WO2015118636A1 - 放電装置 - Google Patents

放電装置 Download PDF

Info

Publication number
WO2015118636A1
WO2015118636A1 PCT/JP2014/052736 JP2014052736W WO2015118636A1 WO 2015118636 A1 WO2015118636 A1 WO 2015118636A1 JP 2014052736 W JP2014052736 W JP 2014052736W WO 2015118636 A1 WO2015118636 A1 WO 2015118636A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
switch element
storage element
switch
energy
Prior art date
Application number
PCT/JP2014/052736
Other languages
English (en)
French (fr)
Inventor
徹 醍醐
伸浩 木原
蔵本 祐司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112014006339.8T priority Critical patent/DE112014006339B4/de
Priority to PCT/JP2014/052736 priority patent/WO2015118636A1/ja
Priority to JP2015561097A priority patent/JP6184530B2/ja
Priority to CN201480074987.XA priority patent/CN105981275B/zh
Priority to US15/107,619 priority patent/US10056774B2/en
Publication of WO2015118636A1 publication Critical patent/WO2015118636A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers

Definitions

  • the present invention relates to a discharge device for a storage element connected in parallel to a switch element that is driven in response to a control signal.
  • the inverter that controls the motor controls the driving of the motor by switching the current supply path flowing from the power source to each coil of the motor by controlling the switching device.
  • a transformer etc. controls the switching apparatus, adjusts the electric current supply amount from a power supply to a reactor (coil), transforms the voltage which generate
  • a first switch element and a second switch element are connected in series, and a connection point between the first switch element and the second switch element is an output unit. Is connected to the reactor. And in order to smooth a power supply fluctuation
  • the prior art has the following problems.
  • the energy fluctuation increases, so that the power supply fluctuation also increases.
  • a power storage element having a capacity capable of receiving the energy fluctuation is required. Therefore, the larger the current passed through the switch element, the larger the capacity of the power storage element for smoothing power supply fluctuations, and the higher the energy charged in the power storage element.
  • the discharge resistor is energized only when the switch element is ON. For this reason, in order to suppress the heat generation amount of the discharge resistor, it is also possible to reduce the heat generation amount by controlling the ON / OFF of the switch element connected in series with the discharge resistor and limiting the amount of current flowing to the discharge resistor. Is possible. However, since the electric power is the sum of the resistance and the square of the current, the discharge resistor generates heat in proportion to the square of the current.
  • an inverter is used in a state where energy is charged in a power storage element during normal operation for driving a motor. For this reason, the electric storage element is discharged except for the normal operation such as when the motor is stopped and the inverter is disconnected from the main power source. For this reason, in an inverter that performs low-speed control of a motor, an expensive high-performance control IC is used only for discharging a storage element, although it can be sufficiently controlled by an inexpensive and low-speed control IC in normal operation. Will have to be used.
  • the present invention has been made in order to solve the above-described problems, and has a relatively high performance even when a large amount of current is passed through the switch element and a large amount of energy is accumulated in the storage element for smoothing power supply fluctuations.
  • An object of the present invention is to obtain a discharge device capable of discharging energy stored in a power storage element by ON / OFF control of a relatively low speed switch element that can be handled by a low control IC.
  • the discharge device includes a switching unit including a first switch element and a second switch element connected in series, and the first switch element and the second switch element connected in series.
  • a first power storage element connected in parallel to both ends of the switching unit and charged with energy; a second power storage element connected in parallel to both ends of the second switch element that is part of the switching unit;
  • a control unit that performs ON / OFF control of the first switch element and the second switch element, and discharges the energy charged in the first power storage element, the control unit including the first power storage element A part of the energy charged in the element is charged and discharged at least once by the second power storage element, and the energy charged in the first power storage element is supplied to the first switch element and the second switch element. Zureka one or to be discharged while consumed in all, in which the first switching element and the second switching element to ON / OFF control.
  • the discharge device of the present invention a part of the energy charged in the first power storage element is charged and discharged at least once by the second power storage element, and the energy charged in the first power storage element is obtained.
  • Adopting a method of performing ON / OFF control of the first switch element and the second switch element so that the discharge is performed while consuming one or all of the first switch element and the second switch element.
  • FIG. 1 is a circuit diagram illustrating an example of a discharge device according to Embodiment 1 of the present invention.
  • the discharge device according to the first embodiment includes a control unit 1, a switching unit 2, a first power storage element 3 and a second power storage element 4 having the same capacity, and a power supply device 5.
  • the switching unit 2 is configured by connecting a first switch element 21 and a second switch element 22 in series.
  • the power supply device 5 is configured by connecting a switch element 51 and a power supply 52 in series.
  • the first storage element 3 includes a switching unit 2 configured by connecting a first switch element 21 and a second switch element 22 in series, a switch element 51 and a power supply 52 connected in series.
  • the power supply devices 5 thus configured are connected in parallel.
  • the second power storage element 4 is connected in parallel to the second switch element 22.
  • the first power storage element 3 is in a state where energy is charged by the power supply device 5 and is disconnected from the plus terminal of the power supply 52 by the switch element 51.
  • the 2nd electrical storage element 4 is an energy empty state.
  • the switching unit 2 receives the control signal from the control unit 1, and the first switch element 21 is in the OFF state and the second switch element 22 is in the ON state.
  • the discharge apparatus executes the discharge process from the preconditions according to the following procedure 1 to procedure 3.
  • Procedure 1 the switching unit 2 receives a control signal from the control unit 1 and switches the first switch element 21 from the OFF state to the ON state, and the second switch element 22 from the ON state to the OFF state.
  • the first power storage element 3 and the second power storage element 4 are connected in series via the first switch element 21.
  • the energy charged in the first power storage element 3 is the second power storage element corresponding to the free capacity of the second power storage element 4. 4 is charged. That is, part of the energy charged in the first power storage element 3 is charged in the second power storage element 4 until the potential difference between the first power storage element 3 and the second power storage element 4 is balanced.
  • the fact that the potential difference is balanced means that the first energy storage element 3 and the second power storage element 4 are charged with the same energy. Will be. Therefore, half of the energy originally charged in the first power storage element 3 remains in the first power storage element 3, and the other half is charged in the second power storage element 4.
  • the heat energy generated by the ON resistance of the first switch element 21 is subtracted from the energy originally charged in the first power storage element 3.
  • the obtained value is divided into the first power storage element 3 and the second power storage element 4. That is, the sum of the energy charged in the first power storage element 3 and the second power storage element 4 is smaller than the energy originally charged in the first power storage element 3 before the procedure 1.
  • the switching unit 2 receives the control signal from the control unit 1 and switches the first switch element 21 from the ON state to the OFF state, and the second switch element 22 from the OFF state to the ON state. As a result, the first power storage element 3 and the second power storage element 4 are disconnected, and the second power storage element 4 is short-circuited via the second switch element 22.
  • the energy charged in the second power storage element 4 is discharged. That is, energy smaller than the energy charged in the first power storage element 3 before the procedure 1 is discharged from the second power storage element 4.
  • the switching unit 2 receives the control signal from the control unit 1 and switches the first switch element 21 from the OFF state to the ON state. As a result, the first power storage element 3 and the second power storage element 4 are both short-circuited.
  • the energy charged in the first power storage element 3 is discharged. That is, energy smaller than the energy charged in the first power storage element 3 before the procedure 1 is discharged from the first power storage element 3.
  • the energy charged in the first energy storage device 3 is divided into the energy charged in the second energy storage device 4, and the energy charged in the second energy storage device is divided. Can be discharged.
  • FIG. 2 is a diagram showing a time response waveform of the total loss of the first switch element 21 according to Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the total loss of the first switch element 21.
  • (a), (b), and (e) shown in FIG. 2 respectively show the following contents. Note that (b) and (c) will be described later.
  • FIG. (A) is the total loss of the 1st switch element 21 in this Embodiment 1.
  • FIG. (B) is a case where the energy charged in the first power storage element 3 prior to the procedure 1 is consumed when the first switch element 21 and the second switch element 22 are turned on and the arm is short-circuited.
  • (E) is the maximum allowable loss in the maximum allowable heat generation amount in the first switch element 21.
  • the procedure 1 a part of the energy charged in the first power storage element 3 is charged in the second power storage element 4 so that the voltages of the first power storage element 3 and the second power storage element 4 become uniform. Is done. At this time, the first switch element 21 generates heat due to the loss caused by the current supplied to the first switch element 21 and the ON resistance of the first switch element 21.
  • the first switch element 21 causes a loss of (e) or more and exceeds the maximum allowable heat generation amount, so that the first switch element 21 fails.
  • the first power storage element 3 and the second power storage element 4 are connected in series by the procedure 1, so that the energy of the first power storage element 3 is the first. Since the battery element 2 is discharged, the voltage drops. On the other hand, since the energy of the 1st electrical storage element 3 is charged by the 2nd electrical storage element 4, a voltage rises. Accordingly, the potential difference between the first power storage element 3 and the second power storage element 4 is reduced.
  • the first switch element 21 since the potential difference between the first power storage element 3 and the second power storage element 4 is reduced, the amount of energy transfer between the first power storage element 3 and the second power storage element 4 is reduced.
  • the current supplied to one switch element 21 is also reduced.
  • the first switch element 21 also reduces the loss caused by the current passed through the first switch element 21 and the ON resistance of the first switch element 21, and the total loss becomes (a), and (e) never exceed. For this reason, in the procedure 1, the first switch element 21 does not fail.
  • the energy discharged from the second power storage element 4 in the procedure 2 is smaller than the energy charged in the first power storage element 3 before the procedure 1. For this reason, the total loss of the second switch element 22 does not exceed (e), and the second switch element 22 does not fail.
  • the energy discharged in the procedure 3 is smaller than the energy charged in the first power storage element 3 before the procedure 1. Therefore, the total loss of the first switch element 21 and the second switch element 22 does not exceed (e), and the first switch element 21 and the second switch element 22 do not fail. .
  • FIG. 3 is a diagram showing a time response waveform of the control signal of the switching unit 2 and the temperature of the first switch element 21 according to Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the temperature of the first switch element 21.
  • (f) to (j) shown in FIG. 3 indicate the following contents, respectively.
  • (F) shows the time change of the ON / OFF state of the control signal from the control unit 1 input to the first switch element 21.
  • FIG. (G) shows the time change of the ON / OFF state of the control signal from the control unit 1 input to the second switch element 22.
  • this control signal (g) is ON, the second switch element 22 is in an ON state, and when the control signal (g) is OFF, the second switch element 22 is OFF.
  • (H) indicates the temperature of the first switch element 21.
  • (I) indicates the maximum rated temperature of the first switch element 21.
  • (J) shows the time for the first switch element 21 to reach the temperature at the maximum total loss.
  • the first switch element 21 When the control signal (f) is ON in the procedure 1, the first switch element 21 is ON. For this reason, the energy charged in the first power storage element 3 is charged in the second power storage element 4. At this time, the energy transfer from the first power storage element 3 to the second power storage element 4 ends when the potential of the first power storage element 3 and the potential of the second power storage element 4 are balanced. For this reason, even if the first switch element 21 continues to be in the ON state beyond the time (j), energy transfer does not occur.
  • step 2 when the control signal (g) is ON, the energy of the second power storage element 4 is discharged, and in step 3, the temperature of the first switch element 21 rises again. However, the energy discharged in the procedure 3 is smaller than the energy charged in the first power storage element 3 before the procedure 1. For this reason, the temperature of the first switch element 21 does not exceed the maximum rated temperature (i) even in the procedure 3.
  • the first switch element 21 can prevent a failure due to heat generated by the current supplied to the first switch element 21 and the ON resistance of the first switch element 21. That is, the control signal (f) may be turned ON for a time longer than the time when the second power storage element 4 is charged with energy (that is, a time longer than the time (j) in FIG. 3).
  • the control unit 1 performs the switching according to the procedures 1 to 3.
  • the following effects can be obtained.
  • (Effect 1) In the procedure 1 in which only the first switch element 21 is turned on, if the voltage of the first power storage element 3 and the voltage of the second power storage element 4 are balanced, Even if the ON state of the switch element 21 is continued, energy transfer from the first power storage element 3 to the second power storage element 4 is not performed.
  • the time from the start of procedure 1 to the transition to procedure 2 may be set as a value equal to or greater than the time (j) shown in FIG. 3, and the setting freedom increases. This eliminates the need for high-speed processing of the switching timing from the procedure 1 to the procedure 2 using the high-performance control IC.
  • the present invention is not limited to such a premise. If the energy of the second power storage element 4 remains, the energy of the second power storage element 4 is emptied by turning on the second switch element 22 before executing the procedure 1. Can do.
  • the energy amount of the first power storage element 3 is small, even if the first switch element 21 is turned on in a state where the energy of the second power storage element 4 remains, the energy is higher than when the arm is short-circuited. The movement is small. Therefore, if the energy amount of the first power storage element 3 is small, even if the energy of the second power storage element 4 remains, even if the control according to the above-described procedure 1 to procedure 3 is performed. no problem.
  • the capacity of the second power storage element 4 may be smaller than the capacity of the first power storage element 3. Specific examples thereof will be described below.
  • (c) shows that the capacity of the second power storage element 4 is smaller than the capacity of the first power storage element 3, and the amount of energy charged is the second power storage element 4 than that of the first power storage element 3. This is the total loss of the first switch element 21 when is smaller. As can be seen from FIG. 2, since (c) does not exceed (e), the first switch element 21 does not cause a failure.
  • the second power storage element 4 when the capacity of the second power storage element 4 is smaller than the capacity of the first power storage element 3, the second power storage element 4 has more energy than the first power storage element 3. The amount of charge is small. For this reason, a part of the energy charged in the first power storage element 3 is transferred to the second power until the potential difference between the first power storage element 3 and the second power storage element 4 is balanced in one process of the procedure 1.
  • the procedure 1 and the procedure 2 need to be performed a plurality of times.
  • the state of the switching unit 2 and the charged state of energy of the second power storage element 4 at the time point when the procedure 2 is completed are the same as those before the procedure 1. For this reason, the procedure 1 and the procedure 2 can be repeated a plurality of times, and the energy stored in the first power storage element 3 can be discharged while being gradually moved to the second power storage element.
  • the current flowing through the switching unit 2 is large, the energy stored in the first power storage element 3 for smoothing the power supply fluctuation is large, and the capacity of the second power storage element 3 is the first power storage. Even when the capacity is smaller than the capacity of the element 3, by repeating the procedure 1 and the procedure 2, the first switch element 21 and the second switch element 22 exceed the maximum allowable heat generation amount, resulting in a failure. This can be prevented. That is, as in the case where the capacities of the first power storage element 3 and the second power storage element 4 are the same, a relatively low-speed switch element that is controlled by an IC having a relatively low performance without using a discharge resistor is provided. The applied discharge device can be realized.
  • the present invention can be configured to connect the discharge resistor in series with the second power storage element 4. Specific examples thereof will be described below.
  • FIG. 4 is a circuit diagram for explaining another example of the discharge device according to Embodiment 1 of the present invention.
  • the configuration shown in FIG. 4 differs from the configuration shown in FIG. 1 in that it further includes a discharge resistor 6 connected in series to the second power storage element 4.
  • a series circuit composed of the second power storage element 4 and the discharge resistor 6 is connected in parallel to the second switch element 22. Therefore, the following description will be focused on the function of the discharge resistor 6, which is a difference.
  • FIG. 5 is a diagram showing a time response waveform of the energization current of the first switch element 21 according to Embodiment 1 of the present invention.
  • the horizontal axis represents time
  • the vertical axis represents the energization current of the first switch element 21.
  • (k) and (l) shown in FIG. 5 indicate the following contents, respectively. Note that (m) will be described later in a second embodiment.
  • (K) shows the energization current of the first switch element 21 in the configuration of FIG. 2 of the first embodiment (that is, when the discharge resistor 6 is not provided).
  • (L) shows the energization current of the first switch element 21 in the configuration of FIG. 2 of the first embodiment (that is, when the discharge resistor 6 is provided). It can be seen that the current at the start of discharge (inrush current) is smaller in (l) than in (k).
  • FIG. 5 the energization current of the first switch element 21 in the case where the first power storage element is charged to the second power storage element 4 through the first switch element 21 and the discharge resistor 6 is shown.
  • the same effect by the discharge resistor 6 can be obtained with respect to the energizing current of the second switch element 22 when passing through the discharge resistor 6 and the second switch element 22 from the second power storage element 4.
  • the energy received by the switching unit 2 by using the discharge resistor 6 is obtained by subtracting the loss due to the heat energy generated by the heat generation of the discharge resistor 6 from the total energy in the configuration of FIG. It becomes energy. Therefore, the switching unit 2 in the configuration of FIG. 4 can use a switching element having a lower current resistance than that of the configuration of FIG.
  • the discharge resistor 6 is connected in parallel with the first power storage element 3, and the energy charged in the first power storage element 3 is discharged through the discharge resistor 6.
  • the discharge resistor 6 is connected in parallel with the second power storage element 4, and the energy charged in the second power storage element 4 is passed through the discharge resistor 6. Is discharged.
  • the energy charged in the electricity storage element 4 is smaller than the energy charged in the first electricity storage element 3. For this reason, compared with the case where the discharge resistance 6 is connected in parallel with the 1st electrical storage element 3 like patent document 1, the discharge resistance 6 in the structure of FIG. 4 can reduce a radiator. .
  • the circuit configuration in which the discharge resistor 6 is connected in series with the second power storage element 4 as shown in FIG. 4 is a snubber circuit. For this reason, there is also an effect of reducing the switching noise of the second switch element 22 during the normal switching operation.
  • the current flowing through the switching unit 2 is large, the energy accumulated in the first power storage element 3 for smoothing the power supply fluctuation is large, and the discharge resistor 6 is connected in series with the second power storage element 4. Even in the case of the connected configuration, it is possible to prevent the first switch element 21 and the second switch element 22 from failing due to exceeding the maximum allowable heat generation amount by performing the steps 1 to 3. it can. Furthermore, by providing the discharge resistor 6, the inrush current to the first switch element 21 can be reduced, and the radiator of the discharge resistor 6 can be downsized.
  • the inrush current is a steep current change.
  • the inductive element has an effect of suppressing a steep change in current. Therefore, even when an inductive element is used in place of the discharge resistor 6, the inrush current to the first switch element 21 can be made smaller than (k) in FIG. Similarly, for the energization current of the second switch element 22, the same effect as when the discharge resistor 6 is used can be obtained by using the inductive element.
  • the energy of the inductive element is lost when the second power storage element 4 is charged / discharged due to the loss due to the iron loss and the copper loss when the inrush current is generated, as in the case of using the discharge resistor 6.
  • the energy received by the switching unit 2 is energy obtained by subtracting the iron loss and the copper loss due to the inductive element from the total energy in the configuration of FIG. 1 not using the inductive element. Therefore, the switching unit 2 in the configuration using the inductive element connected in series to the second power storage device 4 can use a switch element having a lower current resistance than the configuration of FIG.
  • a configuration in which a series circuit in which both the discharge resistor and the induction element are connected in series to the second storage element 4 may be connected in parallel to the second switch element 22 may be employed. Since the configuration using both the discharge resistor and the inductive element connected in series is in a state where the copper loss of the inductive element is increased, the same effect as when only the inductive element is used can be obtained.
  • FIG. 6 is a circuit diagram illustrating an example of a discharge device according to Embodiment 2 of the present invention.
  • the configuration shown in FIG. 6 in the second embodiment is different from the configuration shown in FIG. 1 in the first embodiment in that a voltage detection unit 7 is further provided. Therefore, the following description will be focused on the operation of the voltage detector 7 which is a difference.
  • the voltage detection unit 7 includes voltage dividing resistors 71 to 74 and switch elements 75 and 76.
  • the voltage dividing resistors 71 and 72 are connected between the power storage element 3 and the switch element 75, and the control unit 1 reads the voltage divided by the voltage dividing resistors 71 and 72, thereby reducing the voltage of the power storage element 3. To detect.
  • the voltage dividing resistors 73 and 74 are connected between the power storage element 4 and the switch element 76, and the control unit 1 reads the voltage divided by the voltage dividing resistors 73 and 74, thereby Detect voltage. And the control part 1 becomes a structure in which switching control of the switch elements 75 and 76 is possible.
  • the first power storage element 3 is in a state where energy is charged by the power supply device 5 and is disconnected from the plus terminal of the power supply 52 by the switch element 51.
  • the voltage of the second power storage element 4 is an arbitrary voltage lower than the voltage of the first power storage element 3, and the energy charged in the second power storage element 4 is the first power storage element 3.
  • the state is smaller than the energy charged in the battery.
  • the switching unit 2 receives the control signal from the control unit 1, the first switch element 21 is in the OFF state, and the second switch element 22 is in the OFF state.
  • the discharge apparatus performs the discharge process from the preconditions according to the following procedure 1 to procedure 3.
  • the voltage detection unit 7 receives the control signal from the control unit 1 to turn on the switch elements 75 and 76.
  • the control unit 1 detects the voltage of the first power storage element 3 using the voltage dividing resistors 71 and 72, and detects the voltage of the second power storage element 4 using the voltage dividing resistors 73 and 74.
  • Control unit 1 compares the voltage values of first power storage element 3 and second power storage element 4 based on the voltage detection result.
  • the voltage of the second power storage element 4 is an arbitrary voltage lower than the voltage of the first power storage element 3 as a previous premise.
  • the control unit 1 turns on the switch element 76 and changes the voltage of the second power storage element 4 to the first power storage element 4. Lower than the maximum rated voltage of the electricity storage element 3.
  • the control unit 1 performs the procedure 4.
  • the switching unit 2 receives the control signal from the control unit 1 and switches the first switch element 21 from the OFF state to the ON state, and the second switch element 22 from the ON state to the OFF state. As a result, the first power storage element 3 and the second power storage element 4 are connected in series via the first switch element 21.
  • the voltage of the second power storage element 4 is lower than the maximum rated voltage of the first power storage element 3, and the energy charged in the second power storage element 4 is the first power storage element 3.
  • the state is smaller than the energy charged in the battery. For this reason, the energy charged in the first power storage element 3 is charged in the second power storage element 4 by the potential difference from the second power storage element 4.
  • the fact that there is no potential difference means that the first energy storage element 3 and the second power storage element 4 are charged with the same energy. It will be.
  • the energy of the first switch element 21 since there is a loss due to the ON resistance of the first switch element 21, the energy of the first switch element 21 from the energy corresponding to the potential difference among the energy originally charged in the first power storage element 3. A value obtained by subtracting the heat energy generated by the ON resistance is divided into the first power storage element 3 and the second power storage element 4. That is, the sum of the energy charged in the first power storage element 3 and the second power storage element 4 is smaller than the energy originally charged in the first power storage element 3 before the procedure 1. .
  • the switching unit 2 receives the control signal from the control unit 1 and switches the first switch element 21 from the ON state to the OFF state, and the second switch element 22 from the OFF state to the ON state. As a result, the first power storage element 3 and the second power storage element 4 are disconnected, and the second power storage element 4 is short-circuited via the second switch element 22.
  • the control unit 1 detects the voltage of the first power storage element 3 using the voltage dividing resistors 71 and 72 and detects the voltage of the second power storage element 4 using the voltage dividing resistors 73 and 74. Then, the control unit 1 keeps turning on the second switch element 22 until the voltage of the first power storage element 3 and the voltage of the second power storage element 4 reach an arbitrary potential difference, resulting in an arbitrary potential difference.
  • the second switch element 22 is switched from the ON state to the OFF state. As a result, a part of the energy charged in the second power storage element 4 is discharged. That is, the voltage charged in the second power storage element 4 (that is, a part of the voltage charged in the first power storage element 3) is discharged.
  • the energy charged in the first power storage element 3 is divided into the energy charged in the second power storage element 4, and the second power storage element 4 is charged.
  • the discharged energy can be discharged.
  • the total loss of the first switch element 21 will be described.
  • the voltage of the second power storage element 4 in the second embodiment is changed to an arbitrary voltage lower than the maximum rated voltage of the first power storage element 3. This is the total loss of the first switch element 21 when controlled.
  • the first switch element 21 does not fail.
  • the voltage of the second power storage element 4 in the second embodiment is an arbitrary voltage lower than the voltage of the first power storage element 3.
  • the energizing current of the first switch element 21 in the case of such control is shown. It can be seen that the current (rush current) at the start of discharge is smaller in (m) than in (k).
  • switching unit 2 in the configuration of FIG. 6 can use a switching element having a lower current resistance than the configuration of FIG. 1 in the first embodiment.
  • the voltage detector 7 is provided. Discharge processing based on switching control of the switch elements according to Procedure 1 to Procedure 4 is performed. Accordingly, it is possible to perform ON / OFF control of a relatively low-speed switch element that can be handled by the performance of the IC using an IC having relatively low performance.
  • the inrush current to the first switch element 21 and the second switch element 22 can be reduced, the discharge resistance need not be used, and the first switch element 21 and the second switch element 22 can generate the maximum allowable heat.
  • a discharge circuit that prevents a failure due to exceeding the amount can be realized with an inexpensive configuration.
  • FIG. 7 is a circuit diagram illustrating an example of a discharge device according to Embodiment 3 of the present invention.
  • the configuration shown in FIG. 7 is different from the configuration shown in FIG. 1 in the first embodiment in the configuration of the switching unit 2.
  • reference numeral 2 denotes the switching unit 2 according to the third embodiment. Therefore, the following description will be focused on the configuration and operation of the switching unit 2 which is a difference.
  • the switching unit 2 includes a third switch element 201 and a fourth switch element 202 in addition to the first switch element 21 and the second switch element 22. Two switch elements are connected in series in this order.
  • the second power storage element 4 is connected in parallel to the series circuit of the second switch element 22 and the third switch element 201, and has the same capacity as the first power storage element 3.
  • the first power storage element 3 is in a state where energy is charged by the power supply device 5 and is disconnected from the plus terminal of the power supply 52 by the switch element 51.
  • the 2nd electrical storage element 4 is an energy empty state.
  • the switching unit 2 receives a control signal from the control unit 1, the first switch element 21 is in the OFF state, the second switch element 22 is in the ON state, and the third switch element 201 and the fourth switch element 202 is in an ON state.
  • the multi-level chopper circuit has a configuration disclosed in Patent Document 2. Therefore, the circuit configuration shown in FIG. 7 in the third embodiment can be the same circuit configuration as the multilevel chopper circuit disclosed in Patent Document 2, and no circuit is added to the multilevel chopper circuit. In addition, discharge can be performed.
  • the discharge processing function of the present invention can be provided without adding a circuit to the multilevel chopper circuit. it can.
  • FIG. 8 is a circuit diagram illustrating an example of a discharge device according to Embodiment 4 of the present invention.
  • the configuration shown in FIG. 8 in the fourth embodiment is different from the configuration shown in FIG. 1 in the first embodiment in that the switching unit 2 and the power storage unit 8 (corresponding to the second power storage element) are three. The difference is that it is composed of parallel circuits of stages.
  • reference numeral 2 denotes the switching unit 2 according to the fourth embodiment
  • reference numeral 8 denotes the power storage unit 8 including the third power storage elements 81 to 83 arranged in parallel according to the fourth embodiment. Show.
  • the first switch element 21 and the second switch element 22 are connected in series, the first switch element 23 and the second switch element 24 are connected in series, and the first switch element 21 and the second switch element 24 are connected in series.
  • the switch element 25 and the second switch element 26 are connected in series, and these three series connection circuits are connected in parallel.
  • power storage unit 8 corresponding to the second power storage element in the present fourth embodiment includes three second power storage elements 81 to 83 connected in parallel, and includes three second power storage elements 81 to 83. Each has a capacity of 1/3 that of the first power storage element 3.
  • the second power storage element 81 is connected in parallel to the second switch element 22, the second power storage element 82 is connected in parallel to the second switch element 24, and the second power storage element 83 is The second switch element 26 is connected in parallel.
  • the first power storage element 3 is in a state where energy is charged by the power supply device 5 and is disconnected from the plus terminal of the power supply 52 by the switch element 51.
  • the three second power storage elements 81 to 83 constituting the power storage unit 8 are all in an empty state.
  • the switching unit 2 receives the control signal from the control unit 1, and the first switch elements 21, 23, and 25 are in the OFF state, and the second switch elements 22, 24, and 26 are in the ON state.
  • the discharging apparatus performs the discharging process from the preconditions according to the following procedure 1 to procedure 3.
  • the switching unit 2 receives the control signal from the control unit 1 and changes the first switch elements 21, 23, 25 from the OFF state to the ON state, and the second switch elements 22, 24, 26. Is switched from the ON state to the OFF state.
  • the power storage unit 8 configured by connecting the first power storage element 3 and the three second power storage elements 81 to 83 in parallel is connected in series via the first switch elements 21, 23, and 25. Is done.
  • the energy charged in the first power storage element 3 is equivalent to the free capacity of the power storage unit 8. 8 is charged. That is, a part of the energy charged in the first power storage element 3 is charged in the power storage unit 8 so that the energy of the first power storage element 3 and the power storage unit 8 becomes uniform. At this time, the energy charged in the first power storage element 3 and the power storage unit 8 is smaller than the energy charged in the first power storage element 3 before the procedure 1.
  • the switching unit 2 receives the control signal from the control unit 1 and changes the first switch elements 21, 23, 25 from the ON state to the OFF state, and the second switch elements 22, 24 and 26 are switched from the OFF state to the ON state.
  • the first power storage element 3 and the power storage unit 8 are disconnected, and the power storage unit 8 is short-circuited via the second switch elements 22, 24, and 26.
  • the energy charged in the power storage unit 8 is discharged. That is, energy smaller than the energy charged in the first power storage element 3 before the procedure 1 is discharged from the power storage unit 8.
  • the switching unit 2 receives the control signal from the control unit 1 and switches the first switch elements 21, 23, and 25 from the OFF state to the ON state. As a result, first power storage element 3 and power storage unit 8 are both short-circuited.
  • the energy charged in the first power storage element 3 is discharged. That is, energy smaller than the energy charged in the first power storage element 3 before the procedure 1 is discharged from the first power storage element 3.
  • the energy charged in the first power storage element 3 is divided into the energy charged in the power storage unit 8, and the power storage unit 8 is charged. Energy can be discharged.
  • the energy transferred from first power storage element 3 to power storage unit 8 in the fourth embodiment is the same as the energy transferred from first power storage element 3 to second power storage element 4 in the first embodiment.
  • the capacity of each of second power storage elements 81 to 83 may be 1/3 of the capacity of second power storage element 4 in the first embodiment.
  • the switching unit 2 in the fourth embodiment has an inverter circuit configuration. For this reason, discharge can be performed by adopting a configuration in which the second power storage element 4 shown in FIG. 8 in the eighth embodiment is connected to an inverter circuit.
  • the same circuit configuration is arranged in parallel in the configuration of the switching unit 2 and the power storage unit 8 in the eighth embodiment. For this reason, even if one circuit fails, the remaining circuits can be discharged.
  • the switching unit 2 when the current flowing through the switching unit 2 is large and the energy stored in the first power storage element for smoothing the power supply fluctuation is large, the switching unit and the second In the above-described configuration in which three circuits composed of power storage elements are arranged in parallel, discharge processing based on switching control of the switch elements according to Procedure 1 to Procedure 3 is performed. Accordingly, it is possible to perform ON / OFF control of a relatively low-speed switch element that can be handled by the performance of the IC using an IC having relatively low performance.
  • the circuit configuration in the fourth embodiment is a configuration in which a power storage unit in which three second power storage elements are arranged in parallel is added to the inverter circuit, and even if one circuit fails, the remaining circuit can be discharged. A discharge device can be obtained.
  • Embodiments 1 to 4 can freely combine Embodiments 1 to 4 within the scope of the invention, or can appropriately modify and omit each embodiment.

Abstract

 直列に接続された第1のスイッチ素子と第2のスイッチ素子で構成されるスイッチング部と、スイッチング部の両端に並列に接続された第1の蓄電素子と、第2のスイッチ素子の両端に並列に接続された第2の蓄電素子と、第1の蓄電素子に充電されたエネルギーの一部を第2の蓄電素子によって少なくとも1回は充電、放電させ、第1の蓄電素子に充電されたエネルギーを第1のスイッチ素子、第2のスイッチ素子のいずれか1つまたは全てで消費させながら放電させるように、第1のスイッチ素子および第2のスイッチ素子をON/OFF制御する制御部とを備える。

Description

放電装置
 本発明は、制御信号を受けて駆動するスイッチ素子に並列に接続された蓄電素子の放電装置に関する。
 モータを制御するインバータなどは、スイッチング装置を制御することで、電源からモータの各コイルへ流す電流供給経路を切り替え、モータの駆動制御を行っている。また、変圧機などは、スイッチング装置を制御することで、電源からリアクトル(コイル)への電流供給量を調整し、電源で発生する電圧を任意の電圧に変圧して出力する。
 スイッチング装置の具体的な構成としては、第1のスイッチ素子と第2のスイッチ素子が直列に接続されて構成されるとともに、第1のスイッチ素子と第2のスイッチ素子の接続点が、出力部として、リアクトルに接続されているものがある。そして、直列に接続された第1のスイッチ素子と第2のスイッチ素子に対して、電源変動を平滑するために、蓄電素子が並列に接続されており、スイッチング装置を制御することで、モータの駆動制御や電流供給が行われる。なお、蓄電が必要ないときに蓄電素子に充電されたエネルギーを放電させるためには、放電装置が必要となる。
 この種の放電装置として、蓄電素子に放電抵抗を接続する方法が取られている。しかしながら、放電抵抗への常時通電により、抵抗器の発熱,およびインバータ効率の低下を招くことになる。そこで、放電抵抗と直列にスイッチ素子などを接続し、放電が必要な場合にのみ出力される放電信号により、スイッチ素子を導通させて、放電を開始する方法が取られている。また、放電信号を出力するか否かの判定については、微分回路によりコンデンサ両端電圧の変化を検知する方法が提案されている(例えば、特許文献1参照)。
特開2006-042459号公報 国際公開第2011/016199号パンフレット
 しかしながら、従来技術には、以下のような課題がある。
 まず始めに、スイッチ素子に通電する電流と、電源変動を平滑するための蓄電素子との関係について説明する。スイッチ素子に通電する電流が大きいほどエネルギー変動が大きくなるため、電源変動も大きくなる。エネルギー変動を電源に伝達させないためには、エネルギー変動を受けきれる容量を備えた蓄電素子が必要となる。従って、スイッチ素子に通電する電流が大きいほど、電源変動を平滑するための蓄電素子の容量は大きくなり、蓄電素子に充電されるエネルギーも大きくなる。
 特許文献1に示す放電装置においては、蓄電素子に充電されたエネルギーが大きい場合、放電時に放電抵抗へ大電流が通電され、放電抵抗の発熱量も大きくなる。この結果、放電抵抗の発熱により、放電抵抗自体の温度や放電装置のケース内の温度が上昇し、放電抵抗を含めた放電装置を構成する部品の最大許容温度を超えてしまうという問題が生じる。さらに、放電抵抗が発する熱を放熱する放熱器の大型化が必要となるという問題も生じる。
 放電抵抗は、スイッチ素子がONの時間のときのみ電流が通電される。このため、放電抵抗の発熱量を抑えるには、放電抵抗と直列に接続されるスイッチ素子のON/OFFを制御し、放電抵抗へ通電する電流量を制限することで、発熱量を減らすことも可能である。しかしながら、電力は、抵抗と、電流の二乗との積算であるため、電流の二乗に比例して、放電抵抗が発熱する。
 このため、電流が大きい場合には、短時間の通電でも放電抵抗が高温となる。高温とならないようにするためには、蓄電素子に充電されたエネルギーに応じて、放電抵抗と直列に接続されるスイッチ素子を、高速にON/OFF制御する必要がある。この結果、スイッチ素子の高速制御を実現させるために、高価な高性能制御ICを使用する必要があり、コストが高くなるという課題がある。
 例えば、インバータは、モータを駆動させる通常動作時には、蓄電素子にエネルギーを充電した状態で使用する。そのため、蓄電素子の放電は、モータが停止し、インバータが(蓄電素子が)メイン電源と切り離されたときなどの、通常動作以外に行われる。このため、モータの低速制御を行うインバータにおいては、通常動作においては、安価で低速な制御ICで十分に制御できるにもかかわらず、蓄電素子の放電を行うためだけに、高価な高性能制御ICを使用しなければならないこととなる。
 本発明は、前記のような課題を解決するためになされたもので、スイッチ素子に通電する電流が大きく、電源変動を平滑するための蓄電素子に蓄積されるエネルギーが大きい場合でも、比較的性能が低い制御ICで対応可能な比較的低速なスイッチ素子をON/OFF制御することで、蓄電素子に蓄積されたエネルギーを放電させることのできる放電装置を得ることを目的とするものである。
 本発明に係る放電装置は、直列に接続された第1のスイッチ素子と第2のスイッチ素子を含んで構成されるスイッチング部と、第1のスイッチ素子と第2のスイッチ素子が直列接続されたスイッチング部の両端に並列に接続され、エネルギーが充電された第1の蓄電素子と、スイッチング部の一部である第2のスイッチ素子の両端に並列に接続された第2の蓄電素子と、第1のスイッチ素子および第2のスイッチ素子のON/OFF制御を行う制御部とを備え、第1の蓄電素子に充電されたエネルギーを放電する放電装置であって、制御部は、第1の蓄電素子に充電されたエネルギーの一部を第2の蓄電素子によって少なくとも1回は充電、放電させ、第1の蓄電素子に充電されたエネルギーを第1のスイッチ素子、第2のスイッチ素子のいずれか1つまたは全てで消費させながら放電させるように、第1のスイッチ素子および第2のスイッチ素子をON/OFF制御するものである。
 本発明に係る放電装置によれば、第1の蓄電素子に充電されたエネルギーの一部を第2の蓄電素子によって少なくとも1回は充電、放電させ、第1の蓄電素子に充電されたエネルギーを第1のスイッチ素子、第2のスイッチ素子のいずれか1つまたは全てで消費させながら放電させるように、第1のスイッチ素子および第2のスイッチ素子のON/OFF制御を行う方式を採用することで、スイッチ素子に通電する電流が大きく、電源変動を平滑するための蓄電素子に蓄積されるエネルギーが大きい場合でも、比較的性能が低い制御ICで対応可能な比較的低速なスイッチ素子をON/OFF制御することで、蓄電素子に蓄積されたエネルギーを放電させることのできる放電装置を得ることができる。
本発明の実施の形態1に係る放電装置の一例を説明する回路図である。 本発明の実施の形態1に係る第1のスイッチ素子のトータル損失の時間応答波形を示す図である。 本発明の実施の形態1に係るスイッチング部の制御信号、および第1のスイッチ素子の温度の時間応答波形を示す図である。 本発明の実施の形態1に係る放電装置の他の例を説明する回路図である。 本発明の実施の形態1に係る第1のスイッチ素子の通電電流の時間応答波形を示す図である。 本発明の実施の形態2に係る放電装置の一例を説明する回路図である。 本発明の実施の形態3に係る放電装置の一例を説明する回路図である。 本発明の実施の形態4に係る放電装置の一例を説明する回路図である。
 以下、本発明に係る放電装置の好適な実施の形態について、図面を参照して説明する。なお、各図面中、同一又は相当する部分には、同一符号を付している。
 実施の形態1.
 図1は、本発明の実施の形態1に係る放電装置の一例を説明する回路図である。本実施の形態1における放電装置は、制御部1、スイッチング部2、同容量である第1の蓄電素子3と第2の蓄電素子4、および電源装置5により構成されている。ここで、スイッチング部2は、第1のスイッチ素子21と第2のスイッチ素子22が直列接続されて構成されている。また、電源装置5は、スイッチ素子51と電源52が直列接続されて構成されている。
 図1に示すように、第1の蓄電素子3は、第1のスイッチ素子21と第2のスイッチ素子22が直列接続されて構成されたスイッチング部2と、スイッチ素子51と電源52が直列接続されて構成された電源装置5のそれぞれに対して並列接続されている。一方、第2の蓄電素子4は、第2のスイッチ素子22に対して並列接続されている。
 このような回路構成において、次のような状態を前提とする。
・第1の蓄電素子3は、電源装置5により、エネルギーが充電された状態であり、スイッチ素子51により電源52のプラス端子と切り離された状態である。
・第2の蓄電素子4は、エネルギーが空の状態である。
・スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21がOFF状態、第2のスイッチ素子22がON状態である。
 本実施の形態1における放電装置は、このような前提状態から、以下に示す手順1~手順3により、放電処理を実行する。
 (手順1)
 まず、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21をOFF状態からON状態に、第2のスイッチ素子22をON状態からOFF状態に切り換える。この結果、第1の蓄電素子3と第2の蓄電素子4は、第1のスイッチ素子21を介して直列に接続される。
 このとき、第2の蓄電素子4に充電されているエネルギーは空であるため、第1の蓄電素子3に充電されたエネルギーは、第2の蓄電素子4の空き容量分だけ第2の蓄電素子4に充電される。つまり、第1の蓄電素子3と第2の蓄電素子4の電位差が均衡するまで、第1の蓄電素子3に充電されたエネルギーの一部が第2の蓄電素子4に充電される。
 第1の蓄電素子3と第2の蓄電素子4は、同じ容量であるため、電位差が均衡するということは、第1の蓄電素子3と第2の蓄電素子4には、同じエネルギーが充電されることになる。従って、元々、第1の蓄電素子3に充電されていたエネルギーの半分は、第1の蓄電素子3に残存し、残り半分は、第2の蓄電素子4に充電されたことになる。
 実際には、第1のスイッチ素子21のON抵抗による損失があるため、元々、第1の蓄電素子3に充電されていたエネルギーから第1のスイッチ素子21のON抵抗により発熱した熱エネルギーを引いた値が、第1の蓄電素子3と第2の蓄電素子4とに分割される。すなわち、第1の蓄電素子3と第2の蓄電素子4に充電されているエネルギーの総和は、手順1よりも前に元々第1の蓄電素子3に充電されていたエネルギーより小さいこととなる。
(手順2)
 次に、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21をON状態からOFF状態に、第2のスイッチ素子22をOFF状態からON状態に切り換える。この結果、第1の蓄電素子3と第2の蓄電素子4は、切り離され、第2の蓄電素子4は、第2のスイッチ素子22を介して短絡状態となる。
 このとき、第2の蓄電素子4に充電されているエネルギーが放電される。つまり、手順1よりも前の第1の蓄電素子3に充電されていたエネルギーより小さいエネルギーが、第2の蓄電素子4から放電される。
 (手順3)
 次に、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21をOFF状態からON状態に切り換える。この結果、第1の蓄電素子3および第2の蓄電素子4は、ともに短絡状態となる。
 このとき、第1の蓄電素子3に充電されているエネルギーが放電される。つまり、手順1よりも前の第1の蓄電素子3に充電されていたエネルギーより小さいエネルギーが、第1の蓄電素子3から放電される。
 手順1および手順2を繰り返すことで、第1の蓄電素子3に充電されたエネルギーを、第2の蓄電素子4に充電されるエネルギーに分割して、第2の蓄電素子に充電されたエネルギーを放電することができる。
 ここで、第1のスイッチ素子21のトータル損失について説明する。
 図2は、本発明の実施の形態1に係る第1のスイッチ素子21のトータル損失の時間応答波形を示す図である。図2において、横軸は時間、縦軸は第1のスイッチ素子21のトータル損失を示す。また、図2に示した(a)、(b)、(e)は、それぞれ、以下の内容を示している。なお、(b)、(c)については、後述する。
 (a)は、本実施の形態1における第1のスイッチ素子21のトータル損失である。
 (b)は、第1のスイッチ素子21およびの第2のスイッチ素子22がONとなるアーム短絡時において、手順1よりも前の第1の蓄電素子3に充電されていたエネルギーを消費する際の第1のスイッチ素子21のトータル損失である。
 (e)は、第1のスイッチ素子21における最大許容発熱量における最大許容損失である。
 発熱T[℃]は、熱抵抗Rth[Ω]と損失Ploss[W]を用いて、下式(1)で示される。
  T=Rth×Ploss         (1)
 熱抵抗が一定であれば、最大許容発熱量における最大許容損失は、上式(1)から容易に求めることができる。
 手順1において、第1の蓄電素子3と第2の蓄電素子4の電圧が均一にとなるように、第1の蓄電素子3に充電されたエネルギーの一部が第2の蓄電素子4に充電される。このとき、第1のスイッチ素子21は、第1のスイッチ素子21に通電される電流と第1のスイッチ素子21のON抵抗により損失が発生し、発熱する。
 (b)に示したアーム短絡発生時において、第1のスイッチ素子21は、(e)以上の損失が発生し、最大許容発熱量を超えるため、第1のスイッチ素子21が故障に至る。これに対して、本実施の形態1の場合には、手順1により第1の蓄電素子3と第2の蓄電素子4が直列に接続されることで、第1の蓄電素子3のエネルギーが第2の蓄電素子4に放電されるため、電圧が下がる。一方、第2の蓄電素子4には第1の蓄電素子3のエネルギーが充電されるため、電圧が上がる。従って、第1の蓄電素子3と第2の蓄電素子4の電位差が縮小される。
 このようにして、第1の蓄電素子3と第2の蓄電素子4の電位差が縮小されるため、第1の蓄電素子3と第2の蓄電素子4間のエネルギーの移動量は小さくなり、第1のスイッチ素子21に通電される電流も小さくなる。この結果、第1のスイッチ素子21は、第1のスイッチ素子21に通電される電流と第1のスイッチ素子21のON抵抗による損失も縮小し、トータル損失は(a)となり、(e)を超えることはない。このため、手順1において、第1のスイッチ素子21が故障に至ることはない。
 また、手順2において第2の蓄電素子4から放電されるエネルギーは、手順1よりも前の第1の蓄電素子3に充電されていたエネルギーより小さい。このため、第2のスイッチ素子22のトータル損失は、(e)を超えることはなく、第2のスイッチ素子22が故障に至ることはない。
 同様に、手順3において放電されるエネルギーは、手順1よりも前の第1の蓄電素子3に充電されていたエネルギーより小さい。このため、第1のスイッチ素子21および第2のスイッチ素子22のトータル損失は、(e)を超えることはなく、第1のスイッチ素子21および第2のスイッチ素子22が故障に至ることはない。
 次に、スイッチング部2に入力される制御部1から制御信号、および第2の蓄電素子4の充電について説明する。図3は、本発明の実施の形態1に係るスイッチング部2の制御信号、および第1のスイッチ素子21の温度の時間応答波形を示す図である。図3において、横軸は時間、縦軸は第1のスイッチ素子21の温度を示す。また、図3に示した(f)~(j)は、それぞれ、以下の内容を示している。
 (f)は、第1のスイッチ素子21に入力される制御部1からの制御信号のON/OFF状態の時間変化を示している。この制御信号(f)がONのとき、第1のスイッチ素子21はON状態となり、制御信号(f)がOFFのとき、第1のスイッチ素子21はOFF状態となる。
 (g)は、第2のスイッチ素子22に入力される制御部1からの制御信号のON/OFF状態の時間変化を示している。この制御信号(g)がONのとき、第2のスイッチ素子22はON状態となり、制御信号(g)がOFFのとき、第2のスイッチ素子22はOFFとなる。
 (h)は、第1のスイッチ素子21の温度を示している。
 (i)は、第1のスイッチ素子21の最大定格温度を示している。
 (j)は、第1のスイッチ素子21が最大トータル損失における温度に到達する時間を示している。
 手順1において制御信号(f)がONのとき、第1のスイッチ素子21は、ONとなる。このため、第1の蓄電素子3に充電されたエネルギーが第2の蓄電素子4に充電される。このとき、第1の蓄電素子3から第2の蓄電素子4へのエネルギー移動は、第1の蓄電素子3の電位と第2の蓄電素子4の電位が均衡すれば終了する。このため、第1のスイッチ素子21が時間(j)を超えてON状態が継続しても、エネルギー移動は発生しない。
 また、時間(j)を超えれば、エネルギー移動は、発生しないため、時間(j)の時間を超えた以降の制御信号(f)のON期間および、手順2による制御信号(f)のOFFの期間では、温度が低下していく。この結果、第1のスイッチ素子21の温度は、最大定格温度である(i)を超えることはない。
 手順2では、制御信号(g)がONのときに、第2の蓄電素子4のエネルギーが放電され、手順3で再び、第1のスイッチ素子21の温度が上昇する。しかしながら、手順3において放電されるエネルギーは、手順1よりも前に第1の蓄電素子3に充電されていたエネルギーよりも小さい。このため、第1のスイッチ素子21の温度は、手順3においても、最大定格温度である(i)を超えることはない。
 従って、第1のスイッチ素子21は、第1のスイッチ素子21に通電される電流と第1のスイッチ素子21のON抵抗による発熱により故障に至ることを防ぐことができる。つまり、制御信号(f)は、第2の蓄電素子4にエネルギーが充電される以上の時間(すなわち、図3における時間(j)以上の時間)ONしても構わない。
 このように、スイッチング部2に通電する電流が大きく、電源変動を平滑するための第1の蓄電素子3に蓄積されるエネルギーも大きい場合でも、制御部1により、手順1~手順3に従って、スイッチング部2の切り替え制御を行うことで、以下のような効果を得ることができる。
(効果1)第1のスイッチ素子21のみをON状態とする手順1においては、第1の蓄電素子3の電圧と第2の蓄電素子4の電圧が均衡すれば、それ以降の時間、第1のスイッチ素子21のON状態が継続していたとしても、第1の蓄電素子3から第2の蓄電素子4へのエネルギー移動が行われない。この結果、手順1を開始してから手順2に移行するまでの時間は、図3に示した時間(j)以上の値として設定すればよく、設定自由度が増大する。これにより、手順1から手順2への切り替えタイミングを、高性能制御ICを用いて高速処理する必要がなくなる。
(効果2)第1の蓄電素子3に充電されたエネルギーを、手順1により第2の蓄電素子4に分割した後、手順2において第2のスイッチ素子22のみをON状態とすることで、第2の蓄電素子4に蓄積されたエネルギーを放電し、さらに、手順3において第2のスイッチ素子22に加えて第1のスイッチ素子21もON状態とすることで、第1の蓄電素子3に蓄積された残りのエネルギーを放電することができる。この結果、放電抵抗を用いることなく、かつ、比較的性能が低いICを用いて、そのICの性能から対応可能な比較的低速なスイッチ素子のON/OFF制御を行うことで、第1のスイッチ素子21および第2のスイッチ素子22が、最大許容発熱量を超えるために故障に至ってしまうことを防止することができる。
 なお、上述した実施の形態1においては、手順1の前の状態において、第2の蓄電素子4のエネルギーが空であることを前提として説明した。しかしながら、本発明は、このような前提に限定されない。第2の蓄電素子4のエネルギーが残存していた場合には、手順1を実行する前に、第2のスイッチ素子22をONさせることで、第2の蓄電素子4のエネルギーを空にすることができる。
 また、第1の蓄電素子3のエネルギー量が小さければ、第2の蓄電素子4のエネルギーが残存していた状態で、第1のスイッチ素子21をONさせたとしても、アーム短絡時よりもエネルギー移動が小さい。このため、第1の蓄電素子3のエネルギー量が小さければ、第2の蓄電素子4のエネルギーが残存していた状態であっても、上述した手順1~手順3に従った制御を行っても問題ない。
 また、上述した実施の形態1においては、第1の蓄電素子3と第2の蓄電素子4の容量が同容量であることを前提として説明した。しかしながら、本発明は、このような前提に限定されない。第2の蓄電素子4の容量が、第1の蓄電素子3の容量より小さくても構わない。その具体例を、以下に説明する。
 図2において、(c)は、第2の蓄電素子4の容量が、第1の蓄電素子3の容量よりも小さく、エネルギーの充電量が第1の蓄電素子3よりも第2の蓄電素子4の方が小さい場合の、第1のスイッチ素子21のトータル損失である。図2からわかるように、(c)は(e)を超えることはないため、第1のスイッチ素子21は、故障に至ることはない。
 本実施の形態1において、第2の蓄電素子4の容量が、第1の蓄電素子3の容量よりも小さい場合には、第2の蓄電素子4は、第1の蓄電素子3よりもエネルギーの充電量が小さい。このため、手順1の1回の処理で、第1の蓄電素子3と第2の蓄電素子4の電位差が均衡するまで、第1の蓄電素子3に充電されたエネルギーの一部を第2の蓄電素子4に充電することができない場合には、手順1および手順2を複数回行う必要がある。
 手順2が終了した時点におけるスイッチング部2の状態および第2の蓄電素子4のエネルギーの充電状態は、手順1になる前と同様の状態となる。このため、手順1および手順2を複数回繰り返すことができ、第1の蓄電素子3に蓄積されたエネルギーを、徐々に第2の蓄電素子に移動させながら、放電させることができる。
 このように、スイッチング部2に通電する電流が大きく、電源変動を平滑するための第1の蓄電素子3に蓄積されるエネルギーも大きく、かつ、第2の蓄電素子3の容量が第1の蓄電素子3の容量よりもよりも小さい場合においても、手順1、手順2を繰り返すことで、第1のスイッチ素子21および第2のスイッチ素子22が、最大許容発熱量を超えるために故障に至ってしまうことを防止することができる。すなわち、第1の蓄電素子3と第2の蓄電素子4の容量が同じ場合と同様に、放電抵抗を用いることなく、かつ、比較的性能が低いICにより制御される比較的低速なスイッチ素子を適用した放電装置を実現できる。
 さらに、上述した実施の形態1においては、放電抵抗を用いない場合を説明したが、本発明は、第2の蓄電素子4と直列に、放電抵抗を接続する構成とすることも可能である。その具体例を、以下に説明する。
 図4は、本発明の実施の形態1に係る放電装置の他の例を説明する回路図である。図4に示した構成は、先の図1に示した構成と比較すると、第2の蓄電素子4に直列接続された放電抵抗6をさらに備えている点が異なっている。そして、第2の蓄電素子4と放電抵抗6からなる直列回路が、第2のスイッチ素子22に並列に接続されている。そこで、相違点である放電抵抗6の働きを中心に、以下に説明する。
 図5は、本発明の実施の形態1に係る第1のスイッチ素子21の通電電流の時間応答波形を示す図である。図5において、横軸は時間、縦軸は第1のスイッチ素子21の通電電流を示す。また、図5に示した(k)、(l)は、それぞれ、以下の内容を示している。なお、(m)については、実施の形態2で後述する。
 (k)は、本実施の形態1の図2の構成(すなわち、放電抵抗6を有していない場合)における第1のスイッチ素子21の通電電流を示している。
 (l)は、本実施の形態1の図2の構成(すなわち、放電抵抗6を有している場合)における第1のスイッチ素子21の通電電流を示している。
 放電開始時の電流(突入電流)は、(k)よりも(l)の方が小さいことがわかる。
 なお、図5では、第1の蓄電素子から第1のスイッチ素子21および放電抵抗6を通り第2の蓄電素子4へ充電する場合の、第1のスイッチ素子21の通電電流を示したが、第2の蓄電素子4から放電抵抗6および第2のスイッチ素子22を通る場合の、第2のスイッチ素子22の通電電流についても、放電抵抗6による同様の効果が得られる。
 また、放電抵抗6を用いたことにより、スイッチング部2が受けるエネルギーは、放電抵抗6を用いていない図1の構成におけるトータルエネルギーから、放電抵抗6の発熱で発生する熱エネルギーによる損失を引いたエネルギーとなる。従って、図4の構成におけるスイッチング部2は、図1の構成の場合よりも、耐電流の低いスイッチ素子を用いることができる。
 また、特許文献1では、放電抵抗6を第1の蓄電素子3と並列に接続し、第1の蓄電素子3に充電されたエネルギーを放電抵抗6を介して放電していた。これに対して、本実施の形態1における図4の構成では、放電抵抗6を第2の蓄電素子4と並列に接続し、第2の蓄電素子4に充電されたエネルギーを放電抵抗6を介して放電している。
 蓄電素子4に充電されたエネルギーは、第1の蓄電素子3に充電されたエネルギーよりも小さい。このため、特許文献1のように、放電抵抗6を第1の蓄電素子3と並列に接続した場合と比較して、図4の構成における放電抵抗6は、放熱器を小型化することができる。
 また、図4に示したような、放電抵抗6を第2の蓄電素子4と直列に接続した回路構成は、スナバ回路となる。このため、通常のスイッチング動作時に、第2のスイッチ素子22のスイッチングノイズを低減する効果もある。
 このように、スイッチング部2に通電する電流が大きく、電源変動を平滑するための第1の蓄電素子3に蓄積されるエネルギーも大きく、かつ、放電抵抗6を第2の蓄電素子4と直列に接続した構成の場合でも、手順1~手順3を行うことで、第1のスイッチ素子21および第2のスイッチ素子22が、最大許容発熱量を超えるために故障に至ってしまうことを防止することができる。さらに、放電抵抗6を備えることで、第1のスイッチ素子21への突入電流を小さくでき、放電抵抗6の放熱器を小型化することも可能となる。
 なお、突入電流は、急峻な電流の変化である。一方、誘導素子は、電流の急峻な変化を抑える効果がある。そのため、放電抵抗6の代わりに誘導素子を用いた場合でも、第1のスイッチ素子21への突入電流は、先の図5における(k)よりも小さくできる効果がある。同様に、第2のスイッチ素子22の通電電流についても、誘導素子を用いることで、放電抵抗6を用いた場合と同様の効果が得られる。
 また、誘導素子は、突入電流発生時における鉄損、銅損による損失により、放電抵抗6を用いた場合と同様に、第2の蓄電素子4の充放電時にエネルギーが損失する。誘導素子を用いたことにより、スイッチング部2が受けるエネルギーは、誘導素子を用いていない図1の構成におけるトータルエネルギーから、誘導素子による鉄損、銅損の損失を引いたエネルギーとなる。従って、第2の蓄電素子4に直列接続される誘導素子を用いた構成におけるスイッチング部2は、図1の構成の場合よりも、耐電流の低いスイッチ素子を用いることができる。
 さらに、第2の蓄電素子4に対して、放電抵抗と誘導素子の両方を直列に接続した直列回路を、第2のスイッチ素子22と並列に接続する構成としても構わない。直列に接続された放電抵抗と誘導素子の両方を用いる構成は、誘導素子の銅損が増えた状態であるため、誘導素子のみを用いた場合と同様の効果を得ることができる。
 実施の形態2.
 次に、本発明の実施の形態2に係る放電装置について説明する。図6は、本発明の実施の形態2に係る放電装置の一例を説明する回路図である。本実施の形態2における図6に示した構成は、先の実施の形態1における図1に示した構成と比較すると、電圧検出部7をさらに備えている点が異なっている。そこで、相違点である電圧検出部7の働きを中心に、以下に説明する。
 本実施の形態2における電圧検出部7は、分圧抵抗71~74と、スイッチ素子75、76とを備えて構成されている。分圧抵抗71、72は、蓄電素子3とスイッチ素子75との間に接続され、制御部1は、分圧抵抗71、72により分圧された電圧を読み取ることで、蓄電素子3の電圧を検出する。
 一方、分圧抵抗73、74は、蓄電素子4とスイッチ素子76との間に接続され、制御部1は、分圧抵抗73、74により分圧された電圧を読み取ることで、蓄電素子4の電圧を検出する。そして、制御部1は、スイッチ素子75、76の切り換え制御が可能な構成となっている。
 ここで、以下のような状態を前提とする。
・第1の蓄電素子3は、電源装置5により、エネルギーが充電された状態であり、スイッチ素子51により電源52のプラス端子と切り離された状態である。
・また、第2の蓄電素子4の電圧は、第1の蓄電素子3の電圧よりも低い任意の電圧であり、第2の蓄電素子4に充電されているエネルギーは、第1の蓄電素子3に充電されているエネルギーより小さい状態である。
・さらに、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21がOFF状態であり、第2のスイッチ素子22がOFF状態である。
 本実施の形態2における放電装置は、このような前提状態から、以下に示す手順1~手順3により、放電処理を実行する。
 (手順1)
 まず、電圧検出部7は、制御部1から制御信号を受けることで、スイッチ素子75、76をON状態とする。この結果、制御部1は、分圧抵抗71、72を用いて第1の蓄電素子3の電圧を検出し、分圧抵抗73、74を用いて第2の蓄電素子4の電圧を検出する。
 (手順2)
 制御部1は、電圧検出結果に基づいて、第1の蓄電素子3と第2の蓄電素子4の電圧値を比較する。ここで、先の前提として、第2の蓄電素子4の電圧が第1の蓄電素子3の電圧よりも低い任意の電圧であるとした。しかしながら、制御部1は、もしも、蓄電素子4の電圧が蓄電素子3の最大定格電圧であった場合には、スイッチ素子76をON状態とし、第2の蓄電素子4の電圧を、第1の蓄電素子3の最大定格電圧より低くする。また、制御部1は、第2の蓄電素子4の電圧が第1の蓄電素子3の電圧と同じであった場合には、手順4を実施する。
 (手順3)
 スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21をOFF状態からON状態に、第2のスイッチ素子22をON状態からOFF状態に切り換える。この結果、第1の蓄電素子3と第2の蓄電素子4は、第1のスイッチ素子21を介して直列に接続される。
 このとき、第2の蓄電素子4の電圧は、第1の蓄電素子3の最大定格電圧よりも低い状態であり、第2の蓄電素子4に充電されているエネルギーは、第1の蓄電素子3に充電されているエネルギーより小さい状態である。このため、第1の蓄電素子3に充電されたエネルギーは、第2の蓄電素子4との電位差分だけ、第2の蓄電素子4に充電される。
 つまり、第1の蓄電素子3と第2の蓄電素子4の電位差が均衡するまで、第1の蓄電素子3に充電されたエネルギーの一部が、第2の蓄電素子4に充電される。第1の蓄電素子3と第2の蓄電素子4は、同じ容量であるため、電位差がないということは、第1の蓄電素子3と第2の蓄電素子4には、同じエネルギーが充電されることになる。
 従って、元々、第1の蓄電素子3に充電されていたエネルギーの内、電位差分に該当するエネルギーの半分は、第1の蓄電素子3に残存し、残りエネルギーの内、電位差分に該当するエネルギーの半分は、第2の蓄電素子4に充電されたことになる。
 実際には、第1のスイッチ素子21のON抵抗による損失があるため、元々、第1の蓄電素子3に充電されていたエネルギーの内、電位差分に該当するエネルギーから第1のスイッチ素子21のON抵抗により発熱した熱エネルギーを引いた値が、第1の蓄電素子3と第2の蓄電素子4とに分割される。すなわち、第1の蓄電素子3と第2の蓄電素子4に充電されているエネルギーの総和は、手順1よりも前に元々、第1の蓄電素子3に充電されていたエネルギーより小さいこととなる。
 (手順4)
 次に、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21をON状態からOFF状態に、第2のスイッチ素子22をOFF状態からON状態に切り換える。この結果、第1の蓄電素子3と第2の蓄電素子4は、切り離され、第2の蓄電素子4は、第2のスイッチ素子22を介して短絡状態となる。
 このとき、制御部1は、分圧抵抗71、72を用いて第1の蓄電素子3の電圧を検出し、分圧抵抗73、74を用いて第2の蓄電素子4の電圧を検出する。そして、制御部1は、第1の蓄電素子3の電圧と第2の蓄電素子4の電圧とが、任意の電位差になるまで、第2のスイッチ素子22をONし続け、任意の電位差となったときに、第2のスイッチ素子22をON状態からOFF状態にする。この結果、第2の蓄電素子4に充電されているエネルギーの一部が放電される。つまり、第2の蓄電素子4に充電された電圧(すなわち、第1の蓄電素子3に充電されたエネルギーの一部のさらに一部の電圧)が放電される。
 続いて、手順3および手順4を繰り返すことで、第1の蓄電素子3に充電されたエネルギーを、第2の蓄電素子4に充電されるエネルギーに分割して、第2の蓄電素子4に充電されたエネルギーを放電することができる。
 ここで、第1のスイッチ素子21のトータル損失について説明する。
 先の実施の形態1で示した図2における(d)は、本実施の形態2における第2の蓄電素子4の電圧を、第1の蓄電素子3の最大定格電圧よりも低い任意の電圧に制御した場合における、第1のスイッチ素子21のトータル損失である。図2からわかるように、(d)は(e)を超えることはないため、第1のスイッチ素子21は、故障に至ることはない。
 また、先の実施の形態1で示した図5における(m)は、本実施の形態2における第2の蓄電素子4の電圧を第1の蓄電素子3の電圧よりも低い任意の電圧になるように制御した場合における第1のスイッチ素子21の通電電流を示している。放電開始時の電流(突入電流)は、(k)よりも(m)の方が小さいことがわかる。これにより、図6の構成におけるスイッチング部2は、先の実施の形態1における図1の構成の場合よりも、耐電流の低いスイッチ素子を用いることができる。
 このように、スイッチング部2に通電する電流が大きく、電源変動を平滑するための、第1の蓄電素子3に蓄積されるエネルギーも大きい場合において、電圧検出部7を備える構成とした上で、手順1~手順4に従ったスイッチ素子の切り換え制御に基づく放電処理を行っている。これにより、比較的性能が低いICを用いて、そのICの性能で対応可能な比較的低速なスイッチ素子のON/OFF制御を行うことができる。
 この結果、第1のスイッチ素子21および第2のスイッチ素子22への突入電流を小さくでき、放電抵抗を用いる必要なく、かつ、第1のスイッチ素子21および第2のスイッチ素子22が最大許容発熱量を超えるために故障に至ってしまうことを防止する放電回路を、安価な構成で実現できる。
 実施の形態3.
 次に、本実施の形態3では、マルチレベルチョッパ回路に本発明の放電装置を適用する場合について説明する。図7は、本発明の実施の形態3に係る放電装置の一例を説明する回路図である。図7に示した構成は、先の実施の形態1における図1に示した構成と比較すると、スイッチング部2の構成が異なっている。図7において、符号2は実施の形態3に係るスイッチング部2を示している。そこで、相違点であるスイッチング部2の構成・働きを中心に、以下に説明する。
 本実施の形態3におけるスイッチング部2は、第1のスイッチ素子21と第2のスイッチ素子22に加えて、さらに、第3のスイッチ素子201および第4のスイッチ素子202を含んで構成され、4つのスイッチ素子がこの順番で直列接続されている。第2の蓄電素子4は、第2のスイッチ素子22と第3のスイッチ素子201の直列回路に対して並列接続されており、第1の蓄電素子3と同容量である。
  このような回路構成において、次のような状態を前提とする。
・第1の蓄電素子3は、電源装置5により、エネルギーが充電された状態であり、スイッチ素子51により電源52のプラス端子と切り離された状態である。
・第2の蓄電素子4は、エネルギーが空の状態である。
・スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21がOFF状態、第2のスイッチ素子22がON状態であるとともに、第3のスイッチ素子201および第4のスイッチ素子202がON状態である。
 先の実施の形態1と同様の(手順1)~(手順3)を実施すれば、第1の蓄電素子3に充電されたエネルギーを、第2の蓄電素子4に充電されるエネルギーに分割して、放電することができる。
 ここで、マルチレベルチョッパ回路とは、特許文献2に開示された構成を有するものである。従って、本実施の形態3における図7で示した回路構成は、特許文献2に開示されたマルチレベルチョッパ回路と同一の回路構成とすることができ、マルチレベルチョッパ回路に回路を追加することなしに、放電を行うことができる。
 したがって、実施の形態3によれば、本発明による図7に示した回路構成を用いることで、マルチレベルチョッパ回路に対して回路を追加することなく、本願発明の放電処理機能を持たせることができる。
 実施の形態4.
 次に、本発明の実施の形態4に係る放電装置について説明する。図8は、本発明の実施の形態4に係る放電装置の一例を説明する回路図である。本実施の形態4における図8に示した構成は、先の実施の形態1における図1に示した構成と比較すると、スイッチング部2および蓄電部8(第2の蓄電素子に相当)が、3段の並列回路で構成されている点が異なっている。図8において、符号2は、本実施の形態4に係るスイッチング部2を示し、符号8は、本実施の形態4に係る3並列された第2の蓄電素子81~83からなる蓄電部8を示している。
 本実施の形態4におけるスイッチング部2は、第1のスイッチ素子21と第2のスイッチ素子22が直列接続され、第1のスイッチ素子23と第2のスイッチ素子24が直列接続され、第1のスイッチ素子25と第2のスイッチ素子26が直列接続され、これら3つの直列接続回路が並列接続されて構成されている。
 また、本実施の形態4における第2の蓄電素子に相当する蓄電部8は、並列接続された3つの第2の蓄電素子81~83で構成され、3つの第2の蓄電素子81~83のそれぞれは、第1の蓄電素子3の1/3の容量でとなっている。そして、第2の蓄電素子81は、第2のスイッチ素子22に並列に接続され、第2の蓄電素子82は、第2のスイッチ素子24に並列に接続され、第2の蓄電素子83は、第2のスイッチ素子26に並列に接続されている。
 すなわち、本実施の形態4の図8に示した構成は、先の実施の形態1の図1に示した構成におけるスイッチング部2と第2の蓄電素子4とからなる回路部分を、3つ並列接続したものに相当している。
 このような回路構成において、先の実施の形態1と同様に、次のような状態を前提とする。
・第1の蓄電素子3は、電源装置5により、エネルギーが充電された状態であり、スイッチ素子51により電源52のプラス端子と切り離された状態である。
・蓄電部8を構成する3つの第2の蓄電素子81~83は、いずれもエネルギーが空の状態である。
・スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21、23、25がOFF状態、第2のスイッチ素子22、24、26がON状態である。
 本実施の形態4における放電装置は、このような前提状態から、以下に示す手順1~手順3により、放電処理を実行する。
 (手順1)
 実施の形態1と同様に、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21、23、25をOFF状態からON状態に、第2のスイッチ素子22、24、26をON状態からOFF状態に切り換える。この結果、第1の蓄電素子3と、3つの第2の蓄電素子81~83が並列接続されて構成された蓄電部8は、第1のスイッチ素子21、23、25を介して直列に接続される。
 このとき、実施の形態1と同様に、蓄電部8に充電されているエネルギーは空であるため、第1の蓄電素子3に充電されたエネルギーは、蓄電部8の空き容量分だけ、蓄電部8に充電される。つまり、第1の蓄電素子3と蓄電部8のエネルギーが均一にとなるように、第1の蓄電素子3に充電されたエネルギーの一部が蓄電部8に充電される。このとき、第1の蓄電素子3および蓄電部8に充電されているエネルギーは、手順1よりも前に第1の蓄電素子3に充電されていたエネルギーより小さい。
 (手順2)
 次に、実施の形態1と同様に、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21、23、25をON状態からOFF状態に、第2のスイッチ素子22、24、26をOFF状態からON状態に切り換える。この結果、第1の蓄電素子3と蓄電部8は、切り離され、蓄電部8は、第2のスイッチ素子22、24、26を介して短絡状態となる。
 このとき、実施の形態1と同様に、蓄電部8に充電されているエネルギーが放電される。つまり、手順1よりも前の第1の蓄電素子3に充電されていたエネルギーより小さいエネルギーが、蓄電部8から放電される。
 (手順3)
 次に、実施の形態1と同様に、スイッチング部2は、制御部1から制御信号を受け、第1のスイッチ素子21、23、25をOFF状態からON状態に切り換える。この結果、第1の蓄電素子3および蓄電部8は、ともに短絡状態となる。
 このとき、実施の形態1と同様に、第1の蓄電素子3に充電されているエネルギーが放電される。つまり、手順1よりも前の第1の蓄電素子3に充電されていたエネルギーより小さいエネルギーが、第1の蓄電素子3から放電される。
 実施の形態1と同様に、手順1および手順2を繰り返すことで、第1の蓄電素子3に充電されたエネルギーを、蓄電部8に充電されるエネルギーに分割して、蓄電部8に充電されたエネルギーを放電することができる。
 なお、本実施の形態4において第1の蓄電素子3から蓄電部8へ移動させるエネルギーと、先の実施の形態1において第1の蓄電素子3から第2の蓄電素子4へ移動させるエネルギーを同じにする場合には、実施の形態1における第2の蓄電素子4の容量と、本実施の形態4で蓄電部8を構成する3つの第2の蓄電素子81~83の各容量を合計した容量とを、同じにすればよい。したがって、第2の蓄電素子81~83のそれぞれの容量は、先の実施の形態1における第2の蓄電素子4の容量に対し1/3でよい。
 さらに、本実施の形態4におけるスイッチング部2は、インバータの回路構成をしている。このため、本実施の形態8における図8に示した第2の蓄電素子4を、インバータ回路に接続した構成とすることで、放電を行うことができる。
 加えて、本実施の形態8におけるスイッチング部2と蓄電部8による構成は、同じ回路構成が3並列されている。このため、1つの回路が故障した場合でも、残りの回路で放電可能である。
 このように、実施の形態4によれば、スイッチング部2に通電する電流が大きく、電源変動を平滑するための第1の蓄電素子に蓄積されるエネルギーも大きい場合において、スイッチング部と第2の蓄電素子からなる回路を3並列化した構成として上で、手順1~手順3に従ったスイッチ素子の切り換え制御に基づく放電処理を行っている。これにより、比較的性能が低いICを用いて、そのICの性能で対応可能な比較的低速なスイッチ素子のON/OFF制御を行うことができる。
 この結果、第1のスイッチ素子および第2のスイッチ素子への突入電流を小さくでき、放電抵抗を用いる必要なく、かつ、第1のスイッチ素子および第2のスイッチ素子が最大許容発熱量を超えるために故障に至ってしまうことを防止する放電回路を、安価な構成で実現できる。さらに、実施の形態4における回路構成は、第2の蓄電素子を3並列化した蓄電部をインバータ回路に追加した構成となっており、1つの回路が故障した場合でも残りの回路で放電可能な放電装置を得ることができる。
 以上、本発明は、その発明の範囲内において、各実施の形態1~4を自由に組み合わせたり、あるいは各実施の形態を適宜、変形、省略したりすることが可能である。

Claims (8)

  1.  直列に接続された第1のスイッチ素子と第2のスイッチ素子を含んで構成されるスイッチング部と、
     前記第1のスイッチ素子と前記第2のスイッチ素子が直列接続された前記スイッチング部の両端に並列に接続され、エネルギーが充電された第1の蓄電素子と、
     前記スイッチング部の一部である前記第2のスイッチ素子の両端に並列に接続された第2の蓄電素子と、
     前記第1のスイッチ素子および前記第2のスイッチ素子のON/OFF制御を行う制御部と
     を備え、前記第1の蓄電素子に充電されたエネルギーを放電する放電装置であって、
     前記制御部は、前記第1の蓄電素子に充電されたエネルギーの一部を前記第2の蓄電素子によって少なくとも1回は充電、放電させ、前記第1の蓄電素子に充電されたエネルギーを前記第1のスイッチ素子、前記第2のスイッチ素子のいずれか1つまたは全てで消費させながら放電させるように、前記第1のスイッチ素子および前記第2のスイッチ素子をON/OFF制御する
     放電装置。
  2.  請求項1に記載の放電装置において、
     前記第1のスイッチ素子と、前記第2のスイッチ素子と、前記第2のスイッチ素子の両端に並列に接続された第2の蓄電素子とで構成される基本回路を複数並列接続した構成を有し、
     前記制御部は、複数並列接続された前記基本回路のうちの少なくとも1つの回路に含まれる第1のスイッチ素子および第2のスイッチ素子をON/OFF制御することで、前記第1の蓄電素子に充電されたエネルギーの一部を前記ON/OFF制御する前記基本回路に含まれている第2の蓄電素子によって少なくとも1回は充電、放電させ、前記第1の蓄電素子に充電されたエネルギーを前記第1のスイッチ素子、および前記ON/OFF制御する前記基本回路に含まれている第2の蓄電素子のいずれか一部または全部で消費させながら放電させる
     放電装置。
  3.  請求項1または2に記載の放電装置において、
     前記第2の蓄電素子は、前記第1の蓄電素子よりも小さい容量であり、
     前記制御部は、前記第1の蓄電素子に充電されたエネルギーの一部を前記第2の蓄電素子によって充電、放電させる動作を少なくとも2回は繰り返し行う
     放電装置。
  4.  請求項1または2に記載の放電装置において、
     前記制御部は、前記第1の蓄電素子に充電されたエネルギーの一部を前記第2の蓄電素子によって少なくとも1回は充電、放電させる際に、前記第2の蓄電素子の電圧を第1の蓄電素子の電圧よりも低い任意の電圧になるように前記第1のスイッチ素子および前記第2のスイッチ素子をON/OFF制御する
     放電装置。
  5.  請求項1から4のいずれか1項に記載の放電装置において、
     前記第2の蓄電素子に直列に接続された放電抵抗をさらに備え、
     前記第2の蓄電素子と前記放電抵抗からなる直列回路が、前記第2のスイッチ素子の両端に並列に接続されており、
     前記制御部は、前記第1のスイッチ素子および前記第2のスイッチ素子をON/OFF制御することで、前記第1の蓄電素子に充電されたエネルギーを、前記放電抵抗、前記第1のスイッチ素子、前記第2のスイッチ素子のいずれか一部または全部に消費させながら放電させる
     放電装置。
  6.  請求項1から4のいずれか1項に記載の放電装置において、
     前記第2の蓄電素子に直列に接続された誘導素子をさらに備え、
     前記第2の蓄電素子と前記誘導素子からなる直列回路が、前記第2のスイッチ素子の両端に並列に接続されており、
     前記制御部は、前記第1のスイッチ素子および前記第2のスイッチ素子をON/OFF制御することで、前記第1の蓄電素子に充電されたエネルギーを、前記誘導素子、前記第1のスイッチ素子、前記第2のスイッチ素子のいずれか一部または全部に消費させながら放電させる
     放電装置。
  7.  請求項1から4のいずれか1項に記載の放電装置において、
     前記第2の蓄電素子にそれぞれ直列に接続された放電抵抗および誘導素子をさらに備え、
     前記第2の蓄電素子と前記放電抵抗と前記誘導素子からなる直列回路が、前記第2のスイッチ素子の両端に並列に接続されており、
     前記制御部は、前記第1のスイッチ素子および前記第2のスイッチ素子をON/OFF制御することで、前記第1の蓄電素子に充電されたエネルギーを、前記放電抵抗、前記誘導素子、前記第1のスイッチ素子、前記第2のスイッチ素子のいずれか一部または全部に消費させながら放電させる
     放電装置。
  8.  請求項1から4のいずれか1項に記載の放電装置において、
     前記スイッチング部は、第3のスイッチ素子および第4のスイッチ素子をさらに含み、前記第1のスイッチ素子、前記第2のスイッチ素子、前記第3のスイッチ素子、前記第4のスイッチ素子の順に直列接続された構成を有し、
     前記第2の蓄電素子は、前記スイッチング部の一部である前記第2のスイッチ素子と第3のスイッチ素子とで構成される直列回路の両端に並列に接続され、
     前記制御部は、前記第1の蓄電素子に充電されたエネルギーの一部を前記第2の蓄電素子によって少なくとも1回は充電、放電させ、前記第1の蓄電素子に充電されたエネルギーを前記第1のスイッチ素子、前記第2のスイッチ素子、前記第3のスイッチ素子、および前記第4のスイッチ素子のいずれか一部または全部で消費させながら放電させるように、前記第1のスイッチ素子、前記第2のスイッチ素子、前記第3のスイッチ素子、および前記第4のスイッチ素子をON/OFF制御する
     放電装置。
PCT/JP2014/052736 2014-02-06 2014-02-06 放電装置 WO2015118636A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112014006339.8T DE112014006339B4 (de) 2014-02-06 2014-02-06 Entladungsvorrichtung
PCT/JP2014/052736 WO2015118636A1 (ja) 2014-02-06 2014-02-06 放電装置
JP2015561097A JP6184530B2 (ja) 2014-02-06 2014-02-06 放電装置
CN201480074987.XA CN105981275B (zh) 2014-02-06 2014-02-06 放电装置
US15/107,619 US10056774B2 (en) 2014-02-06 2014-02-06 Discharge device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/052736 WO2015118636A1 (ja) 2014-02-06 2014-02-06 放電装置

Publications (1)

Publication Number Publication Date
WO2015118636A1 true WO2015118636A1 (ja) 2015-08-13

Family

ID=53777469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/052736 WO2015118636A1 (ja) 2014-02-06 2014-02-06 放電装置

Country Status (5)

Country Link
US (1) US10056774B2 (ja)
JP (1) JP6184530B2 (ja)
CN (1) CN105981275B (ja)
DE (1) DE112014006339B4 (ja)
WO (1) WO2015118636A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6061983B2 (ja) * 2015-05-19 2017-01-18 三菱電機株式会社 放電装置
JP6575391B2 (ja) * 2016-02-19 2019-09-18 株式会社デンソー 電力変換装置
US11360535B2 (en) * 2019-09-27 2022-06-14 Saft America, Inc. Management of a pre-charge circuit of a battery management system
WO2022022977A1 (de) * 2020-07-30 2022-02-03 BSH Hausgeräte GmbH Haushaltsgerätevorrichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325464A (ja) * 2001-04-26 2002-11-08 Honda Motor Co Ltd 共振形インバータ回路
JP2003319661A (ja) * 2002-02-21 2003-11-07 Fuji Electric Co Ltd 誘導加熱装置の制御方法、回路方式
JP2009512147A (ja) * 2005-10-14 2009-03-19 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー 誘導加熱装置を動作させる方法
JP2010206108A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 半導体装置
JP2011078194A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp 電子回路装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666257A (en) * 1994-10-18 1997-09-09 Yang; Tai-Her DC circuit breaking spark suppressor circuit device
US5517397A (en) * 1994-12-06 1996-05-14 Astec International, Ltd. Flyback power converter with spike compensator circuit
US6075715A (en) * 1997-03-26 2000-06-13 Matsushita Electric Works, Ltd. Power source device
US6349044B1 (en) 1999-09-09 2002-02-19 Virginia Tech Intellectual Properties, Inc. Zero voltage zero current three level dc-dc converter
JP3460973B2 (ja) 1999-12-27 2003-10-27 三菱電機株式会社 電力変換装置
JP3791767B2 (ja) * 2001-03-27 2006-06-28 株式会社デンソー フライングキャパシタ式電圧検出回路
JP3886733B2 (ja) * 2001-04-03 2007-02-28 矢崎総業株式会社 車両用電源装置
DE10137305A1 (de) * 2001-08-01 2003-02-13 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Freischwingende Schaltungsanordnung
JP3615507B2 (ja) * 2001-09-28 2005-02-02 三洋電機株式会社 組電池の充電率調整回路
CA2479981A1 (en) * 2002-03-21 2003-10-02 Martin Honsberg-Riedl Circuit for power factor correction
JP4418318B2 (ja) 2004-07-26 2010-02-17 株式会社日立製作所 電力変換装置及びそれを用いた電気車
US20060092583A1 (en) * 2004-10-01 2006-05-04 Alahmad Mahmoud A Switch array and power management system for batteries and other energy storage elements
US20070118030A1 (en) * 2005-11-22 2007-05-24 Isense Corporation Method and apparatus for analyte data telemetry
DE102008028952A1 (de) 2008-06-18 2009-12-24 Abb Ag AC-DC-Zwischenkreis-Wandler mit sehr weitem AC-Eingangsspannungs-Bereich
DE112010003189T5 (de) 2009-08-05 2012-09-20 Mitsubishi Electric Corporation DC/DC-Leistungsumwandlungsvorrichtung
EP2333635A1 (en) * 2009-12-14 2011-06-15 Mitsubishi Electric R&D Centre Europe B.V. Method for obtaining information enabling the determination of a characteristic of a power source
US20150022928A1 (en) * 2011-12-22 2015-01-22 Siemens Aktiengesellschaft Hybrid dc circuit breaking device
US9178408B2 (en) * 2013-03-14 2015-11-03 Volterra Semiconductor LLC Voltage regulators with load-dependent bias
US9806637B2 (en) 2013-04-30 2017-10-31 Futurewei Technologies, Inc. Soft switching inverter device and method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325464A (ja) * 2001-04-26 2002-11-08 Honda Motor Co Ltd 共振形インバータ回路
JP2003319661A (ja) * 2002-02-21 2003-11-07 Fuji Electric Co Ltd 誘導加熱装置の制御方法、回路方式
JP2009512147A (ja) * 2005-10-14 2009-03-19 エーゲーオー エレクトロ・ゲレーテバウ ゲーエムベーハー 誘導加熱装置を動作させる方法
JP2010206108A (ja) * 2009-03-05 2010-09-16 Nissan Motor Co Ltd 半導体装置
JP2011078194A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp 電子回路装置

Also Published As

Publication number Publication date
US20160329733A1 (en) 2016-11-10
JP6184530B2 (ja) 2017-08-23
DE112014006339B4 (de) 2022-09-15
CN105981275A (zh) 2016-09-28
JPWO2015118636A1 (ja) 2017-03-23
US10056774B2 (en) 2018-08-21
DE112014006339T5 (de) 2016-10-20
CN105981275B (zh) 2018-11-09

Similar Documents

Publication Publication Date Title
JP6417043B2 (ja) 電力変換装置
JP6200457B2 (ja) 初期充電回路の異常発熱を検出する手段を有するモータ駆動装置
JP6730515B2 (ja) 電力変換装置
JP6342063B2 (ja) 電力変換装置
US9444380B2 (en) Power converter and control method for power converter
JP6184530B2 (ja) 放電装置
JP6183460B2 (ja) インバータ装置
JP5556258B2 (ja) 無停電電源装置
JP2016086578A (ja) 放電制御装置、及び、これを備える電力変換装置
JP5000029B1 (ja) 交流モータ駆動装置
WO2017068720A1 (ja) 電力変換装置
CN107302332B (zh) 抑制dc链路电容器的电压变动的电动机驱动装置
US8254150B2 (en) Inverter with commutation circuit
JP2011166954A (ja) 電動機制御装置
JP5814009B2 (ja) インバータ装置の電圧バランス回路
JP4570580B2 (ja) 誘導加熱調理器
JP7377611B2 (ja) 電源装置
WO2016039212A1 (ja) 充電装置
CN117044093A (zh) 冲击电流抑制电路、转换系统以及电动机驱动装置
JP2015216800A (ja) 制御システム
JP6539354B2 (ja) 電力変換装置
JP2012079648A (ja) 電力処理装置
JP6806105B2 (ja) 電動機始動装置
JP4932604B2 (ja) 電圧補償装置
JP6835967B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015561097

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15107619

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112014006339

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14882048

Country of ref document: EP

Kind code of ref document: A1