き起こす場合がある。従って、REM含有量が0.0050%以下であることが好ましく、0.0020%以下であることがさらに好ましい。
 なお、REMとは原子番号が57のランタンから71のルテシウムまでの15元素に、原子番号が21のスカンジウムと原子番号が39のイットリウムとを加えた合計17元素の総称である。通常、REMはこれらの元素の混合物であるミッシュメタルの形で供給され、鋼中に添加される。上述したREMの含有量とは、これら元素の合計の含有量である。
(Ca:0%以上0.0050%以下)
 Caは、本実施形態に係る鋼線10に含まれなくてもよいので、Ca含有量の下限値は0%である。しかしCaは、鋼線10の特性を悪化させる硬質なアルミナ系介在物を低減する元素である。また、Caは、微細な酸化物を生成する元素である。この微細な酸化物は、鋼線10のパーライトブロックサイズを微細化させ、これにより鋼線10の延性を向上させる。これら効果を得るためには、Ca含有量が0.0005%超であることが好ましい。一方、Ca含有量が0.0050%超である場合、粗大な酸化物が形成されて、鋼線10の伸線時に断線を引き起こす場合がある。従って、Ca含有量は0.0050%以下であることが好ましく、0.0040%以下であることがさらに好ましい。なお、通常の操業条件下では、Caが0.0003%程度含有される場合がある。
(Mg:0%以上0.0050%以下)
 Mgは、本実施形態に係る鋼線10に含まれなくてもよいので、Mg含有量の下限値は0%である。しかしMgは、微細な酸化物を生成する元素である。この微細な酸化物は、鋼線10のパーライトブロックサイズを微細化させ、これにより鋼線10の延性を向上させる。この効果を得るためには、Mg含有量が0.0005%超であることが好ましい。しかしながら、Mg含有量が0.0050%超である場合、粗大な酸化物が形成されて、鋼線10の伸線時に断線を引き起こす場合がある。従って、Mg含有量は0.0050%以下であることが好ましく、0.0040%以下であることがさらに好ましい。なお、通常の操業条件下では、Mgが0.0001%程度含有される場合がある。
(Zr:0%以上0.0100%以下)
 Zrは、本実施形態に係る鋼線10に含まれなくてもよいので、Zr含有量の下限値は0%である。しかしZrは、ZrOとして晶出してオーステナイトの晶出核となるので、オーステナイトの等軸率を高め、オーステナイト粒を微細化する元素である。本実施形態に係る鋼線10にZrが含まれている場合、パテンティング処理前のオーステナイトが微細化されることにより、鋼線10のパーライトブロックサイズが微細化され、これにより鋼線10の延性が向上する。この効果を得るためには、Zr含有量が0.0005%超であることが好ましい。一方、Zr含有量が0.0100%超である場合、粗大な酸化物が形成されて、鋼線10の伸線時に断線を引き起こす場合がある。従って、Zr含有量は0.0100%以下であることが好ましく、0.0050%以下であることがさらに好ましい。
(残部:Feおよび不純物)
 本実施形態に係る鋼線10の成分組成の残部は、Feおよび不純物を含む。不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の要因によって混入する成分であって、本実施形態に係る鋼線10の特性に悪影響を与えない範囲で許容されるものを意味する。
(引張強さ:1100MPa以上)
 本実施形態に係る鋼線10の引張強度は1100MPa以上である。引張強度が1100MPa以上である鋼線10を用いて得られたスチールコードは、自動車用タイヤ、高圧ゴムホース、コンベアベルト等のゴム製品の補強材として好適である。
 次に、本実施形態に係る鋼線10の製造方法、及び、この鋼線10を用いたフィラメント及びスチールコードの製造方法について、図9~図13を用いて説明する。本実施形態に係る鋼線10の製造方法は、線材の表面の酸化スケールを除去するために線材をデスケーリングする工程(デスケーリング工程S01)と、中間鋼線を得るために、デスケーリングされた線材を粗伸線する工程(粗伸線工程S02)と、粗伸線された中間鋼線を加熱する工程(加熱工程S03)と、加熱された中間鋼線にパテンティング処理を行う工程(パテンティング工程S04)と、パテンティングされた中間鋼線を表層加熱する工程(表層加熱工程S05)と、表層加熱された中間鋼線を冷却する工程(冷却工程S06)とを含む。後述するように、中間鋼線とは製造途中の鋼線10である。表層加熱とは、鋼線の表層だけを加熱することである。本実施形態に係る鋼線10を用いて得られるフィラメントの製造方法は、本実施形態に係る鋼線10をブラスめっきする工程(ブラスめっき工程S07)と、ブラスめっきされた鋼線10を仕上伸線する工程(仕上伸線工程S08)とを含む。本実施形態に係る鋼線10を用いて得られる高強度スチールコードの製造方法は、本実施形態に係る鋼線10を用いて得られるフィラメントに撚り線を行う工程(撚り線加工工程S09)を含む。
(デスケーリング工程S01)
 本実施形態に係る鋼線10の製造方法においては、上述した成分組成を有する線材を原料として用いる。線材の種類は特に限定されないが、熱間圧延線材であることが好ましい。線材の径は特に限定されないが、約5.5mm程度であることが好ましい。この線材の表面に形成された酸化スケールを酸洗等の化学処理、または機械処理によって除去する。このような処理は、デスケーリングと称されている。デスケーリングの方法は特に限定されない。
(粗伸線工程S02)
 次に、酸化スケールを除去した線材を粗伸線して、これにより線径1.0mm以上3.5mm以下の中間鋼線を形成する(粗伸線工程S02)。粗伸線の方法は特に限定されないが、粗伸線は乾式伸線によって行われることが好ましい。以降、最終的に得られる鋼線と製造途中の鋼線とを区別するために、最終的に得られる鋼線(即ち本実施形態に係る鋼線10)を最終鋼線と称し、製造途中の鋼線を中間鋼線と称する場合がある。
(加熱工程S03)
 次に、粗伸線工程S02において得られた中間鋼線の中心部および軟質部の両方が、850℃~1350℃の温度範囲内に加熱される(加熱工程S03)。加熱工程S03によって、中間鋼線の組織がオーステナイトとなり、このオーステナイトは、後述されるパテンティング工程S04においてパーライト変態する。従って、加熱工程S03において中間鋼線に生成したオーステナイトの状態によって、パテンティング工程S04の後に得られる最終鋼線に含まれるパーライトの状態が影響される。
 加熱工程S03における加熱温度が850℃未満である場合、セメンタイトが未固溶のまま中間鋼線内に残留し、さらに、中間鋼線内にフェライトが生成する。この場合、十分な量のオーステナイトが得られないので、続くパテンティング工程S04において十分な量のパーライトを中間鋼線内に生成させることができず、最終鋼線の中心部の組織のパーライト量が95%を下回る。一方、加熱工程S03における加熱温度が1350℃超である場合、オーステナイトの粒径が粗大化し、且つ焼入れ性が向上するので、最終鋼線の平均ラメラ間隔差が60nmを超えるおそれがある。
 オーステナイトの粗大化によって平均ラメラ間隔差が増大する理由を、図10を用いて以下に説明する。図10は、本実施形態に係る鋼線の模式的なCCT線図(Continuous-Cooling-Transformation diagram:連続冷却変態線図)である。PsからPfに至る2本の曲線はパーライト変態の開始と終了とを示す変態曲線である。2本の変態曲線のうち、左側の変態曲線は、オーステナイト粒径が小さい中間鋼線に係る変態曲線であり、右側の変態曲線は、オーステナイト粒径が大きい中間鋼線に係る変態曲線である。オーステナイト粒径が大きい方が、パテンティング開始からパーライト変態が生じるまでの時間が長いので、オーステナイト粒径が大きい中間鋼線に係る変態曲線は、右側に位置している。CCT線図の左上から右下にのびる2本の曲線は、加熱工程S03の後に行われるパテンティング工程S04における中間鋼線の冷却状態を示す曲線である。2本の曲線のうち、左側の曲線は中間鋼線の表層の冷却状態を示す曲線であり、右側の曲線は中間鋼線の中心の冷却状態を示す曲線である。中間鋼線の中心は、中間鋼線の表層よりも冷却されにくいので、中間鋼線の中心に係る曲線は右側に位置している。図10中に記載されたTは、オーステナイト粒径が小さい中間鋼線に係る変態曲線と中間鋼線の表層の冷却状態を示す曲線とが最初に交差する温度と、オーステナイト粒径が小さい中間鋼線に係る変態曲線と中間鋼線の中心の冷却状態を示す曲線とが最初に交差する温度との差、すなわちオーステナイト粒径が小さい中間鋼線の表層および中心におけるパーライト変態開始温度の差である。図10中に記載されたTは、オーステナイト粒径が大きい中間鋼線に係る変態曲線と中間鋼線の表層の冷却状態を示す曲線とが最初に交差する温度と、オーステナイト粒径が大きい中間鋼線に係る変態曲線と中間鋼線の中心の冷却状態を示す曲線とが最初に交差する温度との差、すなわちオーステナイト粒径が大きい中間鋼線の表層および中心におけるパーライト変態開始温度の差である。
 パーライト変態開始温度が低い場合、パーライトのラメラ間隔は小さくなる。従って、中間鋼線の表層のパーライト変態開始温度と、中心のパーライト変態開始温度との差が大きい場合、中間鋼線の表層の平均ラメラ間隔と中間鋼線の中心の平均ラメラ間隔との差が大きくなる。図10に示されているように、TはTよりも大きい。従って、加熱工程S03において加熱された中間鋼線のオーステナイトが粗大化している場合、後のパテンティング工程S04において、中間鋼線表層と中間鋼線中心との平均ラメラ間隔差が大きくなり、さらに、最終鋼線表層と最終鋼線中心との平均ラメラ間隔差も大きくなる。本発明者らは、複数回の実験によって検討した結果、加熱温度が1350℃超である場合、中間鋼線のオーステナイト粒径の粗大化に起因して、最終鋼線の平均ラメラ間隔差が60nm以上となるおそれが極めて高いことを知見した。上述の理由により、加熱工程S03における加熱温度を850℃~1350℃とすることが必要とされる。
(パテンティング工程S04)
 次に、加熱工程S03によって加熱された中間鋼線を、加熱工程S03の終了後、溶融鉛浴(鉛浴)内に浸漬するパテンティング処理を行う(パテンティング工程S04)。鉛浴の温度は530℃以上580℃以下とし、鉛浴内に中間鋼線を浸漬する時間を5~45秒とする。また、加熱工程S03の終了とパテンティング工程S04の開始との間の時間は5秒程度とする。溶融鉛の代わりに溶融塩を用いてパテンティングを行っても良い。
 パテンティング工程S04における溶融鉛の温度の規定理由は、以下の通りである。鉛浴の温度が530℃未満である場合、中間鋼線の表層にベイナイト組織が生成し、これにより最終鋼線の引張強度が低下する。また、鉛浴の温度が580℃を超える場合、最終鋼線の引張強度が低下する。十分な引張強度を得るためには、鉛浴の温度を530℃以上580℃以下とすることが好ましい。
 パテンティング工程S04において鉛浴内に中間鋼線を浸漬する時間の規定理由は、以下の通りである。浸漬時間が5秒未満である場合、パーライト変態が完全に終了せず、最終鋼線のパーライト分率が低くなる。また、浸漬時間が45秒以上である場合、パーライトのラメラ中のセメンタイトの一部が分断化され、これにより最終鋼線の引張強度の低下が起きる。
 パテンティング工程S04において鉛浴から取り出された中間鋼線は、その後室温まで冷却される。この際の冷却速度は10℃/秒以上である。中間鋼線の冷却速度が10℃/秒未満である場合、最終鋼線の強度が低下するおそれがある。
(表層加熱工程S05)
 そして、パテンティング工程S04を経た中間鋼線に対して、周波数50kHz以上の高周波加熱により、中間鋼線の表面温度を500℃以上700℃以下の温度範囲まで加熱する表層加熱を行う(表層加熱工程S05)。この際、加熱を行う時間を5秒以下とする必要がある。この表層加熱工程S05においては、中間鋼線の表層のみが加熱される。これにより、パテンティング工程S04におけるパーライト変態の際に生じた転位のうち、中間鋼線の表層の転位の大部分が消滅するので、中間鋼線の中心付近と表層部分とで硬度差が生じ、5μm以上の厚さを有する軟質部11が形成されることになる。
 表層加熱工程S05において、中間鋼線の表層を十分に加熱し、且つ中間鋼線の内部の温度上昇を可能な限り抑制する必要がある。中間鋼線の内部が過剰に加熱された場合、厚さ5μm以上の軟質部11を有する最終鋼線が得られなくなる。高周波加熱によれば、鋼線の表層だけを加熱することができるので、所定の軟質部11を形成するために最も良い加熱方法は高周波加熱である。高周波加熱を行う場合、中間鋼線に印加する高周波の周波数を50kHz以上とする必要がある。高周波加熱の際の周波数が50kHz未満である場合、中間鋼線の内部も加熱されてしまうので、5μm以上の厚さの軟質部11を有する最終鋼線が得られない。中間鋼線に印加する高周波の周波数の上限値は特に制限されないが、設備能力を考慮すると、高周波の周波数の上限値を約100kHzとすることが好ましい。高周波加熱は、高周波コイルの内部に中間鋼線を連続的に通過させることにより実施できるので、上述の加熱速度に加えて生産効率も良好であり、好ましい。また、高周波加熱によれば、均一な加熱を行うことができるので、高周波加熱によって得られる軟質部11の深さは略一定である。
 表層加熱工程S05において、中間鋼線の表面温度を500℃以上にする必要がある。中間鋼線の表面温度が500℃未満であった場合、中間鋼線の表層の転位が十分に除去されないので、5μm以上の厚さの軟質部11を形成することができない。一方、表層加熱工程S05において中間鋼線の表面温度を700℃超にした場合、パーライトのラメラ中のセメンタイトが分断および球状化され、これにより最終鋼線の引張強度が低下する。
 また、表層加熱工程S05では、中間鋼線の内部の温度上昇を避けるために、速やかに加熱する必要がある。従って、表層加熱工程S05での加熱時間を5秒以内とする必要がある。表層加熱を高周波加熱によって行う場合、加熱時間とは、中間鋼線が高周波コイルを通過する時間であり、この時間は高周波コイルの長さを中間鋼線の通過速度で除することにより求められる。表層加熱を開始する温度を規定する必要は無い。しかし、5秒以内に中間鋼線の表面温度を500℃以上にするためには、表層加熱を開始する温度を10℃以上とすることが望ましい。
 高周波加熱に代えて、上述の高周波加熱条件と同等の条件で加熱が可能である別の手段を、表層加熱工程S05に適用しても良い。しかしながら、鋼線の熱処理のために通常用いられる加熱炉を用いた加熱は、上述の加熱条件と同等の条件で加熱が行えないので、5μm以上0.1×Rmm以下の厚さの軟質部11を形成することができない。
(冷却工程S06)
 表層加熱工程S05において表層のみが加熱された中間鋼線は、冷却工程S06において冷却される。この際、図12に示されるように、表層加熱工程S05が終了してから3.0秒以内に中間鋼線の表面温度を500℃以下にする必要がある。好ましくは、表層加熱工程S05が終了してから2.0秒以内に中間鋼線の表面温度を500℃以下にする。表層加熱工程S05が高周波加熱によって行われる場合、表層加熱工程S05の終了の時点とは、中間鋼線が高周波加熱コイルを出た時点である。上述の冷却条件が達成されなかった場合、中間鋼線の内部も軟化されてしまうので、5μm以上0.1×Rmm以下の厚さの軟質部11を形成することができない。
 冷却工程S06における冷却の手段は、上述の冷却条件が達成される限り、特に限定されない。表層加熱工程S05における表面加熱温度が500℃、または500℃をわずかに上回る程度であれば、空冷によって上述の冷却条件は達成可能である。しかし、雰囲気温度などの外乱要因に起因して、予期せず、表層加熱工程S05終了時の中間鋼線の表面温度が500℃を大きく上回り、これにより空冷によって上述の冷却条件を達成することができない場合がある。一方、表層加熱工程S05の終了後3.0秒以内に中間鋼線を水冷することにより、上述の冷却条件を確実に達成できる。
 上述のS01~S06によって、本実施形態に係る鋼線10(最終鋼線)が製造される。なお、冷却工程S06が終了した後に、追加の熱処理を鋼線10に行うことは好ましくない。追加の熱処理によって鋼線10の内部が加熱された場合、鋼線10の内部の硬度が低下し、厚さが5μm以上0.1×Rmm以下である軟質部11が失われるおそれがあるからである。
 以下に、本実施形態に係る鋼線10を用いてフィラメントおよびスチールコードを作成する方法を例示する。しかしながら、本実施形態に係る鋼線10を加工する方法は、以下に例示される方法に限定されない。
(ブラスめっき工程S07)
 本実施形態に係る鋼線10は、表面にブラスめっきが施されることが好ましい(ブラスめっき工程S07)。ブラスめっきは、ゴムとスチールコードとの密着性を高めるために形成されるものである。
(仕上伸線工程S08)
 そして、ブラスめっき工程S07においてブラスめっきされた鋼線10に対して湿式伸線を行い、その線径を0.15mm以上0.35mm以下のフィラメントを形成する(仕上伸線工程S08)。なお。中心部12と軟質部11とを有する鋼線10に対して伸線加工を実施した場合には、中心部12と軟質部11との硬さの差がさらに大きくなる。図13は、鋼線に付加された伸線加工歪みの量と、中心部12の硬さおよび軟質部11の硬さとの関係を示すグラフである。図13には、伸線加工歪み量の増大に従って、中心部12の硬さと軟質部11の硬さとの差が増大することが示されている。
(撚り線加工工程S09)
 次に、複数のフィラメントを用いて撚り線加工を行う(撚り線加工工程S09)。これにより、撚り線構造とされた高強度スチールコードが製造されることになる。
 以上、本実施形態に係る鋼線10、本実施形態に係る鋼線10の製造方法、および本実施形態に係る鋼線10を用いてスチールコードを作成する方法について説明した。以上のような構成とされた本実施形態に係る鋼線10は軟質部11と中心部12とを有し、軟質部11は中心部12に比べてビッカース硬さが低く、軟質部11のビッカース硬さと鋼線10の径Rの1/4深さの箇所のビッカース硬さとの差がHv30以上とされている。軟質部11においては延性が向上しており、中心部12では引張強度が高く保たれている。よって、本実施形態に係る鋼線10では、仕上伸線工程S08及び撚り線加工工程S09において、割れ等の欠陥が発生することが抑制されている。また、本実施形態に係る鋼線10には、撚り線加工工程S09において、撚り線加工を良好に行うことができるので、本実施形態に係る鋼線10を用いることにより撚り欠陥が抑えられた高品質の高強度スチールコードを製造することが可能となる。一方、本実施形態に係る鋼線10は、高い引張強度を有している。
 また、本実施形態に係る鋼線10の成分組成が、質量%で、C:0.70%以上1.20%以下、Si:0.15%以上0.60%以下、Mn:0.10%以上1.00%以下、N:0.0010%以上0.0050%以下、Al:0%以上0.010%以下、Ti:0%以上0.10%以下、Cr:0%以上0.50%以下、Co:0%以上0.50%以下、V:0%以上0.50%以下、Cu:0%以上0.20%以下、Nb:0%以上0.100%以下、Mo:0%以上0.20%以下、W:0%以上0.200%以下、B:0%以上0.0030%以下、REM:0%以上0.0050%以下、Ca:0%以上0.0050%以下、Mg:0%以上0.0050%以下、およびZr:0%以上0.0100%以下を含み、残部がFe及び不純物とされており、本実施形態に係る鋼線10の中心部12の組織が、パーライトを面積%で95%以上100%以下の割合で含有している。従って、本実施形態に係る鋼線10の中心部12においては、引張強度が十分に高く保たれており、本実施形態に係る鋼線10を用いて製造されたスチールコードも、高い引張強度を有することができる。
 また、本実施形態に係る鋼線10では、軟質部11の厚さtが5μm≦t≦0.1×Rmmの範囲内とされているので、鋼線10の加工性を十分に確保することができ、仕上伸線工程S08及び撚り線加工工程S09において、割れ等の欠陥が発生することを抑制できるとともに、この鋼線10の強度を十分に確保することができる。
 本実施形態に係る鋼線10の製造方法は、パテンティング処理工程S04を経た鋼線に、例えば周波数50kHz以上の高周波加熱を行うことにより、鋼線の表面温度を500℃以上に加熱する表層加熱工程S05を有している。従って、本実施形態に係る鋼線10の製造方法によれば、鋼線の内部と表層との間に温度差を生じさせ、硬さ及びラメラ間隔が互いに異なる軟質部11及び中心部12を形成することが可能となる。
 以上、本実施形態に係る鋼線10について説明したが、本発明はこれに限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。例えば、軟質部の厚さは、本実施形態に限定されることはない。また、線材の線径およびフィラメントの線径等については、本実施形態に限定されることはなく、適宜変更してもよい。
 以下に、本発明の効果を確認するために行った確認実験の結果について説明する。
 表1-1、表1-2、表2-1、および表2-2に示す成分組成を有する鋼線を作製した。実施例1~実施例25の鋼線、及び比較例26~比較例46の鋼線の成分組成に含まれるPおよびSの量は、不純物と見なすことができる水準であった。
 実施例1~実施例25の鋼線及び比較例26~36の鋼線は、上述した本実施形態に係る鋼線の製造方法によって作製した。
 比較例37の鋼線は、表層加熱工程S05が省略されていることを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例38の鋼線は、加熱工程S03における加熱温度が1380℃である(すなわち1350℃超である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例39の鋼線は、加熱工程S03における加熱温度が830℃である(すなわち850℃未満である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例40の鋼線は、パテンティング工程S04における鉛浴中への浸漬時間が4秒である(すなわち5秒未満である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例41の鋼線は、パテンティング工程S04における鉛浴中への浸漬時間が50秒である(すなわち45秒超である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例42の鋼線は、パテンティング工程S04における鉛浴中への浸漬後の冷却速度が8℃/秒である(すなわち10℃/秒未満である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例43の鋼線は、表層加熱工程S05において行われる高周波加熱の周波数が30kHzである(すなわち50kHz未満である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例44の鋼線は、表層加熱工程S05における表層加熱温度が480℃である(すなわち500℃未満である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例45の鋼線は、表層加熱工程S05における表層加熱温度が730℃である(すなわち700℃超である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 比較例46の鋼線は、冷却工程S06における表層温度が500℃以下になるまでの時間が4秒である(すなわち2秒超である)ことを除き、上述した本実施形態に係る鋼線の製造方法に準拠した製造方法によって作製した。
 得られた鋼線1~鋼線46のパーライト量、線径R、軟質部厚さ、表層硬度、中心部硬度、表層部平均ラメラ間隔、中心部平均ラメラ間隔、平均ラメラ間隔差、デラミネーション発生の有無、および引張強度TSを評価した。
 鋼線の中心部のパーライト量は、鋼線のC断面の中心と、鋼線のC断面の1/4深さにおける、鋼線中心に関して45度ごとに配置された8箇所とにおけるパーライト量の平均値とした。各測定箇所におけるパーライト量は、鋼線の、パーライト組織を現出させたC断面の光学顕微鏡写真またはSEM写真に基づいて求めた。
 軟質部厚さは、鋼線の硬度を測定することにより得られる、鋼線の深さ方向の硬度分布に基づいて求めた。鋼線のC断面を適宜調製し、切断面の外周から中心に向けて連続的に硬度測定を行うことにより、図2に示されるような、鋼線の深さと硬度との関係を示すグラフを得た。このグラフから、鋼線の線径Rの1/4の深さにおけるビッカース硬度よりもHv30以上低い領域の厚さを求めた。硬度測定の深さ間隔は、1μmとした。
 表層硬度は、鋼線の表面から2μmの深さの箇所であって、鋼線の中心に関し45度ごとに配置された8箇所におけるビッカース硬さの平均値とした。
 中心部硬度は、鋼線の表面から鋼線の線径Rの1/4の深さの箇所であって、鋼線の中心に関し45度ごとに配置された8箇所と、鋼線の中心とにおけるビッカース硬さの平均値とした。
 表層部平均ラメラ間隔(表層ラメラ間隔)は、以下に説明する手順により求めた。まず、鋼線のL断面にパーライト組織を現出させた。次に、このL断面における、鋼線の表面から深さ5μmまでを含む領域の電子顕微鏡写真を撮影した。そして、この写真から、図6に示される表層平均ラメラ間隔測定領域を切り出した。表層平均ラメラ間隔測定領域は、縦横5μmの正方形であり、この正方形の1つの辺は、鋼線の表面と一致するようにされた。次に、図8に示されているように、表層平均ラメラ間隔測定領域に含まれる複数のパーライトのうち最もラメラ間隔が小さいパーライトを選択し、このパーライトに含まれるフェライト相の層およびセメンタイト相の層に直交する長さ2μmの線分を引き、この線分と交差するセメンタイト相の層の数を数え、線分の長さ(2μm)をセメンタイト相の層の数で割ることにより、表層平均ラメラ間隔測定領域に係るラメラ間隔を求めた。8つの表層平均ラメラ間隔測定領域それぞれにかかるラメラ間隔を求め、これらラメラ間隔を平均することにより、鋼線の表面から深さ5μmまでのパーライトの平均ラメラ間隔を得た。
 中心部平均ラメラ間隔(中心部ラメラ間隔)は、以下に説明する手順により求めた。上述の表層部平均ラメラ間隔の測定方法と同様に、鋼線のL断面を調製し、鋼線の中心軸を含む領域の電子顕微鏡写真、および鋼線の線径Rの1/4深さの箇所を含む領域の電子顕微鏡写真を撮影した。次いで、縦横5μmの正方形である12箇所の中心平均ラメラ間隔測定領域に係るラメラ間隔を求めた。12箇所の中心平均ラメラ間隔測定領域のうち4箇所は、その向かい合う辺の中点同士を結ぶ線分のうち片方が、鋼線の中心軸と一致していた。12箇所の中心平均ラメラ間隔測定領域のうち8箇所は、その向かい合う辺の中点同士を結ぶ線分のうち片方が、鋼線の表面から線径Rの1/4深さの領域と一致した。12箇所の中心平均ラメラ間隔測定領域それぞれに係るラメラ間隔を求め、これらラメラ間隔を平均することにより、鋼線の中心の平均ラメラ間隔を得た。
 デラミネーションの発生の有無は、鋼線に捻り試験を行うことにより判定した。デラミネーションが発生している鋼線に捻り試験を行った場合、捻り破断により生じる破面がせん断破面ではなく縦割れに沿った破面となるので、捻り破断した鋼線の破断形状を目視で検査することにより、デラミネーションの有無を判定することができる。
 引張強度TSは、JIS Z 2241「金属材料の引張試験方法」に準拠した引張試験によって求めた。
 評価結果を表1-3および表2-3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 C含有量が不足した比較例26のパーライト分率は、95面積%未満であった。これにより、比較例26の引張強度は1100MPaよりも低くなった。
 Si含有量が不足した比較例28の引張強度は、1100MPaよりも低くなった。
 C含有量が過剰であった比較例27、およびSi含有量が過剰であった比較例29には、加工性の低下によって、デラミネーションが発生した。
 Mn含有量が不足した比較例30には、脱酸およびSの固定が十分に行われなかったので、デラミネーションが発生した。
 Mn含有量が過剰であった比較例31には、加工性の低下によって、デラミネーションが発生した。
 Mo含有量が過剰であった比較例32には、Mo炭化物の析出による伸線加工性の低下が生じたので、デラミネーションが発生した。
 Al含有量が過剰であった比較例33には、鋼線の延性劣化および伸線性劣化を引き起こすアルミナ系介在物の発生によって、デラミネーションが発生した。
 B含有量が過剰であった比較例34には、鋼線の延性低下を引き起こす粗大なFe23(CB)の発生によって、デラミネーションが発生した。
 N含有量が過剰であった比較例35には、延性の低下が生じたので、デラミネーションが発生した。
 CrおよびMo含有量が過剰であった比較例36には、上部ベイナイト、もしくはマルテンサイトが多く生成し、パーライト分率が低下して伸線加工性の低下が生じたので、デラミネーションが発生した。
 表層加熱が行われなかった比較例37は、軟質部が形成されなかったので、加工性が低下してデラミネーションが発生した。
 パテンティング前の加熱温度が過剰であった比較例38は、平均ラメラ間隔差が過剰であったので、デラミネーションが発生した。
 パテンティング前の加熱温度が不足した比較例39は、パーライトの量が低下して伸線加工性の低下が生じたので、デラミネーションが発生した。
 パテンティングにおける鉛浴中への浸漬時間が不足した比較例40の鋼線は、パーライト分率が低下してデラミネーションが発生した。
 パテンティングにおける鉛浴中への浸漬時間が過剰であった比較例41の鋼線は、パーライト中のセメンタイトが分断化されてパーライト量が不足し、これにより伸線加工性および引張強度が低下した。
 パテンティングにおける鉛浴中への浸漬後の冷却速度が不足した比較例42の鋼線は、引張強度が低下した。
 表層加熱において行われる高周波加熱の周波数が不足した比較例43の鋼線は、鋼線の内部まで加熱が行われることにより軟質部厚さが不足したので、デラミネーションが発生した。
 表層加熱における表層加熱温度が不足した比較例44の鋼線は、表層の硬さが低下せず軟質部厚さが不足したので、デラミネーションが発生した。
 表層加熱における表層加熱温度が過剰であった比較例45の鋼線は、鋼線の内部まで加熱が行われることによりパーライト中のセメンタイトが分断されパーライト量が不足したので、引張強度および引張強度が低下した。
 表層加熱後の冷却における、表層温度が500℃以下になるまでの時間が過剰であった比較例46の鋼線は、軟質部深さが過剰になったので、引張強度が不足した。
 これに対して、本発明の実施例1~実施例25においては、引張強度が1150MPa以上と高く、かつ、デラミネーションが確認されなかった。
 以上のことから、本発明によれば、強度が高く、かつ、加工性に優れ、高強度のスチールコードを安定して製造することが可能な鋼線を提供可能であることが確認された。
 本発明によれば、強度が高く、かつ、加工性に優れる鋼線を提供することができる。このような鋼線は、高強度のスチールコードを高い歩留まりで製造するために好適である。高強度のスチールコードは、自動車用タイヤを軽量化することにより自動車の低燃費化を推進するために非常に有益であるので、本発明による鋼線は、産業上の利用可能性を有する。
10 鋼線
11 軟質部
12 中心部
13 圧痕
14 表層平均ラメラ間隔測定領域
15 中心平均ラメラ間隔測定領域
16 鋼線の線径Rの1/4の深さの箇所
20 パーライト
21 フェライト相の層
22 セメンタイト相の層
23 線分

Claims (4)

  1.  鋼線であって、
     成分組成が、質量%で、
     C:0.70%以上1.20%以下、
     Si:0.15%以上0.60%以下、
     Mn:0.10%以上1.00%以下、
     N:0.0010%以上0.0050%以下、
     Al:0%以上0.010%以下、
     Ti:0%以上0.10%以下、
     Cr:0%以上0.50%以下、
     Co:0%以上0.50%以下、
     V:0%以上0.50%以下、
     Cu:0%以上0.20%以下、
     Nb:0%以上0.100%以下、
     Mo:0%以上0.20%以下、
     W:0%以上0.200%以下、
     B:0%以上0.0030%以下、
     REM:0%以上0.0050%以下、
     Ca:0%以上0.0050%以下、
     Mg:0%以上0.0050%以下、および
     Zr:0%以上0.0100%以下
    を含み、
     残部がFe及び不純物からなり、
     前記鋼線の線径Rが1.0mm以上3.5mm以下であり、
     前記鋼線の外周に沿って軟質部が形成されており、前記軟質部のビッカース硬度は、前記鋼線の前記線径Rの1/4の深さにおける前記ビッカース硬度よりもHv30以上低く、前記軟質部の厚さが、5μm以上0.1×Rmm以下であり、
     前記軟質部以外の前記鋼線の組織は、パーライトを面積%で95%以上100%以下の割合で含有しており、
     前記鋼線の表面から深さ5μmまでの前記パーライトの平均ラメラ間隔は、前記鋼線の中心の前記パーライトの前記平均ラメラ間隔よりも小さく、前記鋼線の前記表面から深さ5μmまでの前記パーライトの前記平均ラメラ間隔と前記鋼線の前記中心の前記パーライトの前記平均ラメラ間隔との差が3nm以上60nm以下であり、さらに、
     引張強さが1100MPa以上である
    ことを特徴とする鋼線。
  2.  前記軟質部の厚さが、10μm以上0.08×Rmm以下であることを特徴とする請求項1に記載の鋼線。
  3.  前記鋼線の前記表面から深さ5μmの前記箇所までの前記平均ラメラ間隔と前記鋼線の前記中心の前記平均ラメラ間隔との差が40nm以下であることを特徴とする請求項1または2に記載の鋼線。
  4.  前記成分組成が、質量%で、
     Ti:0.005%以上0.10%以下、
     Cr:0%超0.50%以下、
     Co:0%超0.50%以下、
     V:0%超0.50%以下、
     Cu:0%超0.20%以下、
     Nb:0%超0.100%以下、
     Mo:0%超0.20%以下、
     W:0%超0.20%以下、
     B:0%超0.0030%以下、
     REM:0%超0.0050%以下、
     Ca:0.0005%超0.0050%以下、
     Mg:0.0005%超0.0050%以下、および
     Zr:0.0005%超0.0100%以下のうちの1種または2種以上
    を含むことを特徴とする請求項1~3のいずれか一項に記載の鋼線。
PCT/JP2015/053387 2014-02-06 2015-02-06 鋼線 WO2015119247A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/115,952 US10081846B2 (en) 2014-02-06 2015-02-06 Steel wire
KR1020167021061A KR101860246B1 (ko) 2014-02-06 2015-02-06 강선
EP15746150.0A EP3103891B1 (en) 2014-02-06 2015-02-06 Steel wire
CN201580007165.4A CN105960477B (zh) 2014-02-06 2015-02-06 钢线
JP2015561057A JP6237794B2 (ja) 2014-02-06 2015-02-06 鋼線

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-021684 2014-02-06
JP2014021684 2014-02-06

Publications (1)

Publication Number Publication Date
WO2015119247A1 true WO2015119247A1 (ja) 2015-08-13

Family

ID=53778044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053387 WO2015119247A1 (ja) 2014-02-06 2015-02-06 鋼線

Country Status (6)

Country Link
US (1) US10081846B2 (ja)
EP (1) EP3103891B1 (ja)
JP (1) JP6237794B2 (ja)
KR (1) KR101860246B1 (ja)
CN (1) CN105960477B (ja)
WO (1) WO2015119247A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180053388A (ko) * 2015-10-23 2018-05-21 신닛테츠스미킨 카부시키카이샤 신선 가공용 강 선재
JP2019502815A (ja) * 2015-12-17 2019-01-31 ポスコPosco 強度及び冷間加工性に優れた非調質線材及びその製造方法
WO2022220281A1 (ja) * 2021-04-15 2022-10-20 東京製綱株式会社 伸線材および伸線材の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102031440B1 (ko) * 2017-12-20 2019-10-11 주식회사 포스코 신선가공성이 우수한 고강도 선재 및 그 제조방법
US11993894B2 (en) * 2018-10-23 2024-05-28 Bekaert Advanced Cords Aalter Nv Steel wire rope, coated steel wire rope and belt comprising steel wire rope
EP3674425B1 (en) * 2018-12-31 2022-05-04 Baker Hughes Energy Technology UK Limited Steel wire
EP3988678B1 (en) * 2019-06-19 2023-12-06 Nippon Steel Corporation Wire rod

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277418A (ja) * 1985-09-30 1987-04-09 Nippon Steel Corp 高強度・高延性鋼線の製造法
JPH04280915A (ja) * 1991-01-10 1992-10-06 Nippon Steel Corp 金属線材のレーザ熱処理法およびその装置
JPH0853737A (ja) * 1994-08-11 1996-02-27 Kobe Steel Ltd 高強度高靭性溶融めっき鋼線およびその製造方法
JP2001181790A (ja) * 1999-12-22 2001-07-03 Nippon Steel Corp 高強度直接パテンティング線材およびその製造方法
JP2011219829A (ja) * 2010-04-12 2011-11-04 Bridgestone Corp 高炭素鋼線材およびその製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0218167B1 (en) 1985-09-30 1990-11-28 Nippon Steel Corporation High tensile strength drawn steel wire with improved ductility
JP2735647B2 (ja) 1988-12-28 1998-04-02 新日本製鐵株式会社 高強度高延性鋼線材および高強度高延性極細鋼線の製造方法
JP3720525B2 (ja) 1997-04-15 2005-11-30 株式会社ブリヂストン 伸線加工性に優れる高炭素鋼線材およびその製造方法
EP1018565A4 (en) * 1998-06-23 2003-07-23 Sumitomo Metal Ind STEEL WIRE ROD AND METHOD OF MANUFACTURING STEEL FOR SAID WIRE
JP3001572B1 (ja) 1999-03-04 2000-01-24 新日本製鐵株式会社 高強度高延性極細鋼線及び撚り線並びにその製造方法
JP3950682B2 (ja) * 2001-12-07 2007-08-01 株式会社神戸製鋼所 軸受用熱間圧延線材の製造方法
JP4319839B2 (ja) * 2003-01-27 2009-08-26 新日本製鐵株式会社 高強度、高靭性高炭素鋼線材
JP4313623B2 (ja) 2003-07-16 2009-08-12 東京製綱株式会社 スチール・コード撚り線,スチール・コード撚り線を備えたベルトおよびタイヤ
JP2005054260A (ja) 2003-08-07 2005-03-03 Kobe Steel Ltd スチールコード用極細鋼線の製造方法及びスチールコード
JP3983218B2 (ja) 2003-10-23 2007-09-26 株式会社神戸製鋼所 延性に優れた極細高炭素鋼線およびその製造方法
CN1746187A (zh) 2004-09-10 2006-03-15 同济大学 心房颤动致病基因及其用途
US9212410B2 (en) 2008-03-25 2015-12-15 Nippon Steel & Sumitomo Metal Corporation Steel rod and high strength steel wire having superior ductility and methods of production of same
JP5315790B2 (ja) 2008-05-19 2013-10-16 新日鐵住金株式会社 耐遅れ破壊特性に優れた高強度pc鋼線
JP4970562B2 (ja) * 2009-04-21 2012-07-11 新日本製鐵株式会社 延性に優れた高強度鋼線用線材及び鋼線の製造方法
TWI412608B (zh) * 2009-06-22 2013-10-21 Nippon Steel & Sumitomo Metal Corp 高強度極細鋼線及其製造方法
KR101382659B1 (ko) 2010-01-25 2014-04-07 신닛테츠스미킨 카부시키카이샤 선재, 강선 및 선재의 제조 방법
MY158506A (en) 2010-04-08 2016-10-14 Nippon Steel Corp Strand for saw wire and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277418A (ja) * 1985-09-30 1987-04-09 Nippon Steel Corp 高強度・高延性鋼線の製造法
JPH04280915A (ja) * 1991-01-10 1992-10-06 Nippon Steel Corp 金属線材のレーザ熱処理法およびその装置
JPH0853737A (ja) * 1994-08-11 1996-02-27 Kobe Steel Ltd 高強度高靭性溶融めっき鋼線およびその製造方法
JP2001181790A (ja) * 1999-12-22 2001-07-03 Nippon Steel Corp 高強度直接パテンティング線材およびその製造方法
JP2011219829A (ja) * 2010-04-12 2011-11-04 Bridgestone Corp 高炭素鋼線材およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180053388A (ko) * 2015-10-23 2018-05-21 신닛테츠스미킨 카부시키카이샤 신선 가공용 강 선재
EP3366802A4 (en) * 2015-10-23 2019-05-15 Nippon Steel & Sumitomo Metal Corporation STEEL WIRE FOR WIRE TREADING
KR102059046B1 (ko) 2015-10-23 2019-12-24 닛폰세이테츠 가부시키가이샤 신선 가공용 강 선재
US10597748B2 (en) 2015-10-23 2020-03-24 Nippon Steel Corporation Steel wire rod for wire drawing
JP2019502815A (ja) * 2015-12-17 2019-01-31 ポスコPosco 強度及び冷間加工性に優れた非調質線材及びその製造方法
WO2022220281A1 (ja) * 2021-04-15 2022-10-20 東京製綱株式会社 伸線材および伸線材の製造方法

Also Published As

Publication number Publication date
US10081846B2 (en) 2018-09-25
CN105960477B (zh) 2018-11-06
JPWO2015119247A1 (ja) 2017-03-30
KR20160105503A (ko) 2016-09-06
EP3103891B1 (en) 2020-01-15
US20170166992A1 (en) 2017-06-15
CN105960477A (zh) 2016-09-21
JP6237794B2 (ja) 2017-11-29
EP3103891A4 (en) 2017-10-11
KR101860246B1 (ko) 2018-05-21
EP3103891A1 (en) 2016-12-14

Similar Documents

Publication Publication Date Title
JP6237794B2 (ja) 鋼線
JP5939359B2 (ja) 高炭素鋼線材及びその製造方法
JP5233281B2 (ja) 延性に優れた高強度鋼線およびその製造方法
JP5114684B2 (ja) 延性に優れた線材及び高強度鋼線並びにそれらの製造方法
JP5162875B2 (ja) 伸線特性に優れた高強度線材およびその製造方法
JP6264462B2 (ja) 伸線加工用鋼線
JP6237793B2 (ja) フィラメント
JP6229792B2 (ja) 高強度スチールコード用線材
JP6229793B2 (ja) 高強度スチールコード用フィラメント
JP6264461B2 (ja) 伸線加工性に優れた高炭素鋼線材
WO2015053311A1 (ja) 線材、過共析ベイナイト鋼線、及びそれらの製造方法
JP6724435B2 (ja) 熱間圧延線材およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561057

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167021061

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15115952

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015746150

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746150

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE