WO2018003022A1 - 無線基地局装置および無線通信方法 - Google Patents

無線基地局装置および無線通信方法 Download PDF

Info

Publication number
WO2018003022A1
WO2018003022A1 PCT/JP2016/069164 JP2016069164W WO2018003022A1 WO 2018003022 A1 WO2018003022 A1 WO 2018003022A1 JP 2016069164 W JP2016069164 W JP 2016069164W WO 2018003022 A1 WO2018003022 A1 WO 2018003022A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
base station
signal
antenna
unit
Prior art date
Application number
PCT/JP2016/069164
Other languages
English (en)
French (fr)
Inventor
石岡 和明
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201680087028.0A priority Critical patent/CN109417429B/zh
Priority to EP16907255.0A priority patent/EP3461040B1/en
Priority to PCT/JP2016/069164 priority patent/WO2018003022A1/ja
Priority to JP2016573626A priority patent/JP6223610B1/ja
Priority to US16/305,010 priority patent/US10594375B2/en
Publication of WO2018003022A1 publication Critical patent/WO2018003022A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0491Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/0478Special codebook structures directed to feedback optimisation
    • H04B7/0479Special codebook structures directed to feedback optimisation for multi-dimensional arrays, e.g. horizontal or vertical pre-distortion matrix index [PMI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • the present invention relates to a radio base station apparatus having a plurality of antennas and a radio communication method.
  • beam forming is performed by a two-dimensional active array antenna using several tens or more antenna elements, and multi-user MIMO that communicates simultaneously with users in different directions by directing a beam toward the user, that is, a terminal.
  • the capacity can be expanded by the base station directing a beam in the terminal direction and simultaneously communicating with a plurality of terminals.
  • the propagation distance can be increased by concentrating power by narrowing the beam width.
  • the spatial separation between terminals by the two-dimensional active array antenna is incomplete due to the influence of the side lobes of the transmission beam and the multipath of the transmission path. For this reason, there is a problem in that interference occurs between terminals and the expected transmission rate cannot be obtained.
  • it is necessary to widen the aperture of the antenna Since the two-dimensional active array antenna has antenna elements arranged at a narrow interval, a large number of antenna elements are required to widen the aperture, but a space separation performance commensurate with the cost cannot be obtained.
  • the present invention has been made in view of the above, and an object thereof is to obtain a radio base station apparatus capable of removing interference between terminals.
  • the present invention is a radio base station apparatus that performs communication with a plurality of terminals by spatial multiplexing.
  • the radio base station apparatus generates a first transmission signal to be transmitted from a two-dimensional array antenna, and is a transmission signal to be transmitted from a sector antenna, in order to remove interference generated between terminals due to the first transmission signal
  • a digital signal processing unit for generating the second transmission signal A digital signal processing unit for generating the second transmission signal.
  • the radio base station apparatus includes a two-dimensional array antenna that transmits the first transmission signal and a sector antenna that transmits the second transmission signal.
  • the radio base station apparatus according to the present invention has an effect that interference between terminals can be removed.
  • FIG. 3 is a block diagram showing a configuration example of a base station apparatus according to the first embodiment
  • FIG. 3 is a block diagram showing a configuration example of a high frequency unit of the base station apparatus according to the first embodiment
  • FIG. 3 is a block diagram showing a configuration example of a digital signal processing unit of the base station apparatus according to the first embodiment
  • FIG. 3 is a block diagram showing a configuration example of a precoding unit included in the digital signal processing unit of the base station apparatus according to the first embodiment
  • the flowchart which shows the process which the base station apparatus concerning Embodiment 1 transmits the transmission data for every user.
  • FIG. 3 is a diagram illustrating an example in which the digital signal processing unit according to the first embodiment is configured by a CPU and a memory.
  • FIG. 3 is a diagram illustrating an example when the digital signal processing unit according to the first embodiment is configured by dedicated hardware.
  • FIG. 3 is a block diagram showing a configuration example of a base station apparatus according to the second embodiment.
  • FIG. 3 is a block diagram showing a configuration example of a high frequency unit of the base station apparatus according to the second embodiment.
  • FIG. 6 is a block diagram showing a configuration example of a digital signal processing unit of the base station apparatus according to the second embodiment.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 9 according to the first embodiment of the present invention.
  • the wireless communication system 9 includes a base station device 3 that is a wireless base station device, a wired network 4, and terminals 5-1 and 5-2 that are movable wireless terminals.
  • the base station apparatus 3 includes an active array antenna 1 and sector antennas 2-1 to 2-L.
  • the base station apparatus 3 performs spatial multiplexing communication with the terminals 5-1 and 5-2.
  • the base station apparatus 3 When the base station apparatus 3 acquires the data to be transmitted from the wired network 4 to the terminal 5-1, the base station apparatus 3 controls the active array antenna 1, directs the beam 6-1 to the terminal 5-1, and transmits the data to the terminal 5-1. To do.
  • the base station apparatus 3 controls the active array antenna 1 to direct the beam 6-1 to the terminal 5-1, and when the data is received from the terminal 5-1, transmits the data to the wired network 4.
  • side lobes 7-1 and 7-2 are generated together with the beam 6-1 which is the main beam.
  • the base station apparatus 3 when the base station apparatus 3 acquires data to be transmitted from the wired network 4 to the terminal 5-2, the base station apparatus 3 controls the active array antenna 1 to direct the beam 6-2 to the terminal 5-2 and to transmit data to the terminal 5-2. Send. Further, the base station apparatus 3 controls the active array antenna 1 to direct the beam 6-2 to the terminal 5-2 and, when receiving data from the terminal 5-2, transmits the data to the wired network 4. In the base station apparatus 3, when the beam 6-2 is directed to the terminal 5-2, side lobes 7-3 and 7-4 are generated together with the beam 6-2 which is the main beam.
  • base station apparatus 3 When transmitting common control data to terminals 5-1 and 5-2 and receiving random access received data from terminals 5-1 and 5-2, base station apparatus 3 receives sector antennas 2-1 to 2- Use L.
  • FIG. 1 shows the communication area 8 of the sector antenna 2-1, the other sector antennas 2-2 to 2-L also have communication areas of the same size.
  • the sector antennas 2-1 to 2-L when the sector antennas 2-1 to 2-L are not distinguished, they may be referred to as sector antennas 2. Further, when the terminals 5-1 and 5-2 are not distinguished, they may be referred to as terminals 5. Further, when the beams 6-1 and 6-2 are not distinguished, they may be referred to as beams 6. Further, when the side lobes 7-1 to 7-4 are not distinguished, they may be referred to as side lobes 7. In addition, the active array antenna 1 and the sector antennas 2-1 to 2-L may be collectively referred to as antennas.
  • FIG. 2 is a block diagram of a configuration example of the base station apparatus 3 according to the first embodiment.
  • the base station apparatus 3 includes an active array antenna 1, sector antennas 2-1 to 2-L, a plurality of high-frequency units 11, a plurality of A / D (Analog to Digital) converters 12, and a plurality of D / A A (Digital to Analog) conversion unit 13, a digital signal processing unit 14, and a wired data transmission / reception unit 15 are provided.
  • the base station apparatus 3 includes a high frequency unit 11, an A / D conversion unit 12, and a D / A conversion unit 13 for each antenna element 10 and each sector antenna 2 of the active array antenna 1.
  • the active array antenna 1 is, for example, a two-dimensional array antenna composed of a plurality of antenna elements 10 arranged two-dimensionally for every 1 ⁇ 2 wavelength.
  • the active array antenna 1 can change the beam direction by changing the phase and amplitude of the signal for each antenna element 10.
  • the beam width of the beam 6 generated by the active array antenna 1 is, for example, a horizontal half-value angle of 20 ° and a vertical half-value angle of 20 °.
  • the sector antenna 2 is an antenna having a fixed beam pattern that is wider in the horizontal direction than the active array antenna 1 or equal to or wider in the vertical direction.
  • the beam width of the beam generated by the sector antenna 2 is, for example, a horizontal half-value angle of 100 ° and a vertical half-value angle of 20 °.
  • the vertical beam direction is usually fixed in the direction of the cell edge, but as with the conventional sector antenna, the tilt angle is adjusted in accordance with the dead zone countermeasure or the change of the cell radius by adding the base station device 3. It can be adjusted.
  • the high frequency unit 11 is provided for each antenna element 10 of the active array antenna 1 and for each sector antenna 2 in the base station apparatus 3.
  • FIG. 3 is a block diagram of a configuration example of the high frequency unit 11 of the base station device 3 according to the first embodiment.
  • the high frequency unit 11 includes a frequency conversion unit 110, a transmission signal amplification unit 111, a transmission / reception sharing unit 112, a reception signal amplification unit 113, and a frequency conversion unit 114.
  • the frequency conversion unit 110 converts the transmission analog baseband signal acquired from the D / A conversion unit 13 to a radio frequency, and the transmission signal amplification unit 111 performs desired transmission. It amplifies to electric power and outputs a transmission signal to the antenna to which the transmission / reception sharing unit 112 is connected.
  • the reception signal amplification unit 113 amplifies the reception signal when acquiring the reception signal from the antenna connected via the transmission / reception sharing unit 112, and the frequency conversion unit 114 receives the reception analog base The frequency is converted to the frequency of the band signal and output to the A / D converter 12.
  • the frequency conversion units 110 and 114 are composed of a frequency mixer, a local oscillator, and a filter.
  • the transmission signal amplification unit 111 and the reception signal amplification unit 113 are semiconductor amplifiers.
  • the transmission / reception sharing unit 112 uses a semiconductor switch in the case of TDD (Time Division Duplex), and uses a frequency duplexer in the case of FDD (Frequency Division Duplex).
  • the A / D conversion unit 12 is a signal received from the terminal 5, converts the received analog baseband signal acquired from the high frequency unit 11 from an analog signal to a digital signal, and converts the received digital baseband signal to the digital signal processing unit 14. Is an analog-to-digital converter that outputs to
  • the D / A conversion unit 13 is a signal to be transmitted to the terminal 5, converts the transmission digital baseband signal acquired from the digital signal processing unit 14 from a digital signal to an analog signal, and converts the transmission analog baseband signal to the high frequency unit 11. Is a digital-analog converter that outputs to
  • the digital signal processing unit 14 transmits the transmission digital baseband for each antenna element 10 and each sector antenna 2 of the active array antenna 1 from the common control data and the transmission data for each user from the user 1 to the user n.
  • a signal is generated and output to the D / A converter 13.
  • the digital signal processing unit 14 acquires the received digital baseband signal from the A / D conversion unit 12 and separates it into received data and random access received data for each user from user 1 to user n. And output.
  • the digital signal processing unit 14 uses the sector antenna 2 for transmission of control signals common to a plurality of terminals 5 and reception of random access signals from the plurality of terminals 5, and an active array antenna for transmission / reception of signals for each terminal 5 1 and sector antenna 2 are used.
  • the wired data transmission / reception unit 15 obtains data to be transmitted from the wired network 4 to the terminal 5 and outputs the data to the digital signal processing unit 14.
  • the wired data transmission / reception unit 15 outputs data received from the terminal 5 to the wired network 4.
  • FIG. 4 is a block diagram of a configuration example of the digital signal processing unit 14 of the base station device 3 according to the first embodiment.
  • the digital signal processing unit 14 includes a plurality of error correction coding units 141, a plurality of modulation units 142, a precoding unit 143, a transmission beam forming unit 144, a reception beam forming unit 145, a demodulation unit 146, and a plurality of Error correction decoding section 147.
  • the digital signal processing unit 14 includes an error correction encoding unit 141 and a modulation unit 142 for each common control data transmitted from the base station apparatus 3 and each transmission data for each user.
  • the digital signal processing unit 14 includes an error correction decoding unit 147 for each random access reception data received by the base station device 3 and each reception data for each user.
  • the plurality of error correction encoding units 141 are turbo codes or LDPC (Low Density Parity Check) codes for the common control data acquired from the wired data transmission / reception unit 15 and one of the transmission data for each user.
  • the error correction encoding process is performed.
  • the plurality of modulation units 142 respectively perform BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16QAM (Quadrature) on one piece of data after the error correction encoding process acquired from the error correction encoding unit 141. Amplitude Modulation), 64QAM, etc., are performed. Modulation section 142 further performs secondary modulation such as OFDM (Orthogonal Frequency Division Multiplexing), and outputs the modulated data to precoding section 143.
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • 16QAM Quadrature
  • Modulation section 142 further performs secondary modulation such as OFDM (Orthogonal Frequency Division Multiplexing), and outputs the modulated data to precoding section 143.
  • the precoding unit 143 outputs the transmission signal of the common control data to the sector antenna 2 via the D / A conversion unit 13 and the high frequency unit 11. Further, the precoding unit 143 outputs a transmission signal of transmission data for each user to the transmission beamforming unit 144.
  • the base station apparatus 3 uses a signal transmitted from the active array antenna 1 to eliminate interference generated between the terminals 5 by a signal transmitted from the active array antenna 1, that is, to cancel the signal. Transmit from antenna 2. Thereby, in the wireless communication system 9, there is no interference between the terminals 5 in the terminals 5, and high-speed transmission from the base station apparatus 3 becomes possible.
  • the precoding unit 143 transmission path information on each transmission path between each antenna of the base station apparatus 3 and each terminal 5 is required.
  • the transmission extracted by the demodulation unit 146 Road information can be used.
  • the precoding unit 143 may use the transmission path information acquired from the terminal 5 when the terminal 5 transmits the transmission path information obtained by the demodulator of the terminal 5 as data to the base station apparatus 3.
  • the transmission beamforming unit 144 multiplies the transmission signal of the transmission data for each user by the weighting factor of the complex number for each antenna element 10 of the active array antenna 1 determined by the direction of the user, that is, for each terminal 5 and adds it for each terminal 5 A transmission signal, that is, a beamformed transmission signal is output.
  • the reception beam forming unit 145 acquires a reception signal for each antenna element 10 of the active array antenna 1 via the high frequency unit 11 and the A / D conversion unit 12.
  • the reception beam forming unit 145 multiplies the reception signal for each antenna element 10 of the active array antenna 1 by a complex weighting factor for each antenna element 10 determined by the direction for each user, that is, for each terminal 5, for each direction of the terminal 5. Output the received signal.
  • the demodulation unit 146 separates and demodulates the random access reception data and the reception data for each user from the reception signal for each direction of the terminal 5 from the reception beam forming unit 145 and the reception signal for each sector antenna 2.
  • the demodulation process in the demodulator 146 is the same as that of the conventional MIMO receiver.
  • the demodulation unit 146 performs demodulation of secondary modulation such as OFDM, and acquires transmission path information using a pilot signal included in the received signal.
  • the demodulator 146 generates a reception matrix based on zero forcing or MMSE (Minimum Mean Square Error), and separates the signal by multiplying the reception matrix by the reception signal.
  • the demodulator 146 further demodulates primary modulation such as BPSK, QPSK, 16QAM, and 64QAM.
  • the plurality of error correction decoding units 147 perform a decoding process such as a turbo code or an LDPC code on one of the random access received data and the received data for each user acquired from the demodulating unit 146, respectively.
  • FIG. 5 is a block diagram of a configuration example of the precoding unit 143 included in the digital signal processing unit 14 of the base station apparatus 3 according to the first embodiment. Since the precoding unit 143 transmits the common control data from the L sector antennas 2, the transmission diversity unit 1430 performs transmission diversity encoding.
  • the transmission diversity encoding method in the transmission diversity unit 1430 is, for example, STBC (Space Time Block Coding) or SFBC (Space Frequency Block Coding) standardized by 3GPP (3rd Generation Partnership Project) which is a standardization organization. Use block coding.
  • the precoding unit 143 precodes transmission data for each user so that there is no interference between the terminals 5 when the transmission data is transmitted using both the active array antenna 1 and the sector antenna 2.
  • the adder 1431 adds the precoded transmission data for each user and the common control data, and outputs the result to the sector antenna 2.
  • the precoding weight calculator 1432 calculates a precoding matrix based on the transmission path information acquired from the demodulator 146. Precoding weight multiplier 1433 multiplies transmission data by a precoding matrix.
  • the transmission path information is represented by a matrix H.
  • the precoding weight calculation unit 1432 calculates, for example, the following equation (1).
  • Equation (1) is a generalized inverse matrix of H, and since the following equation (2) holds, interference between terminals 5 can be removed.
  • Equation (2) I is a unit matrix.
  • the precoding weight is calculated based on the least square method.
  • the precoding weight multiplication unit 1433 multiplies the matrix W calculated by the precoding weight calculation unit 1432 by a column vector A in which transmission signals for each user are arranged.
  • the output vector B of the precoding weight multiplication unit 1433 is expressed by the following equation (3).
  • the transmission beam forming unit 144 sets C as a column vector in which m transmission signals for each beam are arranged, N is the number of antenna elements of the active array antenna 1, and transmits transmission signals from the antenna elements 10 of the active array antenna 1. Assuming that the arranged column vector is D, multiplication of the following equation (4) is performed using a beam forming matrix E of m rows and N columns. m and N are integers of 1 or more.
  • the j-th row vector of E is the beam-forming weight of the j-th beam, and when the direction vector of the j-th beam is v j and the position vector of the k-th element is p k , E
  • E j, k of j rows and k columns is expressed by the following equation (5).
  • Equation (5) e is the base of the natural logarithm, i is the imaginary unit, ⁇ is the wavelength at the radio frequency, and
  • 1.
  • v j ⁇ pk is an inner product of vectors.
  • the reception beamforming unit 145 uses the same beam direction as that of the transmission beamforming unit 144 and uses a conjugate transpose matrix of E as the beamforming matrix.
  • the demodulator 146 inputs a column vector R having L + m elements in which L received signals acquired from the sector antenna 2 and m received signals acquired from the received beamforming unit 145 are arranged, and n users A column vector S in which n + 1 received signals and random access received signals are arranged is output.
  • the demodulating unit 146 demodulates from the (L + m) ⁇ (n + 1) column transmission line matrix h obtained from the pilot signal included in the received signal, for example, by the following equation (6) that is the least square error estimation.
  • Equation (6) ⁇ 2 is the received noise power, and I is a unit matrix.
  • FIG. 6 is a flowchart of a process in which the base station device 3 according to the first embodiment transmits transmission data for each user.
  • the error correction encoding unit 141 performs error correction encoding processing on transmission data for each user acquired from the wired data transmission / reception unit 15 (step S1).
  • the modulation unit 142 performs modulation processing on the transmission data after error correction coding processing, specifically, primary modulation and secondary modulation as described above (step S2).
  • the precoding unit 143 generates a first transmission signal that is a transmission signal of transmission data for each user transmitted from the active array antenna 1 from the modulated transmission data, and outputs the first transmission signal to the transmission beamforming unit 144 (step S3). Further, the precoding unit 143 removes interference generated between the terminals 5 due to the transmission signal transmitted from the sector antenna 2 and transmitted from the active array antenna 1 from the modulated transmission data. A second transmission signal, which is a transmission signal, is generated and output to the sector antenna 2 (step S4). Step S3 is a first generation step, and step S4 is a second generation step. Note that, when transmitting the common control data together, the precoding unit 143 adds the second transmission signal and the common control data subjected to transmission diversity encoding, and outputs the result to the sector antenna 2.
  • the transmission beamforming unit 144 multiplies the first transmission signal by a complex weighting factor for each antenna element 10 of the active array antenna 1 and performs beamforming for each terminal 5 (step S5).
  • step S6 is the first transmission step
  • step S7 is the second transmission step.
  • the active array antenna 1 and the sector antenna 2 may be existing ones similar to the conventional one.
  • the high-frequency unit 11 includes the frequency converters 110 and 114 as frequency mixers, local oscillators and filters, the transmission signal amplification unit 111 and the reception signal amplification unit 113 as semiconductor amplifiers, and the transmission / reception common unit 112 as semiconductor switches or frequencies. Realized by a duplexer.
  • the A / D conversion unit 12 is realized by an analog-digital conversion circuit.
  • the D / A converter 13 is realized by a digital / analog converter circuit.
  • the wired data transmission / reception unit 15 is realized by an interface circuit that transmits / receives data to / from the wired network 4.
  • the digital signal processing unit 14 is realized by a processing circuit. That is, the base station apparatus 3 generates a first transmission signal to be transmitted from the active array antenna 1 and is a transmission signal to be transmitted from the sector antenna 2, and causes interference generated between the terminals 5 due to the first transmission signal.
  • a processing circuit is provided for generating a second transmission signal for removal.
  • the processing circuit may be dedicated hardware, a CPU (Central Processing Unit) that executes a program stored in the memory, and a memory.
  • FIG. 7 is a diagram illustrating an example in which the digital signal processing unit 14 according to the first embodiment is configured by a CPU and a memory.
  • the processing circuit includes the CPU 91 and the memory 92
  • each function of the digital signal processing unit 14 is realized by software, firmware, or a combination of software and firmware.
  • Software or firmware is described as a program and stored in the memory 92.
  • each function is realized by the CPU 91 reading and executing the program stored in the memory 92.
  • the base station device 3 when the digital signal processing unit 14 is executed by the processing circuit, the base station device 3 generates a first transmission signal to be transmitted from the active array antenna 1 and a second transmission to be transmitted from the sector antenna 2
  • a memory 92 is provided for storing a program that results in the step of generating a signal.
  • these programs are what makes a computer perform the procedure and method of the base station apparatus 3.
  • the CPU 91 may be a processing device, an arithmetic device, a microprocessor, a microcomputer, a processor, a DSP (Digital Signal Processor), or the like.
  • the memory 92 is a nonvolatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), etc. Magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs (Digital Versatile Discs), etc. are applicable.
  • FIG. 8 is a diagram illustrating an example in which the digital signal processing unit 14 according to the first embodiment is configured by dedicated hardware.
  • the processing circuit is dedicated hardware
  • the processing circuit 93 shown in FIG. 8 includes, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (FPGA). Field Programmable Gate Array) or a combination of these.
  • Each function of the digital signal processing unit 14 may be realized by the processing circuit 93 for each function, or each function may be realized by the processing circuit 93 collectively.
  • part of the functions of the digital signal processing unit 14 may be realized by dedicated hardware and partly realized by software or firmware.
  • the processing circuit can realize the above-described functions by dedicated hardware, software, firmware, or a combination thereof.
  • the base station apparatus 3 includes the active array antenna 1 and the sector antenna 2, and the digital signal processing unit 14 performs precoding on transmission data to be transmitted to the terminal 5. Then, a first transmission signal to be transmitted from the active array antenna 1 is generated and a second transmission signal to be transmitted from the sector antenna 2 to remove interference generated between the terminals 5 due to the first transmission signal. The transmission signal is generated. Then, the first transmission signal is transmitted from the active array antenna 1, and the second transmission signal is transmitted from the sector antenna 2.
  • the base station apparatus 3 can remove interference between the terminals 5 at the time of transmission by the side lobe 7 or multipath by using the sector antenna 2 having a wide beam width in addition to the active array antenna 1, and as a result, The transmission rate can be improved in multi-user MIMO.
  • the base station apparatus 3 makes the opening wider than that of the active array antenna 1 alone and improves the angular resolution by making the interval of the sector antennas 2 sufficiently wider than the element interval of the antenna elements 10 of the active array antenna 1.
  • the separation performance of the user, that is, the terminal 5 can be improved.
  • the base station apparatus 3 attempts to improve the angular resolution using only the active array antenna 1, the number of antenna elements increases significantly, resulting in a significant cost increase.
  • the base station apparatus 3 can realize a significant cost reduction by using the active array antenna 1 and the sector antenna 2 in combination.
  • the base station apparatus 3 since the base station apparatus 3 does not need to calculate the weight for each antenna element 10 necessary for the active array antenna 1 for the sector antenna 2, it can greatly reduce the computation required for beam forming, Power consumption can be reduced.
  • the base station apparatus 3 transmits and receives the broadcast channel and the random access channel from the sector antenna 2 having a wide beam width, thereby making it unnecessary to scan the beam and starting communication compared to the case of the active array antenna 1 alone. Can be shortened.
  • Embodiment 2 the base station apparatus includes a plurality of active array antennas 1. A different part from Embodiment 1 is demonstrated.
  • FIG. 9 is a block diagram of a configuration example of the base station apparatus 3a according to the second embodiment.
  • the base station apparatus 3a includes active array antennas 1-1 to 1-m, sector antennas 2-1 to 2-L, a plurality of high frequency units 11, a plurality of high frequency units 11a, and a plurality of A / D conversion units. 12, a plurality of D / A conversion units 13, a digital signal processing unit 14 a, a wired data transmission / reception unit 15, a plurality of combiners 20, and a plurality of distributors 21.
  • the active array antennas 1-1 to 1-m when the active array antennas 1-1 to 1-m are not distinguished, they may be referred to as the active array antenna 1.
  • the active array antennas 1-1 to 1-m have the same configuration as that of the active array antenna 1 of the first embodiment.
  • the base station device 3 a includes a high frequency unit 11 for each sector antenna 2.
  • the base station apparatus 3a includes a high frequency unit 11a for each antenna element 10 of the active array antennas 1-1 to 1-m.
  • the base station device 3a includes an A / D conversion unit 12 and a D / A conversion unit 13 for each active array antenna 1 and each sector antenna 2.
  • the base station apparatus 3 a includes a combiner 20 and a distributor 21 for each active array antenna 1.
  • the base station apparatus 3 requires an A / D conversion unit 12 and a D / A conversion unit 13 for each antenna element 10 of one active array antenna 1.
  • base station apparatus 3a uses m active array antennas 1 and transmits / receives only one beam 6 with one active array antenna 1.
  • the base station apparatus 3a uses one A / D conversion unit 12 and one D / A conversion unit 13 for each active array antenna 1, that is, the number of A / D conversion units 12 and D / A conversion units 13.
  • the cost can be reduced as compared with the base station apparatus 3 of the first embodiment.
  • the synthesizer 20 synthesizes a plurality of received analog baseband signals output from the high-frequency unit 11 a connected to each antenna element 10 of the active array antenna 1 and outputs the synthesized analog baseband signal to the A / D conversion unit 12.
  • the distributor 21 distributes the transmission analog baseband signal output from the D / A conversion unit 13 into a plurality of transmission analog baseband signals, and outputs them to the high frequency units 11a.
  • the base station apparatus 3 multiplies each antenna element 10 of the active array antenna 1 by a weighting factor in the transmission beamforming unit 144 and the reception beamforming unit 145.
  • the base station device 3a performs the process of multiplying the weighting factor for each antenna element 10 of the active array antenna 1 by the high frequency unit 11a.
  • FIG. 10 is a block diagram of a configuration example of the high frequency unit 11a of the base station device 3a according to the second embodiment.
  • the high frequency unit 11 a is obtained by adding phase shifters 115 and 116 to the configuration of the high frequency unit 11.
  • the phase shifter 115 of the high-frequency unit 11a includes 1 of the processes for multiplying the antenna elements 10 of the active array antenna 1 performed by the transmission beam forming unit 144 of the first embodiment by a weighting factor.
  • a process of multiplying one antenna element 10 by a weighting coefficient is performed.
  • the phase shifter 116 of the high frequency unit 11a multiplies the weighting factor for each antenna element 10 of the active array antenna 1 performed by the reception beamforming unit 145 of the first embodiment.
  • a process of multiplying one antenna element 10 by a weighting coefficient is performed.
  • FIG. 11 is a block diagram of a configuration example of the digital signal processing unit 14a of the base station device 3a according to the second embodiment.
  • the digital signal processing unit 14a is obtained by deleting the transmission beam forming unit 144 and the reception beam forming unit 145 from the digital signal processing unit 14 of the first embodiment.
  • the processing performed by the transmission beam forming unit 144 and the reception beam forming unit 145 of the first embodiment is performed by the phase shifters 115 and 116 of the high frequency unit 11a in the second embodiment. Therefore, in the second embodiment, the transmission beam forming unit 144 and the reception beam forming unit 145 are not necessary in the digital signal processing unit 14a.
  • the base station apparatus 3a transmits only one beam 6 with one active array antenna 1 because the analog phase shifters 115 and 116 adjust the phase of each antenna element 10 for beam forming. I can't. Therefore, the base station apparatus 3a uses m active array antennas 1 to produce m beams 6.
  • the configuration and operation of other precoding units 143 and the like are the same as those in the first embodiment.
  • the base station apparatus 3a includes a plurality of active array antennas 1, the A / D conversion unit 12 and the D / A conversion unit 13 connected to the active array antenna 1 are used. For each, the configuration is provided for each active array antenna 1. Thereby, cost can be reduced compared with Embodiment 1 provided with the A / D conversion part 12 and the D / A conversion part 13 for every antenna element 10 of the active array antenna 1.
  • the configuration described in the above embodiment shows an example of the contents of the present invention, and can be combined with another known technique, and can be combined with other configurations without departing from the gist of the present invention. It is also possible to omit or change the part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

複数の端末と空間多重による通信を行う無線基地局装置(3)であって、アクティブアレーアンテナ(1)から送信する第1の送信信号を生成し、セクターアンテナ(2-1~2-L)から送信する送信信号であって、第1の送信信号により端末の間で発生する干渉を除去するための第2の送信信号を生成するデジタル信号処理部(14)と、第1の送信信号を送信するアクティブアレーアンテナ(1)と、第2の送信信号を送信するセクターアンテナ(2-1~2-L)と、を備える。

Description

無線基地局装置および無線通信方法
 本発明は、複数のアンテナを備えた無線基地局装置および無線通信方法に関する。
 携帯電話の普及によって、無線通信で利用される周波数資源が逼迫している。周波数利用効率を高める技術として、MIMO(Multiple Input and Multiple Output)伝送方式がLTE(Long Term Evolution)などで実用化されている。近年、さらなる周波数利用効率向上のため、MIMO伝送方式の送受信アンテナ数を大幅に増加させたmassive MIMOが注目されている(特許文献1)。
 massive MIMOでは、数十以上のアンテナ素子を用いた2次元アクティブアレーアンテナによってビームフォーミングを行い、ユーザすなわち端末方向にビームを向けることによって異なる方向のユーザと同時に通信するマルチユーザMIMOを行う。マルチユーザMIMOでは、基地局が端末方向にビームを向けて複数の端末と同時に通信を行うことで容量を拡大できる。また、マルチユーザMIMOでは、ビーム幅を狭くして電力を集中することで伝搬距離を長くすることができる。
特開2010-10989号公報
 しかしながら、上記従来の技術によれば、2次元アクティブアレーアンテナによる端末間の空間分離は、送信ビームのサイドローブおよび伝送路のマルチパスなどの影響によって不完全である。そのため、端末間において干渉が発生して期待通りの伝送速度が得られない、という問題があった。空間分離性能を高くするにはアンテナの開口を広げる必要がある。2次元アクティブアレーアンテナは、アンテナ素子を狭い間隔で設置しているため、開口を広げるには多くのアンテナ素子が必要となるが、コストに見合う空間分離性能は得られない。
 本発明は、上記に鑑みてなされたものであって、端末間の干渉を除去可能な無線基地局装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、複数の端末と空間多重による通信を行う無線基地局装置である。無線基地局装置は、2次元アレーアンテナから送信する第1の送信信号を生成し、セクターアンテナから送信する送信信号であって、第1の送信信号により端末の間で発生する干渉を除去するための第2の送信信号を生成するデジタル信号処理部を備える。また、無線基地局装置は、第1の送信信号を送信する2次元アレーアンテナと、第2の送信信号を送信するセクターアンテナと、を備えることを特徴とする。
 本発明にかかる無線基地局装置は、端末間の干渉を除去できる、という効果を奏する。
実施の形態1にかかる無線通信システムの構成例を示す図 実施の形態1にかかる基地局装置の構成例を示すブロック図 実施の形態1にかかる基地局装置の高周波部の構成例を示すブロック図 実施の形態1にかかる基地局装置のデジタル信号処理部の構成例を示すブロック図 実施の形態1にかかる基地局装置のデジタル信号処理部が備えるプリコーディング部の構成例を示すブロック図 実施の形態1にかかる基地局装置がユーザ毎の送信データを送信する処理を示すフローチャート 実施の形態1にかかるデジタル信号処理部をCPUおよびメモリで構成する場合の例を示す図 実施の形態1にかかるデジタル信号処理部を専用のハードウェアで構成する場合の例を示す図 実施の形態2にかかる基地局装置の構成例を示すブロック図 実施の形態2にかかる基地局装置の高周波部の構成例を示すブロック図 実施の形態2にかかる基地局装置のデジタル信号処理部の構成例を示すブロック図
 以下に、本発明の実施の形態にかかる無線基地局装置および無線通信方法を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1は、本発明の実施の形態1にかかる無線通信システム9の構成例を示す図である。無線通信システム9は、無線基地局装置である基地局装置3と、有線ネットワーク4と、移動可能な無線端末である端末5-1,5-2と、を備える。基地局装置3は、アクティブアレーアンテナ1と、セクターアンテナ2-1~2-Lと、を備える。基地局装置3は、端末5-1,5-2との間で空間多重による通信を行う。Lは1以上の整数である。なお、L=1の場合はセクターアンテナ2-1のみでよい。
 基地局装置3は、有線ネットワーク4から端末5-1に送信するデータを取得すると、アクティブアレーアンテナ1を制御して端末5-1にビーム6-1を向け、端末5-1にデータを送信する。また、基地局装置3は、アクティブアレーアンテナ1を制御して端末5-1にビーム6-1を向け、端末5-1からデータを受信すると、有線ネットワーク4にデータを送出する。基地局装置3では、端末5-1にビーム6-1を向けた場合、主ビームであるビーム6-1とともにサイドローブ7-1,7-2が発生する。
 また、基地局装置3は、有線ネットワーク4から端末5-2に送信するデータを取得すると、アクティブアレーアンテナ1を制御して端末5-2にビーム6-2を向け、端末5-2にデータを送信する。また、基地局装置3は、アクティブアレーアンテナ1を制御して端末5-2にビーム6-2を向け、端末5-2からデータを受信すると、有線ネットワーク4にデータを送出する。基地局装置3では、端末5-2にビーム6-2を向けた場合、主ビームであるビーム6-2とともにサイドローブ7-3,7-4が発生する。
 基地局装置3は、端末5-1,5-2に共通制御データを送信する場合、および端末5-1,5-2からランダムアクセス受信データを受信する場合、セクターアンテナ2-1~2-Lを使用する。図1では、セクターアンテナ2-1の通信エリア8を示しているが、他のセクターアンテナ2-2~2-Lも同様の大きさの通信エリアを有する。
 以降の説明において、セクターアンテナ2-1~2-Lを区別しない場合はセクターアンテナ2と称することがある。また、端末5-1,5-2を区別しない場合は端末5と称することがある。また、ビーム6-1,6-2を区別しない場合はビーム6と称することがある。また、サイドローブ7-1~7-4を区別しない場合はサイドローブ7と称することがある。また、アクティブアレーアンテナ1およびセクターアンテナ2-1~2-Lをまとめてアンテナと称することがある。
 基地局装置3の構成について説明する。図2は、実施の形態1にかかる基地局装置3の構成例を示すブロック図である。基地局装置3は、アクティブアレーアンテナ1と、セクターアンテナ2-1~2-Lと、複数の高周波部11と、複数のA/D(Analog to Digital)変換部12と、複数のD/A(Digital to Analog)変換部13と、デジタル信号処理部14と、有線データ送受信部15と、を備える。基地局装置3は、アクティブアレーアンテナ1のアンテナ素子10毎およびセクターアンテナ2毎に、高周波部11、A/D変換部12、およびD/A変換部13を備える。
 アクティブアレーアンテナ1は、例えば、1/2波長毎に2次元に配置された複数のアンテナ素子10によって構成される2次元アレーアンテナである。アクティブアレーアンテナ1は、アンテナ素子10毎に信号の位相および振幅を変えることで、ビーム方向を変えることができる。アクティブアレーアンテナ1で生成されるビーム6のビーム幅は、例えば、水平方向半値角20°、垂直方向半値角20°である。
 セクターアンテナ2は、アクティブアレーアンテナ1よりも水平方向に広く、または垂直方向に同等もしくは広い固定のビームパターンのアンテナである。セクターアンテナ2で生成されるビームのビーム幅は、例えば、水平方向半値角100°、垂直方向半値角20°である。セクターアンテナ2は、通常、垂直方向のビーム方向はセルエッジの方向に固定であるが、従来のセクターアンテナと同様、不感地帯対策または基地局装置3の増設によるセル半径の変更にあわせてチルト角を調整可能である。
 高周波部11は、基地局装置3において、アクティブアレーアンテナ1のアンテナ素子10毎、およびセクターアンテナ2毎に備えられている。図3は、実施の形態1にかかる基地局装置3の高周波部11の構成例を示すブロック図である。高周波部11は、周波数変換部110と、送信信号増幅部111と、送受共用部112と、受信信号増幅部113と、周波数変換部114と、を備える。
 基地局装置3から端末5にデータを送信する場合、周波数変換部110がD/A変換部13から取得した送信アナログベースバンド信号を無線周波数に周波数変換し、送信信号増幅部111が所望の送信電力に増幅し、送受共用部112が接続するアンテナに送信信号を出力する。
 基地局装置3が端末5からデータを受信する場合、受信信号増幅部113が送受共用部112を介して接続するアンテナから受信信号を取得すると受信信号を増幅し、周波数変換部114が受信アナログベースバンド信号の周波数に周波数変換し、A/D変換部12に出力する。
 高周波部11において、周波数変換部110,114は、周波数ミキサ、局部発信器、およびフィルタから構成される。また、送信信号増幅部111および受信信号増幅部113は、半導体アンプが使用される。また、送受共用部112は、TDD(Time Division Duplex)の場合は半導体スイッチを用い、FDD(Frequency Division Duplex)の場合は周波数共用器を用いる。
 A/D変換部12は、端末5から受信した信号であって、高周波部11から取得した受信アナログベースバンド信号をアナログ信号からデジタル信号に変換し、受信デジタルベースバンド信号をデジタル信号処理部14に出力するアナログデジタル変換部である。
 D/A変換部13は、端末5に送信する信号であって、デジタル信号処理部14から取得した送信デジタルベースバンド信号をデジタル信号からアナログ信号に変換し、送信アナログベースバンド信号を高周波部11に出力するデジタルアナログ変換部である。
 デジタル信号処理部14は、データの送信処理では、共通制御データおよびユーザ1からユーザnまでのユーザ毎の送信データから、アクティブアレーアンテナ1のアンテナ素子10毎およびセクターアンテナ2毎の送信デジタルベースバンド信号を生成し、D/A変換部13に出力する。また、デジタル信号処理部14は、データの受信処理では、A/D変換部12から受信デジタルベースバンド信号を取得し、ユーザ1からユーザnまでのユーザ毎の受信データおよびランダムアクセス受信データに分離して出力する。デジタル信号処理部14は、複数の端末5に共通の制御信号の送信および複数の端末5からのランダムアクセス信号の受信にはセクターアンテナ2を用い、端末5毎の信号の送受信にはアクティブアレーアンテナ1およびセクターアンテナ2を用いる。
 有線データ送受信部15は、有線ネットワーク4から端末5に送信するデータを取得するとデジタル信号処理部14に出力する。また、有線データ送受信部15は、端末5から受信したデータを有線ネットワーク4に出力する。
 つづいて、基地局装置3のデジタル信号処理部14の構成について詳細に説明する。図4は、実施の形態1にかかる基地局装置3のデジタル信号処理部14の構成例を示すブロック図である。デジタル信号処理部14は、複数の誤り訂正符号化部141と、複数の変調部142と、プリコーディング部143と、送信ビームフォーミング部144と、受信ビームフォーミング部145と、復調部146と、複数の誤り訂正復号部147と、を備える。デジタル信号処理部14は、基地局装置3から送信する共通制御データおよびユーザ毎の送信データ毎に、誤り訂正符号化部141および変調部142を備える。また、デジタル信号処理部14は、基地局装置3が受信するランダムアクセス受信データおよびユーザ毎の受信データ毎に、誤り訂正復号部147を備える。
 まず、基地局装置3から端末5にデータを送信する際のデジタル信号処理部14の処理について説明する。複数の誤り訂正符号化部141は、各々有線データ送受信部15から取得した共通制御データおよびユーザ毎の送信データのうちの1つのデータに対して、ターボ符号またはLDPC(Low Density Parity Check)符号などの誤り訂正符号化処理を行う。
 複数の変調部142は、各々誤り訂正符号化部141から取得した誤り訂正符号化処理後の1つのデータに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase Shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAMなどの1次変調を行う。変調部142は、さらに、OFDM(Orthogonal Frequency Division Multiplexing)などの2次変調を行い、変調後のデータをプリコーディング部143に出力する。
 プリコーディング部143は、共通制御データの送信信号を、D/A変換部13および高周波部11経由で、セクターアンテナ2に出力する。また、プリコーディング部143は、ユーザ毎の送信データの送信信号を送信ビームフォーミング部144に出力する。ここで、基地局装置3は、ユーザ毎の送信データの送信信号については、アクティブアレーアンテナ1から送信される信号によって端末5間で発生する干渉を端末5で除去すなわち打ち消すための信号を、セクターアンテナ2から送信する。これにより、無線通信システム9では、端末5において端末5間の干渉がなくなり、基地局装置3からの高速な伝送が可能となる。ここで、プリコーディング部143では、基地局装置3の各アンテナと各端末5のアンテナとの間の各伝送路についての伝送路情報が必要となるが、例えば、復調部146で抽出された伝送路情報を用いることができる。プリコーディング部143は、端末5が自端末の復調器で得られた伝送路情報をデータとして基地局装置3に送信している場合、端末5から取得した伝送路情報を用いてもよい。
 送信ビームフォーミング部144は、ユーザ毎の送信データの送信信号に、ユーザすなわち端末5毎の方向によって決まるアクティブアレーアンテナ1のアンテナ素子10毎の複素数の重み係数を乗算し、端末5毎に加算した送信信号、すなわちビームフォーミングした送信信号を出力する。
 つぎに、端末5からのデータを基地局装置3で受信する際のデジタル信号処理部14の処理について説明する。受信ビームフォーミング部145は、高周波部11およびA/D変換部12経由で、アクティブアレーアンテナ1のアンテナ素子10毎の受信信号を取得する。受信ビームフォーミング部145は、アクティブアレーアンテナ1のアンテナ素子10毎の受信信号に、ユーザすなわち端末5毎の方向によって決まるアンテナ素子10毎の複素数の重み係数を乗算して、端末5の方向毎の受信信号を出力する。
 復調部146は、受信ビームフォーミング部145からの端末5の方向毎の受信信号、およびセクターアンテナ2毎の受信信号から、ランダムアクセス受信データおよびユーザ毎の受信データを分離して復調する。復調部146における復調処理は、従来のMIMOレシーバと同様である。復調部146は、例えば、OFDMなどの2次変調の復調を行って受信信号に含まれるパイロット信号などにより伝送路情報を取得する。復調部146は、ゼロフォーシングまたはMMSE(Minimum Mean Square Error)基準の受信行列を生成し、受信信号を受信行列に乗算することで信号を分離する。復調部146は、さらに、BPSK、QPSK、16QAM、64QAMなどの1次変調の復調を行う。
 複数の誤り訂正復号部147は、各々復調部146から取得したランダムアクセス受信データおよびユーザ毎の受信データのうちの1つのデータに対して、ターボ符号またはLDPC符号などの復号処理を行う。
 図5は、実施の形態1にかかる基地局装置3のデジタル信号処理部14が備えるプリコーディング部143の構成例を示すブロック図である。プリコーディング部143では共通制御データについてはL個のセクターアンテナ2から送信するため、送信ダイバーシチ部1430は、送信ダイバーシチの符号化を行う。送信ダイバーシチ部1430における送信ダイバーシチの符号化の方式は、例えば、標準化団体である3GPP(3rd Generation Partnership Project)などで標準化されているSTBC(Space Time Block Coding)またはSFBC(Space Frequency Block Coding)などのブロック符号化を用いる。
 プリコーディング部143は、ユーザ毎の送信データについては、アクティブアレーアンテナ1およびセクターアンテナ2の両方のアンテナを用いて送信した場合に端末5間の干渉が無いようにプリコーディングする。プリコーディング部143では、加算器1431は、プリコーディングしたユーザ毎の送信データと共通制御データとを加算して、セクターアンテナ2に出力する。プリコーディングについては、プリコーディング重み計算部1432は、復調部146から取得した伝送路情報に基づいてプリコーディング行列を計算する。プリコーディング重み乗算部1433は、送信データとプリコーディング行列との乗算を行う。
 伝送路情報は行列Hで表され、n個の端末5のアンテナ毎の受信信号を並べた列ベクトルをRx、セクターアンテナ2毎のL個の送信信号と送信ビームフォーミング部144のm個の入力の列ベクトルを順に並べた列ベクトルをTxとすると、Rx=HTxと表される。Hは(L+m)行n列の行列である。プリコーディング重みを行列Wで表すと、プリコーディング重み計算部1432は、例えば、以下の式(1)の計算をする。
  W=HH(HHH-1 …(1)
 式(1)において、HHはHの共役転置である。式(1)はHの一般化逆行列であり、以下の式(2)が成り立つことから、端末5間の干渉を除去できる。
  HW=I …(2)
 式(2)において、Iは単位行列である。
 また、アンテナが複数、すなわち冗長なアンテナ構成の場合、プリコーディングの重みは最小2乗法に基づいて計算される。最小2乗法ではロスの少ないパスにより大きな電力が配分されるため、アクティブアレーアンテナ1による端末5方向のビームにより主な信号伝送が行われ、セクターアンテナ2は干渉を除去するために使われる。プリコーディング重み乗算部1433は、プリコーディング重み計算部1432で計算された行列Wにユーザ毎の送信信号を並べた列ベクトルAを乗算する。プリコーディング重み乗算部1433の出力ベクトルBは以下の式(3)となる。
  B=WA …(3)
 送信ビームフォーミング部144は、ビーム毎のm個の送信信号を並べた列ベクトルをCとし、アクティブアレーアンテナ1のアンテナ素子数をNとし、アクティブアレーアンテナ1の各アンテナ素子10からの送信信号を並べた列ベクトルをDとすると、m行N列のビームフォーミング行列Eを用いて以下の式(4)の乗算を行う。mおよびNは1以上の整数である。
  D=EC …(4)
 式(4)において、Eのj番目の行ベクトルはj番目のビームのビームフォーミング重みであり、j番目のビームの方向ベクトルをvj、k番目の素子の位置ベクトルをpkとすると、Eのj行k列の要素Ej,kは以下の式(5)で表される。
Figure JPOXMLDOC01-appb-M000001
 式(5)において、eは自然対数の底、iは虚数単位、λは無線周波数での波長、|vj|=1とする。vj・pkはベクトルの内積である。
 受信ビームフォーミング部145は、送信ビームフォーミング部144と同じビーム方向としビームフォーミング行列にEの共役転置行列を用いる。
 復調部146は、セクターアンテナ2から取得したL個の受信信号、および受信ビームフォーミング部145から取得したm個の受信信号を並べたL+m個の要素をもつ列ベクトルRを入力し、nユーザの受信信号およびランダムアクセス受信信号のn+1の受信信号を並べた列ベクトルSを出力する。復調部146は、受信信号に含まれるパイロット信号から得られる(L+m)行(n+1)列の伝送路行列hから、例えば、最小2乗誤差推定となる以下の式(6)で復調を行う。
  S=(hHh+σ2I)-1HR …(6)
 式(6)において、σ2は受信ノイズ電力、Iは単位行列である。
 基地局装置3から端末5にユーザ毎の送信データを送信する無線通信方法による処理について、フローチャートを用いて説明する。図6は、実施の形態1にかかる基地局装置3がユーザ毎の送信データを送信する処理を示すフローチャートである。
 まず、基地局装置3において、誤り訂正符号化部141は、有線データ送受信部15から取得したユーザ毎の送信データに対して誤り訂正符号化処理を行う(ステップS1)。
 変調部142は、誤り訂正符号化処理後の送信データに対して変調処理、具体的には前述のように1次変調および2次変調を行う(ステップS2)。
 プリコーディング部143は、変調後の送信データから、アクティブアレーアンテナ1から送信するユーザ毎の送信データの送信信号である第1の送信信号を生成し、送信ビームフォーミング部144に出力する(ステップS3)。また、プリコーディング部143は、変調後の送信データから、セクターアンテナ2から送信する送信信号であって、アクティブアレーアンテナ1から送信される送信信号により端末5間で発生する干渉を除去するための送信信号である第2の送信信号を生成し、セクターアンテナ2に出力する(ステップS4)。ステップS3が第1の生成ステップであり、ステップS4が第2の生成ステップである。なお、プリコーディング部143は、共通制御データを併せて送信する場合、第2の送信信号と送信ダイバーシチの符号化を行った共通制御データとを加算して、セクターアンテナ2に出力する。
 送信ビームフォーミング部144は、第1の送信信号に対して、アクティブアレーアンテナ1のアンテナ素子10毎の複素数の重み係数を乗算し、端末5毎に加算してビームフォーミングを行う(ステップS5)。
 そして、アクティブアレーアンテナ1は、送信ビームフォーミング部144によりビームフォーミングされた第1の送信信号を端末5に送信する(ステップS6)。セクターアンテナ2は、第2の送信信号を端末5に送信する(ステップS7)。ステップS6が第1の送信ステップであり、ステップS7が第2の送信ステップである。
 つづいて、基地局装置3のハードウェア構成について説明する。基地局装置3において、アクティブアレーアンテナ1およびセクターアンテナ2については、従来同様の既存のものでよい。高周波部11は、前述のように、周波数変換部110,114は周波数ミキサ、局部発信器およびフィルタ、送信信号増幅部111および受信信号増幅部113は半導体アンプ、送受共用部112は半導体スイッチまたは周波数共用器により実現される。また、A/D変換部12はアナログデジタル変換回路により実現される。また、D/A変換部13はデジタルアナログ変換回路により実現される。有線データ送受信部15は、有線ネットワーク4との間でデータの送受信を行うインタフェース回路により実現される。デジタル信号処理部14は、処理回路により実現される。すなわち、基地局装置3は、アクティブアレーアンテナ1から送信する第1の送信信号を生成し、セクターアンテナ2から送信する送信信号であって、第1の送信信号により端末5間で発生する干渉を除去するための第2の送信信号を生成するための処理回路を備える。処理回路は、専用のハードウェアであってもよいし、メモリに格納されるプログラムを実行するCPU(Central Processing Unit)およびメモリであってもよい。
 図7は、実施の形態1にかかるデジタル信号処理部14をCPUおよびメモリで構成する場合の例を示す図である。処理回路がCPU91およびメモリ92で構成される場合、デジタル信号処理部14の各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアまたはファームウェアはプログラムとして記述され、メモリ92に格納される。処理回路では、メモリ92に記憶されたプログラムをCPU91が読み出して実行することにより、各機能を実現する。すなわち、基地局装置3は、デジタル信号処理部14が処理回路により実行されるときに、アクティブアレーアンテナ1から送信する第1の送信信号を生成するステップ、セクターアンテナ2から送信する第2の送信信号を生成するステップが結果的に実行されることになるプログラムを格納するためのメモリ92を備える。また、これらのプログラムは、基地局装置3の手順および方法をコンピュータに実行させるものであるともいえる。ここで、CPU91は、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、またはDSP(Digital Signal Processor)などであってもよい。また、メモリ92とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)などの、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、またはDVD(Digital Versatile Disc)などが該当する。
 図8は、実施の形態1にかかるデジタル信号処理部14を専用のハードウェアで構成する場合の例を示す図である。処理回路が専用のハードウェアである場合、図8に示す処理回路93は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせたものが該当する。デジタル信号処理部14の各機能を機能別に処理回路93で実現してもよいし、各機能をまとめて処理回路93で実現してもよい。
 なお、デジタル信号処理部14の各機能について、一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現するようにしてもよい。このように、処理回路は、専用のハードウェア、ソフトウェア、ファームウェア、またはこれらの組み合わせによって、上述の各機能を実現することができる。
 以上説明したように、本実施の形態によれば、基地局装置3では、アクティブアレーアンテナ1およびセクターアンテナ2を備え、デジタル信号処理部14は、端末5に送信する送信データについてプリコーディングを行って、アクティブアレーアンテナ1から送信する第1の送信信号を生成し、セクターアンテナ2から送信する送信信号であって、第1の送信信号により端末5間で発生する干渉を除去するための第2の送信信号を生成する。そして、アクティブアレーアンテナ1から第1の送信信号を送信し、セクターアンテナ2から第2の送信信号を送信する。基地局装置3は、アクティブアレーアンテナ1に加えてビーム幅の広いセクターアンテナ2を併用することで、サイドローブ7またはマルチパスによる送信時の端末5間の干渉を除去することができ、その結果、マルチユーザMIMOにおいて伝送速度を向上することができる。基地局装置3は、特に、セクターアンテナ2の間隔をアクティブアレーアンテナ1のアンテナ素子10の素子間隔より十分広く取ることで、アクティブアレーアンテナ1のみの場合よりも開口を広くして角度分解能が改善でき、ユーザすなわち端末5の分離性能を改善できる。
 基地局装置3において、アクティブアレーアンテナ1のみで角度分解能を改善しようとすると、アンテナ素子数が大幅に増大し大幅なコスト増大となる。一方、本実施の形態のように、基地局装置3は、アクティブアレーアンテナ1およびセクターアンテナ2を併用することで、大幅なコスト削減が実現できる。また、基地局装置3は、セクターアンテナ2については、アクティブアレーアンテナ1で必要なアンテナ素子10毎の重みの計算が不要となるから、ビームフォーミングに必要な演算を大幅に削減でき、デジタル部の消費電力を削減できる。
 また、基地局装置3は、報知チャネルおよびランダムアクセスチャネルなどについてはビーム幅の広いセクターアンテナ2から送受信することで、ビームの走査を不要とし、アクティブアレーアンテナ1のみの場合と比較して通信開始までの時間を短縮することができる。
実施の形態2.
 実施の形態2では、基地局装置がアクティブアレーアンテナ1を複数備える。実施の形態1と異なる部分について説明する。
 図9は、実施の形態2にかかる基地局装置3aの構成例を示すブロック図である。基地局装置3aは、アクティブアレーアンテナ1-1~1-mと、セクターアンテナ2-1~2-Lと、複数の高周波部11と、複数の高周波部11aと、複数のA/D変換部12と、複数のD/A変換部13と、デジタル信号処理部14aと、有線データ送受信部15と、複数の合成器20と、複数の分配器21と、を備える。以降の説明において、アクティブアレーアンテナ1-1~1-mを区別しない場合はアクティブアレーアンテナ1と称することがある。アクティブアレーアンテナ1-1~1-mは、実施の形態1のアクティブアレーアンテナ1と同様の構成である。
 基地局装置3aは、セクターアンテナ2毎に、高周波部11を備える。また、基地局装置3aは、アクティブアレーアンテナ1-1~1-mのアンテナ素子10毎に、高周波部11aを備える。また、基地局装置3aは、アクティブアレーアンテナ1毎およびセクターアンテナ2毎に、A/D変換部12およびD/A変換部13を備える。また、基地局装置3aは、アクティブアレーアンテナ1毎に合成器20および分配器21を備える。
 実施の形態1では、基地局装置3は、1つのアクティブアレーアンテナ1のアンテナ素子10毎にA/D変換部12およびD/A変換部13が必要であった。これに対して、実施の形態2では、基地局装置3aは、アクティブアレーアンテナ1をm個用いて1つのアクティブアレーアンテナ1では1本のビーム6のみ送受信する。これにより、基地局装置3aは、A/D変換部12およびD/A変換部13をアクティブアレーアンテナ1毎に1つとする、すなわち、A/D変換部12およびD/A変換部13の数を減らせることで、実施の形態1の基地局装置3よりもコストを削減することが可能となる。
 合成器20は、アクティブアレーアンテナ1のアンテナ素子10毎に接続された高周波部11aから出力された複数の受信アナログベースバンド信号を合成してA/D変換部12に出力する。
 分配器21は、D/A変換部13から出力された送信アナログベースバンド信号を複数の送信アナログベースバンド信号に分配して、各高周波部11aに出力する。
 また、実施の形態1では、基地局装置3は、送信ビームフォーミング部144および受信ビームフォーミング部145において、アクティブアレーアンテナ1のアンテナ素子10毎に重み係数を乗算していた。実施の形態2では、基地局装置3aは、アクティブアレーアンテナ1のアンテナ素子10毎に重み係数を乗算する処理を高周波部11aで行う。
 図10は、実施の形態2にかかる基地局装置3aの高周波部11aの構成例を示すブロック図である。高周波部11aは、高周波部11の構成に、位相器115,116を追加したものである。実施の形態2では、高周波部11aの位相器115が、実施の形態1の送信ビームフォーミング部144が実施していたアクティブアレーアンテナ1のアンテナ素子10毎に重み係数を乗算する処理のうち、1つのアンテナ素子10について重み係数を乗算する処理を行う。また、実施の形態2では、高周波部11aの位相器116が、実施の形態1の受信ビームフォーミング部145が実施していたアクティブアレーアンテナ1のアンテナ素子10毎に重み係数を乗算する処理のうち、1つのアンテナ素子10について重み係数を乗算する処理を行う。
 図11は、実施の形態2にかかる基地局装置3aのデジタル信号処理部14aの構成例を示すブロック図である。デジタル信号処理部14aは、実施の形態1のデジタル信号処理部14から、送信ビームフォーミング部144および受信ビームフォーミング部145を削除したものである。前述のように、実施の形態1の送信ビームフォーミング部144および受信ビームフォーミング部145で実施していた処理を、実施の形態2では高周波部11aの位相器115,116で実施している。そのため、実施の形態2では、デジタル信号処理部14aにおいて送信ビームフォーミング部144および受信ビームフォーミング部145は不要となる。
 実施の形態2では、基地局装置3aは、アナログの位相器115,116でアンテナ素子10毎の位相を調整してビームフォーミングするため、1つのアクティブアレーアンテナ1で1本のビーム6しか送信することができない。そのため、基地局装置3aは、m本のビーム6を作るためにm個のアクティブアレーアンテナ1を用いる。
 基地局装置3aにおいて、その他のプリコーディング部143などの構成および動作は、実施の形態1と同様である。
 以上説明したように、本実施の形態によれば、基地局装置3aは、アクティブアレーアンテナ1を複数備える場合に、アクティブアレーアンテナ1と接続するA/D変換部12およびD/A変換部13については、アクティブアレーアンテナ1毎に備える構成とした。これにより、アクティブアレーアンテナ1のアンテナ素子10毎にA/D変換部12およびD/A変換部13を備える実施の形態1と比較してコストを削減することができる。
 以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1,1-1~1-m アクティブアレーアンテナ、2-1~2-L セクターアンテナ、3,3a 基地局装置、4 有線ネットワーク、5-1,5-2 端末、6-1,6-2 ビーム、7-1~7-4 サイドローブ、9 無線通信システム、11,11a 高周波部、12 A/D変換部、13 D/A変換部、14,14a デジタル信号処理部、15 有線データ送受信部、20 合成器、21 分配器、110,114 周波数変換部、111 送信信号増幅部、112 送受共用部、113 受信信号増幅部、115,116 位相器、141 誤り訂正符号化部、142 変調部、143 プリコーディング部、144 送信ビームフォーミング部、145 受信ビームフォーミング部、146 復調部、147 誤り訂正復号部、1430 送信ダイバーシチ部、1431 加算器、1432 プリコーディング重み計算部、1433 プリコーディング重み乗算部。

Claims (5)

  1.  複数の端末と空間多重による通信を行う無線基地局装置であって、
     2次元アレーアンテナから送信する第1の送信信号を生成し、セクターアンテナから送信する送信信号であって、前記第1の送信信号により前記端末の間で発生する干渉を除去するための第2の送信信号を生成するデジタル信号処理部と、
     前記第1の送信信号を送信する前記2次元アレーアンテナと、
     前記第2の送信信号を送信する前記セクターアンテナと、
     を備えることを特徴とする無線基地局装置。
  2.  前記デジタル信号処理部は、前記複数の端末に共通の制御信号の送信および前記複数の端末からのランダムアクセス信号の受信には前記セクターアンテナを用い、端末毎の信号の送受信には前記2次元アレーアンテナおよび前記セクターアンテナを用いる、
     ことを特徴とする請求項1に記載の無線基地局装置。
  3.  前記セクターアンテナを複数備え、
     さらに、前記2次元アレーアンテナが備える複数のアンテナ素子毎および前記セクターアンテナ毎に、
     前記端末から受信した信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部と、
     前記端末に送信する信号をデジタル信号からアナログ信号に変換するデジタルアナログ変換部と、
     を備えることを特徴とする請求項1または2に記載の無線基地局装置。
  4.  前記セクターアンテナおよび前記2次元アレーアンテナを複数備え、
     さらに、前記セクターアンテナ毎および前記2次元アレーアンテナ毎に、
     前記端末から受信した信号をアナログ信号からデジタル信号に変換するアナログデジタル変換部と、
     前記端末に送信する信号をデジタル信号からアナログ信号に変換するデジタルアナログ変換部と、
     を備えることを特徴とする請求項1または2に記載の無線基地局装置。
  5.  複数の端末と空間多重による通信を行う無線基地局装置における無線通信方法であって、
     デジタル信号処理部が、2次元アレーアンテナから送信する第1の送信信号を生成する第1の生成ステップと、
     前記デジタル信号処理部が、セクターアンテナから送信する送信信号であって、前記第1の送信信号により前記端末間で発生する干渉を除去するための第2の送信信号を生成する第2の生成ステップと、
     前記2次元アレーアンテナが、前記第1の送信信号を送信する第1の送信ステップと、
     前記セクターアンテナが、前記第2の送信信号を送信する第2の送信ステップと、
     を含むことを特徴とする無線通信方法。
PCT/JP2016/069164 2016-06-28 2016-06-28 無線基地局装置および無線通信方法 WO2018003022A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201680087028.0A CN109417429B (zh) 2016-06-28 2016-06-28 无线基站装置和无线通信方法
EP16907255.0A EP3461040B1 (en) 2016-06-28 2016-06-28 Wireless base station device and wireless communication method
PCT/JP2016/069164 WO2018003022A1 (ja) 2016-06-28 2016-06-28 無線基地局装置および無線通信方法
JP2016573626A JP6223610B1 (ja) 2016-06-28 2016-06-28 無線基地局装置および無線通信方法
US16/305,010 US10594375B2 (en) 2016-06-28 2016-06-28 Wireless base station apparatus and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/069164 WO2018003022A1 (ja) 2016-06-28 2016-06-28 無線基地局装置および無線通信方法

Publications (1)

Publication Number Publication Date
WO2018003022A1 true WO2018003022A1 (ja) 2018-01-04

Family

ID=60205978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069164 WO2018003022A1 (ja) 2016-06-28 2016-06-28 無線基地局装置および無線通信方法

Country Status (5)

Country Link
US (1) US10594375B2 (ja)
EP (1) EP3461040B1 (ja)
JP (1) JP6223610B1 (ja)
CN (1) CN109417429B (ja)
WO (1) WO2018003022A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190618A (ja) * 1996-12-25 1998-07-21 Matsushita Electric Ind Co Ltd 送信装置および受信装置
JPH10200322A (ja) * 1997-01-06 1998-07-31 Mitsubishi Electric Corp 移動体通信基地局用アンテナ装置
JP2002048853A (ja) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd 電波到来方向推定装置及び指向性可変送受信装置
JP2002511676A (ja) * 1998-04-03 2002-04-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線基地局において無線信号を取り扱うための方法及び装置
JP2004201137A (ja) * 2002-12-19 2004-07-15 Ntt Docomo Inc 指向性ビーム通信システム、指向性ビーム通信方法、基地局及び制御装置
JP2007511165A (ja) * 2003-11-10 2007-04-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチビームアンテナシステムのための方法と装置
JP2010010989A (ja) 2008-06-26 2010-01-14 Kyocera Corp 無線通信装置、無線通信システムおよび無線通信方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3447579B2 (ja) * 1998-10-07 2003-09-16 松下電器産業株式会社 無線通信装置及び無線通信方法
US8750933B2 (en) * 2008-05-09 2014-06-10 Apple Inc. System and method for supporting antenna beamforming in a cellular network
CN101783696A (zh) * 2009-01-20 2010-07-21 广升运有限公司 免干扰天线模块与使用其的WiFi网络系统
CN103733527B (zh) * 2011-04-07 2015-10-07 蓝色多瑙河系统公司 在无线系统中实现高平均频谱效率的技术
US20130057432A1 (en) * 2011-09-02 2013-03-07 Samsung Electronics Co., Ltd. Method and apparatus for beam broadening for phased antenna arrays using multi-beam sub-arrays
US9094977B2 (en) * 2011-11-11 2015-07-28 Samsung Electronics Co., Ltd. Apparatus and method for supporting mobility management in communication systems with large number of antennas
WO2014187652A1 (en) * 2013-05-23 2014-11-27 Sony Corporation Surveillance apparatus having an optical camera and a radar sensor
US9509387B2 (en) * 2013-06-24 2016-11-29 Telefonaktiebolaget Lm Ericsson (Publ) Node in a wireless communication system where antenna beams match the sector width
WO2015110157A1 (en) * 2014-01-23 2015-07-30 Telefonaktiebolaget L M Ericsson (Publ) A wireless communication node with cross-polarized antennas and at least one transformation matrix arrangement
JP2015164281A (ja) 2014-01-31 2015-09-10 株式会社Nttドコモ ユーザ装置、基地局、及び通信方法
JP6329493B2 (ja) 2015-01-22 2018-05-23 株式会社Nttドコモ 無線通信システムおよび無線基地局装置
US9960825B2 (en) * 2015-03-06 2018-05-01 Telefonaktiebolaget L M Ericsson (Publ) Method, control system and communication system for adapting beam patterns

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10190618A (ja) * 1996-12-25 1998-07-21 Matsushita Electric Ind Co Ltd 送信装置および受信装置
JPH10200322A (ja) * 1997-01-06 1998-07-31 Mitsubishi Electric Corp 移動体通信基地局用アンテナ装置
JP2002511676A (ja) * 1998-04-03 2002-04-16 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 無線基地局において無線信号を取り扱うための方法及び装置
JP2002048853A (ja) * 2000-08-02 2002-02-15 Matsushita Electric Ind Co Ltd 電波到来方向推定装置及び指向性可変送受信装置
JP2004201137A (ja) * 2002-12-19 2004-07-15 Ntt Docomo Inc 指向性ビーム通信システム、指向性ビーム通信方法、基地局及び制御装置
JP2007511165A (ja) * 2003-11-10 2007-04-26 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチビームアンテナシステムのための方法と装置
JP2010010989A (ja) 2008-06-26 2010-01-14 Kyocera Corp 無線通信装置、無線通信システムおよび無線通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3461040A4

Also Published As

Publication number Publication date
JP6223610B1 (ja) 2017-11-01
EP3461040A4 (en) 2019-07-03
EP3461040A1 (en) 2019-03-27
CN109417429A (zh) 2019-03-01
CN109417429B (zh) 2020-07-24
EP3461040B1 (en) 2020-09-23
US20190165842A1 (en) 2019-05-30
US10594375B2 (en) 2020-03-17
JPWO2018003022A1 (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
US10027354B2 (en) Phased array weighting for power efficiency improvement with high peak-to-average power ratio signals
KR101969701B1 (ko) 앙각면 공간 빔포밍을 제공하기 위한 방법 및 장치
US9520914B2 (en) Full-duplex wireless communication system using polarization
EP1685661B1 (en) Method and apparatus for multi-beam antenna system
KR101841552B1 (ko) 밀리미터파 통신 시스템에서 공간 분할 이중화를 위한 장치 및 방법
JP4457120B2 (ja) 広角度アンテナローブ
US8891647B2 (en) System and method for user specific antenna down tilt in wireless cellular networks
CN108713293B (zh) 用于多波束多输入多输出(mimo)的波束成形架构
KR20150004287A (ko) 지향성 제어 장치 및 방법
US20180091195A1 (en) Transmission method with double directivity
CN112702096A (zh) 一种信号处理方法及相关装置
Blandino et al. Multi-user frequency-selective hybrid MIMO demonstrated using 60 GHz RF modules
JP6223610B1 (ja) 無線基地局装置および無線通信方法
Eisenbeis et al. Channel estimation method for subarray based hybrid beamforming systems employing sparse arrays
CN114598367A (zh) 用于执行波束成形的通信装置及该通信装置的操作方法
US20110098067A1 (en) Mobile communication system, base station and interference removal method
KR101539533B1 (ko) 다중 안테나/반송파 시스템을 위한 증폭 후 전달 릴레이 방법 및 장치
EP3338372B1 (en) Distributed antenna combining
Kavya et al. Transceiver Design with Hybrid Beamforming for Sub 6 GHz MIMO Communication

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016573626

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16907255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016907255

Country of ref document: EP

Effective date: 20181220