WO2015115486A1 - シーラントタイヤ - Google Patents
シーラントタイヤ Download PDFInfo
- Publication number
- WO2015115486A1 WO2015115486A1 PCT/JP2015/052367 JP2015052367W WO2015115486A1 WO 2015115486 A1 WO2015115486 A1 WO 2015115486A1 JP 2015052367 W JP2015052367 W JP 2015052367W WO 2015115486 A1 WO2015115486 A1 WO 2015115486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- absorbing material
- sound absorbing
- sealant
- tire
- porous sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
- B60C19/002—Noise damping elements provided in the tyre structure or attached thereto, e.g. in the tyre interior
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C73/00—Repairing of articles made from plastics or substances in a plastic state, e.g. of articles shaped or produced by using techniques covered by this subclass or subclass B29D
- B29C73/16—Auto-repairing or self-sealing arrangements or agents
- B29C73/22—Auto-repairing or self-sealing arrangements or agents the article containing elements including a sealing composition, e.g. powder being liberated when the article is damaged
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0681—Parts of pneumatic tyres; accessories, auxiliary operations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0681—Parts of pneumatic tyres; accessories, auxiliary operations
- B29D30/0685—Incorporating auto-repairing or self-sealing arrangements or agents on or into tyres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
- B60C19/12—Puncture preventing arrangements
- B60C19/122—Puncture preventing arrangements disposed inside of the inner liner
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/013—Fillers, pigments or reinforcing additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/18—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
- C08L23/20—Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
- C08L23/22—Copolymers of isobutene; Butyl rubber; Homopolymers or copolymers of other iso-olefins
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L91/00—Compositions of oils, fats or waxes; Compositions of derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0681—Parts of pneumatic tyres; accessories, auxiliary operations
- B29D2030/0682—Inner liners
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/0681—Parts of pneumatic tyres; accessories, auxiliary operations
- B29D30/0685—Incorporating auto-repairing or self-sealing arrangements or agents on or into tyres
- B29D2030/0686—Incorporating sealants on or into tyres not otherwise provided for; auxiliary operations therefore, e.g. preparation of the tyre
- B29D2030/0694—Incorporating sealants on or into tyres not otherwise provided for; auxiliary operations therefore, e.g. preparation of the tyre the sealant being in the form of one or more narrow strips, e.g. applied by winding into the interior of the tyre
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2011/00—Use of rubber derived from chloroprene as moulding material
Definitions
- the present invention relates to a sealant tire, and more particularly to a sealant tire having a noise reduction performance.
- the cavity resonance of a tire which is a type of road noise of a vehicle, is a resonance of air inside the tire, so it has a narrow frequency band and is very harsh to some vehicles.
- a method of mounting a sound absorbing material inside a tire a method of processing a Helmholtz type sound absorber on a wheel, a method of retrofitting, and the like have been put to practical use.
- a method of mounting a sound absorbing material inside a tire a method of fixing to a tread portion of a tire using an adhesive or fixing using a resin belt has been put to practical use.
- An object of the present invention is to provide a sealant tire excellent in muffling performance and productivity.
- the present invention is a sealant characterized in that it comprises a porous sound absorbing material attached by a sealant layer inside an inner liner, and the sealant layer comprises 1 to 30 parts by weight of an inorganic filler to 100 parts by weight of butyl rubber. It relates to the tire.
- the inorganic filler is preferably at least one selected from the group consisting of carbon black, silica, calcium carbonate, calcium silicate, magnesium oxide, aluminum oxide, barium sulfate, talc, and mica.
- the cross-sectional area of the porous sound absorbing material is preferably 0.4 to 15% with respect to the cross-sectional cavity area of the tire at the time of rim assembly.
- the specific gravity of the porous sound absorbing material is preferably 0.005 to 0.06.
- the porous sound absorbing material is preferably a polyurethane sponge.
- the porous sound absorbing material preferably has a substantially constant width and a substantially constant cross-sectional shape.
- the porous sound absorbing material has a seam.
- the number of seams is one.
- the sponges overlap at the joint.
- the gap length of the joint is preferably 80 mm or less.
- the porous sound absorbing material preferably has two joints, and the ratio of the circumferential length of the porous sound absorbing material is preferably 3% or less of that of the short one.
- the circumferential end face of the porous sound absorbing material is preferably substantially perpendicular to the inner surface of the tire tread.
- the circumferential end face of the porous sound absorbing material is preferably 10 to 80 ° with respect to the inner surface of the tire tread.
- the joint of the porous sound absorbing material has a taper angle of 1 or 2 with respect to the inner surface of the tire tread.
- the difference between the width of the porous sound absorbing material and the width of the sealant layer is preferably 1 to 40 mm.
- the sealant layer further contains 100 to 400 parts by weight of polybutene and 1 to 10 parts by weight of a crosslinking agent with respect to 100 parts by weight of butyl rubber.
- the number average molecular weight of polybutene is preferably 1000 to 4000.
- the thickness of the sealant layer is preferably 1 to 4 mm.
- the present invention also relates to a method of manufacturing the sealant tire, including the steps of vulcanizing the tire, spiral extruding the sealant material, the crosslinking step, and the step of attaching and processing the porous sound absorbing material.
- a sponge of a required size it is preferable to attach to a holder and apply and process it on a tire.
- a sound absorbing material having a length in the circumferential direction of the tire of a processing amount of two or more tires into the inside of the tire and cut and processed at the time of attachment.
- the porous sound absorbing material is continuously introduced into the tire through the tire opening and attached, and the porous sound absorbing material is continuously affixed to the tire without changing the stage. It is preferable to process.
- the dimensions in the tire width direction of the porous sound absorbing material be cut in advance to predetermined dimensions.
- the porous sound absorbing material is adhered to the inner liner by the sealant layer and the sealant layer contains 1 to 30 parts by weight of the inorganic filler with respect to 100 parts by weight of butyl rubber, excellent muffling performance And, a sealant tire excellent in productivity can be provided.
- the sealant tire according to the present invention is characterized in that it comprises a porous sound absorbing material attached by a sealant layer inside the inner liner, and the sealant layer comprises 1 to 30 parts by weight of an inorganic filler to 100 parts by weight of butyl rubber. .
- the sealant layer contains butyl rubber having excellent adhesive strength, low air permeability, and weather resistance as an essential component, and further contains an inorganic filler in order to improve the kneadability.
- the inorganic filler is not particularly limited, but is preferably one or more selected from the group consisting of carbon black, silica, calcium carbonate, calcium silicate, magnesium oxide, aluminum oxide, barium sulfate, talc, and mica. Among them, carbon black generally used as a filler for the rubber component is more preferable.
- the compounding amount of the inorganic filler is 1 to 30 parts by mass with respect to 100 parts by mass of butyl rubber, preferably 2 to 10 parts by mass. If the amount is less than 1 part by mass, the formulation for the sealant can not be kneaded, and if the amount is more than 30 parts by mass, the sealant material becomes hard and the air sealability is reduced.
- the sealant layer preferably further contains polybutene.
- the blending amount of polybutene is preferably 100 to 400 parts by mass, and more preferably 150 to 300 parts by mass with respect to 100 parts by mass of butyl rubber. If the amount is less than 100 parts by mass, the sealant layer becomes hard and the air seal performance is reduced. If the amount is more than 400 parts by mass, the sealant layer becomes soft and may flow during use to generate partial vibration.
- the number average molecular weight of polybutene is not particularly limited, but is preferably 1000 to 4000, and more preferably 1500 to 3500. If it is less than 1000, kneading with butyl rubber becomes difficult, and if it exceeds 4000, the adhesive strength tends to decrease and the air sealability is insufficient.
- the number average molecular weight is a gel permeation chromatograph (GPC) (GPC-8000 series manufactured by Tosoh Corp., detector: differential refractometer, column: TSKGEL SUPERMALTPORE HZ- manufactured by Tosoh Corp.) Based on the measurement value according to M), it is obtained by standard polystyrene conversion.
- GPC gel permeation chromatograph
- the sealant layer preferably further contains a crosslinking agent.
- a crosslinking agent sulfur, a peroxide activator (diaroyl peroxide, diacyl peroxide, peroxy ester), a quinone dioxime compound and the like can be mentioned. Among them, peroxide activators and quinone dioxime compounds are preferable, and quinone dioxime compounds are more preferable, from the viewpoint that the effects of the present invention can be obtained better.
- quinone dioxime compound p-quinone dioxime, p-quinone dioxime diacetate, p-quinone dioxime dicaproate, p-quinone dioxime dilaurate, p-quinone dioxime distearate, p-quinone dioxime Oxime dicrotonate, p-quinone dioxime dinaphthenate, p-quinone dioxime succinate, p-quinone dioxime adipate, p-quinone dioxime difuroate (difuroate), p-quinone dioxime dibenzoate, p-quinone dioxime di (o-chlorobenzoate), p-quinone dioxime di (p-chlorobenzoate), p-quinone dioxime di (p-vitrobenzoate), p-quinone dioxime di (m-vitrobenzoate) ), P-quinone dioxime di
- the amount of the crosslinking agent is preferably 1 to 10 parts by mass, and more preferably 2 to 7 parts by mass with respect to 100 parts by mass of butyl rubber. If the amount is less than 1 part by mass, the sealant layer may flow and it may be difficult to fix the porous sound absorbing material. If the amount is more than 10 parts by mass, the sealant layer may be too hard and sealing performance may be degraded.
- the thickness of the sealant layer is not particularly limited, but is preferably 1 to 4 mm, and more preferably 1.5 to 3.5 mm. Below 1 mm, tire punctures can not be repaired and sealing effects tend to saturate above 4 mm.
- the cross-sectional area of the porous sound absorbing material is preferably 0.4 to 15%, and more preferably 8 to 12%, of the tire cross-sectional cavity area at the time of tire rim assembly.
- the sound absorbing performance of the porous sound absorbing material is determined not by the thickness of the sound absorbing material, but by the volume ratio to the tire cross-sectional cavity area. If it is less than 0.4%, no sound absorption effect is observed, and if it exceeds 15%, the sound absorption performance does not improve and tends to be saturated.
- the specific gravity of the porous sound absorbing material is preferably 0.005 to 0.06, and more preferably 0.02 to 0.05.
- the sound absorbing performance tends to deteriorate even if it is less than 0.005 or more than 0.06.
- the material of the porous sound absorbing material is not limited, and synthetic polyurethane resin sponges such as ether polyurethane sponge, ester polyurethane sponge, polyethylene sponge, chloroprene rubber sponge (CR sponge), ethylene propylene rubber sponge (EPDM sponge), nitrile rubber sponge ( A rubber sponge such as NBR sponge) can be suitably used.
- synthetic polyurethane resin sponges such as ether polyurethane sponge, ester polyurethane sponge, polyethylene sponge, chloroprene rubber sponge (CR sponge), ethylene propylene rubber sponge (EPDM sponge), nitrile rubber sponge ( A rubber sponge such as NBR sponge
- a polyurethane-based or polyethylene-based sponge containing an ether-based polyurethane sponge is preferable from the viewpoint of noise reduction, lightness, adjustability of foaming, durability, etc., and polyester / polyether which is resistant to hydrolysis. More preferred is a polyurethane sponge made from a copolymerized polyol.
- the porous sound absorbing material is advantageous in terms of prevention of tire vibration, sponge formability, material dimension processing, transportation, production workability, and cost, and therefore, a substantially constant width and a substantially constant cross section with constant weight on the circumference. It is preferable that it is a shape.
- the porous sound absorbing material does not have a joint from the viewpoint that the weight is constant in the tire circumferential direction, the manufacturing cost of the seamless annular porous sound absorbing material is extremely high. Therefore, cost and performance can be balanced by attaching a porous sound absorbing material having a substantially rectangular shape so as to make the joint smaller.
- the sponges overlap at the joint.
- the number of seams is not particularly limited, but is preferably 1 or 2. 80 mm or less is preferable and, as for the gap length (sealing
- the gap length of the joint is preferably 1 mm or more from the viewpoint of manufacturing cost.
- the ratio of the circumferential length of the porous sound absorbing material is preferably 3% or less of the long one, and more preferably 1% or less. Less than 3% corresponds to installing small pieces to fill the gap.
- the circumferential end face of the porous sound absorbing material is preferably substantially perpendicular to the inner surface of the tire tread in terms of easy processing.
- the joint of the porous sound absorbing material has a taper angle of 1 or 2 with respect to the inner surface of the tire tread.
- the taper By providing the taper, the gap of the sponge can be apparently narrowed, and adhesion of foreign matter can be prevented.
- the embodiment provided with a taper is shown in FIGS. By providing tapers at opposite angles as shown in FIG. 2, cracking of the adhesive surface of the sponge during use can be prevented.
- FIG. 4 shows an aspect in which the tip of the taper is cut off and has two taper angles.
- the circumferential end face (taper angle) of the porous sound absorbing material is preferably 10 to 80 ° with respect to the inner surface of the tire tread, and preferably 15 to 45 °. If it is less than 10 °, processing is difficult, and if it exceeds 80 °, there is a tendency for the sponge to be easily exfoliated due to long-term running, and the sponge tends to be difficult to run when overlapping the sponges. There is.
- the width of the porous sound absorbing material may be narrower or wider than the sealant layer. Even if it is wider than the sealant layer, the anti-sticking effect remains unchanged. However, if the width is too narrow, the foreign matter may easily adhere to the portion without the porous sound absorbing material.
- the difference between the width of the porous sound absorbing material and the width of the sealant layer (gap) is preferably 0 to 40 mm, more preferably 1 to 40 mm, and still more preferably 1 to 5 mm. If it is less than 1 mm, the required accuracy is too high and the production becomes difficult, and if it exceeds 40 mm, there is a tendency that the foreign matter can not be prevented from adhering to the sealant layer.
- the method for manufacturing a sealant tire according to the present invention is characterized by including the steps of vulcanizing the tire, spiral extruding the sealant material, crosslinking, and affixing and processing the porous sound absorbing material. Spiral extrusion of the sealant is preferred because of the uniformity of the sealant material. Then, after giving a flow resistance through a bridge
- a sponge of a required size it is preferable to attach to a holder and apply and process it on a tire.
- the tire circumference of a processing amount of two or more tires is reduced in that the number of man-hours for changing the sound absorbing material is reduced and it is also effective in mixed production of tires of different sizes. It is preferable to load a sound absorbing material having a long length into the inside of the tire, and cut and process it at the time of attachment.
- the porous sound absorbing material is continuously introduced from the tire opening into the inside of the tire and attached, and the porous sound absorbing material is continuously changed without changing it. It is preferable to stick and process on a tire.
- the dimensions in the tire width direction of the porous sound absorbing material be cut in advance to predetermined dimensions.
- Butyl rubber IIR11065, manufactured by JSR Corporation Polybutene: HV-1900, manufactured by JX Nippon Mining & Energy Co., Ltd. Number average molecular weight 2900 Carbon black: N330, Cabot Japan Co., Ltd. Oil: DOS (dioctyl sebacate), Taoka Chemical Industry Co., Ltd. Cross-linking agent 1: QDO (p-benzoquinone dioxime), Ouchi Emerging Chemical Industry Co., Ltd.
- Stearic acid Beads Stearic acid camellia, manufactured by NOF Corporation zinc oxide: Zinc oxide 2 types, Mitsui Metal Mining Co., Ltd.
- vulcanized agent 2 Powdered sulfur, Tsurumi Chemical Industry Co., Ltd. Promoter: Zinc dibenzyl dithiocarbamate, Curekind ZBEC, Ningbo Actimix Polymer sponge: ESH2 (width 200 mm, thickness 10 mm, specific gravity 0.039, polyurethane), manufactured by Inoac Corporation
- Air leak amount> The sealant material was applied to the inside of the tire by spiral extrusion so as to be 3 mm in thickness and 190 mm in width on a tire (235 / 45R17, 94 W, rim: 17 ⁇ 8 J, cavity cross section at tire rim assembly: 187 cm 2 ).
- a sponge having a length of 1900 mm and a thickness of 10 mm was installed to have a gap of 25 mm.
- the initial internal pressure of the tire is 230 kPa, and a round nail (body diameter 4.2 mm) of JIS N100 is used at an ambient temperature of 25 ° C. 10 nails are driven into the longitudinal grooves of the tire to the head and the nails are removed immediately The whole day tire was left to measure the internal pressure.
- the reduced internal pressure was evaluated as an air leak amount using an index of the internal pressure of Example 1 as 20. The larger the index, the larger the amount of air leakage.
- Example 4 As shown in Table 2, the sealant material of Example 1 was applied to the inside of the tire by spiral extrusion so as to have a thickness of 3 mm and a width of 190 mm. It was crosslinked by heating with warm air at 140 ° C. for 10 minutes. A sponge of the shape shown in Table 2 was used as a porous sound absorbing material and placed on the sealant material. The following evaluations were made. The evaluation results are shown in Table 2.
- ⁇ Manufacturing index> The time taken to manually apply the sponge was set to 100 in the case of Example 5 as 100. The larger the manufacturing index, the worse it is. Note that ⁇ 3 mm is an acceptable range for the gap.
- Example 1 13 to 18 Each material was kneaded under the condition of 110 ° C. using a twin-screw extruder in accordance with the formulation shown in Table 3 to obtain a kneaded product.
- the degree of mixing difficulty, the amount of air leakage, and the fluidity were evaluated by the above-mentioned method. The evaluation results are shown in Table 3.
- Example 1 19-23 Each material was kneaded under a condition of 110 ° C. using a twin-screw extruder according to the formulation shown in Table 4 to obtain a kneaded product.
- the degree of mixing difficulty, the amount of air leakage, and the fluidity were evaluated by the above-mentioned method. The evaluation results are shown in Table 4.
- Example 4 26-29 As shown in Table 6, the sealant material of Example 1 was applied to the inside of the tire by spiral extrusion so as to have a width of 190 mm while changing the thickness. It was crosslinked by heating with warm air at 140 ° C. for 10 minutes. A sponge having a shape shown in Table 6 was used as a porous sound absorbing material and placed on the sealant material. The amount of air leakage and fluidity were evaluated by the above-mentioned method, and the cost of the sealant material was also calculated. The evaluation results are shown in Table 6.
- Examples 30-32 Using the sealant material and the sponge shown in Table 7, a sealant tire was produced by the following method. The sticking time in each production method was measured. The evaluation results are shown in Table 7.
- Production method 1 A porous sound-absorbing material in which the dimensions in the tire width direction are cut into predetermined dimensions in advance was used.
- Production method 2 A sound absorbing material having a length in the circumferential direction of the tire of a processing amount of two or more tires was loaded into the tire, and cut and processed at the time of attachment.
- Production method 3 A porous sound absorbing material was continuously introduced into and attached to the inside of the tire from the opening of the tire, and the porous sound absorbing material was continuously applied to the tire without step change.
- Example 5 the sealant material of Example 1 was spirally extruded on a tire (235 / 45R17, 94W, rim: 17 ⁇ 8J) so as to have a thickness of 3 mm and a width of 190 mm, and was applied to the inside of the tire. It was crosslinked by heating with warm air at 140 ° C. for 10 minutes. A sponge of the shape shown in Table 8 was used as a porous sound absorbing material and placed on the sealant material. In addition to the evaluation of the number of sheets attached to a piece of paper and the production index according to the method described above, the following evaluation was performed. The evaluation results are shown in Table 8. In Table 8, the gap length of the positive seam represents the length of the overlap portion, and the gap length of the negative seam represents the gap length of the sponge. Also, in each example of Table 8, the number of joints is one.
- Example 5 37 to 39
- the sealant material of Example 1 was spirally extruded on a tire (235 / 45R17, 94W, rim: 17 ⁇ 8J) so as to have a thickness of 3 mm and a width of 190 mm, and was applied to the inside of the tire. It was crosslinked by heating with warm air at 140 ° C. for 10 minutes.
- a sponge of the shape shown in Table 9 was used as a porous sound absorbing material and placed on the sealant material. The following evaluations were made. The evaluation results are shown in Table 9.
- the gap length of the positive seam represents the length of the overlap portion
- the gap length of the negative seam represents the gap length of the sponge.
- the taper is provided in the angle of the opposite direction.
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Tires In General (AREA)
- Sealing Material Composition (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Tyre Moulding (AREA)
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/111,546 US11267297B2 (en) | 2014-01-30 | 2015-01-28 | Sealant tire |
| JP2015559982A JP6261622B2 (ja) | 2014-01-30 | 2015-01-28 | シーラントタイヤ |
| EP15742940.8A EP3093165B1 (en) | 2014-01-30 | 2015-01-28 | Sealant tire and method for producing the sealant tire |
| CN201580004372.4A CN105899377B (zh) | 2014-01-30 | 2015-01-28 | 自修复轮胎 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2014015966 | 2014-01-30 | ||
| JP2014-015966 | 2014-01-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2015115486A1 true WO2015115486A1 (ja) | 2015-08-06 |
Family
ID=53757059
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2015/052367 Ceased WO2015115486A1 (ja) | 2014-01-30 | 2015-01-28 | シーラントタイヤ |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US11267297B2 (enExample) |
| EP (1) | EP3093165B1 (enExample) |
| JP (2) | JP6261622B2 (enExample) |
| CN (2) | CN105899377B (enExample) |
| WO (1) | WO2015115486A1 (enExample) |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3130454A1 (en) * | 2015-08-13 | 2017-02-15 | The Goodyear Tire & Rubber Company | Pneumatic tire with post cure sealant layer |
| JP2018069978A (ja) * | 2016-10-31 | 2018-05-10 | 住友ゴム工業株式会社 | シーラント材用ゴム組成物 |
| JP2018080343A (ja) * | 2016-04-14 | 2018-05-24 | 住友ゴム工業株式会社 | 空気入りタイヤ用ゴム組成物 |
| EP3308984B1 (de) | 2016-10-11 | 2019-05-22 | Continental Reifen Deutschland GmbH | Fahrzeugluftreifen und verwendung eines polybutens mit einem geringen chlorgehalt |
| JP2021062626A (ja) * | 2021-01-04 | 2021-04-22 | 住友ゴム工業株式会社 | シーラント材用ゴム組成物 |
| JP2021160327A (ja) * | 2020-04-03 | 2021-10-11 | 住友ゴム工業株式会社 | 環状部材の貼付装置、貼付システム、貼付方法、及びタイヤ |
| WO2022124012A1 (ja) * | 2020-12-08 | 2022-06-16 | Toyo Tire株式会社 | 空気入りタイヤおよびその製造方法 |
| US11465376B2 (en) | 2016-11-17 | 2022-10-11 | Bridgestone Americas Tire Operations, Llc | Pneumatic tires with applied air barrier layers |
| JP2023062451A (ja) * | 2021-10-21 | 2023-05-08 | 住友ゴム工業株式会社 | シーラント材用ゴム組成物、空気入りタイヤ |
| US11760136B2 (en) | 2018-05-15 | 2023-09-19 | Bridgestone Americas Tire Operations, Llc | Tire with multi-layer insert |
| US12168374B2 (en) | 2016-11-17 | 2024-12-17 | Bridgestone Americas Tire Operations, Llc | Pneumatic tire having dampening element adhered to air barrier layer |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11207919B2 (en) | 2016-06-21 | 2021-12-28 | Bridgestone Americas Tire Operations, Llc | Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners |
| EP3478484B1 (en) | 2016-06-30 | 2021-07-21 | Bridgestone Americas Tire Operations, LLC | Methods for treating inner liners and tires containing such inner liners |
| WO2018112117A2 (en) | 2016-12-15 | 2018-06-21 | Bridgestone Americas Tire Operations, Llc | Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners |
| WO2018112179A1 (en) * | 2016-12-15 | 2018-06-21 | Bridgestone Americas Tire Operations, Llc | Sealant layer with barrier, tire containing same, and related processes |
| WO2018112125A1 (en) | 2016-12-15 | 2018-06-21 | Bridgestone Americas Tire Operations, Llc | Sealant-containing tire and related processes |
| WO2019039180A1 (ja) * | 2017-08-22 | 2019-02-28 | 住友ゴム工業株式会社 | 空気入りタイヤ |
| US20190143764A1 (en) * | 2017-11-10 | 2019-05-16 | Triangle Tyre Co. Ltd. | Pneumatic tire with noise damper |
| US11292298B2 (en) * | 2017-11-10 | 2022-04-05 | Triangle Tyre Co. Ltd. | Noise damper bonded to tire using adhesives |
| JP6981227B2 (ja) * | 2017-12-20 | 2021-12-15 | 横浜ゴム株式会社 | 空気入りタイヤ |
| JP7089433B2 (ja) * | 2018-08-01 | 2022-06-22 | 住友ゴム工業株式会社 | 制音体付き空気入りタイヤ,及びその製造方法 |
| DE102018213480A1 (de) * | 2018-08-10 | 2020-02-13 | Continental Reifen Deutschland Gmbh | Selbstabdichtender Fahrzeugluftreifen mit Dichtmittellage und Verfahren zu dessen Herstellung |
| WO2021133392A1 (en) | 2019-12-26 | 2021-07-01 | Compagnie Generale Des Etablissements Michelin | Improved acoustic foam profile for pneumatic tires |
| JP7506297B2 (ja) * | 2020-02-28 | 2024-06-26 | 横浜ゴム株式会社 | 空気入りタイヤの製造方法および装置 |
| JP7575655B2 (ja) * | 2020-02-28 | 2024-10-30 | 横浜ゴム株式会社 | 空気入りタイヤの製造方法および装置 |
| JP7484365B2 (ja) * | 2020-04-15 | 2024-05-16 | 住友ゴム工業株式会社 | 空気入りタイヤ |
| JP7580991B2 (ja) * | 2020-09-17 | 2024-11-12 | Toyo Tire株式会社 | 空気入りタイヤおよび空気入りタイヤの製造方法 |
| CN113185934B (zh) * | 2021-05-10 | 2023-03-17 | 四川远星橡胶有限责任公司 | 一种自修复胶组合物及其制备方法、使用方法 |
| JP2023036444A (ja) * | 2021-09-02 | 2023-03-14 | 横浜ゴム株式会社 | タイヤ |
| CN117681598A (zh) * | 2024-01-08 | 2024-03-12 | 上海钛阖实业有限公司 | 一种轮胎吸音材料结构 |
Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002332475A (ja) * | 2001-05-09 | 2002-11-22 | Bridgestone Corp | シーラント組成物並びにそれを用いた圧力容器及びタイヤ |
| WO2009014082A1 (ja) * | 2007-07-24 | 2009-01-29 | The Yokohama Rubber Co., Ltd. | セルフシール空気入りタイヤの製造方法及び装置 |
| JP2009028919A (ja) * | 2007-07-24 | 2009-02-12 | Bridgestone Corp | 空気入りタイヤの製造方法及び空気入りタイヤ |
| JP2010280340A (ja) * | 2009-06-05 | 2010-12-16 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
| JP2011020479A (ja) | 2009-07-13 | 2011-02-03 | Sumitomo Rubber Ind Ltd | 制音体付空気入りタイヤ |
| JP2013043643A (ja) * | 2011-08-26 | 2013-03-04 | Hankook Tire Co Ltd | 空気入りタイヤ及びその製造方法 |
| JP2013112062A (ja) * | 2011-11-25 | 2013-06-10 | Sumitomo Rubber Ind Ltd | 制音体付空気入りタイヤ |
Family Cites Families (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2012A (en) * | 1841-03-18 | Machine foe | ||
| US2771936A (en) * | 1952-12-02 | 1956-11-27 | Us Rubber Co | Method of making a puncture-sealing vulcanized rubber pneumatic article by incorporating a sealant layer of butyl rubber pre-reacted with a curative |
| US3803274A (en) * | 1969-05-15 | 1974-04-09 | K Nakashima | Process for manufacturing foamed elastomeric materials having an interior foamed cellular structure covered with a non-foamed skin layer |
| US4426468A (en) | 1978-10-10 | 1984-01-17 | Rockcor, Inc. | Sealant composition |
| JPS57158279A (en) * | 1981-03-24 | 1982-09-30 | Bridgestone Corp | Water-swellable sealing material |
| US4919183A (en) * | 1983-09-28 | 1990-04-24 | The Goodyear Tire & Rubber Company | Self sealing pneumatic tire |
| JP2001239804A (ja) * | 1999-12-24 | 2001-09-04 | Sumitomo Rubber Ind Ltd | 空気入りタイヤとリムとの組立体 |
| JP4526515B2 (ja) * | 2000-05-30 | 2010-08-18 | Nok株式会社 | ブチルゴム組成物 |
| JP2002052911A (ja) * | 2000-08-09 | 2002-02-19 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
| ES2304426T3 (es) | 2001-03-21 | 2008-10-16 | Bridgestone Corporation | Conjunto de neumatico y llanta. |
| CN1323856C (zh) | 2001-03-21 | 2007-07-04 | 株式会社普利司通 | 轮胎-轮辋组合体 |
| CA2466763C (en) | 2002-03-08 | 2011-04-05 | The Yokohama Rubber Co., Ltd. | Self-sealing tire and manufacturing method of the same |
| EP1509383B1 (en) | 2002-05-31 | 2009-07-29 | Pirelli Tyre S.p.A. | Self-sealing tyre and process for its manufacture |
| US6962181B2 (en) * | 2003-02-17 | 2005-11-08 | The Goodyear Tire & Rubber Company | Pneumatic tire having built-in sealant layer and preparation thereof |
| JP4386889B2 (ja) * | 2003-04-14 | 2009-12-16 | 横浜ゴム株式会社 | シーリング材およびその塗布方法 |
| US20050113502A1 (en) * | 2003-11-21 | 2005-05-26 | Fitzharris Wall Jennifer E. | Pneumatic tire with built-in colored sealant layer |
| DE602004021448D1 (de) | 2004-03-16 | 2009-07-16 | Sumitomo Rubber Ind | Pneumatischer Reifen mit einer Mehrzahl an Geräuschdämpfern |
| US20080162496A1 (en) * | 2004-06-02 | 2008-07-03 | Richard Postrel | System and method for centralized management and monitoring of healthcare services |
| JP2006152110A (ja) | 2004-11-29 | 2006-06-15 | Yokohama Rubber Co Ltd:The | パンク防止用シーラント組成物および空気入りタイヤ |
| JP4466403B2 (ja) * | 2005-02-21 | 2010-05-26 | 横浜ゴム株式会社 | 低騒音空気入りタイヤ |
| JP4723342B2 (ja) * | 2005-10-06 | 2011-07-13 | 住友ゴム工業株式会社 | 空気入りタイヤとリムとの組立体 |
| JP2008162496A (ja) * | 2006-12-28 | 2008-07-17 | Bridgestone Corp | タイヤとリムとの組立体 |
| DE102007028932A1 (de) * | 2007-06-22 | 2008-12-24 | Continental Aktiengesellschaft | Fahrzeugluftreifen |
| US20090078353A1 (en) * | 2007-09-21 | 2009-03-26 | Ramendra Nath Majumdar | Pneumatic Tire Having Built-In Sealant Layer And Preparation Thereof |
| US20090084482A1 (en) * | 2007-09-28 | 2009-04-02 | Ramendra Nath Majumdar | Pneumatic tire having built-In sealant layer and preparation thereof |
| JP5200877B2 (ja) | 2007-11-28 | 2013-06-05 | 住友化学株式会社 | 熱可塑性エラストマー組成物、複合成形体およびウェザーストリップ |
| JP4338761B2 (ja) * | 2008-01-29 | 2009-10-07 | 住友ゴム工業株式会社 | 制音具付き空気入りタイヤ |
| US20100154959A1 (en) * | 2008-12-23 | 2010-06-24 | Ramendra Nath Majumdar | Method and apparatus for building a tire having a puncture sealant |
| US20110308706A1 (en) * | 2010-06-21 | 2011-12-22 | The Goodyear Tire & Rubber Company | Method for making pneumatic tire with foam noise damper |
| EP2813376B1 (en) * | 2012-02-06 | 2019-04-03 | Bridgestone Corporation | Pneumatic radial tire |
| JP5480319B2 (ja) | 2012-03-13 | 2014-04-23 | 日東電工株式会社 | 粘着剤組成物、粘着シートおよび透湿防水粘着シート |
| FR2989032B1 (fr) * | 2012-04-05 | 2015-04-10 | Michelin & Cie | Pneumatique et ensemble pneumatique-roue a mobilite etendue |
-
2015
- 2015-01-28 US US15/111,546 patent/US11267297B2/en active Active
- 2015-01-28 JP JP2015559982A patent/JP6261622B2/ja active Active
- 2015-01-28 EP EP15742940.8A patent/EP3093165B1/en active Active
- 2015-01-28 WO PCT/JP2015/052367 patent/WO2015115486A1/ja not_active Ceased
- 2015-01-28 CN CN201580004372.4A patent/CN105899377B/zh active Active
- 2015-01-28 CN CN201910693298.1A patent/CN110395077B/zh active Active
-
2017
- 2017-03-16 JP JP2017051682A patent/JP6544373B2/ja active Active
Patent Citations (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2002332475A (ja) * | 2001-05-09 | 2002-11-22 | Bridgestone Corp | シーラント組成物並びにそれを用いた圧力容器及びタイヤ |
| WO2009014082A1 (ja) * | 2007-07-24 | 2009-01-29 | The Yokohama Rubber Co., Ltd. | セルフシール空気入りタイヤの製造方法及び装置 |
| JP2009028919A (ja) * | 2007-07-24 | 2009-02-12 | Bridgestone Corp | 空気入りタイヤの製造方法及び空気入りタイヤ |
| JP2010280340A (ja) * | 2009-06-05 | 2010-12-16 | Yokohama Rubber Co Ltd:The | 空気入りタイヤ |
| JP2011020479A (ja) | 2009-07-13 | 2011-02-03 | Sumitomo Rubber Ind Ltd | 制音体付空気入りタイヤ |
| JP2013043643A (ja) * | 2011-08-26 | 2013-03-04 | Hankook Tire Co Ltd | 空気入りタイヤ及びその製造方法 |
| JP2013112062A (ja) * | 2011-11-25 | 2013-06-10 | Sumitomo Rubber Ind Ltd | 制音体付空気入りタイヤ |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10035383B2 (en) | 2015-08-13 | 2018-07-31 | The Goodyear Tire & Rubber Company | Pneumatic tire with post cure sealant layer |
| EP3130454A1 (en) * | 2015-08-13 | 2017-02-15 | The Goodyear Tire & Rubber Company | Pneumatic tire with post cure sealant layer |
| JP2018080343A (ja) * | 2016-04-14 | 2018-05-24 | 住友ゴム工業株式会社 | 空気入りタイヤ用ゴム組成物 |
| EP3308984B1 (de) | 2016-10-11 | 2019-05-22 | Continental Reifen Deutschland GmbH | Fahrzeugluftreifen und verwendung eines polybutens mit einem geringen chlorgehalt |
| JP2018069978A (ja) * | 2016-10-31 | 2018-05-10 | 住友ゴム工業株式会社 | シーラント材用ゴム組成物 |
| US11465376B2 (en) | 2016-11-17 | 2022-10-11 | Bridgestone Americas Tire Operations, Llc | Pneumatic tires with applied air barrier layers |
| US12168374B2 (en) | 2016-11-17 | 2024-12-17 | Bridgestone Americas Tire Operations, Llc | Pneumatic tire having dampening element adhered to air barrier layer |
| US11760136B2 (en) | 2018-05-15 | 2023-09-19 | Bridgestone Americas Tire Operations, Llc | Tire with multi-layer insert |
| JP2021160327A (ja) * | 2020-04-03 | 2021-10-11 | 住友ゴム工業株式会社 | 環状部材の貼付装置、貼付システム、貼付方法、及びタイヤ |
| JP7468090B2 (ja) | 2020-04-03 | 2024-04-16 | 住友ゴム工業株式会社 | 環状部材の貼付装置、貼付システム、及び貼付方法 |
| WO2022124012A1 (ja) * | 2020-12-08 | 2022-06-16 | Toyo Tire株式会社 | 空気入りタイヤおよびその製造方法 |
| JP2021062626A (ja) * | 2021-01-04 | 2021-04-22 | 住友ゴム工業株式会社 | シーラント材用ゴム組成物 |
| JP2023062451A (ja) * | 2021-10-21 | 2023-05-08 | 住友ゴム工業株式会社 | シーラント材用ゴム組成物、空気入りタイヤ |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3093165A1 (en) | 2016-11-16 |
| JPWO2015115486A1 (ja) | 2017-03-23 |
| US20160347127A1 (en) | 2016-12-01 |
| CN110395077A (zh) | 2019-11-01 |
| CN110395077B (zh) | 2021-10-22 |
| CN105899377B (zh) | 2021-08-06 |
| US11267297B2 (en) | 2022-03-08 |
| JP6544373B2 (ja) | 2019-07-17 |
| JP6261622B2 (ja) | 2018-01-17 |
| EP3093165A4 (en) | 2017-08-23 |
| CN105899377A (zh) | 2016-08-24 |
| JP2017119510A (ja) | 2017-07-06 |
| EP3093165B1 (en) | 2020-03-11 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6544373B2 (ja) | シーラントタイヤ | |
| CN102950974B (zh) | 充气轮胎及其制造方法 | |
| JP6445667B2 (ja) | 空気入りタイヤ及びその製造方法 | |
| JP6900450B2 (ja) | シーラント層及び吸音材層を含むタイヤ | |
| JP6571866B2 (ja) | 空気圧式車両タイヤ | |
| US10675922B2 (en) | Pneumatic vehicle tire having a tacky sealing | |
| JP6298228B2 (ja) | バリア層を有する空気入りタイヤ及びその製造法 | |
| RU2602879C2 (ru) | Самогерметизирующаяся шина для автомобильных колес | |
| JP5461822B2 (ja) | タイヤ | |
| US20110308706A1 (en) | Method for making pneumatic tire with foam noise damper | |
| JP2012000989A (ja) | フォーム製ノイズダンパーを有する空気入りタイヤの製造法 | |
| CN113799551A (zh) | 包括密封剂层以及吸音材料层的轮胎 | |
| KR101437679B1 (ko) | 공기압 타이어 | |
| JP2019001925A (ja) | シーラント用ゴム組成物 | |
| JP2023097897A (ja) | 空気入りタイヤ | |
| EP4227119A1 (en) | Tyre cavity resonance noise absorber | |
| KR20050095785A (ko) | 공기 타이어 및 그 제조방법 | |
| JP2024062218A (ja) | 空気入りタイヤ | |
| WO2012157310A1 (ja) | 空気入りタイヤの製造方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15742940 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2015559982 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 15111546 Country of ref document: US |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| REEP | Request for entry into the european phase |
Ref document number: 2015742940 Country of ref document: EP |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2015742940 Country of ref document: EP |