WO2015119140A1 - ダイアフラム、および遠心回転機械 - Google Patents

ダイアフラム、および遠心回転機械 Download PDF

Info

Publication number
WO2015119140A1
WO2015119140A1 PCT/JP2015/053074 JP2015053074W WO2015119140A1 WO 2015119140 A1 WO2015119140 A1 WO 2015119140A1 JP 2015053074 W JP2015053074 W JP 2015053074W WO 2015119140 A1 WO2015119140 A1 WO 2015119140A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
flow path
diaphragm
stage
axis
Prior art date
Application number
PCT/JP2015/053074
Other languages
English (en)
French (fr)
Inventor
中庭 彰宏
真治 岩本
Original Assignee
三菱重工業株式会社
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱重工コンプレッサ株式会社 filed Critical 三菱重工業株式会社
Priority to CN201580003375.6A priority Critical patent/CN105899814A/zh
Priority to EP15746259.9A priority patent/EP3104018A4/en
Priority to US15/108,488 priority patent/US20160327050A1/en
Publication of WO2015119140A1 publication Critical patent/WO2015119140A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/28Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps
    • F04D29/284Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors
    • F04D29/286Rotors specially for elastic fluids for centrifugal or helico-centrifugal pumps for radial-flow or helico-centrifugal pumps for compressors multi-stage rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/681Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps
    • F04D29/682Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for elastic fluid pumps by fluid extraction

Definitions

  • the present invention relates to a diaphragm and a centrifugal rotating machine including the diaphragm.
  • a centrifugal compressor is known as a kind of centrifugal rotating machine.
  • gas is circulated in the radial direction of the rotating impeller, and this gas is compressed using centrifugal force.
  • a multistage centrifugal compressor is known in which an impeller is provided in multiple stages in the axial direction and gas is compressed stepwise.
  • Patent Document 1 shows an example of such a bypass line.
  • the bypass line is configured to recirculate a part of the fluid from the discharge side of each stage impeller toward the suction side when the impeller of each stage approaches a surging state.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a diaphragm and a centrifugal compressor that suppress the occurrence of surging and expand the operating range while maintaining compression efficiency. To do.
  • a diaphragm according to an aspect of the present invention is a diaphragm that covers an impeller so as to be rotatable about an axis, an inlet-side flow channel that supplies fluid toward the inlet of the impeller, and a radially outer side from the impeller.
  • An outlet-side flow path through which the fluid discharged toward the passage is formed, and a communication portion that constantly connects the inlet-side flow path and the outlet-side flow path is formed.
  • the fluid compressed or pumped by the impeller can be constantly recirculated from the outlet side channel to the inlet side channel. Therefore, it is possible to suppress the occurrence of surging by smoothly returning the fluid from the downstream side of the impeller to the upstream side of the impeller through the communication portion.
  • the diaphragm is disposed in the inlet-side flow path, and is disposed in the outlet-side flow path with a first blade that guides the fluid in a desired direction, and moves the fluid in the desired direction.
  • a second blade for guiding, and the communication portion is arranged between a position on the upstream side of the first blade and a position on the downstream side of the second blade. May be.
  • the communication part is arranged at such a position, the communication part is arranged at a position away from the impeller. Therefore, the fluid recirculated through the communication portion is not easily affected by the rotation of the impeller. Therefore, the fluid can be smoothly recirculated.
  • a centrifugal rotating machine as another aspect of the present invention includes the above-described diaphragm and an impeller supported by the diaphragm so as to be relatively rotatable around an axis with respect to the diaphragm.
  • the fluid can be smoothly recirculated from the downstream side of the impeller to the upstream side of the impeller through the communication portion that is always in communication. It becomes possible to suppress that the entire flow rate approaches the surge flow rate.
  • the centrifugal rotating machine includes a plurality of impellers arranged in the direction of the axis and rotating around the axis, and the diaphragm is designed to have the largest surge flow rate among the plurality of impellers.
  • the at least one impeller formed may be supported.
  • the stage of the impeller where the reflux occurs can be limited. Therefore, since the power can be reduced by suppressing the flow rate of the entire system of the centrifugal rotating machine, the occurrence of surging can be effectively suppressed.
  • the centrifugal rotating machine includes a plurality of impellers arranged in the direction of the axis and rotating around the axis, and the diaphragm is arranged in the direction of the axis so as to support each of the plurality of impellers. A plurality of them may be arranged, and the flow path area of the fluid in the communication portion may be different for each diaphragm.
  • the flow area of the communication portion is different for each diaphragm, so that the flow rate of the fluid recirculated from the downstream side to the upstream side of the impeller through the communication portion according to the surge flow rate that is different for each stage of the impeller. Can be adjusted. That is, the flow rate of the fluid to be recirculated can be adjusted according to the specifications of each stage, and the occurrence of surging can be more effectively suppressed.
  • a multistage centrifugal compressor 1 includes a rotary shaft 2 that rotates about an axis O, a plurality of impellers 3 attached to the rotary shaft 2, a rotary shaft 2 that rotatably supports the air, and the like And a casing 4 in which a casing flow path FC through which the gas G (fluid) flows is formed.
  • the rotary shaft 2 extends along the axis O and has a cylindrical shape centered on the axis O.
  • the rotating shaft 2 rotates relative to the casing 4 around the axis O by a power source such as an electric motor (not shown).
  • the plurality of impellers 3 are arranged at intervals in the direction of the axis O in which the axis O extends.
  • five impellers 3 are arranged.
  • each impeller 3 is directed from the upstream side through which the gas G flows to the downstream side (from one side to the other side in the direction of the axis O), the first stage impeller 3a, the second stage impeller 3b, the three stage impeller 3c, and the four stages.
  • the impeller 3d and the five-stage impeller 3e are used.
  • Each impeller 3 includes a disk-shaped hub 11 that gradually increases in diameter toward the downstream side in the direction of the axis O, and a plurality of blades 12 that are radially attached to the hub 11 and are spaced apart from each other in the circumferential direction with respect to the axis O. And a shroud 13 attached so as to cover the plurality of blades 12 from the upstream side in the direction of the axis O.
  • a region surrounded by the blades 12, the hub 11, and the shroud 13 adjacent to each other in the circumferential direction is an impeller flow channel FC0 through which the gas G flows.
  • FC0 an inlet for sucking gas and an outlet for discharging gas are formed.
  • the inlet is formed at the upstream end of the impeller channel FC0 in the direction of the axis O.
  • the outlet is a portion on the downstream side in the axis O direction of the impeller flow channel FC0 and is formed at the radially outer end.
  • the impeller 3 may be a closed impeller provided with a shroud 13 as in the present embodiment, or may be an open impeller provided with no shroud 13 unlike the present embodiment.
  • the casing 4 has a casing flow path FC through which the gas G flows.
  • the gas G is compressed by centrifugal force by flowing in stages from the impeller passage FC0 of the first stage impeller 3a to the impeller passage FC0 of the fifth stage impeller 3e via the casing passage FC.
  • the casing 4 has journal bearings 7 provided at both ends of the rotating shaft 2 in the axis O direction, and a thrust bearing 8 provided at one end.
  • the casing 4 supports the rotating shaft 2 by the journal bearing 7 and the thrust bearing 8.
  • the rotating shaft 2 is supported so as to be rotatable relative to the casing 4.
  • the casing flow path FC of the casing 4 is formed in the casing 4 in an annular shape centering on the axis O.
  • the casing flow path FC includes a suction flow path FC1 (inlet side flow path) that connects the inlet of the impeller flow path FC0 in the single-stage impeller 3a and the outside of the multistage centrifugal compressor 1, and an impeller flow path FC0 of the five-stage impeller 3e.
  • a discharge flow path FC2 (exit side flow path) that communicates the outlet of the multistage centrifugal compressor 1 with the outside of the multistage centrifugal compressor 1 and an intermediate flow path FC3 formed between the impellers 3 of each stage.
  • the suction flow path FC1 is formed in the casing 4 at a position upstream of the single-stage impeller 3a in the direction of the axis O.
  • the suction flow path FC1 opens radially outward in a part of the circumferential direction of the casing 4 and extends radially inward to supply the gas G to the inlet of the impeller flow path FC0 in the one-stage impeller 3a. To do.
  • An inlet guide vane 21 (first blade) that guides the gas G sucked from the outside of the multistage centrifugal compressor 1 in a desired direction and guides it to the impeller passage FC0 is provided in the suction passage FC1. ing.
  • the inlet guide vane 21 can adjust the inclination in the circumferential direction with respect to the radial direction by an operating mechanism (not shown).
  • the desired direction means, for example, a direction inclined forward in the rotational direction of the impeller 3 with respect to the radial direction so as to add a pre-turn to the gas G sucked from the outside.
  • the discharge passage FC2 is formed in the casing 4 so as to extend radially outward from the outlet of the impeller passage FC0 in the five-stage impeller 3e.
  • an outlet for discharging the gas G is formed in the discharge flow path FC2.
  • the outlet of this discharge flow channel FC2 opens toward the radially outer side at a part of the circumferential direction of the casing 4.
  • the discharge channel FC2 circulates the gas G discharged from the outlet of the impeller channel FC0 in the five-stage impeller 3e and discharges it to the outside.
  • the discharge flow path FC2 is formed with a discharge scroll S that is a space extending annularly in the circumferential direction at a position before the outlet of the discharge flow path FC2.
  • the discharge scroll S increases the pressure of the gas G discharged from the outlet of the impeller passage FC0 of the five-stage impeller 3e.
  • the diffuser vane 22 guides the gas G discharged from the impeller flow channel FC0 in a desired direction and guides it to the discharge scroll S, and converts the dynamic pressure of the circulating gas G into a static pressure.
  • the desired direction means a direction in which static pressure conversion is performed in this way, that is, a direction inclined in the circumferential direction with respect to the radial direction.
  • the intermediate flow path FC3 is located in the casing 4 between the first-stage impeller 3a and the second-stage impeller 3b, between the second-stage impeller 3b and the third-stage impeller 3c, and between the third-stage impeller 3c and the four-stage impeller 3d. And a position between the four-stage impeller 3d and the five-stage impeller 3e. Since the intermediate flow paths FC3 between the stages have substantially the same configuration, the intermediate flow path FC3 between the first-stage impeller 3a and the second-stage impeller 3b will be described as a representative.
  • the intermediate flow path FC3 does not communicate with the outside of the casing 4, but is formed inside the casing 4.
  • the intermediate flow path FC3 is connected to a diffuser flow path FC4 (outlet flow path) extending radially outward from the outlet of the impeller flow path FC0 in the single-stage impeller 3a and the diffuser flow path FC4, and the impeller of the two-stage impeller 3b.
  • a return flow path FC5 extending toward the inlet of the flow path FC0.
  • the diffuser vane 22 (second blade) may be provided in the diffuser flow path FC4.
  • the return flow path FC5 includes a first curved flow path portion FC6 connected to the radially outer end of the diffuser flow path FC4, and a straight flow path portion FC7 connected to the end of the first curved flow path portion FC6.
  • the second curved flow path portion FC8 is connected to the end of the straight flow path portion FC7.
  • the first curved flow path portion FC6 is curved radially inward after extending radially outward from the diffuser flow path FC4.
  • the first curved flow path portion FC6 diverts the flow of the gas G that goes radially outward from the impeller flow path FC0 of the single-stage impeller 3a to a flow that goes radially inward.
  • the straight flow path portion FC7 is connected to the end on the radially inner side of the first curved flow path portion FC6 and the end opposite to the connection portion with the diffuser flow path FC4.
  • the straight channel portion FC7 extends radially inward from the first curved channel portion FC6.
  • a return vane 23 (first blade) that guides the gas G from the impeller flow path FC0 of the first stage impeller 3a to the impeller flow path FC0 of the two stage impeller 3b by turning the gas G from a desired direction.
  • the desired direction means, for example, a direction in which the swirl component of the gas G from the impeller flow path FC0 of the first stage impeller 3a is removed, that is, a direction inclined to the rear side in the rotational direction of the impeller 3 with respect to the radial direction. is doing.
  • the second curved flow path portion FC8 is connected to the radially inner end of the straight flow path portion FC7, and is curved along the other side (downstream side) of the axis O from this end portion.
  • the second curved flow path portion FC8 diverts the flow of the gas G from the straight flow path portion FC7 to a flow toward the impeller flow path FC0 of the two-stage impeller 3b.
  • the casing flow path FC further includes a communication portion 24 that always communicates the diffuser flow path FC4 extending radially outward from the impeller flow path FC0 of the single-stage impeller 3a and the suction flow path FC1. It is out.
  • the communication portion 24 is a plurality of communication holes formed at intervals in the circumferential direction.
  • the shape of the communication hole is not particularly limited, and may be a circular cross section or a polygonal cross section. Moreover, it may be a slit rather than a communication hole. That is, as long as the diffuser flow path FC4 and the suction flow path FC1 are always in communication, the shape may be any shape, and may be formed only at one place in the circumferential direction.
  • the communication portion 24 is radially outward from the diffuser vane 22, that is, downstream of the gas G flow and radially outward from the inlet guide vane 21. That is, it is good to communicate with the upstream side of the gas G flow.
  • a part of the casing 4 in which the suction flow path FC1 and the diffuser flow path FC4 provided on the outlet side of the impeller flow path FC0 of the first stage impeller 3a are formed is referred to as a first stage diaphragm 4a.
  • the communication portion 24 is formed in the first stage diaphragm 4a, and in the present embodiment, the surge flow rate at which surging occurs is designed to be the largest value in the first stage impeller 3a. .
  • the communication part 24 is formed in the first stage diaphragm 4a. For this reason, a part of the gas G compressed by the single-stage impeller 3a is transferred from the diffuser flow path FC4 to the suction flow path FC1, that is, from the downstream side of the high-pressure single-stage impeller 3a to the low-pressure upstream side by the differential pressure. Can be constantly refluxed.
  • the surge line L0 is as shown by the broken line in FIG. 2, and a certain operating point A is on the smaller flow rate side than the surge line. Suppose it is located.
  • the surge line L0 when the communication part 24 is provided as in this embodiment and the flow rate of the gas G recirculated through the communication part 24 is 10, the surge line L0 apparently shifts to the 10% smaller flow rate side. , The surge line L (solid line in FIG. 2). Thereby, if the flow rate at the operating point A is greater than the flow rate at the surge line L as shown in FIG. 2, stable operation is possible.
  • the total flow rate of the gas G flowing through the impellers 3 in each stage becomes 510, so that the power is increased by the gas G flow rate 10 compared with the case where the recirculation is not performed. Becomes larger.
  • the flow rate of the gas G flowing through the impellers 3 of each stage is 110. Therefore, the power which distribute
  • the communication portion 24 is selectively applied to the impeller 3 that is designed to have the largest surge flow rate, and the downstream side of the impeller 3 at the stage where the surge flow rate becomes the largest at the time of design.
  • the communication portion 24 communicates with the radially outer side than the diffuser vane 22 and the radially outer side with respect to the inlet guide vane 21,
  • the communicating part 24 is arranged at a position further away from the first stage impeller 3a. Therefore, the gas G recirculated through the communication portion 24 is less affected by the rotation of the first stage impeller 3a. Therefore, the gas G can be smoothly recirculated.
  • the diffuser vane 22 is provided in this way, after the gas G that has passed through the first stage impeller 3a is recovered by static pressure by the diffuser vane 22, a part of this gas G is transferred to the communication portion 24. And can flow in. Accordingly, the gas G can easily flow into the communication portion 24, and the fluid can be smoothly recirculated to the upstream side of the impeller 3 through the communication portion 24 stably.
  • the communication part 24 is a simple communication hole or slit, there is no member that blocks the flow of the gas G in the communication part 24, the pressure loss during recirculation can be kept small, and the gas G can be smoothly supplied. It can be refluxed.
  • the multistage centrifugal compressor 1 of the present embodiment by providing the communication unit 24 that always communicates, it is possible to suppress the occurrence of surging while minimizing the increase in power of the entire system of the multistage centrifugal compressor 1. it can.
  • the communication portion 24 does not necessarily need to communicate the radially outer side with respect to the diffuser vane 22 and the radially outer side with respect to the inlet guide vane 21. That is, it is only necessary to form at least the downstream side and the upstream side of the first stage impeller 3a.
  • the communication portion 24 is formed in the second-stage diaphragm 4b as shown in FIG. It is preferable that the downstream side and the upstream side communicate with each other. Also in this case, the occurrence of surging can be suppressed while minimizing the increase in power of the entire system of the multistage centrifugal compressor 1.
  • the communication part 24 may be formed in the third-stage diaphragm 4c. Further, when the surge flow rate is designed to be maximized by the four-stage impeller 3d, the communication portion 24 only needs to be formed in the fourth-stage diaphragm 4d.
  • the communication portion 24 is radially outward from the diffuser vane 22 on the outlet side of the impeller 3 flow rate of the five-stage impeller 3e and more radially than the return vane 23 on the inlet side of the impeller 3 flow rate of the five-stage impeller 3e. It is preferable that it is formed so as to communicate with the outside. And the communication part 24 may be connected to the discharge scroll S as shown in FIG.
  • the surge flow rate is designed to be the largest in the four-stage impeller 3d and the five-stage impeller 3e, it is preferable to configure as shown in FIG. Specifically, the communication portion 24 is radially outward from the diffuser vane 22 on the outlet side of the impeller 3 flow rate of the five-stage impeller 3e and more radially than the return vane 23 on the inlet side of the impeller 3 flow rate of the four-stage impeller 3d. It is preferable that it is formed so as to communicate with the outside. That is, in this case, it is considered that the fourth stage diaphragm 4d and the fifth stage diaphragm 4e constitute a single stage diaphragm.
  • FIG. 6 shows another modification of the present embodiment.
  • communication portions 24 are formed in all the stage diaphragms 4a to 4e. That is, the communication portion 24 is formed so as to communicate the downstream side and the upstream side of all stages of the impellers 3.
  • these communication parts 24 have different flow passage areas through which the gas G flows for each stage of the diaphragms 4a to 4e.
  • the communication portion 24 is a communication hole
  • the hole diameter is different for each of the diaphragms 4a to 4e, or the number of communication holes is different.
  • the flow passage area of the communication portion 24 is different for each of the diaphragms 4 a to 4 e, so that the impeller is connected through the communication portion 24 in accordance with a different surge flow rate for each stage of the impeller 3. 3, the flow rate of the gas G recirculated from the downstream side to the upstream side can be adjusted.
  • the flow rate of the gas G to be recirculated can be adjusted according to the specifications of each stage, and the state where surging occurs in all stages is not approached. Therefore, it is possible to more effectively suppress the occurrence of surging.
  • the multistage centrifugal compressor 1 has been described as an example of the centrifugal rotating machine. Form diaphragms are applicable.
  • Diffuser vane 23 ... Return vane (first blade) 24 ... Communication part FC ... Casing channel FC0 ... Impeller channel FC1 ... Suction channel (inlet side channel) FC2 ... Discharge flow Road (exit-side channel) FC3 ... Intermediate channel FC4 ... Diff Chromatography The flow path (outlet passage) FC5 ; return flow path (inlet side flow path) FC6 ... first curved channel portion FC7 ... straight channel portion FC8 ... second curved channel portion S ... discharge scroll O ... axis

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

 ダイアフラム(4)は、インペラ(3)を軸線(O)を中心として回転可能に覆う。ダイアフラム(4)には、インペラ(3)の入口に向かってガス(G)を供給する吸込流路(FC1)と、インペラ(3)から径方向外側に向かって排出されたガス(G)が流通するディフューザ流路(FC4)と、これら吸込流路(FC1)とディフューザ流路(FC4)とを常時連通させる連通部(24)とが形成されている。

Description

ダイアフラム、および遠心回転機械
 本発明は、ダイアフラム、およびこれを備えた遠心回転機械に関する。本願は、2014年2月5日に、日本国に出願された特願2014-020490号に基づき優先権を主張し、この内容をここに援用する。
 例えば、遠心回転機械の一種として遠心圧縮機が知られている。遠心圧縮機では、回転するインペラの径方向に気体を流通させ、遠心力を利用してこの気体を圧縮する。この種の遠心圧縮機では、インペラを軸方向に多段に備えて気体を段階的に圧縮する多段遠心圧縮機が知られている。
 ところで、このような多段遠心圧縮機では、インペラ内を下流側から上流側へ向かうように気体が逆流する、サージングという現象が発生することが知られている。このようなサージングが発生する流量、即ちサージ流量よりもシステム全体の流量が小さくなってしまう場合には、主流の流れの下流側から上流側へ主流の一部を戻すバイパスラインを形成することでサージングの発生を抑え、作動範囲の拡大を図る手法がある。
 例えば、特許文献1には、このようなバイパスラインの一例が示されている。このバイパスラインは、各段のインペラがサージングの状態に近づいたときに、各段のインペラの吐出側から吸込側に向かって流体の一部を還流させるようになっている。
特許第2637144号公報
 しかしながら、特許文献1のバイパスラインの場合には、サージングの状態に近づいた場合にのみ、バイパスラインを開放して流体を還流させる構造となっている。このため、サージングが発生する流量よりもわずかにシステム流量が大きくなっている場合などには流体の還流は行われないことになる。従って、サージングは発生しない状態ではあるもののサージング発生に非常に近い状態にはなり得るため、流れが不安定となって軸振動の発生が懸念される。また、特許文献1のバイパスライン内には、バイパスラインを開放、閉塞するためのスプリング等の構造物が設けられているため、バイパスライン内へと流体が流入する際の圧損が大きくなり、圧縮効率の低下の問題がある。
 本発明はこのような事情を考慮してなされたものであり、圧縮効率を維持しつつ、サージングの発生を抑制し、作動範囲の拡大を図るダイアフラム、および遠心圧縮機を提供することを目的とする。
 上記課題を解決するため、本発明は以下の手段を採用している。
 即ち、本発明の一の態様としてのダイアフラムは、インペラを軸線を中心として回転可能に覆うダイアフラムにおいて、前記インペラの入口に向かって流体を供給する入口側流路と、前記インペラから径方向外側に向かって排出された流体が流通する出口側流路と、これら入口側流路と出口側流路とを常時連通させる連通部と、が形成されている。
 このようなダイアフラムによれば、連通部が形成されていることによって、インペラで圧縮又は圧送された流体を、出口側流路から入口側流路に常時還流させることができる。
 従って、連通部を通じてインペラの上流側にインペラの下流側から円滑に流体を還流することで、サージングの発生を抑制可能となる。
 また、上記ダイアフラムは、前記入口側流路内に配されて、前記流体を所望の方向へ案内する第一の羽根と、前記出口側流路内に配されて、前記流体を所望の方向へ案内する第二の羽根と、をさらに備え、前記連通部は、前記第一の羽根よりも上流側となる位置と、前記第二の羽根よりも下流側となる位置との間に配されていてもよい。
 このような位置に連通部が配されていることで、インペラから離間した位置に連通部が配されていることになる。従って、連通部を通じて還流される流体はインペラの回転の影響を受けにくくなる。よって、円滑に流体を還流させることができる。
 さらに、本発明の他の態様としての遠心回転機械は、上記のダイアフラムと、前記ダイアフラムに対して軸線回りに相対回転可能に該ダイアフラムに支持されるインペラと、を備えている。
 このような遠心回転機械によれば、ダイアフラムを備えていることで、常時連通する連通部を通じてインペラの上流側にインペラの下流側から円滑に流体を還流することができるとともに、遠心回転機械のシステム全体の流量がサージ流量に近づくことを抑制可能となる。
 また、上記の遠心回転機械は、前記軸線の方向に配列されて、該軸線回りに回転する複数のインペラを備え、前記ダイアフラムは、前記複数のインペラのうちで最もサージ流量が大きくなるように設計された少なくとも一つのインペラを支持していてもよい。
 このように、最もサージ流量が大きな設計がされたインペラに対して選択的に連通部を適用することで、還流が生じるインペラの段を限定できる。よって、遠心回転機械のシステム全体の流量を抑えて動力を低減できるため、効果的にサージングの発生を抑えることができる。
 さらに、上記の遠心回転機械は、前記軸線の方向に配列されて、該軸線回りに回転する複数のインペラを備え、前記ダイアフラムは、前記複数のインペラの各々を支持するように前記軸線の方向に複数が配列されて設けられ、これらダイアフラム毎で、前記連通部における前記流体の流路面積が異なっていてもよい。
 このように連通部の流路面積がダイアフラム毎に異なっていることで、各段のインペラ毎に異なるサージ流量に合わせて、連通部を通じてインペラの下流側から上流側へと還流される流体の流量を調整することが可能となる。即ち、各段のスペックに応じて還流される流体の流量を調整することができ、より効果的にサージングの発生を抑制することが可能となる。
 本発明の一態様では、常時連通する連通部を設けたことで、圧縮効率を維持しつつサージングの発生を抑制可能となり、作動範囲の拡大が可能になる。
本発明の実施形態に係る多段遠心圧縮機の軸線を含む縦断面図である。 本発明の実施形態に係る多段遠心圧縮機と、仮に連通部が設けられない場合の多段遠心圧縮機とのサージラインの違いを示すグラフであって、横軸にはシステムで必要なガスの流量と、圧縮比との関係を示すものである。 本発明の実施形態の第一変形例に係る多段遠心圧縮機の軸線を含む縦断面図である。 本発明の実施形態の第二変形例に係る多段遠心圧縮機の軸線を含む縦断面図である。 本発明の実施形態の第三変形例に係る多段遠心圧縮機の軸線を含む縦断面図である。 本発明の実施形態の第四変形例に係る多段遠心圧縮機の軸線を含む縦断面図である。
 以下、本発明に係る多段遠心圧縮機1(遠心回転機械)の実施形態について、図面を参照して説明する。
 図1に示すように、多段遠心圧縮機1は、軸線O回りに回転する回転軸2と、回転軸2に取り付けられた複数のインペラ3と、回転軸2を回転可能に支持するとともに空気等のガスG(流体)を流通させるケーシング流路FCが形成されたケーシング4と、を備えている。
 回転軸2は、軸線Oに沿って延び、軸線Oを中心とした円柱状を成している。回転軸2は、図示しない電動機等の動力源によって軸線O回りにケーシング4に対して相対回転する。
 複数のインペラ3は、軸線Oが延びる軸線O方向に間隔を空けて配列されている。本実施形態の多段遠心圧縮機1では、五つのインペラ3が配列されている。
 以下、各々のインペラ3は、ガスGの流通する上流側から下流側に(軸線O方向の一方側から他方側)に向かって、一段インペラ3a、二段インペラ3b、三段インペラ3c、四段インペラ3d、五段インペラ3eとする。
 各々のインペラ3は、軸線O方向の下流側に向かって漸次拡径した円盤状のハブ11と、ハブ11に放射状に取り付けられ、軸線Oに対する周方向に互いに離間して並ぶ複数のブレード12と、これら複数のブレード12を軸線O方向の上流側から覆うように取り付けられたシュラウド13と、を有している。
 周方向に隣接する各ブレード12、ハブ11、及びシュラウド13によって囲まれた領域が、ガスGの流通するインペラ流路FC0となっている。インペラ流路FC0には、ガスを吸い込む入口と、ガスを吐出する出口とが形成されている。入口は、インペラ流路FC0の軸線O方向の上流端に形成されている。出口は、インペラ流路FC0の軸線O方向の下流側の部分であって径方向外側端に形成されている。
 なお、インペラ3は、本実施形態のようにシュラウド13が設けられたクローズドインペラであってもよいし、本実施形態とは異なり、シュラウド13が設けられていないオープンインペラであってもよい。
 ケーシング4には、ガスGが流れるケーシング流路FCが形成されている。ガスGは、このケーシング流路FCを介して一段インペラ3aのインペラ流路FC0から五段インペラ3eのインペラ流路FC0へと段階的に流通することで、遠心力により圧縮される。
 ケーシング4は、回転軸2の軸線O方向の両端に設けられたジャーナル軸受7と、一方側の端部に設けられたスラスト軸受8を有している。ケーシング4は、これらジャーナル軸受7及びスラスト軸受8によって、回転軸2を支持している。回転軸2は、このケーシング4に対して相対回転可能に支持されている。
 ケーシング4のケーシング流路FCは、ケーシング4に軸線Oを中心とした環状に形成されている。
 このケーシング流路FCは、一段インペラ3aにおけるインペラ流路FC0の入口と多段遠心圧縮機1の外部とを連通させる吸込流路FC1(入口側流路)と、五段インペラ3eのインペラ流路FC0の出口と多段遠心圧縮機1の外部とを連通させる吐出流路FC2(出口側流路)と、各段のインペラ3同士の間に形成された中間流路FC3と、を有する。
 吸込流路FC1は、ケーシング4中で、一段インペラ3aよりも軸線O方向の上流側の位置に形成されている。この吸込流路FC1は、ケーシング4の周方向の一部で径方向外側に向かって開口するとともに、径方向内側に向かって延びて、一段インペラ3aにおけるインペラ流路FC0の入口にガスGを供給する。
 この吸込流路FC1内には、多段遠心圧縮機1の外部から吸い込まれたガスGを所望の方向へ転向させてインペラ流路FC0に案内するインレットガイドベーン21(第一の羽根)が設けられている。インレットガイドベーン21は、不図示の動作機構によって、径方向に対する周方向への傾きを調整可能になっている。所望の方向とは、例えば、外部から吸い込まれたガスGに予旋回を加えるような、径方向に対してインペラ3の回転方向前方側に傾斜する方向を意味している。
 吐出流路FC2は、五段インペラ3eにおけるインペラ流路FC0の出口から径方向外側に向かって延びようにケーシング4に形成されている。この吐出流路FC2には、ガスGを吐出する出口が形成されている。この吐出流路FC2の出口は、ケーシング4の周方向の一部で径方向外側に向かって開口する。吐出流路FC2は、五段インペラ3eにおけるインペラ流路FC0の出口から排出されたガスGを流通させて外部に吐出する。
 吐出流路FC2には、吐出流路FC2の出口の手前の位置に、周方向に環状に延びる空間である吐出スクロールSが形成されている。この吐出スクロールSは、五段インペラ3eのインペラ流路FC0の出口から排出されたガスGの圧力を増大させる。
 ここで、本実施形態では、図1の破線に示すように、この吐出流路FC2内で吐出スクロールSとインペラ3との間に、ディフューザベーン22(第二の羽根)が設けられていてもよい。このディフューザベーン22は、インペラ流路FC0から排出されたガスGを所望の方向へ転向させて吐出スクロールSへ案内する共に、流通するガスGの動圧を静圧に変換する。所望の方向とは、このように静圧変換がなされる方向、即ち、径方向に対して周方向に傾斜する方向を意味している。
 中間流路FC3は、ケーシング4中で、一段インペラ3aと二段インペラ3bとの間の位置、二段インペラ3bと三段インペラ3cとの間の位置、三段インペラ3cと四段インペラ3dとの間の位置、及び四段インペラ3dと五段インペラ3eとの間の位置に形成されている。
 各段間の中間流路FC3は、いずれも略同一構成であるため、代表して一段インペラ3aと二段インペラ3bとの間の中間流路FC3について説明する。
 中間流路FC3は、ケーシング4の外部には連通せず、ケーシング4の内部に形成されている。中間流路FC3は、一段インペラ3aにおけるインペラ流路FC0の出口から径方向外側に向かって延びるディフューザ流路FC4(出口側流路)と、ディフューザ流路FC4に接続され、二段インペラ3bのインペラ流路FC0の入口に向かって延びるリターン流路FC5と、を有する。
 ディフューザ流路FC4は、一段インペラ3aのインペラ流路FC0から径方向外側に向かって排出されたガスGが流通する。このディフューザ流路FC4内には、上述したディフューザベーン22(第二の羽根)が設けられていてもよい。
 リターン流路FC5は、ディフューザ流路FC4の径方向外側の端部に接続された第一曲り流路部FC6と、第一曲り流路部FC6の端部に接続された直線流路部FC7と、直線流路部FC7の端部に接続された第二曲り流路部FC8とから構成されている。
 第一曲り流路部FC6は、ディフューザ流路FC4から径方向外側に延びた後に径方向内側に湾曲している。第一曲り流路部FC6は、一段インペラ3aのインペラ流路FC0から径方向外側へ向かうガスGの流れを、径方向内側に向かう流れに転向する。
 直線流路部FC7は、第一曲り流路部FC6の径方向内側の端であって、ディフューザ流路FC4との接続部分とは逆側の端に接続されている。直線流路部FC7は、第一曲り流路部FC6から径方向内側に向かって延びている。
 この直線流路部FC7内には、一段インペラ3aのインペラ流路FC0からのガスGを所望の方向へ転向させて二段インペラ3bのインペラ流路FC0に案内するリターンベーン23(第一の羽根)が設けられている。所望の方向とは、例えば、一段インペラ3aのインペラ流路FC0からのガスGの旋回成分を取り除くような方向、即ち、径方向に対してインペラ3の回転方向の後方側に傾斜する方向を意味している。
 第二曲り流路部FC8は、直線流路部FC7の径方向内側の端部に接続されて、この端部から軸線Oの他方側(下流側)に沿うように湾曲している。第二曲り流路部FC8は、直線流路部FC7からのガスGの流れを二段インペラ3bのインペラ流路FC0へ向かう流れに転向する。
 ここで、本実施形態では、ケーシング流路FCは、一段インペラ3aのインペラ流路FC0から径方向外側に延びるディフューザ流路FC4と、吸込流路FC1と、を常時連通させる連通部24をさらに含んでいる。
 連通部24は、本実施形態では、周方向に互いに間隔をあけて複数形成された連通孔となっている。
 なお、この連通孔の形状は特に限定されるものではなく、断面円形状であってもよいし断面多角形状であってもよい。また、連通孔でなくスリットのようなものであってもよい。即ち、ディフューザ流路FC4と吸込流路FC1とを常時連通するものであれば形状はどのようなものでもよいし、周方向の一箇所のみに形成されていてもよい。
 さらに、ディフューザ流路FC4にディフューザベーン22が設けられる場合には、連通部24はディフューザベーン22よりも径方向外側、即ち、ガスGの流れの下流側と、インレットガイドベーン21よりも径方向外側、即ち、ガスGの流れの上流側とを連通しているとよい。
 ここで、吸込流路FC1、及び、一段インペラ3aのインペラ流路FC0の出口側に設けられたディフューザ流路FC4が形成されたケーシング4の一部を一段目ダイアフラム4aとする。
 また、一段インペラ3aと二段インペラ3bとの間のリターン流路FC5、及び、二段インペラ3bのインペラ流路FC0の出口側に設けられたディフューザ流路FC4が形成されたケーシング4の一部を二段目ダイアフラム4bとする。
 二段目ダイアフラム4bと同様に、三段目ダイアフラム4c及び四段目ダイアフラム4dを定義する。
 さらに、四段インペラ3dと五段インペラ3eとの間のリターン流路FC5、及び、吐出流路FC2が設けられたケーシング4の一部を五段目ダイアフラム4eとする。
 本実施形態では、連通部24は一段目ダイアフラム4aに形成されていることになり、かつ、本実施形態では、サージングが発生するサージ流量が一段インペラ3aで最も大きい値となる設計になっている。
 このような多段遠心圧縮機1によると、一段目ダイアフラム4aに連通部24が形成されている。このため、一段インペラ3aで圧縮されたガスGの一部をディフューザ流路FC4から吸込流路FC1に、即ち、高圧となる一段インペラ3aの下流側から低圧となる上流側に差圧によってガスGを常時還流させることができる。
 ここで、仮に連通部24を設けずガスGの一部が還流されない場合に各段のインペラ3を流通するガスGの流量を100とすると、各段のインペラ3を流通するガスGの合計流量は500となる。
 また、仮に連通部24を設けずガスGの一部が還流されない場合には、サージラインL0は図2の破線に示す通りになると仮定し、ある運転点Aがサージラインよりも小流量側に位置するとする。
 このような状況では、運転点Aで多段遠心圧縮機1の運転を行うとサージングが発生することとなり、安定した運転を行うことはできない。
 一方、本実施形態のように連通部24を設け、この連通部24を還流されるガスGの流量を10とした場合には、サージラインL0は、みかけ上で10%小流量側にシフトし、サージラインL(図2の実線)となる。これにより、図2に示す通り運転点Aの流量の方がサージラインLの流量よりも大きくなれば、安定した運転が可能となる。
 さらに、還流分のガスGの流量10を加味すると、各段のインペラ3を流通するガスGの合計流量が510となるため、還流が行われない場合に比べてガスG流量10の分だけ動力が大きくなる。しかし、仮に五段インペラ3eの下流側から一段インペラ3aの上流側へと、システムの全段にわたってガスGを還流させるシステムでは、各段のインペラ3を流通するガスGの流量は110となる。よって、各段のインペラ3を流通するガスGの合計流量550の分を流通させる動力が必要となってしまう。
 従って、本実施形態のように、連通部24が最もサージ流量が大きな設計がされたインペラ3に対して選択的に適用されて、設計時にサージ流量が最も大きくなる段のインペラ3の下流側と上流側とを連通してガスGの一部を還流させることで、多段遠心圧縮機1のシステム全体のガスGの流量を抑えて動力を低減できるため、効果的にサージングの発生を抑えることができる。
 また、仮にディフューザベーン22が設けられている場合であって、連通部24が、ディフューザベーン22よりも径方向外側と、インレットガイドベーン21よりも径方向外側とを連通している場合には、一段インペラ3aからより離間した位置に連通部24が配されていることになる。従って、連通部24を通じて還流されるガスGは一段インペラ3aの回転の影響を受けにくくなる。よって、円滑にガスGを還流させることができる。
 また、このように仮にディフューザベーン22が設けられている場合には、一段インペラ3aを通過したガスGが、ディフューザベーン22によって静圧回復された後に、このガスGの一部を連通部24へと流入させることができる。従って、連通部24にガスGを流入させ易くなり、安定的に連通部24を通じてインペラ3の上流側に円滑に流体を還流することができる。
 さらに、連通部24は単なる連通孔やスリットであるため、連通部24内にはガスGの流れを遮るような部材は無く、還流の際の圧損を小さく抑えることができ、円滑にガスGを還流させることができる。
 本実施形態の多段遠心圧縮機1によると、常時連通する連通部24を設けたことで、多段遠心圧縮機1のシステム全体の動力増大を最小限に抑えつつ、サージングの発生を抑制することができる。
 なお、本実施形態のように連通部24は、必ずしもディフューザベーン22よりも径方向外側と、インレットガイドベーン21よりも径方向外側とを連通していなくともよい。
 即ち、少なくとも一段インペラ3aの下流側と上流側とを連通するように形成されていればよい。
 ここで、仮にサージ流量が二段インペラ3bで最も大きくなるように設計されている場合には、図3に示すように、連通部24は二段目ダイアフラム4bに形成され、二段インペラ3bの下流側と上流側とを連通していることが好ましい。この場合にも多段遠心圧縮機1のシステム全体の動力増大を最小限に抑えつつ、サージングの発生を抑制できる。
 同様に、仮にサージ流量が三段インペラ3cで最も大きくなるように設計されている場合には、連通部24は三段目ダイアフラム4cに形成されていればよい。
また、サージ流量が四段インペラ3dで最も大きくなるように設計されている場合には、連通部24は四段目ダイアフラム4dに形成されていればよい。
 さらに、仮にサージ流量が五段インペラ3eで最も大きくなるように設計されている場合には、図4に示すように、構成することが好ましい。具体的に、連通部24は、五段インペラ3eのインペラ3流量の出口側のディフューザベーン22よりも径方向外側と、五段インペラ3eのインペラ3流量の入口側のリターンベーン23よりも径方向外側とを連通するように形成されていることが好ましい。そして、図4に示すように、連通部24は、吐出スクロールSに連通していてもよい。
 また、仮にサージ流量が四段インペラ3dと五段インペラ3eとで最も大きくなるように設計されている場合には、図5に示すように、構成することが好ましい。具体的に、連通部24は、五段インペラ3eのインペラ3流量の出口側のディフューザベーン22よりも径方向外側と、四段インペラ3dのインペラ3流量の入口側のリターンベーン23よりも径方向外側とを連通するように形成されていることが好ましい。即ち、この場合、四段目ダイアフラム4dと五段目ダイアフラム4eとが一段のダイアフラムを構成しているとも考えられる。
 さらに、図6には、本実施形態の他の変形例を示す。この変形例では、全ての段のダイアフラム4a~4eに連通部24が形成されている。即ち、全ての段のインペラ3の下流側と上流側とを連通するように連通部24が形成されている。
 また、これら連通部24は、各段のダイアフラム4a~4e毎にガスGが流通する流路面積が異なっている。例えば、連通部24が連通孔である場合には孔径がダイアフラム4a~4e毎に異なるか、連通孔の数量が異なっている。
 このような多段遠心圧縮機1によると、連通部24の流路面積がダイアフラム4a~4e毎に異なっていることで、各段のインペラ3毎に異なるサージ流量に合わせて、連通部24を通じてインペラ3の下流側から上流側へと還流されるガスGの流量を調整することが可能となる。
 即ち、各段のスペックに応じて還流されるガスGの流量を調整することができ、全ての段でサージングが発生する状態に近づくことがなくなる。よって、より効果的にサージングの発生を抑制することが可能となる。
 以上、本発明の実施形態について詳細を説明したが、本発明の技術的思想を逸脱しない範囲内において、多少の設計変更も可能である。
 例えば、上述の実施形態では、遠心回転機械の一例として、多段遠心圧縮機1について説明を行ったが、ガスGに代えて液体を圧送する多段遠心ポンプ等の他の遠心回転機械に上述の実施形態のダイアフラムを適用可能である。
 本発明の一態様によれば、圧縮効率を維持しつつサージングの発生を抑制可能となる。
1…多段遠心圧縮機(回転機械) 2…回転軸 3…インペラ G…ガス(流体) 3a…一段インペラ 3b…二段インペラ 3c…三段インペラ 3d…四段インペラ 3e…五段インペラ 4…ケーシング 4a…一段目ダイアフラム 4b…二段目ダイアフラム 4c…三段目ダイアフラム 4d…四段目ダイアフラム 4e…五段目ダイアフラム 7…ジャーナル軸受 8…スラスト軸受 11…ハブ 12…ブレード 13…シュラウド 21…インレットガイドベーン(第一の羽根) 22…ディフューザベーン 23…リターンベーン(第一の羽根) 24…連通部 FC…ケーシング流路 FC0…インペラ流路 FC1…吸込流路(入口側流路) FC2…吐出流路(出口側流路) FC3…中間流路 FC4…ディフューザ流路(出口側流路) FC5…リターン流路(入口側流路) FC6…第一曲り流路部 FC7…直線流路部 FC8…第二曲り流路部 S…吐出スクロール O…軸線

Claims (5)

  1.  インペラを軸線を中心として回転可能に覆うダイアフラムにおいて、
     前記インペラの入口に向かって流体を供給する入口側流路と、
     前記インペラから径方向外側に向かって排出された流体が流通する出口側流路と、
     これら入口側流路と出口側流路とを常時連通させる連通部と、
     が形成されたダイアフラム。
  2.  前記入口側流路内に配されて、前記流体を所望の方向へ案内する第一の羽根と、
     前記出口側流路内に配されて、前記流体を所望の方向へ案内する第二の羽根と、
     をさらに備え、
     前記連通部は、前記第一の羽根よりも上流側となる位置と、前記第二の羽根よりも下流側となる位置との間に配されている請求項1に記載のダイアフラム。
  3.  請求項1又は2に記載のダイアフラムと、
     前記ダイアフラムに対して軸線回りに相対回転可能に該ダイアフラムに支持されるインペラと、
     を備える遠心回転機械。
  4.  前記軸線の方向に配列されて、該軸線回りに回転する複数のインペラを備え、
     前記ダイアフラムは、前記複数のインペラのうちで最もサージ流量が大きくなるように設計された少なくとも一つのインペラを支持する請求項3に記載の遠心回転機械。
  5.  前記軸線の方向に配列されて、該軸線回りに回転する複数のインペラを備え、
     前記ダイアフラムは、前記複数のインペラの各々を支持するように前記軸線の方向に複数が配列されて設けられ、
     これらダイアフラム毎で、前記連通部における前記流体の流路面積が異なっている請求項3に記載の遠心回転機械。
PCT/JP2015/053074 2014-02-05 2015-02-04 ダイアフラム、および遠心回転機械 WO2015119140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580003375.6A CN105899814A (zh) 2014-02-05 2015-02-04 隔板以及离心式旋转机械
EP15746259.9A EP3104018A4 (en) 2014-02-05 2015-02-04 Diaphragm and centrifugal rotating machine
US15/108,488 US20160327050A1 (en) 2014-02-05 2015-02-04 Diaphragm and centrifugal rotating machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014020490A JP6133801B2 (ja) 2014-02-05 2014-02-05 ダイアフラム、および遠心回転機械
JP2014-020490 2014-02-05

Publications (1)

Publication Number Publication Date
WO2015119140A1 true WO2015119140A1 (ja) 2015-08-13

Family

ID=53777944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053074 WO2015119140A1 (ja) 2014-02-05 2015-02-04 ダイアフラム、および遠心回転機械

Country Status (5)

Country Link
US (1) US20160327050A1 (ja)
EP (1) EP3104018A4 (ja)
JP (1) JP6133801B2 (ja)
CN (1) CN105899814A (ja)
WO (1) WO2015119140A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101826600B1 (ko) * 2016-07-05 2018-02-07 뉴모텍(주) 온수 순환펌프
KR101812033B1 (ko) * 2016-11-03 2018-01-25 뉴모텍(주) 전이상태에서 발생하는 소음을 방지할 수 있는 온수 순환 펌프
CN109145335B (zh) * 2017-06-28 2023-05-30 中国航发贵阳发动机设计研究所 一种通过预旋转提高轮盘低循环疲劳寿命的方法
JP7005393B2 (ja) * 2018-03-09 2022-01-21 三菱重工業株式会社 ディフューザベーン及び遠心圧縮機
CN109340144B (zh) * 2018-10-15 2019-09-06 佛山冠博机械科技发展有限公司 多级离心风机
JP7161424B2 (ja) 2019-02-26 2022-10-26 三菱重工コンプレッサ株式会社 インペラ及び回転機械
US11255338B2 (en) * 2019-10-07 2022-02-22 Elliott Company Methods and mechanisms for surge avoidance in multi-stage centrifugal compressors
EP4116588A1 (en) * 2021-07-06 2023-01-11 Sulzer Management AG Multistage centrifugal pump with a recirculation path

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227900A (ja) * 1988-03-08 1989-09-12 Hitachi Ltd 遠心圧縮機のサージング防止方法及び同装置
JPH0254400U (ja) * 1988-10-12 1990-04-19
JPH04121496U (ja) * 1991-04-19 1992-10-29 三菱重工業株式会社 圧縮機
JPH07127600A (ja) * 1993-11-08 1995-05-16 Hitachi Ltd 遠心式圧縮機
JPH10169593A (ja) * 1996-12-13 1998-06-23 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
US20080118341A1 (en) * 2006-11-16 2008-05-22 Honeywell International Inc. Wide flow compressor with diffuser bypass
JP2009281155A (ja) * 2008-05-19 2009-12-03 Mitsubishi Heavy Ind Ltd 遷音速二段遠心圧縮機
JP2012072775A (ja) * 2006-07-13 2012-04-12 Mitsubishi Heavy Ind Ltd 圧縮機およびその運転制御方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2305226A (en) * 1940-01-05 1942-12-15 Edward A Stalker Blower
JP2003293994A (ja) * 2002-04-02 2003-10-15 Mitsubishi Heavy Ind Ltd 遠心圧縮機及び遠心圧縮機の運転方法
US7553122B2 (en) * 2005-12-22 2009-06-30 General Electric Company Self-aspirated flow control system for centrifugal compressors
CN100575710C (zh) * 2008-11-25 2009-12-30 广州华纸节能科技有限公司 一种多级透平真空机及应用其抽取多级真空的方法
JP2010185361A (ja) * 2009-02-12 2010-08-26 Mitsubishi Heavy Ind Ltd 遠心圧縮機
FR2989434B1 (fr) * 2012-04-11 2015-12-18 Thermodyn Diaphragme avec controle passif de debit pour etage de compression

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227900A (ja) * 1988-03-08 1989-09-12 Hitachi Ltd 遠心圧縮機のサージング防止方法及び同装置
JP2637144B2 (ja) 1988-03-08 1997-08-06 株式会社日立製作所 遠心圧縮機のサージング防止方法及び同装置
JPH0254400U (ja) * 1988-10-12 1990-04-19
JPH04121496U (ja) * 1991-04-19 1992-10-29 三菱重工業株式会社 圧縮機
JPH07127600A (ja) * 1993-11-08 1995-05-16 Hitachi Ltd 遠心式圧縮機
JPH10169593A (ja) * 1996-12-13 1998-06-23 Ishikawajima Harima Heavy Ind Co Ltd 遠心圧縮機
JP2012072775A (ja) * 2006-07-13 2012-04-12 Mitsubishi Heavy Ind Ltd 圧縮機およびその運転制御方法
US20080118341A1 (en) * 2006-11-16 2008-05-22 Honeywell International Inc. Wide flow compressor with diffuser bypass
JP2009281155A (ja) * 2008-05-19 2009-12-03 Mitsubishi Heavy Ind Ltd 遷音速二段遠心圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3104018A4 *

Also Published As

Publication number Publication date
JP2015148165A (ja) 2015-08-20
EP3104018A1 (en) 2016-12-14
US20160327050A1 (en) 2016-11-10
CN105899814A (zh) 2016-08-24
EP3104018A4 (en) 2017-09-20
JP6133801B2 (ja) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2015119140A1 (ja) ダイアフラム、および遠心回転機械
US10400788B2 (en) Intermediate intake-type diaphragm and centrifugal rotating machine
US10119546B2 (en) Rotary machine
JP2016539311A (ja) 拡張された範囲及び容量制御機能を備えた2段遠心圧縮機
KR101743376B1 (ko) 원심 압축기
JP2016031064A (ja) 多段ポンプ
JP2016061240A (ja) 遠心圧縮機
EP3421814B1 (en) Centrifugal compressor
WO2017094287A1 (ja) 遠心圧縮機
EP2955387A1 (en) Centrifugal compressor
JP2016180400A (ja) 遠心圧縮機
WO2017094064A1 (ja) 多段遠心圧縮機
WO2015041174A1 (ja) 回転機械
WO2018074591A1 (ja) インペラ及び回転機械
JP2006200489A (ja) 遠心形流体機械およびその吸込ケーシング
JP2014173499A (ja) 遠心圧縮機及びこれを備えた冷凍装置
JP2015113714A (ja) 回転機械用組立体、及び遠心回転機械
KR20160063511A (ko) 사류펌프
JP2022120669A (ja) モータポンプ及びモータポンプの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15746259

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015746259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015746259

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15108488

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE