WO2015113418A1 - 车辆及其的制动回馈控制方法 - Google Patents

车辆及其的制动回馈控制方法 Download PDF

Info

Publication number
WO2015113418A1
WO2015113418A1 PCT/CN2014/089831 CN2014089831W WO2015113418A1 WO 2015113418 A1 WO2015113418 A1 WO 2015113418A1 CN 2014089831 W CN2014089831 W CN 2014089831W WO 2015113418 A1 WO2015113418 A1 WO 2015113418A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor generator
vehicle
feedback
brake
power
Prior art date
Application number
PCT/CN2014/089831
Other languages
English (en)
French (fr)
Inventor
杨冬生
廉玉波
张金涛
罗红斌
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to EP14880471.9A priority Critical patent/EP3100898A4/en
Publication of WO2015113418A1 publication Critical patent/WO2015113418A1/zh
Priority to US15/216,437 priority patent/US10232839B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/354Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having separate mechanical assemblies for transmitting drive to the front or to the rear wheels or set of wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/34Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles
    • B60K17/356Arrangement or mounting of transmissions in vehicles for driving both front and rear wheels, e.g. four wheel drive vehicles having fluid or electric motor, for driving one or more wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/52Driving a plurality of drive axles, e.g. four-wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/10Indicating wheel slip ; Correction of wheel slip
    • B60L3/106Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels
    • B60L3/108Indicating wheel slip ; Correction of wheel slip for maintaining or recovering the adhesion of the drive wheels whilst braking, i.e. ABS
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/24Electrodynamic brake systems for vehicles in general with additional mechanical or electromagnetic braking
    • B60L7/26Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0061Disposition of motor in, or adjacent to, traction wheel the motor axle being parallel to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/46Wheel motors, i.e. motor connected to only one wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/445Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/46Drive Train control parameters related to wheels
    • B60L2240/465Slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/50Drive Train control parameters related to clutches
    • B60L2240/507Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/80Time limits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2260/00Operating Modes
    • B60L2260/20Drive modes; Transition between modes
    • B60L2260/28Four wheel or all wheel drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/12Emission reduction of exhaust
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/40Torque distribution
    • B60W2720/403Torque distribution between front and rear axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/89Repartition of braking force, e.g. friction braking versus regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/915Specific drive or transmission adapted for hev
    • Y10S903/916Specific drive or transmission adapted for hev with plurality of drive axles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/947Characterized by control of braking, e.g. blending of regeneration, friction braking

Definitions

  • the present invention relates to the field of automobile technology, and in particular, to a brake feedback control method for a vehicle and a vehicle.
  • the related art discloses a control method for braking energy recovery of an electric vehicle, it only considers factors such as a power battery and a motor generator system, and controls a current recoverable when the electric vehicle brakes according to the feedback value of the motor generator feedback torque. , complete the recovery of braking energy.
  • the object of the present invention is to at least solve one of the above technical drawbacks.
  • the first object of the present invention is to provide a brake feedback control method for a vehicle, which can realize reasonable distribution of energy between the engine unit and the motor generator when the vehicle brakes, thereby improving the brake feedback efficiency, thereby Get greater fuel economy, lower emissions and smooth driving performance.
  • a second object of the invention is to propose a vehicle.
  • a first aspect of the present invention provides a brake feedback control method for a vehicle, wherein the vehicle includes an engine unit, a transmission unit adapted to be selectively coupled to the engine unit, and a first motor generator coupled to the transmission unit, an output portion, a power switching device, a second motor generator for driving a front wheel and/or a rear wheel of the vehicle, and the first motor generator And a power battery powered by the second motor generator, wherein the output portion is configured to transmit power transmitted through the transmission unit to a front wheel and/or a rear wheel of the vehicle, the power switching device Suitable for transmitting or disconnecting power between the transmission unit and the output portion, the brake feedback control method comprising the steps of detecting a current vehicle speed of the vehicle and a depth of a brake pedal of the vehicle When the current vehicle speed of the vehicle is greater than a preset vehicle speed, the depth of the brake pedal is greater than 0, and the anti-lock brake system of the vehicle is not working In a state, controlling the vehicle to enter a brake feedback control
  • the required braking torque corresponding to the vehicle is obtained according to the depth of the brake pedal, and the first motor generator is used according to the required braking torque.
  • the braking torque, the braking torque of the second motor generator and the braking torque of the vehicle for basic braking are reasonably distributed, taking into account the energy feedback efficiency, braking safety and driving comfort of the vehicle braking, thereby enabling Gain greater fuel economy, lower emissions and smooth driving performance, maximizing vehicle range, ride and handling.
  • the power output from the engine unit and/or the first motor generator of the embodiment of the present invention may be output to the output portion through the power switching device, and then outputted to the front wheel and/or the rear wheel of the vehicle by the output portion.
  • the second motor generator can perform torque compensation on the front wheel and/or the rear wheel, and can also drive the vehicle with the engine unit and the first motor generator, thereby increasing the operation of the vehicle.
  • the mode allows the vehicle to better adapt to different operating conditions, achieve better fuel economy, and reduce harmful gas emissions.
  • the method is simple, reliable and easy to implement.
  • a vehicle includes: an engine unit; a transmission unit adapted to be selectively coupled to the engine unit; the first motor generator The first motor generator is coupled to the transmission unit in a power coupling manner; the output portion is configured to transmit power transmitted through the transmission unit to a front wheel and/or a rear wheel of the vehicle; a switching device adapted to transmit or disconnect power between the transmission unit and the output portion; a second motor generator for driving the front wheel And/or the rear wheel; a power battery, the power battery being respectively connected to the first motor generator and the second motor generator to give the first motor generator and the second motor generator Power supply; controller, when the current vehicle speed of the vehicle is greater than a preset vehicle speed, the depth of the brake pedal of the vehicle is greater than 0, and the anti-lock braking system of the vehicle is not working In a state, the controller controls the vehicle to enter a brake feedback control mode, wherein the controller obtains the vehicle according to a depth of the brake pedal when the vehicle is in the
  • the required braking torque corresponding to the vehicle is obtained according to the depth of the brake pedal, and the braking torque of the first motor generator is determined according to the required braking torque.
  • the braking torque of the two motor generators and the braking torque of the vehicle for basic braking are reasonably distributed, and the energy feedback efficiency, braking safety and driving comfort during vehicle braking are fully considered, so that a larger fuel economy can be obtained. Sex, Lower emissions and smooth driving performance for maximum driving range, ride and handling.
  • the power output from the engine unit and/or the first motor generator of the embodiment of the present invention may be output to the output portion through the power switching device, and then outputted to the front wheel and/or the rear wheel of the vehicle by the output portion.
  • the second motor generator can perform torque compensation on the front wheel and/or the rear wheel, and can also drive the vehicle with the engine unit and the first motor generator, thereby increasing the operation of the vehicle.
  • the mode allows the vehicle to better adapt to different operating conditions, achieve better fuel economy, and reduce harmful gas emissions.
  • FIG. 1 is a schematic diagram of the principle of a power transmission system according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a powertrain system in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic illustration of a powertrain system in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic illustration of a powertrain system in accordance with yet another embodiment of the present invention.
  • FIG. 5 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 6 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 7 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 8 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 9 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 10 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG 11 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 12 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 13 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 14 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 15 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 16 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 17 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 18 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • Figure 19 is a schematic illustration of a powertrain system in accordance with still another embodiment of the present invention.
  • FIG. 20 is a flowchart of a brake feedback control method of a vehicle according to an embodiment of the present invention.
  • 21 is a schematic diagram of an energy transfer path of a power transmission system of a vehicle according to an embodiment of the present invention.
  • 22 is a diagram showing an interaction diagram of a brake feedback control information of a vehicle according to an embodiment of the present invention.
  • FIG. 23 is a flow chart of a vehicle entering a brake feedback control mode according to an embodiment of the present invention.
  • 24 is a detailed flow chart of brake feedback control of a vehicle according to an embodiment of the present invention.
  • 25 is a flow chart of electric brake torque distribution when vehicle brake feedback control is performed according to an embodiment of the present invention.
  • Figure 26 is a schematic illustration of a vehicle in accordance with one embodiment of the present invention.
  • the structure of the first feature described below "on" the second feature may include embodiments in which the first and second features are formed in direct contact, and may include additional features formed between the first and second features. Embodiments such that the first and second features may not be in direct contact.
  • the brake feedback control strategy means that when the electric vehicle is decelerating or braking, the motor controller performs feedback control according to the established strategy, charges the power battery, improves the driving range of the electric vehicle, and reduces pollutant discharge and mechanical braking. Wear and tear while optimizing the ride of the electric car. Therefore, in order to reduce the energy consumption of electric vehicles and alleviate the energy crisis and environmental pressure, it is necessary to conduct an in-depth study on the brake feedback control strategy of electric vehicles.
  • the inventors of the present application found that the braking feedback control strategies in the related art are mostly directed to parallel/series two-drive hybrid vehicles, which are mainly divided into two categories: parallel and series control strategies.
  • the former does not adjust the original friction braking force, and the feedback braking force is added to the original friction brake to realize the braking function.
  • the braking energy recovery rate is low and the braking feeling is poor; the latter needs to adjust the friction force.
  • the braking energy recovery rate is large, and the braking feeling is also good, but since the friction braking force is difficult to adjust, the control process is relatively complicated.
  • the calibrated feedback torque curve in the vehicle's brake feedback control strategy (ie, the brake pedal depth-brake feedback torque curve calculated from the basic brake pedal stroke-deceleration curve) also needs to fully consider the vehicle's brake feedback efficiency, Factors such as the ride comfort, handling stability and working mode of the vehicle, so as to seek the best balance between economic peace and smoothness.
  • Factors such as the ride comfort, handling stability and working mode of the vehicle, so as to seek the best balance between economic peace and smoothness.
  • the vehicle will be braked in different modes (such as emergency braking, normal braking, downhill braking slope, etc.)
  • the embodiments of the present invention provide a vehicle and a brake feedback control method thereof, which can fully consider various factors (economicality, ride comfort, and other correlations) in the process of braking feedback control of a vehicle.
  • a power transmission system 100 which is suitable for use in a vehicle, particularly suitable for use in a hybrid vehicle having an engine unit 1 and a motor generator as a main power source, will be described in detail below with reference to Figs.
  • a powertrain system 100 may include an engine unit 1, a transmission unit 2a, a first motor generator 41, a second motor generator 42, an output portion 5, and a power switching device (e.g., synchronization). 6, clutch 9).
  • the transmission unit 2a is adapted to be selectively coupled to the engine unit 1 in a power coupling manner.
  • the engine unit 1 can selectively output the power generated by the engine unit 1 to the transmission unit 2a, for example, by a clutch or the like; alternatively, the transmission unit 2a can also output, for example, a starting torque from the first motor generator 41 to the engine unit 1, To start the engine unit 1.
  • the transfer of power between the engine unit 1 and the transmission unit 2a for example by itself or by other components, is referred to as a power coupling connection.
  • the engine unit 1 is characterized in that liquid or gaseous fuel and air are mixed and directly input into the internal combustion of the machine. Raw energy is then converted into mechanical energy.
  • the engine unit 1 can generally employ a four-stroke gasoline engine or a diesel engine.
  • the engine unit 1 can generally include a body group, a crank linkage mechanism, a supply system, an ignition system, a cooling system, and a lubrication system.
  • the body group is an assembly body of each mechanism and system of the engine unit 1.
  • the crank link mechanism can convert the linear reciprocating motion of the piston into the rotational motion of the crankshaft and can output power.
  • the valve train is used for timing intake and exhaust to ensure smooth operation of each cycle of the engine unit 1.
  • the supply system can supply the oil and gas mixture to the cylinder for combustion.
  • the cooling system is used to cool the engine unit 1 to ensure that the operating temperature of the engine unit 1 is within a suitable temperature range.
  • the lubrication system is used to lubricate the various motion pairs within the engine unit 1 to reduce wear and energy losses.
  • the first motor generator 41 is coupled to the transmission unit 2a in a power coupling manner.
  • the first motor generator 41 cooperates with the transmission unit 2a, that is, the first motor generator 41 can drive the transmission unit 2a, and the transmission unit 2a can also drive the first motor generator 41 in reverse.
  • the engine unit 1 may output at least part of the generated power to the first motor generator 41 through the transmission unit 2a, at which time the first motor generator 41 may generate electricity, and may convert mechanical energy into electrical energy to be stored in an energy storage component such as a battery. In the component.
  • the first motor generator 41 can convert electrical energy from the battery pack into mechanical energy, and can be output to the output portion 5 through the transmission unit 2a to drive the vehicle.
  • the first motor generator 41 is a motor having a motor and a generator function, and in the description of the "motor generator” of the present invention, this is understood unless otherwise specified.
  • the output portion 5 is configured to transmit power that is shifted through the transmission unit 2a to the wheels 200 of the vehicle, that is, the front wheels 210 and/or the rear wheels 220. In short, the output portion 5 is adapted to output power from the transmission unit 2a.
  • a power switching device such as a synchronizer 6 is adapted to transmit or disconnect power between the output 5 and the transmission unit 2a.
  • the power switching device may output the power output from the transmission unit 2a to the front wheel 210 and/or the rear wheel 220 through the output portion 5, or the power switching device may also disconnect the transmission unit 2a and the output portion 5, at which time the transmission unit 2a Power cannot be directly output to the front wheel 210 and/or the rear wheel 220 through the output unit 5.
  • the second motor generator 42 is used to drive the front wheel 210 or the rear wheel 220.
  • the vehicle having the powertrain system 100 can be a two-wheel drive vehicle.
  • the vehicle having the power transmission system 100 can be a four-wheel drive vehicle, and can be in a two-wheel drive mode and a four-wheel drive mode. Switch between.
  • the power transmission system is provided when the output portion 5 is for driving the front wheel 210 and the rear wheel 220 and the second motor generator 42 is for driving one of the front wheel 210 and the rear wheel 220
  • the 100 vehicle can be a four-wheel drive vehicle.
  • the power output from the engine unit 1 and/or the first motor generator 41 may be output to the output portion 5 through the power switching device, and then outputted to the front wheel 210 of the vehicle by the output portion 5. And/or rear wheel 220.
  • the second motor generator 42 can perform torque compensation on the front wheel 210 or the rear wheel 220, and can also drive the vehicle in cooperation with the engine unit 1 and the first motor generator 41.
  • the vehicle's operating mode is increased, so that the vehicle can better adapt to different working conditions, achieve better fuel economy, and reduce harmful gas emissions.
  • the power switching device is configured as a synchronizer 6 which is arranged to be selectively synchronized between the output 5 and the transmission unit 2a for passage
  • the output unit 5 outputs power to drive the wheels 200 of the vehicle.
  • the action of the synchronizer 6 may be the final synchronizing output portion 5 and the transmission unit 2a, that is, after the synchronizing action of the synchronizer 6, the output portion 5 can be synchronized with the transmission unit 2a, so that the output portion 5 serves as a power output end.
  • the power output of the transmission unit 2a is output.
  • the synchronizer 6 does not synchronize the transmission unit 2a with the output unit 5, the power of the transmission unit 2a cannot be directly outputted to the wheel 200 (through the output unit 5).
  • the synchronizer 6 serves the purpose of power switching, that is, the synchronizer 6 is engaged, the power of the transmission unit 2a can be output through the output portion 5 and used to drive the wheel 200, and the synchronizer 6 is turned off, and the transmission unit 2a cannot pass the output.
  • the portion 5 transmits power to the wheel 200, so that by controlling the engagement or disconnection of one synchronizer 6, the conversion of the entire vehicle drive mode can be realized.
  • the synchronizer 6 has the following advantages over the clutch:
  • the synchronizer 6 When the synchronizer 6 is engaged, the combined (coupled) driving force of the engine unit 1 and the first motor generator 41 needs to be amplified by the torque of the transmission unit 2a and transmitted to the wheel 200, or the driving force of the wheel 200. It is transmitted to the first motor generator 41 (power generation), which requires that the power coupling device here can transmit a large torque and has high stability. Synchronizer 6 can do this very well, and if a clutch is selected, it is necessary to design a super-large clutch that does not match the entire system (engine, transmission, motor), which increases the difficulty of arrangement and increases the weight and cost. And there is a risk of slipping during torque shocks.
  • the first motor generator 41 can adjust the speed of the transmission unit 2a, for example, the first electric motor
  • the motor 41 can target the rotational speed of the output portion 5, and the speed of the transmission unit 2a is adjusted by the change in the rotational speed so that the speeds of the transmission unit 2a and the output portion 5 are quickly matched in a time-efficient manner, thereby reducing the synchronization required for the synchronizer 6 Time, reducing the intermediate energy loss, and also enabling the torque-free engagement of the synchronizer 6, greatly improving the vehicle's transmission efficiency, synchronization controllability and synchronization real-time.
  • the life of the synchronizer 6 is further extended, thereby reducing the cost of vehicle maintenance.
  • the powertrain system 100 according to an embodiment of the present invention is compact in structure and convenient in control.
  • the transmission unit 2a includes a transmission power input portion 21a and a transmission power output portion 22a, and the transmission power input portion 21a and the engine unit 1 are selectively Engaged to transmit the power generated by the engine unit 1.
  • the transmission power output portion 22a is configured to output power to the output portion 5 by synchronizing the power from the transmission power input portion 21a through the synchronizer 6.
  • the transmission power input portion 21a further includes: an input shaft (eg, a first input shaft 21, a second input shaft 22) and a driving gear 25 disposed on the input shaft,
  • the input shaft is selectively engageable with the engine unit 1 to transmit the power generated by the engine unit 1.
  • the engine unit 1 can be engaged with the input shaft, so that the power output by the engine unit 1 can be transmitted to the input shaft.
  • the manner in which the engine unit 1 is engaged with the input shaft can be achieved by a clutch (e.g., the dual clutch 31), and a detailed description thereof will be given below, and details are not described herein again.
  • the transmission power output portion 22a includes an output shaft 24 and a driven gear 26, and the driven gear 26 is disposed on the output shaft 24 and corresponding to the driving gear 25 on the input shaft. Engage.
  • output shaft 24 is configured to output at least a portion of the power transmitted on the input shaft.
  • the output shaft 24 is coupled to the input shaft.
  • the output shaft 24 and the input shaft are movable between the drive gear 25 and the driven gear 26 described above.
  • the transmission mode of the output shaft 24 and the input shaft is not limited thereto, and may be, for example, a pulley transmission mechanism, a rack and pinion transmission mechanism, or the like.
  • a suitable transmission structure or manner can be specifically selected according to actual conditions.
  • the output shaft 24 is configured to transmit at least a portion of the power on the input shaft.
  • the power on the input shaft can be partially used for the first Another part of the power generation of the motor generator 41 can also be used to drive the vehicle, and of course all the power on the input shaft can also be used for power generation.
  • the first motor generator 41 is directly or indirectly driven with one of the input shaft and the output shaft 24.
  • direct drive means that the first motor generator 41 is directly connected to the corresponding shaft for transmission without any intermediate transmission components such as a shifting device, a clutch device, a transmission device, such as the output of the first motor generator 41. Directly connected to one of the input shaft and the output shaft 24. Advantages of direct drive The reduction of the intermediate transmission components reduces the loss of energy during the transmission process.
  • Indirect transmission excludes any other means of transmission other than direct transmission, such as transmissions through intermediate components such as transmissions, clutches, transmissions, and the like.
  • the advantage of the indirect transmission method is that the arrangement is more convenient, and the required gear ratio can be obtained by setting such as a shifting device.
  • the output portion 5 can be used as a power output terminal of the output shaft 24 for outputting power on the output shaft 24, and the output portion 5 can be differentially rotated with respect to the output shaft 24, that is, the output portion 5 can be asynchronous with respect to the output shaft 24. In the case of rotation, that is to say, there is a difference in rotational speed between the two, and there is no rigid connection.
  • the synchronizer 6 is disposed on the output shaft 24.
  • the synchronizer 6 can include a splined hub 61 and a splice sleeve 62 that can be secured to the output shaft 24 with the splined hub 61 along with the output shaft 24 Simultaneously rotating, the sleeve 62 is movable relative to the splined hub 61 in the axial direction of the output shaft 24 to selectively engage the output portion 5 such that the output portion 5 rotates synchronously with the output shaft 24, whereby power can be output from the output portion 5 is transmitted to the front wheel 210 and/or the rear wheel 220 for the purpose of driving the wheel 200.
  • the structure of the synchronizer 6 is not limited thereto.
  • the power output from the engine unit 1 and/or the first motor generator 41 can be output from the output portion 5 through the engagement of the synchronizer 6, which is compact in structure, convenient in control, and switched in the vehicle.
  • the synchronizer 6 is switched from the disengaged state to the engaged state.
  • the first motor generator 41 can target the rotational speed of the output unit 5, and the rotational speed control adjusts the rotational speed of the output shaft 24 to make the output.
  • the rotation speed of the shaft 24 and the output portion 5 is matched in a short time to facilitate the engagement of the synchronizer 6, thereby greatly improving the transmission efficiency, while reducing the transmission loss of the intermediate energy, and achieving the torque-free engagement of the synchronizer 6 (i.e., synchronization).
  • the device 6 When the device 6 is engaged, there is substantially no radial friction or radial friction which is much lower than the general level in the industry).
  • the output 5 is for driving a first pair of wheels of the vehicle, the second motor generator 42 being a pair and for driving the first pair of wheels.
  • the second motor generator may be plural, for example, further including a second motor generator 43 for driving the second pair of wheels of the vehicle.
  • the first pair of wheels is a pair of the front wheel 210 or the rear wheel 220
  • the second pair of wheels is the other pair of the front wheel 210 or the rear wheel 220.
  • the first pair of wheels refers to the front wheel 210 of the vehicle and the second pair of wheels refers to the rear wheel 220 of the vehicle.
  • the powertrain system 100 has four types of power output sources, namely, an engine unit 1, a first motor generator 41, a second motor generator 42, and a second motor generator 43, wherein the engine unit 1
  • the first motor generator 41 and the second motor generator 42 may be used to drive one of a pair of wheels of the vehicle, and the second motor generator 43 may be used to drive another pair of wheels. Therefore, the vehicle having the powertrain system 100 is a four-wheel drive vehicle.
  • the first motor generator 41 can target the rotation speed of the output unit 5, and the rotation speed of the output shaft 24 can be adjusted by the rotation speed control to match the rotation speed of the output shaft 24 and the output unit 5 in a short time, thereby facilitating the synchronizer 6
  • the engagement greatly increases the transmission efficiency while reducing the transmission loss of the intermediate energy.
  • the second motor generator 42 and the second motor generator 43 can perform torque compensation on the wheel 200, thereby being indirectly reflected to the output portion 5, that is, the first
  • the second motor generator 42 and the second motor generator 43 can indirectly adjust the rotational speed of the output portion 5, for example, when the synchronizer 6 transitions from the separated state to the engaged state, the second motor generator 42 and the second motor generator
  • the machine 43 can indirectly adjust the rotational speed of the output portion 5 as needed to match the rotational speed of the output shaft 24 and the output portion 5 in a short time, thereby facilitating the engagement of the synchronizer 6.
  • the second motor generator 42 and the second motor generator 43 can perform the speed adjustment simultaneously with the first motor generator 41, so that the rotation speeds of the output shaft 24 and the output portion 5 are synchronized in a shorter time, thereby The engagement condition is satisfied in a fast time, the synchronizer 6 is engaged, and the transmission efficiency is greatly improved.
  • the first motor generator 41 can perform individual speed regulation.
  • at least one of the second motor generator 42 and the second motor generator 43 may alternatively be individually regulated.
  • the first motor generator 41, the second motor generator 42, and the second motor generator 43 can simultaneously perform speed regulation.
  • the engagement/disconnection of the synchronizer 6 controls the output of the power of the transmission unit 2a while the first motor generator 41 and/or the second motor generator 42 and/or the second motor generator 43 are disconnected at the synchronizer 6.
  • the output shaft 24 and the output portion 5 can be speed-regulated separately during the transition from the open state to the engaged state, so that the rotational speeds of the output shaft 24 and the output portion 5 are quickly matched, thereby quickly achieving torque-free engagement of the synchronizer 6.
  • the input shaft is plural, i.e., two or more.
  • the plurality of input shafts are sequentially nested in a nested manner. For example, if the input shaft is N, the Kth input shaft is sleeved on the K-1th input shaft, wherein N ⁇ K ⁇ 2, and the N inputs The central axes of the shafts are coincident.
  • the input shafts are two, that is, the first input shaft 21 and the second input shaft 22, and the second input shaft 22 is sleeved on the first input shaft 21. And the central axes of the two coincide.
  • the input shaft is three, that is, the first input shaft 21 , the second input shaft 22 , and the third input shaft 23 , and the third input shaft 23 is sleeved on the second input shaft 22 .
  • the second input shaft 22 is sleeved on the first input shaft 21, and the central axes of the three shafts coincide.
  • the engine unit 1 is selectively engageable with one of the plurality of input shafts when the engine unit 1 transmits power to the input shaft or is coupled to the input shaft. In other words, when it is necessary to transmit the power of the engine unit 1, the output end of the engine unit 1 is engageable with one of the plurality of input shafts to rotate in synchronization. While the engine unit 1 is not required to operate or the engine unit 1 is at idle speed, the engine unit 1 can be combined with multiple The input shafts are all disconnected, i.e., the engine unit 1 is not connected to any one of the input shafts, thereby disconnecting the power coupling connection with the engine unit 1.
  • a driving gear 25 is fixed on each input shaft, and the driving gear 25 rotates synchronously with the input shaft, and the driving gear 25 and the corresponding input shaft are fixed in various manners, for example, through a keyway.
  • the matching mode is fixed.
  • the driving gear 25 can be fixed to the input shaft by various methods such as hot pressing and integral molding to ensure that the two can rotate synchronously.
  • a plurality of driven gears 26 are fixed on the output shaft 24, and the plurality of driven gears 26 rotate synchronously with the output shaft 24.
  • the fixing manner of the driven gear 26 and the output shaft 24 can also be fixed by the driving gear 25 and the input shaft. , but not limited to this.
  • the present invention is not limited thereto, and for example, the number of the driving gears 25 provided on each input shaft may not be limited to one, and correspondingly, the plurality of driven gears 26 are provided on the output shaft 24 to form a plurality of blocking gears. Bits are achievable by those skilled in the art.
  • the plurality of driven gears 26 are respectively meshed with the driving gears 25 on the plurality of input shafts.
  • the number of driven gears 26 and the number of input shafts may be The same is true.
  • the input shafts are two, so that the two driven gears 26 can be respectively meshed with the driving gears 25 on the two input shafts, so that the two pairs of gear pairs Two gears can be constructed for transmission.
  • three or more input shafts may be provided according to the transmission requirements, and one driving gear 25 may be fixed on each of the input shafts, whereby the number of input shafts may be increased.
  • the more gears are used for the transmission the greater the range of transmission ratios of the powertrain 100, thereby accommodating the requirements of the transmission for a variety of vehicle types.
  • the plurality of input shafts include a first input shaft 21 and a second input shaft 22, and the second input shaft 22 is sleeved on the first input shaft 21,
  • the second input shaft 22 is a hollow shaft
  • the first input shaft 21 is preferably a solid shaft.
  • the first input shaft 21 may also be a hollow shaft.
  • the first input shaft 21 can be supported by bearings.
  • the bearing is preferably plural and can be arranged along the axial direction of the first input shaft 21 at a position that does not affect the assembly of the remaining components.
  • the second input shaft 22 can also be supported by bearings, and will not be described in detail herein.
  • the engine unit 1 is provided with a dual clutch 31 between the first input shaft 21 and the second input shaft 22, and the dual clutch 31 can be a conventional dry double clutch 31 or a wet double. Clutch 31.
  • the dual clutch 31 has an input end 313, a first output end 311 and a second output end 312.
  • the engine unit 1 is connected to the input end 313 of the dual clutch 31.
  • the engine unit 1 can pass through a flywheel, a shock absorber or a torsion disk.
  • Various forms are connected to the input end 313 of the dual clutch 31.
  • the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21 such that the first output end 311 rotates in synchronization with the first input shaft 21.
  • the second output 312 of the dual clutch 31 is coupled to the second input shaft 22 such that the second output 312 rotates in unison with the second input shaft 22.
  • the input end 313 of the dual clutch 31 may be a housing of the dual clutch 31, and the first output end 311 and the second output end 312 may be two driven discs.
  • the housing and the two driven disks may be disconnected, that is, the input end 313 is disconnected from the first output end 311 and the second output end 312, and can be controlled when one of the driven plates needs to be engaged.
  • the housing is engaged with the corresponding driven disk to rotate synchronously, that is, the input end 313 is engaged with one of the first output end 311 and the second output end 312, so that the power transmitted from the input end 313 can pass through the first output end 311 and the first One of the two outputs 312 outputs.
  • the housing and the two driven plates do not engage at the same time.
  • the transmission unit 2a since the input shaft is a concentric two-axis structure, and only one driving gear 25 is provided on each input shaft, the transmission unit 2a has two different gears, the engine unit 1 The power can be output to the output portion 5 through the two gears, and the synchronizer 6 can be always engaged, that is, the output shaft 24 and the output portion 5 are engaged.
  • the synchronizer 6 When switching between gears, the synchronizer 6 does not need to be disconnected and then axially moved to engage another gear as in the conventional arrangement of the synchronizer structure, and simply controls the engagement/disconnection state of the dual clutch 31. At this time, the synchronizer 6 can be always in the engaged state, so that when the engine unit 1 outputs power to the output portion 5, it is only necessary to control one shift actuator, that is, the dual clutch 31, without controlling the synchronizer 6, so that The control strategy is greatly simplified, the number of engagement/disconnection of the synchronizer 6 is reduced, and the life of the synchronizer 6 is increased.
  • the first motor generator 41 is disposed to cooperate with one of the driving gear 25 and the driven gear 26, in other words, the first motor generator 41 is one of the input shaft and the output shaft 24. Indirect drive.
  • an intermediate transmission mechanism may be disposed between the first motor generator 41 and the corresponding gear, and the transmission mechanism may be a worm gear transmission mechanism, a first-stage or multi-stage gear pair transmission mechanism, a sprocket transmission mechanism, etc.
  • the transmission mechanism may be a combination of the above various transmission mechanisms, such that the first motor generator 41 can be arranged at different positions as needed, reducing the difficulty in arranging the first motor generator 41.
  • the first motor generator 41 can be driven by an intermediate gear 411.
  • the first motor generator 41 and the drive gear 25 on the first input shaft 21 are indirectly driven by an intermediate gear 411.
  • the first motor generator 41 passes between the driving gear 25 on the second input shaft 22 and The intermediate gear 411 is indirectly driven.
  • the first motor generator 41 may be disposed in connection with one of the first input shaft 21 and the output shaft 24.
  • the first motor generator 41 may be disposed to be directly connected to the first input shaft 21.
  • the first motor generator 41 can be disposed in direct connection with the output shaft 24.
  • the first motor generator 41 is directly connected to the corresponding shaft, which makes the structure of the powertrain system 100 more compact, and at the same time reduces the circumferential dimension of the powertrain system 100, and is conveniently disposed in the cabin of the vehicle.
  • the first motor generator 41 is disposed coaxially with the first input shaft 21, and the first motor generator 41 is disposed coaxially with the engine unit 1.
  • the first motor generator 41 is disposed coaxially with the engine unit 1
  • the rotational axis of the rotor of the first motor generator 41 is largely coincident with the rotational axis of the crankshaft of the engine unit 1.
  • the output portion 5 may include an output gear 51 and an engaging ring gear 52.
  • the output gear 51 and the output shaft 24 are relatively rotatable, that is, differentially rotated, and the ring gear 52 is engaged. It is fixed to the output gear 51, that is, the engaging ring gear 52 rotates in synchronization with the output gear 51.
  • the sleeve 62 of the synchronizer 6 can move in the direction of engaging the ring gear 52 in the axial direction, in synchronization with the rotational speed of the output portion 5 and the output shaft 24. Thereafter, the engagement sleeve 62 can be engaged with the engagement ring gear 52 such that a rigid connection is formed between the output shaft 24, the synchronizer 6 and the output portion 5, and the three are simultaneously rotated.
  • the output gear 51 can be the main reducer drive gear, the main The reducer drive gear can be directly meshed with the final drive driven gear 53 to output power to drive the wheel 200.
  • the present invention is not limited thereto, and other intermediate members for transmission may be provided between the output gear 51 and the final drive.
  • a differential 54 is disposed between the first pair of wheels, such as the front wheel 210, and the differential 54 is coupled to the output 5, and in particular, in some embodiments,
  • the speed reducer 54 is provided with a final drive driven gear 53
  • the output gear 51 is a main reducer driven gear
  • the main reducer drive gear meshes with the final drive driven gear 53 , so that the power can sequentially pass through the main reducer drive gear
  • the final drive driven gear 53 and the differential 54 are transmitted to the two front wheels 210.
  • the function of the differential 54 is to properly distribute the power required for the two front wheels 210, which may be a gear differential, a forced lock differential, a Tosson differential, and the like. It will be apparent to those skilled in the art that a suitable differential can be selected for different vehicle types.
  • a pair of second motor generators 42 are illustrated with reference to FIGS. 5-7 and 10.
  • Back-to-back is provided on both sides of the differential 54 .
  • a pair of second motor generators 42 are respectively disposed on the other side of the differential 54 and integrated with the differential 54 as a unitary structure.
  • the second motor generator 42 on the left side is disposed between the left side half shaft and the left side of the differential 54
  • the second motor generator 42 on the right side is disposed on the right side half shaft and the right side of the differential 54 Between the sides.
  • the powertrain system 100 of Figures 5-7 is in the form of a four-wheel drive, while the powertrain system 100 of Figure 10 is in the form of a two-wheel drive.
  • the motor generators are disposed back to back on both sides of the differential 54 , and it can be understood that the motor generators are respectively disposed on both sides of the differential 54 and integrated with the differential. structure.
  • the second motor generator 42 is a wheel-side motor.
  • one of the second motor generators 42 is disposed inside the left front wheel, and the other second motor generator 42 is disposed inside the right front wheel, and the second motor generator 42 can transmit power to the corresponding wheel through the gear mechanism.
  • Wheels Specifically, the powertrain system 100 of Figures 2 - 4 is in the form of a four-wheel drive, while the powertrain system 100 of Figure 9 is in the form of a two-wheel drive.
  • the second motor generator 43 is a wheel motor, as shown in FIGS. 2 and 5.
  • one second motor generator 43 is disposed inside the left rear wheel, and the other second motor generator 43 is disposed inside the right rear wheel, and the second motor generator 43 can The power is transmitted to the corresponding rear wheel through the gear mechanism.
  • the second motor generator 43 is one, and the one second motor generator 43 drives the second pair of wheels through the first shifting mechanism 71.
  • the first shifting mechanism 71 is preferably a speed reducing mechanism, and the speed reducing mechanism may be a first speed reducing mechanism or a multi-stage speed reducing mechanism.
  • the speed reduction mechanism may be a gear reduction mechanism, a worm gear reduction mechanism, or the like, and the present invention is not particularly limited.
  • the second pair of wheels may be connected by an axle, which may be a unitary structure, and the second motor generator 43 can directly drive the integrated axle through the first shifting mechanism 71. , thereby driving the two wheels to rotate synchronously.
  • the second motor generators 43 are two, and each of the second motor generators 43 drives one of the second pair of wheels by a second shifting mechanism 72, respectively.
  • the second shifting mechanism 72 is preferably a speed reducing mechanism, and the speed reducing mechanism may be a first speed reducing mechanism or a multi-stage speed reducing mechanism.
  • the speed reduction mechanism may be a gear reduction mechanism, a worm gear reduction mechanism, or the like, and the invention is not particularly limited.
  • the second pair of wheels may be coupled to the corresponding second motor generator 43 and the second shifting mechanism 72 via the two half bridges, that is, one second motor generator 43 may pass a second
  • the shifting mechanism 72 drives the corresponding half bridge to drive the wheel outside the half bridge to rotate.
  • these powertrain systems 100 are both in the form of two drives.
  • the output portion 5 drives the front wheel 210
  • the second motor generator 42 is a wheel-side motor and uses The front wheel 220 is driven.
  • the output portion 5 drives the front wheels 210
  • the second motor generators 42 are provided back to back on both sides of the differential 54, for example, the second motor generators 42 are respectively disposed on both sides of the differential 54 And integrated into a single structure.
  • these powertrain systems 100 are all in the form of a four-wheel drive. In the example of FIG.
  • the output portion 5 drives the front wheels 210, and the second motor generators 42 are two, and each of the second motor generators 42 drives the rear wheels 220 through a fourth shifting mechanism 74.
  • the output portion 5 drives the front wheel 210, and the second motor generator 42 is one, and the second motor generator 42 drives the rear wheel 220 through a third shifting mechanism 73.
  • the output portion 5 drives the front wheel 210, and the second motor generator 42 is two and is a wheel motor for driving the rear wheel 220.
  • the third shifting mechanism 73 it may be the same as the first shifting mechanism 71.
  • the fourth shifting mechanism 74 can be identical to the second shifting mechanism 72. Therefore, it will not be repeated here.
  • the powertrain system 100 may further include a battery assembly 300 that is preferably coupled to the first motor generator 41, the second motor generator 42, and the second motor generator 43.
  • a battery assembly 300 that is preferably coupled to the first motor generator 41, the second motor generator 42, and the second motor generator 43.
  • the plurality of input shafts include three axes, namely a first input shaft 21, a second input shaft 22, and a third input shaft.
  • the second input shaft 22 is sleeved on the first input shaft 21, and the third input shaft 23 is sleeved on the second input shaft 22.
  • the powertrain system 100 further includes a three clutch 32 having an input 324, a first output 321 , a second output 322 and a third output 323 , the engine unit 1 and the three clutch 32 .
  • the input end 324 is connected, the first output end 321 of the three clutch 32 is connected to the first input shaft 21, the second output end 322 of the third clutch 32 is connected to the second input shaft 22, and the third output end 323 of the third clutch 32 is connected. It is connected to the third input shaft 23.
  • the input end of the three clutch 32 may be its housing, and its three output ends may be three driven discs, the input end may be engaged with one of the three output ends, or the input end and the three output ends may be completely disconnected. open. It can be understood that the working principle of the three clutches 32 is similar to that of the dual clutch 31, and details are not described herein again.
  • the transmission mode of the first motor generator 41 and the first input shaft 21 or the output shaft 24, the second motor generator 42 and the second motor generator 43 The installation position and the driving form can be the same as those in the above dual clutch 31 technical solution. Please refer to the above dual clutch. The technical solution of the device 31 will not be described in detail here.
  • the driven gear 26 is a gear gear structure, and the gear gear is coupled.
  • the structure 26 is sleeved on the output shaft 24, i.e., the two are differentially rotatable.
  • a synchronizer 6 is disposed on the output shaft 24 and is selectively engageable with the associated gear structure 26.
  • the input shaft is two, that is, the first input shaft 21 and the second input shaft 22, each of which has a driving gear 25 fixed thereto, and the geared gear structure 26 is a double gear.
  • the double gear 26 has a first gear portion 261 and a second gear portion 262, and the first gear portion 261 and the second gear portion 262 are respectively meshed with the two driving gears 25, respectively.
  • the synchronizer 6 can engage the double gear 26 so that the power output from the engine unit 1 and/or the first motor generator 41 can pass through the output portion 5 (for example, the main The reducer drive gear 51) is output.
  • one of the first motor generator 41 and the output shaft or the output shaft can be directly or indirectly driven.
  • the related transmission mode described in the above embodiments can be used, and will not be described in detail herein.
  • the clutch between the engine unit 1 and the input shaft for example, the dual clutch 31 or the third clutch 32
  • the like can adopt the same arrangement as in the above embodiment, and details are not described herein again.
  • the powertrain system 100 can include an engine unit 1, a plurality of input shafts, an output shaft 24, and an output portion 5 (eg, a final drive gear 51). ), the synchronizer 6 and the first motor generator 41.
  • the driven gear 26 adopts a gear structure and is sleeved on the output shaft 24, and the output portion 5 is fixedly disposed on the output shaft.
  • the synchronizer 6 is used to engage the geared gear structure.
  • the arrangement of the first motor generator 41 is slightly modified from the arrangement of the first motor generator 41 in the power transmission system shown in Figs. 2 to 13 described above.
  • the input shaft is a plurality, and the input shaft is provided with a drive gear 25.
  • the output shaft 24 is sleeved with a geared gear structure 26, and the geared gear structure 26 has a plurality of gear portions (for example, a first gear portion 261 and a second gear portion 262), and the plurality of gear portions are respectively coupled to the plurality of input shafts.
  • the drive gear 24 is correspondingly engaged.
  • the output portion 5 is adapted to output power from the output shaft 24, for example, preferably the output portion 5 is fixedly disposed on the output shaft 24.
  • the output portion 5 includes the final drive gear 53, but is not limited thereto.
  • the synchronizer 6 is disposed on an output shaft 24 that is configured to selectively engage the geared gear structure 26 to output power through the output portion 5 to drive the wheels of the vehicle.
  • First motor generator 41 and input shaft and output shaft One of the 24 can be a direct drive or an indirect drive.
  • the effect of the synchronizer 6 is substantially the same as that of the synchronizer in the embodiment shown in Figures 2-13, with the difference that the synchronizer 6 is used to engage the geared gear structure 26 in some embodiments.
  • the output shaft 24, and the synchronizer 6 in the embodiment shown in Figs. 2 - 13 is for engaging the output portion 5 and the output shaft 24.
  • the synchronizer 6 can function as the final synchronized geared structure 26 and the output shaft 24, i.e., after the synchronizing action of the synchronizer 6, the synchronized gear structure 26 and the output shaft 24 are synchronized Thereby, the power of the engine unit 1 and/or the first motor generator 41 is outputted by the output unit 5 as a power output terminal.
  • the synchronizer 6 does not synchronize the gear gear structure 26 and the output shaft 24, the power of the engine unit 1 and/or the first motor generator 41 cannot be directly outputted to the wheel 200 (through the output portion 5).
  • the synchronizer 6 serves the purpose of power switching, that is, the synchronizer 6 is engaged, and the power of the engine unit 1 and/or the first motor generator 41 can be output through the output portion 5 and used to drive the wheel 200, and the synchronizer 6 Disconnected, the power of the engine unit 1 and/or the first motor generator 41 cannot transmit power to the wheel 200 through the output portion 5, so that by controlling the engagement or disconnection of a synchronizer 6, the vehicle driving mode can be realized. Conversion.
  • the first motor generator 41 can target the rotational speed of the output portion 5, and the speed of the interlocking gear structure 26 is adjusted by the change in the rotational speed so that the speed of the interlocking gear structure 26 and the output shaft 24 are quickly matched in a time-efficient manner.
  • the time required for synchronizing the synchronizer 6 is reduced, the intermediate energy loss is reduced, and the torqueless engagement of the synchronizer 6 can also be achieved, which greatly improves the transmission efficiency, synchronization controllability and real-time synchronization of the vehicle.
  • the life of the synchronizer 6 is further extended, thereby reducing the cost of vehicle maintenance.
  • the structure of the powertrain system 100 can be made more compact and easy to arrange.
  • the number of driven gears is reduced, thereby reducing the axial dimension of the powertrain system, which is advantageous for cost reduction and also reduces the difficulty of arrangement.
  • the synchronizer 6 can be controlled by a single shift fork, making the control step simple and more reliable to use.
  • a plurality of input shafts are coaxially nested, and a drive gear 25 is fixed to each of the input shafts.
  • the input shaft includes a first input shaft 21 and a second input shaft 22, each of which has a driving gear 25 fixed thereto, and the geared gear structure 26 is a double gear, the double gear The 26 has a first gear portion 261 and a second gear portion 262, and the first gear portion 261 and the second gear portion 262 are respectively engaged with the two driving gears 25, respectively.
  • a dual clutch 31 may be disposed between the engine unit 1 and the first input shaft 21 and the second input shaft 22, with reference to the dual clutch 31 portion of the powertrain system 100 illustrated in Figures 2-13.
  • a damping structure may be disposed on the dual clutch 31, for example, the damping structure may be disposed between the first output of the dual clutch 31 and the input of the dual clutch 31, which is more suitable for resisting starting.
  • the output of the first motor generator 41 is directly or indirectly driven with one of the drive gears.
  • the powertrain system 100 in this embodiment further includes an intermediate shaft 45 fixedly provided with a first countershaft gear 451 and a second countershaft gear 452, a first countershaft gear 451 and a second intermediate pumping gear
  • One of the 452 meshes with one of the driving gears 25, for example, in the example of FIGS. 14 and 15, the first intermediate pumping gear 451 is meshed with the driving gear 25 on the second input shaft 22, but the present invention is not limited thereto.
  • the output of the first motor generator 41 is directly driven by one of the first countershaft gear 451 and the second countershaft gear 452 or indirectly via the intermediate idler gear 44.
  • the output of the first motor generator 41 and the second countershaft gear 452 are indirectly transmitted through an intermediate idler 44.
  • the output end of the first motor generator 41 is directly meshed with the second counter gear 452.
  • the output end of the first motor generator 41 is directly meshed with one of the gear portions of the gear train structure 26.
  • the output end of the first motor generator 41 is directly meshed with the first gear portion 261.
  • the present invention is not limited thereto, and the arrangement position of the first motor generator 41 can be flexibly set according to actual needs, for example, the above several methods may be used, or FIG. 2 may also be used. Some of the arrangements shown in Figure 13 are not repeated here.
  • the first gear portion 261 is independently responsible for the torque input of the engine unit 1
  • the second gear portion 262 is responsible for the torque input of the engine unit 1 and the first motor generator 41, respectively. one side.
  • the side of the geared gear structure 26 facing the synchronizer 6 is fixedly provided with an engagement ring gear 52, the synchronizer 6 being adapted to engage the engagement ring gear 52, thereby coupling the gear gear structure 26 to the output
  • the shafts 24 are rigidly coupled together for simultaneous rotation.
  • the power switching device is a clutch 9 that is configured to be adapted for transmission or disconnection of power between the transmission unit 2a and the output portion 5.
  • the transmission unit 2a can be synchronized with the output unit 5 by the engagement of the clutch 9, and the output unit 5 can output the power of the transmission unit 2a to the wheel 200.
  • the clutch 9 is turned off, the power output from the transmission unit 2a cannot be directly output through the output unit 5.
  • the double gear 26 is sleeved on the output shaft 24, and the output portion 5 is fixedly disposed on the output shaft 24.
  • the clutch 9 has an active portion (C main in Fig. 17) and a driven portion. from the C), and the active portion of the clutch 9 on the driven portion provided on a linked structure, such as double-toothed gear wheel 26, the active portion of the clutch 9 and the other driven portion disposed in the output shaft 24
  • the active portion and the driven portion of the clutch 9 can be separated or engaged.
  • the active portion may be provided on the output shaft 24, and the driven portion may be provided on the gear gear structure 26, but is not limited thereto.
  • the present invention is implemented according to the present invention.
  • the powertrain 100 of the example has a reduced volume, a more compact structure, and high transmission efficiency and can meet the requirements of high torque transmission.
  • the synchronizer 6 can be achieved without torque engagement, smoother, and the joint speed and The power response is faster, compared to the traditional clutch transmission mode, can withstand greater torque without failure, greatly improving the stability and reliability of the transmission.
  • the five embodiments in order to achieve torque distribution for each wheel, as shown in FIGS. 2, 3, 5, 6, and 8, in the five embodiments, four motor power generations are employed.
  • the four motor generators are respectively responsible for driving one wheel.
  • the advantages of the four independent motor drives are that the ordinary mechanical four-wheel drive can only realize the torque distribution of the front and rear wheels, and the high-end full-time four-wheel drive can only achieve the right and left turn. Wheel instantaneous small range torque difference.
  • the torque difference adjustment of +100% to -100% of the left and right wheel motors can be realized at any time, thereby greatly improving the steering stability at the time of high-speed cornering, and improving. Understeer and turn to transition issues.
  • the low-speed rotation of the two wheels in the opposite direction can greatly reduce the turning radius of the vehicle, making the vehicle more comfortable.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively, and the first motor generator 41 is indirectly driven by the driving gear 25 on the second input shaft 22 through an intermediate gear 411.
  • Two output gears 26 are fixedly disposed on the output shaft 24, and the two driven gears 26 are respectively meshed with the driving gears 25 on the first input shaft 21 and the second input shaft 22, thereby constituting two transmission gears.
  • the synchronizer 6 is disposed on the output shaft 24, and the main reducer drive gear (ie, the output gear 51) is differentially rotatable relative to the output shaft 24.
  • the left side of the main reducer drive gear can be fixed with the synchronizer 6 through the connecting rod.
  • the main reducer driving gear is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed on the differential 54 to transmit power to the differential 54, and the differential 54 is distributed. After the power is transmitted, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • the two second motor generators 42 respectively constitute a wheel-side motor for driving the two front wheels 210
  • the two second motor generators 43 respectively constitute a wheel-side motor for driving the two rear wheels 220, that is, in the scheme A wheel motor is provided at each of the four wheels.
  • the dual clutch 31 can be disengaged or engaged so that the power of the engine unit 1 can be transmitted to the output shaft 24 in two speed ratios, respectively.
  • the first motor generator 41 passes the gear set to transmit power to the output shaft 24 at a fixed speed ratio.
  • the synchronizer 6 is engaged, the power of the output shaft 24 can be transmitted to the front wheel 210 through the final drive and the differential 54, and the synchronizer 6 is turned off, so that the power of the output shaft 24 cannot be transmitted to the front wheel 210.
  • the two second motor generators 42 are in the form of a wheel and can directly drive the two front wheels.
  • the two second motor generators 43 are in the form of a wheel and can directly drive the two rear wheels.
  • the powertrain system 100 in this embodiment can have at least the following operating conditions: the second motor generator 43 pure electric operating condition, the pure electric four-wheel drive condition, the parallel operating condition, the series operating condition, and the braking/deceleration feedback condition.
  • the second motor generator 43 is purely electric operating condition: the dual clutch 31 is cut off, the synchronizer 6 is cut off, the engine unit 1, the first motor generator 41 and the second motor generator 42 are not operated, and the two second motor generators 43 are respectively Two rear wheels 220 are driven. This condition is mainly used in small load situations such as uniform speed or urban working conditions, and the battery power is high.
  • the advantage of this condition is that the second motor generator 43 directly drives the rear wheel 220, which has better acceleration performance, climbing performance and ultimate steering capability than the front vehicle. Further, the second motor generator 43 separately drives the left rear wheel and the right rear wheel, and the electronic differential function can be realized, the steering stability is increased, and the wear amount of the tire is reduced.
  • the front drive portion disconnects the output gear 51 from the front wheel 210 through the synchronizer 6, so that the front drive has no mechanical loss, which reduces the energy consumption of the entire vehicle.
  • Pure electric four-wheel drive condition the dual clutch 31 is cut off, the synchronizer 6 is cut off, the first motor generator 41 is not working, and the two second motor generators 42 are respectively used to drive the two front wheels 210, and the two second electric power generation
  • the machine 43 is used to drive the rear wheel 220, respectively.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • pure electric four-wheel drive has better acceleration performance, climbing performance and handling performance than front and rear-drive vehicles.
  • off-road capabilities and the two second motor generators 42 and the two second motor generators 43 respectively drive four wheels independently, so that each wheel can obtain different torques and rotation speeds separately, realizing four-wheel independent control, and the power and operation are realized. Stability and off-road performance for maximum performance. When the corresponding motor generator applies torque in different directions to the left and right wheels, the in-situ steering of the entire vehicle can also be achieved.
  • Parallel operation the dual clutch 31 is engaged, the synchronizer 6 is engaged, and the engine unit 1 and the first motor generator 41 transmit power to the final drive gear 51 through the gear set and synchronizer 6 and through the differential 54 Power is transmitted to the front wheels 210 while the two second motor generators 42 respectively transmit power to the corresponding front wheels 210, and the two second motor generators 43 respectively transmit power to the corresponding rear wheels 220.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the advantage of this condition is that the five motor generators and the engine unit 1 simultaneously drive the vehicle to achieve maximum power performance.
  • the hybrid four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the second motor generator 43 separately drives the left rear wheel and the right rear wheel, which can realize the electronic differential function, omitting the transmission mechanical differential, reducing the parts, and also increasing the steering stability and reducing the tire. The amount of wear.
  • the advantage of this condition is that the series (ie, four-wheel drive series) conditions have better acceleration performance, climbing performance, handling performance and off-road capability compared to the front and rear drive.
  • the two second motor generators 42 and the two second motor generators 43 respectively drive four wheels independently, so that each wheel can obtain different torques and rotation speeds separately, realizing four-wheel independent control, and the power and operation are realized. Stability and off-road performance for maximum performance.
  • the corresponding motor generator applies torque in different directions to the left and right wheels, the in-situ steering of the entire vehicle can also be achieved.
  • the first motor generator 41 can adjust the torque and the rotational speed to keep the engine unit 1 in the optimal economic zone, thereby reducing power generation fuel consumption.
  • Brake/deceleration feedback condition the dual clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity, the second motor generator 42 brakes the front wheel and generates electricity, and the second motor generator 43 is manufactured. Move the rear wheel and generate electricity.
  • This condition is mainly used for vehicle braking or deceleration.
  • the advantage of this condition is that when the vehicle is decelerating or braking, the second motor generator 42 brakes the four wheels, respectively, and can ensure the braking force and stability of the vehicle regardless of whether it is turning or going straight. Underneath, fully absorb the power of each wheel to maximize the return energy.
  • the synchronizer 6 since the synchronizer 6 is turned off, the engine unit 1 and the first motor generator 41 can continue while the above four motor generators brake the wheels.
  • the power generation function makes the power generation state stable, avoids frequent switching, and enhances the life of components.
  • Hybrid operating condition the dual clutch 31 is engaged, the synchronizer 6 is engaged, part of the power of the engine unit 1 drives the first motor generator 41 to generate electricity through the dual clutch 31 and the gear gear set, and another part of the engine unit 1 is powered by the gear
  • the group and synchronizer 6 transmits power to the final drive gear 51, and the second motor generator 42 directly drives the front wheel 210 through the final drive gear 51 while the second motor generator 43 drives the rear wheel 220, respectively.
  • This working condition is mainly used for large load situations such as acceleration and climbing, and the power is not much.
  • the advantage of this condition is that the entire power of the engine unit 1 can be exerted, and the power of the vehicle can be ensured, and power generation can be simultaneously performed to maintain the power of the battery.
  • the above six operating conditions can be switched, and the typical working conditions are switched to: switch from the working condition 4 to the working condition 3, or switch from the working condition 4 to the working condition 5.
  • the power transmission system 100 can be switched from the working condition 4 to the working condition 3 according to the driver's throttle demand.
  • the first motor generator 41 targets the rotation speed of the main reducer drive gear, and adjusts the rotation speed of the output shaft 24 by the rotation speed control, so that the output shaft 24 and the main reducer drive gear speed are matched as much as possible, which is convenient for synchronization.
  • the unit 6 is combined.
  • the second motor generator 42 and the second motor generator 43 can increase the torque in response to the driving demand, and the vehicle can be accelerated without being accelerated as the normal vehicle is engaged until the synchronizer 6 is engaged.
  • This torque compensation function can greatly shorten the torque response time and improve the instantaneous acceleration performance of the vehicle.
  • switching from the working condition 4 to the working condition 5 when the vehicle brakes or decelerates, the power transmission system 100 can be switched from the working condition 4 to the working condition 5 according to the driver's throttle demand or the action of stepping on the brake pedal.
  • the second motor generator 42 and the second motor generator 43 can already satisfy the demand of the brake feedback without the first motor generator 41 performing the feedback, and the second motor generator 42 and the second motor generator 43 can respond immediately.
  • the engine unit 1 and the first motor generator 41 can maintain the original power generation state, and after the end of the braking condition, there is no need to switch, and the original series operation condition is directly entered.
  • This torque pre-compensation function can greatly shorten the motor brake response time and increase the amount of feedback.
  • the synchronizer 6 is often difficult to engage due to unstable vehicle speed.
  • the first motor generator 41 can adjust the rotational speed of the output shaft 24 by the rotational speed control, since the rotational speed of the main reducer drive gear is uncontrollable with the vehicle speed, the accuracy and speed of the first motor generator 41 can also be adjusted. Bring difficulties. Under these road conditions, the second motor generator 42 and the second motor generator 43 perform torque compensation on the vehicle, which can effectively stabilize the vehicle speed, thereby improving the driving experience of the entire vehicle and simplifying the engagement of the synchronizer 6. .
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 2 only in the arrangement of the second motor generator 43.
  • each of the second motor generators 43 drives the corresponding rear wheel 220 through a second shifting mechanism 72.
  • the specific operating conditions are substantially the same as the power transmission system 100 in the embodiment of FIG. 2, and the difference may be that only the second shifting mechanism is required between the second motor generator 43 and the corresponding rear wheel 220 when performing power transmission. 72, here is no longer detailed.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 2 only in the arrangement of the second motor generator 43.
  • the second motor generator 43 is one and the corresponding rear wheel 220 is driven by a first shifting mechanism 71.
  • the specific working condition it is basically the same as the power transmission system 100 in the embodiment of FIG.
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 2 only in the arrangement of the second motor generator 42.
  • the second motor generators 42 are respectively disposed on the two sides of the differential 54 back to back, and the rest may be substantially identical to the power transmission system 100 in the embodiment of FIG. 2, and details are not described herein again.
  • the specific operating conditions are substantially the same as those of the powertrain system 100 in the embodiment of FIG. 2, and will not be described in detail herein.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 5 only in the arrangement of the second motor generator 43.
  • each of the second motor generators 43 drives the corresponding rear wheel 220 through a second shifting mechanism 72.
  • it can be substantially identical to the powertrain system 100 of the embodiment of FIG. Let me repeat.
  • the specific operating conditions are substantially the same as those of the powertrain system 100 in the embodiment of FIG. 2, and will not be described in detail herein.
  • the powertrain system 100 of this embodiment may differ from the powertrain system 100 of FIG. 5 only in the arrangement of the second motor generator 43.
  • the second motor generator 43 is one and the corresponding rear wheel 220 is driven by a first shifting mechanism 71.
  • the specific operating conditions are substantially the same as the power transmission system 100 in the embodiment of FIG. 5, and the difference may be that only the two rear wheels 220 are driven by a second motor generator 43 and a first shifting mechanism 71.
  • the differential function of the two rear wheels 220 cannot be realized by only one motor and one shifting mechanism without adding new components, but it can be understood that a differential can be added to realize the differential speed of the two rear wheels 220. Rotating, the differential can be integrated with the first shifting mechanism 71.
  • the power transmission system 100 in this embodiment differs from the power transmission system 100 in FIG. 2 only in the form of the clutch and the number of the input shaft, the driving gear 25, and the driven gear 26, which is implemented.
  • the clutch is a three-clutch 32
  • the input shaft is three
  • the driving gear 25 and the driven gear 26 correspond to three pairs.
  • the power transmission system 100 in the embodiment of FIG. 2 is substantially identical, and details are not described herein. .
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 2 only in that the second motor generator 43 in the embodiment of FIG. 2 is eliminated, and the power in this embodiment is
  • the transmission system 100 is in the form of a two-wheel drive.
  • the powertrain system 100 in this embodiment can have at least the following operating conditions:
  • the second motor generator 42 is purely electric: the dual clutch 31 is turned off, the synchronizer 6 is turned off, the engine unit 1 and the first motor generator 41 are not operated, and the second motor generator 42 directly drives the front wheel 210.
  • This condition is mainly used in small load situations such as uniform speed or urban working conditions, and the battery power is high.
  • the advantage of this condition is that the second motor generator 42 directly drives the front wheel 210, which has the shortest transmission chain and the least number of components involved in the operation, and can achieve the highest transmission efficiency and minimum noise.
  • the second motor generator 42 separately drives the left and right front wheels 210, respectively, and can realize an electronic differential function, increase steering stability, and reduce wear of the tire.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • the advantage of this condition is that it has better power performance than a single motor drive, and has better performance than a hybrid drive. economy and lower noise.
  • the typical application that best highlights its advantages is the congested road conditions of the steep slope (Panshan Road).
  • Working condition three parallel: the dual clutch 31 is cut off, the synchronizer 6 is engaged, and the engine unit 1 and the first motor generator 41 transmit power to the final drive main gear 51 through the gear gear set and the synchronizer 6, and pass the differential
  • the unit 54 divides the power equally to the left and right front wheels, and the second motor generator 42 directly drives the front wheels.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the advantage of this condition is that the three motors and the engine unit 1 are driven at the same time, and the maximum dynamic performance can be exerted.
  • Working condition four in series: the double clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity through the dual clutch 31 and the gear gear set, and the second motor generator 42 directly drives the wheel.
  • This condition is mainly used for medium load and battery power is low.
  • the advantage of this condition is that the second motor generator 42 directly drives the wheels, the transmission chain is the shortest, and the components involved in the work are minimized, and the highest transmission efficiency and minimum noise can be achieved.
  • the first motor generator 41 can be adjusted by the torque and the rotational speed to keep the engine unit 1 in the optimal economic zone, thereby reducing the fuel consumption of the power generation.
  • the second motor generator 42 separately drives the left and right wheels, and can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire.
  • Working condition 5 braking/deceleration feedback: the dual clutch 31 is engaged, the synchronizer 6 is disconnected, the engine unit 1 drives the first motor generator 41 to generate electricity, and the second motor generator 42 directly brakes the wheel and generates electricity.
  • This condition is mainly used for braking or deceleration of the vehicle.
  • the advantage of this condition is that when the vehicle is decelerating or braking, the second motor generator 42 is respectively braked two wheels, which can absorb the braking energy to the maximum, convert into electric energy, and the engine unit 1 and the first electric power generation
  • the machine 41 can continue to generate electricity, maintain stability of the power generation conditions, and reduce frequent switching.
  • the above five kinds of working conditions can be switched, and the typical working condition is switched to: switch from the working condition 4 to the working condition 3, or switch from the working condition 4 to the working condition 5.
  • the power system will switch from the working condition 4 to the working condition 3 according to the throttle demand of the driver.
  • the first motor generator 41 targets the rotation speed of the main reducer drive gear 51, and the rotation speed of the output shaft 24 is adjusted by the rotation speed control so that the rotation speeds of the two shafts are matched as much as possible to facilitate the engagement of the synchronizer 6.
  • the second motor generator 42 can increase the torque in response to the driving demand, so that the vehicle can be accelerated without having to wait until the synchronizer 6 is engaged to accelerate as in the case of the conventional vehicle.
  • This torque pre-compensation function can greatly shorten the torque response time and improve the instantaneous acceleration performance of the vehicle.
  • the power transmission system 100 can be switched from the operating condition 4 to the operating condition 5 according to the driver's throttle demand or the action of stepping on the brake pedal.
  • the second motor generator 42 can already meet the demand of the brake feedback without the first motor generator 41 performing the feedback. At this time, the second motor generator 42 can immediately respond to the driving demand, brake the wheel, and feed back the power without having to Like a normal vehicle, the power is not fed back until the synchronizer 6 is engaged.
  • the engine unit 1 and the first motor generator 41 can maintain the original power generation state, and after the end of the braking condition, there is no need to switch, and the original series operation condition is directly entered.
  • This torque pre-compensation function can greatly shorten the motor brake response time and increase the amount of feedback.
  • the synchronizer 6 is often difficult to engage due to unstable vehicle speed.
  • the first motor generator 41 can adjust the rotational speed of the output shaft 24 by the rotational speed control, since the rotational speed of the main reducer drive gear is uncontrollable with the vehicle speed, the accuracy and speed of the first motor generator 41 can also be adjusted. Bring difficulties. Under these road conditions, the vehicle is torque-compensated by the second motor generator 42, which can effectively stabilize the vehicle speed, thereby improving the driving experience of the entire vehicle and simplifying the engagement of the synchronizer 6.
  • the powertrain system 100 of this embodiment differs from the powertrain system 100 of FIG. 9 in the position of the second motor generator 42.
  • the second motor generator 42 is back to back. It is disposed on both sides of the differential 54 and is substantially identical to the power transmission system 100 in the embodiment of FIG. 9 for the rest, and details are not described herein again.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 9 in the position of the second motor generator 42, in this embodiment, the second motor generator 42 is two.
  • Each of the second motor generators 42 drives the corresponding rear wheel 220 through a fourth shifting mechanism 74.
  • it can be substantially identical to the powertrain system 100 in the embodiment of FIG. 9, and details are not described herein.
  • the powertrain system 100 in this embodiment has at least the following operating conditions:
  • the second motor generator 42 is purely electric: the dual clutch 31 is cut off, the synchronizer 6 is cut off, the engine unit 1 and the first motor generator 41 are not operated, and each of the second motor generators 42 passes the corresponding fourth shifting speed.
  • Mechanism 74 drives the rear wheels.
  • This condition is mainly used in small load situations such as uniform speed or urban working conditions, and the battery power is high.
  • the advantage of this condition is that the second motor generator 42 drives the rear wheel, which has better acceleration performance, climbing performance and ultimate steering capability than the front vehicle.
  • the second motor generator 42 separately drives the left and right wheels, and the electronic differential function can be realized, the steering stability is increased, and the wear amount of the tire is reduced.
  • the predecessor disconnects the gear set from the front wheel through the synchronizer 6, so that the front drive has no mechanical loss, reducing the energy consumption of the entire vehicle.
  • Working condition two, pure electric four-wheel drive the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 is not working, the first motor generator 41 drives the front wheel, and the second motor generator 42 drives the rear wheel.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • the advantage of this condition is that it is compared to a single motor drive. With better power performance, it has better economy and lower noise than hybrid drive.
  • the typical application that best highlights its advantages is the congested road conditions of the steep slope (Panshan Road). Compared to the front and rear drive, the pure electric four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the second motor generator 42 separately drives the left and right rear wheels separately, which can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire.
  • the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 and the first motor generator 41 simultaneously drive the front wheel 210, and the second motor generator 42 drives the rear wheel.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the advantage of this condition is that the dual motor and the engine unit are driven at the same time, and the maximum dynamic performance can be exerted.
  • the hybrid four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the second motor generator separately drives the left and right rear wheels separately, which can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire.
  • Working condition four in series: the dual clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity, and the second motor generator 42 drives the rear wheel.
  • This condition is mainly used for medium load and battery power is low.
  • the advantage of this condition is that the two second motor generators respectively drive two rear wheels, which can realize the electronic differential function, increase the steering stability, and reduce the wear amount of the tire. It has better acceleration performance, gradeability and ultimate steering capability compared to the front-wheel drive.
  • the first motor generator can be adjusted by torque and speed to keep the engine unit in the optimal economic zone and reduce power consumption.
  • braking/deceleration feedback the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit is not working, and the first motor generator and the second motor generator simultaneously brake the vehicle and generate electricity.
  • the advantage of this condition is that when the vehicle is decelerating or braking, three motors simultaneously brake the vehicle, so that the braking energy can be absorbed to the maximum and converted into electric energy.
  • the braking force of the engine unit friction torque is eliminated, and more power can be left for the motor to absorb.
  • the front and rear drive together with the brake feedback can better distribute the braking force to the front and rear motors under the premise of ensuring the braking force of the whole vehicle, and can return more electric energy than the single front or rear drive models.
  • the two second motor generators can individually control the magnitude of the braking force, and can improve the stability of the vehicle during cornering braking, and further improve the energy of the feedback.
  • the various operating conditions of the powertrain system 100 in this embodiment can be switched.
  • the more classical mode is that the operating condition 4 is switched to the operating condition 3 or the operating condition 5.
  • the principle of the corresponding switching part is similar, and will not be described here.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 9 in the position of the second motor generator 42, which is a second motor generator 42 in this embodiment.
  • the second motor generator 42 drives the rear wheel 220 through a third shifting mechanism 73.
  • it can be substantially identical to the powertrain system 100 in the embodiment of FIG. 9, and details are not described herein.
  • the second motor generator 42 can be used to separately drive the vehicle.
  • the dual clutch 31 and the synchronizer 6 are both cut off, and the working condition is mainly used for small load situations such as uniform speed or urban working conditions, and the battery power is high. Case.
  • the advantage of this condition is that the second motor generator 42 directly drives the rear wheel 220 through the third shifting mechanism 73, which has better acceleration performance, climbing performance and ultimate steering capability than the front drive.
  • the front part is disconnected by the synchronizer 6, so that the front part has no mechanical loss, which reduces the energy consumption of the whole vehicle.
  • the rear drive portion may further be provided with a differential, and the differential may be integrated with the third shifting mechanism 73.
  • the power transmission system can also have a pure electric four-wheel drive condition, in which case the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 is not working, the first motor generator 41 drives the front wheel, and the second motor power generation The machine 42 drives the rear wheels.
  • This working condition is mainly used for large load situations such as acceleration, climbing, overtaking, high speed, etc., and the battery power is high.
  • This condition has better power performance than single-motor drive, and it has better economy and lower noise than hybrid drive.
  • the typical application that best highlights its advantages is the congested road conditions of the steep slope (Panshan Road). Compared to front or rear-drive vehicles, pure electric four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the powertrain system also has a parallel operating condition: the dual clutch 31 is engaged, the synchronizer 6 is engaged, the engine unit 1 and the first motor generator 41 jointly drive the front wheel 210, and the second motor generator 42 drives the rear wheel 220.
  • This working condition is mainly used for the maximum load occasions such as rapid acceleration and climbing.
  • the main advantage of this condition is that the dual motor and the engine unit are driven at the same time to maximize the power performance.
  • the hybrid four-wheel drive has better acceleration performance, climbing performance, handling performance and off-road capability.
  • the powertrain system also has a series operating condition: at this time, the dual clutch 31 is engaged, the synchronizer 6 is cut off, the engine unit 1 drives the first motor generator 41 to generate electricity, and the second motor generator drives the rear wheel.
  • This condition is mainly used for medium load and battery power is low.
  • the advantage of this condition is that the second motor generator 42 drives the rear wheel, which has better acceleration performance, climbing performance and ultimate steering capability than the front vehicle.
  • the first motor generator 41 can be adjusted by torque and speed to keep the engine unit 1 in the optimal economic zone, reducing power consumption.
  • the powertrain system also has brake/deceleration feedback: the dual clutch 31 is cut off, the synchronizer 6 is engaged, the engine unit 1 is not in operation, and the first motor generator 41 and the second motor generator 42 simultaneously brake the vehicle and Power generation.
  • the advantage of this condition is that when the vehicle is decelerating or braking, the two motors are braked at the same time, which can absorb the braking energy to the maximum and convert it into electric energy.
  • the brake of the engine unit friction torque is eliminated, and more power can be left for the motor to absorb.
  • the front and rear drive together with the brake feedback can better distribute the braking force to the front and rear motors under the premise of ensuring the braking force of the whole vehicle, and can return more electric energy than the single front or rear drive models.
  • the various operating conditions of the powertrain system 100 in this embodiment can be switched.
  • the more classical mode is that the operating condition 4 is switched to the operating condition 3 or the operating condition 5.
  • the principle of the corresponding switching part is similar, and will not be described here.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 9 in the position of the second motor generator 42, in this embodiment, the second motor generator 42 is two. And all of the wheel motors, the second motor generator 42 is used to drive the corresponding rear wheel 220, and the rest can be substantially identical to the powertrain system 100 in the embodiment of FIG. 9 (the transmission mode is similar to FIG. 11). I won't go into details here.
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively.
  • the output shaft 24 is sleeved with a double gear 26 (ie, a driven gear), and the first gear portion 261 of the double gear 26 is The drive gear 25 on the first output shaft 21 is engaged, and the second gear portion 262 of the double gear 26 meshes with the drive gear 25 on the second output shaft 22.
  • a first countershaft gear 451 and a second countershaft gear 452 are fixedly disposed on the intermediate shaft 45.
  • the first countershaft gear 451 meshes with the driving gear 25 on the second input shaft 22, and the output end of the first motor generator 41 passes.
  • An intermediate idler gear 44 is indirectly coupled to the second countershaft gear 452.
  • a synchronizer 6 is disposed on the output shaft 24 and is configured to engage the double gear 26.
  • the main reducer drive gear 51 is fixed to the output shaft 24.
  • the main reducer drive gear 51 is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed to the housing of the differential 54 to transmit power to the differential 54, the differential 54 After the power is distributed, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • Embodiment 14 is a diagrammatic representation of Embodiment 14:
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively.
  • the output shaft 24 is sleeved with a double gear 26 (ie, a driven gear), and the first gear portion 261 of the double gear 26 is The drive gear 25 on the first output shaft 21 is engaged, and the second gear portion 262 of the double gear 26 meshes with the drive gear 25 on the second output shaft 22.
  • a first countershaft gear 451 and a second countershaft gear 452 are fixedly disposed on the intermediate shaft 45.
  • the first countershaft gear 451 meshes with the driving gear 25 on the second input shaft 22, and the output end of the first motor generator 41 is directly Engaged with the second countershaft gear 452.
  • a synchronizer 6 is disposed on the output shaft 24 and is configured to engage the double gear 26.
  • the main reducer drive gear 51 is fixed at the output Out of the shaft 24.
  • the main reducer drive gear 51 is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed to the housing of the differential 54 to transmit power to the differential 54, the differential 54 After the power is distributed, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • the engine unit 1 is coupled to the input end 313 of the dual clutch 31, the first output end 311 of the dual clutch 31 is coupled to the first input shaft 21, and the second output end 312 of the dual clutch 31 is coupled to the second input shaft. 22 is connected, and the second input shaft 22 is coaxially sleeved on the first input shaft 21.
  • a driving gear 25 is fixedly disposed on the first input shaft 21 and the second input shaft 22, respectively.
  • the output shaft 24 is sleeved with a double gear 26 (ie, a driven gear), and the first gear portion 261 of the double gear 26 is The drive gear 25 on the first output shaft 21 is engaged, and the second gear portion 262 of the double gear 26 meshes with the drive gear 25 on the second output shaft 22.
  • the output end of the first motor generator 41 is directly meshed with the first gear portion 261.
  • a synchronizer 6 is disposed on the output shaft 24 and is configured to engage the double gear 26.
  • the main reducer drive gear 51 is fixed to the output shaft 24.
  • the main reducer drive gear 51 is externally meshed with the final drive driven gear 53, and the final drive driven gear 53 can be fixed to the housing of the differential 54 to transmit power to the differential 54, the differential 54 After the power is distributed, the adaptability is transmitted to the half bridges on both sides, thereby driving the wheel 200.
  • the power transmission system 100 in this embodiment is different from the power transmission system 100 in FIG. 14 in that a clutch 9 is provided instead of the synchronizer 6 of the powertrain system 100 of FIG. 51 is fixedly disposed on the output shaft 24.
  • the power transmission system 100 in this embodiment differs from the power transmission system 100 in FIG. 15 in that a clutch 9 is provided instead of the synchronizer 6 of the powertrain system 100 of FIG. 51 is fixedly disposed on the output shaft 24.
  • the powertrain system 100 of this embodiment differs from the powertrain system 100 of FIG. 16 in that a clutch 9 is provided instead of the synchronizer 6 of the powertrain system 100 of FIG. 16, and the main reducer drive gear is provided. 51 is fixedly disposed on the output shaft 24.
  • the second motor generator 42 and the second motor generator 43 are included or only the second motor generator 42 (not shown in FIGS. 14-19) is included, and the specific arrangement thereof may adopt corresponding ones in FIGS. 2-13. Arrangement (for example, in the form of a wheel, back to back on both sides of the differential, etc.).
  • the final drive main gear 51 of the powertrain system 100 shown in FIGS. 14-19 can be used to drive the front wheel 210, and the rear drive can adopt the rear drive mode of FIG.
  • a second motor generator 42 and a speed reduction mechanism drive the rear wheel 220.
  • a vehicle including the powertrain system 100 as described above is further provided in accordance with an embodiment of the present invention.
  • other configurations of vehicles in accordance with embodiments of the present invention such as travel systems, steering systems, braking systems, etc., are well known in the art and are well known to those of ordinary skill in the art, and thus details of conventional structures are The description is omitted here.
  • an embodiment of the present invention provides a vehicle and a brake feedback control method thereof, wherein the vehicle brake feedback control of the embodiment of the present invention The method is performed based on the power transmission system described in the above embodiment and the vehicle having the power transmission system.
  • the vehicle of the embodiment of the invention comprises the power transmission system described in the above embodiments, such that the vehicle comprises an engine unit, a transmission unit adapted to be selectively coupled to the engine unit, and a power coupling connection with the transmission unit a first motor generator, an output portion, a power switching device, a second motor generator for driving a front wheel and/or a rear wheel of the vehicle, and a first motor generator and the second motor generator Machine-powered power battery, wherein the output portion is configured to transmit power that is shifted through the transmission unit to a front wheel and/or a rear wheel of the vehicle, the power switching device being adapted to be in the transmission unit and Transmission or disconnection of power is performed between the output units.
  • the power switching device is configured as a synchronizer, the synchronizer being arranged to be selectively synchronizeable between the output and the transmission unit.
  • FIG. 21 is a schematic diagram of an energy transfer path of a powertrain of a vehicle in accordance with one embodiment of the present invention.
  • the engine unit 1 drives the front motor, that is, the first motor generator 41, to generate power through the clutch C2 (combined), and supplies it to the rear motor, that is, the second motor generator 42.
  • the energy transfer route is as in line 101; when the powertrain is in parallel mode, the engine unit 1 transmits its power to the transmission T (3 or 6) via clutch C1 or C2 (any of which is combined) Finally, it is transmitted to the wheel through the synchronizer S, and the front motor, that is, the first motor generator 41, transmits power to the wheel through the transmission T and the synchronizer S, and the energy transmission route is any one of the lines 102 and the line 103;
  • the engine unit 1 drives the wheels through the parallel mode route, and the remaining power is generated by the series mode route, and the motor, that is, the second motor generator 42 is driven and used, and the energy transmission route is as the line 101, Line 102 (either of them) and line 103.
  • a brake feedback control information interaction diagram of a vehicle according to an embodiment of the present invention.
  • the drive motor collects the motor's resolver signal and temperature signal through the sensor and transmits it to the motor controller ECN; the battery management system BMS sends the rechargeable power signal to the ECN; and the electronic stability control module ESC collects the vehicle speed and anti-lock system.
  • the ABS status signal is transmitted to the ECN; the ECN determines whether the input signal (the depth of the brake pedal, the road gradient, etc.) enters/exits the brake feedback control mode, and performs the brake feedback control according to the established feedback strategy.
  • the brake feedback control method of the vehicle includes the following steps:
  • the braking ratio and the smoothness of the vehicle should be ensured, and the proportion of the electric braking torque should be increased as much as possible, that is, the braking torque of the basic braking should be minimized. distribution.
  • the flow of the vehicle entering the brake feedback control mode includes:
  • step S1001 Determine whether the vehicle speed of the vehicle is greater than a preset vehicle speed Vmin. If yes, go to step S1002; if no, go to step S1005.
  • step S1002 Determine whether the depth of the brake pedal is greater than zero. If yes, go to step S1003; if no, go to step S1005.
  • step S1003 determining whether the ABS is not working. If yes, go to step S1004; if no, go to step S1005.
  • S1004 enters the brake feedback control, that is, controls the vehicle to enter the brake feedback control mode.
  • the input signal determines whether the vehicle meets the condition of entering the brake feedback control, and meets the condition of entering the machine: the vehicle speed>Vmin and the depth of the brake pedal>0 and the ABS is in the inoperative state, and can be performed in any gear position; Conversely, any one of the conditions is not satisfied (ie, the vehicle speed is less than or equal to Vmin or the depth of the brake pedal is less than or equal to 0). Or the ABS is in working state), then the brake feedback control is not entered.
  • the first electric motor is obtained according to a current operating state of the first motor generator and the second motor generator a feedback limit value of the generator and a feedback limit value of the second motor generator; obtaining a feedback limit value of the motor generator controller according to a current operating state of the motor generator controller of the vehicle; Calculating a current allowable charging power of the power battery, and obtaining a current feedback limit value of the power battery according to a current allowable charging power of the power battery; obtaining a feedback limit value of the first motor generator, a minimum feedback limit value between the feedback limit value of the second motor generator, the feedback limit value of the motor generator controller, and the feedback limit value of the current power battery.
  • the feedback limit value of the first motor generator refers to the first motor generator calculated according to the operating state (such as temperature, current, voltage, etc.) of the first motor generator when the vehicle brake feedback control is performed.
  • the torque value of the brake feedback is allowed.
  • the feedback limit value of the second motor generator refers to the operating state (such as temperature, current, voltage, etc.) of the second motor generator when the vehicle brake feedback control is performed.
  • Calculating the torque value of the brake feedback allowed by the second motor generator, and the feedback limit value of the motor generator controller refers to the operating state of the motor generator controller (such as temperature, when the vehicle brake feedback control is performed) The current and voltage conditions, etc.) The calculated torque value of the brake feedback allowed by the motor generator controller.
  • the braking feedback control method of the vehicle can convert the kinetic energy of the vehicle braking into the electric energy of the power battery through the transmission system and the electric motor, and then use it into the traction drive, and simultaneously generate the motor braking.
  • the torque acts on the drive wheel through the transmission system, avoiding the consumption of energy into frictional heat energy and improving the energy efficiency of the vehicle.
  • vehicle's operating mode hybrid HEV or pure electric EV operating mode
  • vehicle speed road gradient
  • economic area of the power system including power battery, motor generator controller and motor generator
  • vehicle ride comfort And the handling and other factors, combined with the vehicle's vehicle braking torque curve and the basic braking torque curve, combined with the brake pedal status, vehicle speed, power system feedback limit, system-related module status (such as ESC) and other vehicle status information, Comprehensive analysis of the vehicle's brake feedback control process.
  • a specific process of the brake feedback control of the vehicle includes:
  • S201 Determine, by the input signal, whether the condition for entering the brake feedback control is met, that is, the condition for entering the brake feedback control is: the vehicle speed>Vmin and the depth of the brake pedal>0 and the ABS is in an inoperative state.
  • S202 Monitor current operating states (such as temperature, current, voltage, etc.) of the first motor generator and the second motor generator, and calculate a feedback limit value of the first motor generator and a feedback limit value of the second motor generator.
  • current operating states such as temperature, current, voltage, etc.
  • the BMS calculates the chargeable power of the current power battery by monitoring the state of each single battery in the power battery, and calculates a feedback limit value of the current power battery according to the current allowable charging power of the power battery.
  • the brake pedal depth-braking torque curve of the vehicle formulates the brake pedal depth-braking torque curve of the vehicle, and comprehensively consider the economic region of the power system of the vehicle (including the power battery, the motor generator controller and the motor generator)
  • the brake pedal depth-base brake torque curve preset in the vehicle, etc. the braking feedback torque curve corresponding to the brake pedal depth of the vehicle, that is, the brake pedal depth-braking feedback torque curve, as the input of the feedback control
  • the target value so that the current brake feedback target value corresponding to the vehicle can be obtained according to the depth of the brake pedal.
  • the braking torque of the vehicle for performing basic braking may also be obtained according to the depth of the brake pedal and the preset brake pedal depth-base braking torque curve.
  • the ECN sends the target torque signal of the engine unit to the ECM while performing the brake feedback control.
  • the engine unit controller controls the engine unit based on the target torque.
  • a control power switching device such as a synchronizer is combined.
  • the vehicle ride comfort, vehicle braking performance and economic area of the power system are fully considered; and the vehicle is considered under different operating conditions (such as emergency braking, light and light).
  • the different motor generators mainly the second motor generator and the first motor generator
  • the minimum feedback value is less than or equal to a maximum output braking torque of the second motor generator, controlling the second motor generator to output the minimum feedback value; if the minimum feedback The value is greater than a maximum output braking torque of the second motor generator, and the second motor generator and the first motor generator are controlled to jointly output the minimum feedback value, wherein the first motor generator output The braking torque is smaller than the braking torque output by the second motor generator.
  • the distribution of the braking torque of the front and rear wheels directly affects the stability of the braking direction of the vehicle and the efficiency of the recovery of the braking energy.
  • the ratio between the braking torque of the front and rear wheels is determined.
  • the range of the regenerative braking force of the motor is determined, and the regenerative braking force and the friction braking force are determined.
  • the ratio between the size and size In the case where the driver's braking demand is satisfied and the vehicle wheels are not locked, the energy feedback generated by the second motor generator braking is maximized on the drive wheels.
  • the distribution ratio of the braking power of the first and second motor generators is set by the ratio of the distribution of the front and rear wheel mechanism powers to achieve maximum recovery of part of the vehicle braking energy.
  • the braking force is mostly distributed on the rear wheel drive, so that the rear wheel Bear more braking force F (second motor generator is the main, the first motor generator is supplemented).
  • the braking force demand is small, it is provided by the second motor generator; when the braking force demand is large, it is first provided by the second motor generator, and when the second motor generator is insufficient, then it is provided by the first motor generator.
  • the regenerative braking force distribution has the following conditions:
  • T is less than or equal to Tb, the demand of the rear wheel braking torque is all provided by the second motor generator regenerative braking, and the rear wheel is in the pure motor regenerative braking mode;
  • T If T is greater than Tb, the demand for braking torque is mostly provided by the second motor generator, and the first motor generator provides a small portion, that is, the second motor generator and the first motor generator regeneratively brake together. produce.
  • the flow of the electric brake torque distribution during the vehicle brake feedback control of one embodiment of the present invention includes:
  • step S107 if T is less than or equal to Tb, determine the distribution of the braking torque, and step S108 is performed.
  • step S109 If Tmax is greater than Tb, determine the distribution of the braking torque, and step S110 is performed.
  • the vehicle performs feedback of braking energy.
  • the vehicle needs to perform basic braking.
  • the braking torque of the vehicle for the basic braking is obtained according to the depth of the brake pedal and the preset brake pedal depth-base braking torque curve.
  • the energy feedback efficiency of the vehicle brake, the braking safety, the driving feeling and the like are fully considered, and the brake pedal stroke pair is considered.
  • the control strategy of each link is optimized by fully and accurately analyzing and considering each input information, so that the braking feedback control of the vehicle is safe, economical, and maneuverable.
  • the aspects have been improved very well.
  • the maximum required braking torque of the vehicle is obtained according to the depth of the brake pedal, and the first motor generator is based on the maximum demand braking torque.
  • the braking torque, the braking torque of the second motor generator and the braking torque of the mechanical friction braking system of the vehicle are reasonably distributed, and the energy feedback efficiency, braking safety and driving comfort during vehicle braking are fully considered. Thereby achieving greater fuel economy, lower emissions and smooth driving performance, maximizing the car The driving range, ride and handling of the car.
  • the power output from the engine unit and/or the first motor generator of the embodiment of the present invention may be output to the output portion through the power switching device, and then outputted to the front wheel and/or the rear wheel of the vehicle by the output portion.
  • the second motor generator can perform torque compensation on the front wheel and/or the rear wheel, and can also drive the vehicle with the engine unit and the first motor generator, thereby increasing the operation of the vehicle.
  • the mode allows the vehicle to better adapt to different operating conditions, achieve better fuel economy, and reduce harmful gas emissions.
  • the method is simple, reliable and easy to implement.
  • an embodiment of the present invention also proposes a vehicle, as shown in FIG. 26, comprising: an engine unit 1; a transmission unit 2a adapted to be selectively coupled to the engine unit 1 a first motor generator 41, the first motor generator 41 is dynamically coupled to the transmission unit 2a, and an output portion 5 configured to transmit power transmitted through the transmission unit 2a to the motor a front wheel and/or a rear wheel of the vehicle; a power switching device (e.g., synchronizer 6) adapted to power between the transmission unit 2a and the output portion 5 Transmission or disconnection; a second motor generator 42 for driving the front wheel and/or the rear wheel; a power battery 300, the power battery 300 and the first a motor generator 41 and the second motor generator 42 are connected to supply power to the first motor generator 41 and the second motor generator 42; the controller 500, when the current vehicle speed of the vehicle is greater than a preset Vehicle speed, braking of the vehicle The controller controls the vehicle to enter a brake feedback control mode when the depth of the plate is greater than 0 and the anti-
  • the power switching device is constructed as a synchronizer 6, which is arranged to be selectively synchronizeable between the output 5 and the transmission unit 2a.
  • the controller 500 when the vehicle is in the brake feedback control mode, wherein the controller 500 is in accordance with the current operation of the first motor generator 41 and the second motor generator 42 Obtaining a feedback limit value of the first motor generator 41 and a feedback limit value of the second motor generator 42 and obtaining the motor generator control according to a current operating state of the motor generator controller of the vehicle a feedback limit value of the device, and obtaining a feedback limit value of the current power battery 300 according to the current allowable charging power of the power battery 300, and the controller 500 is based on the feedback limit value of the first motor generator 41,
  • the feedback limit value of the second motor generator 42 , the feedback limit value of the motor generator controller, and the feedback limit value of the current power battery 300 obtain the feedback limit value of the first motor generator 41 a feedback limit value of the second motor generator 42 , a feedback limit value of the motor generator controller, and the current power battery
  • the minimum feedback limit value between the feedback limit values of 300 when the vehicle is in the brake feedback control mode, wherein the controller 500 is in accordance with the
  • the controller 500 further obtains a brake pedal depth-braking torque curve of the vehicle according to the ride comfort and braking performance of the vehicle, and according to the brake pedal depth-braking torque curve,
  • An economic area of the power system of the vehicle and a preset brake pedal depth-base brake torque curve obtain a brake pedal depth-brake feedback torque curve of the vehicle, and a brake pedal depth-braking according to the vehicle
  • the feedback torque curve obtains a current brake feedback target value corresponding to the vehicle.
  • the controller 50 obtains a minimum feedback value of the vehicle according to the minimum feedback limit value and the current brake feedback target value, and pairs the second according to the minimum feedback value.
  • the motor generator 42 performs brake feedback control or performs brake feedback control on the first motor generator 41 and the second motor generator 42.
  • the controller 500 when the brake feedback control is performed on the first motor generator 41 and the second motor generator 42 or the brake feedback control is performed on the second motor generator 42, the controller 500
  • the target torque of the engine unit 1 is sent to an engine unit controller that controls the engine unit 1 in accordance with the target torque.
  • the controller 500 controls the synchronizer 6 to perform bonding when the vehicle speed of the vehicle is greater than the first vehicle speed threshold or the first motor generator 41 performs brake feedback.
  • the controller 500 further obtains a braking torque of the vehicle for performing basic braking according to the depth of the brake pedal and the preset brake pedal depth-base braking torque curve. .
  • the controller 500 controls the second motor generator 42 to output the minimum feedback a value; if the minimum feedback value is greater than a maximum output braking torque of the second motor generator 42, the controller 500 controls the second motor generator 42 and the first motor generator 41 to jointly output
  • the minimum feedback value is that the braking torque output by the first motor generator 41 is smaller than the braking torque output by the second motor generator 42.
  • technologies such as ECB (Electronically Controlled Brake System) and EBD (Electronic Brake Force Distribution) can be used to improve braking energy. Recycling ratio. Since the ECB can provide the same braking feeling as the fuel vehicle, the braking energy can be recovered when the brake pedal force is small, and the recovery range of the braking energy is expanded.
  • the maximum required braking torque is obtained according to the depth of the brake pedal, and the braking torque of the first motor generator and the second electric motor are generated according to the maximum required braking torque.
  • the braking torque of the generator and the braking torque of the mechanical friction braking system of the vehicle are reasonably distributed, fully considering the vehicle Energy feedback efficiency, brake safety, and driving comfort during braking, resulting in greater fuel economy, lower emissions, and smoother driving performance, maximizing driving range, ride and handling Sex.
  • the power output from the engine unit and/or the first motor generator of the embodiment of the present invention may be output to the output portion through the power switching device, and then outputted to the front wheel and/or the rear wheel of the vehicle by the output portion.
  • the second motor generator can perform torque compensation on the front wheel and/or the rear wheel, and can also drive the vehicle with the engine unit and the first motor generator, thereby increasing the operation of the vehicle.
  • the mode allows the vehicle to better adapt to different operating conditions, achieve better fuel economy, and reduce harmful gas emissions.
  • a "computer-readable medium” can be any apparatus that can contain, store, communicate, propagate, or transport a program for use in an instruction execution system, apparatus, or device, or in conjunction with the instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) having one or more wires, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer readable medium may even be a paper or other suitable medium on which the program can be printed, as it may be optically scanned, for example by paper or other medium, followed by editing, interpretation or, if appropriate, other suitable The method is processed to obtain the program electronically and then stored in computer memory.
  • portions of the invention may be implemented in hardware, software, firmware or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in a memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if implemented in hardware, as in another embodiment, it can be implemented by any one or combination of the following techniques well known in the art: having logic gates for implementing logic functions on data signals. Discrete logic circuits, application specific integrated circuits with suitable combinational logic gates, programmable gate arrays (PGAs), field programmable gate arrays (FPGAs), etc.
  • the programming may be performed by a related hardware, which may be stored in a computer readable storage medium, which, when executed, includes one or a combination of the steps of the method embodiments.
  • each functional unit in each embodiment of the present invention may be integrated into one processing module, or each unit may exist physically separately, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or in the form of software functional modules.
  • the integrated modules, if implemented in the form of software functional modules and sold or used as stand-alone products, may also be stored in a computer readable storage medium.
  • the above mentioned storage medium may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种车辆及其的制动回馈控制方法,其中制动回馈控制方法包括以下步骤:检测车辆的当前车速和车辆的制动踏板的深度;当车辆的当前车速大于预设车速、制动踏板的深度大于0且车辆的防抱死制动系统处于未工作状态时,控制车辆进入制动回馈控制模式,其中,在车辆处于制动回馈控制模式时,根据制动踏板的深度获得车辆相对应的需求制动力矩,并根据需求制动力矩对第一电动发电机(41)的制动力矩、第二电动发电机(42)的制动力矩和车辆进行基础制动的制动力矩进行分配。该车辆的制动回馈控制方法能够在车辆制动时实现能量在发动机单元(1)、电动发电机之间合理分配,提高了制动回馈效率,从而获得较大的燃油经济性、较低的排放以及平稳的驾驶性能。

Description

车辆及其的制动回馈控制方法 技术领域
本发明涉及汽车技术领域,特别涉及一种车辆的制动回馈控制方法以及一种车辆。
背景技术
目前,汽车制动过程中机械能大部分通过制动器的摩擦转化为热能消耗掉。虽然相关技术中公开了一种电动汽车制动能量回收的控制方法,但是其仅考虑了动力电池、电动发电机系统等因素,依据电动发电机回馈扭矩值控制电动汽车制动时可回收的电流,完成制动能量的回收。
并且,相关技术中的制动回馈控制策略大多数是针对并联/串联两驱混合动力汽车,其主要分为两类:并联式和串联式控制策略。前者对原有摩擦制动力不做调节,回馈制动力附加在原有摩擦制动上共同实现制动功能,制动能量回收率较低,制动感觉较差;后者需对摩擦力进行调节,制动能量回收率较大,制动感觉也较好,但由于摩擦制动力难以调节,从而控制过程相对复杂。因此,相关技术中的制动回馈控制策略需要进行改进。
发明内容
本发明的目的旨在至少解决上述的技术缺陷之一。
为此,本发明的第一个目的在于提出一种车辆的制动回馈控制方法,能够在车辆制动时实现能量在发动机单元、电动发电机之间合理分配,提高了制动回馈效率,从而获得较大的燃油经济性、较低的排放以及平稳的驾驶性能。
本发明的第二个目的在于提出一种车辆。
为达到上述目的,本发明第一方面实施例提出了一种车辆的制动回馈控制方法,其中,所述车辆包括发动机单元、适于选择性地与所述发动机单元动力耦合连接的变速器单元、与所述变速器单元动力耦合连接的第一电动发电机、输出部、动力切换装置、用于驱动所述车辆的前轮和/或后轮的第二电动发电机和给所述第一电动发电机和所述第二电动发电机供电的动力电池,其中,所述输出部构造成将经过所述变速器单元传输的动力传输至所述车辆的前轮和/或后轮,所述动力切换装置适于在所述变速器单元和所述输出部之间进行动力的传输或者断开,所述制动回馈控制方法包括以下步骤:检测所述车辆的当前车速和所述车辆的制动踏板的深度;当所述车辆的当前车速大于预设车速、所述制动踏板的深度大于0且所述车辆的防抱死制动系统处于未工作 状态时,控制所述车辆进入制动回馈控制模式,其中,在所述车辆处于所述制动回馈控制模式时,根据所述制动踏板的深度获得所述车辆相对应的需求制动力矩,并根据所述需求制动力矩对所述第一电动发电机的制动力矩、所述第二电动发电机的制动力矩和所述车辆进行基础制动的制动力矩进行分配。
根据本发明实施例的车辆的制动回馈控制方法,在车辆进行制动回馈时,根据制动踏板的深度获得车辆相对应的需求制动力矩,并根据需求制动力矩对第一电动发电机的制动力矩、第二电动发电机的制动力矩和车辆进行基础制动的制动力矩进行合理分配,充分考虑车辆制动时的能量回馈效率、制动安全性、驾驶舒适性,从而能够获得较大的燃油经济性、较低的排放以及平稳的驾驶性能,最大限度地提高车辆的续驶里程、平顺性和操控性。同时,本发明实施例的发动机单元和/或第一电动发电机输出的动力可以通过动力切换装置而输出至输出部,再由输出部输出给车辆的前轮和/或后轮。又由于第二电动发电机的引入,第二电动发电机可以对前轮和/或后轮进行扭矩补偿,同时也可以配合发动机单元以及第一电动发电机对车辆进行驱动,增加了车辆的运行模式,使得车辆可以更好地适应不同工况,达到较佳的燃油经济性,同时减少有害气体的排放。此外,该方法简单可靠,易于实行。
为达到上述目的,本发明第二方面的实施例提出的一种车辆,包括:发动机单元;变速器单元,所述变速器单元适于选择性地与所述发动机单元动力耦合连接;第一电动发电机,所述第一电动发电机与所述变速器单元动力耦合连接;输出部,所述输出部构造成将经过所述变速器单元传输的动力传输至所述车辆的前轮和/或后轮;动力切换装置,所述动力切换装置适于在所述变速器单元和所述输出部之间进行动力的传输或者断开;第二电动发电机,所述第二电动发电机用于驱动所述前轮和/或所述后轮;动力电池,所述动力电池分别与所述第一电动发电机、所述第二电动发电机相连以给所述第一电动发电机和所述第二电动发电机供电;控制器,当所述车辆的当前车速大于预设车速、所述车辆的制动踏板的深度大于0且所述车辆的防抱死制动系统处于未工作状态时,所述控制器控制所述车辆进入制动回馈控制模式,其中,在所述车辆处于所述制动回馈控制模式时,所述控制器根据所述制动踏板的深度获得所述车辆相对应的需求制动力矩,并根据所述需求制动力矩对所述第一电动发电机的制动力矩、所述第二电动发电机的制动力矩和所述车辆进行基础制动的制动力矩进行分配。
根据本发明实施例的车辆,能够在进行制动回馈时,根据制动踏板的深度获得车辆相对应的需求制动力矩,并根据需求制动力矩对第一电动发电机的制动力矩、第二电动发电机的制动力矩和车辆进行基础制动的制动力矩进行合理分配,充分考虑车辆制动时的能量回馈效率、制动安全性、驾驶舒适性,从而能够获得较大的燃油经济性、 较低的排放以及平稳的驾驶性能,最大限度地提高续驶里程、平顺性和操控性。同时,本发明实施例的发动机单元和/或第一电动发电机输出的动力可以通过动力切换装置而输出至输出部,再由输出部输出给车辆的前轮和/或后轮。又由于第二电动发电机的引入,第二电动发电机可以对前轮和/或后轮进行扭矩补偿,同时也可以配合发动机单元以及第一电动发电机对车辆进行驱动,增加了车辆的运行模式,使得车辆可以更好地适应不同工况,达到较佳的燃油经济性,同时减少有害气体的排放。
本发明附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的动力传动系统的原理简图;
图2是根据本发明一个实施例的动力传动系统的示意图;
图3是根据本发明另一个实施例的动力传动系统的示意图;
图4是根据本发明又一个实施例的动力传动系统的示意图;
图5是根据本发明再一个实施例的动力传动系统的示意图;
图6是根据本发明再一个实施例的动力传动系统的示意图;
图7是根据本发明再一个实施例的动力传动系统的示意图;
图8是根据本发明再一个实施例的动力传动系统的示意图;
图9是根据本发明再一个实施例的动力传动系统的示意图;
图10是根据本发明再一个实施例的动力传动系统的示意图;
图11是根据本发明再一个实施例的动力传动系统的示意图;
图12是根据本发明再一个实施例的动力传动系统的示意图;
图13是根据本发明再一个实施例的动力传动系统的示意图;
图14是根据本发明再一个实施例的动力传动系统的示意图;
图15是根据本发明再一个实施例的动力传动系统的示意图;
图16是根据本发明再一个实施例的动力传动系统的示意图;
图17是根据本发明再一个实施例的动力传动系统的示意图;
图18是根据本发明再一个实施例的动力传动系统的示意图;
图19是根据本发明再一个实施例的动力传动系统的示意图;
图20是根据本发明实施例的车辆的制动回馈控制方法的流程图;
图21是根据本发明一个实施例的车辆的动力传动系统的能量传递路线示意图;
图22是本发明一个实施例的车辆的制动回馈控制信息交互图;
图23是根据本发明一个实施例的车辆进入制动回馈控制模式的流程图;
图24是根据本发明一个实施例的车辆的制动回馈控制的具体流程图;
图25是根据本发明一个实施例的车辆制动回馈控制时的电制动力矩分配的流程图;
图26是根据本发明一个实施例的车辆的示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
下文的公开提供了许多不同的实施例或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或字母。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的可应用于性和/或其他材料的使用。另外,以下描述的第一特征在第二特征之“上”的结构可以包括第一和第二特征形成为直接接触的实施例,也可以包括另外的特征形成在第一和第二特征之间的实施例,这样第一和第二特征可能不是直接接触。
在本发明的描述中,需要说明的是,除非另有规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是机械连接或电连接,也可以是两个元件内部的连通,可以是直接相连,也可以通过中间媒介间接相连,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
参照下面的描述和附图,将清楚本发明的实施例的这些和其他方面。在这些描述和附图中,具体公开了本发明的实施例中的一些特定实施方式,来表示实施本发明的实施例的原理的一些方式,但是应当理解,本发明的实施例的范围不受此限制。相反,本发明的实施例包括落入所附加权利要求书的精神和内涵范围内的所有变化、修改和等同物。
下面在描述根据本发明实施例提出的车辆及其的制动回馈制动方法之前,先来描述一下相关技术中的电动汽车的制动回馈控制策略。
制动回馈控制策略是指电动汽车在减速或制动时,电机控制器按照制定的策略进行回馈控制,给动力电池充电,提高电动汽车的续驶里程,减少污染物的排放和机械制动所带来的磨损,同时优化电动汽车的平顺性。因此,为降低电动汽车能耗,缓解能源危机和环境压力,需要对电动汽车的制动回馈控制策略进行深入研究。
本申请的发明人在研究时发现,相关技术中的制动回馈控制策略大多数是针对并联/串联两驱混合动力汽车,其主要分为两类:并联式和串联式控制策略。前者对原有摩擦制动力不做调节,回馈制动力附加在原有摩擦制动上共同实现制动功能,制动能量回收率较低,制动感觉较差;后者需对摩擦力进行调节,制动能量回收率较大,制动感觉也较好,但由于摩擦制动力难以调节,从而控制过程相对复杂。
而车辆的制动回馈控制策略中标定的回馈扭矩曲线(即根据基础制动踏板行程-减速度曲线计算得到制动踏板深度-制动回馈扭矩曲线)还需要充分考虑车辆的制动回馈效率、车辆的平顺性、操纵稳定性和工作模式等因素,从而寻求经济性和平顺性两者之间的最佳平衡曲线。此外,考虑到车辆会在不同模式下(如紧急制动、正常制动、下长坡制动坡等)采取制动,因此还需考虑电动发电机特性、道路坡度、踏板深度等对制动回馈要求的影响以及制动能量的回馈影响等。
鉴于相关技术中的以上不足,本发明实施例提出了一种车辆及其的制动回馈控制方法,能够在车辆进行制动回馈控制过程中,充分考虑各个因素(经济性、平顺性和其他相关模块的工作状态等),并且综合分析不同路况的特点,制定出较完善的制动能量回馈曲线和控制策略,最大限度地提高车辆的续驶里程、平顺性和操控性等。
下面就参照附图来描述根据本发明实施的车辆及其的制动回馈控制方法。
下面参考图1-图19详细描述根据本发明实施例的动力传动系统100,该动力传动系统100适用于车辆,特别适用于以发动机单元1和电动发电机为主要动力源的混合动力车辆中。
如附图所示,根据本发明实施例的动力传动系统100可以包括发动机单元1、变速器单元2a、第一电动发电机41、第二电动发电机42、输出部5和动力切换装置(例如同步器6、离合器9)。
变速器单元2a适于选择性地与发动机单元1动力耦合连接。发动机单元1可以例如通过离合器等选择性地将其产生的动力输出给变速器单元2a;可选择性地,变速器单元2a也可将例如来自第一电动发电机41的启动力矩输出给发动机单元1,以启动发动机单元1。在本公开的上下文中,发动机单元1与变速器单元2a之间可以进行例如通过自身或者通过其他部件所产生的动力的传递称之为动力耦合连接。
发动机单元1的特点是液体或气体燃料和空气混合后直接输入机器内部燃烧而产 生能量,然后再转变成机械能。对于车辆而言,其发动机单元1一般可采用四冲程的汽油机或柴油机,发动机单元1一般可以包括机体组、曲柄连杆机构、供给系统、点火系统、冷却系统和润滑系统等。
机体组是发动机单元1各机构、系统的装配机体,曲柄连杆机构可将活塞的直线往复运动转变为曲轴的旋转运动并可输出动力。配气机构用于定时进气、排气,保证发动机单元1各循环的顺利进行。供给系统可将油气混合物供给气缸内用于燃烧。冷却系统用于冷却发动机单元1,保证发动机单元1的工作温度处在适宜的温度区间内。润滑系统用于润滑发动机单元1内的各运动副,减少磨损和能量损耗。
应当理解的是,上述关于发动机单元1及其各个子系统、子机构的具体构造、工作原理等均已为现有技术,且为本领域普通技术人员所熟知,这里出于简洁的目的,不再一一详细赘述。
第一电动发电机41与变速器单元2a动力耦合连接。换言之,第一电动发电机41与变速器单元2a配合传动,即第一电动发电机41可以驱动变速器单元2a,而变速器单元2a也可以反过来驱动第一电动发电机41。
例如,发动机单元1可将产生的至少部分动力通过变速器单元2a输出给第一电动发电机41,此时第一电动发电机41可发电,并可将机械能转换为电能储存在蓄能部件例如电池组件中。又如,第一电动发电机41可以将来自电池组件的电能转换为机械能,且可通过变速器单元2a输出给输出部5以驱动车辆。
第一电动发电机41是具有电动机和发电机功能的电机,在本发明有关“电动发电机”的描述中,如果没有特殊说明,均作此理解。
输出部5构造成将经过变速器单元2a变速的动力传输至车辆的车轮200,即前轮210和/或后轮220。简言之,输出部5适于输出来自变速器单元2a的动力。
动力切换装置如同步器6适于在输出部5和变速器单元2a之间进行动力的传输或者断开。换言之,动力切换装置可以将变速器单元2a输出的动力通过输出部5输出至前轮210和/或后轮220,或者动力切换装置也可断开变速器单元2a与输出部5,此时变速器单元2a无法直接通过输出部5而将动力输出至前轮210和/或后轮220。
参照图1且结合图2-图13所示,第二电动发电机42用于驱动前轮210或后轮220。
由此,在输出部5用于驱动前轮210而第二电动发电机42也用于驱动前轮210时,具有该动力传动系统100的车辆可为两驱车辆。在输出部5用于驱动前轮210而第二电动发电机42用于驱动后轮220时,具有该动力传动系统100的车辆可为四驱车辆,同时可以在两驱模式与四驱模式之间切换。在输出部5用于驱动前轮210和后轮220而第二电动发电机42用于驱动前轮210和后轮220中的一个时,具有该动力传动系统 100的车辆可为四驱车辆。
根据本发明实施例的动力传动系统100,发动机单元1和/或第一电动发电机41输出的动力可以通过动力切换装置而输出至输出部5,再由输出部5输出给车辆的前轮210和/或后轮220。
同时,由于第二电动发电机42的引入,第二电动发电机42可以对前轮210或后轮220进行扭矩补偿,同时也可以配合发动机单元1以及第一电动发电机41对车辆进行驱动,增加了车辆的运行模式,使得车辆可以更好地适应不同工况,达到较佳的燃油经济性,同时减少有害气体的排放。
根据本发明的一些实施例,如图1-图16所示,动力切换装置构造成同步器6,同步器6设置成适于在输出部5和变速器单元2a之间可选择地同步,从而通过输出部5输出动力以驱动车辆的车轮200。
这里,同步器6的作用可以是最终同步输出部5和变速器单元2a,即通过同步器6的同步作用后,使得输出部5能够与变速器单元2a同步动作,从而由输出部5作为动力输出端,将变速器单元2a的动力输出。而在同步器6未同步变速器单元2a与输出部5时,变速器单元2a的动力无法(通过输出部5)直接输出至车轮200。
简言之,同步器6起到了动力切换的目的,即同步器6接合,变速器单元2a的动力可以通过输出部5输出并用于驱动车轮200,而同步器6断开,变速器单元2a无法通过输出部5将动力传递给车轮200,这样通过控制一个同步器6的接合或断开,从而可以实现整车驱动模式的转换。
由于应用场合的特殊性,此处同步器6相比离合器具有如下优点:
a,当同步器6断开时,需要将发动机单元1、变速器单元2a和第一电机发电机41与车轮200的动力彻底断开,使得双方各自进行的运动(发电、驱动、功率扭矩传输等)互不影响,这一需求对减少车辆的能量消耗尤为重要。同步器6可以很好的做到这一点,而离合器通常会出现摩擦片分离不彻底的情况,增加了摩擦损失和能量消耗。
b,当同步器6接合时,需要将发动机单元1和第一电动发电机41的合成(耦合后的)驱动力经过变速器单元2a的扭矩放大后传递至车轮200,或将车轮200的驱动力传递至第一电动发电机41(发电),这就要求此处的动力耦合装置可以传递很大的扭矩,并具有很高的稳定性。同步器6可以很好的做到这一点,而如果选用离合器,则需要设计与整个系统(发动机、变速器、电机)不相匹配的超大体积的离合器,增加了布置难度,提高了重量和成本,并且在扭矩冲击时,有打滑的风险。
并且,第一电动发电机41可以通过调节变速器单元2a的速度,例如第一电动发 电机41可以输出部5的转速为目标,通过转速的改变,调节变速器单元2a的速度,使得变速器单元2a与输出部5的速度以时间有效的方式迅速匹配,从而减少同步器6同步所需的时间,减少中间能量损失,同时还能够实现同步器6的无扭矩接合,极大地提高了车辆的传动效率、同步可控性和同步的实时性。此外,同步器6的寿命得以进一步延长,从而降低整车维护的成本。此外,根据本发明实施例的动力传动系统100结构紧凑且控制方便。
根据本发明的一些实施例,如图2-图6且结合图7所示,变速器单元2a包括变速器动力输入部21a和变速器动力输出部22a,变速器动力输入部21a与发动机单元1可选择性地接合,以传输发动机单元1所产生的动力。变速器动力输出部22a构造成适于将来自变速器动力输入部21a上的动力通过同步器6的同步而将动力输出至输出部5。
如图2-图6且结合图7所示,进一步,变速器动力输入部21a进一步包括:输入轴(例如第一输入轴21、第二输入轴22)和设置在输入轴上的主动齿轮25,输入轴与发动机单元1可选择性地接合,以传输发动机单元1所产生的动力。换言之,在发动机单元1需要将动力输出给输入轴时,发动机单元1可与输入轴进行接合,从而发动机单元1输出的动力可传递至输入轴。发动机单元1与输入轴的接合方式可以通过离合器(例如,双离合器31)来实现,关于这部分内容将在下面给出详细说明,这里不再赘述。
如图2-图6且结合图7所示,变速器动力输出部22a包括:输出轴24和从动齿轮26,从动齿轮26设置在输出轴24上且与输入轴上的主动齿轮25对应地啮合。
参照图2-图5所示,输出轴24构造成输出输入轴上传输的动力的至少一部分。具体而言,输出轴24与输入轴配合传动,例如优选地,输出轴24与输入轴之间可以通过上述的主动齿轮25和从动齿轮26进行传动。
当然,应当理解,对于输出轴24与输入轴的传动方式并不限于此,例如还可以是通过皮带轮传动机构、齿轮齿条传动机构等。对于本领域技术人员而言,可以根据实际情况而具体选择适宜的传动结构或者方式。
输出轴24用于传输输入轴上的至少一部分动力,例如在动力传动系统100处于某些传动模式时,如第一电动发电机41进行电动发电,此时输入轴上的动力可以部分用于第一电动发电机41的发电,另一部分也可以用于驱动车辆行驶,当然输入轴上的全部动力也可均用于发电。
根据本发明的一些实施例,第一电动发电机41与输入轴和输出轴24中的一个直接传动或间接传动。这里,“直接传动”指的是第一电动发电机41与相应轴直接相连进行传动,不经任何诸如变速装置、离合装置、传动装置等中间传动部件,比如第一电动发电机41的输出端直接与输入轴和输出轴24中的一个刚性相连。直接传动的优点 在于减少了中间传动部件,降低了能量在传动过程中的损失。
“间接传动”即排除直接传动之外的任何其它传动方式,例如通过变速装置、离合装置、传动装置等中间部件进行传动。间接传动方式的优点在于布置更加方便,并且可以通过设置诸如变速装置来获得所需的传动比。
输出部5可以作为输出轴24的动力输出终端,用于输出输出轴24上的动力,输出部5相对于输出轴24是可以差速转动的,即输出部5相对输出轴24可以存在不同步转动的情况,也就是说二者之间存在转速差,没有刚性连接在一起。
同步器6设置在输出轴24上。具体地,参照图1且结合图2-图6所示,同步器6可以包括花键毂61和接合套62,花键毂61可以固定在输出轴24上,花键毂61随输出轴24同步转动,接合套62相对花键毂61可沿输出轴24的轴向动作,以可选择性地接合输出部5,从而使得输出部5随输出轴24同步转动,由此动力可从输出部5传递给前轮210和/或后轮220,实现驱动车轮200的目的。但是,应当理解的是,同步器6的结构不限于此。
根据本发明实施例的动力传动系统100,发动机单元1和/或第一电动发电机41输出的动力可以通过同步器6的接合而从输出部5输出,结构紧凑、控制方便,而且在车辆切换工况过程中,可能出现同步器6从分离状态转换为接合状态的情况,此时第一电动发电机41可以输出部5的转速为目标,通过转速控制,调节输出轴24的转速,使输出轴24与输出部5的转速在短时间内匹配,方便同步器6的接合,从而大大提高了传动效率,同时减少了中间能量的传递损失,且可实现同步器6的无扭矩接合(即同步器6接合时基本无径向摩擦力或径向摩擦力远低于行业内一般水平)。
根据本发明的一些实施例,输出部5用于驱动车辆的第一对车轮,第二电动发电机42为一对且用于驱动第一对车轮。进一步,第二电动发电机可以为多个,例如还包括第二电动发电机43,第二电动发电机43用于驱动车辆的第二对车轮。其中,第一对车轮为前轮210或后轮220中的一对,第二对车轮为前轮210或后轮220中的另一对。例如,在图2-图8的示例中,该第一对车轮指的是车辆的前轮210,第二对车轮指的是车辆的后轮220。
由此,根据本发明实施例的动力传动系统100具有四类动力输出源,即发动机单元1、第一电动发电机41、第二电动发电机42和第二电动发电机43,其中发动机单元1、第一电动发电机41和第二电动发电机42可以用于驱动车辆的其中一对车轮,第二电动发电机43可以用于驱动另一对车轮。因此,具有该动力传动系统100的车辆为四驱车辆。
而且,在车辆切换工况过程中,可能出现同步器6从分离状态转换为接合状态的 情况,此时第一电动发电机41可以输出部5的转速为目标,通过转速控制,调节输出轴24的转速,使输出轴24与输出部5的转速在短时间内匹配,方便同步器6的接合,从而大大提高了传动效率,同时减少了中间能量的传递损失。
同时,由于第二电动发电机42和第二电动发电机43的引入,第二电动发电机42和第二电动发电机43可以对车轮200进行扭矩补偿,从而间接反映到输出部5,即第二电动发电机42和第二电动发电机43可以间接地调节输出部5的转速,例如在出现同步器6从分离状态转换为接合状态时,此时第二电动发电机42和第二电动发电机43可以按照需要间接调节输出部5的转速,使输出轴24与输出部5的转速在短时间内匹配,从而方便同步器6的接合。
并且,第二电动发电机42和第二电动发电机43可以配合第一电动发电机41同时进行调速,使输出轴24和输出部5的转速在更短的时间内进行同步,从而在最快的时间内满足接合条件,使同步器6接合,大大提高了传动效率。
简言之,可选地,第一电动发电机41可以进行单独调速。或者,可选地,第二电动发电机42和第二电动发电机43中的至少一种可以进行单独调速。再者,进一步可选地,第一电动发电机41、第二电动发电机42、第二电动发电机43可以同时进行调速。
这样,同步器6的接合/断开控制了变速器单元2a动力的输出,同时第一电动发电机41和/或第二电动发电机42和/或第二电动发电机43在同步器6从断开状态转换为接合状态期间可分别对输出轴24和输出部5进行调速补偿,使得输出轴24和输出部5的转速快速匹配,从而快速实现同步器6的无扭矩接合。
根据本发明的一些优选实施例,如图2-图9所示,输入轴为多个,即两个或两个以上。该多个输入轴依次同轴嵌套设置,例如,输入轴为N个,则第K个输入轴套设在第K-1个输入轴上,其中N≥K≥2,并且该N个输入轴的中心轴线是重合的。
在图2-图7,图9-图19的示例中,输入轴为两个,即第一输入轴21和第二输入轴22,则第二输入轴22套设在第一输入轴21上且二者的中心轴线重合。又如,在图8的示例中,输入轴为三个,即第一输入轴21、第二输入轴22和第三输入轴23,则第三输入轴23套设在第二输入轴22上,第二输入轴22套设在第一输入轴21上,并且该三个轴的中心轴线重合。
在发动机单元1给输入轴传送动力或者与输入轴进行动力耦合连接时,发动机单元1可选择性地与多个输入轴中的一个接合。换言之,在需要将发动机单元1的动力传送出来时,发动机单元1的输出端是可与多个输入轴中的一个接合从而同步转动的。而在不需要发动机单元1工作或发动机单元1处于怠速时,则发动机单元1可与多个 输入轴均断开,即发动机单元1不与任何一个输入轴相连,从而断开与发动机单元1的动力耦合连接。
进一步,如图2-图6所示,每个输入轴上固定有一个主动齿轮25,主动齿轮25随输入轴同步旋转,主动齿轮25与对应输入轴的固定方式有多种,例如可以通过键槽配合方式固定,当然也可以通过热压、一体成型等多种方式将主动齿轮25与输入轴固定,保证二者可以同步旋转。
输出轴24上固定有多个从动齿轮26,多个从动齿轮26随输出轴24同步旋转,从动齿轮26与输出轴24的固定方式也可采用上述主动齿轮25与输入轴的固定方式,但不限于此。
但是,本发明不限于此,如,在每个输入轴上设置的主动齿轮25上的的数量可以不限于一个,对应地,在输出轴24上设置多个从动齿轮26已形成多个挡位,对于本领域技术人员而言是可以实现的。
如图2-图6所示,多个从动齿轮26与多个输入轴上的主动齿轮25分别对应地啮合,根据本发明的一个实施例,从动齿轮26的数量与输入轴的数量可以是相同的,例如从动齿轮26为两个,则输入轴为两个,这样两个从动齿轮26可以分别对应地与两个输入轴上的主动齿轮25啮合传动,使得该两对齿轮副可以构成两个挡位进行传动。
在根据本发明的一个实施例中,可以根据传动需要而设置三个或更多个输入轴,并且在每个输入轴上均可固定一个主动齿轮25,由此输入轴的数量越多,可以进行传动的挡位就越多,该动力传动系统100的传动比的范围就越大,从而适应多种车型对于传动的要求。
根据本发明的一些具体实施例,如图2-图7所示,多个输入轴包括第一输入轴21和第二输入轴22,第二输入轴22套设在第一输入轴21上,第二输入轴22是空心轴,第一输入轴21优选为实心轴,当然可选地,第一输入轴21也可以是空心轴。
第一输入轴21可以采用轴承进行支承,为了保证第一输入轴21传动时的平顺性,轴承优选是多个且可沿第一输入轴21的轴向在不影响其余部件装配的位置进行布置。同样地,第二输入轴22也可采用轴承进行支承,这里不再详细描述。
进一步,参照图2-图7所示,发动机单元1与第一输入轴21和第二输入轴22之间设置有双离合器31,双离合器31可以采用现有的干式双离合器31或湿式双离合器31。
双离合器31具有输入端313、第一输出端311和第二输出端312,发动机单元1与双离合器31的输入端313相连,具体而言,发动机单元1可以通过飞轮、减震器或扭转盘等多种形式与双离合器31的输入端313相连。
双离合器31的第一输出端311与第一输入轴21相连,从而该第一输出端311与第一输入轴21同步旋转。双离合器31的第二输出端312与第二输入轴22相连,从而该第二输出端312与第二输入轴22同步旋转。
其中,双离合器31的输入端313可以是双离合器31的壳体,其第一输出端311和第二输出端312可以是两个从动盘。一般地,壳体与两个从动盘可以是都断开的,即输入端313与第一输出端311和第二输出端312均断开,在需要接合其中一个从动盘时,可以控制壳体与相应从动盘进行接合从而同步旋转,即输入端313与第一输出端311和第二输出端312之一接合,从而输入端313传来的动力可以通过第一输出端311和第二输出端312中的一个输出。一般地,壳体与两个从动盘不会同时接合。
应当理解,双离合器31的具体接合状态受到控制策略的影响,对于本领域的技术人员而言,可以根据实际所需的传动模式而适应性设定控制策略,从而可以在输入端与两个输出端全部断开以及输入端与两个输出端之一接合的三种模式中进行切换。
在图2-图7的示例中,由于输入轴为同心的双轴结构,且每个输入轴上只设置有一个主动齿轮25,因此该变速器单元2a具有两个不同的挡位,发动机单元1可以通过该两个挡位将动力输出至输出部5,同步器6可以一直处于接合状态,即接合输出轴24和输出部5。
在挡位之间切换时,同步器6无需像以传统布置方式的同步器结构要先断开再轴向移动才能接合另外的齿轮,而只需简单地控制双离合器31的接合/断开状态,此时同步器6可以一直处于接合状态,这样在发动机单元1将动力输出至输出部5时,只需控制一个换挡执行元件即双离合器31即可,而无需控制同步器6,这样可以大大简化控制策略,减少同步器6的接合/断开次数,提高同步器6的寿命。
根据本发明的一些实施例,第一电动发电机41设置成与主动齿轮25和从动齿轮26中的一个配合传动,换言之,第一电动发电机41是与输入轴和输出轴24中的一个间接传动。
进一步,作为可选的方案,第一电动发电机41与相应齿轮之间可以设置中间传动机构,该传动机构可以是蜗轮蜗杆传动机构、一级或多级齿轮副传动机构、链轮传动机构等,或者在不抵触的情况下,还可以是上述多种传动机构的组合,这样第一电动发电机41可以根据需要而布置在不同位置,降低了第一电动发电机41的布置难度。
考虑到便于空间上布置的问题,根据本发明的一个实施例,第一电动发电机41可以通过一个中间齿轮411进行传动。例如,在图3(结合图2)的示例中,第一电动发电机41与第一输入轴21上的主动齿轮25之间通过一个中间齿轮411间接传动。又如,在图2的示例中,第一电动发电机41与第二输入轴22上的主动齿轮25之间通过一个 中间齿轮411间接传动。
但是,本发明并不限于此。在本发明的其它实施例中,第一电动发电机41可设置成与第一输入轴21和输出轴24中的一个相连。例如,第一电动发电机41可设置成与第一输入轴21直接相连。又如,第一电动发电机41可设置成与输出轴24直接相连。第一电动发电机41采用与相应轴直接相连的方式,可以使得动力传动系统100的结构更加紧凑,同时还能减少动力传动系统100的周向尺寸,便于布置在车辆的机舱内。
根据本发明的一个实施例,参照图4所示,第一电动发电机41与第一输入轴21同轴布置,并且第一电动发电机41与发动机单元1同轴布置。这里,“第一电动发电机41与发动机单元1同轴布置”应当理解为:第一电动发电机41的转子的转动轴线与发动机单元1的曲轴的旋转轴线是大体重合的。由此,使得动力传动系统100的结构更加紧凑。
根据本发明的一些实施例,参照图2-图6所示,输出部5可以包括输出齿轮51和接合齿圈52,输出齿轮51与输出轴24可相对转动即差速转动,接合齿圈52与输出齿轮51固定,即接合齿圈52与输出齿轮51同步转动。
由此,同步器6需要将输出部5与输出轴24接合时,同步器6的接合套62可以沿着轴向向接合齿圈52的方向运动,在输出部5与输出轴24的转速同步后,接合套62可以与接合齿圈52接合,从而输出轴24、同步器6和输出部5三者之间形成刚性连接,进而三者同步旋转。
为了减少中间传动部件,降低能量损失,并尽可能地提高动力传动系统100的传动效率,作为优选的方式,如图2-图6所示,输出齿轮51可为主减速器主动齿轮,该主减速器主动齿轮可以与主减速器从动齿轮53直接啮合从而将动力输出,以驱动车轮200。但是,本发明并不限于此,在输出齿轮51与主减速器之间也可以设置其它用于传动的中间部件。
参照图2-图10所示,第一对车轮例如前轮210之间设置有差速器54,差速器54是与输出部5配合传动的,具体而言,在一些实施例中,差速器54上设置有主减速器从动齿轮53,输出齿轮51为主减速器从动齿轮,主减速器主动齿轮与主减速器从动齿轮53啮合,从而动力可依次通过主减速器主动齿轮、主减速器从动齿轮53和差速器54后传递至两个前轮210。
差速器54的作用是合理地分配给两个前轮210所需动力,差速器54可以是齿轮式差速器、强制锁止式差速器、托森差速器等。对于本领域的技术人员而言,可以根据不同车型而选择合适的差速器。
根据本发明的一些实施例,参照图5-图7、图10所示,一对第二电动发电机42 背靠背地设在差速器54的两侧,例如一对第二电动发电机42分别设在差速器54的另侧且与差速器54集成为一体结构。换言之,左侧的第二电动发电机42设在左侧半轴与差速器54的左侧之间,右侧的第二电动发电机42设在右侧半轴与差速器54的右侧之间。具体而言,图5-图7中的动力传动系统100为四驱形式,而图10中的动力传动系统100为两驱形式。需要说明的是,在下面有关电动发电机背靠背地设在差速器54的两侧,均可以理解为该电动发电机分别设在差速器54的两侧并与该差速器集成为一体结构。
根据本发明的另一些实施例,参照图2-图4、图9所示,第二电动发电机42为轮边电机。换言之,其中一个第二电动发电机42设在左前轮的内侧,另一个第二电动发电机42设在右前轮的内侧,第二电动发电机42可以通过齿轮机构将动力传递至相应车轮的轮毂。具体而言,图2-图4中的动力传动系统100为四驱形式,而图9中的动力传动系统100为两驱形式。
在本发明的一些实施例中,第二电动发电机43为两个,且第二电动发电机43为轮边电机,如图2和图5所示。换言之,在图2和图5的示例中,一个第二电动发电机43设于左后轮的内侧,另一个第二电动发电机43设于右后轮的内侧,第二电动发电机43可以通过齿轮机构将动力传递给相应的后轮。
在本发明的另一些实施例中,第二电动发电机43为一个,该一个第二电动发电机43通过第一变速机构71驱动第二对车轮。其中,第一变速机构71优选是减速机构,减速机构可以是一级减速机构或多级减速机构。减速机构可以是齿轮减速机构、蜗轮蜗杆减速机构等,对此本发明并不作特殊限定。
在该一些实施例中,第二对车轮可以通过一根车桥相连,该车桥可以是一体式结构,此时第二电动发电机43通过第一变速机构71可以直接驱动该一体式车桥,从而带动两个车轮同步转动。
在本发明的再一些实施例中,第二电动发电机43为两个,每个第二电动发电机43分别通过一个第二变速机构72驱动第二对车轮中的一个。其中,第二变速机构72优选是减速机构,该减速机构可以是一级减速机构或多级减速机构。该减速机构可以是齿轮减速机构、蜗轮蜗杆减速机构等,对此本发明并不作特殊限定。
在该一些实施例中,第二对车轮可以通过两个半桥与对应的第二电动发电机43以及第二变速机构72相连,也就是说,一个第二电动发电机43可以通过一个第二变速机构72来驱动对应的半桥,从而带动该半桥外侧的车轮旋转。
根据本发明的另一些实施例,如图9-图10所示,这些动力传动系统100均为两驱形式。在图9的示例中,输出部5驱动前轮210,第二电动发电机42为轮边电机且用 于驱动前轮220。在图10的示例中,输出部5驱动前轮210,第二电动发电机42背靠背地设在差速器54的两侧,例如第二电动发电机42分别设在差速器54的两侧且集成为一体结构。如图11-图13所示,这些动力传动系统100均为四驱形式。在图11的示例中,输出部5驱动前轮210,第二电动发电机42为两个,每个第二电动发电机42均通过一个第四变速机构74驱动后轮220。在图12的示例中,输出部5驱动前轮210,第二电动发电机42为一个,该第二电动发电机42通过一个第三变速机构73驱动后轮220。在图13的示例中,输出部5驱动前轮210,第二电动发电机42为两个且为轮边电机,其用于驱动后轮220。
关于第三变速机构73,其可与第一变速机构71相同。类似地,第四变速机构74可与第二变速机构72相同。因此,这里不再赘述。
根据本发明的一些实施例,动力传动系统100还可以包括电池组件300,电池组件300优选与第一电动发电机41、第二电动发电机42和第二电动发电机43相连。由此,第一电动发电机41由发动机单元1驱动进行发电或制动回收的电能可以供给并存储在电池组件300中,第二电动发电机42和第二电动发电机43在制动工况时回收的电能也可以供给并存储在电池组件300中。在车辆处于电动模式时,可以由电池组件300将电能分别供给至第一电动发电机41和/或第二电动发电机42和/或第二电动发电机43。需要说明的是,图8中的虚线表示电池组件300可分别与第一电动发电机41、第二电动发电机42和第三电动发电机43电连接。
作为上述实施例中描述的动力传动系统100的一种变型实施例,如图8所示,多个输入轴包括三个轴,即第一输入轴21、第二输入轴22和第三输入轴23,第二输入轴22套设在第一输入轴21上,第三输入轴23套设在第二输入轴22上。
在该变型实施例中,动力传动系统100进一步包括三离合器32,三离合器32具有输入端324、第一输出端321、第二输出端322和第三输出端323,发动机单元1与三离合器32的输入端324相连,三离合器32的第一输出端321与第一输入轴21相连、三离合器32的第二输出端322与第二输入轴22相连且第三离合器32的第三输出端323与第三输入轴23相连。
类似地,三离合器32的输入端可以是其壳体,其三个输出端可以是三个从动盘,输入端可与三个输出端之一接合,或者输入端与三个输出端全部断开。可以理解的是,三离合器32的工作原理与双离合器31近似,这里不再赘述。
需要说明的是,在该变型实施例中,对于其余部分,例如第一电动发电机41与第一输入轴21或输出轴24的传动方式,第二电动发电机42和第二电动发电机43的设置位置和驱动形式等均可采用上述双离合器31技术方案中同样的设置方式,请一并参照上述双离合 器31的技术方案,这里不再一一详细描述。
作为上述实施例中描述的动力传动系统100的另一种变型实施例,如图14-图16所示,在该动力传动系统100中,从动齿轮26为联齿齿轮结构,该联齿齿轮结构26空套设置在输出轴24上,即二者可差速转动。其中,同步器6设置在输出轴24上且可选择地与该联齿齿轮结构26接合。
在该实施例中,具体地,输入轴为两个,即第一输入轴21和第二输入轴22,每个输入轴上固定有一个主动齿轮25,联齿齿轮结构26为双联齿轮,该双联齿轮26具有第一齿轮部261和第二齿轮部262,第一齿轮部261和第二齿轮部262分别与两个主动齿轮25对应地啮合。
该实施例中的动力传动系统100在进行动力传动时,同步器6可以接合双联齿轮26,从而发动机单元1和/或第一电动发电机41输出的动力可以通过输出部5(例如,主减速器主动齿轮51)输出。
该实施例中,第一电动发电机41与输出轴或输出轴中的一个可以直接传动或间接传动,具体可采用上述实施例中描述的相关传动方式,这里不再详细说明。而对于其它部件,例如发动机单元1与输入轴之间的离合器(例如,双离合器31或三离合器32)等均可采用与上述实施例中相同的设置方式,这里不再赘述。
在该一些实施例中,如图14-图16所示,具体地,动力传动系统100可以包括发动机单元1、多个输入轴、输出轴24、输出部5(例如,主减速器主动齿轮51)、同步器6和第一电动发电机41。
该变型实施例与图2-图13中所示的动力传动系统100的最主要的区别在于:从动齿轮26采用联齿结构且空套于输出轴24上,输出部5固定设置于输出轴24上,同步器6则用于接合联齿齿轮结构。该实施例中,第一电动发电机41的布置形式与上述图2-图13中所示的动力传动系统中的第一电动发电机41的布置形式稍作变型。
在一些实施例中,如图14-图16所示,输入轴是多个,输入轴上设置有主动齿轮25。输出轴24上空套有联齿齿轮结构26,联齿齿轮结构26具有多个齿轮部(例如,第一齿轮部261、第二齿轮部262),多个齿轮部分别与多个输入轴上的主动齿轮24对应地啮合。
参照图14-图16,输出部5适于输出来自输出轴24的动力,例如优选地,输出部5固定设置在输出轴24上。根据本发明的一个实施例,输出部5包括主减速器主动齿轮51,但并不限于此。
同步器6设置在输出轴24上,同步器6设置成可选择性地接合联齿齿轮结构26,从而通过输出部5输出动力以驱动车辆的车轮。第一电动发电机41与输入轴和输出轴 24中的一个可以是直接传动或间接传动。
该一些实施例中,同步器6的作用与图2-图13中所示实施例中的同步器的作用大致相同,区别在于该一些实施例中同步器6是用于接合联齿齿轮结构26和输出轴24的,而图2-图13中所示实施例中的同步器6是用于接合输出部5和输出轴24的。
具体地,在该实施例中,同步器6的作用可以是最终同步联齿齿轮结构26和输出轴24,即通过同步器6的同步作用后,使得联齿齿轮结构26和输出轴24同步动作,从而由输出部5作为动力输出端,将发动机单元1和/或第一电动发电机41的动力输出。而在同步器6未同步联齿齿轮结构26和输出轴24时,发动机单元1和/或第一电动发电机41的动力无法(通过输出部5)直接输出至车轮200。
简言之,同步器6起到了动力切换的目的,即同步器6接合,发动机单元1和/或第一电动发电机41的动力可以通过输出部5输出并用于驱动车轮200,而同步器6断开,发动机单元1和/或第一电动发电机41的动力无法通过输出部5将动力传递给车轮200,这样通过控制一个同步器6的接合或断开,从而可以实现整车驱动模式的转换。
并且,第一电动发电机41可以输出部5的转速为目标,通过转速的改变,调节联齿齿轮结构26的速度,使得联齿齿轮结构26与输出轴24的速度以时间有效的方式迅速匹配,从而减少同步器6同步所需的时间,减少中间能量损失,同时还能够实现同步器6的无扭矩接合,极大地提高了车辆的传动效率、同步可控性和同步的实时性。此外,同步器6的寿命得以进一步延长,从而降低整车维护的成本。
此外,采用联齿齿轮结构26,可以使得动力传动系统100的结构更加紧凑,便于布置。减少了从动齿轮的个数,进而减小了动力传动系统的轴向尺寸,利于成本的降低,同时也降低了布置难度。
而且,同步器6可由一个单独的拨叉控制其运动,使得控制步骤简单,使用可靠性更高。
根据本发明的一些实施例,多个输入轴同轴嵌套设置,每个输入轴上固定有一个主动齿轮25。具体地,在一个实施例中,输入轴包括第一输入轴21和第二输入轴22,每个输入轴上固定有一个主动齿轮25,联齿齿轮结构26为双联齿轮,该双联齿轮26具有第一齿轮部261和第二齿轮部262,第一齿轮部261和第二齿轮部262分别与两个主动齿轮25对应地啮合。
在发动机单元1与第一输入轴21和第二输入轴22之间可以设置双离合器31,关于这部分请参照图2-图13所示动力传动系统100中的双离合器31部分。可选地,双离合器31上可以布置减振结构,例如减振结构可以布置在双离合器31的第一输出端与双离合器31的输入端之间,这样更加适合抵挡起步。
参照图14-图16所示,第一电动发电机41的输出端与其中一个主动齿轮直接传动或间接传动。
例如,该实施例中的动力传动系统100还包括中间轴45,中间轴45上固定设置有第一中间轴齿轮451和第二中间轴齿轮452,第一中间轴齿轮451和第二中间抽齿轮452中的一个与其中一个主动齿轮25啮合,例如在图14和图15的示例中,第一中间抽齿轮451与第二输入轴22上的主动齿轮25啮合,但是本发明不限于此。
根据本发明的一些实施例,第一电动发电机41的输出端与第一中间轴齿轮451和第二中间轴齿轮452中的一个直接传动或通过中间惰轮44间接传动。例如在图14的示例中,第一电动发电机41的输出端与第二中间轴齿轮452之间通过一个中间惰轮44间接传动。又如在图15的示例中,第一电动发电机41的输出端直接与第二中间轴齿轮452啮合传动。
参照图16所示,第一电动发电机41的输出端直接与联齿齿轮结构26中的一个齿轮部啮合,例如第一电动发电机41的输出端直接与第一齿轮部261啮合传动。
但是,应当理解的是,本发明并不限于此,对于第一电动发电机41的布置位置,可以根据实际需要而灵活设定,例如可以采用上述的几种方式,或者也可以采用图2-图13中所示的一些布置方式,这里不再一一赘述。
参照图14-图15所示,第一齿轮部261独立负责发动机单元1的扭矩输入,第二齿轮部262可同时负责发动机单元1和第一电动发电机41的扭矩输入,当然也可单独负责其中一方。
参照图14-图16所示,联齿齿轮结构26的朝向同步器6的一侧固定设置有接合齿圈52,同步器6适于接合接合齿圈52,从而将联齿齿轮结构26与输出轴24刚性连接在一起以同步转动。
作为上述联齿齿轮实施例中描述的动力传动系统100的另一种变型实施例,如图17-图19所示,在该动力传动系统100中,通过离合器9来取代上述实施例中的同步器6。
具体地,在该一些实施例中,如图17-图19所示,动力切换装置为离合器9,离合器9设置成适于在变速器单元2a和输出部5之间进行动力的传输或者断开。换言之,通过离合器9的接合作用,可以使得变速器单元2a与输出部5同步动作,此时输出部5可将变速器单元2a的动力输出至车轮200。而离合器9断开后,变速器单元2a输出的动力无法直接通过输出部5输出。
在该一些实施例中,双联齿轮26空套设置在输出轴24上,输出部5固定设置在输出轴24上,离合器9具有主动部分(图17中的C)和从动部分图17中的C),离合器9的主动部分和从动部分中的一个设在联齿齿轮结构例如双联齿轮26上,离合器9的主动部分和从动部分中的另一个设置在输出轴24上,离合器9的主动部分和从动部分可分离或接 合。例如,在图17的示例中,主动部分可以设在输出轴24上,从动部分可以设在联齿齿轮结构26上,但不限于此。
由此,在离合器9的主动部分与从动部分接合后,输出轴24与空套其上的双联齿轮26接合,动力可从输出部5输出。而在离合器9的主动部分与从动部分断开后,联齿齿轮26空套与输出轴24上,输出部5不传递变速器单元2a的动力。
整体而言,根据本发明实施例的动力传动系统100,由于采用同步器6进行动力切换,且同步器6具有体积小、结构简单、承受扭矩大、传动效率高等诸多优点,因此根据本发明实施例的动力传动系统100的体积有所减小、结构更加紧凑,且传动效率高并能满足大扭矩传动要求。
同时,通过第一电动发电机41和/或第二电动发电机42和/或第二电动发电机43的调速补偿,可以实现同步器6无扭矩接合,平顺性更好,且接合速度和动力响应更快,相比传统离合器传动方式,可以承受更大的扭矩而不会发生失效现象,大大地提高了传动的稳定性以及可靠性。
在本发明的一些实施例中,为实现对每个车轮的扭矩分配,如图2、图3、图5、图6、图8所示,该五个实施例中,采用了四个电动发电机,该四个电动发电机分别负责驱动一个车轮,该四个独立电机驱动的优势在于:普通的机械四驱车仅能实现前后轮的扭矩分配,高端的全时四驱车转弯时仅能实现左右轮瞬时小范围扭矩差异。而上述五个实施例中,由于采用四个电机分别驱动,因此可随时实现左右轮电机的+100%到-100%的扭矩差异调节,从而大大提高了高速转弯时的操控稳定性,改善了转向不足和转向过渡的问题。此外,低速时通过左右两个车轮的相反方向转动可以大大减小车辆转弯半径,使车辆操控更加自如。
下面参照图2-图19简单描述各具体实施例中动力传动系统100的构造。
实施例一:
如图2所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,第一电动发电机41通过一个中间齿轮411而与第二输入轴22上的主动齿轮25间接传动。输出轴24上固定设置有两个从动齿轮26,该两个从动齿轮26分别与第一输入轴21和第二输入轴22上的主动齿轮25对应啮合,从而构成两个传动挡位。
同步器6设置在输出轴24上,主减速器主动齿轮(即,输出齿轮51)相对输出轴24可差速转动,主减速器主动齿轮的左侧可以通过连接杆固定有与同步器6适配的接合齿圈 52。其中,主减速器主动齿轮与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
两个第二电动发电机42分别构成用于驱动两个前轮210的轮边电机,两个第二电动发电机43分别构成用于驱动两个后轮220的轮边电机,即该方案中,四个车轮处均设置有一个轮边电机。
该实施例中的动力传动系统100,双离合器31可以通过切断或接合,使发动机单元1的动力可分别以大小两种速比传递到输出轴24上。第一电动发电机41通过挡位齿轮组,可以一固定速比将动力传递到输出轴24上。同步器6接合,输出轴24的动力可以通过主减速器和差速器54传递至前轮210,同步器6切断,则输出轴24的动力不能传递至前轮210。两个第二电动发电机42为轮边形式,可以直接驱动两个前轮。两个第二电动发电机43同为轮边形式,可以直接驱动两个后轮。
该实施例中的动力传动系统100可以至少具有如下工况:第二电动发电机43纯电动工况、纯电动四驱工况、并联工况、串联工况和制动/减速回馈工况。
工况一:
第二电动发电机43纯电动工况:双离合器31切断,同步器6切断,发动机单元1、第一电动发电机41和第二电动发电机42不工作,两个第二电动发电机43分别驱动两个后轮220。该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。
该工况的优点在于第二电动发电机43直接驱动后轮220,相比于前驱车,拥有更好的加速性能、爬坡性能以及极限转向能力。并且,第二电动发电机43分别单独驱动左后轮和右后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。而前驱部分则通过同步器6断开输出齿轮51和前轮210的关联,使得前驱没有机械损耗,降低了整车的能耗。
工况二:
纯电动四驱工况:双离合器31切断,同步器6切断,第一电动发电机41不工作,两个第二电动发电机42分别用于驱动两个前轮210,两个第二电动发电机43分别用于驱动后轮220。该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。
该工况的优点在于相较于单电机驱动拥有更好的动力性能,相较于混合动力驱动拥有更好的经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。
而且,相比于前驱和后驱车,纯电动四驱拥有更好的加速性能、爬坡性能、操控性能 以及越野能力。且两个第二电动发电机42和两个第二电动发电机43分别独立驱动四个车轮,使得每个车轮可以单独获得不同的扭矩和转速,实现了四轮单独控制,将动力性、操纵稳定性和越野性能达到了最大性能。而当相应电动发电机对左右车轮施加不同方向的扭矩时,还能够实现整车的原地转向。
工况三:
并联工况:双离合器31接合,同步器6接合,发动机单元1与第一电动发电机41通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,并通过差速器54将动力传至前轮210,同时两个第二电动发电机42分别将动力传递给对应的前轮210,且两个第二电动发电机43分别将动力传递给对应的后轮220。该工况主要用于急加速、爬大坡等最大负荷场合。
该工况的优点在于五个电动发电机和发动机单元1同时驱动车辆,可以发挥最大的动力性能。相比于前驱和后驱车,混合动力四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且第二电动发电机43分别单独驱动左后轮和右后轮,可以实现电子差速功能,省略了传动机械式差速器,减少了零部件,同时还能增加操纵稳定性,减小轮胎的磨损量。
工况四:
串联工况:双离合器31接合,同步器6切断,发动机单元1通过双离合器31和挡位齿轮组带动第一电动发电机41发电,第二电动发电机42用于驱动前轮210且第二电动发电机43用于驱动后轮220。该工况主要用于中等负荷,且电池电量较少的情况。
该工况的优点在于相比前驱和后驱车,串联(即,四驱串联)工况拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且两个第二电动发电机42和两个第二电动发电机43分别独立驱动四个车轮,使得每个车轮可以单独获得不同的扭矩和转速,实现了四轮单独控制,将动力性、操纵稳定性和越野性能达到了最大性能。而当相应电动发电机对左右车轮施加不同方向的扭矩时,还能够实现整车的原地转向。此外,第一电动发电机41可以通过扭矩和转速调节,使发动机单元1保持在最佳经济区域运行,减少发电油耗。
工况五:
制动/减速回馈工况:双离合器31接合,同步器6切断,发动机单元1带动第一电动发电机41发电,第二电动发电机42制动前轮并发电,第二电动发电机43制动后轮并发电。该工况主要用于车辆制动或减速。该工况的优点在于减速或制动时,第二电动发电机42第二电动发电机43分别制动四个车轮,无论在转弯还是直行,都能在保证整车制动力和稳定性的前提下,充分地吸收每个车轮的动力,达到回馈能量的最大化。且由于同步器6切断,在上述四个电动发电机对车轮制动的同时,发动机单元1和第一电动发电机41可以继续进 行发电功能,使得发电状态稳定,避免频繁切换,增强了部件的寿命。
工况六:
混联工况:双离合器31接合,同步器6接合,发动机单元1的部分动力通过双离合器31和挡位齿轮组带动第一电动发电机41发电,发动机单元1的另一部分动力通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,第二电动发电机42直接通过主减速器主动齿轮51驱动前轮210,同时第二电动发电机43分别驱动后轮220。该工况主要用于加速、爬坡等较大负荷场合且电量不多的情况下。该工况的优点是可以发挥发动机单元1的全部动力,既保证车辆的动力性,又可以同时进行发电,保持电池的电量。
上述的六种工况可以进行切换,其中比较典型的工况切换为:由工况四切换为工况三,或者从工况四切换至工况五。
具体地,由工况四切换为工况三时:当需要急加速超车、躲避障碍物或其它情况时,根据司机的油门需求,动力传动系统100可从工况四切换至工况三。此时第一电动发电机41会以主减速器主动齿轮的转速为目标,通过转速控制,调节输出轴24的转速,使输出轴24和主减速器主动齿轮的转速尽可能的匹配,方便同步器6结合。
而在匹配过程中,第二电动发电机42和第二电动发电机43可以响应驾驶需求,增大扭矩,使车辆得到加速,而不必像通常的车辆那样,等到同步器6接合后才能加速。这一扭矩提前补偿的功能,可以大大地缩短扭矩响应时间,提高车辆的瞬时加速性能。
再如,从工况四切换至工况五:当车辆制动或减速时,根据司机的油门需求或踩踏制动踏板的动作,动力传动系统100可从工况四切换至工况五。第二电动发电机42和第二电动发电机43已经可以满足制动回馈的需求,无需第一电动发电机41进行回馈,此时第二电动发电机42和第二电动发电机43能立即响应驾驶需求,对车轮进行制动,回馈电量,而不必像通常的车辆那样,等到同步器6接合后才能回馈电量。
与此同时,发动机单元1和第一电动发电机41可以保持原先的发电状态,待制动工况结束后,也无需转换,直接进入原先的串联工况。这一扭矩提前补偿功能,可以大大的缩短电机制动响应时间,增加回馈的电量。
特别地,对于复杂路况,例如当车辆在上坡、下坡、颠簸、低附等复杂路况下行驶时,往往因为车速不稳定而导致同步器6接合困难。即使第一电动发电机41可以通过转速控制,调节输出轴24的转速,但由于主减速器主动齿轮的转速随车速不可控,也会给第一电动发电机41的调速的准确度和速度带来困难。在这些路况下,通过第二电动发电机42和第二电动发电机43对车辆进行扭矩补偿,可以有效地稳定车速,既提高了整车的驾驶体验,也使得同步器6的接合变得简单。
实施例二:
如图3所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于第二电动发电机43的布置形式。在该实施例中,每个第二电动发电机43均通过一个第二变速机构72驱动对应的后轮220,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,区别可以仅在于第二电动发电机43与对应的后轮220之间在进行动力传递时需经过第二变速机构72,这里同样不再详细说明。
实施例三:
如图4所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于第二电动发电机43的布置形式。在该实施例中,第二电动发电机43为一个且通过一个第一变速机构71驱动对应的后轮220,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,区别可以仅在于,由于通过一个第二电动发电机43和一个第一变速机构71驱动两个后轮220,因此在不增加新部件的前提下,仅通过一电机和一变速机构无法实现两个后轮220的差速功能,但是可以理解的是,可以增设差速器以实现两个后轮220的差速转动,该差速器可以与第一变速机构71集成为一体。
实施例四:
如图5所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于第二电动发电机42的布置形式。在该实施例中,第二电动发电机42分别背靠背地设在差速器54的两侧,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,这里同样不再详细说明。
实施例五:
如图6所示,该实施例中的动力传动系统100与图5中的动力传动系统100的区别可以仅在于第二电动发电机43的布置形式。在该实施例中,每个第二电动发电机43均通过一个第二变速机构72驱动对应的后轮220,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图2实施例中的动力传动系统100基本一致,这里同样不再详细说明。
实施例六:
如图7所示,该实施例中的动力传动系统100与图5中的动力传动系统100的区别可以仅在于第二电动发电机43的布置形式。在该实施例中,第二电动发电机43为一个且通过一个第一变速机构71驱动对应的后轮220,对于其余部分则可与图5实施例中的动力传动系统100基本一致,这里不再赘述。而关于具体工况,则与图5实施例中的动力传动系统100基本一致,区别可以仅在于,由于通过一个第二电动发电机43和一个第一变速机构71驱动两个后轮220,因此在不增加新部件的前提下,仅通过一电机和一变速机构无法实现两个后轮220的差速功能,但是可以理解的是,可以增设差速器以实现两个后轮220的差速转动,该差速器可以与第一变速机构71集成为一体。
实施例七:
如图8所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于离合器的形式以及输入轴、主动齿轮25以及从动齿轮26的个数,该实施例中离合器为三离合器32,输入轴为三个,主动齿轮25和从动齿轮26对应为三对,对于其余部分则可与图2实施例中的动力传动系统100基本一致,这里不再赘述。
实施例八:
如图9所示,该实施例中的动力传动系统100与图2中的动力传动系统100的区别可以仅在于取消了图2实施例中的第二电动发电机43,该实施例中的动力传动系统100为两驱形式。
该实施例中的动力传动系统100至少可以具有如下工况:
工况一,第二电动发电机42纯电动:双离合器31切断,同步器6切断,发动机单元1和第一电动发电机41不工作,第二电动发电机42直接驱动前轮210。该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。
该工况的优点在于第二电动发电机42直接驱动前轮210,传动链最短、参与工作的部件最少,可以达到最高的传动效率和最小的噪音。第二电动发电机42分别单独驱动左右不同的前轮210,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况二,三电机纯电动:双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,并通过差速器54将动力平均分到左右前轮,同时第二电动发电机42直接驱动左右前轮。
该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。该工况的优点在于相较于单电机驱动拥有更好的动力性能,相较于混合动力驱动拥有更好 的经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。
工况三,并联:双离合器31切断,同步器6接合,发动机单元1与第一电动发电机41通过挡位齿轮组和同步器6将动力传递至主减速器主动齿轮51,并通过差速器54将动力平均分到左右前轮,第二电动发电机42直接驱动前轮。该工况主要用于急加速、爬大坡等最大负荷场合。
该工况的优点在于三电机和发动机单元1同时驱动,可以发挥最大的动力性能。
工况四,串联:双离合器31接合,同步器6切断,发动机单元1通过双离合器31和挡位齿轮组带动第一电动发电机41发电,第二电动发电机42直接驱动车轮。该工况主要用于中等负荷,且电池电量较少的情况。
该工况的优点在于第二电动发电机42直接驱动车轮,传动链最短、参与工作的部件最少,可以达到最高的传动效率和最小的噪音。
同时第一电动发电机41可以通过扭矩和转速调节,使发动机单元1保持在最佳经济区域运行,减少发电油耗。第二电动发电机42分别单独驱动左右不同的车轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况五,制动/减速回馈:双离合器31接合,同步器6断开,发动机单元1带动第一电动发电机41发电,第二电动发电机42直接制动车轮并发电。该工况主要用于车辆的制动或减速。该工况的优点在于在车辆减速或制动时,将第二电动发电机42分别制动两个车轮,可以最大限度的吸收制动能量,转化为电能,且发动机单元1和第一电动发电机41可以继续进行发电,保持发电工况的稳定性,并减少频繁切换。
上述的五种工况可以进行切换,其中比较典型的工况切换为:由工况四切换为工况三,或者从工况四切换至工况五。
具体地,由工况四切换为工况三时,例如当需要急加速超车、躲避障碍物时,根据司机的油门需求,动力系统会从工况四切换至工况三。此时第一电动发电机41会以主减速器主动齿轮51的转速为目标,通过转速控制,调节输出轴24的转速,使二者的转速尽可能的匹配,方便同步器6接合。而在匹配过程中,第二电动发电机42可以响应驾驶需求,增大扭矩,使车辆得到加速,而不必像通常的车辆那样,等到同步器6接合后才能加速。这一扭矩提前补偿功能,可以大大的缩短扭矩响应时间,提高车辆的瞬时加速性能。
由工况四切换为工况五时,例如当车辆制动或减速时,根据司机的油门需求或踩踏制动踏板的动作,动力传动系统100可从工况四切换至工况五。第二电动发电机42已经可以满足制动回馈的需求,无需第一电动发电机41进行回馈,此时第二电动发电机42能立即响应驾驶需求,对车轮进行制动,回馈电量,而不必像通常的车辆那样,等到同步器6接合后才能回馈电量。
与此同时,发动机单元1和第一电动发电机41可以保持原先的发电状态,待制动工况结束后,也无需转换,直接进入原先的串联工况。这一扭矩提前补偿功能,可以大大的缩短电机制动响应时间,增加回馈的电量。
特别地,对于复杂路况,例如当车辆在上坡、下坡、颠簸、低附等复杂路况下行驶时,往往因为车速不稳定而导致同步器6接合困难。即使第一电动发电机41可以通过转速控制,调节输出轴24的转速,但由于主减速器主动齿轮的转速随车速不可控,也会给第一电动发电机41的调速的准确度和速度带来困难。在这些路况下,通过第二电动发电机42对车辆进行扭矩补偿,可以有效地稳定车速,既提高了整车的驾驶体验,也使得同步器6的接合变得简单。
实施例九:
如图10所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42背靠背地设置于差速器54的两侧,对于其余部分则可与图9实施例中的动力传动系统100基本一致,这里不再赘述。
实施例十:
如图11所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42为两个,每个第二电动发电机42均通过一个第四变速机构74驱动对应的后轮220,对于其余部分则可与图9实施例中的动力传动系统100基本一致,这里不再赘述。
该实施例中的动力传动系统100至少具有如下工况:
工况一,第二电动发电机42纯电动:双离合器31切断,同步器6切断,发动机单元1和第一电动发电机41不工作,每个第二电动发电机42通过对应的第四变速机构74驱动后轮。该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。该工况的优点在于第二电动发电机42驱动后轮,相比于前驱车拥有更好的加速性能、爬坡性能以及极限转向能力。且第二电动发电机42分别单独驱动左右不同的车轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。前驱通过同步器6断开齿轮组和前轮的关联,使得前驱没有机械损耗,降低了整车的能耗。
工况二,纯电动四驱:双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41驱动前轮,第二电动发电机42驱动后轮。该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。该工况的优点在于相较于单电机驱动 拥有更好的动力性能,相较于混合动力驱动拥有更好的经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。相比于前驱和后驱车,纯电动四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且第二电动发电机42分别单独驱动左右不同的后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况三,并联:双离合器31切断,同步器6接合,发动机单元1与第一电动发电机41同时驱动前轮210,第二电动发电机42驱动后轮。该工况主要用于急加速、爬大坡等最大负荷场合。该工况的优点在于双电机和发动机单元同时驱动,可以发挥最大的动力性能。相比于前驱和后驱车,混合动力四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。且第二电动发电机分别单独驱动左右不同的后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。
工况四,串联:双离合器31接合,同步器6切断,发动机单元1驱动第一电动发电机41发电,第二电动发电机42驱动后轮。该工况主要用于中等负荷,且电池电量较少的情况。该工况的优点在于两个第二电动发电机分别驱动两个后轮,可以实现电子差速功能,增加操纵稳定性,减小轮胎的磨损量。相比于前驱车拥有更好的加速性能、爬坡性能以及极限转向能力。且第一电动发电机可以通过扭矩和转速调节,使发动机单元保持在最佳经济区域运行,减少发电油耗。
工况五,制动/减速回馈:双离合器31切断,同步器6接合,发动机单元不工作,第一电动发电机和第二电动发电机同时制动车辆并发电。该工况的优点在于车辆减速或制动时,有三个电机同时制动车辆,从而可以最大限度的吸收制动能量,转化为电能。且通过切断双离合器,消除了发动机单元摩擦力矩对车辆的制动,可以留下更多的动力让电机吸收。前后驱一起制动回馈,可以在保证整车制动力的前提下,更好的分配制动力至前后电机,比单独前驱或后驱车型能回馈更多的电能。并且,两个第二电动发电机可以单独控制制动力的大小,在转弯制动时,能提高整车的操稳性,并进一步提高回馈的能量。
类似地,该实施例中的动力传动系统100的各个工况之间可以进行切换,比较经典的模式为工况四切换为工况三或工况五,对于这部分,与上述实施例中描述的相应切换部分原理类似,这里不再赘述。
实施例十一:
如图12所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42为一个,该第二电动发电机42通过一个第三变速机构73驱动后轮220,对于其余部分则可与图9实施例中的动力传动系统100基本一致,这里不再赘述。
该实施例中,可以采用第二电动发电机42单独驱动车辆,此时双离合器31和同步器6均切断,该工况主要用于匀速或城市工况等小负荷场合,且电池电量较高的情况。该工况的优点在于第二电动发电机42通过第三变速机构73直接驱动后轮220,相比前驱,拥有更好的加速性能、爬坡性能以及极限转向能力。而且前驱部分通过同步器6断开,使得前驱部分没有机械损耗,降低了整车的能耗。其中,后驱部分还可以增设差速器,差速器可以与第三变速机构73集成为一体。
该实施例中,动力传动系统还可以具有纯电动四驱工况,此时双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41驱动前轮,第二电动发电机42驱动后轮。该工况主要用于加速、爬坡、超车、高速等较大负荷场合,且电池电量较高的情况。该工况相较于单电机驱动拥有更好的动力性能,相较于混合动力驱动拥有更好的经济性和更低的噪音。最能突出其优势的典型应用场合为大坡度(盘山路)的拥堵路况。相比于前驱或后驱车,纯电动四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。
该实施例中,动力传动系统还具有并联工况:双离合器31接合,同步器6接合,发动机单元1和第一电动发电机41共同驱动前轮210,第二电动发电机42驱动后轮220。该工况主要用于急加速、爬大坡等最大负荷场合。该工况主要优点在于双电机和发动机单元同时驱动,可以发挥最大的动力性能。相比于前驱和后驱车,混合动力四驱拥有更好的加速性能、爬坡性能、操控性能以及越野能力。
该实施例中,动力传动系统还具有串联工况:此时双离合器31接合,同步器6切断,发动机单元1驱动第一电动发电机41发电,第二电动发电机驱动后轮。该工况主要用于中等负荷,且电池电量较少的情况。该工况的优点在于第二电动发电机42驱动后轮,相比于前驱车拥有更好的加速性能、爬坡性能以及极限转向能力。第一电动发电机41可以通过扭矩和转速调节,使发动机单元1保持在最佳经济区域运行,减少发电油耗。
该实施例中,动力传动系统还具有制动/减速回馈:双离合器31切断,同步器6接合,发动机单元1不工作,第一电动发电机41和第二电动发电机42同时制动车辆并发电。该工况的优点在于车辆减速或制动时,将两个电机同时制动,可以最大限度的吸收制动能量,转化为电能。且通过切断双离合器31,消除了发动机单元摩擦力矩对车辆的制动,可以留下更多的动力让电机吸收。前后驱一起制动回馈,可以在保证整车制动力的前提下,更好的分配制动力至前后电机,比单独前驱或后驱车型能回馈更多的电能。
类似地,该实施例中的动力传动系统100的各个工况之间可以进行切换,比较经典的模式为工况四切换为工况三或工况五,对于这部分,与上述实施例中描述的相应切换部分原理类似,这里不再赘述。
实施例十二:
如图13所示,该实施例中的动力传动系统100与图9中的动力传动系统100的区别在于第二电动发电机42的位置,在该实施例中,第二电动发电机42为两个且均为轮边电机,第二电动发电机42用于驱动对应的后轮220,对于其余部分则可与图9实施例中的动力传动系统100基本一致(传动模式与图11类似),这里不再赘述。
实施例十三:
如图14所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,输出轴24空套有双联齿轮26(即,从动齿轮),双联齿轮26的第一齿轮部261与第一输出轴21上的主动齿轮25啮合,双联齿轮26的第二齿轮部262与第二输出轴22上的主动齿轮25啮合。
中间轴45上固定设置有第一中间轴齿轮451和第二中间轴齿轮452,第一中间轴齿轮451与第二输入轴22上的主动齿轮25啮合,第一电动发电机41的输出端通过一个中间惰轮44与第二中间轴齿轮452间接传动。
同步器6设置在输出轴24上且用于接合双联齿轮26。主减速器主动齿轮51固定在输出轴24上。主减速器主动齿轮51与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54的壳体上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
实施例十四:
如图15所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,输出轴24空套有双联齿轮26(即,从动齿轮),双联齿轮26的第一齿轮部261与第一输出轴21上的主动齿轮25啮合,双联齿轮26的第二齿轮部262与第二输出轴22上的主动齿轮25啮合。
中间轴45上固定设置有第一中间轴齿轮451和第二中间轴齿轮452,第一中间轴齿轮451与第二输入轴22上的主动齿轮25啮合,第一电动发电机41的输出端直接与第二中间轴齿轮452啮合传动。
同步器6设置在输出轴24上且用于接合双联齿轮26。主减速器主动齿轮51固定在输 出轴24上。主减速器主动齿轮51与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54的壳体上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
实施例十五:
如图16所示,发动机单元1与双离合器31的输入端313相连,双离合器31的第一输出端311与第一输入轴21相连,双离合器31的第二输出端312与第二输入轴22相连,第二输入轴22同轴地套设在第一输入轴21上。
第一输入轴21和第二输入轴22上分别固定设置有一个主动齿轮25,输出轴24空套有双联齿轮26(即,从动齿轮),双联齿轮26的第一齿轮部261与第一输出轴21上的主动齿轮25啮合,双联齿轮26的第二齿轮部262与第二输出轴22上的主动齿轮25啮合。第一电动发电机41的输出端直接与第一齿轮部261啮合传动。
同步器6设置在输出轴24上且用于接合双联齿轮26。主减速器主动齿轮51固定在输出轴24上。主减速器主动齿轮51与主减速器从动齿轮53外啮合,主减速器从动齿轮53可以固定在差速器54的壳体上,以将动力传递给差速器54,差速器54分配完动力后可适应性传递给两侧的半桥,从而驱动车轮200。
实施例十六:
如图17所示,该实施例中的动力传动系统100与图14中的动力传动系统100的区别在于:设置离合器9取代图14中动力传动系统100的同步器6,将主减速器主动齿轮51固定设置在输出轴24上。
实施例十七:
如图18所示,该实施例中的动力传动系统100与图15中的动力传动系统100的区别在于:设置离合器9取代图15中动力传动系统100的同步器6,将主减速器主动齿轮51固定设置在输出轴24上。
实施例十八:
如图19所示,该实施例中的动力传动系统100与图16中的动力传动系统100的区别在于:设置离合器9取代图16中动力传动系统100的同步器6,将主减速器主动齿轮51固定设置在输出轴24上。
需要说明的是,参照图14-图19所示,该联齿齿轮结构26的变型实施例中,其还可以 包括第二电动发电机42和第二电动发电机43或者只包括第二电动发电机42(未在图14-图19中示出),其具体布置方式可采用图2-图13中对应的布置方式(例如采用轮边形式、背靠背地设在差速器两侧等)。例如作为一种可选的实施例,图14-图19所示的动力传动系统100的主减速器主动齿轮51可用于驱动前轮210,其后驱可以采用图12的后驱模式,即通过一个第二电动发电机42以及一个减速机构来驱动后轮220。
此外,根据本发明的实施例进一步提供了包括如上所述的动力传动系统100的车辆。应当理解的是,根据本发明实施例的车辆的其它构成例如行驶系统、转向系统、制动系统等均已为现有技术且为本领域的普通技术人员所熟知,因此对习知结构的详细说明此处进行省略。
基于上述实施例中描述的动力传动系统和具有该动力传动系统的车辆,本发明实施例提出了一种车辆及其的制动回馈控制方法,其中,本发明实施例的车辆的制动回馈控制方法是基于上述实施例中描述的动力传动系统和具有该动力传动系统的车辆执行的。
图20为根据本发明实施例的车辆的制动回馈控制方法的流程图。其中,本发明实施例的车辆包括上述实施例描述的动力传动系统,从而该车辆包括发动机单元、适于选择性地与所述发动机单元动力耦合连接的变速器单元、与所述变速器单元动力耦合连接的第一电动发电机、输出部、动力切换装置、用于驱动所述车辆的前轮和/或后轮的第二电动发电机和给所述第一电动发电机和所述第二电动发电机供电的动力电池,其中,所述输出部构造成将经过所述变速器单元变速的动力传输至所述车辆的前轮和/或后轮,所述动力切换装置适于在所述变速器单元和所述输出部之间进行动力的传输或者断开。
根据本发明的一个实施例,所述动力切换装置构造成同步器,所述同步器设置成适于在所述输出部和所述变速器单元之间可选择地同步。
图21为根据本发明一个实施例的车辆的动力传动系统的能量传递路线示意图。如图21所示,在该动力传动系统处于串联模式工作时,发动机单元1通过离合器C2(结合)驱动前电动机即第一电动发电机41发电,提供给后电机即第二电动发电机42驱动使用,能量传递路线如线路101;在该动力传动系统处于并联模式工作时,发动机单元1通过离合器C1或C2(其中任一离合器结合),将其动力传递至变速器T(3挡或6挡),最后通过同步器S传至车轮,同时前电动机即第一电动发电机41通过变速器T、同步器S将动力传至车轮,能量传递路线如线路102中的任意一条和线路103;在 该动力传动系统处于混联模式工作时,发动机单元1通过并联模式路线驱动车轮,其剩余功率通过串联模式路线进行发电供给后电机即第二电动发电机42驱动使用,能量传递路线如线路101、线路102(其中任一条)和线路103。
参照图22是本发明一个实施例的车辆的制动回馈控制信息交互图。如图22所示,驱动电机通过传感器采集电机旋变信号和温度信号并传至电机控制器ECN;电池管理系统BMS发送可充电功率信号至ECN;电子稳定控制模块ESC采集车速和防抱死制动系统ABS状态信号并传至ECN;ECN对输入信号(制动踏板的深度、道路坡度等信号)进行判定是否进入/退出制动回馈控制模式、根据制定的回馈策略进行制动回馈控制,同时发送发动机单元的目标扭矩信号至发动机单元控制器ECM、发送电机驱动信号至驱动电机、发送整车能量状态信号至组合仪表等。
因此,如图20所示,该车辆的制动回馈控制方法包括以下步骤:
S1,检测车辆的当前车速和车辆的制动踏板的深度。
S2,当车辆的当前车速大于预设车速、制动踏板的深度大于0且车辆的防抱死制动系统ABS处于未工作状态时,控制车辆进入制动回馈控制模式,其中,在所述车辆处于所述制动回馈控制模式时,根据所述制动踏板的深度获得所述车辆相对应的需求制动力矩(车辆的需求制动力矩与制动踏板的深度相对应),并根据所述需求制动力矩对所述第一电动发电机的制动力矩、所述第二电动发电机的制动力矩和所述车辆进行基础制动的制动力矩进行分配。其中,需要说明的是,基础制动即为车辆的机械摩擦制动。并且,在几个制动源之间分配制动力矩时,应保证车辆的制动性和平顺性的前提下,尽量提高电制动力矩的比例,即尽量减少基础制动的制动力矩的分配。
图23为本发明一个实施例的车辆进入制动回馈控制模式的流程图。如图23所示,该车辆进入制动回馈控制模式的流程包括:
S1001,判断车辆的车速是否大于预设车速Vmin。如果是,执行步骤S1002;如果否,执行步骤S1005。
S1002,判断制动踏板的深度是否大于0。如果是,执行步骤S1003;如果否,执行步骤S1005。
S1003,判断ABS是否不工作。如果是,执行步骤S1004;如果否,执行步骤S1005。
S1004,进入制动回馈控制,即控制车辆进入制动回馈控制模式。
S1005,不进入制动回馈控制。
也就是说,通过输入信号判断车辆是否符合进入制动回馈控制的条件,符合进入的条件机:车速>Vmin且制动踏板的深度>0且ABS处于不工作状态,在任何挡位均可行;反之,任何一个条件不满足(即车速小于等于Vmin或制动踏板的深度小于等于0 或ABS处于工作状态),则不进入制动回馈控制。
根据本发明的一个实施例,在所述车辆处于所述制动回馈控制模式时,其中,根据所述第一电动发电机和所述第二电动发电机的当前运行状态获得所述第一电动发电机的回馈限制值和所述第二电动发电机的回馈限制值;根据所述车辆的电动发电机控制器的当前运行状态获得所述电动发电机控制器的回馈限制值;根据所述动力电池的工作状态计算所述动力电池的当前允许充电功率,并根据所述动力电池的当前允许充电功率获得当前所述动力电池的回馈限制值;获得所述第一电动发电机的回馈限制值、所述第二电动发电机的回馈限制值、所述电动发电机控制器的回馈限制值以及当前所述动力电池的回馈限制值之间的最小回馈限制值。
需要说明的是,所述第一电动发电机的回馈限制值是指车辆制动回馈控制时根据第一电动发电机的运行状态(如温度、电流和电压等)计算得到的第一电动发电机所允许的制动回馈的扭矩值,同样地,所述第二电动发电机的回馈限制值是指车辆制动回馈控制时根据第二电动发电机的运行状态(如温度、电流和电压等)计算得到的第二电动发电机所允许的制动回馈的扭矩值,所述电动发电机控制器的回馈限制值是指车辆制动回馈控制时根据电动发电机控制器的运行状态(如温度、电流和电压等情况)计算得到的电动发电机控制器所允许的制动回馈的扭矩值。
并且,根据所述车辆的平顺性和制动性能获得所述车辆的制动踏板深度-制动扭矩曲线,并根据所述制动踏板深度-制动扭矩曲线、所述车辆的动力系统的经济区域和预设的制动踏板深度-基础制动扭矩曲线获得所述车辆的制动踏板深度-制动回馈扭矩曲线;根据所述车辆的制动踏板深度-制动回馈扭矩曲线获得所述车辆相对应的当前制动回馈目标值;根据所述最小回馈限制值和所述当前制动回馈目标值获得所述车辆的最小回馈值;根据所述最小回馈值对所述第二电动发电机进行制动回馈控制或者对所述第一电动发电机和所述第二电动发电机进行制动回馈控制。
本发明实施例的车辆的制动回馈控制方法能够将车辆制动时的动能通过传动系统和电动机来转化为动力电池的电能存储起来,然后将其利用到牵引驱动中,同时产生的电机制动力矩通过传动系统对驱动轮起到制动作用,避免了能量变为摩擦热能的消耗,提高了车辆的能量使用效率。并且,通过分析车辆的运行模式(混合动力HEV或纯电动EV运行模式)、车速、道路坡度、动力系统的经济区域(包括动力电池、电动发电机控制器和电动发电机)、车辆的平顺性和操控性等因素,结合车辆整车制动的扭矩曲线和基础制动扭矩曲线,并结合制动踏板状态、车速、动力系统回馈限制、系统相关模块的状态(如ESC)等车辆状态信息,综合分析车辆的制动回馈控制流程。
具体地,如图24所示,本发明一个实施例的车辆的制动回馈控制的具体流程包括:
S201,通过输入信号判断是否符合进入制动回馈控制的条件,即符合进入制动回馈控制的条件为:车速>Vmin且制动踏板的深度>0且ABS处于不工作状态。
S202,监测第一电动发电机和第二电动发电机当前的运行状态(如温度、电流和电压等),计算出第一电动发电机的回馈限制值和第二电动发电机的回馈限制值。
S203,监测电动发电机控制器ECN当前的运行状态(如温度、电流和电压等),计算出ECN的回馈限制值。
S204,BMS通过监视动力电池中各个单体电池的状态,计算出当前动力电池的可充电功率,根据动力电池的当前允许充电功率计算当前动力电池的回馈限制值。
S205,比较步骤S202、S203和S204三者之间回馈限制值的大小以获得三者之间的最小回馈限制值。
S206,根据车辆的平顺性和制动性能,拟定车辆的制动踏板深度-制动扭矩曲线,再综合考虑车辆的动力系统的经济区域(包括动力电池、电动发电机控制器和电动发电机)、车辆中预设的制动踏板深度-基础制动扭矩曲线等情况拟定车辆的制动踏板深度对应的制动回馈扭矩曲线即制动踏板深度-制动回馈扭矩曲线,做为回馈控制的输入目标值,从而根据制动踏板的深度即可获得车辆相对应的当前制动回馈目标值。
根据本发明的一个实施例,还可根据所述制动踏板的深度和所述预设的制动踏板深度-基础制动扭矩曲线获得所述车辆进行基础制动的制动力矩。
S207,比较步骤S205和S206两者之间回馈值的大小以获得车辆的最小回馈值。即言,取所述最小回馈限制值和所述当前制动回馈目标值之间的小者为所述车辆的最小回馈值。所述车辆的最小回馈值即为车辆进行制动回馈控制时的实际电制动力矩。
S208,根据S207比较出的最小回馈值,驱动第一电动发电机和第二电动发电机进行制动回馈控制或者驱动第二电动发电机进行制动回馈控制,把电能充至动力电池中,同时给车轮提供阻力,达到降低车速的目的。
S209,ECN在执行制动回馈控制的同时,发送发动机单元的目标扭矩信号至ECM。
即言,在对所述第一电动发电机和所述第二电动发电机进行制动回馈控制或者对所述第二电动发电机进行制动回馈控制时,将所述发动机单元的目标扭矩发送至发动机单元控制器,所述发动机单元控制器根据所述目标扭矩对所述发动机单元进行控制。
S210,比较出最小回馈值时,进入制动回馈状态,第一电动发电机和第二电动发电机进行制动回馈或者第二电动发电机进行制动回馈。
S211,在所述车辆的车速大于第一车速阈值(例如40Km/h)或者所述第一电动发电机执行制动回馈时,控制动力切换装置例如同步器进行结合。
S212,通过输入信号判断是否符合退出制动回馈控制的条件,符合退出的条件为: 车速小于等于Vmin或制动踏板的深度小于等于0或ABS处于工作状态。
其中,在拟定整车制动回馈扭矩曲线时,充分考虑了车辆平顺性、整车制动性能、动力系统的经济区域;同时考虑了车辆在不同运行工况下(如紧急制动、中轻度制动、下长坡时制动),整车制动时由于制动力矩的分配情况不同,由不同的电动发电机(第二电动发电机为主,第一电动发电机为辅)进行扭矩回馈。
根据本发明的一个实施例,如果所述最小回馈值小于等于所述第二电动发电机的最大输出制动力矩,控制所述第二电动发电机输出所述最小回馈值;如果所述最小回馈值大于所述第二电动发电机的最大输出制动力矩,控制所述第二电动发电机和所述第一电动发电机共同输出所述最小回馈值,其中,所述第一电动发电机输出的制动力矩小于所述第二电动发电机输出的制动力矩。
在本发明的实施例中,车辆在制动回馈控制时,其前、后轮制动力制动力矩的分配直接影响到整车制动方向的稳定性和制动能量可回收的效率。本发明实施例的车辆的制动回馈控制方法根据基础制动踏板行程和减速度曲线计算制定出制动踏板行程对应的电机制动回馈扭矩曲线即制动踏板深度-制动回馈扭矩曲线。其中,假使制动踏板的行程ζ(如ζ=20%),则可以计算出对应电机制动扭矩T,继而拟合成标定的曲线。然后根据车速、路面状况以及制动力需求,来决定前、后轮制动力制动力矩之间的比例;最后根据电机的扭矩特性,决定电机再生制动力的范围,确定再生制动力和摩擦制动力之间的比例与大小。在满足驾驶员的制动需求和车辆车轮不抱死的情况下,在驱动轮上尽量增大由第二电动发电机制动产生的能量回馈。对于混联式新能源四驱车,通过制定前、后轮电机制动力的分配比例即第一和第二电动发电机的制动力矩的分配比例以实现最大限度地回收部分整车制动能量。由于混联式新能源四驱车第二电动发电机的功率、扭矩均大于第一电动发电机,在制动回馈允许的前提下,尽量将制动力大部分分配在后轮驱动上,让后轮承担更多的制动力F(第二电动发电机为主、第一电动发电机为辅)。当制动力需求较小时,由第二电动发电机提供;当制动力需求较大时,先由第二电动发电机提供,第二电动发电机不够时,然后由第一电动发电机辅助提供。也就是说,若第一电动发电机提供最大制动力矩为Ta,第二电动发电机提供最大制动力矩为Tb,根据制动踏板行程判断车辆需求的最大电制动力矩为TmaxT(即车辆的最小回馈值),再生制动力分配有以下情况:
(1)若T小于等于Tb,则后轮制动力矩的需求全部由第二电动发电机再生制动提供,此时后轮处于纯电机再生制动模式;
(2)若T大于Tb,则制动力矩的需求由第二电动发电机大部分提供,第一电动发电机提供小部分,即由第二电动发电机和第一电动发电机再生制动共同产生。
具体地,如图25所示,本发明一个实施例的车辆制动回馈控制时的电制动力矩分配的流程包括:
S101,根据制动踏板的深度,判断驾驶员意图,以判断是否采取制动回馈控制。若否,直接结束;若是,进行下面操作。
S102,根据制动踏板的深度确定电制动力矩T。
S103,根据后电机即第二电动发电机的特性,确定后电机最大制动力矩Tb。
S104,根据前电机即第一电动发电机的特性,确定前电机最大制动力矩Ta。
S105,比较步骤S102、S103、S104值的大小。
S106,根据步骤S105中值的大小比较,判断制动力矩的分配情况。
S107,如果T小于等于Tb,确定制动力矩的分配情况,执行步骤S108。
S108,根据判断条件T小于等于Tb,确定由后电机提供全部制动力矩。
S109,如果Tmax大于Tb,确定制动力矩的分配情况,执行步骤S110。
S110,根据判断条件T大于Tb,确定由后电机提供大部分制动力矩,前电机提供少部分制动力矩。
S111,根据以上的比较,确定制动力矩的分配情况。
S112,确定制动力矩的分配情况后,控制相应的电机提供再生制动力。
S113,车辆进行制动能量的回馈。
其中,需要说明的是,不管是第一电动发电机和第二电动发电机在执行再生制动回馈,还是仅有第二电动发电机在执行再生制动回馈,车辆都需要进行基础制动,车辆进行基础制动的制动力矩根据所述制动踏板的深度和所述预设的制动踏板深度-基础制动扭矩曲线获得。
在本发明的实施例中,在对前、后轮制动力矩进行分配时,充分考虑了车辆制动的能量回馈效率、制动安全性、驾驶感觉等因素,同时考虑了制动踏板行程对机械制动时制动力在前、后轮上的分配。
因此综上,在发明的本实施例中,通过对各输入信息进行充分地、准确地分析、考虑,优化各环节的控制策略,使车辆的制动回馈控制在安全性、经济性和操控性方面都得到很好的提高。
根据本发明实施例的车辆的制动回馈控制方法,在车辆进行制动回馈时,根据制动踏板的深度获得车辆的最大需求制动力矩,并根据最大需求制动力矩对第一电动发电机的制动力矩、第二电动发电机的制动力矩和车辆的机械摩擦制动系统的制动力矩进行合理分配,充分考虑车辆制动时的能量回馈效率、制动安全性、驾驶舒适性,从而能够获得较大的燃油经济性、较低的排放以及平稳的驾驶性能,最大限度地提高车 辆的续驶里程、平顺性和操控性。同时,本发明实施例的发动机单元和/或第一电动发电机输出的动力可以通过动力切换装置而输出至输出部,再由输出部输出给车辆的前轮和/或后轮。又由于第二电动发电机的引入,第二电动发电机可以对前轮和/或后轮进行扭矩补偿,同时也可以配合发动机单元以及第一电动发电机对车辆进行驱动,增加了车辆的运行模式,使得车辆可以更好地适应不同工况,达到较佳的燃油经济性,同时减少有害气体的排放。此外,该方法简单可靠,易于实行。
此外,本发明的实施例还提出了一种车辆,如图26所示,其包括:发动机单元1;变速器单元2a,所述变速器单元2a适于选择性地与所述发动机单元1动力耦合连接;第一电动发电机41,所述第一电动发电机41与所述变速器单元2a动力耦合连接;输出部5,所述输出部5构造成将经过所述变速器单元2a变速的动力传输至所述车辆的前轮和/或后轮;动力切换装置(例如同步器6),所述动力切换装置(例如同步器6)适于在所述变速器单元2a和所述输出部5之间进行动力的传输或者断开;第二电动发电机42,所述第二电动发电机42用于驱动所述前轮和/或所述后轮;动力电池300,所述动力电池300分别与所述第一电动发电机41、所述第二电动发电机42相连以给所述第一电动发电机41和所述第二电动发电机42供电;控制器500,当所述车辆的当前车速大于预设车速、所述车辆的制动踏板的深度大于0且所述车辆的防抱死制动系统处于未工作状态时,所述控制器控制所述车辆进入制动回馈控制模式,其中,在所述车辆处于所述制动回馈控制模式时,所述控制器500根据所述制动踏板的深度获得所述车辆相对应的需求制动力矩,并根据所述需求制动力矩对所述第一电动发电机41的制动力矩、所述第二电动发电机42的制动力矩和所述车辆进行基础制动的制动力矩进行分配。另外,图26中所示的其它部件参见图8所对应实施例中的描述。
其中,所述动力切换装置构造成同步器6,所述同步器6设置成适于在所述输出部5和所述变速器单元2a之间可选择地同步。
根据本发明的一个实施例,在所述车辆处于所述制动回馈控制模式时,其中,所述控制器500根据所述第一电动发电机41和所述第二电动发电机42的当前运行状态获得所述第一电动发电机41的回馈限制值和所述第二电动发电机42的回馈限制值,并根据所述车辆的电动发电机控制器的当前运行状态获得所述电动发电机控制器的回馈限制值,以及根据所述动力电池300的当前允许充电功率获得当前所述动力电池300的回馈限制值,并且所述控制器500根据所述第一电动发电机41的回馈限制值、所述第二电动发电机42的回馈限制值、所述电动发电机控制器的回馈限制值以及当前所述动力电池300的回馈限制值获得所述第一电动发电机41的回馈限制值、所述第二电动发电机42的回馈限制值、所述电动发电机控制器的回馈限制值以及当前所述动力电池 300的回馈限制值之间的最小回馈限制值。
并且,所述控制器500还根据所述车辆的平顺性和制动性能获得所述车辆的制动踏板深度-制动扭矩曲线,并根据所述制动踏板深度-制动扭矩曲线、所述车辆的动力系统的经济区域和预设的制动踏板深度-基础制动扭矩曲线获得所述车辆的制动踏板深度-制动回馈扭矩曲线,以及根据所述车辆的制动踏板深度-制动回馈扭矩曲线获得所述车辆相对应的当前制动回馈目标值。
根据本发明的一个实施例,所述控制器50根据所述最小回馈限制值和所述当前制动回馈目标值获得所述车辆的最小回馈值,并根据所述最小回馈值对所述第二电动发电机42进行制动回馈控制或者对所述第一电动发电机41和所述第二电动发电机42进行制动回馈控制。
其中,在对所述第一电动发电机41和所述第二电动发电机42进行制动回馈控制或者对所述第二电动发电机42进行制动回馈控制时,所述控制器500将所述发动机单元1的目标扭矩发送至发动机单元控制器,所述发动机单元控制器根据所述目标扭矩对所述发动机单元1进行控制。
根据本发明的一个实施例,在所述车辆的车速大于第一车速阈值或者所述第一电动发电机41执行制动回馈时,所述控制器500控制所述同步器6进行结合。
根据本发明的一个实施例,所述控制器500还根据所述制动踏板的深度和所述预设的制动踏板深度-基础制动扭矩曲线获得所述车辆进行基础制动的制动力矩。
根据本发明的一个实施例,如果所述最小回馈值小于等于所述第二电动发电机42的最大输出制动力矩,所述控制器500控制所述第二电动发电机42输出所述最小回馈值;如果所述最小回馈值大于所述第二电动发电机42的最大输出制动力矩,所述控制器500控制所述第二电动发电机42和所述第一电动发电机41共同输出所述最小回馈值,其中,所述第一电动发电机41输出的制动力矩小于所述第二电动发电机42输出的制动力矩。
在本发明的其他实施例中,还可以采用ECB(Electronically Controlled Brake System,电子控制制动系统)和EBD(Electronic Brake force Distribution,车桥间电子制动力分配)等技术,可提高制动能量的回收比例。由于ECB可以不考虑提供与燃油车相同的制动感,因此在制动踏板力较小时,便可以回收制动能量,使制动能量的回收范围扩大。
根据本发明实施例的车辆,能够在进行制动回馈时,根据制动踏板的深度获得最大需求制动力矩,并根据最大需求制动力矩对第一电动发电机的制动力矩、第二电动发电机的制动力矩和车辆的机械摩擦制动系统的制动力矩进行合理分配,充分考虑车 辆制动时的能量回馈效率、制动安全性、驾驶舒适性,从而能够获得较大的燃油经济性、较低的排放以及平稳的驾驶性能,最大限度地提高续驶里程、平顺性和操控性。同时,本发明实施例的发动机单元和/或第一电动发电机输出的动力可以通过动力切换装置而输出至输出部,再由输出部输出给车辆的前轮和/或后轮。又由于第二电动发电机的引入,第二电动发电机可以对前轮和/或后轮进行扭矩补偿,同时也可以配合发动机单元以及第一电动发电机对车辆进行驱动,增加了车辆的运行模式,使得车辆可以更好地适应不同工况,达到较佳的燃油经济性,同时减少有害气体的排放。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本发明的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本发明的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本发明的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。例如,如果用硬件来实现,和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤 是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本发明各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同限定。

Claims (17)

  1. 一种车辆的制动回馈控制方法,其特征在于,所述车辆包括发动机单元、适于选择性地与所述发动机单元动力耦合连接的变速器单元、与所述变速器单元动力耦合连接的第一电动发电机、输出部、动力切换装置、用于驱动所述车辆的前轮和/或后轮的第二电动发电机和给所述第一电动发电机和所述第二电动发电机供电的动力电池,其中,所述输出部构造成将经过所述变速器单元传输的动力传输至所述车辆的前轮和/或后轮,所述动力切换装置适于在所述变速器单元和所述输出部之间进行动力的传输或者断开,所述制动回馈控制方法包括以下步骤:
    检测所述车辆的当前车速和所述车辆的制动踏板的深度;
    当所述车辆的当前车速大于预设车速、所述制动踏板的深度大于0且所述车辆的防抱死制动系统处于未工作状态时,控制所述车辆进入制动回馈控制模式,其中,在所述车辆处于所述制动回馈控制模式时,根据所述制动踏板的深度获得所述车辆相对应的需求制动力矩,并根据所述需求制动力矩对所述第一电动发电机的制动力矩、所述第二电动发电机的制动力矩和所述车辆进行基础制动的制动力矩进行分配。
  2. 如权利要求1所述的车辆的制动回馈控制方法,其特征在于,所述动力切换装置构造成同步器,所述同步器设置成适于在所述输出部和所述变速器单元之间可选择地同步。
  3. 如权利要求1所述的车辆的制动回馈控制方法,其特征在于,在所述车辆处于所述制动回馈控制模式时,其中,
    根据所述第一电动发电机和所述第二电动发电机的当前运行状态获得所述第一电动发电机的回馈限制值和所述第二电动发电机的回馈限制值;
    根据所述车辆的电动发电机控制器的当前运行状态获得所述电动发电机控制器的回馈限制值;
    根据所述动力电池的工作状态计算所述动力电池的当前允许充电功率,并根据所述动力电池的当前允许充电功率获得当前所述动力电池的回馈限制值;
    获得所述第一电动发电机的回馈限制值、所述第二电动发电机的回馈限制值、所述电动发电机控制器的回馈限制值以及当前所述动力电池的回馈限制值之间的最小回馈限制值。
  4. 如权利要求3所述的车辆的制动回馈控制方法,其特征在于,
    根据所述车辆的平顺性和制动性能获得所述车辆的制动踏板深度-制动扭矩曲线,并根据所述制动踏板深度-制动扭矩曲线、所述车辆的动力系统的经济区域和预设的制 动踏板深度-基础制动扭矩曲线获得所述车辆的制动踏板深度-制动回馈扭矩曲线;
    根据所述车辆的制动踏板深度-制动回馈扭矩曲线获得所述车辆相对应的当前制动回馈目标值;
    根据所述最小回馈限制值和所述当前制动回馈目标值获得所述车辆的最小回馈值;
    根据所述最小回馈值对所述第二电动发电机进行制动回馈控制或者对所述第一电动发电机和所述第二电动发电机进行制动回馈控制。
  5. 如权利要求4所述的车辆的制动回馈控制方法,其特征在于,在对所述第一电动发电机和所述第二电动发电机进行制动回馈控制或者对所述第二电动发电机进行制动回馈控制时,将所述发动机单元的目标扭矩发送至发动机单元控制器,所述发动机单元控制器根据所述目标扭矩对所述发动机单元进行控制。
  6. 如权利要求4所述的车辆的制动回馈控制方法,其特征在于,在所述车辆的车速大于第一车速阈值或者所述第一电动发电机执行制动回馈时,控制所述动力切换装置进行结合。
  7. 如权利要求4所述的车辆的制动回馈控制方法,其特征在于,根据所述制动踏板的深度和所述预设的制动踏板深度-基础制动扭矩曲线获得所述车辆进行基础制动的制动力矩。
  8. 如权利要求4所述的车辆的制动回馈控制方法,其特征在于,
    如果所述最小回馈值小于等于所述第二电动发电机的最大输出制动力矩,控制所述第二电动发电机输出所述最小回馈值;
    如果所述最小回馈值大于所述第二电动发电机的最大输出制动力矩,控制所述第二电动发电机和所述第一电动发电机共同输出所述最小回馈值,其中,所述第一电动发电机输出的制动力矩小于所述第二电动发电机输出的制动力矩。
  9. 一种车辆,其特征在于,包括:
    发动机单元;
    变速器单元,所述变速器单元适于选择性地与所述发动机单元动力耦合连接;
    第一电动发电机,所述第一电动发电机与所述变速器单元动力耦合连接;
    输出部,所述输出部构造成将经过所述变速器单元传输的动力传输至所述车辆的前轮和/或后轮;
    动力切换装置,所述动力切换装置适于在所述变速器单元和所述输出部之间进行动力的传输或者断开;
    第二电动发电机,所述第二电动发电机用于驱动所述前轮和/或所述后轮;
    动力电池,所述动力电池分别与所述第一电动发电机、所述第二电动发电机相连以给所述第一电动发电机和所述第二电动发电机供电;
    控制器,当所述车辆的当前车速大于预设车速、所述车辆的制动踏板的深度大于0且所述车辆的防抱死制动系统处于未工作状态时,所述控制器控制所述车辆进入制动回馈控制模式,其中,在所述车辆处于所述制动回馈控制模式时,所述控制器根据所述制动踏板的深度获得所述车辆相对应的需求制动力矩,并根据所述需求制动力矩对所述第一电动发电机的制动力矩、所述第二电动发电机的制动力矩和所述车辆进行基础制动的制动力矩进行分配。
  10. 如权利要求9所述的车辆,其特征在于,所述动力切换装置构造成同步器,所述同步器设置成适于在所述输出部和所述变速器单元之间可选择地同步。
  11. 如权利要求10所述的车辆,其特征在于,在所述车辆处于所述制动回馈控制模式时,其中,所述控制器根据所述第一电动发电机和所述第二电动发电机的当前运行状态获得所述第一电动发电机的回馈限制值和所述第二电动发电机的回馈限制值,并根据所述车辆的电动发电机控制器的当前运行状态获得所述电动发电机控制器的回馈限制值,以及根据所述动力电池的当前允许充电功率获得当前所述动力电池的回馈限制值,并且所述控制器根据所述第一电动发电机的回馈限制值、所述第二电动发电机的回馈限制值、所述电动发电机控制器的回馈限制值以及当前所述动力电池的回馈限制值获得所述第一电动发电机的回馈限制值、所述第二电动发电机的回馈限制值、所述电动发电机控制器的回馈限制值以及当前所述动力电池的回馈限制值之间的最小回馈限制值。
  12. 如权利要求11所述的车辆,其特征在于,所述控制器还根据所述车辆的平顺性和制动性能获得所述车辆的制动踏板深度-制动扭矩曲线,并根据所述制动踏板深度-制动扭矩曲线、所述车辆的动力系统的经济区域和预设的制动踏板深度-基础制动扭矩曲线获得所述车辆的制动踏板深度-制动回馈扭矩曲线,以及根据所述车辆的制动踏板深度-制动回馈扭矩曲线获得所述车辆相对应的当前制动回馈目标值。
  13. 如权利要求12所述的车辆,其特征在于,所述控制器根据所述最小回馈限制值和所述当前制动回馈目标值获得所述车辆的最小回馈值,并根据所述最小回馈值对所述第二电动发电机进行制动回馈控制或者对所述第一电动发电机和所述第二电动发电机进行制动回馈控制。
  14. 如权利要求13所述的车辆,其特征在于,在对所述第一电动发电机和所述第二电动发电机进行制动回馈控制或者对所述第二电动发电机进行制动回馈控制时,所述控制器将所述发动机单元的目标扭矩发送至发动机单元控制器,所述发动机单元控 制器根据所述目标扭矩对所述发动机单元进行控制。
  15. 如权利要求13所述的车辆,其特征在于,在所述车辆的车速大于第一车速阈值或者所述第一电动发电机执行制动回馈时,所述控制器控制所述同步器进行结合。
  16. 如权利要求12所述的车辆,其特征在于,所述控制器还根据所述制动踏板的深度和所述预设的制动踏板深度-基础制动扭矩曲线获得所述车辆进行基础制动的制动力矩。
  17. 如权利要求13所述的车辆,其特征在于,
    如果所述最小回馈值小于等于所述第二电动发电机的最大输出制动力矩,所述控制器控制所述第二电动发电机输出所述最小回馈值;
    如果所述最小回馈值大于所述第二电动发电机的最大输出制动力矩,所述控制器控制所述第二电动发电机和所述第一电动发电机共同输出所述最小回馈值,其中,所述第一电动发电机输出的制动力矩小于所述第二电动发电机输出的制动力矩。
PCT/CN2014/089831 2014-01-30 2014-10-29 车辆及其的制动回馈控制方法 WO2015113418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14880471.9A EP3100898A4 (en) 2014-01-30 2014-10-29 Vehicle and braking feedback control method thereof
US15/216,437 US10232839B2 (en) 2014-01-30 2016-07-21 Vehicle and braking feedback control method for the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410044602.7 2014-01-30
CN201410044602.7A CN104276050B (zh) 2014-01-30 2014-01-30 车辆及其的制动回馈控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/216,437 Continuation US10232839B2 (en) 2014-01-30 2016-07-21 Vehicle and braking feedback control method for the same

Publications (1)

Publication Number Publication Date
WO2015113418A1 true WO2015113418A1 (zh) 2015-08-06

Family

ID=52251569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089831 WO2015113418A1 (zh) 2014-01-30 2014-10-29 车辆及其的制动回馈控制方法

Country Status (4)

Country Link
US (1) US10232839B2 (zh)
EP (1) EP3100898A4 (zh)
CN (1) CN104276050B (zh)
WO (1) WO2015113418A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107298015A (zh) * 2017-07-31 2017-10-27 浙江鑫可精密机械有限公司 一种二合一纯电动汽车动力总成及控制系统和方法
CN113335043A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车
CN113400946A (zh) * 2021-07-30 2021-09-17 睿驰电装(大连)电动系统有限公司 电动汽车制动能量回收控制方法、装置和电子设备
CN113460054A (zh) * 2020-03-31 2021-10-01 比亚迪股份有限公司 一种车辆及其动力输出控制方法
EP3150453B1 (fr) * 2015-08-17 2023-01-25 PSA Automobiles SA Procédé de répartition d'une consigne d'assistance de couple d'une fonction de dépollution thermique pour un véhicule hybride

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106427601B (zh) * 2015-08-11 2019-02-26 比亚迪股份有限公司 基于四轮驱动的电动汽车的制动系统及方法及电动汽车
US11040625B2 (en) * 2015-11-11 2021-06-22 Texas Instruments Incorporated Optimized regenerative braking control of electric motors using look-up tables
EP3380352B1 (en) * 2015-11-24 2023-12-20 BorgWarner Sweden AB A vehicle driveline system
CN106904078B (zh) * 2015-12-22 2019-03-12 北京宝沃汽车有限公司 车辆的控制方法、控制系统及车辆
DE102016204934A1 (de) * 2016-03-24 2017-09-28 Volkswagen Aktiengesellschaft Verfahren zum Betrieb einer Antriebsvorrichtung und eine Antriebsvorrichtung für ein Hybrid-Kraftfahrzeug
CN105667317B (zh) * 2016-03-24 2018-01-09 安徽师范大学 电动汽车回馈制动扭矩的方法
CN105774566B (zh) * 2016-05-07 2018-11-02 合肥国轩高科动力能源有限公司 一种用于纯电动汽车制动能量回馈控制方法
CN106080265B (zh) * 2016-07-14 2018-06-15 山东众和植保机械股份有限公司 适时全轮驱动的农田电动三轮车控制系统及控制方法
JP6811062B2 (ja) * 2016-09-15 2021-01-13 矢崎総業株式会社 回生制御装置
US10150371B2 (en) * 2016-11-03 2018-12-11 Ford Global Technologies,Llc Regenerative braking method
CN108248391B (zh) * 2016-12-28 2020-12-18 湖南中车时代电动汽车股份有限公司 一种开关量制动踏板的制动控制方法、系统及车辆
CN108263218B (zh) * 2016-12-30 2020-04-24 比亚迪股份有限公司 电动汽车、电动汽车车身稳定方法和系统
CN106828119B (zh) * 2017-01-11 2018-12-18 电子科技大学 一种兼顾回馈效率与制动效能的制动系统及制动方法
CN107499143A (zh) * 2017-08-11 2017-12-22 上海蓥石汽车技术有限公司 一种可扩展的再生制动控制系统
CN107745639B (zh) * 2017-09-07 2021-05-14 宝沃汽车(中国)有限公司 能量回馈方法、能量回馈系统和车辆
CN109693555B (zh) * 2017-10-20 2022-06-21 河南森源重工有限公司 一种电动车辆滑行回馈的控制方法和装置
CN108491670A (zh) * 2018-04-17 2018-09-04 常熟理工学院 一种电动物流车驱动电机的参数匹配及优化方法
DE102018206050B4 (de) * 2018-04-20 2020-01-16 Audi Ag Verfahren zum Betrieb eines Kraftfahrzeugs
CN108725213B (zh) * 2018-07-23 2020-08-28 北京车和家信息技术有限公司 能量回馈的控制方法及装置
US10913444B2 (en) * 2018-09-25 2021-02-09 Deere & Company Power system architecture for hybrid electric vehicle
CN112208342B (zh) * 2019-07-09 2024-05-28 日立汽车系统(中国)有限公司 电动车的制动系统以及电动车
CN110303865B (zh) * 2019-07-11 2024-03-12 广西玉柴机器股份有限公司 串联双电机差速功率分流的无级变速传动系统
DE102019210779A1 (de) * 2019-07-19 2021-01-21 Magna powertrain gmbh & co kg Elektrisches Antriebssystem und Verfahren zum Betrieb des Antriebssystems
CN110395117B (zh) * 2019-08-09 2020-12-11 厦门金龙联合汽车工业有限公司 抑制电动客车驱动系统振动的制动能量回收控制方法
CN111137136B (zh) * 2019-12-26 2023-05-02 的卢技术有限公司 一种纯电驱动车辆刹车响应方法及系统
FR3106797B1 (fr) * 2020-01-30 2022-02-11 Psa Automobiles Sa Vehicule a gmp hybride et controle du frein moteur, et procede de controle associe
CN111347884B (zh) * 2020-03-06 2023-03-31 四川野马汽车股份有限公司 一种电动汽车的串联制动系统及控制方法
CN113442894B (zh) * 2020-03-25 2022-09-16 比亚迪股份有限公司 控制车辆制动的方法、装置、存储介质及车辆
CN113460012B (zh) * 2020-03-31 2022-07-15 比亚迪股份有限公司 车辆制动方法及装置、车辆控制方法、车辆
CN113561783B (zh) * 2020-04-28 2023-10-20 北京新能源汽车股份有限公司 分布式驱动系统的能量回收控制方法、装置及电动汽车
CN111959476B (zh) * 2020-07-24 2021-08-13 东风商用车有限公司 混动商用车制动方式智能管理方法
CN112092612B (zh) * 2020-09-18 2021-12-07 中国第一汽车股份有限公司 一种四驱纯电动汽车动力系统
CN112622868B (zh) * 2020-12-25 2022-04-19 中国第一汽车股份有限公司 一种双电机车辆控制方法及装置
CN113147753B (zh) * 2021-03-24 2022-09-13 江铃汽车股份有限公司 车辆制动控制方法、装置、存储介质及自动制动系统
CN113285980B (zh) * 2021-04-16 2022-12-02 国家能源集团煤焦化有限责任公司 焦炉车辆控制方法及控制系统
CN117751065A (zh) * 2021-05-26 2024-03-22 康明斯公司 具有再生制动扭矩限制的可选择多模式控制的方法和系统
CN113173076A (zh) * 2021-06-04 2021-07-27 中国人民解放军96901部队24分队 一种超重载车辆机电混合制动系统和控制方法
CN113183773A (zh) * 2021-06-07 2021-07-30 北京车和家信息技术有限公司 电动车辆控制方法、装置、存储介质及电子设备
CN113829933B (zh) * 2021-09-30 2023-10-20 华人运通(江苏)技术有限公司 电动汽车充电管理方法、装置及车辆
CN113895244A (zh) * 2021-09-30 2022-01-07 岚图汽车科技有限公司 车辆控制方法、装置、电子设备及存储介质
DE102021133501A1 (de) * 2021-12-16 2023-06-22 Emining Ag Verfahren zur Steuerung eines Bremssystems, Steuereinheit zum Steuern eines Bremssystems und Fahrzeug mit einer solchen Steuereinheit
US11607952B1 (en) * 2022-05-04 2023-03-21 Dimaag-Ai, Inc. Methods and systems for controlling differential wheel speeds of multi- independent-wheel drive vehicles
CN117681684B (zh) * 2024-02-01 2024-05-03 徐州徐工汽车制造有限公司 节能驱动转矩控制方法和装置、新能源车辆和存储介质

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030173826A1 (en) * 2002-02-15 2003-09-18 Nissan Motor Co., Ltd. Brake control apparatus
CN101407179A (zh) * 2008-11-28 2009-04-15 清华大学 有防抱死制动功能的混合制动系统及控制方法
CN101428612A (zh) * 2007-11-04 2009-05-13 通用汽车环球科技运作公司 用于混合动力系统中的混合制动系统的系统结构
CN101973260A (zh) * 2010-09-25 2011-02-16 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 液压混合动力车辆制动转矩控制方法
CN102343824A (zh) * 2010-07-30 2012-02-08 北汽福田汽车股份有限公司 电动车制动能量回收控制方法及其装置
CN102381178A (zh) * 2011-08-24 2012-03-21 奇瑞汽车股份有限公司 插电式混合动力汽车动力系统及其再生制动控制方法
CN102642474A (zh) * 2012-04-12 2012-08-22 清华大学 基于加速踏板及制动踏板的电驱动汽车回馈制动控制方法
CN103237677A (zh) * 2010-10-22 2013-08-07 日产自动车株式会社 车辆的再生制动控制装置

Family Cites Families (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2559346A (en) * 1949-03-29 1951-07-03 Gen Electric Regenerative braking control system
JPS59149781A (ja) * 1983-02-16 1984-08-27 Mitsubishi Electric Corp エレベ−タの制御装置
JP3541621B2 (ja) * 1997-06-10 2004-07-14 トヨタ自動車株式会社 車両用制動装置
JP3365301B2 (ja) * 1998-03-19 2003-01-08 トヨタ自動車株式会社 車両の制動エネルギー制御装置とその制御方法
US7409280B2 (en) * 2004-01-15 2008-08-05 Nissan Motor Co., Ltd. Vehicle braking control apparatus
JP4839864B2 (ja) * 2006-01-31 2011-12-21 トヨタ自動車株式会社 車両およびその制御方法並びに制動装置
JP4628309B2 (ja) * 2006-05-18 2011-02-09 トヨタ自動車株式会社 車両およびその制御方法
JP4258548B2 (ja) * 2006-12-19 2009-04-30 トヨタ自動車株式会社 車両およびその制御方法
US8596390B2 (en) * 2007-12-05 2013-12-03 Ford Global Technologies, Llc Torque control for hybrid electric vehicle speed control operation
US7755472B2 (en) * 2007-12-10 2010-07-13 Grossman Victor A System and method for setting functions according to location
JP4644722B2 (ja) * 2008-03-31 2011-03-02 日立建機株式会社 電気駆動車両
US8738260B2 (en) * 2009-08-07 2014-05-27 Toyota Jidosha Kabushiki Kaisha Brake control system, and brake control method
US8335607B2 (en) * 2010-02-12 2012-12-18 Ronald A. Gatten Method and apparatus for linking electric drive vehicles
US8862356B2 (en) * 2010-03-02 2014-10-14 International Truck Intellectual Property Company, Llc Regenerative brake system reset feature and adaptive calibration for hybrid and electric vehicles
JP5471726B2 (ja) * 2010-03-31 2014-04-16 株式会社アドヴィックス 車両用ブレーキ装置
JP5222329B2 (ja) * 2010-08-05 2013-06-26 本田技研工業株式会社 車両用制動装置
KR20120024001A (ko) * 2010-09-03 2012-03-14 현대자동차주식회사 전기자동차의 제동 제어 방법
US9800716B2 (en) * 2010-09-21 2017-10-24 Cellepathy Inc. Restricting mobile device usage
CN202242966U (zh) * 2010-09-26 2012-05-30 比亚迪股份有限公司 电动车辆的驱动系统
CN101973207B (zh) * 2010-09-30 2015-05-27 长城汽车股份有限公司 一种混合动力汽车变速器
FR2966115B1 (fr) * 2010-10-19 2012-10-26 Renault Sa Procede et systeme de freinage d'un vehicule automobile a traction electrique ou hybride
US20120138375A1 (en) * 2010-12-03 2012-06-07 Vectrix International Limited Regenerative braking system for an electric vehicle and method of use
DE112011104811B4 (de) * 2011-01-31 2023-03-02 Suzuki Motor Corporation Regenerative Steuervorrichtung und regeneratives Steuerverfahren und Hybridkraftfahrzeug
CN103650327B (zh) * 2011-06-30 2016-09-28 Ntn株式会社 电动机驱动装置
CN202345366U (zh) * 2011-11-18 2012-07-25 同济大学 一种采用双同步器的模块化混合动力电动汽车动力系统
JP5856465B2 (ja) * 2011-12-16 2016-02-09 トヨタ自動車株式会社 車両
CN102555769B (zh) * 2012-03-12 2014-12-10 重庆大学 一种混联式双电机多工作模式混合动力驱动总成
JP5899047B2 (ja) * 2012-05-18 2016-04-06 本田技研工業株式会社 ハイブリッド車両の制御装置及び制御方法
US9067500B2 (en) * 2012-05-21 2015-06-30 Krassimire Mihaylov Penev Self rechargeable synergy drive for a motor vehicle
CN102717714B (zh) * 2012-06-08 2015-07-01 北京汽车新能源汽车有限公司 一种基于dct的纯电动汽车制动能量回收控制系统及方法
CN202641405U (zh) * 2012-06-08 2013-01-02 北京汽车新能源汽车有限公司 一种基于dct的纯电动汽车制动能量回收控制系统
US20150141043A1 (en) * 2013-08-23 2015-05-21 Cellepathy Ltd. Corrective navigation instructions
US20150168174A1 (en) * 2012-06-21 2015-06-18 Cellepathy Ltd. Navigation instructions
US9691115B2 (en) * 2012-06-21 2017-06-27 Cellepathy Inc. Context determination using access points in transportation and other scenarios
CA2877453A1 (en) * 2012-06-21 2013-12-27 Cellepathy Ltd. Device context determination
US9638537B2 (en) * 2012-06-21 2017-05-02 Cellepathy Inc. Interface selection in navigation guidance systems
KR101371465B1 (ko) * 2012-08-09 2014-03-10 기아자동차주식회사 하이브리드 전기자동차의 출발 제어장치 및 방법
GB2516496B (en) * 2013-07-25 2016-12-14 Jaguar Land Rover Ltd Vehicle control system and method
GB2516498B (en) * 2013-07-25 2017-06-14 Jaguar Land Rover Ltd Vehicle control system and method
GB2516495B (en) * 2013-07-25 2017-03-15 Jaguar Land Rover Ltd Vehicle control system and method
US10154130B2 (en) * 2013-08-23 2018-12-11 Cellepathy Inc. Mobile device context aware determinations
US9254824B2 (en) * 2013-12-30 2016-02-09 Automotive Research & Testing Center Adaptive anti-collision method for vehicle
CN104494599B (zh) * 2014-01-30 2015-11-25 比亚迪股份有限公司 车辆及其的滑行回馈控制方法
JP6204865B2 (ja) * 2014-03-31 2017-09-27 日立オートモティブシステムズ株式会社 車両の運動制御システム、車両、および、プログラム
US9315182B2 (en) * 2014-06-27 2016-04-19 Robert Bosch Gmbh Braking system
KR101610490B1 (ko) * 2014-08-19 2016-04-07 현대자동차주식회사 차량의 제동력 분배 제어장치 및 제어방법
US10379007B2 (en) * 2015-06-24 2019-08-13 Perrone Robotics, Inc. Automated robotic test system for automated driving systems
JP6304157B2 (ja) * 2015-07-15 2018-04-04 トヨタ自動車株式会社 車両の制御装置
JP6332180B2 (ja) * 2015-07-15 2018-05-30 トヨタ自動車株式会社 車両の制御装置
JP6332179B2 (ja) * 2015-07-15 2018-05-30 トヨタ自動車株式会社 車両の制御装置
US9499141B1 (en) * 2015-09-29 2016-11-22 Faraday & Future Inc. Sensor-triggering of friction and regenerative braking

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030173826A1 (en) * 2002-02-15 2003-09-18 Nissan Motor Co., Ltd. Brake control apparatus
CN101428612A (zh) * 2007-11-04 2009-05-13 通用汽车环球科技运作公司 用于混合动力系统中的混合制动系统的系统结构
CN101407179A (zh) * 2008-11-28 2009-04-15 清华大学 有防抱死制动功能的混合制动系统及控制方法
CN102343824A (zh) * 2010-07-30 2012-02-08 北汽福田汽车股份有限公司 电动车制动能量回收控制方法及其装置
CN101973260A (zh) * 2010-09-25 2011-02-16 徐工集团工程机械股份有限公司江苏徐州工程机械研究院 液压混合动力车辆制动转矩控制方法
CN103237677A (zh) * 2010-10-22 2013-08-07 日产自动车株式会社 车辆的再生制动控制装置
CN102381178A (zh) * 2011-08-24 2012-03-21 奇瑞汽车股份有限公司 插电式混合动力汽车动力系统及其再生制动控制方法
CN102642474A (zh) * 2012-04-12 2012-08-22 清华大学 基于加速踏板及制动踏板的电驱动汽车回馈制动控制方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150453B1 (fr) * 2015-08-17 2023-01-25 PSA Automobiles SA Procédé de répartition d'une consigne d'assistance de couple d'une fonction de dépollution thermique pour un véhicule hybride
CN107298015A (zh) * 2017-07-31 2017-10-27 浙江鑫可精密机械有限公司 一种二合一纯电动汽车动力总成及控制系统和方法
CN113460054A (zh) * 2020-03-31 2021-10-01 比亚迪股份有限公司 一种车辆及其动力输出控制方法
CN113460054B (zh) * 2020-03-31 2023-08-08 比亚迪股份有限公司 一种车辆及其动力输出控制方法
CN113335043A (zh) * 2021-07-22 2021-09-03 中国第一汽车股份有限公司 一种电动汽车的动力系统、控制方法及电动汽车
CN113400946A (zh) * 2021-07-30 2021-09-17 睿驰电装(大连)电动系统有限公司 电动汽车制动能量回收控制方法、装置和电子设备
CN113400946B (zh) * 2021-07-30 2023-08-22 睿驰电装(大连)电动系统有限公司 电动汽车制动能量回收控制方法、装置和电子设备

Also Published As

Publication number Publication date
CN104276050B (zh) 2015-08-26
US20160325732A1 (en) 2016-11-10
CN104276050A (zh) 2015-01-14
EP3100898A1 (en) 2016-12-07
US10232839B2 (en) 2019-03-19
EP3100898A4 (en) 2017-03-01

Similar Documents

Publication Publication Date Title
WO2015113418A1 (zh) 车辆及其的制动回馈控制方法
WO2015113417A1 (zh) 车辆及其的滑行回馈控制方法
WO2015113419A1 (zh) 车辆及车辆的巡航控制方法
US9566978B2 (en) Vehicle and drive control method for the same
US9919699B2 (en) Vehicle and method for controlling synchronizer of the same
US10081351B2 (en) Method for controlling engine unit in vehicle and vehicle
US9568082B2 (en) Power transmission system for vehicle and vehicle comprising the same
WO2015113424A1 (zh) 车辆及其动力传动系统
US9944165B2 (en) Power transmission system for vehicle and vehicle comprising the same
WO2015113422A1 (zh) 车辆及其动力传动系统
US10214092B2 (en) Power transmission system for vehicle and vehicle comprising the same
CN101774346A (zh) 具有四轮驱动特征的混合动力总成和装配该总成的车辆
JP2011218871A (ja) スタンバイ四輪駆動車
US9568081B2 (en) Power transmission system for vehicle and vehicle comprising the same
US9568080B2 (en) Power transmission system for vehicle and vehicle comprising the same
CN106915247B (zh) 混合动力系统以及具有其的车辆
WO2015113423A1 (zh) 车辆及其动力传动系统
CN206797104U (zh) 一种行星混联式双模混合动力车辆驱动系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880471

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014880471

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014880471

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE