WO2015115351A1 - 光学素子ユニット及び光学素子ユニットの製造方法 - Google Patents

光学素子ユニット及び光学素子ユニットの製造方法 Download PDF

Info

Publication number
WO2015115351A1
WO2015115351A1 PCT/JP2015/051968 JP2015051968W WO2015115351A1 WO 2015115351 A1 WO2015115351 A1 WO 2015115351A1 JP 2015051968 W JP2015051968 W JP 2015051968W WO 2015115351 A1 WO2015115351 A1 WO 2015115351A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
fitting
optical
lens
element unit
Prior art date
Application number
PCT/JP2015/051968
Other languages
English (en)
French (fr)
Inventor
基 森
剛 下間
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015559923A priority Critical patent/JP6801961B2/ja
Priority to CN201580005694.0A priority patent/CN105980903A/zh
Publication of WO2015115351A1 publication Critical patent/WO2015115351A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/022Mountings, adjusting means, or light-tight connections, for optical elements for lenses lens and mount having complementary engagement means, e.g. screw/thread
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0075Arrays characterized by non-optical structures, e.g. having integrated holding or alignment means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/003Alignment of optical elements

Definitions

  • the present invention relates to an optical element unit and a method for manufacturing the optical element unit.
  • Patent Document 1 a pair of lenses is provided with a tapered concave portion and a convex portion centered on the optical axis, and the concave portion and the convex portion are fitted to match the optical axes of the pair of lenses.
  • Technology is disclosed.
  • the present invention has been made in view of the problems of the prior art, and provides an optical element unit and a method for manufacturing the optical element unit that can realize high-precision assembly of optical elements while suppressing costs. With the goal.
  • an optical element unit reflecting one aspect of the present invention is: In the optical element unit formed by fitting the first fitting portion of the optical element and the second fitting portion of the other component, At least one of the first fitting portion and the second fitting portion is provided with a fine shape portion protruding in the direction perpendicular to the optical axis of the optical element, As the fitting depth between the optical element and the other component increases, the fine shape portion increases the amount of protrusion in the surface direction intersecting the optical axis of the optical element, The fitted dimension of the first fitting part or the second fitting part is larger than the fitting dimension of the second fitting part or the first fitting part, and the finely shaped part corresponds to the fitting dimension. It is smaller than the dimension which added the maximum protrusion amount.
  • another optical element unit reflecting one aspect of the present invention is: The optical element and other parts are fitted, the first reference shape part of the optical element and the second reference shape part of the other part are abutted, and the optical element is positioned in the direction perpendicular to the optical axis.
  • At least one of the optical element other than the first reference shape part and the other parts other than the second reference shape part is provided with a fine shape part protruding in a direction orthogonal to the optical axis of the optical element, As the fitting depth between the optical element and the other parts becomes deeper, the fine shape portion increases the amount of protrusion in the surface direction intersecting the optical axis of the optical element,
  • the fitting dimension of the optical element or the other part is larger than the fitting dimension of the other part or the optical element, and smaller than the dimension obtained by adding the maximum protrusion amount of the fine shape portion to the fitting dimension. It is characterized by.
  • a method of manufacturing an optical element unit reflecting one aspect of the present invention is as follows.
  • the manufacturing method of the optical element unit formed by fitting the first fitting portion of the optical element and the second fitting portion of the other component At least one of the first fitting portion and the second fitting portion is provided with a fine shape portion protruding in the direction perpendicular to the optical axis of the optical element, As the fitting depth between the optical element and the other component increases, the fine shape portion increases the amount of protrusion in the surface direction intersecting the optical axis of the optical element,
  • the fitted dimension of the first fitting part or the second fitting part is larger than the fitting dimension of the second fitting part or the first fitting part, and the finely shaped part corresponds to the fitting dimension. Smaller than the dimension plus the maximum protrusion of When the first fitting portion and the second fitting portion are fitted, the optical element and the other component are positioned in the direction perpendicular to the optical axis by the fine shape portion.
  • another method of manufacturing an optical element unit reflecting one aspect of the present invention includes: The optical element and other parts are fitted, the first reference shape part of the optical element and the second reference shape part of the other part are abutted, and the optical element is positioned in the direction perpendicular to the optical axis.
  • At least one of the optical element other than the first reference shape part and the other parts other than the second reference shape part is provided with a fine shape part protruding in a direction orthogonal to the optical axis of the optical element, As the fitting depth between the optical element and the other parts becomes deeper, the fine shape portion increases the amount of protrusion in the surface direction intersecting the optical axis of the optical element,
  • the fitting dimension of the optical element or the other part is larger than the fitting dimension of the other part or the optical element, and smaller than the dimension obtained by adding the maximum protrusion amount of the fine shape portion to the fitting dimension
  • an optical element unit and a method for manufacturing the optical element unit that can realize high-precision assembly of the optical element while suppressing cost.
  • FIG. 1 is a perspective view of a first lens 10.
  • die MD. 2 is a cross-sectional view of an optical element unit 30 including a first lens 10 and a second lens 20.
  • FIG. It is the figure which cut
  • FIG. 30 is sectional drawing of the optical element unit 30 'concerning a comparative example. It is the figure which cut
  • FIG. 13A is an enlarged view of one block portion Lc1 indicated by an arrow XIIIA in FIG. 12, but shows a state before assembly.
  • FIG. 13B is a view of the block portion Lc1 shown in FIG. 13A viewed in the direction of the arrow XIIIB.
  • FIG. 12 of the imaging device concerning a modification. It is the figure which cut
  • FIG. 1 is a cross-sectional view of the first lens 10 constituting the optical element unit
  • FIG. 2 is a perspective view of the first lens 10.
  • the first lens 10 includes a lens portion 11 having an optical surface, a flange portion 12 that spreads radially around the lens portion 11, and an axis that coincides with the optical axis of the lens portion 11. It has a short cylindrical fitting portion (first fitting portion) 13 extending in the optical axis direction from between the flange portion 12. Eight finely shaped portions 14 are formed at equal intervals on the outer periphery of the fitting portion 13.
  • each finely shaped portion 14 has the same shape in which a cone having an axis parallel to the optical axis is divided in half, and has a shape that increases in diameter toward the flange portion 12 side.
  • the axis of the cone may be arranged in a spiral shape.
  • the fine shape portion 14 may be a triangular pyramid shape, or any shape as long as the protrusion amount increases as it approaches the flange portion 12 along the optical axis direction.
  • the mold MD includes a transfer surface MD1 that forms an optical surface of the lens portion 11, a transfer surface MD2 that transfers the surface of the flange portion 12, and a transfer surface MD3 that transfers the outer peripheral surface of the fitting portion 13.
  • Eight concave portions MD3a are formed at equal intervals on the inner periphery of the transfer surface MD3.
  • the concave portion MD3a has a groove shape corresponding to the fine-shaped portion 14 and is divided into a half of a cone, and has a distal end at a position close to the flange portion 12 side by a predetermined distance from the optical axis direction end portion of the fitting portion 13. Is formed to come.
  • the first lens 10 can be molded by aligning the mold MD of FIG. 3 and a mold (not shown) and then injecting a thermoplastic resin into the internal cavity and solidifying it. At this time, the fine shape portion 14 to which the concave portion MD3a is transferred is simultaneously molded from the same mold component as the mold component forming the optical surface of the lens portion 11, and is processed with high accuracy.
  • FIG. 4 is a cross-sectional view of the optical element unit 30 including the first lens 10 and the second lens 20.
  • FIG. 5 is a view of the configuration of FIG. 4 taken along the line VV and viewed in the direction of the arrow.
  • the second lens 20 includes a lens portion 21 having an optical surface, a flange portion 22 that spreads radially around the lens portion 21, and an axis line that coincides with the optical axis of the lens portion 21. It has a short cylindrical fitting part (second fitting part) 23 extending from the outer periphery of the flange part 22 in the optical axis direction.
  • a circular plate-shaped light shielding member 25 having a circular opening is disposed between the end surface of the fitting portion 13 of the first lens 10 and the surface of the flange portion 22 of the second lens 20 facing the fitting surface 13. Yes.
  • the inner diameter ⁇ 2 (fitted dimension) of the fitting portion 23 is larger than the outer diameter ⁇ 1 (fitting dimension) of the fitting portion 13 of the first lens 10, but the circumscribing of the fine shape portion 14 It is smaller than the circle ⁇ 3 (dimension obtained by adding the maximum protrusion amount in the radial direction of the finely shaped portion to the fitting dimension).
  • the maximum protrusion amount ⁇ (FIG. 1) in the radial direction of the fine shape portion 14 is about 0.1 mm, and is 1 ⁇ 2 of the difference between the inner diameter ⁇ 2 of the fitting portion 23 and the circumscribed circle ⁇ 3 of the fine shape portion 14.
  • the safety factor is designed to be less than 1.
  • the “safety factor” is expressed as a ratio between the fracture stress and the allowable stress of the material and indicates the degree of safety.
  • the allowable stress is the upper limit value of stress that does not cause breakage when acting on a material, and the breakage stress is the stress that causes the material to break. If the safety factor is less than 1, the member is often plastically deformed during assembly.
  • a method for manufacturing the optical element unit 30 will be described. With the adhesive applied to the contact surface in the direction perpendicular to the optical axis, the fitting portion 13 of the first lens 10 and the fitting portion 23 of the second lens 20 including the light shielding member 25 are brought into contact with each other to optical axis. Since there is a gap between the end portions of the fitting portions 13 and 23 that are approached along the direction, insertion is performed smoothly to the middle. Thereafter, the fine shape portion 14 comes into contact with the inner periphery of the fitting portion 23 of the second lens 20 and is crushed to be plastically deformed.
  • the fine shape portion 14 can be prevented from adhering to the optical surface or the like by being taken into the adhesive applied to the outer periphery of the first fitting portion 13. Assembling is completed when the end surface in the optical axis direction of the fitting portion 23 abuts against the facing surface of the flange portion 12 of the first lens 10. In addition, you may apply
  • FIG. 6 is a cross-sectional view of an optical element unit 30 'according to a comparative example.
  • FIG. 7 is a view of the configuration of FIG. 6 taken along line VII-VII and viewed in the direction of the arrow.
  • the first lens 10 ′ of the optical element unit 30 ′ is the same as the first lens 10 of FIGS. 1 and 2 except that the fine shape portion is not provided.
  • the diameters of the fitting portions 13 and 23 it is necessary to make the diameters of the fitting portions 13 and 23 to be fitted to each other with high accuracy, but the diameters may vary depending on molding variations.
  • the fitting of the fitting portions 13 and 23 is press-fitted, so that the distortion of the optical surfaces of the lens portions 11 and 21 is caused by the generated stress. There is a risk of inviting.
  • the outer diameter of the fitting portion 13 is smaller than the inner diameter of the fitting portion 23, light is transmitted to the first lens 10 and the second lens 20 by a half of the diameter difference, as shown in FIG. Axis deviation (eccentricity) occurs, and the original optical performance cannot be exhibited.
  • the outer diameter of the fitting portion 13 is smaller than the inner diameter of the fitting portion 23, it is possible to easily fit without depending on press-fitting regardless of the molding variation, and the fine shape.
  • the axis of the fitting part 13 optical axis of the first lens 10
  • the axis of the fitting part 23 second lens
  • the radially outer surface of the fine shape portion 14 is crushed by the fitting portion 23, but at this time, the eight fine shape portions 14 having the same shape are uniformly crushed, The coaxiality between the axis of the fitting part 13 and the axis of the fitting part 23 is ensured with high accuracy. Further, even if the fine shape portion 14 is crushed, the influence remains in a local range and there is little possibility of reaching the optical surface of the first lens 10, so that the optical performance of the first lens 10 can be maintained.
  • a fine shape portion may be provided on the inner peripheral surface of the fitting portion 23 of the second lens 20.
  • FIG. 8 is a cross-sectional view of the imaging device 40 in which the optical element unit 30 according to the present embodiment is assembled.
  • the imaging device 40 is formed by bonding the end surface of a cylindrical lens frame 41 fitted to the outer peripheral surface of the optical element unit 30 onto a substrate 43 on which a solid-state imaging element 42 is mounted.
  • a subject image is formed on the imaging surface of the imaging device 40 by the first lens 10 and the second lens 20 of the optical element unit 30, and a photoelectrically converted image signal is output to the outside.
  • FIG. 9 is a cross-sectional view of an imaging apparatus 40 according to a modification.
  • the lens frame 41 of the imaging device 40 is formed with eight fine-shaped portions 41a having the same shape as the above-described fine-shaped portion 14 on the inner periphery of the side wall 41b in the vicinity of the end wall 41c at equal intervals.
  • the relationship between the inner diameter of the side wall 41b, the outer diameter of the optical element unit 30, and the protruding amount of the finely shaped portion 41a is the same as in the above-described embodiment.
  • the end wall 41c forms an aperture stop 41d in the center. Therefore, in order to ensure the performance of the imaging device 40, it is important to match the optical axis of the optical element unit 30 with the central axis of the aperture stop 41d.
  • the outer diameter of the first lens 10 is fitted from the tapered tip side of the fine shape portion 41d.
  • the center axis of the aperture stop 41d and the optical axis of the optical element unit 30 can be matched with high accuracy.
  • the radially inner side surface of the fine shape portion 41d is crushed by the first lens 10, and at this time, the eight fine shape portions 41d having the same shape are uniformly crushed, The coaxiality between the central axis of the aperture stop 41d and the optical axis of the optical element unit 30 is ensured with high accuracy.
  • an imaging apparatus In recent years, by using a plurality of single-eye optical systems arranged with different optical axes, a plurality of object images are formed on the imaging surface of an image sensor, and image processing corresponding to each object image is performed, A compound eye imaging apparatus using a technique for synthesizing and reconstructing one image has been developed.
  • a compound-eye imaging device As one type of such a compound-eye imaging device, a super-resolution technique in which an imaging region is divided by a plurality of single-eye optical systems, and one high-pixel image is reconstructed by image processing from the obtained plurality of low-pixel images. There is something used. If super-resolution technology is used, the number of lenses used in each single-eye optical system can be reduced, resulting in a high-resolution image while achieving a significantly lower profile than existing optical systems. It is possible to provide a compound eye imaging device.
  • the single-eye optical system is formed from a plurality of lenses stacked in the optical axis direction
  • an array lens in which a plurality of lenses (single-lens lenses) are integrally formed for each layer is used.
  • An array lens in which a plurality of lenses are formed integrally has the advantage that the performance variation of each lens in the array lens can be reduced, and the number of incorporation and formation can be reduced to reduce the cost.
  • the optical element unit is composed of a compound eye optical system in which an array lens is laminated and a lens frame.
  • a compound eye optical system is an optical system in which a plurality of lens systems are arranged in an array for one image sensor, and each lens system has a different field of view and a super-resolution type in which each lens system images the same field of view. Usually, it is divided into a field division type that performs imaging of the above.
  • a compound eye optical system according to a field division type that performs a plurality of images with different fields of view in order to connect a plurality of images with different fields of view and output a single composite image will be described.
  • FIG. 10 schematically shows an imaging apparatus according to the second embodiment.
  • the imaging device DU includes an imaging unit LU, an image processing unit 1, a calculation unit 2, a memory 3, and the like.
  • the imaging unit LU includes one imaging element SR and a compound-eye optical system LH that performs a plurality of imaging with different fields of view on the imaging element SR.
  • the image sensor SR for example, a solid-state image sensor such as a CCD image sensor or a CMOS image sensor having a plurality of pixels is used.
  • the compound eye optical system LH is provided on the light receiving surface SS which is a photoelectric conversion unit of the image sensor SR so that an optical image of the subject is formed, the optical image formed by the compound eye optical system LH is captured. It is converted into an electrical signal by the element SR.
  • FIG. 11 is a cross-sectional view of the imaging apparatus according to the present embodiment.
  • 12 is a diagram of the configuration of FIG. 11 taken along line XII-XII and viewed in the direction of the arrow (from the image side).
  • the compound eye optical system LH is composed of a first array lens LA1 and a second array lens LA2 in order from the object side, and is held by a lens frame HLD.
  • the lens frame HLD has a square tube-shaped peripheral wall HLDb as a second fitting portion (a concave portion having a rectangular cross section), and the object side end of the peripheral wall HLDb is closed by the object side wall HLDa.
  • a plurality of aperture stops S are formed.
  • the first array lens LA1 is formed by integrally forming a plurality of individual lenses La1 corresponding to the aperture stop S and a rectangular plate portion Lb1 provided with the individual lenses La1, and each second array lens LA2 includes Corresponding to the eye lens La1, a plurality of single-lens lenses La2 and a rectangular plate portion Lb2 provided with the single-eye lenses La2 are integrally formed.
  • the number of single-lens lenses is equal to the number of object images (referred to as single-eye images) formed on the imaging surface SS of the image sensor SR (here, 4 ⁇ 4). That is, the light beams that have passed through the single-eye lenses La1 and La2 stacked in the optical axis direction form one image on the imaging surface SS.
  • the image side surface S4 of the single lens La2 of the second array lens LA2 has a convex shape at the periphery.
  • the flange portion Lb2 protruding in a rectangular shape in the optical axis direction of the second array lens LA2 so as to face the inner peripheral surface of the rectangular frame portion Lf1 protruding in the optical axis direction from the outer edge of the first array lens LA1.
  • the first array lens LA1 has each side of the rectangular plate portion Lb1 (the upper side in FIG. 12 is the first outer edge portion of each side, and each side is clockwise from here.
  • a rectangular parallelepiped block portion Lc1 is formed as the first fitting portion two by two at the second outer edge portion, the third outer edge portion, and the fourth outer edge portion.
  • FIG. 13 (a) is an enlarged view of one block portion Lc1 indicated by an arrow XIIIA in FIG. 12, but shows a state before assembly.
  • FIG. 13B is a view of the block portion Lc1 shown in FIG. 13A viewed in the direction of the arrow XIIIB.
  • two finely shaped portions Ld1 are formed on the outer surface of the block portion Lc1.
  • the protrusion amount ⁇ of the fine shape portion Ld1 protrudes outside the position of the peripheral wall HLDb (shown by a dotted line in FIG. 13A) shown in the centered state with respect to the lens frame HLD.
  • the safety factor is less than 1.
  • each fine shape portion Ld1 has the same triangular pyramid shape having an axis parallel to the optical axis of the single lens La1, and the object side wall of the lens frame HLD in FIG.
  • the taper is tapered toward the HL Da side.
  • the block portion Lc1 and the fine shape portion Ld1 are preferably molded from the same mold component as the mold component (not shown) that forms the object side surface S1 of the single lens La1, and more preferably when processed simultaneously. .
  • the finely shaped portion Ld1 can allow variation in the fitting dimension due to molding shrinkage. However, due to pitch error, a tolerance of about ⁇ 3 ⁇ m in molding variation is required.
  • the first light-shielding stop SH1 is formed between the object side wall HLPa of the lens frame HLD and the first array lens LA1, and the second light-shielding is formed between the first array lens LA1 and the second array lens LA2.
  • a diaphragm SH2 is formed, and a third light-shielding diaphragm SH3 is formed adjacent to the image side of the second array lens LA2.
  • the first light-shielding stop SH1, the second light-shielding stop SH2, and the third light-shielding stop SH3 are made of a SUS plate material having a thickness of 20 ⁇ m to 100 ⁇ m.
  • an IR cut filter F and a cover glass CG covering the imaging surface SS of the imaging element SR are arranged in this order from the object side.
  • a light shielding film is formed in close contact with the object side surface of the IR cut filter F as an optical member, and this is the fourth light shielding stop SH4. Any one of the third light-shielding diaphragm SH3 and the fourth light-shielding diaphragm SH4 may be omitted.
  • Each light-shielding stop SH1 to SH4 has an opening corresponding to each individual lens.
  • a light shielding film may be formed in close contact with the periphery of the image side surface S4 of the single lens La2 or on the cover glass CG to function as a light shielding film.
  • the image processing unit 1 includes an image composition unit 1a and an image correction unit 1b.
  • One single-eye synthesized image ML can be output.
  • the image correction unit 1b performs inversion processing, distortion processing, shading processing, stitching processing, and the like. Further, distortion correction is performed as necessary.
  • the single-eye composite image ML is compressed by the calculation unit 2 and stored in the memory 3.
  • the first array lens LA1 and the second array lens LA2 are molded in advance and laminated in the optical axis direction to form the compound eye optical system LH.
  • the micro-shaped portion Lc2 interposed therebetween is plastically deformed, so that Similarly to the embodiment, the optical axes of the individual lenses La1 and La2 are made to coincide with each other.
  • the first array lens Insertion is performed smoothly until the fine shape portion Ld1 provided around LA1 contacts the peripheral wall HLDb of the lens frame HLD. Thereafter, the crest of the finely shaped portion Ld1 comes into contact with the inner peripheral surface of the peripheral wall HLDb of the lens frame HLD, and is crushed by, for example, about 15 to 20 ⁇ m to be plastically deformed.
  • the peak portion of the fine shape portion Ld1 is crushed by the first lens 10.
  • the fine shape portion Ld1 formed on the four sides of the first array lens LA1 is crushed uniformly.
  • the coaxiality between the center axis of each aperture stop S and the optical axes of the single-lens lenses La1 and La2 is ensured with high accuracy.
  • FIG. 14 is a cross-sectional view similar to FIG. 12 of an imaging apparatus according to a modification.
  • FIG. 15 is a view of the configuration of FIG. 14 taken along line XV-XV and viewed in the direction of the arrow.
  • a conical protrusion Le1 is formed at the center of the object side surface of the first array lens LA1 with respect to the above-described embodiment, and correspondingly, at the center of the object side wall HLPa of the lens frame HLD.
  • a conical recess HLDd is formed.
  • a light-shielding film is formed on the object side surface of the first array lens LA1 other than the single lens La1 to replace the light-shielding diaphragm.
  • Other configurations are the same as those in the above-described embodiment.
  • the conical recess HLDd is fitted to the conical protrusion Le1, and positioning of the first array lens LA1 and the lens frame HLD around the protrusion Le1 is performed. Coupled with the plastic deformation of the portion Ld1, more accurate positioning can be performed.
  • FIG. 16 is a cross-sectional view similar to FIG. 12 of an imaging apparatus according to another modification.
  • the outer peripheral surface of the first array lens LA1 is defined as the first outer edge portion to the fourth outer edge portion
  • the inner peripheral surface of the corresponding lens frame HLD is the first inner edge.
  • the fine shape portion is not provided in the block portion Lc1 on the left and lower sides (corresponding to the third outer edge portion and the fourth outer edge portion) of the first array lens LA1 shown in FIG. .
  • the block Lc1 not provided with the fine shape portion is set as the first reference shape portion.
  • the inner peripheral surface (corresponding to the third inner edge portion and the fourth inner edge portion) of the lens frame HLD (concave portion) facing the second frame is defined as the second reference shape portion.
  • Other configurations are the same as those of the embodiment shown in FIGS.
  • the outer surface (first reference shape portion) of the block portion Lc1 on the left and lower sides of the first array lens LA1 shown in FIG. A block that is in contact with the inner peripheral surface (second reference shape portion) of the peripheral wall HLDb of the lens frame HLD and at the same time the right and upper sides (corresponding to the first outer edge portion and the second outer edge portion) of the first array lens LA1.
  • the fine shape portion Ld1 of the portion Lc1 abuts on the inner peripheral surface (corresponding to the first inner edge portion and the second inner edge portion) of the peripheral wall HLDb and plastically deforms. Thereby, the play between the first array lens LA1 in the lens frame HLD can be eliminated.
  • the present invention is not limited to the embodiments and modifications described in the present specification, and includes other embodiments and modifications based on the embodiments and technical ideas described in the present specification. It will be apparent to those skilled in the art.
  • the compound eye optical system described above can be used not only for the field division type but also for a super-resolution type imaging apparatus.
  • the finely shaped portion may be formed with a UV curable resin or the like.
  • the outer shape of the optical element is not limited to a circle, but may be a polygonal shape.
  • the shape of the compound eye optical system viewed from the optical axis direction is not limited to a high shape such as a quadrangle, but may be a shape in which corners are connected by an arc, a circle, or an ellipse.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • Lenses (AREA)

Abstract

 コストを抑制しつつも光学素子の高精度な組付けを実現できる光学素子ユニット及び光学素子ユニットの製造方法を提供する。光学素子ユニットは、光学素子の第1嵌合部と、他部品の第2嵌合部とを嵌合してなり、前記第1嵌合部と前記第2嵌合部のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設けており、前記微細形状部は、前記光学素子と前記他部品との嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、前記第1嵌合部又は前記第2嵌合部の被嵌合寸法は、前記第2嵌合部又は前記第1嵌合部の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さい。

Description

光学素子ユニット及び光学素子ユニットの製造方法
 本発明は、光学素子ユニット及び光学素子ユニットの製造方法に関するものである。
 近年、スマートフォンやタブレット型パーソナルコンピュータなどに代表される薄型の撮像装置付き携帯端末が急速に普及している。しかるに、このような携帯端末に搭載される撮像装置には、高解像度を有しながらも小型であることが要求されている。よって、このような撮像装置に用いる撮像レンズとしては、小型で光学特性に優れることはもちろんであるが、新興国のメーカーとの競合も激化している昨今では、低コスト化の推進も厳しく要求されている。
 ところで、例えば複数のレンズを組み付ける場合において、設計上の光学性能を発揮するためには、各レンズの光軸を精度良く一致させる必要がある。ここで、各レンズの光軸を一致させるために、検査カメラ等でレンズに付したアライメントマークを検出しながらレンズ同士を合わせ込む方法があるが、組み付け設備にかかるコストが高くなり、また合わせ込みに時間がかかるという問題がある。同様な問題は、レンズと、鏡枠などの他部品との間でも生じうる。
 これに対し特許文献1には、一対のレンズに、光軸を中心としたテーパ状の凹部と凸部をそれぞれ設け、凹部と凸部を嵌合させることで、一対のレンズの光軸を合わせ込む技術が開示されている。
特開2002-196211号公報 特開2005-258329号公報
 しかしながら、特許文献1の技術において、凹部と凸部を精度良く形成することが困難であることに起因する問題がある。具体的には、凸部に対して凹部が大きすぎると、組み合わせた際に両者間に隙間ができ偏心が生じる一方、凸部に対して凹部が小さすぎると、光軸方向において凹部と凸部が適切な位置で嵌合できず、レンズ間距離を設計値に維持できないという問題である。
 一方、特許文献2に開示された組み付け方法では、凹部と凸部の嵌合部形状をストレートにしているので、光軸方向において凹部と凸部が不適切な位置で嵌合することは回避できるものの、特許文献1と同様に凸部に対して凹部が大きすぎると、組み合わせた際に両者間に隙間ができ偏心が生じるという問題がある。又、凸部に対して凹部が小さすぎると、強制的に嵌合させた際に生じる内部応力で、光学面に歪みを発生させる恐れもある。以上の問題は、レンズ径が大きくなるほど顕著になりやすく、その対策が重要になる。
 本発明は、かかる従来技術の問題点に鑑みてなされたものであり、コストを抑制しつつも光学素子の高精度な組付けを実現できる光学素子ユニット及び光学素子ユニットの製造方法を提供することを目的とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子ユニットは、
 光学素子の第1嵌合部と、他部品の第2嵌合部とを嵌合してなる光学素子ユニットにおいて、
 前記第1嵌合部と前記第2嵌合部のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設けており、
 前記微細形状部は、前記光学素子と前記他部品との嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
 前記第1嵌合部又は前記第2嵌合部の被嵌合寸法は、前記第2嵌合部又は前記第1嵌合部の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さいことを特徴とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した別の光学素子ユニットは、
 光学素子と、他部品とを嵌合し、前記光学素子の第1基準形状部と、前記他部品の第2基準形状部とを突き当てて、前記光学素子の光軸直交方向の位置決めを行う光学素子ユニットにおいて、
 前記第1基準形状部以外の前記光学素子と、前記第2基準形状部以外の前記他部品のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設けており、
 前記微細形状部は、前記光学素子と前記他部品の嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
 前記光学素子又は前記他部品の被嵌合寸法は、前記他部品又は前記光学素子の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さいことを特徴とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した光学素子ユニットの製造方法は、
 光学素子の第1嵌合部と、他部品の第2嵌合部とを嵌合してなる光学素子ユニットの製造方法において、
 前記第1嵌合部と前記第2嵌合部のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設け、
 前記微細形状部は、前記光学素子と前記他部品との嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
 前記第1嵌合部又は前記第2嵌合部の被嵌合寸法は、前記第2嵌合部又は前記第1嵌合部の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さく、
 前記第1嵌合部と前記第2嵌合部とを嵌合したときに、前記微細形状部により前記光学素子と前記他部品との光軸直交方向の位置決めが行われることを特徴とする。
 上述した目的のうち少なくとも一つを実現するために、本発明の一側面を反映した別の光学素子ユニットの製造方法は、
 光学素子と、他部品とを嵌合し、前記光学素子の第1基準形状部と、前記他部品の第2基準形状部とを突き当てて、前記光学素子の光軸直交方向の位置決めを行う光学素子ユニットの製造方法において、
 前記第1基準形状部以外の前記光学素子と、前記第2基準形状部以外の前記他部品のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設け、
 前記微細形状部は、前記光学素子と前記他部品の嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
 前記光学素子又は前記他部品の被嵌合寸法は、前記他部品又は前記光学素子の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さく、
 前記第1基準形状部と前記第2基準形状部とを突き当てたときに、前記微細形状部により前記光学素子と前記他部品との光軸直交方向のガタを抑えることを特徴とする。
 本発明によれば、コストを抑制しつつも光学素子の高精度な組付けを実現できる光学素子ユニット及び光学素子ユニットの製造方法を提供することができる。
第1の実施形態にかかる光学素子ユニットを構成する第1レンズ10の断面図である。 第1レンズ10の斜視図である。 金型MDを示す斜視図である。 第1レンズ10と第2レンズ20とからなる光学素子ユニット30の断面図である。 図4の構成をV-V線で切断して矢印方向に見た図である。 比較例にかかる光学素子ユニット30’の断面図である。 図6の構成をVII-VII線で切断して矢印方向に見た図である。 本実施形態にかかる光学素子ユニット30を組み付けた撮像装置40の断面図である。 変形例にかかる撮像装置40の断面図である。 第2の実施形態にかかる撮像装置を模式的に示す図である。 本実施形態にかかる撮像装置の断面図である。 図11の構成をXII-XII線で切断して矢印方向に見た図である。 図13(a)は、図12に矢印XIIIAで示す1つのブロック部Lc1の拡大図であるが、組み付け前の状態で示している。図13(b)は、図13(a)に示すブロック部Lc1を矢印XIIIB方向に見た図である。 変形例にかかる撮像装置の図12と同様な断面図である。 図14の構成をXV-XV線で切断して矢印方向に見た図である。 別な変形例にかかる撮像装置の図12と同様な断面図である。
 以下、本発明の第1の実施形態に係る光学素子ユニットについて説明する。図1は、光学素子ユニットを構成する第1レンズ10の断面図であり、図2は、第1レンズ10の斜視図である。第1レンズ10は、光学面を有するレンズ部11と、レンズ部11の周囲に放射状に板状に広がるフランジ部12と、軸線がレンズ部11の光軸と一致してなり、レンズ部11とフランジ部12との間から光軸方向に延在する短筒状の嵌合部(第1嵌合部)13とを有する。嵌合部13の外周には、等間隔に8つの微細形状部14が形成されている。
 図2に示すように、各微細形状部14は、光軸と平行な軸線を有する円錐を半割りした同一形状を有し、フランジ部12側に向かうにつれて拡径した形状となっている。円錐の軸線をらせん状に配置しても良い。又、微細形状部14は、三角錐形状でもよいし、光軸方向に沿ってフランジ部12に近接するにつれ突出量が増大する形状であれば、任意の形状とできる。
 図1,2に示す第1レンズ10は、図3に示す金型MDより形成できる。金型MDは、レンズ部11の光学面を形成する転写面MD1と、フランジ部12の面を転写する転写面MD2と、嵌合部13の外周面を転写する転写面MD3とを有している。転写面MD3の内周には、等間隔に8つの凹部MD3aが形成されている。凹部MD3aは、微細形状部14に対応して、円錐を半割りした溝状となっており、嵌合部13の光軸方向端部より所定の距離だけフランジ部12側に寄った位置に先端が来るように形成されている。
 図3の金型MDと、不図示の金型とを型合わせした上で、内部のキャビティに熱可塑性樹脂を注入し固化させることで、第1レンズ10を成形することができる。このとき、凹部MD3aを転写されてなる微細形状部14は、レンズ部11の光学面を形成する金型部品と同一の金型部品から同時に成形されるので高精度に加工されることとなる。
 図4は、第1レンズ10と第2レンズ20とからなる光学素子ユニット30の断面図である。図5は、図4の構成をV-V線で切断して矢印方向に見た図である。図4において、第2レンズ20は、光学面を有するレンズ部21と、レンズ部21の周囲に放射状に板状に広がるフランジ部22と、軸線がレンズ部21の光軸と一致してなり、フランジ部22の外周から光軸方向に延在する短筒状の嵌合部(第2嵌合部)23とを有する。なお、第1レンズ10の嵌合部13の端面と、これに対向する第2レンズ20のフランジ部22の面との間には、円形開口を有する円形板状の遮光部材25が配置されている。
 図5に示すように、嵌合部23の内径φ2(被嵌合寸法)は、第1レンズ10の嵌合部13の外径φ1(嵌合寸法)より大きいが、微細形状部14の外接円φ3(嵌合寸法に微細形状部の径方向の最大突出量を加えた寸法)よりも小さくなっている。ここで、微細形状部14の径方向の最大突出量δ(図1)は0.1mm程度であり、嵌合部23の内径φ2と微細形状部14の外接円φ3との差の1/2(隙間)に対して、その安全率が1未満となるように設計されている。
 なお、「安全率」とは、素材の破壊応力と許容応力との比で表され、安全の度合いを示す比率をいう。許容応力とは,材料に作用しても破壊を生じない応力の上限値であり、破壊応力とは,その材料が破壊を起こす応力をいう。安全率が1未満であると、組み付け時に部材の塑性変形を招くことが多い。
 光学素子ユニット30の製造方法について説明する。光軸垂直方向の当接面に接着剤を塗布した状態で、第1レンズ10の嵌合部13と、遮光部材25を内包した第2レンズ20の嵌合部23とを互いに突き合わせて光軸方向に沿って接近させる、嵌合部13,23の端部同士の間に隙間があるので、中程までスムーズに挿入が行われる。その後、微細形状部14が、第2レンズ20の嵌合部23の内周に当接し、これを押しつぶして塑性変形させる。このとき、微細形状部14にムシレなどにより小屑が生じる場合もあるが、第1嵌合部13の外周に塗布した接着剤に取り込まれることで、光学面等への付着を抑制できる。嵌合部23の光軸方向端面が、第1レンズ10のフランジ部12の対向面に当接することで、組付けが完了する。なお、嵌合後に接着剤を塗布しても良い。
 図6は、比較例にかかる光学素子ユニット30’の断面図である。図7は、図6の構成をVII-VII線で切断して矢印方向に見た図である。光学素子ユニット30'の第1レンズ10'は、微細形状部が設けられていない以外、寸法・形状とも図1,2の第1レンズ10と同じである。
 比較例の光学素子ユニット30'においては、互いに嵌合する嵌合部13,23の径を精度良く等しくする必要があるが、かかる径は成形バラツキによって変わりうる。嵌合部23の内径に対して嵌合部13の外径が大きい場合、嵌合部13,23の嵌合は圧入となるので、発生した応力によりレンズ部11,21の光学面の歪みを招く恐れがある。一方、嵌合部23の内径に対して嵌合部13の外径が小さい場合、図7に示すように、径差の1/2分だけ、第1レンズ10と第2レンズ20とに光軸ずれ(偏心)が生じてしまい、本来の光学性能を発揮できない。
 これに対し本実施形態によれば、嵌合部23の内径に対して嵌合部13の外径が小さいので、成形バラツキに関わりなく圧入によらない容易な嵌合が可能となり、また微細形状部14のテーパ先端側から嵌合部23が嵌合してくることで、そのガイド機能によって嵌合部13の軸線(第1レンズ10の光軸)と嵌合部23の軸線(第2レンズ20の光軸)とを精度良く一致させることができる。更に、嵌合を続行することで、微細形状部14の径方向外側面が嵌合部23によって押しつぶされるが、このとき、同一形状である8つの微細形状部14が均等に押しつぶされることで、嵌合部13の軸線と嵌合部23の軸線との同軸度が精度良く確保される。又、微細形状部14が押しつぶされても、その影響は局所的な範囲に留まり、第1レンズ10の光学面に及ぶ恐れが少ないため、第1レンズ10の光学性能を維持することができる。なお、第1レンズ10の微細形状部14の代わりに、第2レンズ20の嵌合部23の内周面に微細形状部を設けても良い。
 図8は、本実施形態にかかる光学素子ユニット30を組み付けた撮像装置40の断面図である。図8において、撮像装置40は、光学素子ユニット30の外周面に嵌合した筒状の鏡枠41の端面を、固体撮像素子42を実装した基板43上に接着してなる。光学素子ユニット30の第1レンズ10と第2レンズ20により被写体像が撮像装置40の撮像面に結像し、光電変換された画像信号が外部へと出力されるようになっている。
 図9は、変形例にかかる撮像装置40の断面図である。図9において、撮像装置40の鏡枠41は、上述した微細形状部14と同様な形状の微細形状部41aを、側壁41bにおける端壁41c近傍内周に、8つ等間隔で形成している。又、側壁41bの内径と、光学素子ユニット30の外径と、微細形状部41aの突出量の関係も、上述した実施形態と同様である。
 端壁41cは、中央に開口絞り41dを形成している。従って、撮像装置40の性能を確保する為には、光学素子ユニット30の光軸と、開口絞り41dの中心軸とを一致させることが重要である。
 本変形例によれば、鏡枠41内に光学素子ユニット30を組み付けてゆくと、微細形状部41dのテーパ先端側から第1レンズ10の外径が嵌合してくるので、そのガイド機能によって開口絞り41dの中心軸と光学素子ユニット30の光軸とを精度良く一致させることができる。更に、嵌合を続行することで、微細形状部41dの径方向内側面が第1レンズ10によって押しつぶされるが、このとき、同一形状である8つの微細形状部41dが均等に押しつぶされることで、開口絞り41dの中心軸と光学素子ユニット30の光軸との同軸度が精度良く確保される。
 次に、第2の実施形態にかかる撮像装置について説明する。近年、光軸を異ならせて配置した複数の個眼光学系を用いて、複数の物体像を撮像素子の撮像面上に形成し、各物体像に対応する画像信号を画像処理することで、1つの画像を合成して再構成する技術を用いた複眼撮像装置が開発されている。このような複眼撮像装置の一タイプとして、複数の個眼光学系によって撮像領域を分割し、得られた複数の低画素画像から画像処理によって1つの高画素画像を再構成する超解像技術を用いたものがある。超解像技術を用いれば、個眼光学系各々に使用するレンズ枚数を少なくすることができ、結果として既存の光学系よりも大幅な低背化を実現しながらも高解像な画像を得られる複眼撮像装置を提供することが可能となる。
 ところで、個眼光学系を、光軸方向に積層した複数枚のレンズから形成する場合、層毎に複数のレンズ(個眼レンズ)を一体的に形成したアレイレンズを用いることが行われる。複数のレンズを一体に形成したアレイレンズは、アレイレンズ内の各レンズの性能ばらつきを小さくできる他、組み込み回数や形成回数を低減しコストを低くできるメリットがある。ここで、光学素子ユニットは、アレイレンズを積層した複眼光学系と鏡枠からなるものとする。
 以下、複眼光学系を用いた撮像装置等を説明する。複眼光学系は、1つの撮像素子に対して複数のレンズ系がアレイ状に配置された光学系であり、各レンズ系が同じ視野の撮像を行う超解像タイプと、各レンズ系が異なる視野の撮像を行う視野分割タイプと、に通常分けられる。本実施形態では、視野の異なる複数の像をつなぎ合わせて1枚の合成画像を出力するために、視野の異なる複数の結像を行う視野分割タイプにかかる複眼光学系について説明する。
 図10に、第2の実施形態にかかる撮像装置を模式的に示す。図10に示すように、撮像装置DUは、撮像ユニットLU,画像処理部1,演算部2,メモリー3等を有している。そして、撮像ユニットLUは、1つの撮像素子SRと、その撮像素子SRに対して視野の異なる複数の結像を行う複眼光学系LHと、を有している。撮像素子SRとしては、例えば複数の画素を有するCCD型イメージセンサー,CMOS型イメージセンサー等の固体撮像素子が用いられる。撮像素子SRの光電変換部である受光面SS上には、被写体の光学像が形成されるように複眼光学系LHが設けられているので、複眼光学系LHによって形成された光学像は、撮像素子SRによって電気的な信号に変換される。
 図11は、本実施形態にかかる撮像装置の断面図である。図12は、図11の構成をXII-XII線で切断して矢印方向に(像側から)見た図である。図11において、複眼光学系LHは、物体側より順に、第1アレイレンズLA1、第2アレイレンズLA2からなり、鏡枠HLDに保持されている。鏡枠HLDは第2嵌合部(断面矩形状の凹部)として角筒状の周囲壁HLDbを有し、周囲壁HLDbの物体側端は物体側壁HLDaにより閉止されており、更に物体側壁HLDaに複数の開口絞りSが形成されている。
 第1アレイレンズLA1は,開口絞りSに対応して複数の個眼レンズLa1と、個眼レンズLa1を設けた矩形状板部Lb1を一体に形成してなり、第2アレイレンズLA2は,各個眼レンズLa1に対応して複数の個眼レンズLa2と、個眼レンズLa2を設けた矩形状板部Lb2を一体に形成してなる。個眼レンズの数は、撮像素子SRの撮像面SS上に形成される物体像(個眼像という)の数と等しく(ここでは4×4)させてなる。つまり、光軸方向に積層された個眼レンズLa1,La2を通過した光線が、それぞれ撮像面SS上で1つの像を形成する。第2アレイレンズLA2の個眼レンズLa2の像側面S4は周辺部が凸の形状を有する。なお、第1アレイレンズLA1の外縁から光軸方向の突出した矩形枠部Lf1の内周面に対向して、第2アレイレンズLA2の光軸方向に矩形状に突出したフランジ部Lb2の外周には、図1に示すものと同様な微細形状部Lc2が所定の間隔で形成されている。
 更に第1アレイレンズLA1は、図12に示すように、矩形状板部Lb1の各辺(各辺のうち図12で上方の辺を第1外縁部とし、ここから時計回りに、各辺を第2外縁部,第3外縁部、第4外縁部とする)に2つずつ、直方体状のブロック部Lc1を第1嵌合部として形成している。
 図13(a)は、図12に矢印XIIIAで示す1つのブロック部Lc1の拡大図であるが、組み付け前の状態で示している。図13(b)は、図13(a)に示すブロック部Lc1を矢印XIIIB方向に見た図である。図13において、ブロック部Lc1の外側面には、2つの微細形状部Ld1が形成されている。なお、微細形状部Ld1の突出量Δは、鏡枠HLDに対してセンタリングした状態で示す周囲壁HLDbの位置(図13(a)にて点線で示す)よりも外側にはみ出すようになっていて、その安全率は1未満である。
 図13(b)に示すように、各微細形状部Ld1は、個眼レンズLa1の光軸と平行な軸線を有する同一の三角錐形状を有しており、図11で鏡枠HLDの物体側壁HLDa側に向かうにつれて先細の形状となっている。ブロック部Lc1と微細形状部Ld1は、個眼レンズLa1の物体側面S1を形成する金型部品(不図示)と同一の金型部品から成形されていることが好ましく、同時加工されるとより好ましい。また、微細形状部Ld1は成形収縮による嵌合寸法バラつきを許容できるようにすると好ましい。但し、ピッチ誤差の関係で、成形バラツキ±3μm程度の許容度が必要である。
 図11において、鏡枠HLDの物体側壁HLDaと第1アレイレンズLA1との間に、第1遮光絞りSH1が形成され、第1アレイレンズLA1と第2アレイレンズLA2との間に、第2遮光絞りSH2が形成され、第2アレイレンズLA2の像側に、それに隣接して第3遮光絞りSH3が形成されている。第1遮光絞りSH1、第2遮光絞りSH2,第3遮光絞りSH3は、20μm~100μmであるSUSの板材からなる。第2アレイレンズLA2と、撮像素子SRとの間には、IRカットフィルタFと、撮像素子SRの撮像面SSを覆うカバーガラスCGとが物体側からこの順序で配置されている。光学部材としてのIRカットフィルタFの物体側面には遮光膜が密着形成され、これが第4遮光絞りSH4となっている。尚、第3遮光絞りSH3,第4遮光絞りSH4のいずれかを省略しても良い。各遮光絞りSH1~SH4は、各個眼レンズの各々に対応する開口部を持つ。個眼レンズLa2の像側面S4の周囲や、カバーガラスCGに遮光膜を密着形成して遮光膜として機能させても良い。
 図10に示すように、画像処理部1は、画像合成部1aと、画像補正部1bと、を有している。複眼撮像光学系LHにより撮像素子SRの撮像面SS上に形成された複数の個眼像Zn(n=1,2,3,…)に応じた信号を、画像合成部1aが、つなぎ合わせて1枚の個眼合成画像MLを出力することができる。その際、画像補正部1bは、反転処理,歪曲処理,シェーディング処理,つなぎ合わせ処理等を行う。さらに、必要に応じて歪曲補正も行う。個眼合成画像MLは、演算部2で圧縮されてメモリー3に記憶される。
 光学素子ユニットの製造方法について説明する。本実施形態では、第1アレイレンズLA1と第2アレイレンズLA2とは、予め成形されて光軸方向に積層され、複眼光学系LHが形成される。このとき、第1アレイレンズLA1の矩形枠状部Lf1と、第2アレイレンズLA2のフランジ部Lb2とを嵌合させたとき、間に介在する微細形状部Lc2が塑性変形することで、上述の実施形態と同様にして各個眼レンズLa1、La2の光軸が一致するようになっている。
 更に、鏡枠HLDの周囲壁HLDbにおける奥側に接着剤を塗布した状態で、図11に示す姿勢で複眼光学系LHを鏡枠HLD内に光軸方向に沿って挿入すると、第1アレイレンズLA1の周囲に設けられた微細形状部Ld1が、鏡枠HLDの周囲壁HLDbに当接するまでは、スムーズに挿入が行われる。その後、微細形状部Ld1の山部が、鏡枠HLDの周囲壁HLDbの内周面に当接し、例えば15~20μm程度押しつぶされて塑性変形し、塑性変形後の高さが30μm程度になる。このとき、微細形状部Ld1にムシレなどにより小屑が生じる場合もあるが、鏡枠HLDに塗布した接着剤に取り込まれることで、個眼レンズ等への付着を抑制できる。第1アレイレンズLA1の板部Lb1の物体側面が、鏡枠HLDの物体側壁HLDaの対向面に当接することで、組付けが完了する。なお、嵌合後に接着剤を塗布しても良い。
 本実施形態によれば、微細形状部Ld1の山部が第1レンズ10によって押しつぶされるが、このとき、第1アレイレンズLA1の4つの辺に形成した微細形状部Ld1が均等に押しつぶされることで、各開口絞りSの中心軸と個眼レンズLa1,La2の光軸との同軸度が精度良く確保される。
 図14は、変形例にかかる撮像装置の図12と同様な断面図である。図15は、図14の構成をXV-XV線で切断して矢印方向に見た図である。本変形例では、上述した実施形態に対して、第1アレイレンズLA1の物体側面中央に、円錐状の突起Le1を形成しており、これに対応して鏡枠HLDの物体側壁HLDaの中央に、円錐状の凹部HLDdを形成している。又、第1アレイレンズLA1の個眼レンズLa1以外の物体側面には遮光膜を形成して、遮光絞りの代わりとしている。それ以外の構成は、上述した実施形態と同様である。
 鏡枠HLDに第1アレイレンズLA1を組み付けたとき、微細形状部Ld1の塑性変形のみでは、鏡枠HLDに対して第1アレイレンズLA1の中心回りの相対位置ずれが生じる恐れがある。これに対し本変形例によれば、円錐状の突起Le1に円錐状の凹部HLDdが嵌合して、第1アレイレンズLA1と鏡枠HLDとの突起Le1回りの位置決めが行われるので、微細形状部Ld1の塑性変形と相まって、より高精度な位置決めを行うことができる。
 図16は、別な変形例にかかる撮像装置の図12と同様な断面図である。図16に示す光軸方向像側から見て時計回りに、第1アレイレンズLA1の外周面を第1外縁部~第4外縁部とし、それぞれ対応する鏡枠HLDの内周面を第1内縁部~第4内縁部とすると、図16に示す第1アレイレンズLA1の左方と下方の辺(第3外縁部、第4外縁部に相当)のブロック部Lc1に微細形状部を設けていない。微細形状部を設けていないブロックLc1を第1基準形状部とする。又、それに対向する鏡枠HLD(凹部)の内周面(第3内縁部、第4内縁部に相当)を第2基準形状部とする。それ以外の構成は、図12,13に示す実施形態と同様である。
 本変形例において、鏡枠HLDに第1アレイレンズLA1を組み付けたとき、図16に示す第1アレイレンズLA1の左方と下方の辺のブロック部Lc1の外側面(第1基準形状部)が鏡枠HLDの周囲壁HLDbの内周面(第2基準形状部)に当接し、同時に第1アレイレンズLA1の右方と上方の辺(第1外縁部、第2外縁部に相当)のブロック部Lc1の微細形状部Ld1が周囲壁HLDbの内周面(第1内縁部、第2内縁部に相当)に当接して塑性変形する。これにより鏡枠HLDに第1アレイレンズLA1の間のガタを排除できる。この状態で、各開口絞りSの中心軸と個眼レンズLa1,La2の光軸との同軸度が精度良く確保されるようになっている。本変形例では、第1アレイレンズLA1の左方と下方のブロック部Lc1の外側面が鏡枠HLDの周囲壁HLDbの内周面に当接することで、より精度良く位置決めを行える。なお、第1アレイレンズLA1に微細形状部を設ける代わりに、鏡枠HLDの周囲壁HLDbの第1内縁部、第2内縁部に微細形状部を設けても良い。
 本発明は、本明細書に記載の実施形態や変形例に限定されるものではなく、他の実施形態や変形例を含むことは、本明細書に記載された実施形態や技術思想から本分野の当業者にとって明らかである。たとえば、上述した複眼光学系は、視野分割タイプに限らず、超解像タイプの撮像装置にも用いることができる。又、光学素子の成形後に、UV硬化樹脂等により微細形状部を形成しても良い。更に、光学素子の外形は円形に限らず、多角形状であって良い。更に、複眼光学系を光軸方向から見た形状は、四角形などの高く形状に限らず、角を円弧で連結した形状や、円形もしくは楕円形状でもよい。
1       画像処理部
1a      画像合成部
1b      画像補正部
2       演算部
3       メモリー
10      第1レンズ
11      レンズ部
12      フランジ部
13      嵌合部
14      微細形状部
20      第2レンズ
21      レンズ部
22      フランジ部
23      嵌合部
30      光学素子ユニット
40      撮像装置
41      鏡枠
41a     微細形状部
41b     側壁
41c     端壁
41d     微細形状部
42      固体撮像素子
CG      カバーガラス
DU      撮像装置
F       IRカットフィルタ
HLD     鏡枠
HLDa    物体側壁
HLDb    周囲壁
HLDd    凹部
LA1     第1アレイレンズ
La1     個眼レンズ
Lb1     矩形状板部
Lc1     ブロック部
Ld1     微細形状部
LA2     第2アレイレンズ
Lb2     矩形状板部
LH      複眼光学系
LU      撮像ユニット
MD      金型
MD1     転写面
MD2     転写面
MD3     転写面
MD3a    凹部
ML      個眼合成画像

Claims (18)

  1.  光学素子の第1嵌合部と、他部品の第2嵌合部とを嵌合してなる光学素子ユニットにおいて、
     前記第1嵌合部と前記第2嵌合部のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設けており、
     前記微細形状部は、前記光学素子と前記他部品との嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
     前記第1嵌合部又は前記第2嵌合部の被嵌合寸法は、前記第2嵌合部又は前記第1嵌合部の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さいことを特徴とする光学素子ユニット。
  2.  前記他部品は別の光学素子である請求項1に記載の光学素子レンズユニット。
  3.  前記他部品は,前記光学素子を保持する鏡枠である請求項1に記載の光学素子ユニット。
  4.  前記微細形状部は、周方向に等間隔で複数個設けられている請求項1~3のいずれかに記載の光学素子ユニット。
  5.  前記光学素子の光学面と前記第1嵌合部を転写する金型は同一である請求項1~4のいずれかに記載の光学素子ユニット。
  6.  前記光学素子は、光軸が異なるように複数の光学面を配列したレンズと、前記レンズと接合する板部とを有する請求項1~5のいずれかに記載の光学素子ユニット。
  7.  光学素子と、他部品とを嵌合し、前記光学素子の第1基準形状部と、前記他部品の第2基準形状部とを突き当てて、前記光学素子の光軸直交方向の位置決めを行う光学素子ユニットにおいて、
     前記第1基準形状部以外の前記光学素子と、前記第2基準形状部以外の前記他部品のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設けており、
     前記微細形状部は、前記光学素子と前記他部品の嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
     前記光学素子又は前記他部品の被嵌合寸法は、前記他部品又は前記光学素子の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さいことを特徴とする光学素子ユニット。
  8.  前記第1基準形状部と前記第2基準形状部は、それぞれ前記光軸に沿って延在する互いに交差した2面に設けられ、前記微細形状部は、前記2面に対して前記光軸を挟んだ反対側に設けられている請求項7に記載の光学素子ユニット。
  9.  前記光学素子は、光軸が異なるように複数の光学面を配列したレンズと、前記レンズと接合する板部とを有し、
     前記他部品は、前記板部に嵌合する凹部を有し、
     前記第1基準形状部は前記板部の外周面の一部であり、前記第2基準形状部は前記凹部の内周面の一部である請求項7又は8に記載の光学素子ユニット。
  10.  前記板部と前記凹部は、前記光軸方向に見て多角形状である請求項9に記載の光学素子ユニット。
  11.  前記多角形状は光軸方向に見て四角形状であり、光軸方向像側から見て時計回りに、前記板部の外周面を第1外縁部~第4外縁部とし、それぞれ対応する前記凹部の内周面を第1内縁部~第4内縁部としたときに、前記第1基準形状部は、前記第3外縁部と前記第4外縁部に設けられ、前記第2基準形状部は、前記第3内縁部と前記第4内縁部に設けられる請求項10に記載の光学素子ユニット。
  12.  前記微細形状部は、前記第1外縁部と前記第2外縁部、或いは前記第1内縁部と前記第2内縁部に設けられる請求項11に記載の光学素子ユニット。
  13.  前記光学素子の光学面と前記第1基準形状部を転写する金型は同一である請求項7~12のいずれかに記載の光学素子ユニット。
  14.  前記微細形状部の安全率は1未満である請求項1~13のいずれかに記載の光学素子ユニット。
  15.  前記微細形状部は、前記光学素子と前記他部品の嵌合方向に沿って軸線を有する半円錐形状又は三角錐形状である請求項1~14のいずれかに記載の光学素子ユニット。
  16.  前記微細形状部を形成される前記光学素子又は前記他部品は、熱可塑性樹脂により成形される請求項1~15のいずれかに記載の光学素子ユニット。
  17.  光学素子の第1嵌合部と、他部品の第2嵌合部とを嵌合してなる光学素子ユニットの製造方法において、
     前記第1嵌合部と前記第2嵌合部のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設け、
     前記微細形状部は、前記光学素子と前記他部品との嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
     前記第1嵌合部又は前記第2嵌合部の被嵌合寸法は、前記第2嵌合部又は前記第1嵌合部の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さく、
     前記第1嵌合部と前記第2嵌合部とを嵌合したときに、前記微細形状部により前記光学素子と前記他部品との光軸直交方向の位置決めが行われることを特徴とする光学素子ユニットの製造方法。
  18.  光学素子と、他部品とを嵌合し、前記光学素子の第1基準形状部と、前記他部品の第2基準形状部とを突き当てて、前記光学素子の光軸直交方向の位置決めを行う光学素子ユニットの製造方法において、
     前記第1基準形状部以外の前記光学素子と、前記第2基準形状部以外の前記他部品のうち少なくとも一方に、前記光学素子の光軸直交方向に突出した微細形状部を設け、
     前記微細形状部は、前記光学素子と前記他部品の嵌合深さが深くなるにつれ、前記光学素子の光軸に交差する面方向の突出量が増大し、
     前記光学素子又は前記他部品の被嵌合寸法は、前記他部品又は前記光学素子の嵌合寸法よりも大きく、前記嵌合寸法に前記微細形状部の最大突出量を加えた寸法よりも小さく、
     前記第1基準形状部と前記第2基準形状部とを突き当てたときに、前記微細形状部により前記光学素子と前記他部品との光軸直交方向のガタを抑えることを特徴とする光学素子ユニットの製造方法。
PCT/JP2015/051968 2014-01-28 2015-01-26 光学素子ユニット及び光学素子ユニットの製造方法 WO2015115351A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015559923A JP6801961B2 (ja) 2014-01-28 2015-01-26 光学素子ユニット及び光学素子ユニットの製造方法
CN201580005694.0A CN105980903A (zh) 2014-01-28 2015-01-26 光学元件组件以及光学元件组件的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013123 2014-01-28
JP2014013123 2014-01-28

Publications (1)

Publication Number Publication Date
WO2015115351A1 true WO2015115351A1 (ja) 2015-08-06

Family

ID=53756925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051968 WO2015115351A1 (ja) 2014-01-28 2015-01-26 光学素子ユニット及び光学素子ユニットの製造方法

Country Status (3)

Country Link
JP (1) JP6801961B2 (ja)
CN (1) CN105980903A (ja)
WO (1) WO2015115351A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235250A1 (ja) * 2018-06-08 2019-12-12 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022000784A1 (zh) * 2020-06-30 2022-01-06 瑞泰光学(常州)有限公司 镜头模组

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529012U (ja) * 1991-09-27 1993-04-16 株式会社日立製作所 レンズの保持構造
JPH0654012U (ja) * 1992-12-22 1994-07-22 市光工業株式会社 レンズの取付構造
JP2002090604A (ja) * 2000-09-20 2002-03-27 Enplas Corp レンズユニット
JP2002189160A (ja) * 2000-12-20 2002-07-05 Echo:Kk プラスチックレンズとプラスチック鏡筒の接合法
JP2006205430A (ja) * 2005-01-26 2006-08-10 Seiko Epson Corp 電気光学装置およびその製造方法、ならびに画像印刷装置および画像読み取り装置
JP2010054866A (ja) * 2008-08-28 2010-03-11 Kyocera Corp レンズユニット
JP2012056321A (ja) * 2005-12-26 2012-03-22 Konica Minolta Opto Inc 樹脂成形用金型及び光ピックアップ装置用対物レンズ並びに光学素子製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6184615A (ja) * 1984-10-03 1986-04-30 Hitachi Ltd レンズ鏡筒
JP2001324692A (ja) * 2000-05-17 2001-11-22 Kyocera Mita Corp fθレンズの固定構造
JP2004347996A (ja) * 2003-05-23 2004-12-09 Sony Corp レンズ保持部材及びレンズ組付方法
JP4930787B2 (ja) * 2007-07-27 2012-05-16 スタンレー電気株式会社 車両用灯具、及び、車両用灯具に用いられる導光レンズ
JP5939418B2 (ja) * 2012-01-24 2016-06-22 スタンレー電気株式会社 車両用灯具ユニット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0529012U (ja) * 1991-09-27 1993-04-16 株式会社日立製作所 レンズの保持構造
JPH0654012U (ja) * 1992-12-22 1994-07-22 市光工業株式会社 レンズの取付構造
JP2002090604A (ja) * 2000-09-20 2002-03-27 Enplas Corp レンズユニット
JP2002189160A (ja) * 2000-12-20 2002-07-05 Echo:Kk プラスチックレンズとプラスチック鏡筒の接合法
JP2006205430A (ja) * 2005-01-26 2006-08-10 Seiko Epson Corp 電気光学装置およびその製造方法、ならびに画像印刷装置および画像読み取り装置
JP2012056321A (ja) * 2005-12-26 2012-03-22 Konica Minolta Opto Inc 樹脂成形用金型及び光ピックアップ装置用対物レンズ並びに光学素子製造方法
JP2010054866A (ja) * 2008-08-28 2010-03-11 Kyocera Corp レンズユニット

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019235250A1 (ja) * 2018-06-08 2019-12-12 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JPWO2019235250A1 (ja) * 2018-06-08 2021-07-15 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP7237956B2 (ja) 2018-06-08 2023-03-13 ソニーセミコンダクタソリューションズ株式会社 撮像装置
US11940602B2 (en) 2018-06-08 2024-03-26 Sony Semiconductor Solutions Corporation Imaging device

Also Published As

Publication number Publication date
JPWO2015115351A1 (ja) 2017-03-23
CN105980903A (zh) 2016-09-28
JP6801961B2 (ja) 2020-12-16

Similar Documents

Publication Publication Date Title
JP4147273B2 (ja) 複眼方式のカメラモジュール及びその製造方法
KR101823195B1 (ko) 렌즈 조립체 및 이를 구비하는 카메라 모듈
JP2009048024A (ja) レンズユニット、撮像モジュール、及び光学機器
TWI642967B (zh) 環形光學元件、成像鏡頭模組與電子裝置
US10859784B2 (en) Optical assembly and camera module
CN209979984U (zh) 成像镜头模块与电子装置
JP5734769B2 (ja) 撮像レンズおよび撮像モジュール
JP2002350608A (ja) 撮像レンズ、撮像装置、金型及び撮像レンズの成形方法
WO2015115351A1 (ja) 光学素子ユニット及び光学素子ユニットの製造方法
US11391905B2 (en) Lens unit and camera module
JP6536955B2 (ja) レンズアレイ、レンズアレイ積層体、及び、これらの製造方法
JP2012208279A (ja) レンズユニット及び撮像ユニット
TWI665474B (zh) 環形光學元件、成像鏡頭模組與電子裝置
TWM545257U (zh) 光學鏡片組、成像鏡頭與電子裝置
JP2010091823A (ja) 光学ユニットの製造方法、撮像ユニットの製造方法、光学ユニット、撮像ユニット
US9955053B2 (en) Image-capturing assembly and array lens units thereof
CN213659064U (zh) 分体式镜头、摄像头模组及电子装置
US9429687B2 (en) Image-capturing assembly and array lens units thereof
TWI731822B (zh) 使用固定元件的成像鏡頭與電子裝置
KR20150034523A (ko) 카메라 모듈
KR102408931B1 (ko) 렌즈 광학계 및 촬상 장치
JP6439604B2 (ja) 光学素子及び光学素子の製造方法
JP2009088851A (ja) 固体撮像モジュールおよびその製造方法ならびに成形型
US9876947B2 (en) Optical apparatus and image capturing apparatus
JP2017096993A (ja) レンズユニット、レンズユニットの製造方法及び撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15743796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559923

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15743796

Country of ref document: EP

Kind code of ref document: A1