WO2015114987A1 - パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール - Google Patents

パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール Download PDF

Info

Publication number
WO2015114987A1
WO2015114987A1 PCT/JP2014/083598 JP2014083598W WO2015114987A1 WO 2015114987 A1 WO2015114987 A1 WO 2015114987A1 JP 2014083598 W JP2014083598 W JP 2014083598W WO 2015114987 A1 WO2015114987 A1 WO 2015114987A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper plate
metal copper
film
coating film
power module
Prior art date
Application number
PCT/JP2014/083598
Other languages
English (en)
French (fr)
Inventor
隆行 鎌江
尚之 金原
松永 秀樹
Original Assignee
Ngkエレクトロデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngkエレクトロデバイス株式会社 filed Critical Ngkエレクトロデバイス株式会社
Priority to DE112014006293.6T priority Critical patent/DE112014006293T5/de
Priority to JP2015535907A priority patent/JPWO2015114987A1/ja
Publication of WO2015114987A1 publication Critical patent/WO2015114987A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49827Via connections through the substrates, e.g. pins going through the substrate, coaxial cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/27Manufacturing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/244Finish plating of conductors, especially of copper conductors, e.g. for pads or lands
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/072Electroless plating, e.g. finish plating or initial plating

Definitions

  • a circuit copper plate made of a single or a plurality of metal copper plates is bonded to one main surface of a ceramic substrate, and a power semiconductor element or an electronic component such as a capacitor is bonded on each metal copper plate.
  • the present invention relates to an improvement in mounting reliability of a power module substrate on which a metal copper plate and a metal copper plate are connected and mounted, and a method for manufacturing the power module substrate and a power module using the power module substrate.
  • a DCB (Direct Copper Bonding) substrate having a solid copper plate formed by bonding a single solid metal copper plate consisting of substantially the entire main surface is well known.
  • the power module substrate, which is a DCB substrate is an electronic component such as a power semiconductor element or a capacitor on a predetermined metal copper plate of a circuit copper plate formed by joining a single or a plurality of metal copper plates to one main surface of a ceramic substrate. Is to be installed.
  • the direct bonding method is widely used for bonding the alumina ceramic substrate and the metal copper plate.
  • Electronic parts such as power semiconductor elements and capacitors are usually joined to a metallic copper plate of a circuit copper plate by Pb—Sn solder or Pb free solder.
  • the power semiconductor element is electrically connected to the metal copper plate by a bonding wire such as an aluminum wire.
  • Power module substrates on which electronic components such as power semiconductor elements are mounted are used as power modules incorporated in power control devices such as inverters and converters. In such a power module, the amount of heat generated from the power semiconductor element is large, and the operating temperature is also high. Therefore, the power module substrate is required to ensure high heat dissipation and bonding reliability of the power semiconductor element and the bonding wire to the metal copper plate.
  • bonding materials include silver brazing material with excellent thermal conductivity, but since the bonding temperature is higher than 700 ° C, which is a high temperature, the residual stress in the bonded portion is increased, and the power semiconductor is cooled during the cooling process in the bonding process. Since defects such as cracks occur in electronic parts such as elements and capacitors, it has been difficult to use them for mounting power semiconductor elements and electronic parts such as capacitors.
  • a joining material that can be joined with a sintered silver particle is used for joining an electronic component to a metal copper plate, and this joining material is provided between the electronic component and the metal copper plate and pressed under heating.
  • a technology for forming a sintered body of silver particles and joining an electronic component and a metal copper plate has been developed. Since the sintering of the silver particles used in such a bonding material proceeds at a temperature much lower than the melting point of silver bulk (about 960 ° C.), the residual stress at the bonding portion can be reduced. On the other hand, the heat resistance temperature of this silver sintered body is about the melting point of the bulk. Therefore, both low temperature bonding and high temperature use can be achieved. Further, since it is a silver sintered body, it has higher thermal conductivity than Pb—Sn solder material and Pb free solder material.
  • a conventional power module substrate is bonded by heating using a silver nano paste as a bonding material as a good bonding method of a power semiconductor element to a metal copper plate.
  • This silver nano paste has a specification that can achieve both the above-described low-temperature bonding and high-temperature use.
  • This bonding material can also be applied to the bonding of power semiconductor elements to an aluminum plate. In that case, a strong oxide film (alumina) formed on the aluminum surface hinders bonding, so a coating such as silver plating is applied. It is necessary to ensure the wettability of the silver nanopaste by providing it on the aluminum surface (see, for example, Patent Document 1).
  • a power-containing substrate containing a glass component on the surface of an aluminum plate is included in a conventional power module substrate. It has been proposed to provide a first fired layer made of a fired body of silver paste and to form a second fired layer made of a fired body of silver obtained by reducing silver oxide on the surface of the first fired layer.
  • the power semiconductor element is mounted on the second fired layer. Since the above-described strong oxide film (alumina) formed on the aluminum surface is removed by the glass component contained in the first fired layer, the first fired layer and the aluminum surface are well bonded.
  • This joining technique can also be applied to joining a metal copper plate and a power semiconductor element (see, for example, Patent Document 2).
  • the conventional power module substrate as described above has the following problems.
  • the conventional power module substrate described in Patent Document 2 includes a first fired layer made of a fired body of glass-containing silver paste, and a second fired body made of silver obtained by reducing silver oxide provided on the surface.
  • the power semiconductor element can be reliably bonded to the metal copper plate by the fired layer, since the glass component is included, the thermal resistance and electrical resistance of the first fired layer are increased, and the power semiconductor element is accurate under high output. In a power module for in-vehicle use that requires operation, sufficient heat dissipation and mounting reliability cannot be obtained.
  • the present invention has been made in view of such circumstances, and can greatly improve the mounting reliability of electronic components and bonding wires with respect to a metal copper plate, and reduce the thermal resistance of a power module. It is an object to provide an inexpensive power module substrate that can be manufactured, a manufacturing method thereof, and a power module using the power module substrate.
  • a circuit copper plate made of a single metal plate or a plurality of metal copper plates is bonded to one main surface of the ceramic substrate, and the substrate is on at least one metal copper plate.
  • a power module substrate on which an electronic component including a power semiconductor element is bonded and the power semiconductor element of the electronic component and the metal copper plate are connected by a bonding wire and mounted at least the power semiconductor of the metal copper plate It has a coating film composed mainly of silver or gold on the surface of the part to which the element is bonded, and does not have the coating film on the surface of the part to which the end of the bonding wire of the metal copper plate is connected. It is a feature.
  • a coating film mainly composed of silver or gold is applied as a base film in advance to a region where at least the power semiconductor element of the metal copper plate is bonded and the end of the bonding wire is not connected. is there.
  • the oxide (copper oxide) on the surface of the metal copper plate is generally not a significant bonding hindrance to the use of a bonding material made of a sintered body of silver particles.
  • a coating film mainly composed of silver or gold is applied to the surface of the metal copper plate in order to increase the bonding reliability between the power semiconductor element and the metal copper plate.
  • “provided on the surface of the metal copper plate” and “provided on the metal copper plate” are clearly distinguished. The former is a concept directly provided on the surface of the metal copper plate, and the latter is a concept provided with a film or layer interposed between the metal copper plate and the latter.
  • the power module substrate according to claim 2 is characterized in that, in the power module substrate according to claim 1, the coating film has a thickness ranging from 0.1 ⁇ m to 20 ⁇ m. is there.
  • the power module substrate according to claim 3 is the power module substrate according to claim 1 or 2, wherein the coating film is made of a silver plating film or a gold plating film. is there.
  • the coating film by silver plating film or gold plating film (1) thermal resistance (value obtained by dividing film thickness by thermal conductivity) is low, (2) residual thermal stress is low, compared with silver paste (3 ) It has an excellent feature that a uniform film can be formed even if it is thin. This is because the silver paste having the specifications as used in Patent Document 2 is baked at a high temperature, resulting in a high residual thermal stress and a sintered body, which contains voids and inhibits heat dissipation.
  • the silver plating film and the gold plating film are optimum films as the coating film in the present invention.
  • the inventors discovered through a test of the invention process that the coating film made of these plating films provided on the surface of the metal copper plate is not necessarily sufficient in connection strength with the bonding wire made of aluminum wire or copper wire, It has been found that it is important in terms of connection strength that a coating film made of a plating film does not exist for a portion to which a bonding wire is connected.
  • Patent Document 2 since the silver paste is applied using a printing method such as a screen printing method or an offset printing method, it is easy to limit the region, but the plating method is plating. It is not easy to limit the area because the object to be plated is immersed in the liquid. Therefore, if there is no particular purpose, the plating film is provided on the entire metal surface. Accordingly, the inventors have invented the power module substrate manufacturing method according to claim 7 and claim 8 so that at least the power semiconductor element of the metal copper plate is bonded in advance using the coating film as a base film. In addition, it has been successfully applied to the region where the end of the bonding wire is not connected.
  • the power module substrate according to claim 4 is the power module substrate according to any one of claims 1 to 3, wherein the coating film is an electroless silver plating film or an electroless gold plating film. It is characterized by comprising.
  • the power module substrate according to claim 5 is the power module substrate according to any one of claims 1 to 4, wherein an error in a position of the pattern of the coating film with respect to an edge of the metal copper plate is ⁇ . It is 0.1 mm or less, and silver or gold other than the coating film does not exist on the surface of the metal copper plate.
  • the power module according to claim 6 is an electronic component including a power semiconductor element on the coating film provided on the surface of the metal copper plate of the power module substrate according to any one of claims 1 to 5. At least the power semiconductor element is bonded through a sintered body of silver particles, and the end of the bonding wire connecting the power semiconductor element and the metal copper plate is not through the coating film. It is directly connected to the surface of the metal copper plate.
  • a surface of the metal copper plate is provided for a power module substrate including a circuit copper plate made of a single or a plurality of metal copper plates bonded to one main surface of the ceramic substrate.
  • a coating film process for forming a silver plating film or a gold plating film on the surface, and a liquid resist paste is printed on the surface of the coating film formed in this coating film process by a screen printing method through a screen printing mask, and the surface of the metal copper plate
  • a resist film stripping step of stripping the resist film of the formed resist film forming unit is characterized in that it has a.
  • the power module substrate manufacturing method wherein the surface of the metal copper plate is provided for a power module substrate including a circuit copper plate made of a single or a plurality of metal copper plates bonded to one main surface of the ceramic substrate.
  • a dry film resist affixing step for affixing a dry film resist on the surface, a photomask step for abutting a photomask on the surface of the dry film resist affixed in the dry film resist affixing step, and a photo abutting in the photomask step An exposure step of irradiating the dry film resist with light through a mask, and removing the photomask, leaving an exposed dry film resist whose solubility in the developer is reduced by light irradiation in the exposure step.
  • the dry film of the portion masked with the photomask A development process for removing dyst, a coating film process for forming a coating film composed of a silver plating film or a gold plating film on the portion where the dry film resist was removed in this development process, and the remaining in the development process And a resist film peeling step for peeling the exposed dry film resist.
  • the above-mentioned power module substrate has a coating film mainly composed of silver or gold on the surface of the portion where the electronic component of the metal copper plate is joined. Therefore, by providing a coating film mainly composed of silver or gold having a high bond strength with copper on the surface of the metal copper plate, using a bonding material that can be bonded with a sintered body of silver particles having good wettability with this coating film, An electronic component and a metal copper plate can be firmly bonded at a low temperature (300 ° C. or lower) below the operating temperature of the electronic component.
  • the power module substrate does not have a coating film on the surface of the part to which the end of the bonding wire of the metal copper plate is connected, the power module substrate is made of aluminum for making the metal copper plate and the electronic component in an electrically connected state.
  • the end portion of the bonding wire made of copper or the like can be easily connected to the surface of the metal copper plate by thermocompression, and the connection reliability can be improved.
  • the coating film mainly composed of silver or gold is provided only partially, an inexpensive power module substrate can be provided.
  • the film thickness of the coating film containing silver or gold as a main component is in the range of 0.1 ⁇ m to 20 ⁇ m.
  • the electronic component and the metal copper plate can be firmly bonded at a low temperature (300 ° C. or lower) below the operating temperature of the electronic component by using a bonding material that can be bonded with a sintered body of silver particles having good wettability.
  • the wettability of the bonding material that can be bonded with the sintered silver particle to the coating film is better than the wettability of the bonding material that can be bonded with the sintered silver particle to the metal copper plate, It can be firmly joined to the top.
  • the coating film has a film thickness of less than 0.1 ⁇ m, the wettability of the bonding material that can be bonded with the sintered body of silver particles decreases, and the bonding strength decreases.
  • the coating film that is the base is thin and the effect of relieving the residual thermal stress at the joint due to deformation of the coating film is weak, the film thickness is increased to a level not exceeding 20 ⁇ m, which is the same level as paste printing. Also good.
  • the coating film has a film thickness exceeding 20 ⁇ m, the amount of silver used is excessively increased, making it difficult to provide an inexpensive power module substrate.
  • the coating film can be formed by a sputtering method, a vapor deposition method, or an electroless plating method. In the case of thickness, a coating film can be easily formed by an electrolytic plating method.
  • the film thickness of such a coating film is in the range of 0.1 ⁇ m to 20 ⁇ m, it is possible to greatly improve the mounting reliability of electronic components and bonding wires to a metal copper plate, and the heat when a power module is formed.
  • An inexpensive power module substrate capable of reducing the resistance can be provided.
  • the coating film on the power module substrate is a partial silver plating film or a partial gold plating film partially provided at a desired position on the surface of the metal copper plate. Therefore, using a method of electrolytic and / or electroless plating and a method of forming and removing a resist film having a desired pattern, a partial silver plating film or a partial gold plating is applied to a desired position on the surface of the metal copper plate to which the bonding wire is connected. Without providing a coating, a partial silver plating coating or a partial gold plating coating can be accurately provided at a desired position on the surface of the metal copper plate on which the electronic component is mounted.
  • a coating film made of high-purity silver or gold is used as a base film provided on the surface of the metal copper plate, and a metal paste such as a silver paste containing an additive such as glass or metal oxide is not used.
  • the film thickness can be reduced, and the thermal resistance and the residual thermal stress can be reduced.
  • the coating film as described above was provided on a metal copper plate, which was conventionally considered to be unnecessary because it does not have a strong oxide film on the surface to inhibit bonding.
  • Such a coating film has a strong bond with the surface of the metal copper plate, and also has excellent wettability to a sintered body of silver particles, which is a bonding material for bonding the power semiconductor element. Therefore, by using the coating film as the base film, the bonding reliability between the power semiconductor element and the metal copper plate can be improved as compared with the conventional technique.
  • the high-purity silver or gold is the main component for the bonding wire for electrically connecting the power semiconductor element and the metal copper plate. It was found in the creation process of the invention that the coating film to be produced is not always effective.
  • the bonding wire bonded to the surface of the metal copper plate that has been subjected to electroless silver plating causes interface peeling in the tensile test. There was a malfunction that would occur.
  • the coating film made of high-purity silver or gold is a liquid plating solution as represented by silver plating or gold plating, it is normal to apply plating to the entire surface of the circuit copper plate. Applying partial plating to the surface of a circuit copper plate has not been performed until now.
  • the inventors of the present application did not form a coating film mainly composed of high-purity silver or gold on the surface of the metal copper plate where the end of the bonding wire is connected, Succeeded in both strengthening the bonding of the power semiconductor element and strengthening the bonding wire connection by forming the coating film only on the surface of the metal copper plate where the power semiconductor element is bonded. It was.
  • the power module substrate can be formed of an electroless silver plating film or an electroless gold plating film
  • the power supply terminal metal as in the case of forming an electrolytic silver plating film is used. Since connection to the copper plate is unnecessary, the process is simplified and an inexpensive power module substrate can be provided.
  • FIGS. 4A and 4B are a plan view and a vertical cross-sectional view taken along line A-A ′ of the power module substrate according to the embodiment of the present invention, respectively.
  • or (E) are process exploded views for demonstrating the manufacturing method of the board
  • or (G) are process exploded views for demonstrating the manufacturing method of the board
  • a power module substrate 10 is a single unit having a different shape on one main surface of a ceramic substrate 11 mainly composed of alumina.
  • a circuit copper plate 13 formed by joining a plurality of individual metal copper plates 12 in an island shape, and a solid copper plate 14 obtained by joining a single solid metal copper plate 12a consisting of substantially the entire main surface to the other main surface. is doing.
  • a power semiconductor element 15 and an electronic component 17 such as a capacitor 16 are mounted on a metal copper plate 12 constituting a circuit copper plate 13.
  • the power semiconductor element 15 and the metal copper plate 12 are electrically connected using an aluminum wire or a bonding wire 18 made of a copper wire.
  • the power module substrate 10 is formed by bonding metal copper plates 12 and 12a to a ceramic substrate 11 containing alumina as a main component by a direct bonding method.
  • the ceramic substrate 11 is made of alumina containing zirconia or aluminum nitride. Those using silicon nitride or the like are also applicable.
  • an active metal brazing material bonding method can be applied as a method for bonding the metal copper plates 12 and 12a.
  • the power module substrate 10 has a coating film 19 containing silver or gold as a main component on the surface of the portion to which the electronic component 17 of the metal copper plate 12 constituting the circuit copper plate 13 is bonded.
  • the electronic component 17 is bonded onto the coating film 19 via a bonding material 20.
  • a bonding material 20 that can be bonded with a sintered body of silver particles is used.
  • the bonding material 20 is provided on the surface of the coating film 19, the electronic component 17 is placed, and the temperature of the electronic component 17 is lower than the operating temperature. By pressing the upper surface of the electronic component 17 at a low temperature (300 ° C. or lower), a sintered body of silver particles is formed and bonded.
  • the size of the silver particles those having an average particle size of 100 nm or less are easy to handle because of their high sinterability, but even if the average particle size is on the micron order (0.1 to 10 ⁇ m), it is below the operating temperature of the electronic component 17. Any material can be used if it can be joined.
  • the coating film 19 mainly composed of silver or gold has a high bonding strength with the surface of the metal copper plate 12. Furthermore, such a coating film 19 has good wettability with the bonding material 20 that can be bonded with a sintered body of silver particles. For this reason, compared with the case where the bonding material 20 is provided on the surface of the metal copper plate 12 without providing the coating film 19, the electronic component 17 can be firmly bonded onto the metal copper plate 12.
  • the power module substrate 10 has a coating film 19 mainly composed of silver on the surface of a portion to which the electronic component 17 of the metal copper plate 12 constituting the circuit copper plate 13 is bonded, and is the same as the metal copper plate 12. Or it does not have the coating film 19 which has silver as a main component on the surface of the site
  • a power semiconductor element 15 and an electronic component 17 such as a capacitor 16 are highly bonded onto a coating film 19 mainly composed of silver provided on the surface of the metal copper plate 12 constituting the circuit copper plate 13. It can be bonded with high reliability, and the end of the bonding wire 18 made of aluminum wire or copper wire can be connected to the surface of the metal copper plate 12 having no coating film 19 mainly composed of silver with high connection reliability. Reliability can be improved.
  • the electroless silver plating is used for supplying power to the metal copper plate 12 which is necessary in the electrolytic silver plating. Easy to apply because no terminal connection is required. Moreover, if the film thickness is the same, the variation in film thickness is smaller in the electroless plating process than in the electrolytic plating process. This is because the electroless plating process has no current concentration effect on the convex portion. However, since the electroless silver plating treatment has a relatively thin plating thickness of about 4 ⁇ m, a separate electrolytic silver plating treatment is required for applications that require thickening.
  • a method of forming the coating film 19 by silver sputtering or silver vapor deposition can be applied.
  • the film thickness obtained by these film forming methods is also equal to or less than that of the electroless plating treatment, and an electrolytic silver plating treatment is separately required for applications requiring thickening.
  • the coating film 19 preferably has a thickness in the range of 0.1 ⁇ m to 20 ⁇ m.
  • This power module substrate 10 can be bonded to the surface of the metal copper plate 12 with a sintered body of silver particles having good wettability by providing a coating film 19 mainly composed of silver in the range of 0.1 ⁇ m to 20 ⁇ m.
  • the bonding material 20 the electronic component 17 can be firmly bonded onto the metal copper plate 12 at a temperature lower than the operating temperature of the electronic component 17.
  • this coating film 19 tends to produce the part in which the coating film 19 is not formed when the film thickness is less than 0.1 ⁇ m, the wettability of the bonding material 20 that can be bonded with the sintered body of silver particles is lowered. As a result, the bonding strength of the electronic component 17 is reduced. Further, when the coating film 19 has a film thickness exceeding 20 ⁇ m, the amount of silver used is excessively increased, making it difficult to provide an inexpensive power module substrate 10.
  • the power module substrate 10 is preferably composed of a partial silver plating film in which the coating film 19 is partially provided at a desired position on the surface of the metal copper plate 12.
  • the power module substrate 10 is connected to the end portion of the bonding wire 18 by an electrolytic plating method and / or an electroless plating method on the surface of the metal copper plate 12 and a method of forming and peeling a resist film having a desired pattern.
  • the partial silver plating film is not provided at a desired position on the surface of the metal copper plate 12 to be applied, and the partial silver plating film can be accurately provided at a desired position on the surface of the metal copper plate 12 on which the electronic component 17 is mounted. . Therefore, the power module substrate 10 can reliably join the end portions of the electronic component 17 and the bonding wire 18 to the metal copper plate 12, reduce the thermal resistance when used as a power module, and can be manufactured at a lower cost.
  • the power module substrate 10 preferably has an electroless silver plating film as a coating film. If the film thickness is the same, the variation in film thickness is smaller in the electroless plating process than in the electroplating process. This is because the electroless plating process has no current concentration effect on the convex portion. Since the power module substrate 10 does not require connection of a power feeding terminal to the metal copper plate 12 which is necessary in the electrolytic silver plating process, the process for forming the coating film is simplified and the power module is inexpensive. A substrate can be provided.
  • FIG. 2A shows a DCB substrate 21a preparation step of the method for manufacturing the power module substrate 10a according to the first embodiment.
  • the DCB substrate 21a has a plate thickness of 0.3 mm on one main surface of a ceramic substrate 11 made of alumina (Al 2 O 3 ) containing zirconia (ZrO 2 ) having a size of 50 mm ⁇ 60 mm and a thickness of 0.32 mm.
  • a plurality of metal copper plates 12 made of oxygen-free copper, and a single solid metal copper plate 12a made of oxygen-free copper having a thickness of 0.3 mm and having the same area as the main surface are joined to the other main surface.
  • This bonding was performed by a direct bonding method in which a liquid phase of copper oxide was formed on the surfaces of the metal copper plates 12 and 12a by heating at a maximum temperature of 1068 to 1083 ° C. in a nitrogen atmosphere containing 1 to 10 ppm oxygen.
  • the size and thickness of the ceramic substrate 11 related to the DCB substrate 21a manufactured in the present embodiment and the thickness of the metal copper plates 12 and 12a are merely examples, and the specifications can be changed as appropriate depending on the application.
  • the coating film 19 made of silver plating is formed on the entire surface of the metal copper plates 12 and 12a of the DCB substrate 21a.
  • the normal plating process is completed so far.
  • the coating film 19 made of silver plating is formed only on the required portion, and further additional steps described below are required.
  • the obtained DCB substrate 21b has a thickness of about 0.1 ⁇ m to 4 ⁇ m on the entire surface of the metal copper plates 12 and 12a by substitutional or reduction type electroless silver plating treatment.
  • a coating film 19 is formed.
  • an electrolytic silver plating process is additionally performed on the electroless plating film.
  • Example 1 (e) with a silver plating film thickness of 20 ⁇ m was prepared.
  • the thickness of these silver plating films is an average value of values obtained by measurement at five locations. This measurement was performed by fluorescent X-ray method.
  • a portion to be a silver plating film forming region of a desired metal copper plate corresponding to an electronic component mounting portion such as a power semiconductor element or a capacitor is formed as an opening, and the bonding wire A screen printing mask (not shown) with the other part including the part to which the end part is connected closed.
  • FIG. 2C shows a resist film forming process, in which a liquid resist paste is printed by a screen printing method on a DCB substrate 21b created in the previous process by a screen printing method to obtain a desired metal.
  • a liquid resist printing film was formed on a portion to be a silver plating film forming region on the surface of the copper plate.
  • the liquid resist print film is cured under appropriate heating conditions to form a resist film 22 at a desired portion on the surface of the metal copper plate.
  • the coating film 19 is formed not only on the main surface of the metal copper plate 12 but also on the side surface. Further, FIG.
  • FIG. 2D shows an etching process, and the silver is left exposed without forming the resist film 22 by the silver etching process on the DCB substrate 21c on which the resist film 22 is formed.
  • the coating film 19 made of a plating film was removed to prepare a DCB substrate 21d. Therefore, in this step, the coating film 19 made of the silver plating film on the side surface of the metal copper plate 12 is also removed. Finally, the resist film 22 was removed with an alkaline stripping solution to complete a power module substrate 10a as shown in FIG.
  • a coating film 19 made of a silver plating film is locally formed on the surface of a desired metal copper plate 12.
  • This forming portion corresponds to an electronic component mounting portion, and the electronic component is bonded using a bonding material that can be bonded by a sintered body of silver particles.
  • This bonding material is a silver paste that provides strong bonding at a temperature of 300 ° C. or lower, which is lower than the upper limit temperature of operation of the electronic component.
  • This silver paste is formed on the surface of the coating film 19 to be an electronic component mounting portion by a screen printing method so as to have a thickness of about 15 ⁇ m and the same or slightly smaller area as the coating film 19, and about 120 ° C. in the atmosphere.
  • this power module substrate 10a is put in a pressure chamber and at 230 ° C. and 10 MPa in an air atmosphere. The mixture was left under heating and pressure for 2 minutes. As a result, a sintered body of silver particles was formed, and the electronic component could be bonded onto the coating film.
  • thermocompression bonding is a method in which ultrasonic welding is applied to wire bonding and friction welding is applied while a certain load is applied to the bonding wire.
  • Example 1 (a)-(e) a DCB substrate in which a coating film that is a silver plating film was not formed on the surface of the metal copper plate was prepared (this DCB substrate is a DCB of FIG. 2A). The same as the substrate 21a).
  • the power semiconductor element was bonded directly onto the metal copper plate with the silver paste bonding material used in Examples 1 (a) to (e).
  • Example 1 (a)-(e) a comparative example in which an aluminum bonding wire having a diameter of 0.3 mm was connected by thermocompression bonding to the bonding wire connecting portion on the surface of the metal copper plate and the power semiconductor element. 1 was produced.
  • a DCB substrate in which a coating film that is a silver plating film was not formed on the surface of the metal copper plate was prepared (this DCB substrate is the same as the DCB substrate 21a in FIG. 2A).
  • a power semiconductor element was bonded to the surface of the metal copper plate of the DCB substrate using a conventional Pb—Sn solder bonding material.
  • an aluminum bonding wire having a diameter of 0.3 mm was connected to the bonding wire connecting portion on the surface of the metal copper plate and the power semiconductor element by thermocompression bonding. This was designated as Comparative Example 2.
  • a DCB substrate was prepared in which a coating film which is a silver plating film was provided on the entire surface of the metal copper plate (this DCB substrate is the same as the DCB substrate 21b in FIG. 2).
  • a power semiconductor element was bonded onto the metal copper plate of the DCB substrate with the silver paste bonding material used in Examples 1 (a) to (e).
  • the bonding wire connecting portion and the power semiconductor element on the surface of the metal copper plate provided with the coating film which is a silver plating film made of 0.3 mm diameter aluminum bonding wire, Each was connected by thermocompression bonding.
  • Comparative Example 3 the thickness of the silver plating film (coating film) in the comparative example 3 was set to 2 ⁇ m, which is the same as that of the example 1 (c).
  • Table 1 summarizes the evaluation results of Examples 1 (a) to (e) and Comparative Example 1-3.
  • the bonding material made of the silver paste used in Examples 1 (a) to (e) and Comparative Examples 1 and 3 has a thermal conductivity of 150 W / mK, and the heat of the bonding material made of conventional Pb—Sn solder. Since it is three times higher than the conductivity of 50 W / mK, the thermal resistance at the junction of the power semiconductor element that generates high heat can be lowered as compared with the conventional case.
  • Comparative Example 2 in which the power semiconductor element is bonded using a conventional bonding material made of Pb—Sn solder has limitations in reducing the thermal resistance and increasing the mounting reliability in the bonding portion of the power semiconductor element.
  • a bonding material made of a silver paste having a high thermal conductivity as in Comparative Examples 1 and 3 is used.
  • a power module in which a power semiconductor element is mounted on a power module substrate with a bonding material is subjected to a furnace test at 235 ° C. for 9 minutes in a hydrogen reducing atmosphere in order to confirm the bonding reliability of the power semiconductor element. Yes.
  • Example 1 (a)-(e) in which a power semiconductor element was joined with a joining material made of silver paste by providing a coating film made of a silver plating film on the surface of a metal copper plate, the power semiconductor element The occurrence of peeling could not be confirmed.
  • Comparative Example 1 in which the power semiconductor element was bonded with a bonding material made of silver paste without providing a coating film that is a silver plating film on the surface of the metal copper plate, peeling of the power semiconductor element occurred. This peeling occurred at the interface between the bonding material made of silver paste and the metal copper plate. Also in Comparative Example 2 in which the power semiconductor element was bonded using the bonding material made of Pb-Sn solder, the bonding material made of Pb-Sn solder and the metal copper plate were not provided with a coating film made of a silver plating film on the surface of the metal copper plate. No peeling of the power semiconductor element due to peeling at the interface occurred.
  • the solid copper plate on which the power semiconductor element of the power module substrate is not mounted is bonded to a copper heat sink having a thickness of 3 mm with Pb-Sn solder, and the copper heat sink is water-cooled using a bonding material such as heat radiation grease. It was attached to a heat sink and was configured to efficiently dissipate heat generated by the power semiconductor element.
  • a coating film made of a silver plating film was provided on the surface of the metal copper plate, and the power semiconductor element was joined with a joining material made of silver paste. Durability capable of 150,000 cycles or more.
  • Comparative Example 1 in which the power semiconductor element was bonded with a bonding material made of silver paste without providing a coating film that is a silver plating film on the surface of the metal copper plate, the power semiconductor element peeled off in about 40,000 cycles, and the long-term There was a problem with reliability. This peeling occurred at the interface between the bonding material made of silver paste and the metal copper plate.
  • Comparative Example 2 in which a power semiconductor element was bonded with a bonding material made of Pb—Sn solder without providing a silver plating film coating film on the surface of the metal copper plate. As a result, cracks were generated in the bonding material layer made of Pb—Sn solder to cause peeling of the power semiconductor element, and there was a problem in long-term reliability.
  • Example 1 (a)-(e) Comparative Example 1 and Comparative Example 2
  • both ends of the bonding wire were directly bridged by thermocompression bonding onto the surface of a metal copper plate without a coating film that is a silver plating film. Connected to.
  • Comparative Example 3 both ends of the bonding wire were connected to the surface of the coating film, which is a silver plating film, in a bridge shape by thermocompression bonding.
  • the end of the bonding wire was not peeled off from the metal copper plate, and when pulled with a force of about 500 grams, the central portion of the bonding wire was broken and cut. This indicates that the bonding strength between the end portion of the bonding wire and the surface of the metal copper plate is higher than the strength of the bonding wire itself, and it was confirmed that the connection reliability of the bonding wire is high.
  • the surface of the part to which the end of the bonding wire is connected is not formed with a coating film made of high-purity silver or gold, and at least on the surface of the part to which the power semiconductor element is joined.
  • Example 1 (a)-(e) without a coating was a power module substrate that had both the bonding reliability of the power semiconductor element and the connection reliability of the bonding wire.
  • the coating film is a thin film of about 0.1 ⁇ m to 4 ⁇ m formed only by electroless silver plating, and therefore can be manufactured at a low material cost.
  • the bonding reliability of the power semiconductor element is higher than that of the conventional Pb—Sn solder junction (Comparative Example 2), and the bonding reliability of the bonding wire equivalent to that of the conventional Pb—Sn solder junction (Comparative Example 2). It is a power module substrate having both.
  • Example 1 (a) the bonding reliability of the power semiconductor element at a higher level than that of the conventional Pb—Sn solder bonding (Comparative Example 2), even with a very thin film having a coating film thickness of about 0.1 ⁇ m, Therefore, the power module substrate can be manufactured at an extremely low material cost because it has both the connection reliability of the bonding wire equivalent to that of the Pb—Sn solder joint (Comparative Example 2).
  • the thickness of the coating film that can be formed only by electroless silver plating is up to about 4 ⁇ m, in order to form a thick coating film of about 20 ⁇ m as in Example 1 (e), electrolysis is performed in addition to electroless silver plating. Silver plating is required.
  • a power module substrate such as a DCB substrate
  • a circuit copper plate on which a power semiconductor element is mounted is composed of a plurality of metal copper plates, and there is no electrical connection between the metal copper plates. For this reason, in order to perform electrolytic silver plating treatment on the surface of each metal copper plate, it is necessary to connect power supply terminals for energization to all metal copper plates in advance, and remove the power supply terminals for energization after electrolytic silver plating treatment. There is a need.
  • Such power module substrates that require electrolytic silver plating with a large number of work steps are applied only to applications that require particularly high reliability.
  • a DCB substrate having a zirconia (ZrO 2 ) -containing alumina (Al 2 O 3 ) ceramic substrate bonded to both sides was used, but no zirconia was contained.
  • a ceramic substrate made of alumina, aluminum nitride (AlN), aluminum nitride containing boron nitride (BN), silicon nitride (Si 3 N 4 ), or the like may be used in which metal copper plates are bonded to both surfaces.
  • the material of the copper plate is preferably oxygen-free copper, but may be tough pitch copper containing a trace amount of oxygen or an alloy containing copper as a main component. Further, the solid metal copper plate 12a shown in FIGS.
  • the power module substrate 10 is used, for example, by attaching a copper heat sink having a thickness of about 3 mm to the other main surface of the ceramic substrate 11 without a solid metal copper plate 12a via heat dissipation grease.
  • the plating is described using silver plating, the same technical effect can be obtained even if gold plating is used unless cost is important.
  • the processing related to gold plating can be performed in the same manner as the processing related to silver plating, and gold vapor deposition or gold sputtering can be applied as a method for forming a coating film.
  • Gold is a more expensive metal than silver, but it does not react with sulfur in the air to form silver sulfide like silver, so it is advantageous over silver in maintaining quality (wetting to silver particles) .
  • a gold paste containing gold particles may be used instead of the silver paste containing silver particles as a bonding material.
  • FIG. 3A shows a DCB substrate 23a preparation step of the method for manufacturing a power module substrate according to the second embodiment.
  • the DCB substrate 23a is made of oxygen-free copper having a plate thickness of 0.3 mm on one main surface of the ceramic substrate 11 made of alumina containing zirconia having a size of 50 mm ⁇ 60 mm and a thickness of 0.32 mm as in the first embodiment.
  • a plurality of metal copper plates 12 and a single solid metal copper plate 12a made of oxygen-free copper having a thickness of 0.3 mm are joined to the other main surface.
  • FIG. 3 (B) shows a dry film resist pasting step, in which DCB in a state where the dry film resist 24 is pasted on the surface of the metal copper plates 12, 12a of the DCB substrate 23a obtained in the previous DCB substrate preparatory step.
  • substrate 23b is shown. Accordingly, the gap 25 is formed by covering the gap between the metal copper plates 12 formed in an island shape with the dry film resist 24.
  • FIG. 3C shows a photomask process in which a photomask 26 is brought into contact with the attached dry film resist 24.
  • the portion that becomes the silver plating film forming region corresponds to a mounting portion of the electronic component 17 such as the power semiconductor element 15 or the capacitor 16.
  • 3D shows an exposure process for irradiating the dry film resist 24 with light. Therefore, the dry film resist 24 outside the range where the photomask 26 is in contact is exposed to become an exposed dry film resist 24a, and a DCB substrate 23d is formed.
  • An example of the dry film resist 24 is a photoresist, and ultraviolet light is used as an exposure light source.
  • FIG. 3E shows a coating film process in which a coating film 19 made of silver plating is formed on the portion where the dry film resist 24 is removed.
  • the DCB substrate 23f is formed by forming the coating film 19 such that the thickness of the silver plating film is about 0.1 ⁇ m to 4 ⁇ m by substitutional or reduction type electroless silver plating. Similarly to Example 1, when the silver plating film thickness is further increased, electrolytic silver plating is additionally performed.
  • the coating film 19 is formed not only on the main surface of the metal copper plate 12 but also on the side surface. Thereafter, as shown in FIG. 3G, a power module substrate 10b is completed through a resist stripping process in which the exposed dry film resist 24a remaining on the DCB substrate 23f is removed with an alkaline stripping solution.
  • the coating film 19 made of electroless silver plating is processed only in a necessary portion before the resist is peeled off. Compared to, the consumption of silver plating solution is small. Moreover, in Example 1, the electroless silver plating film processed to an unnecessary location must be processed by etching, and the etching is insufficient and a portion of the silver plating coating remains on the surface of the metal copper plate 12 May not exist, and it cannot be said that this does not reduce the bonding property of the bonding wire 18. Specifically, it is a possibility of an event such as interface peeling of the bonding wire shown in Comparative Example 3 of Table 1.
  • Example 2 the coating film 19 is originally processed only in a necessary portion, so that the etching residue of the silver plating film remains on the surface of the metal copper plate 12 of the power module substrate 10b and bonding caused thereby.
  • the inventors can detect the silver which exists in the copper plate surface in which the coating film 19 in the metal copper plate 12 is not provided by Auger electron spectroscopy using the power module board
  • Example 2 when the dry film resist 24 is pasted so as to completely cover the side surface of the metal copper plate 12 including the gap 25 in the dry film resist pasting step of FIG. The silver plating film 19 is not formed on the side surface.
  • the silver plating film 19 is formed on the side surface of the metal copper plate 12 as shown in FIGS. 3F and 3G depends on how the dry film resist 24 is attached to the main surface of the metal copper plate 12. The However, since the side surface of the metal copper plate 12 does not affect the bondability of the bonding wire 18, whether or not the silver plating film 19 is formed there is no particular problem in quality. Furthermore, in Example 2, since the pattern of the coating film 19 substantially follows the pattern of the photomask 26, the positional accuracy of the pattern of the coating film 19 with respect to the edge of the metal copper plate 12 can be increased. Specifically, the error of the positional accuracy of the coating film 19 with respect to the edge of the metal copper plate 12 can be ⁇ 0.1 mm or less.
  • the edge of the printed pattern made of a liquid resist print film is blurred and the linearity is deteriorated.
  • the position accuracy of the pattern of the coating film 19 with respect to the 12 edges is low, for example, about ⁇ 0.3 mm or less. Therefore, the exposed dry film resist 24a in Example 2 has higher resist pattern formation accuracy than the resist film 22 in Example 1, and the coating film 19 can be accurately positioned at least with respect to the edge of the metal copper plate 12. .
  • a power module substrate 10b according to Example 2 having the same dimensions as those of Examples 1 (a) to (e) shown in Table 1 was produced and tested in the same manner.
  • the hydrogen atmosphere furnace test, the power cycle test after mounting the power semiconductor element, and the bonding wire tensile test shown in Table 1 are equivalent to those in Examples 1 (a) to (e) even by two different manufacturing methods. Evaluation results were obtained.
  • the power module substrate of the present invention is optimal for fields that require high mounting reliability and heat dissipation when mounting high-power power semiconductor elements and electronic components such as capacitors on metal copper plates of circuit copper plates.
  • it can be used for mounting an on-vehicle electronic component or an electronic component for wind power generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Wire Bonding (AREA)
  • Die Bonding (AREA)

Abstract

 電子部品及びボンディングワイヤの金属銅板に対する実装信頼性を大幅に向上させることができると共に、パワーモジュールとしたときの熱抵抗を低減させることができる安価なパワーモジュール用基板を提供する。 単体又は複数個の金属銅板(12)からなる回路銅板(13)がセラミック基板(11)の一方の主面に接合され、少なくとも1の金属銅板(12)上にパワー半導体素子(15)を含む電子部品(17)が接合されると共に、電子部品(17)のうちのパワー半導体素子(15)と金属銅板(12)がボンディングワイヤ(18)で接続されて実装されるパワーモジュール用基板(10,10a,10b)において、金属銅板(12)の少なくともパワー半導体素子(15)が接合される部位の表面に銀又は金を主成分とするコーティング被膜(19)を有すると共に、金属銅板(12)のボンディングワイヤ(18)の端部が接続される部位の表面にコーティング被膜(19)を有さない。

Description

パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール
 本発明は、単体又は複数個の金属銅板からなる回路銅板がセラミック基板の一方の主面に接合され、それぞれの金属銅板上にパワー半導体素子や、コンデンサ等の電子部品を接合し、パワー半導体素子と金属銅板とをボンディングワイヤで接続して実装するパワーモジュール用基板の実装信頼性向上に関すると共に、そのパワーモジュール用基板の製造方法とそのパワーモジュール用基板を用いたパワーモジュールに関する。
 セラミック基板の両主面のそれぞれに金属銅板を接合したパワーモジュール用基板としては、一方の主面に単体又は複数個の金属銅板を島状に接合してなる回路銅板と、他方の主面に略主面全面からなる単体のベタ状の金属銅板を接合してなるベタ銅板を有するDCB(Direct Copper Bonding)基板がよく知られている。このDCB基板であるパワーモジュール用基板は、セラミック基板の一方の主面に単体又は複数個の金属銅板を接合してなる回路銅板の所定の金属銅板上にパワー半導体素子や、コンデンサ等の電子部品が搭載されるようになっている。
 セラミック基板と金属銅板の接合方法には、直接接合法と、活性金属ろう材接合法とがあるが、アルミナセラミック基板と金属銅板の接合では直接接合法が広く使用されている。パワー半導体素子や、コンデンサ等の電子部品は、通常、回路銅板の金属銅板上にPb-Snハンダや、Pbフリーハンダによって接合されるようになっていた。そして、接合された電子部品のうちパワー半導体素子は、金属銅板との間でアルミニウム線等のボンディングワイヤにより電気的に接続されている。
 パワー半導体素子等の電子部品が実装されたパワーモジュール用基板は、インバータや、コンバータ等のパワー制御機器に組み込まれるパワーモジュールとして使用されている。このようなパワーモジュールでは、パワー半導体素子からの発熱量が大きく、動作温度も高温となる。そのため、パワーモジュール用基板には、高い放熱性と、パワー半導体素子及びボンディングワイヤの金属銅板に対する接合信頼性を確保することが要求されている。
 パワー半導体素子や、コンデンサ等の電子部品をPb-Snハンダや、Pbフリーハンダによって金属銅板に接合する従来技術では、Pb-Snハンダや、Pbフリーハンダの高温における接合信頼性が低いため、150℃以上の動作温度域でのパワー半導体素子と金属銅板間の接合信頼性の不足を解消することが難しくなっている。
 また、Pb-Snハンダ材や、Pbフリーハンダ材の熱伝導率は、金属銅板に比べて大幅に低いため電子部品に対する放熱性能が低下し、パワーモジュールとしての高出力の動作が困難となっている。このほかの接合材には、熱伝導性に優れた銀ろう材があるが、その接合温度は高温の700℃以上であるため接合部の残留応力が高くなり、接合工程における冷却過程でパワー半導体素子やコンデンサ等の電子部品にクラックが発生するなどの不具合が生じるため、パワー半導体素子や、コンデンサ等の電子部品の実装に使用することが困難であった。
 そこで、最近では、電子部品の金属銅板への接合に、銀粒子の焼結体で接合できる接合材が用いられ、この接合材を電子部品と金属銅板との間に設け加熱下で加圧することで銀粒子の焼結体を形成し、電子部品と金属銅板を接合させる技術が開発されている。このような接合材に用いられる銀粒子の焼結は銀のバルクの融点(約960℃)よりもはるかに低い温度で進行するので、接合部の残留応力を低くできる。その一方、この銀の焼結体の耐熱温度はバルクの融点程度である。そのため低温接合と高温使用を両立できる。また銀の焼結体であるため、Pb-Snハンダ材や、Pbフリーハンダ材よりも熱伝導率が高い。
 従来のパワーモジュール用基板には、金属銅板へのパワー半導体素子の良好な接合方法として、接合材に銀ナノペーストを使用し、加熱して接合することが提案されている。この銀ナノペーストは前述の低温接合と高温使用を両立できる仕様となっている。また、この接合材はアルミニウム板へのパワー半導体素子の接合にも適用できるが、その場合はアルミニウム表面に形成される強固な酸化膜(アルミナ)が接合を阻害するため、銀めっきなどの被膜をアルミニウム表面に設けて銀ナノペーストの濡れ性を確保する必要がある(例えば、特許文献1参照)。
 また、従来のパワーモジュール用基板には、パワー半導体素子が確実に接合され、熱サイクル及びパワーサイクル信頼性に優れたパワーモジュールを提供できる技術として、アルミニウム板の表面にガラス成分を含有するガラス含有銀ペーストの焼成体からなる第1焼成層を設け、さらに、この第1焼成層の表面に酸化銀を還元した銀の焼成体からなる第2焼成層を形成することが提案されている。パワー半導体素子は第2焼成層上に搭載される。前述したアルミニウム表面に形成される強固な酸化膜(アルミナ)については、第1焼成層に含まれるガラス成分によって除去されるため、第1焼成層とアルミニウム表面は良好に接合される。この接合技術は金属銅板とパワー半導体素子の接合にも適用できる(例えば、特許文献2参照)。
特開2006-202938号公報 特開2013-12706号公報
 しかしながら、前述したような従来のパワーモジュール用基板は、次のような課題がある。
 特許文献1に記載される従来のパワーモジュール用基板では、接合材に銀ナノペーストを使用し、加熱して金属銅板に電子部品を接合するが、車載用途などの過酷な使用条件のもとでは、銀ナノペーストを加熱処理することで形成される接合層と金属銅板との接合力が不足してしまうおそれがあった。
 アルミニウム板の場合と同様に金属銅板表面に銀めっき被膜を前述のコーティング被膜として設けることで接合層と金属銅板との接合力が高まる可能性も考えられるが、このような銀めっき被膜は金属銅板の表面全体に設けられる(図2-図5参照)。この場合、電子部品と金属銅板との間を電気的導通状態にしようとするときのアルミニウム線や銅線からなるボンディングワイヤ端部の銀めっき被膜への接続信頼性が問題となる可能性があるが、この点について特許文献1では何ら検討されていなかった。
 また、特許文献2に記載される従来のパワーモジュール用基板は、ガラス含有銀ペーストの焼成体からなる第1焼成層と、この表面に設けられる酸化銀を還元した銀の焼成体からなる第2焼成層によって、金属銅板にパワー半導体素子を確実に接合させることができるものの、ガラス成分を含むため、第1焼成層の熱抵抗、電気抵抗が高くなり、高出力下でパワー半導体素子の正確な動作が要求される車載用等におけるパワーモジュールでは十分な放熱性や実装信頼性が得られない。
 本発明は、かかる事情を鑑みてなされたものであって、電子部品及びボンディングワイヤの金属銅板に対する実装信頼性を大幅に向上させることができると共に、パワーモジュールとしたときの熱抵抗を低減させることができる安価なパワーモジュール用基板とその製造方法及びそのパワーモジュール用基板を用いたパワーモジュールを提供することを目的とする。
 前記目的に沿う本発明に係る請求項1に記載のパワーモジュール用基板は、単体又は複数個の金属銅板からなる回路銅板がセラミック基板の一方の主面に接合され、少なくとも1の金属銅板上にパワー半導体素子を含む電子部品が接合されると共に、前記電子部品のうちのパワー半導体素子と前記金属銅板がボンディングワイヤで接続されて実装されるパワーモジュール用基板において、前記金属銅板の少なくとも前記パワー半導体素子が接合される部位の表面に銀又は金を主成分とするコーティング被膜を有すると共に、前記金属銅板の前記ボンディングワイヤの端部が接続される部位の表面に前記コーティング被膜を有さないことを特徴とするものである。
 すなわち、下地被膜として予め金属銅板の少なくともパワー半導体素子が接合される領域であって、かつ、ボンディングワイヤの端部が接続されない領域に銀又は金を主成分とするコーティング被膜を施しておくものである。なお、金属銅板表面の酸化物(酸化銅)はアルミニウム板の場合とは異なり、銀粒子の焼結体からなる接合材の使用に対し、一般に重大な接合阻害要因とならない。しかしながら、本発明ではパワー半導体素子と金属銅板の接合信頼性を従来よりも高めるために金属銅板表面に銀又は金を主成分とするコーティング被膜を施した。
 なお、本願明細書及び特許請求の範囲においては、「金属銅板の表面に設ける」と「金属銅板の上に設ける」は明確に区別して用いている。前者は金属銅板の面に直接設ける概念であり、後者は金属銅板との間に膜や層を介在させて設ける概念である。
 ここで、請求項2に記載のパワーモジュール用基板は、請求項1記載のパワーモジュール用基板において、前記コーティング被膜は膜厚が0.1μmから20μmまでの範囲からなることを特徴とするものである。
 また、請求項3に記載のパワーモジュール用基板は、請求項1又は請求項2に記載のパワーモジュール用基板において、前記コーティング被膜は銀めっき被膜又は金めっき被膜からなることを特徴とするものである。
 銀めっき被膜又は金めっき被膜によるコーティング被膜では、銀ペーストに比較して、(1)熱抵抗(膜厚を熱伝導率で除した値)が低い、(2)残留熱応力が低い、(3)薄くても均一な被膜を形成することができるという優れた特徴を備えている。特許文献2で用いられたような仕様の銀ペーストは、高温で焼き付けされることから残留熱応力が高くなり、また、焼結体となることからボイドを含み放熱を阻害するためである。特許文献2のように銀ペーストがガラス成分を含む場合は、このガラス成分も放熱を阻害するため更に熱抵抗が大きくなってしまう。めっき被膜の膜厚は請求項2に記載されている膜厚と同等であり、請求項2を引用することに特に矛盾はない。
 以上のことから、銀めっき被膜と金めっき被膜は、本願発明におけるコーティング被膜としては最適な被膜ということができる。
 しかしながら、発明者らは金属銅板表面に設けられるこれらのめっき被膜からなるコーティング被膜が必ずしもアルミニウム線や銅線からなるボンディングワイヤとの接続強度においては十分ではないことを発明過程の試験により発見し、ボンディングワイヤが接続される部位については、めっき被膜からなるコーティング被膜が存在しないことが接続強度上重要であることを見出した。
 一方、銀ペーストは特許文献2にも開示されるとおり、スクリーン印刷法、オフセット印刷法などの印刷法を用いて塗布されるため、その領域を限定することが容易であるものの、めっき法はめっき液の中に被めっき物を浸漬する処理であるためにその領域を限定することは容易ではない。従って特に目的がない場合、めっき被膜は金属表面の全体に設けられる。
 そこで発明者らは、請求項7及び請求項8に記載するパワーモジュール用基板製造方法を発明することで、コーティング被膜を、下地被膜として予め金属銅板の少なくともパワー半導体素子が接合される領域であって、かつ、ボンディングワイヤの端部が接続されない領域に施すことに成功したのである。
 更に、請求項4に記載のパワーモジュール用基板は、請求項1乃至請求項3のいずれか1項に記載のパワーモジュール用基板において、前記コーティング被膜は無電解銀めっき被膜又は無電解金めっき被膜からなることを特徴とするものである。
請求項5に記載のパワーモジュール用基板は、請求項1乃至請求項4のいずれか1項に記載のパワーモジュール用基板において、前記金属銅板の縁に対する前記コーティング被膜のパターンの位置の誤差は±0.1mm以下であり、前記金属銅板表面にコーティング被膜以外の銀又は金が存在しないことを特徴とするものである。
 請求項6に記載のパワーモジュールは、請求項1乃至請求項5のいずれか1項に記載のパワーモジュール用基板の前記金属銅板表面に設けられる前記コーティング被膜上に、パワー半導体素子を含む電子部品のうち少なくともパワー半導体素子が銀粒子の焼結体を介して接合され、前記パワー半導体素子と前記金属銅板とを接続するボンディングワイヤの前記金属銅板側の端部は、前記コーティング被膜を介さずに前記金属銅板表面に、直接、接続されることを特徴とするものである。
 請求項7に記載のパワーモジュール用基板製造方法は、セラミック基板の一方の主面に接合される単体又は複数個の金属銅板からなる回路銅板を備えるパワーモジュール用基板に対し、前記金属銅板の表面に銀めっき被膜又は金めっき被膜を形成させるコーティング被膜工程と、このコーティング被膜工程で形成されたコーティング被膜表面にスクリーン印刷マスクを介して液状レジストペーストをスクリーン印刷法で印刷して、前記金属銅板表面の銀めっき被膜形成領域又は金めっき被膜形成領域となる部分にレジスト被膜を形成させるレジスト被膜形成工程と、このレジスト被膜形成工程で形成されたレジスト被膜形成部以外の露出したコーティング被膜をエッチング処理で除去するエッチング処理工程と、前記レジスト被膜形成工程で形成されたレジスト被膜形成部のレジスト被膜を剥離させるレジスト被膜剥離工程と、を有することを特徴とするものである。
 請求項8に記載のパワーモジュール用基板製造方法は、セラミック基板の一方の主面に接合される単体又は複数個の金属銅板からなる回路銅板を備えるパワーモジュール用基板に対し、前記金属銅板の表面にドライフィルムレジストを貼付するドライフィルムレジスト貼付工程と、このドライフィルムレジスト貼付工程で貼付されたドライフィルムレジスト表面にフォトマスクを当接させるフォトマスク工程と、このフォトマスク工程で当接されたフォトマスクを介して前記ドライフィルムレジストに対して光を照射する露光工程と、前記フォトマスクを取り外して、前記露光工程で光の照射によって現像液に対する溶解性が低下した露光済みドライフィルムレジストを残して、前記フォトマスクでマスクされていた箇所のドライフィルムレジストを除去する現像工程と、この現像工程において前記ドライフィルムレジストが除去された箇所に対して、銀めっき被膜又は金めっき被膜から成るコーティング被膜を形成させるコーティング被膜工程と、前記現像工程で残存した露光済みドライフィルムレジストを剥離させるレジスト被膜剥離工程と、を有することを特徴とするものである。
 上記のパワーモジュール用基板は、金属銅板の電子部品が接合される部位の表面に銀又は金を主成分とするコーティング被膜を有している。そのため金属銅板表面に銅との結合強度の高い銀又は金を主成分とするコーティング被膜を設けることで、このコーティング被膜と濡れ性のよい銀粒子の焼結体で接合できる接合材を用いて、電子部品と金属銅板を電子部品の動作温度以下の低温(300℃以下)で強固に接合できる。また、パワーモジュール用基板は、金属銅板のボンディングワイヤの端部が接続される部位の表面にコーティング被膜を有さないので、金属銅板と電子部品を電気的な接続状態とするためのアルミニウム製や銅製等からなるボンディングワイヤの端部を、金属銅板表面に対し熱圧着で容易に接続できて接続信頼性を高めることができる。更に、銀又は金を主成分とするコーティング被膜は部分的にしか設けられないので、安価なパワーモジュール用基板を提供することができる。
 特に、上記のパワーモジュール用基板では、銀又は金を主成分とするコーティング被膜の膜厚が0.1μmから20μmの範囲からなる。このようなコーティング被膜によって、これと濡れ性のよい銀粒子の焼結体で接合できる接合材を用いて、電子部品と金属銅板を電子部品の動作温度以下の低温(300℃以下)で強固に接合できる。
 接合温度は銀粒子の焼結温度であることから接合温度に対する下地の影響はほとんどなく、金属銅板表面に銀又は金を主成分とするコーティング被膜がなくとも電子部品を低温で接合すること自体は可能である。しかしながら、金属銅板に対する銀粒子の焼結体で接合できる接合材の濡れ性よりも、コーティング被膜に対する銀粒子の焼結体で接合できる接合材の濡れ性の方がよいため、電子部品を金属銅板上に強固に接合できるのである。
 このコーティング被膜は、膜厚が0.1μmを下まわる場合には、銀粒子の焼結体で接合できる接合材の濡れ性が低下し、接合強度が低くなる。また、下地となるコーティング被膜が薄く、コーティング被膜の変形によって接合部の残留熱応力を緩和する効果が弱い場合には、膜厚をペースト印刷と同程度となる20μmを超えない程度まで厚くしてもよい。しかしながら、コーティング被膜は、膜厚が20μmを超える場合には、銀の使用量が増加しすぎて安価なパワーモジュール用基板を提供することが難しくなる。
 更に、コーティング被膜の膜厚は、比較的薄いコーティング被膜の膜厚の場合には、スパッタリング手法、蒸着手法、又は無電解めっき手法によるコーティング被膜の形成が可能であり、比較的厚いコーティング被膜の膜厚の場合には、電解めっき手法によって容易にコーティング被膜の形成が可能である。このようなコーティング被膜の膜厚が0.1μmから20μmの範囲の場合には、電子部品及びボンディングワイヤの金属銅板に対する実装信頼性を大幅に向上させることができると共に、パワーモジュールとしたときの熱抵抗を低減させることができる安価なパワーモジュール用基板を提供することができる。
 また、特に、上記のパワーモジュール用基板におけるコーティング被膜は、金属銅板表面の所望位置に部分的に設けられる部分銀めっき被膜又は部分金めっき被膜からなる。このため電解及び/又は無電解めっき手法と、所望のパターンのレジスト膜を形成及び剥離する手法を用いて、ボンディングワイヤが接続される金属銅板表面の所望位置には部分銀めっき被膜又は部分金めっき被膜を設けることなく、電子部品が搭載される金属銅板表面の所望位置に的確に部分銀めっき被膜又は部分金めっき被膜を設けることができる。この結果、電子部品及びボンディングワイヤの金属銅板に対する実装信頼性の向上とパワーモジュールとしたときの熱抵抗の低減化ができる安価なパワーモジュール用基板を提供することができる。
 本願発明では、金属銅板の表面に設ける下地被膜として高純度の銀や金からなるコーティング被膜を採用し、ガラスや金属酸化物などの添加物を含む銀ペースト等の金属ペーストを用いないので、緻密でありながら薄膜化が可能であり、かつ熱抵抗も残留熱応力も小さくすることができたのである。しかも、前述の通り、接合を阻害するほどの強固な酸化膜を表面に有さないためコーティング被膜は不要であると従来考えられていた金属銅板に対して上記のようなコーティング被膜を設けた。このようなコーティング被膜は金属銅板表面との結合が強固であり、また、パワー半導体素子を接合するための接合材である銀粒子の焼結体に対する濡れ性も優れている。そのため、コーティング被膜を下地被膜として用いることにより、パワー半導体素子と金属銅板の接合信頼性を従来よりも高めることができたのである。
 しかしながら、前述のとおり発明者らは、これらの優位性を認めながらもパワー半導体素子と金属銅板を電気的に接続するためのボンディングワイヤに対しては、この高純度の銀や金を主成分とするコーティング被膜が必ずしも有効でないことを発明の創作過程において見出した。具体的には、発明の実施の形態を説明する際に詳細に説明するが、金属銅板の全面に無電解銀めっきを施した表面に接合されたボンディングワイヤについては、引っ張り試験で界面剥がれを起こしてしまうという不具合が生じた。
 一方、そもそも高純度の銀や金からなるコーティング被膜は、銀めっきや金めっきに代表されるとおり、液体のめっき液を用いることから、回路銅板の表面全面にめっきを施すことが通常であり、回路銅板の表面に対し部分めっきを施すことはこれまで実施されていない技術であった。
 そこで、本願の発明者は鋭意研究を重ねた結果、特にボンディングワイヤの端部が接続される部位の金属銅板表面においては、高純度の銀や金を主成分とするコーティング被膜を形成させず、少なくともパワー半導体素子が接合される部位の金属銅板表面にのみそのコーティング被膜を形成させることで、パワー半導体素子の接合を強固にすることとボンディングワイヤの接続を強固にすることを両立させることに成功したのである。
 更に、特に、上記のパワーモジュール用基板は、コーティング被膜を無電解銀めっき被膜又は無電解金めっき被膜から構成することができるので、電解銀めっき被膜を形成する場合のような給電用端子の金属銅板への接続が不用なため、工程が簡素化されて安価なパワーモジュール用基板を提供することができる。
(A)、(B)はそれぞれ本発明の実施の形態に係るパワーモジュール用基板の平面図、A-A’線縦断面図である。 (A)乃至(E)は、それぞれ本発明の実施例1に係るパワーモジュール用基板の製造方法を説明するための工程分解図である。 (A)乃至(G)は、それぞれ本発明の実施例2に係るパワーモジュール用基板の製造方法を説明するための工程分解図である。
 続いて、添付した図面を参照しつつ、本発明を具体化して実施するための形態について説明し、本発明の理解に供する。
 図1(A)、(B)に示すように、本発明の一実施の形態に係るパワーモジュール用基板10は、アルミナを主成分とするセラミック基板11の一方の主面にそれぞれ形状の異なる単体又は複数の個片金属銅板12を島状に接合してなる回路銅板13と、他方の主面に略主面全面からなる単体のベタ状金属銅板12aを接合して得られるベタ銅板14を有している。このパワーモジュール用基板10は、回路銅板13を構成する金属銅板12上にパワー半導体素子15や、コンデンサ16等の電子部品17が搭載される。更に、パワー半導体素子15と、金属銅板12との間は、アルミニウム線や、銅線からなるボンディングワイヤ18を用いて電気的に接続されるようになっている。このパワーモジュール用基板10には、アルミナを主成分とするセラミック基板11に金属銅板12,12aを直接接合法で接合したのが一般的であるが、セラミック基板11にジルコニア入りアルミナや、窒化アルミニウム、窒化珪素等を使用したものも適用可能である。また、金属銅板12,12aの接合方法は、直接接合法の他に活性金属ろう材接合法も適用可能である。
 上記のパワーモジュール用基板10は、回路銅板13を構成する金属銅板12の電子部品17が接合される部位の表面に銀又は金を主成分とするコーティング被膜19を有している。そして、このコーティング被膜19上には、接合材20を介して電子部品17が接合されるようになっている。この接合には、銀粒子の焼結体で接合できる接合材20が用いられ、この接合材20をコーティング被膜19表面に設けてから電子部品17を載置し、電子部品17の動作温度以下の低温(300℃以下)で電子部品17の上面を加圧することで銀粒子の焼結体を形成して接合させている。銀粒子のサイズについては、平均粒径が100nm以下のものが焼結性が高いため扱い易いが、平均粒径がミクロンオーダー(0.1~10μm)であっても電子部品17の動作温度以下で接合できるものであれば使用できる。
 銀又は金を主成分とするコーティング被膜19は金属銅板12の表面との結合強度が高い。さらに、このようなコーティング被膜19は銀粒子の焼結体で接合できる接合材20との濡れ性がよい。このためコーティング被膜19を設けずに金属銅板12の表面に接合材20を設ける場合に比べて、電子部品17を金属銅板12の上に強固に接合することができる。
 上記のパワーモジュール用基板10は、回路銅板13を構成する金属銅板12の電子部品17が接合される部位の表面に銀を主成分とするコーティング被膜19を有すると共に、この金属銅板12と同一、又は異なる金属銅板12のボンディングワイヤ18の端部が接続される部位の表面に銀を主成分とするコーティング被膜19を有していない。このパワーモジュール用基板10は、回路銅板13を構成する金属銅板12の表面に設けられる銀を主成分とするコーティング被膜19上に、パワー半導体素子15や、コンデンサ16等の電子部品17を高い接合信頼性で接合できると共に、銀を主成分とするコーティング被膜19を有さない金属銅板12表面に、アルミニウム線や、銅線からなるボンディングワイヤ18の端部を高い接続信頼性で接続でき、実装信頼性を向上できる。
 銀を主成分とするコーティング被膜19の形成には、銀めっき処理による方法が一般的であるが、中でも無電解銀めっき処理は、電解銀めっき処理では必要となる金属銅板12への給電用の端子の接続が不要なため適用しやすい。また、同一の膜厚であれば、電解めっき処理よりも無電解めっき処理の方が膜厚のバラツキが小さい。これは凸部への電流集中作用が無電解めっき処理には無いためである。しかしながら、無電解銀めっき処理は、得られるめっき厚が4μm程度と比較的薄いため、厚付けが必要な用途では別途電解銀めっき処理が必要となる。銀めっき処理以外の方法としては、銀スパッタリングや、銀蒸着によるコーティング被膜19の形成方法を適用することも可能である。これらの被膜形成方法で得られる膜厚も、無電解めっき処理と同等以下であり、厚付けが必要な用途では別途電解銀めっき処理が必要となる。
 上記のパワーモジュール用基板10は、コーティング被膜19の膜厚が0.1μmから20μmの範囲からなるのがよい。このパワーモジュール用基板10は、金属銅板12表面に0.1μmから20μmの範囲の銀を主成分とするコーティング被膜19を設けることで、これと濡れ性のよい銀粒子の焼結体で接合できる接合材20を用いて電子部品17を電子部品17の動作温度以下の低温で金属銅板12の上に強固に接合させることができる。
 なお、このコーティング被膜19は、膜厚が0.1μmを下まわる場合にはコーティング被膜19が形成されない部分が生じやすくなるため、銀粒子の焼結体で接合できる接合材20の濡れ性が低下し、電子部品17の接合強度が低くなる。また、コーティング被膜19は、膜厚が20μmを超える場合には、銀の使用量が増加しすぎて安価なパワーモジュール用基板10を提供することが難しくなる。
 上記のパワーモジュール用基板10は、コーティング被膜19がこの金属銅板12表面の所望位置に部分的に設けられる部分銀めっき被膜からなるのがよい。
 このパワーモジュール用基板10は、金属銅板12の表面に電解めっき手法、及び/又は無電解めっき手法と、所望のパターンのレジスト膜を形成及び剥離する手法とで、ボンディングワイヤ18の端部が接続される金属銅板12表面の所望位置には部分銀めっき被膜を設けることなく、また一方、電子部品17が搭載される金属銅板12表面の所望位置には的確に部分銀めっき被膜を設けることができる。
 従って、パワーモジュール用基板10は、電子部品17及びボンディングワイヤ18の端部を金属銅板12に確実に接合でき、パワーモジュールとしたときの熱抵抗の低減化ができ、さらに安価に製造できる。
 なお、上記のパワーモジュール用基板10は、コーティング被膜が無電解銀めっき被膜からなるのがよい。同一の膜厚であれば、電解めっき処理よりも無電解めっき処理の方が膜厚のバラツキが小さい。これは凸部への電流集中作用が無電解めっき処理には無いためである。このパワーモジュール用基板10は、電解銀めっき処理では必要となる金属銅板12への給電用の端子の接続が不要なため、コーティング被膜を形成するための工程が簡素化されて安価なパワーモジュール用基板を提供することができる。
 以下、実施例1について説明する。
 まず、図2を参照しながら実施例1に係るパワーモジュール用基板の製造方法について説明する。
 図2(A)は実施例1に係るパワーモジュール用基板10aの製造方法のDCB基板21a準備工程を示している。図中、DCB基板21aでは、大きさ50mm×60mm、厚み0.32mmのジルコニア(ZrO)入りアルミナ(Al)からなるセラミック基板11の一方の主面に、板厚0.3mmの無酸素銅からなる複数個の金属銅板12と、他方の主面に板厚0.3mmの無酸素銅からなり主面と同程度の面積を持つ単体のベタ状の金属銅板12aが接合されている。この接合は、酸素1-10ppmの窒素雰囲気下で、最高温度1068-1083℃で加熱することによって金属銅板12,12aの表面に酸化銅の液相を形成させる直接接合法で行われた。なお、本実施例で製造したDCB基板21aに係るセラミック基板11の大きさ及び厚み、さらに金属銅板12,12aの厚みについては一例であり、その仕様は用途等によって適宜変更可能である。
 そして、図2(B)はDCB基板21aの金属銅板12,12a表面全体に銀めっきから成るコーティング被膜19を形成させるコーティング被膜工程である。通常のめっき工程はここまでで完了とされるが、本発明では銀めっきから成るコーティング被膜19を必要とされる部分にのみ形成させるため、さらに以下に述べる追加の工程を必要とする。
 図中、得られたDCB基板21bには、金属銅板12,12a表面全体に、置換型または還元型の無電解銀めっき処理で銀めっきの被膜厚みが0.1μm-4μm厚程度になるようなコーティング被膜19が形成されている。
 更に、銀めっき被膜厚みを厚く形成する場合には、無電解めっき被膜に対し追加で電解銀めっき処理を行う。この場合、無電解めっき処理を行わずに金属銅板12,12aの表面に直接、電解めっき処理を行ってもよい。このようにして、銀めっき被膜厚みが0.1μmの実施例1(a)、銀めっき被膜厚みが1μmの実施例1(b)、銀めっき被膜厚みが2μmの実施例1(c)、銀めっき被膜厚みが4μmの実施例1(d)、銀めっき被膜厚みが20μmの実施例1(e)のDCB基板21bを準備した。なお、これらの銀めっき被膜の厚みは、5カ所で測定して得られた値の平均値である。この測定は蛍光X線法によって行われた。
 その後、これらのDCB基板21bの金属銅板12の表面に、パワー半導体素子や、コンデンサ等の電子部品搭載部に相当する所望の金属銅板の銀めっき被膜形成領域となる部分を開口とし、ボンディングワイヤの端部が接続される部分を含めたその他の部分を閉口とするスクリーン印刷マスク(図示せず)を当接させた。
 そして、図2(C)は、レジスト被膜形成工程を示しており、前工程で作成されたDCB基板21bに対し、スクリーン印刷マスクを介して液状レジストペーストをスクリーン印刷法で印刷して所望の金属銅板表面の銀めっき被膜形成領域となる部分に液状のレジスト印刷被膜を形成させた。
 次に、液状のレジスト印刷被膜が形成されたDCB基板21cに対して、適当な加熱条件にて液状のレジスト印刷被膜を硬化して、金属銅板表面の所望とする部位にレジスト被膜22を形成させてDCB基板21cを作製した。
 なお、金属銅板12の主面だけでなく側面にもコーティング被膜19が形成されている。
 更に、図2(D)は、エッチング処理工程を示しており、このレジスト被膜22が形成されたDCB基板21cに対し、銀のエッチング処理にてレジスト被膜22が形成されずに露出したままの銀めっき被膜からなるコーティング被膜19を除去して、DCB基板21dを作成した。従って、この工程では金属銅板12の側面の銀めっき被膜からなるコーティング被膜19も除去されている。
 最後に、レジスト被膜22は、アルカリ性剥離液にて除去されて、図2(E)に示されるようなパワーモジュール用基板10aが完成した。
 上記のようにして得られたパワーモジュール用基板10aには、所望の金属銅板12の表面に銀めっき被膜からなるコーティング被膜19が局所的に形成されている。この形成部は電子部品搭載部に該当し、電子部品は銀粒子の焼結体で接合できる接合材を用いて接合される。この接合材は、電子部品の動作上限温度以下である300℃以下の温度で強固な接合が得られる銀ペーストとなっている。この銀ペーストをスクリーン印刷法にて、電子部品搭載部となるコーティング被膜19表面に15μm程度の厚さで、コーティング被膜19と同じかやや小さめの面積となるように形成し、大気中120℃程度で約10分間程度乾燥してペースト中の溶剤成分を除去した。
 そして、乾燥後の銀ペースト表面に電子部品を搭載し、120℃、1秒間の処理で仮接合した後、このパワーモジュール用基板10aを加圧チャンバに入れて大気雰囲気中の230℃、10MPaの加熱、加圧下で2分間放置した。その結果、銀粒子の焼結体が形成され、電子部品をコーティング被膜上に接合することができた。更に、パワー半導体素子と金属銅板との間を電気的に接続するために、断面の直径が0.3mmのアルミニウム製ボンディングワイヤの一方の端部を金属銅板のボンディングワイヤ接続部位に、また他方の端部をパワー半導体素子の所定の箇所にそれぞれ熱圧着して取り付けた。熱圧着とは、一定の荷重をボンディングワイヤに加えた状態で超音波振動をワイヤボンディングに印加して摩擦圧接する方式である。
 また、上記の実施例1(a)-(e)と比較するため、金属銅板表面に銀めっき被膜であるコーティング被膜を形成しないDCB基板を準備した(このDCB基板は図2(A)のDCB基板21aと同じ)。その金属銅板上に直接、実施例1(a)-(e)で用いた銀ペーストの接合材でパワー半導体素子を接合した。さらに、実施例1(a)-(e)と同様に、直径0.3mmのアルミニウム製ボンディングワイヤを、金属銅板表面のボンディングワイヤ接続部位とパワー半導体素子に、それぞれ熱圧着して接続した比較例1を作製した。
 またさらに、金属銅板表面に銀めっき被膜であるコーティング被膜を形成しないDCB基板を準備した(このDCB基板は図2(A)のDCB基板21aと同じ)。このDCB基板の金属銅板表面に従来のPb-Snハンダの接合材でパワー半導体素子を接合した。さらに、実施例1(a)-(e)と同様に、直径0.3mmのアルミニウム製のボンディングワイヤを金属銅板表面のボンディングワイヤ接続部位とパワー半導体素子に、それぞれ熱圧着して接続した。これを比較例2とした。
更に、金属銅板表面の全面に銀めっき被膜であるコーティング被膜を設けたDCB基板を準備した(このDCB基板は図2におけるDCB基板21bと同一)。このDCB基板の金属銅板上に実施例1(a)-(e)で用いた銀ペーストの接合材でパワー半導体素子を接合した。さらに、実施例1(a)-(e)と同様に、直径0.3mmのアルミニウム製ボンディングワイヤを銀めっき被膜であるコーティング被膜を設けた金属銅板表面のボンディングワイヤ接続部位とパワー半導体素子に、それぞれ熱圧着して接続した。これを比較例3とした。なお、この比較例3における銀めっき被膜(コーティング被膜)の厚さは実施例1(c)と同じ2μmとした。
 上記の実施例1(a)-(e)及び比較例1-3の評価結果を表1にまとめて記載する。
Figure JPOXMLDOC01-appb-T000001
 実施例1(a)-(e)、及び比較例1、3で用いた銀ペーストからなる接合材は、熱伝導率が150W/mKであり、従来のPb-Snハンダからなる接合材の熱伝導率50W/mKに比べて3倍高いため、高熱を発生するパワー半導体素子の接合部における熱抵抗を従来よりも下げることができる。
 なお、従来のPb-Snハンダからなる接合材を用いてパワー半導体素子を接合する比較例2は、パワー半導体素子の接合部における熱抵抗を下げることや実装信頼性を高めることに限界があることから、比較例1、3のような熱伝導率の高い銀ペーストからなる接合材を用いるようになったことは既に述べたことである。
 通常、パワーモジュール用基板にパワー半導体素子を接合材で実装したパワーモジュールに対し、パワー半導体素子の接合信頼性を確認するために、水素還元雰囲気における235℃、9分間の通炉試験をおこなっている。この試験において、金属銅板表面に銀めっき被膜からなるコーティング被膜を設け、銀ペーストからなる接合材でパワー半導体素子を接合した実施例1(a)-(e)、比較例3では、パワー半導体素子の剥がれの発生を確認できなかった。
 しかしながら、金属銅板表面に銀めっき被膜であるコーティング被膜を設けないで銀ペーストからなる接合材でパワー半導体素子を接合した比較例1では、パワー半導体素子の剥離が発生した。この剥離は銀ペーストからなる接合材と金属銅板の界面で発生していた。
 Pb-Snハンダからなる接合材を用いパワー半導体素子を接合した比較例2においても、金属銅板表面に銀めっき被膜からなるコーティング被膜を設けなくてもPb-Snハンダからなる接合材と金属銅板の界面での剥離によるパワー半導体素子の剥離は発生しなかった。
 また、通常、パワーモジュール用基板にパワー半導体素子を接合材で実装したパワーモジュール用に対し、パワー半導体素子の剥離等の異常を確認するための長期信頼性試験として、最低温度40℃で通電オン/オフを各15秒間、さらに最高温度150℃(最低温度からの温度差110℃)で通電オン/オフを各15秒間の合計60秒間を1サイクルとする負荷を何サイクルまで行って異常発生がないかのパワーサイクル試験を実施している。この際、パワーモジュール用基板のパワー半導体素子を実装しない方のベタ銅板は厚さ3mmの銅放熱板にPb-Snハンダで接合され、さらに銅放熱板は放熱グリース等の接合材料を使って水冷ヒートシンクに取り付けられ、パワー半導体素子が発する熱を効率的に放熱する構成となっていた。
 この試験において、金属銅板表面に銀めっき被膜からなるコーティング被膜を設け、銀ペーストからなる接合材でパワー半導体素子を接合した実施例1(a)-(e)、及び比較例3では、いずれも15万サイクル以上可能な耐久性があった。
 しかしながら、金属銅板表面に銀めっき被膜であるコーティング被膜を設けないで銀ペーストからなる接合材でパワー半導体素子を接合した比較例1では、4万サイクル程度でパワー半導体素子の剥離が発生し、長期信頼性に問題があった。この剥離は銀ペーストからなる接合材と金属銅板の界面で発生していた。
 また、金属銅板表面に銀めっき被膜であるコーティング被膜を設けないでPb-Snハンダからなる接合材でパワー半導体素子を接合した比較例2に対しても同様の試験を行ったが、3万サイクル程度でPb-Snハンダからなる接合材層の内部にクラックが生じることでパワー半導体素子の剥離が発生し、長期信頼性に問題があった。
 更に、ボンディングワイヤの金属銅板との接続信頼性を確認するために以下の引っ張り試験を行った。まず、DCB基板を固定した状態で直径0.3mmのアルミニウム製ボンディングワイヤの両方の端部を金属銅板表面に接続した。その結果、ボンディングワイヤはブリッジ状の形状となった。このようなボンディングワイヤの中央部に鉤状の金属部材を引っ掛けて上方に引っ張ることでボンディングワイヤの一方もしくは両方の端部が金属銅板から剥離するか、又はボンディングワイヤの中央部が破壊されて切断するかを確認した。
 実施例1(a)-(e)、比較例1、比較例2では、ボンディングワイヤの両方の端部は、銀めっき被膜であるコーティング被膜の無い金属銅板表面に直接、熱圧着により、ブリッジ状に接続された。また、比較例3ではボンディングワイヤの両方の端部は銀めっき被膜であるコーティング被膜表面に熱圧着により、ブリッジ状に接続された。
 この試験において、金属銅板のボンディングワイヤ接続部位に銀めっき被膜であるコーティング被膜を設けない実施例1(a)-(e)、及び金属銅板の表面全体にコーティング被膜を設けない比較例1、2は、いずれもボンディングワイヤの端部が金属銅板から剥離することなく、500グラム重程度の力で引っ張るとボンディングワイヤの中央部が破壊されて切断される結果となった。このことはボンディングワイヤの端部と金属銅板表面の接合強度がボンディングワイヤ自体の強度よりも高いことを示しており、ボンディングワイヤの接続信頼性が高いことが確認できた。
 しかしながら、金属銅板のボンディングワイヤ接続部位に銀めっき被膜であるコーティング被膜を設けた比較例3では、400グラム重程度の力でボンディングワイヤの中央部分を引っ張ると、ボンディングワイヤの一方もしくは両方の端部が金属銅板の表面から剥離し、ボンディングワイヤの接続信頼性が低いことが確認できた。
 すなわち、パワー半導体素子を実装する場合には、金属銅板に銀めっき被膜であるコーティング被膜を形成させてから銀粒子の焼結体を接合材として接合することが望ましい一方、アルミニウム線からなるボンディングワイヤを金属銅板に接続する場合には、むしろコーティング被膜を介さずに、直接、金属銅板表面に接続する方が、接続強度を高めることができることがわかった。
 そこで、本実施例においては、ボンディングワイヤの端部が接続される部位の表面においては、高純度の銀や金からなるコーティング被膜を形成させず、少なくともパワー半導体素子が接合される部位の表面にそのコーティング被膜を形成させることで、パワー半導体素子の接合を強固にすることとボンディングワイヤの接続を強固にすることの両方を満足させたのである。
 上記の評価結果より、金属銅板表面の銀ペーストからなる接合材でパワー半導体素子を接合する部位に銀めっき被膜であるコーティング被膜を設け、金属銅板表面のボンディングワイヤ接続部位に銀めっき被膜であるコーティング被膜を設けない実施例1(a)-(e)は、パワー半導体素子の接合信頼性と、ボンディングワイヤの接続信頼性の両方を兼ね備えたパワーモジュール用基板であることが確認できた。
 なお、実施例1(a)-(d)は、コーティング被膜が無電解銀めっきのみにより形成された0.1μm-4μm程度までの薄い膜であるので、低い材料コストで製造できる。しかも、従来のPb-Snハンダ接合(比較例2)よりも高いレベルのパワー半導体素子の接合信頼性と、従来のPb-Snハンダ接合(比較例2)と同等のボンディングワイヤの接続信頼性の両方を兼ね備えたパワーモジュール用基板である。
 特に、実施例1(a)は、コーティング被膜厚みが0.1μm程度の極めて薄い膜でも従来のPb-Snハンダ接合(比較例2)よりも高いレベルのパワー半導体素子の接合信頼性と、従来のPb-Snハンダ接合(比較例2)と同等のボンディングワイヤの接続信頼性の両方を兼ね備えたパワーモジュール用基板であるので、極めて低い材料コストでパワーモジュール用基板を製造できる。
 また、無電解銀めっきのみにより形成できるコーティング被膜の厚みは4μm程度までであるので、実施例1(e)のような20μm程度の厚いコーティング被膜の形成には、無電解銀めっきに加えて電解銀めっき処理が必要となる。一般にDCB基板のようなパワーモジュール用基板は、パワー半導体素子を実装する側の回路銅板が複数個の金属銅板で構成されており、各金属銅板間には電気的な接続がない。
 このため各金属銅板表面を電解銀めっき処理するためには、通電用の給電端子を全ての金属銅板に予め接続させておく必要があると共に、電解銀めっき処理後に通電用の給電端子を除去する必要がある。このような、作業工数の多い電解銀めっき処理が必要なパワーモジュール用基板は、特に高い信頼性を要求される用途に限定して適用される。
 本実施例や次の実施例2においては、DCB基板としてジルコニア(ZrO)入りアルミナ(Al)からなるセラミック基板の両面に金属銅板を接合したものを用いたが、ジルコニアを含有しないアルミナ、窒化アルミニウム(AlN)、更には窒化ホウ素(BN)入りの窒化アルミニウム、窒化珪素(Si)などからなるセラミック基板の両面に金属銅板を接合したものを用いてもよい。銅板の材質は無酸素銅が好適に用いられるが、酸素を微量含むタフピッチ銅でもよいし、銅を主成分とする合金でもよい。
 また、図1(A)と(B)に示されるベタ状の金属銅板12aにはパワーモジュール用基板10の放熱性を向上させる作用があるが、使用形態によっては、セラミック基板11に接合される金属銅板を電子部品を搭載するための回路銅板13のみとし、ベタ状の金属銅板12aが無い、セラミック基板11の一方の主面のみに金属銅板12が接合された状態であってもよい。この場合、ベタ状の金属銅板12aの無い、セラミック基板11の他方の主面に厚さ3mm程度の銅放熱板を放熱グリースを介して取り付けるなどして、パワーモジュール用基板10が使用される。
 また、めっきは銀めっきを用いて説明しているが、コストを重要視しなければ、金めっきを用いても同様の技術的な効果が得られる。さらに、金めっきに関する処理も銀めっきに関する処理と同様に可能であるし、金蒸着や金スパッタリング方式もコーティング被膜を形成する手法として適用可能である。
 金は銀よりも高価な金属であるが、銀のように空気中の硫黄と反応して硫化銀を形成しないため、品質(銀粒子に対する濡れ性)を維持する上では銀よりも有利である。また、めっきと同じ理由から、接合材料として銀粒子を含む銀ペーストの代わりに金粒子を含む金ペーストを用いてもよい。
 次に、図3を参照しながら実施例2に係るパワーモジュール用基板の製造方法について説明する。
 図3(A)は、実施例2に係るパワーモジュール用基板の製造方法のDCB基板23a準備工程を示している。図中、実施例1と同様にDCB基板23aでは、大きさ50mm×60mm、厚み0.32mmのジルコニア入りアルミナからなるセラミック基板11の一方の主面に板厚0.3mmの無酸素銅からなる複数個の金属銅板12と、他方の主面に板厚0.3mmの無酸素銅からなる単体のベタ状の金属銅板12aが接合されている。この接合は、酸素1-10ppmの窒素雰囲気下で、最高温度1068-1083℃で加熱することによって金属銅板12,12aの表面に酸化銅の液相を形成させる直接接合法で行われた。但し、実施例1と同様に、DCB基板23aに係るセラミック基板11の大きさ及び厚み、さらに金属銅板12,12aの厚みについては一例であり、その仕様は用途等によって適宜変更可能である。
 次に、図3(B)はドライフィルムレジスト貼付工程を示しており、先のDCB基板準備工程で得られたDCB基板23aの金属銅板12,12a表面にドライフィルムレジスト24を貼付した状態のDCB基板23bを示している。従って、島状に形成された金属銅板12同士の隙間がドライフィルムレジスト24で覆われることによって空隙25が形成されることになる。
 図3(C)は、貼付されたドライフィルムレジスト24にフォトマスク26を当接させるフォトマスク工程である。この工程では、ドライフィルムレジスト24に、所望の金属銅板12の銀めっき被膜形成領域となる部分を閉口とし、ボンディングワイヤの端部が接続される部分を含めたその他の部分を開口とするフォトマスク26を当接させてDCB基板23cを形成させるものである。すなわち、実施例1とはマスクにおける開口と閉口の部分が逆となる。この銀めっき被膜形成領域となる部分は、パワー半導体素子15やコンデンサ16等の電子部品17の搭載部に該当する。
 次の図3(D)は、ドライフィルムレジスト24に対して光を照射する露光工程を示している。従って、フォトマスク26が当接された範囲以外のドライフィルムレジスト24は、露光されて露光済みドライフィルムレジスト24aとなり、DCB基板23dが形成される。このドライフィルムレジスト24の例としてはフォトレジストがあり、露光の光源としては紫外線が用いられる。
 その後、図3(E)に示されるように、DCB基板23dからフォトマスク26を取り外し、現像液に浸漬してフォトマスク26でマスクされていた箇所のドライフィルムレジスト24を除去してDCB基板23eを形成させる。この工程は、ドライフィルムレジストを除去する現像工程である。この現像工程では、露光済みドライフィルムレジスト24aは露光によって現像液に対する溶解性が低下するため、現像時においても溶解することなく残存する。
 図3(F)は、ドライフィルムレジスト24が除去された箇所に対して、銀めっきから成るコーティング被膜19を形成させるコーティング被膜工程である。
 実施例2においても、置換型または還元型の無電解銀めっき処理で銀めっきの被膜厚みが0.1μm-4μm厚程度になるようなコーティング被膜19を形成させてDCB基板23fとする。実施例1と同様に、更に銀めっき被膜厚みを厚く形成する場合には、追加で電解銀めっき処理を行う。
 なお、金属銅板12の主面だけでなく側面にもコーティング被膜19が形成される。
 その後、図3(G)に示されるように、DCB基板23fに残存していた露光済みドライフィルムレジスト24aをアルカリ性剥離液にて除去するレジスト剥離工程を経て、パワーモジュール用基板10bが完成する。
 このように構成される実施例2に係るパワーモジュール用基板の製造方法においては、無電解銀めっきから成るコーティング被膜19をレジストが剥離される前に必要な箇所だけに処理するので、実施例1に比べ、銀めっき液の消費量が少ない。
 また、実施例1では不要な箇所に処理された無電解銀めっき被膜をエッチングで処理しなければならず、エッチングが不十分で銀めっき被膜の一部が金属銅板12表面に残留している箇所が存在する可能性もあり、これがボンディングワイヤ18の接合性を低下させる可能性もないとは言い切れない。具体的には、表1の比較例3に示されるボンディングワイヤの界面剥がれのような事象の可能性である。
 これに対して、実施例2では元々コーティング被膜19が必要な箇所にしか処理されないため、銀めっき被膜のエッチング残渣がパワーモジュール用基板10bの金属銅板12表面に残るような不具合やそれによって生じるボンディングワイヤの接続性の低下などの不具合はない。
 このことについて、発明者らは実施例2に係るパワーモジュール用基板10bを用い、その金属銅板12における、コーティング被膜19が設けられていない銅板表面に存在する銀についてオージェ電子分光法で検出できるかどうかを確認したが検出されなかった。
 なお、実施例2においては、図3(B)のドライフィルムレジスト貼付工程において、空隙25も含め金属銅板12の側面を完全に覆うように、ドライフィルムレジスト24を貼付すれば、金属銅板12の側面に銀めっき被膜19は形成されない。このように、金属銅板12の主面に対するドライフィルムレジスト24の貼り付け方によって図3(F)や(G)のように金属銅板12の側面に銀めっき被膜19が形成されるかどうかが左右される。ただし、金属銅板12の側面はボンディングワイヤ18の接合性には影響はないため、そこに銀めっき被膜19が形成されるかどうかはとくに品質上の問題にはならない。
 さらに、実施例2においては、コーティング被膜19のパターンはフォトマスク26のパターンにほぼ従うため、金属銅板12の縁に対するコーティング被膜19のパターンの位置精度を高くできる。具体的には、金属銅板12の縁に対する、コーティング被膜19の位置精度の誤差を±0.1mm以下とすることが可能である。
 一方、実施例1のようにレジストペーストをスクリーン印刷マスクを使って印刷する場合、液状のレジスト印刷被膜からなる印刷パターンの縁がにじんで直線性が悪くなるので、実施例2に比べると金属銅板12の縁に対するコーティング被膜19のパターンの位置精度が低く、例えば±0.3mm以下程度である。
 従って、実施例1におけるレジスト被膜22よりも実施例2における露光済みドライフィルムレジスト24aの方がレジストパターンの形成精度が高く、少なくとも金属銅板12の縁に対するコーティング被膜19の正確な位置決めが可能である。
 なお、この実施例2に係るパワーモジュール用基板10bにおいても表1に示す実施例1(a)-(e)と同様の寸法を備えたものを作製し同様に試験を実施した。その結果、製造方法が異なる2つの方法によっても表1に示される水素雰囲気通炉試験、パワー半導体素子実装後のパワーサイクル試験、ボンディングワイヤ引張試験共に実施例1(a)-(e)と同等の評価結果が得られた。
 本発明のパワーモジュール用基板は、高出力のパワー半導体素子や、コンデンサ等の電子部品を回路銅板の金属銅板上に実装する際に高い実装信頼性や放熱性を要求される分野に最適であり、例えば、車載用の電子部品あるいは風力発電用の電子部品の実装に用いることができる。
10,10a,10b…パワーモジュール用基板
11…セラミック基板
12,12a…金属銅板
13…回路銅板
14…ベタ銅板
15…パワー半導体素子
16…コンデンサ
17…電子部品
18…ボンディングワイヤ
19…コーティング被膜
20…接合材
21a-21d…DCB基板
22…レジスト被膜
23a-23f…DCB基板
24…ドライフィルムレジスト
24a…露光済みドライフィルムレジスト
25…空隙
26…フォトマスク

Claims (8)

  1.  単体又は複数個の金属銅板(12)からなる回路銅板(13)がセラミック基板(11)の一方の主面に接合され、少なくとも1の前記金属銅板(12)上にパワー半導体素子(15)を含む電子部品(17)が接合されると共に、前記電子部品(17)のうちの前記パワー半導体素子(15)と前記金属銅板(12)がボンディングワイヤ(18)で接続されて実装されるパワーモジュール用基板(10,10a,10b)において、
     前記金属銅板(12)の少なくとも前記パワー半導体素子(15)が接合される部位の表面に銀又は金を主成分とするコーティング被膜(19)を有すると共に、前記金属銅板(12)の前記ボンディングワイヤ(18)の端部が接続される部位の表面に前記コーティング被膜(19)を有さないことを特徴とするパワーモジュール用基板(10,10a,10b)。
  2.  前記コーティング被膜(19)の膜厚が0.1μmから20μmまでの範囲からなることを特徴とする請求項1記載のパワーモジュール用基板(10,10a,10b)。
  3.  前記コーティング被膜(19)は銀めっき被膜又は金めっき被膜からなることを特徴とする請求項1又は請求項2記載のパワーモジュール用基板(10,10a,10b)。
  4.  前記コーティング被膜(19)は無電解銀めっき被膜又は無電解金めっき被膜からなることを特徴とする請求項1乃至請求項3のいずれか1項に記載のパワーモジュール用基板(10,10a,10b)。
  5.  前記金属銅板(12)の縁に対する前記コーティング被膜(19)のパターンの位置の誤差は±0.1mm以下であり、前記金属銅板(12)表面に前記コーティング被膜(19)以外の銀又は金が存在しないことを特徴とする請求項1乃至請求項4のいずれか1項に記載のパワーモジュール用基板(10,10a,10b)。
  6.  請求項1乃至請求項5のいずれか1項に記載のパワーモジュール用基板(10,10a,10b)の前記金属銅板(12)表面に設けられる前記コーティング被膜(19)上に、前記パワー半導体素子(15)を含む前記電子部品(17)のうち少なくとも前記パワー半導体素子(15)が銀粒子の焼結体を介して接合され、前記パワー半導体素子(15)と前記金属銅板(12)とを接続する前記ボンディングワイヤ(18)の前記金属銅板(12)側の端部は、前記コーティング被膜(19)を介さずに前記金属銅板(12)表面に接続されることを特徴とするパワーモジュール。
  7.  セラミック基板(11)の一方の主面に接合される単体又は複数個の金属銅板(12)からなる回路銅板(13)を備えるパワーモジュール用基板(10,10a)に対し、前記金属銅板(12)の表面に銀めっき被膜又は金めっき被膜を形成させるコーティング被膜工程と、
     このコーティング被膜工程で形成されたコーティング被膜(19)表面にスクリーン印刷マスクを介して液状レジストペーストをスクリーン印刷法で印刷して、前記金属銅板(12)表面の銀めっき被膜形成領域又は金めっき被膜形成領域となる部分にレジスト被膜(22)を形成させるレジスト被膜形成工程と、
     このレジスト被膜形成工程で形成されたレジスト被膜(22)形成部以外の露出したコーティング被膜(19)をエッチング処理で除去するエッチング処理工程と、
     前記レジスト被膜形成工程で形成されたレジスト被膜(22)形成部のレジスト被膜(22)を剥離させるレジスト被膜剥離工程と、を有することを特徴とするパワーモジュール用基板製造方法。
  8.  セラミック基板(11)の一方の主面に接合される単体又は複数個の金属銅板(12)からなる回路銅板(13)を備えるパワーモジュール用基板(10,10b)に対し、前記金属銅板(12)の表面にドライフィルムレジスト(24)を貼付するドライフィルムレジスト貼付工程と、
     このドライフィルムレジスト貼付工程で貼付されたドライフィルムレジスト(24)表面にフォトマスク(26)を当接させるフォトマスク工程と、
     このフォトマスク工程で当接されたフォトマスク(26)を介して前記ドライフィルムレジスト(24)に対して光を照射する露光工程と、
     前記フォトマスク(26)を取り外して、前記露光工程で光の照射によって現像液に対する溶解性が低下した露光済みドライフィルムレジスト(24a)を残して、前記フォトマスク(26)でマスクされていた箇所のドライフィルムレジスト(24)を除去する現像工程と、
     この現像工程において前記ドライフィルムレジスト(24)が除去された箇所に対して、銀めっき被膜又は金めっき被膜から成るコーティング被膜(19)を形成させるコーティング被膜工程と、
     前記現像工程で残存した露光済みドライフィルムレジスト(24a)を剥離させるレジスト被膜剥離工程と、を有することを特徴とするパワーモジュール用基板製造方法。
PCT/JP2014/083598 2014-01-29 2014-12-18 パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール WO2015114987A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014006293.6T DE112014006293T5 (de) 2014-01-29 2014-12-18 Substrat für ein Leistungsmodul und Verfahren zu dessen Herstellung sowie das Substrat für ein Leistungsmodul verwendendes Leistungsmodul
JP2015535907A JPWO2015114987A1 (ja) 2014-01-29 2014-12-18 パワーモジュール用基板およびそれを用いてなるパワーモジュール

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-013928 2014-01-29
JP2014013928 2014-01-29

Publications (1)

Publication Number Publication Date
WO2015114987A1 true WO2015114987A1 (ja) 2015-08-06

Family

ID=53756581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083598 WO2015114987A1 (ja) 2014-01-29 2014-12-18 パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール

Country Status (3)

Country Link
JP (1) JPWO2015114987A1 (ja)
DE (1) DE112014006293T5 (ja)
WO (1) WO2015114987A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006661A1 (ja) * 2015-07-09 2017-01-12 株式会社東芝 セラミックス金属回路基板およびそれを用いた半導体装置
JP2018157136A (ja) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 熱電変換モジュール
WO2018225809A1 (ja) * 2017-06-09 2018-12-13 デンカ株式会社 セラミックス回路基板
CN109075132A (zh) * 2016-04-26 2018-12-21 京瓷株式会社 功率模块用基板、功率模块及功率模块用基板的制造方法
JP2019041108A (ja) * 2017-08-25 2019-03-14 京セラ株式会社 パワーモジュール用基板およびパワーモジュール
WO2020218193A1 (ja) * 2019-04-26 2020-10-29 デンカ株式会社 セラミックス回路基板および電子部品モジュール
EP3185075B1 (de) * 2015-12-22 2021-03-03 Heraeus Deutschland GmbH & Co. KG Vorrichtung für belichtungssystem
JP2021125617A (ja) * 2020-02-07 2021-08-30 富士電機株式会社 半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102023202631A1 (de) 2023-03-23 2024-09-26 Robert Bosch Gesellschaft mit beschränkter Haftung Kühlanordnung mit strukturierter Kontaktfläche

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031720A (ja) * 2001-07-19 2003-01-31 Dowa Mining Co Ltd 金属−セラミックス接合基板の製造方法
JP2003112980A (ja) * 2001-09-28 2003-04-18 Dowa Mining Co Ltd 金属−セラミックス接合体
JP2005243767A (ja) * 2004-02-25 2005-09-08 Dowa Mining Co Ltd 金属−セラミックス回路基板およびその製造方法
JP2011249257A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 焼結銀ペースト材料及び半導体チップ接合方法
JP2012212788A (ja) * 2011-03-31 2012-11-01 Dowa Holdings Co Ltd 金属ベース基板およびその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5936407B2 (ja) * 2012-03-26 2016-06-22 株式会社日立製作所 パワーモジュール製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003031720A (ja) * 2001-07-19 2003-01-31 Dowa Mining Co Ltd 金属−セラミックス接合基板の製造方法
JP2003112980A (ja) * 2001-09-28 2003-04-18 Dowa Mining Co Ltd 金属−セラミックス接合体
JP2005243767A (ja) * 2004-02-25 2005-09-08 Dowa Mining Co Ltd 金属−セラミックス回路基板およびその製造方法
JP2011249257A (ja) * 2010-05-31 2011-12-08 Hitachi Ltd 焼結銀ペースト材料及び半導体チップ接合方法
JP2012212788A (ja) * 2011-03-31 2012-11-01 Dowa Holdings Co Ltd 金属ベース基板およびその製造方法

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006661A1 (ja) * 2015-07-09 2017-01-12 株式会社東芝 セラミックス金属回路基板およびそれを用いた半導体装置
US10872841B2 (en) 2015-07-09 2020-12-22 Kabushiki Kaisha Toshiba Ceramic metal circuit board and semiconductor device using the same
EP3185075B1 (de) * 2015-12-22 2021-03-03 Heraeus Deutschland GmbH & Co. KG Vorrichtung für belichtungssystem
US10763184B2 (en) 2016-04-26 2020-09-01 Kyocera Corporation Power module substrate, power module, and method for manufacturing power module substrate
CN109075132B (zh) * 2016-04-26 2022-03-08 京瓷株式会社 功率模块用基板、功率模块及功率模块用基板的制造方法
CN109075132A (zh) * 2016-04-26 2018-12-21 京瓷株式会社 功率模块用基板、功率模块及功率模块用基板的制造方法
EP3451372A4 (en) * 2016-04-26 2019-10-23 KYOCERA Corporation POWER MODULE SUBSTRATE, POWER MODULE AND METHOD FOR PRODUCING THE POWER MODULE SUBSTRATE
JP2018157136A (ja) * 2017-03-21 2018-10-04 三菱マテリアル株式会社 熱電変換モジュール
CN110731129A (zh) * 2017-06-09 2020-01-24 电化株式会社 陶瓷电路基板
KR20230066662A (ko) * 2017-06-09 2023-05-16 덴카 주식회사 세라믹스 회로 기판
KR102695566B1 (ko) * 2017-06-09 2024-08-14 덴카 주식회사 세라믹스 회로 기판
JPWO2018225809A1 (ja) * 2017-06-09 2020-04-09 デンカ株式会社 セラミックス回路基板
JP7420555B2 (ja) 2017-06-09 2024-01-23 デンカ株式会社 セラミックス回路基板
CN110731129B (zh) * 2017-06-09 2024-01-09 电化株式会社 陶瓷电路基板
WO2018225809A1 (ja) * 2017-06-09 2018-12-13 デンカ株式会社 セラミックス回路基板
US11430727B2 (en) 2017-06-09 2022-08-30 Denka Company Limited Ceramic circuit substrate
EP3637964A4 (en) * 2017-06-09 2020-06-24 Denka Company Limited CERAMIC CIRCUIT SUBSTRATE
JP2023033371A (ja) * 2017-08-25 2023-03-10 京セラ株式会社 パワーモジュール用基板およびパワーモジュール
JP7207904B2 (ja) 2017-08-25 2023-01-18 京セラ株式会社 パワーモジュール用基板およびパワーモジュール
JP2019041108A (ja) * 2017-08-25 2019-03-14 京セラ株式会社 パワーモジュール用基板およびパワーモジュール
JP7483955B2 (ja) 2017-08-25 2024-05-15 京セラ株式会社 パワーモジュール用基板およびパワーモジュール
WO2020218193A1 (ja) * 2019-04-26 2020-10-29 デンカ株式会社 セラミックス回路基板および電子部品モジュール
JP2021125617A (ja) * 2020-02-07 2021-08-30 富士電機株式会社 半導体装置
JP7459539B2 (ja) 2020-02-07 2024-04-02 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
JPWO2015114987A1 (ja) 2017-03-23
DE112014006293T5 (de) 2016-12-29

Similar Documents

Publication Publication Date Title
WO2015114987A1 (ja) パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール
JP4904767B2 (ja) 半導体装置
US20180190568A1 (en) Ceramic metal circuit board and semiconductor device using the same
WO2013018504A1 (ja) 半導体装置とその製造方法
WO2013021750A1 (ja) 配線基板およびその製造方法ならびに半導体装置
JP5214936B2 (ja) 半導体装置
US9530722B2 (en) Semiconductor device and production method for same
JP2006240955A (ja) セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。
WO2017126344A1 (ja) 電力用半導体装置および電力用半導体装置を製造する方法
JP2014135411A (ja) 半導体装置および半導体装置の製造方法
WO2018225809A1 (ja) セラミックス回路基板
JP4703377B2 (ja) 段差回路基板、その製造方法およびそれを用いた電力制御部品。
JP5141566B2 (ja) 絶縁回路基板の製造方法及び絶縁回路基板並びにパワーモジュール用基板
JP5252024B2 (ja) 半導体装置
JP6904094B2 (ja) 絶縁回路基板の製造方法
JP6753721B2 (ja) 金属−セラミックス回路基板およびその製造方法
JP2006351988A (ja) セラミック基板、セラミック回路基板及びそれを用いた電力制御部品。
JP5100715B2 (ja) 半導体装置及び半導体装置の製造方法
JP5045613B2 (ja) パワーモジュール用基板及びその製造方法
JP2016143685A (ja) 半導体モジュール
JP6011410B2 (ja) 半導体装置用接合体、パワーモジュール用基板及びパワーモジュール
US20230298961A1 (en) Insulating substrate and manufacturing method thereof
JP2016081943A (ja) 半導体装置及びその製造方法
WO2022014319A1 (ja) 絶縁基板およびその製造方法
EP4333029A1 (en) Semiconductor module and method for manufacturing semiconductor module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015535907

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014006293

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880904

Country of ref document: EP

Kind code of ref document: A1