WO2015115376A1 - ユーザ装置、基地局、及び通信方法 - Google Patents

ユーザ装置、基地局、及び通信方法 Download PDF

Info

Publication number
WO2015115376A1
WO2015115376A1 PCT/JP2015/052052 JP2015052052W WO2015115376A1 WO 2015115376 A1 WO2015115376 A1 WO 2015115376A1 JP 2015052052 W JP2015052052 W JP 2015052052W WO 2015115376 A1 WO2015115376 A1 WO 2015115376A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
base station
user apparatus
signal
transmitted
Prior art date
Application number
PCT/JP2015/052052
Other languages
English (en)
French (fr)
Inventor
祥久 岸山
佑一 柿島
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to US15/114,216 priority Critical patent/US10212629B2/en
Priority to EP15743011.7A priority patent/EP3101942B1/en
Publication of WO2015115376A1 publication Critical patent/WO2015115376A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/32Reselection being triggered by specific parameters by location or mobility data, e.g. speed data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming

Definitions

  • the present invention relates to a base station and a user apparatus of a wireless communication system.
  • LTE / LTE-Advanced uses MIMO technology that increases system capacity, cell edge user throughput, and the like.
  • heterogeneous network technology has been adopted that realizes high-quality communication by reducing inter-cell interference while mixing different types of base stations (macro cell, small cell, etc.).
  • a small cell in a heterogeneous network uses a high frequency band.
  • propagation loss increases in a high frequency band, in order to compensate for this, it is considered to apply massive MIMO that performs beam forming with a narrow beam width.
  • Massive MIMO is a large-scale MIMO in which a large number (eg, 100 elements) of antennas are installed on the base station side, and the strength of the electric field can be concentrated in a narrow area, thereby reducing interference between users. it can.
  • FIG. 1 is a diagram illustrating an example of a communication environment in which a large number of small cells to which massive MIMO is applied exist. As shown in FIG. 1, a large number of beams are transmitted from the base station of each small cell.
  • the user apparatus When the user apparatus (UE) performs communication while moving in such an environment, the user apparatus needs to select a specific beam suitable for the current position and sequentially switch the beam according to the movement.
  • the user apparatus monitors the reference signals of all candidate beams.
  • the present invention has been made in view of the above points, and in a wireless communication system having a base station and a user apparatus that perform beam forming, the user apparatus can communicate among a plurality of beams formed by the base station.
  • An object of the present invention is to provide a technique that enables efficient selection of a specific beam to be used.
  • a user apparatus that communicates with the base station in a wireless communication system including a base station and a user apparatus, First reference signal receiving means for measuring received power of a first reference signal associated with a plurality of different identifiers transmitted from the base station and selecting a specific first reference signal; Reporting means for reporting the identifier and received power of the first reference signal selected by the first reference signal receiving means to the base station or the base station of the macro cell; Second reference signal receiving means for receiving a plurality of second reference signals transmitted from the base station; There is provided a user apparatus comprising: measurement means for measuring reception quality of a second reference signal received by the second reference signal receiving means, and transmitting feedback information based on the reception quality to the base station.
  • a base station that communicates with the user apparatus in a wireless communication system including a base station and the user apparatus, First reference signal transmitting means for transmitting a first reference signal associated with a plurality of different identifiers; Second reference signal transmitting means for transmitting a plurality of second reference signals at a timing different from a timing for transmitting the plurality of first reference signals; Information receiving means for receiving feedback information based on the reception quality of the second reference signal measured in the user apparatus, In the first reference signal transmission means, the first reference signal mapped only in a part of the frequency domain is transmitted, In the second reference signal transmission means, a base station is provided that transmits a second reference signal mapped in a frequency region wider than the frequency region in which the first reference signal is mapped.
  • a communication method executed by a user apparatus that communicates with the base station in a wireless communication system including a base station and a user apparatus.
  • a communication method including a measurement step of measuring reception quality of a second reference signal received by the second reference signal reception step and transmitting feedback information based on the reception quality to the base station.
  • An information reception step of receiving feedback information based on reception quality of the second reference signal measured in the user apparatus In the first reference signal transmission step, the first reference signal mapped only in a part of the frequency domain is transmitted, In the second reference signal transmission step, a communication method is provided for transmitting a second reference signal mapped to a frequency region wider than the frequency region to which the first reference signal is mapped.
  • a user apparatus uses a specific beam used for communication among a plurality of beams formed by the base station.
  • FIG. 1 is an overall configuration diagram of a radio communication system according to an embodiment of the present invention. It is a figure which shows the hierarchical structure of the reference signal used in the radio
  • FIG. 3 is a functional configuration diagram of a user device 20.
  • FIG. 2 is a functional configuration diagram of a macro base station 10.
  • FIG. 2 is a functional configuration diagram of a small base station 12.
  • LTE is not only a communication system corresponding to Release 8 or 9 of 3GPP but also a communication system corresponding to Release 10, 11 or 12 of 3GPP or later. Used in a broad sense including
  • the configuration of the reference signal of three layers is basically shown as an example, but the number of layers is not limited to this, the number of layers may be two, or the number of layers May be 4 or more.
  • FIG. 2 shows an overall configuration diagram of a radio communication system according to the embodiment of the present invention.
  • the radio communication system according to the present embodiment includes a macro base station 10 that forms a macro cell, and small base stations 11 and 12 that are within the coverage area of the macro cell. 2 shows a user apparatus 20 that communicates with the macro base station 10, the small base stations 11, 12, and the like.
  • macro coverage is ensured by the macro base station 10 in the low frequency band, and the traffic of the small area (eg, hot spot) is absorbed by the small base stations 11 and 12 in the high frequency band.
  • traffic of the small area eg, hot spot
  • Such frequency band allocation is merely an example, and the present invention is not limited to this.
  • the small base stations 11 and 12 in the present embodiment have a massive MIMO function, and can form various beams from a wide beam to a narrow beam.
  • FIG. 2 also shows an outline of the operation of the wireless communication system.
  • a plurality of precoded reference signals (referred to as discovery signals: discovery signals) are transmitted from each small base station by a beam.
  • the reference signal is precoded means that in the example of transmission, the transmission signal is multiplied by a weight for each antenna port so that the reference signal is transmitted with a beam having a certain width.
  • discovery signals are transmitted from the small base station 12 using the beam 2-1, the beam 2-2, and the beam 2-3.
  • the user apparatus 20 receives macro-assisted information (macro-assisted information) from the macro base station 10 in the coverage area of the macro cell (step 1), and is transmitted from the small base stations 11 and 12 using the macro auxiliary information.
  • a plurality of discovery signals (discovery signals transmitted in each beam) are monitored and a specific discovery signal is received (detected).
  • the user apparatus 20 measures reception quality (received power etc.) based on the received discovery signal, and transmits a measurement report to the macro base station 10 (step 2).
  • the macro base station 10 determines, for example, a beam in which the user apparatus 20 can receive a signal with the best quality (for example, the highest received power), and performs control related to the beam.
  • Information (eg, identification information of a discovery signal corresponding to a beam, information of a measurement reference signal corresponding to the discovery signal, etc.) is transmitted to the user apparatus 20.
  • the user apparatus 20 receives a reference signal (referred to as a measurement reference signal) transmitted by the corresponding small base station using a narrower beam on the determined beam according to the control information.
  • a measurement reference signal referred to as a measurement reference signal
  • the user apparatus 20 is assigned a radio resource for receiving a data signal (PDSCH or the like) transmitted with a thin beam, and can receive the data signal.
  • PDSCH data signal
  • wireless communications system in this Embodiment is demonstrated.
  • the reference signal in the present embodiment has a hierarchical structure, and the user apparatus 20 refers to the reference signal in the lower hierarchy sequentially from the reference signal in the higher hierarchy, thereby enabling the small base station It is possible to detect an optimum beam among a plurality of beams transmitted from and to receive a desired data signal using the beam.
  • beam candidates can be narrowed down efficiently, and optimal beam detection and switching can be performed quickly without searching for a large number of beam reference signals. It is.
  • the macro auxiliary information is transmitted from the macro base station 10 to the user apparatus 20 in the macro coverage, and the user apparatus 20 receives a discovery signal using the macro auxiliary information.
  • the macro auxiliary information includes, for example, radio resource information (timing, frequency, etc.) to which the discovery signal is transmitted, discovery signal sequence information, and the like.
  • the channel through which the macro base station 10 transmits the macro auxiliary information is not limited to a specific type of channel, but is transmitted using, for example, a control channel, a broadcast channel, or a data channel defined by LTE.
  • the user apparatus 20 may search in a macro cell in which the user apparatus 20 is located by referring to the macro auxiliary information. It is possible to grasp information of discovery signals to be performed. That is, the user apparatus 20 can specify the branch A in FIG. 3 based on the macro auxiliary information.
  • the macro auxiliary information is a signal referred to by the user device 20 (becomes reference), it can be called a reference signal.
  • the discovery signal is a signal that is precoded and transmitted from the small base stations 11 and 12 using a beam having a wider width than a transmission beam of a measurement reference signal described later.
  • a plurality of discovery signals are transmitted from each small base station using different beams, and the user apparatus 20 monitors, receives (detects) each discovery signal based on the macro auxiliary information, and receives reception quality (reception power, etc.). ).
  • reception quality is used in a broad sense including reception power.
  • a beam discovery signal suitable for the user apparatus 20 is specified, and thereby a measurement reference signal to be received by the user apparatus 20 is determined.
  • Information (series, etc.) included in the discovery signal is associated with the beam.
  • the information may be referred to as “identifier”. That is, the user apparatus 20 measures reception quality (reception power, etc.) of discovery signals associated with a plurality of different identifiers transmitted from the base station, and selects a specific discovery signal. This determination method will be described later.
  • a branch B is selected in the second hierarchy, and a plurality of measurement reference signals under the branch B are specified as measurement reference signals to be received by the user apparatus 20. become.
  • the discovery signal is also a signal that is referred to by the user device 20, it can be referred to as a “reference signal”. Further, in the present embodiment, the discovery signal is also used for the user apparatus 20 to synchronize with the small base stations 11 and 12, and thus the discovery signal can also be referred to as a “synchronization signal”.
  • a synchronization signal PSS Primary Synchronization signal
  • SSS Secondary Synchronization signal
  • the measurement reference signal is a signal transmitted from the small base station with a beam having a narrower width (may be a beam having the same width) than the beam that transmits the discovery signal specified in the second layer.
  • the small base station transmits a measurement reference signal for each beam, and the user apparatus 20 receives each measurement reference signal, measures reception quality (reception power, etc.), and provides feedback information (eg, most received).
  • the identification information of the measurement reference signal with high power is returned to the small base station.
  • the small base station that has received the feedback information performs link adaptation, rank adaptation, scheduling, and the like for the downlink data signal based on the feedback information.
  • the beam corresponding to the branch measurement reference signal indicated by C is selected as the data communication beam.
  • the user apparatus 20 receives the data signal transmitted from the small base station using the beam.
  • a plurality of beams may be finally selected.
  • the beam of the branch C and the beam of the branch E are selected.
  • the user apparatus 20 uses a plurality of beams, for example, it is possible to improve throughput by cooperative transmission, load balancing using a plurality of small base stations, and the like.
  • FIG. 4 shows an image of a plurality of discovery signals each transmitted from the small base stations 11 and 12 by one beam.
  • the discovery signal is used for specifying a rough (rough) low-speed beam and for synchronizing time / frequency with the small base stations 11 and 12. Since each beam that transmits a discovery signal is generally wider than each beam that transmits a measurement reference signal, it may be referred to as a “wide beam” hereinafter.
  • a beam that transmits a measurement reference signal may be referred to as a “narrow beam”.
  • discovery signals are mapped with high density (dense) at a low frequency (sparce) time interval in a predetermined radio resource.
  • the discovery signal may be transmitted with a frequency of once every 10 to 20 ms, for example. Since the discovery signal is also used for synchronization, mapping is performed at a high density so that it can be received with the best possible quality even when it is far from the base station, such as at the cell edge.
  • the discovery signal is mapped within a narrow bandwidth that serves as a predetermined core so that a user device with any bandwidth can be detected.
  • the discovery signal is mapped to a predetermined bandwidth frequency block in the central portion of the system bandwidth.
  • the predetermined bandwidth is, for example, a bandwidth used by a user device having the minimum bandwidth.
  • FIG. 5 shows an image of a reference signal for measurement transmitted from the small base stations 11 and 12 using a plurality of beams (narrow beams).
  • FIG. 5 also shows a beam of discovery signals.
  • each narrow beam of the measurement reference signal is narrower than the beam (wide beam) of the discovery signal, and a plurality of narrow beams corresponding to the wide beam are transmitted on the wide beam.
  • the phrase “transmitted on a wide beam” means, for example, that the entire width of the plurality of narrow beams is within the width of the wide beam.
  • the reference signal for measurement is used for narrow and fast beam identification, dynamic rank adaptation based on feedback information (selection of optimal MIMO rank), link adaptation (determination of optimal modulation / coding scheme, etc.), scheduling, etc. Used.
  • the reference signal for measurement is also transmitted at a transmission frequency with a low frequency (sparse), similar to the discovery signal.
  • the frequency direction is mapped to a wide band per 1 TTI (1 subframe) in order to enable measurement over the entire band.
  • the overhead is reduced by transmitting the measurement reference signal at a low frequency, for example, as in CSI-RS in LTE.
  • the measurement reference signal supports an orthogonally polarized (Dual Polarized) antenna port.
  • the orthogonally polarized antenna may be referred to as a dual polarization antenna.
  • FIG. 6 shows an example of mapping between discovery signals and measurement reference signals.
  • FIG. 6A shows a frame in the wireless communication system of the present embodiment. Each square of the frame in FIG. 6A indicates a slot. The lengths of these frames and slots may be the same as those defined in the current LTE, or may be different. For example, the slot may be a subframe defined by LTE.
  • the discovery signal is mapped as shown in FIG. 6B in the first slot of the frame.
  • the measurement reference signal is mapped in the second slot of the frame as shown in FIG. This mapping is repeated for each frame.
  • mapping may be performed more frequently, may be performed less frequently, or the frequency of mapping the discovery signal and the measurement reference signal to the slot may be different.
  • There may be a gap (gap) between the slot of the discovery signal and the slot of the reference signal for measurement.
  • the discovery signal is mapped to the central portion of the system band with a predetermined bandwidth.
  • the predetermined bandwidth is, for example, a bandwidth used by the user apparatus having the lowest capability.
  • a plurality of different wide beam reference signals are time-multiplexed.
  • the same set of time-multiplexed discovery signals (beam 1 to beam N) is transmitted twice. Thereby, it is possible to correct the frequency error in the user apparatus.
  • the user apparatus 20 notifies the macro base station 10 of information (identifier, index, etc.) indicating a discovery signal with the best reception quality (for example, high reception power), for example.
  • the information is information that can be acquired from a series of discovery signals, for example.
  • the information indicating the discovery signal is also information indicating the wide beam that transmits the discovery signal.
  • a plurality of wide beam discovery signals are time-multiplexed, but may be frequency-multiplexed in the frequency direction. That is, in this case, for example, for example, discovery signal 1 (wide beam 1) is transmitted at frequency 1, discovery signal 2 (wide beam 2) is transmitted at frequency 2, and so on.
  • FIG. 6C shows a mapping example of the measurement reference signal in the measurement reference signal mapping slot.
  • numbers such as 1, 2,... are identification numbers (indexes) of measurement reference signals, and are also identification numbers (indexes) of narrow beams that transmit the measurement reference signals. . This may be called a beam ID.
  • the identification number is, for example, information that can be acquired from a series of measurement reference signals.
  • the measurement reference signal is mapped to the entire system band. This is because the reception quality over the entire system band can be measured in the same manner as an existing reference signal such as CSI-RS.
  • each measurement discovery signal transmitted by a narrow beam is time-multiplexed in association with the wide beam transmitting the discovery signal. That is, for example, the measurement reference signals 1 to 4 of the narrow beams 1 to 4 correspond to the discovery signal 1 of the wide beam 1, and the measurement reference signals 5 to 8 of the narrow beams 5 to 8 are the discovery signal 2 of the wide beam 2. Corresponding to ... The measurement reference signals X + 1 to X + 4 of the narrow beams X + 1 to X + 4 correspond to the discovery signal X of the wide beam X.
  • the signal resource is mapped in, for example, a comb-like shape for each antenna port.
  • the user apparatus 20 receives, for example, only a plurality of specific measurement reference signals by receiving, from the macro base station 10, the measurement reference signal timing and sequence information corresponding to the discovery signal with the best reception quality as control information. Can be monitored.
  • the macro auxiliary information in addition to the timing and sequence information of the discovery signal within the macro coverage, the timing and sequence information of the measurement reference signal within the macro coverage (that is, the correspondence information between the discovery signal and the measurement reference signal) ) May be included.
  • the user apparatus 20 specifies the discovery signal (wide beam) with the best reception quality, and then reports the discovery signal without reporting to the macro base station 10.
  • a plurality of measurement reference signals corresponding to may be received.
  • the user apparatus 20 receives a discovery signal mapped only in a part of the frequency domain, and the measurement reference signal mapped in a frequency domain wider than the frequency domain in which the discovery signal is mapped. Is received. Further, the small base stations 11 and 12 transmit discovery signals mapped only in a part of the frequency domain, and transmit measurement reference signals mapped in a frequency domain wider than the frequency domain to which the discovery signal is mapped. To do.
  • FIGS. 7A and 7B are diagrams illustrating examples of mapping within resources of discovery signals.
  • discovery signals are mapped to resource elements with numbers. The number indicates the distinction between a beam or an antenna port.
  • FIG. 7A shows an example of such mapping.
  • FIG. 7A is also an example of a mapping method for forming vacancy in the time direction and the frequency direction. For example, the frequency element shown in B of FIG. 7A is not mapped, and the symbol shown in A is not mapped.
  • FIG. 7B shows an example in which mapping is performed for all resources in the time direction and the frequency direction. In the case of FIG. 7B, there is no time / frequency resource that is not used at all as shown in FIG.
  • FIGS. 7A and 7B are examples of discovery signal mapping, but the same mapping can be used for the measurement reference signal.
  • the user apparatus 20 detects the discovery signal transmitted from the small base station 12 as the discovery signal with the best reception quality. Therefore, in FIG. 8, the small base station 11 and the small base station 12 Of these, a small base station 12 is shown.
  • the macro base station 10 periodically transmits macro auxiliary information, for example, to the user apparatus 20 located in the coverage of the macro cell, and the user apparatus 20 receives the macro auxiliary information (step 101). For example, it is assumed that the user apparatus 20 grasps resources such as the transmission period and frequency of the macro auxiliary information from the system information transmitted from the macro base station 10.
  • the small base station 12 transmits a plurality of precoded discovery signals that form a wide beam (step 102). Since the user apparatus 20 knows the transmission timing of each discovery signal and the sequence (including information such as an identifier and an index) based on the macro auxiliary information received in step 101, the user equipment 20 can use these to obtain a small base Each discovery signal transmitted from the station 12 is received, and reception quality (reception power, etc.) is measured. That is, identifier (beam) candidates used to measure a plurality of discovery signals are limited by macro auxiliary information.
  • the discovery signal has the same function as the synchronization signal (SS) in LTE, and the user apparatus 20 receives the discovery signal to achieve frequency synchronization with the small base station 12 and timing synchronization. (Symbol synchronization, frame synchronization, etc.). Further, information (minimum system information or the like) necessary for communication in the coverage of the small base station 12 may be received by the discovery signal.
  • SS synchronization signal
  • information minimum system information or the like
  • the user apparatus 20 measures the reception quality (reception power etc.) of the detected discovery signal, and transmits the measurement result to the macro base station 103 as a measurement report (step 103).
  • the measurement report includes identification information (identifier, index, etc.) of the discovery signal that can be received, and reception quality (eg, received power, etc.) for each discovery signal.
  • the type of channel used in this measurement report is not limited, but, for example, an uplink physical shared channel (PUSCH) can be used.
  • PUSCH uplink physical shared channel
  • a measurement report for only the discovery signal with the highest reception quality may be transmitted.
  • a measurement report for a predetermined number of discovery signals may be transmitted from the one having the higher reception quality.
  • the macro base station 10 that has received the measurement report for the discovery signal from the user apparatus 20 identifies the discovery signal (wide beam) that the user apparatus 20 has received best based on the measurement report, and corresponds to the discovery signal.
  • the measurement reference signal to be received by the small base station 12 and the user apparatus 20 is determined (assigned).
  • the macro base station 10 notifies the user apparatus 20 of control information including the identification information (small cell ID and the like) of the small base station 12 and the timing and sequence of the measurement reference signal to be received by the user apparatus 20.
  • the notification of the identification information of the small base station 12 may be performed as Scell assignment. That is, in this case, the user apparatus 20 includes a Pcell (cell formed by the primary component carrier) formed by the macro base station 10 and a Scell (cell formed by the secondary component carrier) formed by the small base station 12. Are used for communication at the same time.
  • the macro base station 10 backs the above allocation information (identification information of the small base station 12 with which the user apparatus 12 communicates, Scell allocation information, information on the measurement reference signal to be received by the user apparatus 20, etc.). It is good also as transmitting to the small base station 12 through a hall line (step 105). However, this operation is not essential. For example, when there is no notification of allocation information via the backhaul line, the small base station 12 transmits all measurement reference signals and grasps the geodetic reference signals (narrow beams) to be received. Based on the feedback information from 20, a narrow beam for data signal communication may be assigned to the user apparatus 20.
  • the small base station 12 can perform operations such as Scell operation in carrier aggregation and not transmitting a measurement reference signal in a direction in which no user apparatus exists. .
  • the user apparatus 20 that has received the control information in step 104 can receive a limited number of measurement reference signals transmitted by a narrow beam.
  • the user apparatus 20 receives a plurality of measurement reference signals for each narrow beam transmitted from the small base station 12 according to the control information (step 106), measures reception quality (reception power, etc.), A specific measurement reference signal is selected based on the reception quality, and feedback information including identification information such as the number of the selected measurement reference signal is transmitted to the small base station 12 using the uplink channel (step 107).
  • the above selection may be performed by selecting the one having the best reception quality, selecting a predetermined number from the one having the highest reception quality, or by other methods.
  • the feedback information may include CSI such as CQI and rank instead of or in addition to the received power.
  • the small base station 12 determines a narrow beam for transmitting a data signal or the like (PDSCH, EPDCCH, etc.) to the user apparatus 20 based on the feedback information, and performs downlink communication using the narrow beam.
  • an uplink channel from which the user apparatus 20 transmits feedback information for example, an uplink physical control channel (PUCCH / EPUCCH) or a random access channel (PRACH) defined by LTE can be used, but is not limited thereto. Do not mean.
  • the uplink channel resource may be allocated from the macro base station 10 or may be allocated from the small base station 12 after being synchronized with the small base station 12 by the discovery signal.
  • the transmission of feedback information here is also shown as step 107 in FIG.
  • the small base station 12 that has received the feedback information performs scheduling, determines a beam, rank, MCS (modulation scheme / coding rate), resource, and the like suitable for the user apparatus 20, and transmits a data signal ( Step 108). More specifically, before step 108, allocation information may be transmitted from the small base station 12 to the user equipment 20 on the control channel.
  • MCS modulation scheme / coding rate
  • FIG. 10 is a diagram illustrating a state where the user apparatus 20 moves in a communication environment in which the wireless communication system according to the present embodiment is used. That is, FIG. 10 shows a state where the user apparatus 20 moves and passes through two small cells within the coverage of the macro cell.
  • the user device 20 located at the point A moves and reaches the place (point B) entering the coverage of the small cell 1.
  • the user apparatus 20 searches for discovery signals at predetermined intervals based on the macro auxiliary information, and detects a discovery signal transmitted by a predetermined wide beam of the small cell 1 when reaching the point B.
  • the measurement reference signal transmitted by the narrow beam is received on the wide beam and the feedback information is returned, so that appropriate resource allocation and beam selection are performed, and data signal communication is performed. I do.
  • a narrow beam (a wide beam if necessary) is dynamically switched, and the user apparatus 20 can continue communication with an appropriate beam while moving.
  • the user device 20 When the user device 20 goes out of the coverage of the small cell 1, only communication with the macro cell is performed. At this time, similarly to the operation at the point A, the user apparatus 20 searches for the discovery signal, and detects the discovery signal when entering the coverage of the small cell 2. The subsequent operation is the same as the operation within the coverage of the small cell 1.
  • the macro base station 10 exists, and the user apparatus 20 receives macro auxiliary information from the macro base station 10 or transmits a measurement report to the macro base station 10. It is also possible to adopt a configuration in which 10 does not exist.
  • FIG. 11 shows a case where the macro base station 10 does not exist or the user apparatus 20 exists outside the coverage of the macro base station 10 and the user apparatus 20 can communicate with the small base station 12. Yes.
  • auxiliary information corresponding to macro auxiliary information is stored in the user device 20 in advance.
  • the small base station 12 transmits a plurality of precoded discovery signals forming a wide beam (step 201). Since the user apparatus 20 knows the transmission timing and sequence of each discovery signal based on the auxiliary information, the user apparatus 20 receives each discovery signal transmitted from the small base station 12 by using these. By receiving the discovery signal, the user apparatus 20 performs frequency synchronization with the small base station 12 and also performs timing synchronization (symbol synchronization, frame synchronization, etc.). Further, information (minimum system information or the like) necessary for communication in the coverage of the small base station 12 may be received by the discovery signal.
  • the user apparatus 20 measures the reception quality (received power, etc.) of the received discovery signal, and transmits the measurement result as a measurement report to the small base station 12 (step 202).
  • the measurement report includes identification information (identifier, index, etc.) of the discovery signal that can be received, and reception quality (eg, received power, etc.) for each discovery signal. Also, for example, a measurement report for only the discovery signal with the highest reception quality may be transmitted. Further, for example, a measurement report for a predetermined number of discovery signals may be transmitted from the one having the higher reception quality.
  • the small base station 12 that has received the measurement report for the discovery signal from the user apparatus 20 identifies the discovery signal (wide beam) that the user apparatus 20 has received best based on the measurement report, and corresponds to the discovery signal.
  • the measurement reference signal to be monitored by the user device 20 is determined (assigned). Then, the small base station 12 notifies the user device 20 of control information including the timing and sequence of the reference signal for measurement that the user device 20 should receive (step 203).
  • the user apparatus 20 holds correspondence information between the discovery signal and the measurement reference signal, the user apparatus 20 transmits the measurement reference signal as described below without performing the measurement report transmission and the control information reception. Reception may be performed.
  • the user apparatus 20 that has received the control information in step 203 can monitor a limited number of measurement reference signals transmitted by a narrow beam.
  • the user apparatus 20 receives a plurality of measurement reference signals for each narrow beam transmitted from the small base station 12 according to the control information (step 204), and measures reception quality (reception power, CQI, etc.).
  • reception quality reception power, CQI, etc.
  • feedback information including identification information of the best measurement reference signal is transmitted to the small base station 12 using the uplink channel (step 205).
  • the subsequent operation is the same as that described in FIG.
  • the small base stations 11 and 12 By transmitting and transmitting the measurement reference signal with a narrow beam, a hierarchical narrow beam search is possible.
  • a synchronization signal can be used as the discovery signal.
  • the discovery signal is assumed to be a synchronization signal (PSS / SSS).
  • FIGS. 1-10 Specific examples of how the discovery signal beam and the measurement reference signal beam are transmitted are shown in FIGS.
  • the horizontal direction indicates the horizontal direction angle and the vertical direction indicates the vertical direction angle.
  • FIG. 12 shows an example in which the base station transmits a discovery signal with seven wide beams and transmits a measurement reference signal with eight narrow beams in each wide beam.
  • the wide beams are arranged in the horizontal direction while partially overlapping.
  • one wide beam is transmitted in one OFDM symbol, and wide beams # 0 to # 6 shown in FIG. 12 are transmitted in one slot (7 symbols).
  • the beam ID of the reference signal is called a beam group ID
  • the beam ID of the measurement reference signal is called a beam ID.
  • the beam group ID can be acquired from a sequence of discovery signals (PSS / SSS), and the beam ID can be acquired from a sequence of reference signals for measurement.
  • FIG. 13 shows another example in which the base station transmits a discovery signal with seven wide beams and transmits a measurement reference signal with eight narrow beams in each wide beam.
  • # 0 to # 6 are formed on the upper side in the vertical direction
  • # 5 to # 6 are on the lower side of # 0 to # 4.
  • the width in the vertical direction is narrower than that of # 4 and the width in the horizontal direction is wider.
  • the shape shown in FIG. 13 can effectively cover, for example, the user at the cell edge.
  • PSS / SSS is used as a discovery signal.
  • PSS can be used for symbol timing synchronization and SSS can be used for radio frame synchronization, but is not limited thereto.
  • the PSS sequence is the same for all symbols (7 symbols in the above example).
  • the series may be the same among a plurality of sites, or the series may be different at each site.
  • FIG. 14 shows a case where the series is the same among a plurality of sites.
  • the series is different between symbols (beams).
  • the series may be the same among a plurality of sites, or the series may be different at each site.
  • FIG. 15 shows a case where the series is different at each site.
  • the beam group ID search for example, the combination of PSS / SSS of FIGS. 14 and 15 is adopted, PSS (one sequence) is used for initial synchronization, and SSS (different between beams) is detected for the beam group ID. It is possible to use it.
  • a total of 504 beam group IDs can be used.
  • the discovery signal and the measurement signal have a hierarchical relationship, and when the user apparatus 20 receives a good discovery signal with a wide beam, the user apparatus 20 reduces a plurality of measurement signals corresponding to the discovery signal and the measurement signals.
  • An operation of receiving a beam, selecting a specific reference signal for measurement, and returning feedback to the base station is performed. Since this operation corresponds to searching for the beam ID of the beam of the reference signal for measurement that can be satisfactorily received, it can be called a beam ID search.
  • FIG. 16 shows an example of a hierarchical structure of a beam ID search in the case where seven wide beams and eight narrow beams are formed per wide beam as shown in FIG.
  • each of the beam IDs # 0 to # 6 corresponding to the seven wide beams. (Shown in FIG. 16A).
  • beam IDs # 5 to 7 under beam group ID # 0 are beams under beam group ID # 1.
  • IDs # 8 to 10 are the same.
  • the corresponding base station may perform ID management by assigning beam IDs # 8 to 10 under the beam group ID # 1 as beam IDs # 5 to ID7.
  • FIG. 16B shows an example of such ID assignment.
  • the beam of the reference signal for measurement used for the beam ID search is a narrow beam narrower than the beam of the discovery signal.
  • this is an example, and the beam of the reference signal for measurement is also used.
  • a wide beam similar to the beam of the reference signal may be used.
  • each beam covers a wider range than the narrow beam, so that the resistance to mobility (Robustness) is improved as compared with the narrow beam. Also, the complexity of the beam search is reduced compared to the case of a narrow beam.
  • beamforming gain and coverage narrow beam is better than wide beam, but when wide beam is used, beam forming gain and coverage are improved by increasing resources allocated for measurement reference signal transmission. be able to. Further, in the case of a wide beam, the number of signals to be measured is reduced and the amount of information in measurement reports (feedback) may be small as compared with the case of a narrow beam.
  • the beam for transmitting the measurement reference signal is not limited to a wide beam and a narrow beam, and a middle beam that is a beam having an intermediate width may be used.
  • FIG. 17 shows an example of using an intermediate beam.
  • 14 intermediate beams # 0 to # 13 are used.
  • each intermediate beam includes five narrow beams.
  • Such beam grouping can be applied, for example, when super massive MIMO or the like having a large number of antenna elements is used.
  • mapping of PSS / SSS and measurement reference signal The example shown in FIG. 6 has already been described as the mapping example of the radio resource of the discovery signal and the reference signal for measurement.
  • a mapping example in a specific example using PSS / SSS as the discovery signal will be described.
  • FIG. 18 is a diagram illustrating a mapping example of PSS / SSS.
  • PSS and SSS are allocated to resource blocks in the central part of the system band.
  • the upper half PSS / SSS and the lower half PSS / SSS in FIG. 18 are the same sequence, but in order to obtain transmission diversity, different precoding vectors are multiplied in the upper half and the lower half of the frequency domain.
  • the base station includes an orthogonal polarization antenna (Dual Polarized Antenna), and the precoding vector is applied to the orthogonal polarization antenna port and the horizontal polarization antenna port of the orthogonal polarization antenna. Is.
  • the PSS is transmitted with a wide beam different in symbol units
  • the SSS is also transmitted with a wide beam different in symbol units.
  • this is an example, and the present invention is not limited to this.
  • FIG. 19 is a diagram illustrating an example of a PSS / SSS transmission interval. As shown in FIG. 19, in this example, the frames are transmitted at intervals of 10 ms. As shown in FIGS. 18 and 19, the user apparatus 20 can quickly detect PSS / SSS by transmitting PSS / SSS with transmission diversity in one subframe.
  • FIG. 20 shows a mapping example of the reference signal for measurement when the above PSS / SSS is used.
  • measurement reference signals transmitted by a plurality of narrow beams belonging to a beam group ID that transmits a PSS are mapped above and below the PSS.
  • the measurement reference signals mapped above and below the PSS have the same sequence. Transmit diversity is obtained by multiplying the measurement reference signals mapped above and below the PSS by different precoding vectors.
  • measurement reference signals transmitted by a plurality of narrow beams belonging to the beam group ID that transmits the SSS are mapped above and below the SSS.
  • the measurement reference signals mapped above and below the SSS have the same sequence. Transmit diversity is obtained by multiplying the measurement reference signals mapped above and below the SSS by different precoding vectors.
  • each measurement reference signal block is mapped per beam group (up and down of PSS, up and down of SSS).
  • the numbers # 0 to # 6 in FIG. 20 indicate beam group IDs, and the reference signals for measurement transmitted by a plurality of narrow beams belonging to the numbered beam group are mapped to the resources of each numbered block. Has been.
  • each block time length is 1 symbol
  • the number indicates a beam (measurement reference signal) for transmitting a signal using the corresponding resource.
  • 8 beams (8 measurement reference signals) are distributed and mapped to subcarriers.
  • the bandwidth of one block is not limited to a specific value, but can be, for example, 14 resource block length.
  • the example on the right side of FIG. 20 is an example where eight narrow beams (measurement reference signals) belong to one wide beam (PSS / SSS).
  • An example of mapping in the case where one wide beam (measurement reference signal) belongs to one wide beam (PSS / SSS) is shown in FIG.
  • the beam of the PSS / SSS and the beam of the reference signal for measurement are the same.
  • the resource mapping may be continuous subcarrier mapping as shown in FIG. 21 (a), or may be distributed mapping as shown in FIG. 21 (b). In the case of distributed mapping, power boosting (power increase) may be applied to assigned subcarriers.
  • FIG. 22 shows an example of mapping when two intermediate beams (measurement reference signals) belong to one wide beam (PSS / SSS).
  • the intermediate beam is about half the size of the wide beam.
  • the resource mapping may be continuous subcarrier mapping as shown in FIG. 22 (a), or may be distributed mapping as shown in FIG. 22 (b).
  • power boosting power increase
  • the user apparatus 20 receives PSS / SSS from three base stations (site A, site B, and site C), and among the plurality of received signals, the beam group ID # 1 of the site A It is assumed that the signal transmitted by the wide beam and the signal transmitted by the wide beam of the beam group ID # 5 at the site B are satisfactorily received.
  • Good reception means for example, reception power that is equal to or higher than a predetermined threshold, reception power from the upper level to the predetermined level (second in the example of FIG. 24), and the like.
  • the user apparatus 20 holds resource information and sequences (beam IDs) of a plurality of reference signals for measurement belonging to the beam group ID # 1 of the site A and the beam group ID # 5 of the site B.
  • These pieces of information may be received from the macro base station 10 as a measurement report by notifying the macro base station 10 of the beam group ID # 1 of the site A and the beam group ID # 5 of the site B.
  • correspondence information between each beam group ID of each site and the resource and sequence of the measurement reference signal may be received from the macro base station 10. .
  • the user apparatus 20 measures the received power of each measurement reference signal in the blocks belonging to the beam groups ID # 1 and # 5, and specifies the measurement reference signal having the largest received power. To do.
  • the beam ID corresponding to the specified measurement reference signal is transmitted to the base station as the feedback information described above. For example, in the hierarchical structure shown in FIG. 25B, when the reception power of the signal of beam # 5 belonging to beam group ID # 1 is the highest, the beam ID is transmitted to the base station.
  • the beam group IDs # 1 and # 5 are selected for the site A and the site B. For example, even when the beam group IDs # 1 and # 5 are selected only for the site A, Similar operations can be performed.
  • CSI-RS ⁇ About CSI-RS and beam tracking>
  • data is transmitted / received after a measurement reference signal to be received well is identified and feedback information (including a beam ID) is transmitted to the base station.
  • pre-coded CSI-RS may be transmitted.
  • the CSI-RS can be positioned as a reference signal in a layer below the measurement reference signal in the hierarchical structure of the present embodiment.
  • There may also be pre-coded CSI-RS under the discovery signal (PSS / SSS). That is, the precoded CSI-RS may be used as the measurement reference signal described so far.
  • the base station can transmit the CSI-RS using a beam corresponding to the beam ID obtained from the feedback information. Also, the base station may configure a feedback method (period, use frequency resource, etc.) for CSI-RS in the user apparatus 20 based on the feedback information.
  • the base station uses a plurality of narrow beams (for example, each beam may be the same width as the measurement reference signal transmission beam or a narrower beam) and CSI-RS in a plurality of streams.
  • the reception resources for CSI-RS may be dynamically allocated by EPDCCH, for example, or may be allocated semi-statically.
  • the CSI-RS sequence may be UE-specific by scrambling with a UE-specific ID.
  • Beam tracking can be performed, for example, by forming the beam shown in FIG. FIG. 26 shows the beam direction viewed from the antenna of the base station, where the horizontal direction on the paper is the horizontal direction and the vertical direction is the vertical direction.
  • the base station transmits a CSI-RS for tracking to the user apparatus 20 by using beams # 1 to # 6 in addition to the beam (current beam) # 0 selected by the measurement reference signal and currently formed To do.
  • Beams # 1 to # 6 are candidate beams used when the current beam # 0 cannot follow the user apparatus 20.
  • a beam stream for beam tracking is formed by combining the beam # 0 for data transmission and the candidate beams # 1 to # 6.
  • the base station when the base station supports eight antenna ports with orthogonally polarized antennas, one antenna port (one polarization) is used for transmitting each candidate beam (all six beams), and transmission of the current beam transmission is performed.
  • two antenna ports may be used.
  • the beam stream in each path may be realized in different subframes.
  • the user apparatus 20 When the user apparatus 20 receives the beam stream, the user apparatus 20 measures the received power of each beam and feeds back to the base station a beam number having a good reception state (eg, included in the CSI-RS sequence).
  • the beam number to be fed back may be the optimum beam number or the top X beam numbers. Further, the measurement results may be fed back for all of the beams # 0 to # 6, or may be fed back in the order of good reception quality or the bad measurement results.
  • the feedback can be periodically performed based on the configuration from the base station, for example.
  • RI, CQI, and PMI may be transmitted as feedback for the CSI-RS.
  • the base station sets the beam optimal for the user apparatus 20 as the current beam # 0 based on the feedback information of the beam tracking, thereby causing the user apparatus 20 to follow the direction of data transmission. This is shown in FIG. In the example of FIG. 27, it is shown that the best beam # 1 is set as the beam # 0 next.
  • beam tracking is lost, such as when the moving speed of the user device 20 is fast, beam selection is performed using a measurement reference signal.
  • the user apparatus 20 can perform communication by carrier aggregation (CA) using a plurality of component carriers (CC) with the base station.
  • CA carrier aggregation
  • CC component carriers
  • PDSCH, EPDCCH, CSI-RS, etc. are transmitted from the base station in each CC (all CCs), and for the uplink, PUSCH, EPUCCH, SRS (sounding reference) Signal) is transmitted in each CC (all CCs).
  • the synchronization signal PSS / SSS or the like
  • the measurement reference signal may be transmitted by all CCs or may be transmitted by one CC.
  • FIG. 28 shows an example of signal mapping to CC in carrier aggregation.
  • FIG. 28 shows an example of TDD in which uplink and downlink are time-divided, but similar mapping is possible even with FDD.
  • FDD in FIG. 28, it can be seen that the CC frequency is different in the uplink.
  • PRACH is transmitted by CC1 which is one CC, and PRACH is not transmitted by CC2, 3 and 4 which are other CCs constituting the carrier aggregation.
  • the synchronization signal (PSS / SSS) is transmitted by CC1, which is one CC, and is not transmitted by CC2, 3, 4 which are other CCs constituting the carrier aggregation.
  • the measurement reference signal is transmitted by all CCs.
  • each device described below shows a configuration particularly related to the present embodiment, and each device includes a function of a user device / base station capable of executing an operation based on LTE, for example.
  • FIG. 29 shows a functional configuration diagram of the user device 20.
  • the user device 20 includes a signal transmission unit 201, a signal reception unit 202, a reception quality measurement unit 203, a control information storage unit 204, and a feedback information generation unit 205.
  • the signal transmission unit 201 generates a lower layer signal from the upper layer information and transmits it wirelessly.
  • the signal receiving unit 202 acquires upper layer information from a lower layer signal received wirelessly.
  • the signal receiving unit 202 acquires macro auxiliary information from a control signal received from the macro base station 10, stores the macro auxiliary information in the control information storage unit 204, and stores the macro auxiliary information in the control information storage unit 204.
  • the discovery signal transmitted from the small base station is received based on the macro auxiliary information.
  • the signal receiving unit 202 receives control information (such as information on a reference signal for measurement to be searched) from the macro base station 10 and stores it in the control information storage unit 204, and based on the control information, A reference signal is received.
  • the control information storage unit 204 stores various control information (such as macro auxiliary information) received from the macro base station 10. Further, the control information storage unit 204 may store information other than information received from the macro base station 10 (information set in advance, information received from the small base station, etc.).
  • the reception quality measurement unit 203 measures the reception quality (reception power, etc.) of the discovery signal received by the signal reception unit 202, passes the measurement result to the feedback information generation unit 205, and receives the measurement result by the signal reception unit 202.
  • the reception quality (reception power, CQI, rank, etc.) of the reference signal is measured (estimated), and the measurement result is passed to the feedback information generation unit 205.
  • the reception quality measuring unit 203 can also measure the reception quality of the CSI-RS for beam tracking.
  • the feedback information generation unit 205 generates feedback information from the measurement result obtained from the discovery signal (for example, in an appropriate format), passes it to the signal transmission unit 201, and feedbacks from the measurement result obtained from the measurement reference signal. Information is generated (such as an appropriate format) and passed to the signal transmission unit 201. Further, the feedback information generation unit 205 can also generate feedback information based on the CSI-RS for beam tracking.
  • the signal transmission unit 201 transmits feedback information based on the measurement result obtained from the discovery signal to the macro base station 10 or the small base station 12 as a measurement report. Further, the signal transmission unit 201 transmits feedback information based on the measurement result obtained from the measurement reference signal to the small base station 12. The signal transmission unit 201 can also transmit feedback information based on the measurement result obtained from the CSI-RS for beam tracking to the small base station 12. Note that the signal receiving unit 202 also has a function of synchronizing (time synchronization, frequency synchronization) with the small base station 12 based on a received discovery signal (PSS / SSS or the like).
  • PSS / SSS received discovery signal
  • FIG. 30 shows a functional configuration diagram of the macro base station 10.
  • the macro base station 10 includes a signal transmission unit 101, a signal reception unit 102, a macro auxiliary information storage unit 103, a control information generation unit 104, and an inter-base station communication unit 105.
  • the signal transmission unit 101 generates a lower layer signal from the upper layer information and transmits it wirelessly.
  • the signal receiving unit 102 acquires upper layer information from a lower layer signal received wirelessly.
  • the macro auxiliary information storage unit 103 stores macro auxiliary information.
  • the macro auxiliary information includes transmission timing information of discovery signals used in the coverage area of the macro base station 10 and sequence information of discovery signals.
  • the macro auxiliary information storage unit 103 also stores measurement reference signal transmission timing and measurement reference signal sequence information.
  • the signal transmission unit 101 transmits the macro auxiliary information stored in the macro auxiliary information storage unit 103 to the user device 20.
  • the signal transmission unit 101 transmits the control information generated by the control information generation unit 104 to the user device 20.
  • the signal receiving unit 102 receives a measurement report based on the measurement based on the discovery signal from the user device 20, and the control information generating unit 104 receives control information (information on the reference signal for measurement, etc.) based on the measurement report. Generate.
  • the inter-base station communication unit 105 transmits the control information (such as Scell allocation information) generated by the control information generation unit 104 to the small base station 12.
  • FIG. 31 shows a functional configuration diagram of the small base station 12.
  • the small base station 12 includes a signal transmission unit 121, a signal reception unit 122, a control information generation unit 123, and an inter-base station communication unit 124.
  • the signal transmission unit 121 generates a lower layer signal from the upper layer information and transmits it wirelessly.
  • the signal receiving unit 122 acquires upper layer information from a lower layer signal received wirelessly.
  • the signal receiving unit 122 receives feedback information based on the measurement using the measurement reference signal from the user apparatus 20, and the control information generating unit 123 uses the feedback information to control information (a narrow beam for data signal transmission, Resource, MCS, rank allocation information, etc.).
  • the signal transmission unit 121 transmits the control information generated by the control information generation unit 123 to the user device 20.
  • the inter-base station communication unit 124 receives control information (such as Scell allocation information) from the macro base station 10, and the signal transmission unit 121 and the signal reception unit 122, for example, the macro base station based on the control information. Transmission / reception control for carrier aggregation using 10 Pcells and the Scell of the small base station 12 is performed. In addition, as illustrated in FIG.
  • the signal transmission unit 121 and the signal reception unit 122 can perform signal transmission / reception in carrier aggregation with the user device 20. Further, the signal transmission unit 121 transmits a CSI-RS for beam tracking, the signal reception unit 122 receives feedback information based on the CSI-RS, and the control information generation unit 123 is based on the feedback information. It is also possible to select an optimum beam, create control information including the selected result, and transmit the control information from the signal transmission unit 121.
  • the small base station 12 receives the feedback information based on the measurement of the measurement reference signal so as to assign the downlink narrow beam to the user apparatus 20, and the like. It is also possible to use a TDD (time division duplex) in the wireless communication system of the form of the above and assign a downlink narrow beam by utilizing TDD reciprocity. That is, since the uplink and downlink frequencies are the same in TDD, for example, the small base station 12 determines a narrow beam on the reception side (uplink) with the optimum reception quality based on the signal received from the user apparatus 20. The narrow beam in the opposite direction (downward direction) to the narrow beam is assigned to the user apparatus 20 as the downward narrow beam.
  • TDD time division duplex
  • the above TDD method and the method based on feedback information described so far may be used in combination. For example, if the downlink narrow beam obtained by TDD is close to the narrow beam assigned based on the feedback information described so far (within a predetermined threshold range), the downlink narrow beam obtained by TDD is used. If it is not close, an operation of adopting a narrow beam assigned based on feedback information can be performed.
  • a user apparatus that communicates with the base station in a wireless communication system including a base station and a user apparatus, and a plurality of different identifiers transmitted from the base station.
  • First reference signal receiving means for measuring the received power of the associated first reference signal and selecting a specific first reference signal; and an identifier and reception of the first reference signal selected by the first reference signal receiving means Report means for reporting power to the base station or the base station of the macro cell, second reference signal receiving means for receiving a plurality of second reference signals transmitted from the base station, and reception by the second reference signal receiving means
  • a user apparatus comprising: measurement means for measuring reception quality of a second reference signal to be transmitted and transmitting feedback information based on the reception quality to the base station.
  • This user equipment is formed by the base station because it can first receive a first reference signal and then receive a limited number of second reference signals corresponding to the first reference signal. It becomes possible to efficiently select a specific beam to be used for communication among a plurality of beams. Although the above configuration uses the first reference signal and the second reference signal, the first reference signal and the second reference signal exist even when a larger number of reference signals are used.
  • the user apparatus includes a user apparatus using a reference signal of three or more layers.
  • the user apparatus may include auxiliary information receiving means for receiving auxiliary information for limiting candidate identifiers used for measuring the plurality of first reference signals from a macro cell base station.
  • auxiliary information receiving means for receiving auxiliary information for limiting candidate identifiers used for measuring the plurality of first reference signals from a macro cell base station.
  • the user apparatus may be synchronized with the base station based on the first reference signal received by the first reference signal receiving unit.
  • the user apparatus can efficiently start communication with the base station.
  • the plurality of second reference signals are associated with a plurality of different numbers, and the measurement unit selects a specific second reference signal based on reception quality, and the number of the selected second reference signal and The reception quality may be transmitted as feedback information to the base station. By selecting based on the reception quality, an optimal second reference signal can be determined.
  • the reporting means reports the identifier and received power of the selected first reference signal using an uplink physical shared channel, and the measurement means provides feedback information based on the reception quality of the second reference signal. Transmission is performed using an uplink physical control channel.
  • the first reference signal receiving means receives the first reference signal mapped only within a part of the frequency domain
  • the second reference signal receiving means receives the frequency to which the first reference signal is mapped. You may make it receive the said 2nd reference signal mapped by the frequency area
  • the reception quality can be measured over a wide band by mapping the second reference signal in a frequency region wider than the frequency region to which the first reference signal is mapped.
  • the base station communicates with the user apparatus, and transmits a first reference signal associated with a plurality of different identifiers.
  • 1 reference signal transmitting means for transmitting a plurality of second reference signals at a timing different from the timing for transmitting the plurality of first reference signals, and a second reference measured by the user apparatus
  • Information receiving means for receiving feedback information based on the reception quality of the signal, wherein the first reference signal transmitting means transmits a first reference signal mapped only in a part of the frequency domain, and the second reference In the signal transmission means, a base for transmitting the second reference signal mapped to a frequency region wider than the frequency region to which the first reference signal is mapped.
  • the station is provided.
  • the base station includes a base station using a reference signal of three or more layers.
  • the plurality of second reference signals are associated with a plurality of different numbers, and the information reception means uses the number and reception quality of the second reference signal selected by the user apparatus based on reception quality as feedback information. You may make it receive. Thereby, the user apparatus can know the reception quality corresponding to the second reference signal, and can perform control such as rank adaptation and link adaptation.
  • the user apparatus described in the present embodiment may include a CPU and a memory, and may be realized by a program being executed by a CPU (processor). Processing logic described in the present embodiment It may be a configuration realized by hardware such as a hardware circuit provided with a program, or a configuration in which a program and hardware are mixed.
  • the base station described in this embodiment may include a CPU and a memory, and may be configured by a program being executed by a CPU (processor).
  • the processing logic described in this embodiment may be used. It may be a configuration realized by hardware such as a hardware circuit provided with a program, or a configuration in which a program and hardware are mixed.
  • the operations of a plurality of functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by a plurality of components.
  • the user apparatus and the base station have been described using functional block diagrams, but such an apparatus may be realized in hardware, software, or a combination thereof.
  • Software operated by a processor included in a user apparatus and software operated by a processor included in a base station according to the embodiment of the present invention are random access memory (RAM), flash memory, read-only memory (ROM), EPROM, and EEPROM. , A register, a hard disk (HDD), a removable disk, a CD-ROM, a database, a server, or any other suitable storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行うユーザ装置において、前記基地局から送信される複数の異なる識別子に対応付けられた第1参照信号の受信電力を測定し、特定の第1参照信号を選択する第1参照信号受信手段と、前記第1参照信号受信手段により選択した第1参照信号の識別子と受信電力を前記基地局又はマクロセルの基地局に報告する報告手段と、前記基地局から送信される複数の第2参照信号を受信する第2参照信号受信手段と、前記第2参照信号受信手段により受信する第2参照信号の受信品質を測定し、当該受信品質に基づくフィードバック情報を前記基地局に送信する測定手段とを備える。

Description

ユーザ装置、基地局、及び通信方法
 本発明は、無線通信システムの基地局とユーザ装置に関するものである。
 LTE/LTE-Adancedでは、システム容量、セル端ユーザスループット等を増大させるMIMO技術が採用されている。また、異なるタイプの基地局(マクロセル、スモールセル等)を混在させつつセル間干渉を低減して高品質な通信を実現するヘテロジニアスネットワーク技術が採用されている。
 特に、ヘテロジニアスネットワークにおけるスモールセルでは、高周波数帯を使用することが想定されている。ここで、高周波数帯では伝搬ロスが増大することから、それを補うために、ビーム幅の狭いビームフォーミングを行うmassive MIMOを適用することが検討されている。
 massive MIMOは、基地局側に多数(例:100素子)のアンテナを設置する大規模MIMOであり、狭い領域に電界の強さを集中させることができるため、ユーザ間の干渉を小さくすることができる。
特開2013-219507号公報
 図1は、massive MIMOを適用した多数のスモールセルが存在する通信環境の例を示す図である。図1に示すように、各スモールセルの基地局から多数のビームが送信されている。このような環境においてユーザ装置(UE)が移動しながら通信を行う場合、ユーザ装置は、現在位置に適合した特定のビームを選択するとともに、移動に応じてビームを順次切り替えることが必要となる。
 このような動作を実現するために、ユーザ装置は候補となる全てのビームの参照信号を監視することが考えられる。しかし、仮に、1スモールセルあたりのビーム数を100とし、100個のスモールセルのいずれかに在圏する可能性があるとすると、ユーザ装置UEは、100×100=10000のビームを監視する必要がある。このような動作は、参照信号のオーバヘッドやフィードバックの情報量を増大させるとともに、ユーザ装置における処理が複雑化するという問題がある。
 本発明は上記の点に鑑みてなされたものであり、ビームフォーミングを行う基地局とユーザ装置とを有する無線通信システムにおいて、ユーザ装置が、基地局により形成される複数のビームのうち、通信に使用する特定のビームを効率的に選択することを可能とする技術を提供することを目的とする。
 本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行うユーザ装置であって、
 前記基地局から送信される複数の異なる識別子に対応付けられた第1参照信号の受信電力を測定し、特定の第1参照信号を選択する第1参照信号受信手段と、
 前記第1参照信号受信手段により選択した第1参照信号の識別子と受信電力を前記基地局又はマクロセルの基地局に報告する報告手段と、
 前記基地局から送信される複数の第2参照信号を受信する第2参照信号受信手段と、
 前記第2参照信号受信手段により受信する第2参照信号の受信品質を測定し、当該受信品質に基づくフィードバック情報を前記基地局に送信する測定手段とを備えるユーザ装置が提供される。
 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う基地局であって、
 複数の異なる識別子に対応付けられた第1参照信号を送信する第1参照信号送信手段と、
 前記複数の第1参照信号を送信するタイミングと異なるタイミングにおいて、複数の第2参照信号を送信する第2参照信号送信手段と、
 前記ユーザ装置において測定された第2参照信号の受信品質に基づくフィードバック情報を受信する情報受信手段とを備え、
 前記第1参照信号送信手段において、一部の周波数領域内のみにマッピングされた第1参照信号を送信し、
 前記第2参照信号送信手段において、第1参照信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた第2参照信号を送信する基地局が提供される。
 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行うユーザ装置が実行する通信方法であって、
 前記基地局から送信される複数の異なる識別子に対応付けられた第1参照信号の受信電力を測定し、特定の第1参照信号を選択する第1参照信号受信ステップと、
 前記第1参照信号受信ステップにより選択した第1参照信号の識別子と受信電力を前記基地局又はマクロセルの基地局に報告する報告ステップと、
 前記基地局から送信される複数の第2参照信号を受信する第2参照信号受信ステップと、
 前記第2参照信号受信ステップにより受信する第2参照信号の受信品質を測定し、当該受信品質に基づくフィードバック情報を前記基地局に送信する測定ステップとを備える通信方法が提供される。
 また、本発明の実施の形態によれば、基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う基地局が実行する通信方法であって、
 複数の異なる識別子に対応付けられた第1参照信号を送信する第1参照信号送信ステップと、
 前記複数の第1参照信号を送信するタイミングと異なるタイミングにおいて、複数の第2参照信号を送信する第2参照信号送信ステップと、
 前記ユーザ装置において測定された第2参照信号の受信品質に基づくフィードバック情報を受信する情報受信ステップとを備え、
 前記第1参照信号送信ステップにおいて、一部の周波数領域内のみにマッピングされた第1参照信号を送信し、
 前記第2参照信号送信ステップにおいて、第1参照信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた第2参照信号を送信する通信方法が提供される。
 本発明の実施の形態によれば、ビームフォーミングを行う基地局とユーザ装置とを有する無線通信システムにおいて、ユーザ装置が、基地局により形成される複数のビームのうち、通信に使用する特定のビームを効率的に選択することを可能とする技術が提供される。
massive MIMO伝送を行う複数のスモールセルが存在する通信環境の例を示す図である。 本発明の実施の形態に係る無線通信システムの全体構成図である。 本実施の形態における無線通信システムにおいて使用される参照信号の階層構造を示す図である。 スモール基地局から複数のビームで送信される発見信号のイメージを示す図である。 スモール基地局から複数のビームで送信される測定用参照信号のイメージを示す図である。 発見信号と測定用参照信号の無線リソースへのマッピング例を示す図である。 発見信号の無線リソースへのマッピング例を示す図である。 本実施の形態における無線通信システムの動作を示すシーケンス図である。 無線通信システムにおけるフィードバック情報の送信を示す図である。 マクロセル内にスモールセルが存在する通信環境において、ユーザ装置が移動する状況を示す図である。 マクロ基地局10が存在しない場合における動作を示すシーケンス図である。 発見信号のビームと測定用参照信号のビームの例1を示す図である。 発見信号のビームと測定用参照信号のビームの例2を示す図である。 PSSにおける系列の割り当て例を説明するための図である。 SSSにおける系列の割り当て例を説明するための図である。 ビームの階層構造の詳細例を示す図である。 中間の広さのビームの例を示す図である。 PSS/SSSのマッピング例を示す図である。 PSS/SSSの送信間隔例を説明するための図である。 測定用参照信号のマッピング例を示す図である。 広いビームのマッピング例を示す図である。 中間のビームのマッピング例を示す図である。 中間のビームの例を示す図である。 階層的ビームサーチの例を説明するための図である。 階層的ビームサーチの例を説明するための図である。 ビームトラッキングを説明するための図である。 ビームトラッキングを説明するための図である。 キャリアグリゲーションにおける信号のマッピング例を示す図である。 ユーザ装置20の機能構成図である。 マクロ基地局10の機能構成図である。 スモール基地局12の機能構成図である。
 以下、図面を参照して本発明の実施の形態を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。例えば、本実施の形態に係る無線通信システムはLTEに準拠した方式のシステムを想定しているが、本発明はLTEに限定されるわけではなく、他の方式にも適用可能である。なお、本明細書及び特許請求の範囲において、「LTE」は、3GPPのリリース8、又は9に対応する通信方式のみならず、3GPPのリリース10、11、又は12もしくはそれ以降に対応する通信方式も含む広い意味で使用する。
 また、本実施の形態では、基本的に3階層の参照信号の構成を例として示しているが、階層数はこれに限られるわけではなく、階層数が2であってもよいし、階層数が4以上であってもよい。
 (システムの全体構成、動作概要)
 図2に、本発明の実施の形態に係る無線通信システムの全体構成図を示す。本実施の形態に係る無線通信システムは、マクロセルを形成するマクロ基地局10、マクロセルのカバレッジエリア内にあるスモール基地局11、12を含む。また、図2には、マクロ基地局10、スモール基地局11、12等と通信を行うユーザ装置20が示されている。
 当該無線通信システムでは、低周波数帯でマクロ基地局10によりマクロカバレッジを確保し、高周波数帯でスモール基地局11、12によりスモールエリア(例:ホットスポット)のトラフィックを吸収する構成としているが、このような周波数帯の割り当ては一例に過ぎず、これに限られるわけではない。
 本実施の形態におけるスモール基地局11、12は、massive MIMOの機能を備えており、広いビームから狭いビームまで種々の複数のビームを形成することができる。図2には、当該無線通信システムの動作概要も示されている。図2に示すように、本実施の形態では、各スモール基地局から、複数のプリコードされた参照信号(これを発見信号:discovery signalと呼ぶ)がそれぞれビームで送信されている。なお、参照信号がプリコードされているとは、送信の例でいえば、参照信号がある幅のビームで送信されるように、アンテナポート毎に送信信号にウェイトが乗算されていることである。例えば、図2に示す例では、スモール基地局12から、ビーム2-1、ビーム2-2、ビーム2-3のそれぞれで発見信号が送信されている。
 ユーザ装置20は、マクロセルのカバレッジエリアにおいて、マクロ基地局10からマクロ補助情報(macro-assisted information)を受信し(ステップ1)、当該マクロ補助情報を用いて、スモール基地局11、12から送信される複数の発見信号(各ビームで送信される発見信号)を監視し、特定の発見信号を受信(検出)する。ユーザ装置20は、受信した発見信号に基づき受信品質(受信電力等)を測定し、測定報告(measurement report)をマクロ基地局10に送信する(ステップ2)。そして、マクロ基地局10は、当該測定報告に基づいて、例えばユーザ装置20が最も良い品質(例:最も受信電力が高いこと)で信号を受信できたビームを決定し、当該ビームに関連する制御情報(例:ビームに対応する発見信号の識別情報、当該発見信号に対応する測定用参照信号の情報等)をユーザ装置20に送信する。ユーザ装置20は、当該制御情報に従って、決定されたビーム上で、該当のスモール基地局が更に細いビームで送信する参照信号(測定用参照信号と呼ぶ)を受信する。このような動作を経て、ユーザ装置20には、細いビームで送信されるデータ信号(PDSCH等)を受信する無線リソースが割り当てられ、データ信号の受信を行うことができる。なお、無線通信システムの動作については後により詳細に説明する。
 (参照信号の階層構造)
 図3を参照して、本実施の形態における無線通信システムにおいて使用される参照信号について説明する。図3に示すように、本実施の形態における参照信号は階層構造になっており、ユーザ装置20は、上位の階層の参照信号から順次下位の階層の参照信号を参照することで、スモール基地局から送信される複数のビームのうちの最適なビームを検知して、当該ビームで所望のデータ信号の受信を行うことができる。このような階層構造を採用することで、効率良くビームの候補を絞ることができ、非常に多くのビームの参照信号をサーチすることなく、迅速に最適なビームの検知や切り替えを行うことが可能である。
 より具体的には、図3に示す例において、第1階層(first layer)として、マクロ補助情報(macro-assisted information)がある。前述したとおり、マクロ補助情報は、マクロ基地局10からマクロカバレッジ内のユーザ装置20に送信され、ユーザ装置20は当該マクロ補助情報を用いて、発見信号(discovery signal)の受信を行う。
 マクロ補助情報には、例えば、発見信号が送信される無線リソースの情報(タイミング、周波数等)、発見信号の系列情報等が含まれる。マクロ基地局10がマクロ補助情報を送信するチャネルは特定の種類のチャネルに限定されないが、例えば、LTEで規定される制御チャネル、報知チャネル、もしくはデータチャネルを用いて送信される。
 無線通信システムにおいては複数のマクロ基地局が存在するが、ユーザ装置20は、マクロ補助情報を参照することで、当該ユーザ装置20が在圏しているマクロセル内で受信する可能性のある、サーチすべき発見信号の情報を把握することができる。つまり、マクロ補助情報により、ユーザ装置20は、図3のAの枝を特定できる。
 マクロ補助情報は、ユーザ装置20により参照される(referneceとなる)信号であるから、参照信号と呼ぶことができる。
 第2階層(second layer)として、発見信号(discovery signal)がある。発見信号は、プリコードされており、後述する測定用参照信号の送信ビームよりも広い幅のビームでスモール基地局11、12から送信される信号である。各スモール基地局から、互いに異なるビームで複数の発見信号が送信され、ユーザ装置20は、マクロ補助情報に基づいて、各発見信号を監視し、受信(検知)して、受信品質(受信電力等)の測定を行う。なお、本実施の形態では、特に断らない限り、「受信品質」の用語を、受信電力を含む広い意味で使用する。各発見信号の受信品質に基づき、当該ユーザ装置20に適したビームの発見信号が特定され、これにより、ユーザ装置20が受信すべき測定用参照信号が決定される。発見信号に含まれる情報(系列等)は、ビームに対応付けられている。当該情報を「識別子」と称してもよい。すなわち、ユーザ装置20は、基地局から送信される複数の異なる識別子に対応付けられた発見信号の受信品質(受信電力等)を測定し、特定の発見信号を選択する。この決定方法については後述する。図3の例でいえば、例えば、第2階層においてBの枝が選択され、当該枝B配下の複数の測定用参照信号が、ユーザ装置20が受信すべき測定用参照信号として特定されることになる。
 発見信号についても、ユーザ装置20により参照される信号であるから、これを「参照信号」と呼ぶことができる。また、本実施の形態では、発見信号は、ユーザ装置20がスモール基地局11、12との同期をとるためにも使用されることから、発見信号を「同期信号」と呼ぶこともできる。なお、発見信号として同期信号であるPSS(Primary Synchronization signal)/SSS(Secondary Synchronization signal)を用いる例を後に説明する。
 第3階層(third order)として、測定用参照信号がある。測定用参照信号は、第2階層で特定された発見信号を送信するビームの幅よりも狭い幅のビーム(同じ幅のビームであってもよい)でスモール基地局から送信される信号である。スモール基地局は、測定用参照信号をビーム毎に送信し、ユーザ装置20は、各測定用参照信号を受信し、受信品質(受信電力等)の測定を行って、フィードバック情報(例:最も受信電力の高い測定用参照信号の識別情報等)をスモール基地局に返す動作を行う。フィードバック情報を受信したスモール基地局は、フィードバック情報に基づいて、下りデータ信号についてのリンクアダプテーション、ランクアダプテーション、スケジューリング等を行う。
 図3に示す例では、例えば、ユーザ装置20が測定用参照信号の受信品質の測定を行った結果として、Cで示す枝の測定用参照信号に対応するビームがデータ通信用のビームとして選択され、ユーザ装置20はスモール基地局から送信されるデータ信号を当該ビームで受信する。
 なお、最終的に複数のビームが選択されてもよい。図3の例では、枝Cのビームと枝Eのビームが選択されている。ユーザ装置20が複数のビームを用いることで、例えば、協調送信によるスループットの向上や、複数のスモール基地局を用いたロードバランシング等を実現できる。
 以下では、発見信号と測定用参照信号をより詳細に説明する。
 (発見信号と測定用参照信号の詳細)
 図4に、スモール基地局11、12からそれぞれが1つのビームで送信される複数の発見信号のイメージを示す。発見信号は、大まか(ラフ)で低速なビームの特定や、スモール基地局11、12との時間/周波数の同期に用いられるものである。発見信号を送信する各ビームは一般に、測定用参照信号を送信する各ビームよりも幅が広いため、以降、これを「広ビーム」と呼ぶ場合がある。また、測定用参照信号を送信するビームを「狭ビーム」と呼ぶ場合がある。
 本実施の形態では、発見信号は、所定の無線リソースにおいて、低頻度(sparse)の時間間隔で高密度(dense)にマッピングされることを想定している。発見信号は、例えば10~20msに1回の頻度で送信されてよい。また、発見信号は同期にも使用されるため、セル端のように基地局から離れているような場合でもできるだけ良い品質で受信できるように、高密度でマッピングすることとしている。
 また、ユーザ装置の能力(使用できる帯域幅)には様々なものがあり、発見信号はどのような帯域幅のユーザ装置でも検出できるように、所定のコアとなる狭い帯域幅内にマッピングされる。例えば、発見信号は、システム帯域幅の中央部分の所定の帯域幅の周波数ブロックにマッピングされる。所定の帯域幅とは、例えば、最少の帯域幅のユーザ装置が使用する帯域幅である。
 次に、測定用参照信号について説明する。図5に、スモール基地局11、12から複数のビーム(狭ビーム)で送信される測定用参照信号のイメージを示す。図5には、発見信号のビームも示されている。図5に示すように、測定用参照信号の各狭ビームは、発見信号のビーム(広ビーム)よりも幅が狭く、広ビームに対応する複数の狭ビームが当該広ビーム上で送信される。広ビーム上で送信されるとは、例えば、当該複数の狭ビーム全体の幅が、当該広ビームの幅内にあることである。測定用参照信号は、細かで高速なビームの特定や、フィードバック情報に基づく動的なランクアダプテーション(最適なMIMOランクの選択)、リンクアダプテーション(最適な変調/符号化方式決定等)、スケジューリング等に用いられる。
 測定用参照信号についても、発見信号と同様に低頻度(sparse)の送信タイミングで送信される。また、周波数方向については、帯域全体にわたる測定を可能とするために、1TTI(1サブフレーム)あたりに広い帯域にマッピングされる。
 つまり、測定用参照信号については、例えばLTEにおけるCSI-RSと同様に低頻度で送信することで、オーバーヘッドを小さくしている。また、測定用参照信号は、直交偏波(Dual Polarized)アンテナポートをサポートする。なお、直交偏波アンテナを偏波共用アンテナと呼んでもよい。
 図6に、発見信号と測定用参照信号のマッピング例を示す。図6の(a)は本実施の形態の無線通信システムにおけるフレームを示す。図6(a)のフレームの各四角がスロットを示す。これらのフレーム、スロットの長さは現状のLTEで規定されているものと同じでもよいし、異なっていてもよい。例えば、当該スロットは、LTEで規定されるサブフレームであってもよい。
 図6に示すとおり、この例では、発見信号はフレームの先頭のスロットにおいて図6(b)に示すようにマッピングされる。また、測定用参照信号はフレームの2番目のスロットにおいて図6(c)のようにマッピングされる。そして、このマッピングがフレーム毎に繰り返される。ただし、これは一例にすぎず、より高頻度にマッピングしてもよいし、より低頻度にマッピングしてもよいし、発見信号と測定用参照信号をスロットにマッピングする頻度が異なっていてもよい。また、発見信号のスロットと測定用参照信号のスロットとの間に空き(ギャップ)があってもよい。
 図6(b)に示すように、この例では、発見信号はシステム帯域の中央部分に、所定の帯域幅を持ってマッピングされる。前述したように、この所定の帯域幅は、例えば、最低の能力のユーザ装置により使用される帯域幅である。また、本例では、異なる広ビームの複数の参照信号が時間多重される。図6(b)の例では、時間多重された発見信号の同じセット(ビーム1~ビームN)を2回送信することとしている。これにより、ユーザ装置において周波数誤差の修正を行うことが可能である。
 ユーザ装置20は、例えば、最も受信品質の良い(例:受信電力の大きい)発見信号を示す情報(識別子、インデックス等)をマクロ基地局10に通知する。当該情報は、例えば、発見信号の系列から取得可能な情報である。ここで、発見信号を示す情報は、発見信号を送信する広ビームを示す情報でもある。なお、図6(b)に示す例では、複数の広ビームの発見信号を時間多重しているが、周波数方向に周波数多重することとしてもよい。つまり、この場合、例えば、発見信号1(広ビーム1)を周波数1で送信し、発見信号2(広ビーム2)を周波数2で送信し、...といったように送信する。
 図6(c)は、測定用参照信号のマッピングスロットにおける測定用参照信号のマッピング例を示す。図6(c)において、1、2...等の番号は、測定用参照信号の識別番号(インデックス)であるとともに、当該測定用参照信号を送信する狭ビームの識別番号(インデックス)でもある。これをビームIDと呼んでもよい。当該識別番号は、例えば、測定用参照信号の系列から取得可能な情報である。図6(c)に示すように、測定用参照信号は、システム帯域の全体にマッピングされる。これはCSI-RS等の既存の参照信号と同様に、システム帯域全体にわたる受信品質を測定することを可能とするためである。
 図6(c)の例では、発見信号を送信する広ビームに対応付けて、狭ビームで送信される各測定用発見信号が時間多重されている。すなわち、例えば、狭ビーム1~4の測定用参照信号1~4が広ビーム1の発見信号1に対応し、狭ビーム5~8の測定用参照信号5~8が広ビーム2の発見信号2に対応し、....狭ビームX+1~X+4の測定用参照信号X+1~X+4が広ビームXの発見信号Xに対応する。1つの測定用参照信号のリソース内では、アンテナポート毎に信号のリソースが例えばくし歯状にマッピングされる。
 ユーザ装置20は、例えば、最も受信品質の良い発見信号に対応する測定用参照信号のタイミング及び系列情報を制御情報としてマクロ基地局10から受信することで、特定の複数の測定用参照信号のみを監視することができる。あるいは、マクロ補助情報の中に、マクロカバレッジ内の発見信号のタイミング及び系列情報に加えて、マクロカバレッジ内の測定用参照信号のタイミング及び系列情報(つまり、発見信号と測定用参照信号の対応情報)が含まれていてもよく、そのような場合には、ユーザ装置20は、最も受信品質の良い発見信号(広ビーム)を特定した後、マクロ基地局10へ報告することなく、当該発見信号に対応する複数の測定用参照信号の受信を行ってもよい。
 図6に示すように、ユーザ装置20は、一部の周波数領域内のみにマッピングされた発見信号を受信し、発見信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた測定用参照信号を受信するのである。また、スモール基地局11、12は、一部の周波数領域内のみにマッピングされた発見信号を送信し、発見信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた測定用参照信号を送信する。
 図7(a)、(b)は、発見信号のリソース内のマッピングの例を示す図である。図中、番号が記載されているリソースエレメントに発見信号がマッピングされている。また、当該番号はビームもしくはアンテナポートの区別を示す。例えば、スモール基地局が8アンテナで発見信号を送信する場合において、1ビーム当たり8アンテナ分のリソースエレメントが使用され、8ビームを形成する場合、8×8=64リソースエレメントへの信号のマッピングが行われることになる。図7(a)はそのようなマッピングの例を示す。また、図7(a)は、時間方向と周波数方向において空きを形成するマッピング方法の例でもある。例えば、図7(a)のBに示す周波数エレメントにはマッピングがなされておらず、Aに示すシンボルにはマッピングがなされていない。
 図7(b)は、時間方向と周波数方向の全てのリソースにマッピングが行われる場合の例である。図7(b)の場合には、図7(a)に示したような全く使用されない時間/周波数リソースがない。
 なお、図7(a)、(b)は発見信号のマッピングの例であるが、同様のマッピングを測定用参照信号に用いることもできる。
 (無線通信システムの動作例)
 次に、図8を主に参照して、本発明の実施の形態に係る無線通信システム(図2に示した無線通信システム)の動作例を説明する。図8に示す例では、ユーザ装置20はスモール基地局12から送信される発見信号を最も受信品質の良好な発見信号として検知することから、図8にはスモール基地局11とスモール基地局12のうちスモール基地局12が示されている。
 マクロ基地局10は、マクロセルのカバレッジに在圏するユーザ装置20に対して、例えば周期的にマクロ補助情報を送信しており、ユーザ装置20は当該マクロ補助情報を受信する(ステップ101)。例えば、ユーザ装置20はマクロ基地局10から送信されるシステム情報により、マクロ補助情報の送信周期、周波数等のリソースを把握しているものとする。
 スモール基地局12は、前述したように、広ビームを形成するプリコードされた複数の発見信号を送信している(ステップ102)。ユーザ装置20は、ステップ101で受信したマクロ補助情報に基づき、各発見信号の送信タイミング、及び系列(識別子、インデックス等の情報を含む)を把握しているので、これらを用いることで、スモール基地局12から送信された各発見信号を受信し、受信品質(受信電力等)を測定する。すなわち、マクロ補助情報により、複数の発見信号を測定するために使用する識別子(ビーム)の候補を限定する。
 発見信号は、LTEにおける同期信号(SS)と同様の機能を有しており、ユーザ装置20は、発見信号を受信することで、スモール基地局12との間で周波数同期をとるとともに、タイミング同期(シンボル同期、フレーム同期等)をとる。また、発見信号により、スモール基地局12のカバレッジでの通信に必要な情報(最小限のシステム情報等)を受信してもよい。
 ユーザ装置20は、検知できた発見信号についての受信品質(受信電力等)を測定し、測定結果を測定報告(measurement report)としてマクロ基地局103に送信する(ステップ103)。測定報告には、受信できた発見信号の識別情報(識別子、インデックス等)、各発見信号についての受信品質(例:受信電力等)が含まれる。この測定報告で使用するチャネルの種類は限定はされないが、例えば、上りリンクの物理共有チャネル(PUSCH)を使用することができる。なお、例えば、受信品質が最も高い発見信号のみについての測定報告を送信してもよい。更に、例えば、受信品質が高いほうから所定数個の発見信号についての測定報告を送信することとしてもよい。
 発見信号についての測定報告をユーザ装置20から受信したマクロ基地局10は、当該測定報告に基づいて、ユーザ装置20が最も良好に受信した発見信号(広ビーム)を特定し、当該発見信号に対応するスモール基地局12とユーザ装置20が受信すべき測定用参照信号を決定する(割り当てる)。そして、マクロ基地局10は、当該スモール基地局12の識別情報(スモールセルのID等)、ユーザ装置20が受信すべき測定用参照信号のタイミング及び系列等を含む制御情報をユーザ装置20に通知する(ステップ104)。当該無線通信システムがキャリアアグリゲーションをサポートする場合において、スモール基地局12の識別情報の通知は、Scellの割り当てとして行うこととしてもよい。つまり、この場合、ユーザ装置20は、マクロ基地局10により形成されるPcell(プライマリコンポーネントキャリアにより形成されるセル)とスモール基地局12により形成されるScell(セカンダリコンポーネントキャリアにより形成されるセル)とを同時に使用して通信を行う。
 また、マクロ基地局10は、上記の割り当て情報(ユーザ装置12が通信を行うスモール基地局12の識別情報、Scellの割り当て情報、ユーザ装置20が受信すべき測定用参照信号の情報等)をバックホール回線を通じてスモール基地局12に送信することとしてもよい(ステップ105)。ただし、この動作は必須ではない。例えば、バックホール回線を経由した割り当て情報の通知がない場合、スモール基地局12は、全ての測定用参照信号を送信し、受信すべき測地用参照信号(狭ビーム)を把握しているユーザ装置20からのフィードバック情報に基づいて、ユーザ装置20にデータ信号通信用の狭ビームを割り当てればよい。
 スモール基地局12は、バックホール回線を介した割り当て情報を受信することで、キャリアアグリゲーションでのScellの動作や、ユーザ装置が存在しない方向への測定用参照信号を送信しない等の動作を実施できる。
 上記のステップ104での制御情報を受信したユーザ装置20は、狭ビームで送信される限定された数の測定用参照信号を受信することができる。
 ユーザ装置20は、上記の制御情報に従って、スモール基地局12から送信される各狭ビームの複数の測定用参照信号を受信し(ステップ106)、受信品質(受信電力等)の測定を行って、受信品質に基づいて特定の測定用参照信号を選択し、選択した測定用参照信号の番号等の識別情報を含むフィードバック情報を上りチャネルを用いてスモール基地局12に送信する(ステップ107)。上記の選択は、受信品質が最も良いものを選択することとしてもよいし、受信品質が高いほうから所定数個を選択することとしてもよいし、その他の方法で選択してもよい。また、フィードバック情報には、受信電力に代えて、又は受信電力に加えて、CQI、ランク等のCSIが含まれていてもよい。スモール基地局12は、フィードバック情報に基づいて、ユーザ装置20へのデータ信号等(PDSCH、EPDCCH等)の送信のための狭ビームの決定を行い当該狭ビームにより下り方向の通信を行う。
 ユーザ装置20がフィードバック情報を送信する上りチャネルとしては、例えばLTEで規定された上りリンクの物理制御チャネル(PUCCH/EPUCCH)、もしくはランダムアクセスチャネル(PRACH)を使用することができるがこれに限られるわけではない。また、上りチャネルのリソースについては、マクロ基地局10から割り当ててもよいし、発見信号によりスモール基地局12との同期がとれた後に、スモール基地局12から割り当てることとしてもよい。ここでのフィードバック情報の送信は図9においてもステップ107として示されている。
 フィードバック情報を受信したスモール基地局12は、スケジューリングを行って、ユーザ装置20に適したビーム、ランク、MCS(変調方式/符号化率)、リソース等を決定して、データ信号の送信を行う(ステップ108)。より詳細には、ステップ108の前に、割り当て情報が制御チャネルでスモール基地局12からユーザ装置20に送信されてもよい。
 図10は、本実施の形態に係る無線通信システムが使用される通信環境において、ユーザ装置20が移動する場合の状態を示す図である。すなわち、図10には、マクロセルのカバレッジ内において、ユーザ装置20が移動し、2つのスモールセルを通過する様子が示されている。
 図10に示すように、A地点にいたユーザ装置20が移動し、スモールセル1のカバレッジに入るところ(B地点)に到達する。ユーザ装置20は、マクロ補助情報に基づいて、所定間隔で発見信号をサーチしており、B地点に到達した時点で、スモールセル1の所定の広ビームで送信される発見信号を検出する。これにより、前述した動作により、広ビーム上で、狭ビームにより送信される測定用参照信号を受信して、フィードバック情報を返すことで、適切なリソース割り当てやビーム選択が行われ、データ信号の通信を行う。スモールセル1のカバレッジ内では、動的に狭ビーム(必要に応じて広ビーム)の切り替えが行われ、ユーザ装置20は移動しながら適切なビームにより通信を継続できる。
 ユーザ装置20がスモールセル1のカバレッジの外に出ると、マクロセルとの通信のみが行われる。このとき、A地点での動作と同様に、ユーザ装置20は、発見信号のサーチを行い、スモールセル2のカバレッジに入ったときに、発見信号を検出する。以降の動作はスモールセル1のカバレッジ内での動作と同様である。
 (その他の例)
 これまでに説明した例では、マクロ基地局10が存在し、ユーザ装置20はマクロ基地局10からマクロ補助情報を受信したり、マクロ基地局10に測定報告を送信していたが、マクロ基地局10が存在しない構成とすることも可能である。
 マクロ基地局10が存在しない場合の動作例を図11のシーケンス図を参照して説明する。図11の例は、マクロ基地局10が存在しない、もしくは、マクロ基地局10のカバレッジの外にユーザ装置20が存在し、ユーザ装置20はスモール基地局12と通信が可能である場合を示している。
 本例では、例えば、マクロ補助情報に相当する補助情報がユーザ装置20に予め格納されているものとする。スモール基地局12は、前述したように、広ビームを形成するプリコードされた複数の発見信号を送信している(ステップ201)。ユーザ装置20は、補助情報に基づき、各発見信号の送信タイミング、及び系列を把握しているので、これらを用いることで、スモール基地局12から送信された各発見信号を受信する。ユーザ装置20は、発見信号を受信することで、スモール基地局12との間で周波数同期をとるとともに、タイミング同期(シンボル同期、フレーム同期等)をとる。また、発見信号により、スモール基地局12のカバレッジでの通信に必要な情報(最小限のシステム情報等)を受信してもよい。
 ユーザ装置20は、受信できた発見信号についての受信品質(受信電力等)を測定し、測定結果を測定報告(measurement report)としてスモール基地局12に送信する(ステップ202)。測定報告には、受信できた発見信号の識別情報(識別子、インデックス等)、各発見信号についての受信品質(例:受信電力等)が含まれる。また、例えば、受信品質が最も高い発見信号のみについての測定報告を送信してもよい。更に、例えば、受信品質が高いほうから所定数個の発見信号についての測定報告を送信することとしてもよい。
 発見信号についての測定報告をユーザ装置20から受信したスモール基地局12は、当該測定報告に基づいて、ユーザ装置20が最も良好に受信した発見信号(広ビーム)を特定し、当該発見信号に対応する、ユーザ装置20が監視すべき測定用参照信号を決定する(割り当てる)。そして、スモール基地局12は、ユーザ装置20が受信すべき測定用参照信号のタイミング及び系列等を含む制御情報をユーザ装置20に通知する(ステップ203)。なお、ユーザ装置20が、発見信号と測定用参照信号の対応情報を保持している場合、ユーザ装置20は、上記測定報告送信と制御情報受信を行うことなく下記のように測定用参照信号の受信を行うこととしてもよい。
 上記のステップ203での制御情報を受信したユーザ装置20は、狭ビームで送信される限定された数の測定用参照信号を監視することができる。ユーザ装置20は、上記の制御情報に従って、スモール基地局12から送信される各狭ビームの複数の測定用参照信号を受信し(ステップ204)、受信品質(受信電力、CQI等)の測定を行って、例えば最良の測定用参照信号の識別情報を含むフィードバック情報を上りチャネルを用いてスモール基地局12に送信する(ステップ205)。その後の動作は、図8の説明と同様である。
 (発見信号、測定用参照信号、ビーム形成等の具体例)
 以上、発見信号、測定用参照信号の例や、これらを使用した動作例を説明したが、以下では、これらの信号の内容やビーム形成に関するより具体的な例を説明する。
 前述したように、スモール基地局11、12(以下、記述を簡潔にするために、ここでの具体例の説明では、これらを単に「基地局」と記述する)が、発見信号を広ビームで送信し、測定用参照信号を狭ビームで送信することで、階層的な狭ビームのサーチを可能としている。また、前述したように、発見信号として同期信号を用いることができるが、本具体例では、発見信号は、同期信号(PSS/SSS)であるとする。
 発見信号のビーム及び測定用参照信号のビームがどのような形で送信されるのかの具体例を図12、図13に示す。
 図12、図13は、基地局のアンテナから見たビームの方向を示し、図示のとおり、横方向が水平方向角度を示し、縦方向が垂直方向角度を示す。
 図12は、基地局が、7つの広ビームで発見信号を送信し、各広ビーム内の8つの狭ビームで測定用参照信号を送信する場合の例を示す。図12に示すように、広ビームは水平方向に、一部重複しながら並べられた形である。一例として、1広ビームは1OFDMシンボルで送信され、1スロット(7シンボル)で図12に示す広ビーム#0~#6が送信される。この点は、図13の場合でも同様である。なお、本具体例では、参照信号のビームのIDをビームグループIDと呼び、測定用参照信号のビームのIDをビームIDと呼ぶ。ビームグループIDは、発見信号(PSS/SSS)の系列から取得でき、ビームIDは、測定用参照信号の系列から取得できる。
 図13は、基地局が、7つの広ビームで発見信号を送信し、各広ビーム内の8つの狭ビームで測定用参照信号を送信する場合の他の例を示す。図13に示す例では、広ビーム#0~#6のうち、#0~#4は垂直方向の上側に形成され、#5~#6は、#0~#4の下側に、#0~#4よりも垂直方向の幅は狭く、水平方向の幅が広い形状で形成される。図13に示すような形状により、例えば、セル端のユーザを効果的にカバーできる。
 上記のように、本具体例では、発見信号としてPSS/SSSを用いる。例えば、PSSはシンボルタイミング同期をとるために使用し、SSSは無線フレーム同期をとるために使用することができるが、これに限られるわけではない。
 PSSの系列及びSSSの系列のサイト間での割り振り方の例を図14、図15を参照して説明する。
 図14に示すように、同一サイト(同一基地局と同義)において、PSSの系列は全シンボル(前記の例では7シンボル)で同一とする。複数サイト間では、系列を同じにしてもよいし、個々のサイトで系列を異ならせてもよい。図14は、複数サイト間で系列が同じ場合を示している。
 図15に示すように、SSSの場合は、シンボル(ビーム)間で系列を異ならせる。複数サイト間では、系列を同じにしてもよいし、個々のサイトで系列を異ならせてもよい。図15は、個々のサイトで系列を異ならせる場合を示している。ビームグループIDのサーチに関して、例えば、図14と図15のPSS/SSSの組み合わせを採用し、PSS(1系列)を初期の同期に使用し、SSS(ビーム間で異なる)をビームグループIDの検出に使用することが考えられる。
 また、一例として、システムにおいて3種類のPSSの系列を規定し、168のSSSの系列を規定した場合、全部で504個のビームグループIDを使用できることになる。
 <ビームIDサーチについて>
 これまでに説明したように、発見信号と測定用信号は階層的な関係にあり、ユーザ装置20は、広ビームにより良好な発見信号を受信すると、それに対応する複数の測定用信号を複数の狭ビームで受信し、特定の測定用参照信号を選択して、それに対するフィードバックを基地局に返す動作を行う。この動作は、良好に受信できる測定用参照信号のビームのビームIDをサーチすることに相当するから、ビームIDサーチと呼ぶことができる。
 図12等に示したように、7つの広ビームと、1広ビームあたり8つの狭ビームを形成する場合におけるビームIDサーチの階層構造の例を図16に示す。
 図16に示すように、7つの広ビームに対応するビームID:#0~#6の各々に、8つの狭ビームに対応する8つのビームID(全部で#0~#55)が対応付けられる(図16のAに示す)。ただし、図12に示したように、広ビームはオーバーラップ(重複)を許容しているので、例えば、ビームグループID#0配下のビームID#5~7が、ビームグループID#1配下のビームID#8~10と同じである場合が生じる。そのような場合、該当基地局においては、ビームグループID#1配下のビームID#8~10を、ビームID#5~7としてID付けを行って、ID管理をしてもよい。図16のBはそのようなID付けの例を示している。
 ところで、これまでの説明では、ビームIDサーチに使用する測定用参照信号のビームは、発見信号のビームよりも狭い狭ビームを用いているが、これは一例であり、測定用参照信号のビームも参照信号のビームと同様の広ビームであってもよい。
 測定用参照信号のビームとして広ビームを使用することで、各ビームが狭ビームよりも広い範囲をカバーするので、モビリティに対する耐性(Robustness)が狭ビームよりも向上する。また、狭ビームの場合に比べてビームサーチの複雑さが低減される。ビームフォーミングゲイン及びカバレッジについては、広ビームよりも狭ビームのほうが良好であるが、広ビームを使用する場合に、測定用参照信号送信に割り当てるリソースを増加させることでビームフォーミングゲイン及びカバレッジを改善することができる。また、広ビームの場合、狭ビームの場合と比較して、測定する信号数が少なくなり、測定報告(フィードバック)の情報量が少なくてよい。
 測定用参照信号を送信するビームは、広ビーム、狭ビームに限られず、これらの中間の広さのビームである中間(middle)ビームを使用してもよい。図17に中間ビームを使用する場合の例を示す。図17の例では、#0~#13の14中間ビームが使用される。この場合、各中間ビームには5つの狭ビームが含まれる。このようなビームのグルーピングは、例えば、非常に多くのアンテナ素子を持つスーパーマッシブMIMO等を用いる場合に適用することができる。
  <PSS/SSS、測定用参照信号のマッピングの例>
 発見信号及び測定用参照信号の無線リソースのマッピング例として、図6に示す例を既に説明したが、ここでは、発見信号としてPSS/SSSを用いる具体例におけるマッピング例について説明する。
 図18は、PSS/SSSのマッピング例を示す図である。図18に示すように、PSSとSSSがシステム帯域の中央部分のリソースブロックに割り当てられる。図18の上半分のPSS/SSSと、下半分のPSS/SSSとは同じ系列であるが、送信ダイバーシティを得るために、周波数領域の上半分と下半分で異なるプリコーディングベクトルが乗算される。なお、本例は、基地局が直交偏波アンテナ(Dual Polarized Antenna)を備えており、プリコーディングベクトルは、直交偏波アンテナにおける直交偏波のアンテナポートと水平偏波のアンテナポートに適用されるものである。
 図18に示す例において、図6(b)と同様に、PSSは、シンボル単位で異なる広ビームで送信され、SSSも、シンボル単位で異なる広ビームで送信される。ただし、これは例であり、これに限定されない。
 図19は、PSS/SSSの送信間隔の例を示す図である。図19に示すように、本例では、10msのフレームに1回の間隔で送信される。図18、図19に示すように、1サブフレームで送信ダイバーシティを持たせてPSS/SSSを送信することで、ユーザ装置20は、迅速にPSS/SSSを検出できる。
 図20に、上記のようなPSS/SSSを用いる場合における測定用参照信号のマッピング例を示す。図20に示すように、本例では、PSSの上と下に、PSSを送信するビームグループIDに属する複数狭ビームで送信される測定用参照信号がマッピングされる。PSSの上と下にマッピングされている測定用参照信号は同じ系列を有する。PSSの上と下にマッピングされている測定用参照信号に異なるプリコーディングベクトルを乗算することで送信ダイバーシティを得ている。
 同様に、SSSの上と下に、SSSを送信するビームグループIDに属する複数狭ビームで送信される測定用参照信号がマッピングされる。SSSの上と下にマッピングされている測定用参照信号は同じ系列を有する。SSSの上と下にマッピングされている測定用参照信号に異なるプリコーディングベクトルを乗算することで送信ダイバーシティを得ている。
 すなわち、図20に示すマッピング例では、1つのビームグループあたり、4つの測定用参照信号ブロックがマッピングされる(PSSの上下、SSSの上下)。図20における#0~#6の番号は、それぞれビームグループIDを示し、番号が振られた各ブロックのリソースに、当該番号のビームグループに属する複数狭ビームで送信される測定用参照信号がマッピングされている。
 各ブロック(時間長は1シンボル)の中の信号マッピングの例を図20の右側に示している。図20の例において、番号は該当リソースで信号を送信するビーム(測定用参照信号)を示す。図20の例では、8ビーム(8測定用参照信号)が分散してサブキャリアにマッピングされている。1ブロックの帯域幅は特定の値に限定されないが、例えば、14リソースブロック長とすることができる。
 図20右側の例は、1広ビーム(PSS/SSS)に8つの狭ビーム(測定用参照信号)が属する場合の例である。1広ビーム(PSS/SSS)に1つの広ビーム(測定用参照信号)が属する場合のマッピング例を図21に示す。この場合、PSS/SSSのビームと測定用参照信号のビームは同じである。また、リソースマッピングについては図21(a)に示すように連続的なサブキャリアマッピングとしてもよいし、図21(b)に示すように、分散したマッピングとしててもよい。分散したマッピングとする場合、割り当てたサブキャリアにパワーブースティング(電力増加)を適用してもよい。
 1広ビーム(PSS/SSS)に2つの中間ビーム(測定用参照信号)が属する場合のマッピング例を図22に示す。この場合、図23に示すように、中間ビームは広ビームの約半分の大きさである。また、リソースマッピングについては図22(a)に示すように連続的なサブキャリアマッピングとしてもよいし、図22(b)に示すように、分散したマッピングとしててもよい。分散したマッピングとする場合、割り当てたサブキャリアにパワーブースティング(電力増加)を適用してもよい。
 図20に示したマッピング例におけるビームIDサーチの例を図24、図25を参照して説明する。
 図24に示す例において、ユーザ装置20は、3つの基地局(サイトA、サイトB、サイトC)からPSS/SSSを受信し、複数受信した信号のうち、サイトAのビームグループID#1の広ビームで送信された信号と、サイトBのビームグループID#5の広ビームで送信された信号を良好に受信したとする。良好に受信したとは、例えば、所定の閾値以上の受信電力であった、上位から所定番目(図24の例では2番目)までの受信電力であった、等のことである。
 ユーザ装置20は、サイトAのビームグループID#1とサイトBのビームグループID#5に属する複数の測定用参照信号のリソース情報及び系列(ビームID)を保持しているとする。これらの情報は、測定報告として、サイトAのビームグループID#1とサイトBのビームグループID#5をマクロ基地局10に通知することで、マクロ基地局10から受信してもよいし、もっと前の段階(マクロ基地局10のカバレッジに入った段階等)で、各サイトの各ビームグループIDと測定用参照信号のリソース及び系列との対応情報をマクロ基地局10から受信することとしてもよい。また、これら以外の方法で取得してもよい。
 図25(a)に示すように、ユーザ装置20は、ビームグループID#1、#5に属するブロックにおける各測定用参照信号の受信電力測定を行い、最も受信電力の大きな測定用参照信号を特定する。特定された測定用参照信号に対応するビームIDは前述したフィードバック情報として基地局に送信される。例えば、図25(b)に示す階層構造において、ビームグループID#1に属するビーム#5の信号の受信電力が最も大きかった場合、当該ビームIDが基地局に送信される。
 なお、上記の例では、サイトAとサイトBについてビームグループID#1、#5が選択されたが、例えば、サイトAのみについて、ビームグループID#1、#5が選択される場合においても、同様の動作を行うことができる。
  <CSI-RS、ビームトラッキングについて>
 図8、図11等で説明した動作例では、良好に受信する測定用参照信号を特定し、フィードバック情報(ビームIDを含む)を基地局に送信した後、データ送受信を行う例を示しているが、これに代えて、もしくはこれに加えて、プリコードされたCSI-RSの送信を行ってもよい。測定用参照信号送信に加えてCSI-RS送信を行う場合、当該CSI-RSは、本実施の形態の階層的構造における測定用参照信号の下の階層の参照信号と位置付けることが可能である。また、発見信号(PSS/SSS)の下にプリコードされたCSI-RSがあってもよい。つまり、これまでに説明してきた測定用参照信号としてプリコードされたCSI-RSを使用してもよい。
 基地局は、フィードバック情報から得られるビームIDに対応するビームでCSI-RSを送信することができる。また、基地局は、フィードバック情報に基づいて、ユーザ装置20におけるCSI-RSに対するフィードバック方法(周期、使用周波数リソース等)を設定(configure)してもよい。
 また、基地局は、例えば、複数の狭ビーム(例:各ビームは、測定用参照信号送信用ビームと同じ広さでもよいし、それより狭いビームでもよい)でCSI-RSを複数のストリームで同時にユーザ装置20に送信することで、後述するビームトラッキングを行うことができる。CSI-RS用の受信リソースは、例えば、EPDCCHによりダイナミックに割り当ててもよいし、セミスタティックに割り当ててもよい。また、CSI-RSの系列は、UE固有のIDでスクランブルすることで、UE固有としてもよい。
 ビームトラッキングは、例えば、図26に示すビームを形成することで実施することができる。図26は、基地局のアンテナから見たビームの方向を示し、紙面の横方向が水平方向、縦方向が垂直方向である。
 基地局は、ユーザ装置20に対して、測定用参照信号により選択され現在形成しているビーム(現在のビーム)#0の他に、ビーム#1~#6でトラッキング用のCSI-RSを送信する。ビーム#1~#6は、現在のビーム#0がユーザ装置20に追従できなくなった場合に用いられる候補ビームである。データ送信用のビーム#0と候補ビーム#1~#6を合わせて、ビームトラッキングのためのビームストリームが形成される。
 一例として、基地局が直交偏波アンテナで8アンテナポートをサポートする場合において、各候補ビーム(全6ビーム)の送信に1アンテナポート(1偏波)を利用し、現在のビームの送信の送信に2アンテナポート(2偏波:Dual polarization)を利用することとしてもよい。また、もしも、複数のパス(例:図2の構成のように、2方向から信号を受信する場合)がある場合には、各パスにおけるビームストリームを異なるサブフレームで実現してもよい。
 ユーザ装置20は、ビームストリームを受信すると、各ビームの受信電力等を測定して、受信状態の良好なビーム番号(例:CSI-RSの系列に含まれる)を基地局にフィードバックする。フィードバックされるビーム番号は最適なビーム番号であってもよいし、上位X個のビーム番号であってもよい。また、ビーム#0~#6の全てについて測定結果をフィードバックしてもよいし、受信品質が良好な順あるいは測定結果が悪い順にフィードバックしてもよい。フィードバックは、例えば、基地局からのコンフィギュレーションに基づき周期で定期的に行うことができる。また、CSI-RSに対するフィードバックとして、ビーム番号に加えて、RI、CQI、PMIを送信してもよい。
 基地局は、ビームトラッキングのフィードバック情報に基づいて、ユーザ装置20にとって最適なビームを現在のビーム#0として設定することで、データ送信の方向をユーザ装置20に追従させる。その様子を図27に示す。図27の例では、最良のビーム#1が、次にビーム#0として設定されることが示されている。ユーザ装置20の移動速度が速い場合など、ビームトラッキングが外れた場合は、測定用参照信号によるビーム選択を行う。
 <キャリアアグリゲーションにおけるCCへの信号マッピングについて>
 ユーザ装置20は、基地局との間で複数のコンポーネントキャリア(CC)を使用して、キャリアアグリゲーション(CA)による通信を行うことが可能である。
 本具体例では、例えば、下りリンクについて、PDSCH、EPDCCH、CSI-RS等については、各CC(全CC)で基地局から送信し、また、上りリンクについては、PUSCH、EPUCCH、SRS(サウンディング参照信号)を各CC(全CC)で送信する。
 また、同期信号(PSS/SSS等)、測定用参照信号、PRACHについては、全CCで送信してもよいし、1つのCCで送信してもよい。
 図28に、キャリアアグリゲーションにおけるCCへの信号マッピングの一例を示す。なお、図28は、上りと下りが時間分割されたTDDの例であるが、FDDであっても同様のマッピングが可能である。FDDに場合、図28において、下り上りでCCの周波数が異なるものと見ればよいのである。
 図28の例では、1つのCCであるCC1でPRACHを送信し、キャリアアグリゲーションを構成する他のCCであるCC2、3、4ではPRACHを送信しない。また、同期信号(PSS/SSS)については、1つのCCであるCC1で送信し、キャリアアグリゲーションを構成する他のCCであるCC2、3、4では送信しない。また、測定用参照信号については、全CCで送信する。
 このように、基地局の通信を行うための初期に使用する信号(同期信号、PRACH等)のみを1つのCCのみで送信することで、その後の処理を迅速に行うことが可能となる。
 (装置構成)
 次に、これまでに説明したユーザ装置20、マクロ基地局10、スモール基地局12の構成例を説明する。スモール基地局11、12は同様の構成であるため、代表としてスモール基地局12の構成を説明する。以下で説明する各装置の構成は、本実施の形態に特に関連する構成を示すものであり、各装置においては、例えばLTEに準拠した動作を実行可能なユーザ装置/基地局の機能を含む。
 図29に、ユーザ装置20の機能構成図を示す。ユーザ装置20は、信号送信部201、信号受信部202、受信品質測定部203、制御情報格納部204、フィードバック情報生成部205を備える。
 信号送信部201は、上位レイヤの情報から下位レイヤの信号を生成し、無線で送信する。信号受信部202は、無線で受信する下位レイヤの信号から上位レイヤの情報を取得する。
 また、信号受信部202は、マクロ基地局10から受信する制御信号等からマクロ補助情報を取得し、当該マクロ補助情報を制御情報格納部204に格納するとともに、制御情報格納部204に格納されているマクロ補助情報に基づいて、スモール基地局から送信される発見信号を受信する。また、信号受信部202は、マクロ基地局10から制御情報(サーチすべき測定用参照信号の情報等)を受信し、制御情報格納部204に格納するとともに、当該制御情報に基づいて、測定用参照信号を受信する。
 制御情報格納部204は、マクロ基地局10から受信する各種の制御情報(マクロ補助情報等)を格納する。また、制御情報格納部204は、マクロ基地局10から受信する情報以外の情報(予め設定された情報、スモール基地局から受信した情報等)を格納してもよい。
 受信品質測定部203は、信号受信部202により受信する発見信号の受信品質(受信電力等)を測定し、測定結果をフィードバック情報生成部205に渡すととともに、信号受信部202により受信する測定用参照信号の受信品質(受信電力、CQI、ランク等)を測定(推定)し、測定結果をフィードバック情報生成部205に渡す。また、受信品質測定部203は、ビームトラッキング用のCSI-RSの受信品質を測定することも可能である。
 フィードバック情報生成部205は、発見信号から得られた測定結果からフィードバック情報を生成し(適切なフォーマットにする等)、信号送信部201に渡すとともに、測定用参照信号から得られた測定結果からフィードバック情報を生成し(適切なフォーマットにする等)、信号送信部201に渡す。また、フィードバック情報生成部205は、ビームトラッキング用のCSI-RSに基づくフィードバック情報の生成を行うこともできる。
 信号送信部201は、発見信号から得られた測定結果に基づくフィードバック情報を測定報告としてマクロ基地局10もしくはスモール基地局12に送信する。また、信号送信部201は、測定用参照信号から得られた測定結果に基づくフィードバック情報をスモール基地局12に送信する。また、信号送信部201は、ビームトラッキング用のCSI-RSから得られた測定結果に基づくフィードバック情報をスモール基地局12に送信することもできる。なお、信号受信部202は、受信する発見信号(PSS/SSS等)に基づき、スモール基地局12との間で同期(時間同期、周波数同期)をとる機能も有する。
 図30に、マクロ基地局10の機能構成図を示す。図30に示すように、マクロ基地局10は、信号送信部101、信号受信部102、マクロ補助情報格納部103、制御情報生成部104、基地局間通信部105を有する。
 信号送信部101は、上位レイヤの情報から下位レイヤの信号を生成し、無線で送信する。信号受信部102は、無線で受信する下位レイヤの信号から上位レイヤの情報を取得する。マクロ補助情報格納部103は、マクロ補助情報を格納する。マクロ補助情報は、当該マクロ基地局10のカバレッジエリア内で使用される発見信号の送信タイミング情報、発見信号の系列情報を含む。また、マクロ補助情報格納部103には、上記発見信号の情報に加えて、測定用参照信号の送信タイミング、測定用参照信号の系列情報も格納されている。信号送信部101は、マクロ補助情報格納部103に格納されたマクロ補助情報をユーザ装置20に送信する。また、信号送信部101は、制御情報生成部104により生成された制御情報をユーザ装置20に送信する。
 また、信号受信部102は、ユーザ装置20から発見信号による測定に基づく測定報告を受信し、制御情報生成部104が、当該測定報告に基づいて、制御情報(測定用参照信号の情報等)を生成する。基地局間通信部105は、制御情報生成部104により生成された制御情報(Scellの割り当て情報等)をスモール基地局12に送信する。
 図31に、スモール基地局12の機能構成図を示す。図31に示すように、スモール基地局12は、信号送信部121、信号受信部122、制御情報生成部123、基地局間通信部124を有する。
 信号送信部121は、上位レイヤの情報から下位レイヤの信号を生成し、無線で送信する。信号受信部122は、無線で受信する下位レイヤの信号から上位レイヤの情報を取得する。
 信号受信部122は、ユーザ装置20から測定用参照信号による測定に基づくフィードバック情報を受信し、制御情報生成部123が、当該フィードバック情報に基づいて、制御情報(データ信号送信のための狭ビーム、リソース、MCS、ランク等の割り当て情報等)を生成する。また、信号送信部121は、制御情報生成部123により生成された制御情報をユーザ装置20に送信する。また、基地局間通信部124は、マクロ基地局10から制御情報(Scellの割り当て情報等)を受信し、信号送信部121と信号受信部122は、当該制御情報に基づいて、例えばマクロ基地局10のPcellと、当該スモール基地局12のScellとを用いたキャリアアグリゲーションのための送受信制御を行う。また、信号送信部121及び信号受信部122は、図28に示すように、ユーザ装置20との間で、キャリアアグリゲーションにおける信号送受信を行うことも可能である。更に、信号送信部121は、ビームトラッキング用のCSI-RSの送信を行い、信号受信部122は、CSI-RSに基づくフィードバック情報を受信し、制御情報生成部123が、当該フィードバック情報に基づいて、最適なビームを選択し、選択した結果を含む制御情報を作成し、信号送信部121から送信することも可能である。
 なお、これまでに説明した例では、スモール基地局12が測定用参照信号の測定に基づくフィードバック情報を受信することで、ユーザ装置20に対する下りの狭ビームの割り当て等を行っているが、本実施の形態の無線通信システムにTDD(time division duplex)を使用し、TDDの相反性(reciprocity)を利用して下りの狭ビームの割り当てを行うこともできる。すなわち、TDDでは上り下りの周波数が同一であることから、例えば、スモール基地局12が、ユーザ装置20から受信した信号に基づき、最適な受信品質となる受信側(上り)の狭ビームを決定し、当該狭ビームと逆方向(下り方向)の狭ビームを、当該ユーザ装置20に対して下りの狭ビームとして割り当てるものである。
 また、上記のTDDによる方法と、これまでに説明したフィードバック情報に基づく方法を併用してもよい。例えば、TDDにより求めた下りの狭ビームが、これまでに説明したフィードバック情報に基づき割り当てる狭ビームと近いもの(所定の閾値の範囲内)であるならば、TDDにより求めた下りの狭ビームを採用し、近くなければフィードバック情報に基づき割り当てる狭ビームを採用するといった動作を行うことができる。
 (実施の形態のまとめ、効果等)
 以上、説明したように、本実施の形態では、基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行うユーザ装置であって、前記基地局から送信される複数の異なる識別子に対応付けられた第1参照信号の受信電力を測定し、特定の第1参照信号を選択する第1参照信号受信手段と、前記第1参照信号受信手段により選択した第1参照信号の識別子と受信電力を前記基地局又はマクロセルの基地局に報告する報告手段と、前記基地局から送信される複数の第2参照信号を受信する第2参照信号受信手段と、前記第2参照信号受信手段により受信する第2参照信号の受信品質を測定し、当該受信品質に基づくフィードバック情報を前記基地局に送信する測定手段とを備えるユーザ装置が提供される。
 このユーザ装置により、まず、第1参照信号を受信し、次に当該第1参照信号に対応する限られた数の第2参照信号を受信する動作が可能になるため、基地局により形成される複数のビームのうち、通信に使用する特定のビームを効率的に選択することが可能となる。なお、上記の構成は、第1参照信号、第2参照信号を用いるが、これ以上の数の参照信号を用いる場合であっても、第1参照信号、第2参照信号は存在するから、上記のユーザ装置は、3階層以上の参照信号を用いるユーザ装置を包含する。
 前記ユーザ装置は、前記複数の第1参照信号を測定するために使用する識別子の候補を限定する補助情報をマクロセルの基地局から受信する補助情報受信手段を備えてもよい。このように補助情報をマクロ基地局から受信することで、ユーザ装置は限られた数の第1参照信号を受信することができる。
 また、前記ユーザ装置は、前記第1参照信号受信手段により受信した第1参照信号に基づいて、前記基地局との間の同期をとることとしてもよい。このように発見信号に同期信号の機能を持たせることで、ユーザ装置は効率良く基地局との通信を開始することができる。
 また、前記複数の第2参照信号が複数の異なる番号に対応付けられており、前記測定手段において、受信品質に基づいて特定の第2参照信号を選択し、選択した第2参照信号の番号及び受信品質をフィードバック情報として前記基地局に送信するようにしてもよい。受信品質に基づき選択を行うことで、最適な第2参照信号を決定できる。
 また、例えば、前記報告手段において、選択した第1参照信号の識別子と受信電力は上りリンクの物理共有チャネルを用いて報告し、前記測定手段において、第2参照信号の受信品質に基づくフィードバック情報は上りリンクの物理制御チャネルを用いて送信する。
 また、前記第1参照信号受信手段において、一部の周波数領域内のみにマッピングされた前記第1参照信号を受信し、前記第2参照信号受信手段において、前記第1参照信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた前記第2参照信号を受信するようにしてもよい。第1参照信号を一部の周波数領域内のみにマッピングすることで、能力の低いユーザ装置でも第1参照信号を発見できる。また、第1参照信号がマッピングされた周波数領域よりも広い周波数領域に第2参照信号をマッピングすることで、広い帯域に渡って受信品質を測定できる。
 また、本実施の形態では、基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う基地局であって、複数の異なる識別子に対応付けられた第1参照信号を送信する第1参照信号送信手段と、前記複数の第1参照信号を送信するタイミングと異なるタイミングにおいて、複数の第2参照信号を送信する第2参照信号送信手段と、前記ユーザ装置において測定された第2参照信号の受信品質に基づくフィードバック情報を受信する情報受信手段とを備え、前記第1参照信号送信手段において、一部の周波数領域内のみにマッピングされた第1参照信号を送信し、前記第2参照信号送信手段において、第1参照信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた第2参照信号を送信する基地局が提供される。
 なお、上記の構成は、第1参照信号、第2参照信号を用いるが、これ以上の数の参照信号を用いる場合であっても、第1参照信号、第2参照信号は存在するから、上記の基地局は、3階層以上の参照信号を用いる基地局を包含する。
 前記複数の第2参照信号が複数の異なる番号に対応付けられており、前記情報受信手段において、受信品質に基づいて前記ユーザ装置により選択された第2参照信号の番号及び受信品質をフィードバック情報として受信するようにしてもよい。これにより、ユーザ装置は、第2参照信号に対応する受信品質を知ることができ、ランクアダプテーション、リンクアダプテーション等の制御を行うことができる。
 本実施の形態で説明したユーザ装置は、CPUとメモリを備え、プログラムがCPU(プロセッサ)により実行されることで実現される構成であってもよいし、本実施の形態で説明する処理のロジックを備えたハードウェア回路等のハードウェアで実現される構成であってもよいし、プログラムとハードウェアが混在した構成であってもよい。
 本実施の形態で説明した基地局は、CPUとメモリを備え、プログラムがCPU(プロセッサ)により実行されることで実現される構成であってもよいし、本実施の形態で説明する処理のロジックを備えたハードウェア回路等のハードウェアで実現される構成であってもよいし、プログラムとハードウェアが混在した構成であってもよい。
 各実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。説明の便宜上、ユーザ装置及び基地局は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置が有するプロセッサにより動作するソフトウェア、及び、基地局が有するプロセッサにより動作するソフトウェアは、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。本発明は上記実施形態に限定されず、本発明の精神から逸脱することなく、様々な変形例、修正例、代替例、置換例等が本発明に包含される。
 本国際特許出願は2014年1月31日に出願した日本国特許出願第2014-018044号、及び2014年4月30日に出願した日本国特許出願第2014-094156号に基づきその優先権を主張するものであり、日本国特許出願第2014-018044号及び日本国特許出願第2014-094156号の全内容を本願に援用する。
10 マクロ基地局
11 スモール基地局
12 スモール基地局
20 ユーザ装置
101 信号送信部
102 信号受信部
103 マクロ補助情報格納部
104 制御情報生成部
105 基地局間通信部
121 信号送信部
122 信号受信部
123 制御情報生成部
124 基地局間通信部
201 信号送信部
202 信号受信部
203 受信品質測定部
204 制御情報格納部
205 フィードバック情報生成部

Claims (9)

  1.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行うユーザ装置であって、
     前記基地局から送信される複数の異なる識別子に対応付けられた第1参照信号の受信電力を測定し、特定の第1参照信号を選択する第1参照信号受信手段と、
     前記第1参照信号受信手段により選択した第1参照信号の識別子と受信電力を前記基地局又はマクロセルの基地局に報告する報告手段と、
     前記基地局から送信される複数の第2参照信号を受信する第2参照信号受信手段と、
     前記第2参照信号受信手段により受信する第2参照信号の受信品質を測定し、当該受信品質に基づくフィードバック情報を前記基地局に送信する測定手段と
     を備えることを特徴とするユーザ装置。
  2.  前記複数の第1参照信号を測定するために使用する識別子の候補を限定する補助情報をマクロセルの基地局から受信する補助情報受信手段
     を備えることを特徴とする請求項1に記載のユーザ装置。
  3.  前記複数の第2参照信号が複数の異なる番号に対応付けられており、前記測定手段において、受信品質に基づいて特定の第2参照信号を選択し、選択した第2参照信号の番号及び受信品質をフィードバック情報として前記基地局に送信する
     ことを特徴とする請求項1又は2に記載のユーザ装置。
  4.  前記報告手段において、選択した第1参照信号の識別子と受信電力は上りリンクの物理共有チャネルを用いて報告し、
     前記測定手段において、第2参照信号の受信品質に基づくフィードバック情報は上りリンクの物理制御チャネルを用いて送信する
     ことを特徴とする請求項1ないし3のうちいずれか1項に記載のユーザ装置。
  5.  前記第1参照信号受信手段において、一部の周波数領域内のみにマッピングされた前記第1参照信号を受信し、
     前記第2参照信号受信手段において、前記第1参照信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた前記第2参照信号を受信する
     ことを特徴とする請求項1ないし4のうちいずれか1項に記載のユーザ装置。
  6.  基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う基地局であって、
     複数の異なる識別子に対応付けられた第1参照信号を送信する第1参照信号送信手段と、
     前記複数の第1参照信号を送信するタイミングと異なるタイミングにおいて、複数の第2参照信号を送信する第2参照信号送信手段と、
     前記ユーザ装置において測定された第2参照信号の受信品質に基づくフィードバック情報を受信する情報受信手段とを備え、
     前記第1参照信号送信手段において、一部の周波数領域内のみにマッピングされた第1参照信号を送信し、
     前記第2参照信号送信手段において、第1参照信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた第2参照信号を送信する
     ことを特徴とする基地局。
  7.  前記複数の第2参照信号が複数の異なる番号に対応付けられており、前記情報受信手段において、受信品質に基づいて前記ユーザ装置により選択された第2参照信号の番号及び受信品質をフィードバック情報として受信する
     ことを特徴とする請求項6に記載の基地局。
  8.  基地局とユーザ装置とを備える無線通信システムにおいて前記基地局と通信を行うユーザ装置が実行する通信方法であって、
     前記基地局から送信される複数の異なる識別子に対応付けられた第1参照信号の受信電力を測定し、特定の第1参照信号を選択する第1参照信号受信ステップと、
     前記第1参照信号受信ステップにより選択した第1参照信号の識別子と受信電力を前記基地局又はマクロセルの基地局に報告する報告ステップと、
     前記基地局から送信される複数の第2参照信号を受信する第2参照信号受信ステップと、
     前記第2参照信号受信ステップにより受信する第2参照信号の受信品質を測定し、当該受信品質に基づくフィードバック情報を前記基地局に送信する測定ステップと
     を備えることを特徴とする通信方法。
  9.  基地局とユーザ装置とを備える無線通信システムにおいて前記ユーザ装置と通信を行う基地局が実行する通信方法であって、
     複数の異なる識別子に対応付けられた第1参照信号を送信する第1参照信号送信ステップと、
     前記複数の第1参照信号を送信するタイミングと異なるタイミングにおいて、複数の第2参照信号を送信する第2参照信号送信ステップと、
     前記ユーザ装置において測定された第2参照信号の受信品質に基づくフィードバック情報を受信する情報受信ステップとを備え、
     前記第1参照信号送信ステップにおいて、一部の周波数領域内のみにマッピングされた第1参照信号を送信し、
     前記第2参照信号送信ステップにおいて、第1参照信号がマッピングされた周波数領域よりも広い周波数領域にマッピングされた第2参照信号を送信する
     ことを特徴とする通信方法。
PCT/JP2015/052052 2014-01-31 2015-01-26 ユーザ装置、基地局、及び通信方法 WO2015115376A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/114,216 US10212629B2 (en) 2014-01-31 2015-01-26 User apparatus, base station, and communication method
EP15743011.7A EP3101942B1 (en) 2014-01-31 2015-01-26 Improvement of reference signals measurement using synchronisation signals

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-018044 2014-01-31
JP2014018044 2014-01-31
JP2014-094156 2014-04-30
JP2014094156A JP2015164281A (ja) 2014-01-31 2014-04-30 ユーザ装置、基地局、及び通信方法

Publications (1)

Publication Number Publication Date
WO2015115376A1 true WO2015115376A1 (ja) 2015-08-06

Family

ID=53756949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052052 WO2015115376A1 (ja) 2014-01-31 2015-01-26 ユーザ装置、基地局、及び通信方法

Country Status (6)

Country Link
US (1) US10212629B2 (ja)
EP (1) EP3101942B1 (ja)
JP (1) JP2015164281A (ja)
HU (1) HUE049398T2 (ja)
PT (1) PT3101942T (ja)
WO (1) WO2015115376A1 (ja)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017068432A1 (en) * 2015-10-22 2017-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Resolution of beam and node identities for dual connectivity
WO2017121534A1 (en) * 2016-01-12 2017-07-20 Nokia Solutions And Networks Oy Discovery signal block mapping
WO2017136732A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. Beamforming common channels in 5g new radio
WO2017135593A1 (ko) * 2016-02-04 2017-08-10 주식회사 케이티 초고주파 이동 통신 시스템의 기준 신호 및 피드백 송수신 방법 및 그 장치
WO2017195490A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ装置及び測定方法
WO2017195488A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ装置及び測定方法
WO2017198107A1 (en) 2016-05-18 2017-11-23 Huawei Technologies Co., Ltd. Method of operating a cellular network including high frequency burst transmission
GB2551476A (en) * 2016-05-11 2017-12-27 Nokia Solutions & Networks Oy Method, system and apparatus
WO2018008212A1 (ja) * 2016-07-06 2018-01-11 ソニーモバイルコミュニケーションズ株式会社 基地局、端末装置、通信方法及び記録媒体
WO2018031583A1 (en) * 2016-08-09 2018-02-15 Intel Corporation Method of heterogeneous brs transmission in nr
WO2018048619A1 (en) * 2016-09-08 2018-03-15 Qualcomm Incorporated Transmission scheme management for common channels in nr
WO2018078794A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 無線制御装置
CN108496312A (zh) * 2015-09-24 2018-09-04 株式会社Ntt都科摩 无线基站和用户设备
JP2018526858A (ja) * 2015-07-02 2018-09-13 華為技術有限公司Huawei Technologies Co.,Ltd. 異種ネットワーク内のミリ波スモールセルにおけるビーム検出、ビーム追跡、及びランダムアクセス
JP2019503609A (ja) * 2015-12-01 2019-02-07 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 同期情報の送信
CN109565731A (zh) * 2016-08-03 2019-04-02 日本电气株式会社 与波束成形有关的设备、方法、系统、程序和记录介质
CN109792641A (zh) * 2016-09-29 2019-05-21 瑞典爱立信有限公司 用于支持无线通信网络中的通信设备移动性的方法和布置
EP3493576A4 (en) * 2016-07-29 2019-07-03 Sony Corporation TERMINAL DEVICE, BASE STATION, METHOD AND RECORDING MEDIUM
EP3435566A4 (en) * 2016-03-23 2019-08-14 LG Electronics Inc. METHOD AND DEVICE FOR TRANSMITTING A DETECTION SIGNAL
US10720973B2 (en) 2016-02-04 2020-07-21 Kt Corporation Method for ultra-high frequency mobile communication system transreceiving reference signal and feedback and apparatus for same
US11096187B2 (en) 2015-12-31 2021-08-17 Huawei Technologtes Co., Ltd. Wireless communication method and system, and device
US20210289562A1 (en) * 2016-09-29 2021-09-16 Ntt Docomo, Inc. Wireless communication method and base station
US11159224B2 (en) 2017-05-05 2021-10-26 Zte Corporation System and method for allocating resources
EP3536031B1 (en) * 2016-11-04 2022-02-23 Telefonaktiebolaget LM Ericsson (publ) Neighboring mobility reference signal set search in beambased nr mobility

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170288754A1 (en) * 2014-09-24 2017-10-05 Sharp Kabushiki Kaisha Base station apparatus, terminal device, and communication method
EP3206433B1 (en) * 2014-10-30 2018-12-05 Huawei Technologies Co., Ltd. Inter-small cell switching methods, devices and system
JP6408706B2 (ja) 2014-11-28 2018-10-17 華為技術有限公司Huawei Technologies Co.,Ltd. リソース設定方法、ユーザ機器、及び基地局
CN106171029B (zh) 2015-02-12 2020-07-24 华为技术有限公司 一种信号传输的装置、系统及方法
US9980270B2 (en) 2015-03-13 2018-05-22 Futurewei Technologies, Inc. System and method for interference coordination in wireless communications systems
WO2016153176A1 (ko) * 2015-03-20 2016-09-29 엘지전자 주식회사 무선 통신 시스템에서 상향링크 동기화를 수행하는 방법 및 이를 위한 장치
US10469138B2 (en) * 2015-05-14 2019-11-05 Telefonaktiebolaget Lm Ericsson (Publ) Measurement procedures for DRS with beamforming
US10148332B2 (en) * 2015-05-28 2018-12-04 Futurewei Technologies, Inc. System and method for multi-level beamformed non-orthogonal multiple access communications
MX367471B (es) 2015-06-12 2019-08-23 Ericsson Telefon Ab L M Movilidad para sistemas de formacion de haces.
CN106559886A (zh) * 2015-09-28 2017-04-05 华为技术有限公司 无线通信系统中传输控制信息的方法、基站和用户设备
KR102188747B1 (ko) * 2015-10-12 2020-12-08 에스케이텔레콤 주식회사 하이브리드 빔포밍을 이용한 무선 통신 방법 및 장치
US10784942B2 (en) 2015-11-09 2020-09-22 Apple Inc. System and method for beamed reference signal with hybrid beam
CN106850009B (zh) * 2015-11-30 2021-02-09 华为技术有限公司 一种确定通信波束的方法及对应装置
US9930656B2 (en) * 2015-12-21 2018-03-27 Intel IP Corporation Cell search and synchronization in millimeter-wave capable small cells
US10530557B2 (en) * 2015-12-25 2020-01-07 Mitsubishi Electric Corporation Radio base station and communication system
JP6663256B2 (ja) * 2016-03-11 2020-03-11 株式会社Nttドコモ 無線通信システム及び管理装置
WO2017164220A1 (ja) * 2016-03-25 2017-09-28 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
JP7001583B2 (ja) 2016-03-25 2022-01-19 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US10425200B2 (en) 2016-04-13 2019-09-24 Qualcomm Incorporated System and method for beam adjustment request
US10069555B2 (en) 2016-04-13 2018-09-04 Qualcomm Incorporated System and method for beam management
US10615862B2 (en) 2016-04-13 2020-04-07 Qualcomm Incorporated System and method for beam adjustment request
CN109075845B (zh) * 2016-04-14 2022-03-15 苹果公司 用于通信的装置、设备和计算机可读存储介质
WO2017204739A1 (en) * 2016-05-27 2017-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal tracking in a wireless communication system
US10904784B2 (en) 2016-06-15 2021-01-26 Qualcomm Incorporated Beam reporting and scheduling in multicarrier beamformed communications
WO2018003022A1 (ja) 2016-06-28 2018-01-04 三菱電機株式会社 無線基地局装置および無線通信方法
JP6891419B2 (ja) 2016-07-29 2021-06-18 ソニーグループ株式会社 端末装置、基地局、方法及び記録媒体
JP6769160B2 (ja) 2016-07-29 2020-10-14 ソニー株式会社 端末装置、基地局、方法及び記録媒体
WO2018026230A1 (ko) * 2016-08-05 2018-02-08 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 보고를 위한 방법 및 이를 위한 장치
CN109792305B (zh) 2016-09-30 2020-12-11 瑞典爱立信有限公司 用于无线电链路测量配置的方法和设备
EP3520473B1 (en) * 2016-09-30 2022-09-28 Telefonaktiebolaget LM Ericsson (publ) Methods and arrangements for measurement based mobility
WO2018058512A1 (en) 2016-09-30 2018-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Methods and arrangements for measurement based mobility
JP6833225B2 (ja) * 2016-09-30 2021-02-24 テレフオンアクチーボラゲット エルエム エリクソン(パブル) 基準信号送信及び測定のための方法及びデバイス
CN109792667B (zh) 2016-09-30 2022-03-25 瑞典爱立信有限公司 用于基于测量的移动性的方法和设备
EP3535865B1 (en) 2016-11-04 2024-02-14 Sony Group Corporation Multi-beam operation for random access transmission in a mobile radio communication network
CN109150250B (zh) * 2016-11-04 2020-03-10 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
EP3539319A1 (en) * 2016-11-14 2019-09-18 Telefonaktiebolaget LM Ericsson (PUBL) Measurement configuration for active mode mobility measurements
WO2018092375A1 (ja) * 2016-11-17 2018-05-24 シャープ株式会社 基地局装置、端末装置、通信システム、通信方法及びプログラム
US10505773B2 (en) * 2017-01-17 2019-12-10 Qualcomm Incorporated Association between synchronization signal beams and reference signal beams
JP2018117274A (ja) 2017-01-19 2018-07-26 富士通株式会社 無線基地局、無線通信システム、無線通信方法、及び無線端末
EP4255009A3 (en) 2017-02-03 2023-12-27 Ntt Docomo, Inc. User apparatus, and preamble transmission method
US11272429B2 (en) * 2017-02-13 2022-03-08 Qualcomm Incorporated Initiation of mobility reference signal based on quality of initial access signals
US10368301B2 (en) * 2017-02-21 2019-07-30 Qualcomm Incorporated Multi-beam and single-beam discovery reference signals for shared spectrum
CN108633006B (zh) * 2017-03-17 2021-03-19 电信科学技术研究院 一种上行发送波束确定方法和装置
US10820355B2 (en) * 2017-03-24 2020-10-27 Electronics And Telecommunications Research Institute Method and apparatus for random access in mobile communication system
JP6832794B2 (ja) * 2017-06-05 2021-02-24 ルネサスエレクトロニクス株式会社 無線通信システム
JP7005190B2 (ja) * 2017-06-30 2022-01-21 株式会社Nttドコモ 信号処理装置、無線装置、フロントホールマルチプレクサ、ビーム制御方法、および信号合成方法
JP7296489B2 (ja) * 2017-06-30 2023-06-22 株式会社Nttドコモ 通信ユニット、フロントホールマルチプレクサ、通信システム、及び通信方法
JP2019062505A (ja) * 2017-09-28 2019-04-18 シャープ株式会社 通信装置および通信方法
JP7059614B2 (ja) * 2017-12-20 2022-04-26 ソニーグループ株式会社 受信制御装置、基地局および受信制御方法
JP2019176428A (ja) * 2018-03-29 2019-10-10 株式会社Nttドコモ 基地局、及びユーザ装置
KR102495977B1 (ko) 2018-04-12 2023-02-03 삼성전자 주식회사 무선 통신 시스템에서 단말 및 이의 제어 방법
JP6770561B2 (ja) * 2018-09-20 2020-10-14 華為技術有限公司Huawei Technologies Co.,Ltd. リソース設定方法、ユーザ機器、及び基地局
KR102541220B1 (ko) 2018-11-21 2023-06-09 삼성전자 주식회사 무선 통신 시스템에서 신호를 송수신하는 방법 및 장치
DE102019135900A1 (de) 2019-02-22 2020-08-27 Samsung Electronics Co., Ltd. Drahtlose Kommunikationsvorrichtung, die zur schnellen Strahlauswahl fähig ist, und Betriebsverfahren derselben
JP7287002B2 (ja) 2019-02-27 2023-06-06 富士通株式会社 基地局装置及びビーム選択方法
CN112822713B (zh) * 2019-11-18 2022-07-08 维沃移动通信有限公司 一种srs上报处理方法及相关设备
WO2022107593A1 (ja) * 2020-11-18 2022-05-27 Kddi株式会社 ビームを形成して通信する、通信装置並びにその通信方法、基地局装置並びにその通信方法、端末装置並びにその通信方法、及び、プログラム
JP2023125788A (ja) * 2022-02-28 2023-09-07 Kddi株式会社 制御装置、ユーザ装置、制御方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189812A1 (en) * 2008-01-25 2009-07-30 Samsung Electronics Co., Ltd. System and method for multi-stage antenna training of beamforming vectors
WO2013032188A2 (en) * 2011-09-01 2013-03-07 Samsung Electronics Co., Ltd. Apparatus and method for selecting best beam in wireless communication system
JP2013219507A (ja) 2012-04-06 2013-10-24 Ntt Docomo Inc 無線通信方法、ローカルエリア基地局装置、移動端末装置及び無線通信システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7969964B2 (en) * 2006-07-25 2011-06-28 Electronics & Telecommunications Research Institute Cell search method, forward link frame transmission method, apparatus using the same and forward link frame structure
US8280445B2 (en) * 2008-02-13 2012-10-02 Samsung Electronics Co., Ltd. System and method for antenna training of beamforming vectors by selective use of beam level training
US9407409B2 (en) * 2010-02-23 2016-08-02 Qualcomm Incorporated Channel state information reference signals
US20140128084A1 (en) 2011-07-07 2014-05-08 Alcatel Lucent Method and apparatus for discovering a small cell in a heterogonous communication network
JP6026415B2 (ja) * 2011-08-05 2016-11-16 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 端末、送信装置、受信品質報告方法および受信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090189812A1 (en) * 2008-01-25 2009-07-30 Samsung Electronics Co., Ltd. System and method for multi-stage antenna training of beamforming vectors
WO2013032188A2 (en) * 2011-09-01 2013-03-07 Samsung Electronics Co., Ltd. Apparatus and method for selecting best beam in wireless communication system
JP2013219507A (ja) 2012-04-06 2013-10-24 Ntt Docomo Inc 無線通信方法、ローカルエリア基地局装置、移動端末装置及び無線通信システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3101942A4

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018526858A (ja) * 2015-07-02 2018-09-13 華為技術有限公司Huawei Technologies Co.,Ltd. 異種ネットワーク内のミリ波スモールセルにおけるビーム検出、ビーム追跡、及びランダムアクセス
EP3353913A4 (en) * 2015-09-24 2019-07-31 Ntt Docomo, Inc. RADIO BASE STATION AND USER EQUIPMENT
CN108496312A (zh) * 2015-09-24 2018-09-04 株式会社Ntt都科摩 无线基站和用户设备
US10257738B2 (en) 2015-10-22 2019-04-09 Telefonaktiebolaget L M Ericsson (Publ) Resolution of beam and node identities for dual connectivity
WO2017068432A1 (en) * 2015-10-22 2017-04-27 Telefonaktiebolaget Lm Ericsson (Publ) Resolution of beam and node identities for dual connectivity
JP2019503609A (ja) * 2015-12-01 2019-02-07 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 同期情報の送信
US11096187B2 (en) 2015-12-31 2021-08-17 Huawei Technologtes Co., Ltd. Wireless communication method and system, and device
EP3386253B1 (en) * 2015-12-31 2024-04-17 Huawei Technologies Co., Ltd. Wireless communication method, device and system
US11723001B2 (en) 2016-01-12 2023-08-08 Nokia Solutions And Networks Oy Discovery signal block mapping
US11064485B2 (en) 2016-01-12 2021-07-13 Nokia Solutions And Networks Oy Discovery signal block mapping
WO2017121534A1 (en) * 2016-01-12 2017-07-20 Nokia Solutions And Networks Oy Discovery signal block mapping
US10536940B2 (en) 2016-01-12 2020-01-14 Nokia Solutions And Networks Oy Discovery signal block mapping
CN108713333A (zh) * 2016-01-12 2018-10-26 诺基亚通信公司 发现信号块映射
WO2017136732A1 (en) * 2016-02-03 2017-08-10 Docomo Innovations, Inc. Beamforming common channels in 5g new radio
US11375384B2 (en) 2016-02-03 2022-06-28 Ntt Docomo, Inc. Beamforming common channels in 5G new radio
WO2017135593A1 (ko) * 2016-02-04 2017-08-10 주식회사 케이티 초고주파 이동 통신 시스템의 기준 신호 및 피드백 송수신 방법 및 그 장치
US10720973B2 (en) 2016-02-04 2020-07-21 Kt Corporation Method for ultra-high frequency mobile communication system transreceiving reference signal and feedback and apparatus for same
US10644852B2 (en) 2016-03-23 2020-05-05 Lg Electronics Inc. Method and device for transmitting discovery signal
EP3435566A4 (en) * 2016-03-23 2019-08-14 LG Electronics Inc. METHOD AND DEVICE FOR TRANSMITTING A DETECTION SIGNAL
GB2551476A (en) * 2016-05-11 2017-12-27 Nokia Solutions & Networks Oy Method, system and apparatus
JPWO2017195488A1 (ja) * 2016-05-12 2019-03-14 株式会社Nttドコモ ユーザ装置及び測定方法
WO2017195490A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ装置及び測定方法
WO2017195488A1 (ja) * 2016-05-12 2017-11-16 株式会社Nttドコモ ユーザ装置及び測定方法
CN109155930A (zh) * 2016-05-18 2019-01-04 华为技术有限公司 包括高频突发传输的蜂窝网络的操作方法
AU2017265880B2 (en) * 2016-05-18 2020-01-30 Huawei Technologies Co., Ltd. Method of operating a cellular network including high frequency burst transmission
WO2017198107A1 (en) 2016-05-18 2017-11-23 Huawei Technologies Co., Ltd. Method of operating a cellular network including high frequency burst transmission
RU2713410C1 (ru) * 2016-05-18 2020-02-05 Хуавей Текнолоджиз Ко., Лтд. Способ функционирования сотовой сети, включающий в себя высокочастотную пакетную передачу
CN109155930B (zh) * 2016-05-18 2021-01-01 上海朋熙半导体有限公司 包括高频突发传输的蜂窝网络的操作方法
EP3453202A4 (en) * 2016-05-18 2019-04-24 Huawei Technologies Co., Ltd. METHOD FOR OPERATING A MOBILE RADIO NETWORK WITH HIGH FREQUENCY BURST TRANSMISSION
JP2019520737A (ja) * 2016-05-18 2019-07-18 ホアウェイ・テクノロジーズ・カンパニー・リミテッド 高周波バースト送信を含む、セルラーネットワークを動作させる方法
EP3484062A4 (en) * 2016-07-06 2019-07-03 Sony Corporation BASE STATION, DEVICE DEVICE, COMMUNICATION METHOD AND RECORDING MEDIUM
JP7005491B2 (ja) 2016-07-06 2022-01-21 ソニーモバイルコミュニケーションズ株式会社 基地局、端末装置、及び通信方法
US11212153B2 (en) 2016-07-06 2021-12-28 Sony Mobile Communications Inc. Base station, terminal apparatus, communication method and recording medium
CN109417406B (zh) * 2016-07-06 2022-01-25 索尼移动通信株式会社 基站、终端设备、通信方法和记录介质
US11671302B2 (en) 2016-07-06 2023-06-06 Sony Mobile Communications Inc. Base station, terminal apparatus, communication method and recording medium
WO2018008212A1 (ja) * 2016-07-06 2018-01-11 ソニーモバイルコミュニケーションズ株式会社 基地局、端末装置、通信方法及び記録媒体
CN109417406A (zh) * 2016-07-06 2019-03-01 索尼移动通信株式会社 基站、终端设备、通信方法和记录介质
JPWO2018008212A1 (ja) * 2016-07-06 2019-04-25 ソニーモバイルコミュニケーションズ株式会社 基地局、端末装置、通信方法及び記録媒体
CN114221681A (zh) * 2016-07-06 2022-03-22 索尼移动通信株式会社 基站、终端设备、通信方法和记录介质
RU2739588C2 (ru) * 2016-07-29 2020-12-28 Сони Корпорейшн Оконечное устройство, базовая станция, способ и носитель информации
US10966110B2 (en) 2016-07-29 2021-03-30 Sony Corporation Terminal apparatus, base station, method and recording medium
EP3493576A4 (en) * 2016-07-29 2019-07-03 Sony Corporation TERMINAL DEVICE, BASE STATION, METHOD AND RECORDING MEDIUM
TWI745403B (zh) * 2016-07-29 2021-11-11 日商索尼股份有限公司 終端裝置、基地台、通訊控制方法及記錄媒體
CN109565731B (zh) * 2016-08-03 2021-11-23 日本电气株式会社 与波束成形有关的设备、方法、系统、程序和记录介质
US10849027B2 (en) 2016-08-03 2020-11-24 Nec Corporation Apparatus, method, system, program and recording medium related to beamforming
EP4325735A3 (en) * 2016-08-03 2024-05-01 NEC Corporation Apparatus, method, system, program, and recording medium related to beamforming
EP3496459A4 (en) * 2016-08-03 2019-06-19 Nec Corporation APPARATUS, METHOD, SYSTEM, PROGRAM, AND RECORDING MEDIUM FOR BEAM FORMATION
CN109565731A (zh) * 2016-08-03 2019-04-02 日本电气株式会社 与波束成形有关的设备、方法、系统、程序和记录介质
US11516711B2 (en) 2016-08-03 2022-11-29 Nec Corporation Apparatus, method, system, program and recording medium related to beamforming
WO2018031583A1 (en) * 2016-08-09 2018-02-15 Intel Corporation Method of heterogeneous brs transmission in nr
US10631299B2 (en) 2016-09-08 2020-04-21 Qualcomm Incorporated Transmission scheme management for common channels in NR
US11153879B2 (en) 2016-09-08 2021-10-19 Qualcomm Incorporated Transmission scheme management for common channels in NR
CN109661842A (zh) * 2016-09-08 2019-04-19 高通股份有限公司 针对在nr中的公共信道的传输方案管理
WO2018048619A1 (en) * 2016-09-08 2018-03-15 Qualcomm Incorporated Transmission scheme management for common channels in nr
EP3731576A1 (en) * 2016-09-08 2020-10-28 QUALCOMM Incorporated Transmission scheme management for common channels in nr
US20210289562A1 (en) * 2016-09-29 2021-09-16 Ntt Docomo, Inc. Wireless communication method and base station
CN109792641A (zh) * 2016-09-29 2019-05-21 瑞典爱立信有限公司 用于支持无线通信网络中的通信设备移动性的方法和布置
US11601985B2 (en) * 2016-09-29 2023-03-07 Ntt Docomo, Inc. Wireless communication method, base station, and user equipment using a physical random access channel
WO2018078794A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 無線制御装置
US10938461B2 (en) 2016-10-28 2021-03-02 Mitsubishi Electric Corporation Wireless control apparatus
JPWO2018078794A1 (ja) * 2016-10-28 2019-02-07 三菱電機株式会社 無線制御装置
US11297546B2 (en) 2016-11-04 2022-04-05 Telefonaktiebolaget Lm Ericsson (Publ) Neighboring mobility reference signal set search in beam-based NR mobility
EP3536031B1 (en) * 2016-11-04 2022-02-23 Telefonaktiebolaget LM Ericsson (publ) Neighboring mobility reference signal set search in beambased nr mobility
US11671161B2 (en) 2017-05-05 2023-06-06 Zte Corporation System and method for allocating resources
US11159224B2 (en) 2017-05-05 2021-10-26 Zte Corporation System and method for allocating resources

Also Published As

Publication number Publication date
PT3101942T (pt) 2020-07-02
JP2015164281A (ja) 2015-09-10
HUE049398T2 (hu) 2020-09-28
US20160345216A1 (en) 2016-11-24
EP3101942A4 (en) 2017-05-10
EP3101942A1 (en) 2016-12-07
US10212629B2 (en) 2019-02-19
EP3101942B1 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
WO2015115376A1 (ja) ユーザ装置、基地局、及び通信方法
US10972167B2 (en) User apparatus, base station, and communication method
KR102287580B1 (ko) 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
US11683215B2 (en) System and method for communications beam recovery
US10827375B2 (en) Configuration of coordinated multipoint transmission hypotheses for channel state information reporting
JP7337747B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
US11350291B2 (en) Beam tracking mobile communication system, base station, and user equipment
US9497002B2 (en) 3D MIMO CSI feedback based on virtual elevation ports
WO2015119076A1 (ja) ユーザ装置、基地局、及び通信方法
JP5703398B2 (ja) 制御チャネルを復調するためのプライマリセル指示方法及び装置
JP2020031446A (ja) 端末、及び通信アクセス方法
JP7157515B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
CN109478987B (zh) 用于处置通信的方法和用户设备
JP6442140B2 (ja) ユーザ端末、無線基地局及び無線通信方法
JP2020127221A (ja) ユーザ装置及び無線通信方法
US20190273593A1 (en) Cdm8 based csi-rs designs for mimo
EP3657879A1 (en) Supporting dynamic multipoint communication configuration
JP6865203B2 (ja) ユーザ装置、基地局、無線通信システム、及び通信方法
JP7200155B2 (ja) 端末、信号送信方法、基地局、及び無線通信システム
CN111903073B (zh) 无线通信系统中大容量接入的装置和方法
CN111903073A (zh) 无线通信系统中大容量接入的装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743011

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15114216

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015743011

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015743011

Country of ref document: EP