WO2020218193A1 - セラミックス回路基板および電子部品モジュール - Google Patents
セラミックス回路基板および電子部品モジュール Download PDFInfo
- Publication number
- WO2020218193A1 WO2020218193A1 PCT/JP2020/016884 JP2020016884W WO2020218193A1 WO 2020218193 A1 WO2020218193 A1 WO 2020218193A1 JP 2020016884 W JP2020016884 W JP 2020016884W WO 2020218193 A1 WO2020218193 A1 WO 2020218193A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- circuit board
- copper
- ceramic circuit
- silver
- silicon nitride
- Prior art date
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 70
- 239000000758 substrate Substances 0.000 title claims abstract description 45
- 239000010949 copper Substances 0.000 claims abstract description 145
- 229910052802 copper Inorganic materials 0.000 claims abstract description 132
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 128
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 44
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 44
- 230000017525 heat dissipation Effects 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 29
- 238000005219 brazing Methods 0.000 claims description 19
- 238000005530 etching Methods 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 6
- NEIHULKJZQTQKJ-UHFFFAOYSA-N [Cu].[Ag] Chemical compound [Cu].[Ag] NEIHULKJZQTQKJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 3
- 230000003746 surface roughness Effects 0.000 claims description 3
- 238000005259 measurement Methods 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims 1
- 238000000576 coating method Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 abstract description 30
- 229910052709 silver Inorganic materials 0.000 abstract description 18
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 abstract description 16
- 239000004332 silver Substances 0.000 abstract description 16
- 229910000679 solder Inorganic materials 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000002184 metal Substances 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 12
- 238000000034 method Methods 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 230000035882 stress Effects 0.000 description 10
- 239000013078 crystal Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 238000007789 sealing Methods 0.000 description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 7
- 239000011342 resin composition Substances 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 6
- 235000011121 sodium hydroxide Nutrition 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000007772 electroless plating Methods 0.000 description 4
- 229910052738 indium Inorganic materials 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 238000005304 joining Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- LTPBRCUWZOMYOC-UHFFFAOYSA-N Beryllium oxide Chemical compound O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 2
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910020836 Sn-Ag Inorganic materials 0.000 description 2
- 229910020988 Sn—Ag Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000007650 screen-printing Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 229910017938 Cu—Sn—Ti Inorganic materials 0.000 description 1
- 229910017945 Cu—Ti Inorganic materials 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910020888 Sn-Cu Inorganic materials 0.000 description 1
- 229910020935 Sn-Sb Inorganic materials 0.000 description 1
- 229910019204 Sn—Cu Inorganic materials 0.000 description 1
- 229910018956 Sn—In Inorganic materials 0.000 description 1
- 229910008757 Sn—Sb Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- -1 Titanium hydride Chemical compound 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 229910002026 crystalline silica Inorganic materials 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 229910000048 titanium hydride Inorganic materials 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3735—Laminates or multilayers, e.g. direct bond copper ceramic substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/13—Mountings, e.g. non-detachable insulating substrates characterised by the shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3736—Metallic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49838—Geometry or layout
- H01L23/49844—Geometry or layout for devices being provided for in H01L29/00
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/243—Reinforcing the conductive pattern characterised by selective plating, e.g. for finish plating of pads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/12—Mountings, e.g. non-detachable insulating substrates
- H01L23/14—Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
- H01L23/15—Ceramic or glass substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0203—Cooling of mounted components
- H05K1/0209—External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/06—Thermal details
- H05K2201/066—Heatsink mounted on the surface of the printed circuit board [PCB]
Definitions
- the present invention relates to a ceramic circuit board and an electronic component module.
- Patent Document 1 the technique described in Patent Document 1 is known.
- the circuit layer is composed of a first circuit layer made of a brazing material and a second circuit layer made of a metal circuit board bonded to the surface of a ceramic substrate via a brazing material.
- a ceramic circuit board characterized by the above is described (claim 1 of Patent Document 1).
- Claim 6 of the same document describes that a plating layer is formed on the surface of a second circuit layer made of a metal circuit plate.
- the plating layer formed on the surface of the metal circuit board improves the wetting of the solder. Therefore, it is considered that the adhesion between the metal circuit board and the electronic component can be improved by solder bonding.
- the present inventor further investigated and found that a recess was formed on the surface of the metal circuit board, and a plating layer was formed in the recess to form a plating in contact with the surface of the metal circuit board. It was found that the above-mentioned stress concentration disappeared on the contact surface of the layer, and the peeling of the plating layer could be suppressed.
- an electronic component module having excellent connection reliability can be realized by using a ceramic circuit board having a plating layer in such a recess, and have completed the present invention.
- the silver-plated layer is formed in a recess provided on the other surface of the copper circuit plate.
- a ceramic circuit board having excellent connection reliability when used for an electronic component module and an electronic component module using the ceramic circuit board are provided.
- FIG. 1A shows a side view
- FIG. 1B shows a top view
- FIG. 1A shows a side view
- FIG. 1B shows a top view
- the SEM image in the cross section in the plate thickness direction of the ceramic circuit board of Example 1 is shown.
- the SEM image in the cross section in the plate thickness direction of the ceramic circuit board of Comparative Example 1 is shown.
- the outline of the ceramic circuit board of this embodiment is as follows.
- the ceramics circuit board of the present embodiment is formed on a silicon nitride substrate, a copper heat radiating plate provided on one surface of the silicon nitride substrate, a copper circuit board provided on the other surface of the silicon nitride substrate, and the other surface of the silicon nitride substrate. It includes a silver-plated layer provided on at least a part of the other surface of the copper circuit board, which is located on the side opposite to the facing main surface. In this ceramic circuit board, a silver-plated layer is formed in a recess provided on the other surface of the copper circuit board.
- peeling of the silver-plated layer can be suppressed by forming the silver-plated layer in the recess on the surface of the metal circuit board.
- the plating layer provided on the flat surface has a stress concentration point ⁇ at the tip portion in contact with the flat surface. Since the stress is applied in the in-plane direction from the stress concentration point ⁇ as a base point, interfacial peeling may occur in the plating layer. On the other hand, since the plating layer provided on the concave surface does not have a stress concentration point ⁇ that receives stress in the in-plane direction, it is considered that peeling of the plating layer can be suppressed.
- the electronic component module of the present embodiment includes a ceramic circuit board, electronic components provided on the copper circuit board of the ceramic circuit board, and a heat sink provided on the copper heat sink of the ceramic circuit board.
- FIG. 1A and 1B are views schematically showing an example of the configuration of the ceramic circuit board 100, FIG. 1A shows a side view, and FIG. 1B shows a top view. Note that FIG. 1A is a cross-sectional view taken along the line AA of FIG. 1B.
- the ceramic circuit board 100 includes a silicon nitride substrate 10, a copper heat radiating plate 20 provided on one surface 12 of the silicon nitride substrate 10, and a copper circuit board 30 provided on the other surface 14.
- the silicon nitride substrate 10 is a white ceramic substrate containing Si 3 N 4 as a main component.
- the silicon nitride substrate 10 has excellent mechanical strength, insulation, and thermal conductivity.
- the cross-sectional shape of the silicon nitride substrate 10 in the cross-sectional view in the plate thickness direction may be substantially rectangular.
- the planar shape of the silicon nitride substrate 10 when viewed from the perpendicular direction of one surface 12 is not limited as long as it is a practical shape, but may be, for example, a substantially rectangular shape.
- the thickness of the silicon nitride substrate 10 is not limited as long as it is within a practical range, but is, for example, 0.2 mm to 1.5 mm, preferably 0.2 mm to 1.0 mm, and more preferably 0.2 mm to 0. It is 7 mm.
- the copper heat radiating plate 20 is a copper plate containing Cu as a main component.
- a Cu plate may be used, but a Cu alloy plate such as a Cu—Mo alloy or a Cu / Mo / Cu multilayer Cu plate may be used.
- the copper heat radiating plate 20 is used as a copper plate for joining a heat sink.
- the cross-sectional shape of the copper heat radiating plate 20 in the cross-sectional view in the plate thickness direction may be substantially rectangular.
- the planar shape of the copper heat radiating plate 20 when viewed from the perpendicular direction of one surface 12 is not limited as long as it is a practical shape, but may be, for example, a substantially rectangular shape.
- the thickness of the copper heat radiating plate 20 is not limited as long as it is within a practical range, but for example, 0.15 mm to 4.0 mm, preferably 0.15 mm to 1.0 mm, and more preferably 0.30 mm to 1. It is 0 mm.
- the size of the copper particles (average crystal particle diameter of the copper crystal) of the copper heat radiating plate 20 is, for example, 30 ⁇ m or more and 600 ⁇ m or less, preferably 50 ⁇ m or more and 500 ⁇ m or less, and more preferably 100 ⁇ m or more and 300 ⁇ m or less.
- the copper circuit plate 30 is a copper plate having a circuit pattern, which is composed of a copper layer containing Cu as a main component.
- a Cu plate may be used, but a Cu alloy plate such as a Cu—Mo alloy or a Cu / Mo / Cu multilayer Cu plate may be used.
- the copper circuit board 30 is electrically connected to an electronic component, an external connection terminal, or the like.
- the cross-sectional shape of the copper circuit plate 30 in the cross-sectional view in the plate thickness direction may be substantially rectangular.
- the planar shape of the copper circuit board 30 when viewed from the perpendicular direction of the other surface 14 of the silicon nitride substrate 10 is not limited as long as it is a practical shape as a circuit pattern, but for example, a substantially rectangular shape or a substantially polygonal shape or the like. It may be.
- the plate thickness of the copper circuit plate 30 is not limited as long as it is within a practical range, but for example, 0.15 mm to 4.0 mm, preferably 0.15 mm to 1.0 mm, and more preferably 0.30 mm to 1. It is 0 mm.
- the size of the copper particles of the copper circuit board 30 is, for example, 30 ⁇ m or more and 600 ⁇ m or less, preferably 50 ⁇ m or more and 500 ⁇ m or less, and more preferably 100 ⁇ m or more and 300 ⁇ m or less.
- the silicon nitride substrate 10 and the copper heat radiating plate 20 may be directly bonded to each other, or may be bonded via a bonding material layer.
- the silicon nitride substrate 10 and the copper circuit board 30 may be directly bonded to each other, or may be bonded via a bonding material layer.
- the bonding materials may be the same or different from each other.
- a brazing material can be used as the joining material.
- a silver-copper brazing material containing at least one active metal can be used. Specifically, Ag-Cu-Ti brazing material, Ag-Cu-In-Ti brazing material, and Ag-Cu-Sn-Ti brazing material can be used. These may be used alone or in combination of two or more.
- the blending ratio of Ag, Cu, and Sn or In is, for example, Ag: 85.0 parts by mass or more and 95.0 parts by mass or less, Cu: 5.0 parts by mass or more and 13.0 parts by mass or less, Sn or In. : It may be 0.4 parts by mass or more and 3.5 parts by mass or less.
- the amount of the active metal such as titanium added may be, for example, 1.5 parts by mass or more and 5.0 parts by mass or less with respect to 100 parts by mass in total of Ag, Cu, and Sn or In.
- a silver-copper brazing material layer may be provided between the copper heat radiating plate 20 and the silicon nitride substrate 10 and at least one of the copper circuit plate 30 and the silicon nitride substrate 10.
- the thickness of the silver-copper brazing material layer is not limited as long as it is within a practical range, but is, for example, 3 ⁇ m or more and 40 ⁇ m or less, preferably 4 ⁇ m or more and 25 ⁇ m or less.
- the thickness of the silicon nitride substrate 10 is T1
- the thickness of the copper heat radiating plate 20 is T2
- the thickness of the copper circuit board 30 is T3.
- T1, T2 and T3 may be configured to satisfy, for example, 1 ⁇ (T2 + T3) / T1 ⁇ 15.
- the upper limit of (T2 + T3) / T1 may be 15 or less, or 10 or less.
- the lower limit of (T2 + T3) / T1 is not particularly limited, but may be 1 or more, or 2 or more.
- one or more copper circuit boards 30 may be formed in the plane of the other surface 14 of the silicon nitride substrate 10. It is sufficient that one copper heat radiating plate 20 is formed on one surface 12 of the silicon nitride substrate 10, and a plurality of copper heat radiating plates 20 may be formed in the plane of one surface 12.
- the ceramic circuit board 100 includes a silver-plated layer 50 provided on at least a part of the other surface 34 of the copper circuit board 30.
- the silver-plated layer 50 enhances the solder wettability. Therefore, it is possible to improve the adhesion between the copper circuit plate 30 and the electronic component.
- a plating layer such as a silver plating layer may also be formed on the heat sink joint surface side of the copper heat radiating plate 20.
- the silver-plated layer 50 can use a practical material, but contains Ag as a main component.
- the silver-plated layer 50 may contain other elements in addition to Ag, and may contain, for example, Ni, P, and the like.
- the silver-plated layer 50 is formed in a recess 60 provided on the other surface 34 of the copper circuit board 30.
- FIG. 2 is a process cross-sectional view schematically showing an example of the process of forming the silver-plated layer 50.
- a copper circuit board 30 having a circuit pattern is formed on the silicon nitride substrate 10.
- a copper plate is bonded onto the silicon nitride substrate 10. Then, the copper plate is etched to form a copper circuit plate 30 having a circuit pattern.
- the other surface 34 of the copper circuit board 30 may be chemically polished.
- a recess 60 is formed on the other surface 34 of the copper circuit plate 30.
- a silver-plated layer 50 is formed inside the recess 60.
- a resist 70 having an opening pattern is formed on the other surface 34 of the copper circuit board 30 in a mounting region for mounting electronic components such as semiconductor elements.
- a pattern is formed on the resist 70 by screen printing or an exposure method.
- the region of the other surface 34 covered with the resist 70 corresponds to the non-mounting region.
- the other surface 34 of the copper circuit plate 30 in the resist 70 is subjected to plating pretreatment.
- degreasing may be performed using a degreasing solution for copper.
- the surface of the other surface 34 is cleaned.
- a copper etching solution such as sulfuric acid superwater containing sulfuric acid and hydrogen peroxide is used to form a recess 60 recessed from the other surface 34 in the direction of one surface 32 on the surface of the other surface 34.
- a long-time treatment is performed in order to intentionally form a recess deeper than usual.
- the copper oxide film formed on the surface of the other surface 34 can be removed. Therefore, the adhesion between the surface inside the recess 60 and the silver-plated layer 50 can be improved.
- washing and drying may be performed, if necessary.
- a silver plating layer 50 is formed inside the recess 60 by an electroless plating method or the like.
- the resist 70 is removed using a stripping solution.
- a known chemical solution may be used as the resist stripping solution, but it is preferable to use a stripping solution having a low erosion property against copper.
- caustic soda sodium hydroxide aqueous solution
- caustic soda or the like is used as a stripping solution having low erosion against copper. Further, when caustic soda or the like is used, side etching is unlikely to occur.
- the surfaces of the copper circuit plate 30, the silver-plated layer 50, or the copper heat-dissipating plate 20 may be subjected to alkaline cleaning.
- alkaline cleaning the concentration of the chemical solution and the number of repetitions are appropriately selected.
- the surface of the copper heat radiating plate 20 and the copper circuit plate 30 after alkaline cleaning may not be treated with a rust preventive agent generally used for copper plates such as benzotriazole. The generation of impurities at the bonding interface can be suppressed.
- the silver-plated layer 50 can be formed in the recess 60 of the copper circuit plate 30.
- the copper circuit board 30 may be configured so as not to include a side etching portion below the formation region of the silver plating layer 50.
- the lower surface of the silver-plated layer 50 is configured so that at least a part or the whole thereof is in contact with the other surface 34 of the copper circuit plate 30.
- the entire lower surface of the silver plating layer 50 is in contact with the other surface 34.
- a part of the lower surface of the silver-plated layer 50 may be formed in a region outside the recess 60.
- the silver-plated layer 50 is configured to fill at least a part or the whole of the recess 60.
- the silver-plated layer 50 that fills a part of the recess 60 can be formed along the surface of the other surface 34 in the recess 60.
- the silver-plated layer 50 has a substantially U-shape opened from one side 32 side to the other side 34 side of the copper circuit board 30. You may have.
- the upper limit of the depth of the recess 60 measured by the two-dimensional contour shape measurement is, for example, 50 ⁇ m or less, preferably 35 ⁇ m or less, and more preferably 25 ⁇ m or less. As a result, the connection stability at the time of solder connection can be improved.
- the lower limit of the depth of the recess 60 is, for example, 1 ⁇ m or more, preferably 2 ⁇ m or more, and more preferably 3 ⁇ m or more. As a result, the adhesion between the silver-plated layer 50 and the copper circuit plate 30 can be improved.
- the lower limit of the covering area of the silver-plated layer 50 with respect to the entire surface in the recess 60 is, for example, 80% or more, preferably 85% or more, more preferably 90. % Or more. As a result, the bondability of the semiconductor element by silver sintering bonding can be improved.
- the upper limit of the covering area of the silver-plated layer 50 with respect to the surface in the recess 60 is not particularly limited, but may be 100% or less, or 99% or less.
- the lower limit of the covering area of the silver plating layer 50 with respect to the entire surface of the copper circuit plate 30 on the other surface 34 side is, for example, 10% or more, preferably 30%. Above, more preferably 45% or more. As a result, the solder bondability can be improved.
- the upper limit of the covering area of the silver-plated layer 50 with respect to the other surface 34 is not particularly limited, but may be 90% or less, or 80% or less. As a result, the mechanical strength of the other surface 34 of the copper circuit plate 30 located outside the recess 60 in the in-plane direction can be increased.
- the silver plating layer 50 does not have to be formed on the side surface of the copper circuit board 30.
- the stress applied to the silver-plated layer 50 can be suppressed due to the difference in the coefficient of linear expansion and the difference in the degree of deformation that occur between the other surface 34 side and the side surface side of the copper circuit board 30.
- peeling between the copper circuit plate 30 and the silver-plated layer 50 can be suppressed.
- the thickness of the silver-plated layer 50 is, for example, 0.1 ⁇ m or more and 3.0 ⁇ m or less, preferably 0.2 ⁇ m or more and 2.0 ⁇ m or less, and more preferably 0.3 ⁇ m or more and 1.0 ⁇ m or less.
- the depth of the recess 60 is preferably larger than the thickness of the silver-plated layer 50, and more preferably the depth of the recess 60 is at least twice the thickness of the silver-plated layer 50.
- the surface roughness Ra of the silver-plated layer 50 is, for example, 0.01 ⁇ m or more and 0.9 ⁇ m or less, preferably 0.1 ⁇ m or more and 0.6 ⁇ m or less.
- FIG. 3 is a cross-sectional view schematically showing an example of the electronic component module 200 of the present embodiment.
- the electronic component module 200 includes an electronic component 120 such as a semiconductor element mounted on the ceramic circuit board 100.
- the electronic component 120 may be electrically connected to a copper circuit board 30, a lead frame for external connection, or the like by wire bonding.
- the electronic component 120 can select various semiconductor elements such as an IGBT (Insulated Gate Bipolar Transistor), a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and a FWD (Free Wheeling Semiconductor) according to a desired function. ..
- IGBT Insulated Gate Bipolar Transistor
- MOSFET Metal Oxide Semiconductor Field Effect Transistor
- FWD Free Wheeling Semiconductor
- the electronic component module 200 includes a heat sink 110 provided on the copper heat radiating plate 20. As a result, the heat conduction from the ceramic circuit board 100 to the heat sink 110 can be enhanced.
- the heat sink 110 is formed of, for example, a material having high thermal conductivity such as aluminum, copper, or an alloy thereof, and may be formed of aluminum or an aluminum alloy.
- the electronic component 120 may be solder-bonded to the copper circuit board 30 via the solder layer 132. Further, the heat sink 110 may be solder-bonded to the copper heat radiating plate 20 via the solder layer 130.
- solder material used for the solder layer 130 and the solder layer 132 known solder materials may be used, and for example, Sn-Sb type, Sn-Ag type, Sn-Cu type, Sn-In type, or Sn-Ag. -A Cu-based solder material (so-called lead-free solder material) may be used.
- the electronic component module 200 may include a sealing resin layer (not shown) for sealing the electronic component 120.
- the sealing resin layer may seal a part or the whole of the ceramic circuit board 100.
- the sealing resin portion can be formed by curing the resin composition for forming the sealing resin portion.
- the type of the resin composition for forming the sealing resin portion is not particularly limited, and a resin composition usually used in the technical field such as a resin composition for transfer molding, a resin composition for compression molding, and a liquid sealing material is used. can do.
- the resin composition for forming the sealing resin portion preferably contains a thermosetting resin, and may contain one or more selected from epoxy resin, phenol resin, cyanate resin, bismaleimide triazine resin, acrylic resin, and silicone resin. It is preferable to contain, and it is more preferable to contain at least an epoxy resin.
- the resin composition for forming the sealing resin portion may further contain a curing agent, a filler and the like.
- powders of fused silica spherical silica
- crystalline silica alumina
- silicon carbide silicon nitride, aluminum nitride, boron nitride, beryllia, zirconia, etc.
- spherical beads glass fibers, aramid fibers, etc.
- glass fibers glass fibers, aramid fibers, etc.
- aramid fibers etc.
- the filler one type may be used alone or two or more types may be used in combination.
- a brazing material including active metal
- Ag powder manufactured by Fukuda Metal Foil Powder Industry Co., Ltd .: Ag-HWQ 2.5 ⁇ m
- Cu powder manufactured by Fukuda Metal Foil Powder Industry Co., Ltd .: Cu-HWQ
- Titanium hydride powder manufactured by Toho Tech Co., Ltd .:
- Sn powder manufactured by Fukuda Metal Foil Powder Industry Co., Ltd .: Sn-HPN 3 ⁇ m
- brazing material paste was applied to both sides of the silicon nitride substrate by a screen printing method so that the dry thickness on each side was about 10 ⁇ m.
- copper plates were laminated on both sides of the silicon nitride substrate and heated in a vacuum of 1.0 ⁇ 10 -3 Pa or less at 780 ° C. for 30 minutes to bond the silicon nitride substrate and the copper plate with a brazing material.
- a silicon nitride-copper composite in which a silicon nitride substrate and a copper plate were bonded with a brazing material was obtained.
- An etching resist was printed on the obtained silicon nitride-copper composite copper layer and etched with a ferric chloride solution to form a circuit pattern.
- Example 1 A resist having an opening pattern was screen-printed on the surface of a copper plate (copper circuit plate) on which a circuit pattern was formed.
- the surface of the copper circuit board in the resist opening was degreased and washed with water.
- the surface inside the resist opening was etched with sulfuric acid superwater containing sulfuric acid and hydrogen peroxide to form recesses.
- a silver plating layer was formed in the recess by electroless plating.
- the etching treatment conditions and electroless plating conditions described above were adjusted so that the depth of the recesses was 2.5 times or more the thickness of the silver plating layer.
- the resist was removed using an aqueous sodium hydroxide solution to produce a ceramic circuit board (silicon nitride circuit board).
- Example 1 A ceramic circuit board was produced in the same manner as in Example 1 except that an aqueous solution of sulfuric acid of about 10% was used instead of the aqueous solution of sulfuric acid and an aqueous solution of potassium hydroxide was used instead of the aqueous solution of sodium hydroxide.
- FIG. 4 (a) and 4 (b) show SEM images of the cross section of the ceramic circuit board of Example 1 in the plate thickness direction.
- FIG. 4B is an enlarged view of FIG. 4A.
- FIGS. 5A and 5B show SEM images of the cross section of the ceramic circuit board of Comparative Example 1 in the plate thickness direction.
- FIG. 5B is an enlarged view of FIG. 5A.
- FIG. 4 the structure in which the silver-plated layer was formed in the recess was observed.
- FIG. 5 it was observed that the silver-plated layer was formed on the surface of the copper circuit board, and the recess in which the silver-plated layer 50 was provided was not formed. Further, in FIG. 5, it was observed that a side etching portion was formed below the silver-plated layer.
- the ceramic circuit board of Example 1 tends to suppress peeling of the silver-plated layer at the time of solder connection or in a repeated use environment. Therefore, by using it in an electronic component module on which a semiconductor element is mounted, the bondability of the semiconductor element by silver sintering bonding can be enhanced, and the connection reliability of the semiconductor element can be improved.
- Example 2 In Example 2, the etching treatment conditions and the electroless plating conditions were adjusted so that the depth of the recesses was equal to the thickness of the silver plating layer. Compared with Example 1, peeling tended to occur slightly, but peeling was more difficult than with Comparative Example 1.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
このような凹部内にメッキ層を有するセラミックス回路基板を用いることで、接続信頼性に優れた電子部品モジュールを実現できることを見出し、本発明を完成するに至った。
窒化珪素基板と、
前記窒化珪素基板の一面に設けられた銅放熱板と、
前記窒化珪素基板の他面に設けられた銅回路板と、
を備えるセラミックス回路基板であって、
前記窒化珪素基板の他面に対向する主面と反対側に位置する、前記銅回路板の他面の少なくとも一部に設けられた銀メッキ層を備え、
前記銀メッキ層が、前記銅回路板の他面に設けられた凹部内に形成されている、
セラミックス回路基板が提供される。
上記のセラミックス回路基板と、
前記セラミックス回路基板の銅回路板に設けられた電子部品と、
前記セラミックス回路基板の銅放熱板に設けられたヒートシンクと、
を備える、電子部品モジュールが提供される。
なお、本実施の形態では図示するように前後左右上下の方向を規定して説明する。しかし、これは構成要素の相対関係を簡単に説明するために便宜的に規定するものである。従って、本発明を実施する製品の製造時や使用時の方向を限定するものではない。
平面上の設けられたメッキ層には、その平面との接する先端部分に応力集中点αが存在する。この応力集中点αを基点として、面内方向に応力を受けるために、メッキ層に界面剥離が生じる恐れがある。
これに対して、凹面上に設けられたメッキ層には、面内方向に応力を受ける応力集中点αがないため、メッキ層の剥離を抑制できると考えられる。
上述のセラミックス回路基板を用いることで、電子部品モジュールの接続信頼性を向上させることが可能となる。
図1は、セラミックス回路基板100の構成の一例を模式的に示す図であり、図1(a)は側面図、図1(b)は上面図を示す。なお、図1(a)は、図1(b)のA-A矢視断面図である。
また、一面12の垂線方向から見たときの窒化珪素基板10の平面形状は、実用的な形状であれば限定されないが、例えば、略矩形であってもよい。
「略」という用語は、特に明示的な説明の無い限りは、製造上の公差やばらつき等を考慮した範囲を含むことを表す。
銅放熱板20は、ヒートシンク接合用の銅板として用いられる。
また、一面12の垂線方向から見たときの銅放熱板20の平面形状は、実用的な形状であれば限定されないが、例えば、略矩形であってもよい。
また、窒化珪素基板10の他面14の垂線方向から見たときの銅回路板30の平面形状は、回路パターンとして実用的な形状であれば限定されないが、例えば、略矩形や略多角形等であってもよい。
ろう材として、チタン(Ti)、インジウム(In)、ジルコニウム(Zr)、ハフニウム(Hf)、ニオブ(Nb)、タンタル(Ta)、バナジウム(V)、アルミニウム(Al)、錫(Sn)から選択される少なくとも一種の活性金属を含有する銀-銅系ろう材を用いることができる。具体的には、Ag-Cu-Ti系ロウ材、Ag-Cu-In-Ti系ロウ材、Ag-Cu-Sn-Ti系ロウ材を使用できる。これらを単独で用いても2種以上を組み合わせて用いてもよい。
チタン等の活性金属の添加量は、例えば、Agと、Cuと、SnまたはInとの合計100質量部に対して、1.5質量部以上5.0質量部以下としてもよい。活性金属の添加量を適切に調整することで、セラミックス板に対する濡れ性を一層高めることができ、接合不良の発生を一層抑えることができる。
このとき、T1、T2およびT3が、例えば、1≦(T2+T3)/T1≦15を満たすように構成されてもよい。(T2+T3)/T1の上限は、15以下でもよく、10以下でもよい。これにより、セラミックス回路基板100の冷熱サイクルの耐性を向上できる。一方、(T2+T3)/T1の下限は、特に限定されないが、1以上でもよく、2以上でもよい。
具体的手法の一つとして、例えば、窒化珪素基板10上に銅板を接合する。そして、該銅板をエッチング処理して回路パターンを有する銅回路板30を形成する。銅回路板30の他面34に対して、化学的研磨処理を施してもよい。
まず、銅回路板30の他面34上に、半導体素子などの電子部品を搭載する搭載領域について、開口パターンを有するレジスト70を形成する。例えば、スクリーン印刷や露光法によって、レジスト70にパターンを形成する。レジスト70で覆われた他面34の領域は、非搭載領域に対応する。
その後、剥離液を用いて、レジスト70を除去する。レジスト剥離液には、公知の薬液を使用してもよいが、銅に対して浸食性が小さい剥離液を使用することが好ましい。銅に対して低浸食性の剥離液として、例えば、苛性ソーダ(水酸化ナトリウム水溶液)が用いられる。また、苛性ソーダ等を用いるとサイドエッチングが生じにくい。
アルカリ洗浄後の銅放熱板20や銅回路板30の表面において、ベンゾトリアゾール等の銅板に一般的に使用される防錆剤を処理しないでもよい。接合界面における不純物の発生を抑制できる。
凹部60の深さは、銀メッキ層50の厚みよりも大きいことが好ましく、より好ましくは凹部60の深さは、銀メッキ層50の厚みの2倍以上であることが好ましい。
封止樹脂部形成用樹脂組成物の種類は特に限定されず、トランスファーモールド用樹脂組成物、コンプレッション成形用樹脂組成物、液状封止材等、当該技術分野で通常使用される樹脂組成物を使用することができる。
封止樹脂部形成用樹脂組成物は、熱硬化性樹脂を含むことが好ましく、エポキシ樹脂、フェノール樹脂、シアネート樹脂、ビスマレイミドトリアジン樹脂、アクリル樹脂、シリコーン樹脂から選ばれる1種又は2種以上を含むことが好ましく、少なくともエポキシ樹脂を含むことがより好ましい。
封止樹脂部形成用樹脂組成物は、硬化剤、充填材等を更に含んでいてよい。
充填材としては、溶融シリカ(球状シリカ)、結晶シリカ、アルミナ、炭化珪素、窒化珪素、窒化アルミニウム、窒化ホウ素、ベリリア、ジルコニア等の粉体又はこれらを球形化したビーズ、ガラス繊維、アラミド繊維、炭素繊維などが挙げられる。充填材は1種を単独で用いても2種以上を組み合わせて用いてもよい。
平均粒径0.7μmの窒化珪素原料粉末91.4質量部に、焼結助剤として、Y2O36.0質量部とMgO1.5質量部添加し、有機溶剤、有機バインダー、可塑剤等を混入しボールミルで均一に混合して原料スラリーとした。原料スラリーを脱泡・増粘した後、ドクターブレード法でシート成形して成形体を得た。得られたシート成形体を切断後、500℃で脱脂し、更に、焼成炉内で、1850℃、5時間の窒素雰囲気中で焼成し、窒化珪素基板を作製した。
ろう材(活性金属を含む)として、Ag粉末(福田金属箔粉工業株式会社製:Ag-HWQ 2.5μm)89.5質量部、Cu粉末(福田金属箔粉工業株式会社製:Cu-HWQ 3μm)9.5質量部、Sn粉末(福田金属箔粉工業株式会社製:Sn-HPN 3μm)1.0質量部の合計100質量部に対して、水素化チタン粉末(トーホーテック株式会社製:TCH-100)を3.5質量部含むろう材を準備した。
上記ろう材と、バインダー樹脂と、溶剤とを混合し、ろう材ペーストを得た。このろう材ペーストを、窒化珪素基板の両面に、各面での乾燥厚みが約10μmとなるように、スクリーン印刷法で塗布した。
その後、窒化珪素基板の両面に銅板を重ね、1.0×10-3Pa以下の真空中にて780℃、30分の条件で加熱し、窒化珪素基板と銅板をろう材で接合した。これにより、窒化珪素基板と銅板とがろう材で接合された窒化珪素-銅複合体を得た。
得られた窒化珪素-銅複合体銅層にエッチングレジストを印刷し、塩化第二鉄溶液でエッチングして回路パターンを形成した。
回路パターンが形成された銅板(銅回路板)の表面に、開口パターンを有するレジストをスクリーン印刷した。
レジスト開口部内の銅回路板の表面について、脱脂処理を施し、水で洗浄した。
硫酸および過酸化水素を含む硫酸過水を用いて、レジスト開口内の表面をエッチングして、凹部を形成した。
エッチング後、無電解メッキによって、凹部内に銀メッキ層を形成した。なお、上記のエッチング処理条件、無電解メッキ条件は、凹部の深さが銀メッキ層の厚みの2.5倍以上になるように調整した。
その後、水酸化ナトリウム水溶液を用いてレジストを除去して、セラミックス回路基板(窒化珪素回路基板)を製造した。
硫酸過水に代えて約10%の硫酸水溶液を使用し、水酸化ナトリウム水溶液に変えて水酸化カリウム水溶液を使用した以外は、実施例1と同様にしてセラミックス回路基板を製造した。
また、図5(a)、(b)は、比較例1のセラミックス回路基板の板厚方向の断面についてのSEM画像を示す。図5(b)は、図5(a)の拡大図である。
実施例2では、エッチング処理条件、無電解メッキ条件を調整して、凹部の深さが銀メッキ層の厚みと同等になるように調整した。実施例1と比較するとやや剥離が生じやすい傾向にあったが、比較例1よりは剥離し難かった。
12 一面
14 他面
20 銅放熱板
30 銅回路板
32 一面
34 他面
50 銀メッキ層
60 凹部
70 レジスト
100 セラミックス回路基板
110 ヒートシンク
120 電子部品
130 半田層
132 半田層
200 電子部品モジュール
Claims (12)
- 窒化珪素基板と、
前記窒化珪素基板の一面に設けられた銅放熱板と、
前記窒化珪素基板の他面に設けられた銅回路板と、
を備えるセラミックス回路基板であって、
前記窒化珪素基板の他面に対向する主面と反対側に位置する、前記銅回路板の他面の少なくとも一部に設けられた銀メッキ層を備え、
前記銀メッキ層が、前記銅回路板の他面に設けられた凹部内に形成されている、
セラミックス回路基板。 - 請求項1に記載のセラミックス回路基板であって、
前記銅回路板の板厚方向に見たときの断面視の一つにおいて、
前記銀メッキ層が、前記銅回路板の主面側から他面側の方向に開口した略コの字状を有する、
セラミックス回路基板。 - 請求項1または2に記載のセラミックス回路基板であって、
前記銅回路板の板厚方向に見たときの断面視の一つにおいて、
前記銅回路板は、前記銀メッキ層の形成領域の下方にサイドエッチング部を含まない、
セラミックス回路基板。 - 請求項1~3のいずれか一項に記載のセラミックス回路基板であって、
前記銅回路板の他面を垂線方向から見たとき、前記凹部内の表面全体に対する前記銀メッキ層の被覆面積が、80%以上100%以下である、セラミックス回路基板。 - 請求項1~4のいずれか一項に記載のセラミックス回路基板であって、
二次元輪郭形状測定により測定される前記凹部の深さが、1μm以上50μm以下である、セラミックス回路基板。 - 請求項1~5のいずれか一項に記載のセラミックス回路基板であって、
前記銀メッキ層の厚みが、0.1μm以上3.0μm以下である、セラミックス回路基板。 - 請求項1~6のいずれか一項に記載のセラミックス回路基板であって、
前記銅回路板の他面を垂線方向から見たとき、前記銅回路板の他面側の表面全体に対する前記銀メッキ層の被覆面積が、10%以上90%以下である、セラミックス回路基板。 - 請求項1~7のいずれか一項に記載のセラミックス回路基板であって、
JIS B 0601-1994に準拠して測定される、前記銀メッキ層の表面粗さRaが、0.01μm以上0.9μm以下である、セラミックス回路基板。 - 請求項1~8のいずれか一項に記載のセラミックス回路基板であって、
前記銅回路板の銅粒子のサイズが、30μm以上600μm以下である、セラミックス回路基板。 - 請求項1~9のいずれか一項に記載のセラミックス回路基板であって、
前記銅放熱板と前記窒化珪素基板との間および前記銅回路板と前記窒化珪素基板との間の少なくとも一方に、銀-銅系ろう材層が設けられている、セラミックス回路基板。 - 請求項1~10のいずれか一項に記載のセラミックス回路基板であって、
前記窒化珪素基板の厚みをT1、
前記銅放熱板の厚みをT2、
前記銅回路板の厚みをT3としたとき、
T1、T2およびT3が、1≦(T2+T3)/T1≦15を満たす、
セラミックス回路基板。 - 請求項1~11のいずれか一項に記載のセラミックス回路基板と、
前記セラミックス回路基板の銅回路板に設けられた電子部品と、
前記セラミックス回路基板の銅放熱板に設けられたヒートシンクと、
を備える、電子部品モジュール。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080030507.5A CN113748502A (zh) | 2019-04-26 | 2020-04-17 | 陶瓷电路基板以及电子部件模块 |
KR1020217037601A KR20220002976A (ko) | 2019-04-26 | 2020-04-17 | 세라믹스 회로 기판 및 전자 부품 모듈 |
JP2021516075A JP7212768B2 (ja) | 2019-04-26 | 2020-04-17 | セラミックス回路基板および電子部品モジュール |
EP20794822.5A EP3961695B1 (en) | 2019-04-26 | 2020-04-17 | Ceramic circuit substrate and electronic component module |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019086124 | 2019-04-26 | ||
JP2019-086124 | 2019-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020218193A1 true WO2020218193A1 (ja) | 2020-10-29 |
Family
ID=72942075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016884 WO2020218193A1 (ja) | 2019-04-26 | 2020-04-17 | セラミックス回路基板および電子部品モジュール |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP3961695B1 (ja) |
JP (1) | JP7212768B2 (ja) |
KR (1) | KR20220002976A (ja) |
CN (1) | CN113748502A (ja) |
WO (1) | WO2020218193A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112022002201T5 (de) | 2021-06-11 | 2024-03-14 | NGK Electronics Devices, Inc. | Verfahren zur Herstellung eines gebondeten Substrats, Verfahren zur Herstellung eines Schaltungssubstrats und Schaltungssubstrat |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005072456A (ja) * | 2003-08-27 | 2005-03-17 | Kyocera Corp | 電気素子モジュール |
JP2005101353A (ja) * | 2003-09-25 | 2005-04-14 | Toshiba Corp | セラミックス回路基板 |
JP2005101415A (ja) | 2003-09-26 | 2005-04-14 | Toshiba Corp | セラミックス回路基板およびその製造方法 |
JP2007258416A (ja) * | 2006-03-23 | 2007-10-04 | Mitsubishi Materials Corp | パワーモジュール用基板およびパワーモジュール並びにパワーモジュール用基板の製造方法 |
WO2015114987A1 (ja) * | 2014-01-29 | 2015-08-06 | Ngkエレクトロデバイス株式会社 | パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール |
WO2018225809A1 (ja) * | 2017-06-09 | 2018-12-13 | デンカ株式会社 | セラミックス回路基板 |
US20190084893A1 (en) * | 2016-02-26 | 2019-03-21 | Heraeus Deutschland GmbH & Co. KG | Copper-ceramic composite |
JP2019086124A (ja) | 2017-11-09 | 2019-06-06 | キヤノン株式会社 | エアダンパーおよびこれを用いた画像形成装置並びに給紙カセット |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008124416A (ja) | 2006-03-31 | 2008-05-29 | Hitachi Metals Ltd | セラミックス回路基板およびこれを用いた半導体モジュール |
JP7207904B2 (ja) | 2017-08-25 | 2023-01-18 | 京セラ株式会社 | パワーモジュール用基板およびパワーモジュール |
-
2020
- 2020-04-17 KR KR1020217037601A patent/KR20220002976A/ko not_active Application Discontinuation
- 2020-04-17 CN CN202080030507.5A patent/CN113748502A/zh active Pending
- 2020-04-17 JP JP2021516075A patent/JP7212768B2/ja active Active
- 2020-04-17 EP EP20794822.5A patent/EP3961695B1/en active Active
- 2020-04-17 WO PCT/JP2020/016884 patent/WO2020218193A1/ja unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005072456A (ja) * | 2003-08-27 | 2005-03-17 | Kyocera Corp | 電気素子モジュール |
JP2005101353A (ja) * | 2003-09-25 | 2005-04-14 | Toshiba Corp | セラミックス回路基板 |
JP2005101415A (ja) | 2003-09-26 | 2005-04-14 | Toshiba Corp | セラミックス回路基板およびその製造方法 |
JP2007258416A (ja) * | 2006-03-23 | 2007-10-04 | Mitsubishi Materials Corp | パワーモジュール用基板およびパワーモジュール並びにパワーモジュール用基板の製造方法 |
WO2015114987A1 (ja) * | 2014-01-29 | 2015-08-06 | Ngkエレクトロデバイス株式会社 | パワーモジュール用基板とその製造方法とそのパワーモジュール用基板を用いたパワーモジュール |
US20190084893A1 (en) * | 2016-02-26 | 2019-03-21 | Heraeus Deutschland GmbH & Co. KG | Copper-ceramic composite |
WO2018225809A1 (ja) * | 2017-06-09 | 2018-12-13 | デンカ株式会社 | セラミックス回路基板 |
JP2019086124A (ja) | 2017-11-09 | 2019-06-06 | キヤノン株式会社 | エアダンパーおよびこれを用いた画像形成装置並びに給紙カセット |
Non-Patent Citations (1)
Title |
---|
See also references of EP3961695A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE112022002201T5 (de) | 2021-06-11 | 2024-03-14 | NGK Electronics Devices, Inc. | Verfahren zur Herstellung eines gebondeten Substrats, Verfahren zur Herstellung eines Schaltungssubstrats und Schaltungssubstrat |
Also Published As
Publication number | Publication date |
---|---|
EP3961695A1 (en) | 2022-03-02 |
JP7212768B2 (ja) | 2023-01-25 |
EP3961695B1 (en) | 2023-08-02 |
KR20220002976A (ko) | 2022-01-07 |
EP3961695A4 (en) | 2022-06-15 |
JPWO2020218193A1 (ja) | 2020-10-29 |
CN113748502A (zh) | 2021-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102504621B1 (ko) | 세라믹스 회로 기판 및 그것을 사용한 모듈 | |
EP3321957B1 (en) | Ceramic metal circuit board and semiconductor device using same | |
JP4015023B2 (ja) | 電子回路用部材及びその製造方法並びに電子部品 | |
EP0788153B1 (en) | Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same | |
EP1450401B1 (en) | Module comprising a ceramic circuit board | |
WO1998008256A1 (en) | Silicon nitride circuit board and semiconductor module | |
JP2000323618A (ja) | 銅回路接合基板及びその製造方法 | |
JP2002043482A (ja) | 電子回路用部材及びその製造方法並びに電子部品 | |
US6783867B2 (en) | Member for semiconductor device using an aluminum nitride substrate material, and method of manufacturing the same | |
KR100374379B1 (ko) | 기판 | |
WO2020218193A1 (ja) | セラミックス回路基板および電子部品モジュール | |
JP4104429B2 (ja) | モジュール構造体とそれを用いたモジュール | |
JP6031784B2 (ja) | パワーモジュール用基板及びその製造方法 | |
JPH08102570A (ja) | セラミックス回路基板 | |
KR100873772B1 (ko) | 금속/세라믹 접합 제품 | |
JP3537320B2 (ja) | 回路基板 | |
JP7340009B2 (ja) | 電子部品モジュール、及び、窒化珪素回路基板 | |
JP3729637B2 (ja) | 電子部品 | |
WO2023047765A1 (ja) | 金属-セラミックス接合基板およびその製造方法 | |
JP2001156413A (ja) | 銅回路接合基板及びその製造方法 | |
JPH11354699A (ja) | 半導体用放熱板とその製造方法 | |
JP2000349098A (ja) | セラミック基板と半導体素子の接合体及びその製造方法 | |
KR20230039649A (ko) | 절연 기판 및 그 제조 방법 | |
KR20210142616A (ko) | 질화규소 회로 기판, 및, 전자 부품 모듈 | |
JPH07162105A (ja) | 回路基板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20794822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021516075 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217037601 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020794822 Country of ref document: EP Effective date: 20211126 |