WO2015111424A1 - カルボン酸ガス濃度の推定方法及び半田付け装置 - Google Patents

カルボン酸ガス濃度の推定方法及び半田付け装置 Download PDF

Info

Publication number
WO2015111424A1
WO2015111424A1 PCT/JP2015/050100 JP2015050100W WO2015111424A1 WO 2015111424 A1 WO2015111424 A1 WO 2015111424A1 JP 2015050100 W JP2015050100 W JP 2015050100W WO 2015111424 A1 WO2015111424 A1 WO 2015111424A1
Authority
WO
WIPO (PCT)
Prior art keywords
carboxylic acid
thermometer
acid gas
temperature
chamber
Prior art date
Application number
PCT/JP2015/050100
Other languages
English (en)
French (fr)
Inventor
小林 秀雄
直人 小澤
純 松田
Original Assignee
オリジン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリジン電気株式会社 filed Critical オリジン電気株式会社
Priority to CN201580003345.5A priority Critical patent/CN106029277B/zh
Priority to US15/112,400 priority patent/US9513211B1/en
Priority to EP15740740.4A priority patent/EP3098012B1/en
Publication of WO2015111424A1 publication Critical patent/WO2015111424A1/ja
Priority to US15/358,653 priority patent/US9956635B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/08Auxiliary devices therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/20Preliminary treatment of work or areas to be soldered, e.g. in respect of a galvanic coating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/0047Organic compounds

Definitions

  • the present invention relates to a method for estimating a carboxylic acid gas concentration in a chamber and a soldering apparatus capable of estimating a carboxylic acid gas concentration in a chamber, which can be suitably used in a semiconductor soldering process or the like. More specifically, the present invention relates to a method for estimating a carboxylic acid gas concentration utilizing the fact that carboxylic acid absorbs infrared rays having a specific wavelength, and a soldering apparatus adapted thereto.
  • solder is deposited on the pads, then the shape of the solder bumps is changed from a mushroom shape to a hemispherical shape, and then reflowed and soldered.
  • the surface oxide film of the solder is removed using a flux to clean the surface of the solder bump.
  • void a small void (void) may be formed in the solder bump due to the decomposition of the flux.
  • voids not only degrade the electrical and mechanical properties of the formed solder joint, but also destroy the flatness of the semiconductor with solder bumps and may affect the subsequent semiconductor bonding process.
  • Decomposed flux volatiles may contaminate the reflow processing equipment, which may increase maintenance costs.
  • flux residues often remain on the semiconductor substrate, causing metal corrosion and reducing assembly performance.
  • post-cleaning the time required for soldering increases due to the addition of a new processing step called post-cleaning.
  • the acid treatment with formic acid is usually performed using evaporated gaseous formic acid.
  • a method of grasping the concentration of formic acid gas in the chamber a method of collecting the gas in the chamber and analyzing it by a gas chromatograph, a Fourier transform infrared spectrometer (Fourier Transform Infrared Spectrometer, FTIR) or the like can be mentioned.
  • FTIR Fourier Transform Infrared Spectrometer
  • the formic acid gas after the acid treatment is completed is removed from the chamber by forced exhaust. At this time, the gas in the chamber is also captured when it is confirmed whether or not the formic acid gas in the chamber is sufficiently exhausted.
  • the method of collecting and analyzing by gas chromatograph, FTIR, etc. has the same problem.
  • the present invention has been made in view of the above problems, and a method for estimating a carboxylic acid gas concentration capable of safely measuring a carboxylic acid gas concentration such as formic acid gas in a chamber of a soldering apparatus in real time, and in the chamber It is an object of the present invention to provide a soldering apparatus capable of estimating the carboxylic acid gas concentration.
  • the present invention provides the following method and apparatus in order to solve the above problems.
  • thermometer that can measure temperature without being affected by infrared absorption by carboxylic acid
  • second thermometer that measures temperature with infrared light in the wavelength range that carboxylic acid absorbs Is used to measure the surface temperature of the same object placed in the chamber at the same time, and from the temperature difference ( ⁇ Tx) between the first thermometer and the second thermometer, the carboxylic acid gas in the chamber
  • ⁇ Tx temperature difference between the first thermometer and the second thermometer
  • thermometer first thermometer
  • the surface temperature of the same object placed in the chamber is measured at the same time using a radiation thermometer (second thermometer), and the temperature difference between the first thermometer and the second thermometer
  • ⁇ T a calibration curve indicating the relationship between the carboxylic acid gas concentration and the temperature difference ( ⁇ T) is created in advance, and the created calibration curve and the surface temperature of the same object placed in the chamber
  • ⁇ Tx a temperature difference between the first thermometer and the second thermometer
  • a calibration curve showing the relationship between the carboxylic acid gas concentration and the temperature difference ( ⁇ T) is created under a plurality of conditions with different acid treatment temperatures, and the relationship showing the relationship between the slope of the calibration curve and the acid treatment temperature.
  • An equation is obtained, the slope of the calibration curve at a predetermined acid treatment temperature is obtained from the relational expression, and the carboxylic acid gas concentration in the chamber is estimated from the slope of the calibration curve and the temperature difference ( ⁇ Tx), (2 The estimation method of the carboxylic acid gas concentration of description.
  • a soldering apparatus including a chamber having a heating stage, a mixed gas introducing means of an inert gas and a carboxylic acid gas, and a gas discharging means,
  • the chamber has a thermometer (first thermometer) that can measure the temperature without being affected by infrared absorption by the carboxylic acid, and a radiation thermometer (second thermometer) that measures the temperature with infrared rays in the wavelength range that the carboxylic acid absorbs.
  • first thermometer that can measure the temperature without being affected by infrared absorption by the carboxylic acid
  • second thermometer that measures the temperature with infrared rays in the wavelength range that the carboxylic acid absorbs.
  • a soldering apparatus capable of estimating the carboxylic acid gas concentration in the chamber.
  • the first thermometer is a radiation thermometer that measures the temperature with infrared rays in a wavelength region that is not absorbed by the carboxylic acid, and the chamber includes two thermometers corresponding to the first thermometer and the second thermometer.
  • the carboxylic acid gas concentration in the chamber can be estimated in a non-contact manner in real time.
  • the carboxylic acid gas concentration can be estimated extremely safely.
  • the amount of carboxylic acid in the chamber can be obtained from the carboxylic acid gas concentration.
  • FIG. 1 is a configuration diagram showing a preferred embodiment of a soldering apparatus to which the carboxylic acid gas concentration estimation method according to the present invention is preferably applied.
  • the carboxylic acid in the present invention include formic acid, acetic acid, acrylic acid, propionic acid, caproic acid, oxalic acid, succinic acid, malonic acid, caprylic acid, and caproic acid.
  • the method for estimating the carboxylic acid gas concentration according to the present invention is a method for estimating the carboxylic acid gas concentration in the chamber into which the carboxylic acid gas for reaction has been introduced.
  • an oxide on the surface of a member to be joined such as a substrate, a semiconductor chip, or an electrode that is heated to a predetermined temperature by being placed on the heating stage 30 in the chamber 10 is defined as an inert gas.
  • the concentration of carboxylic acid gas for reaction in the chamber 10 is estimated. Nitrogen, helium, argon, or the like is used as the inert gas, but readily available nitrogen is preferably used.
  • the chamber 10 is a vacuum chamber for removing and bonding the oxide film on the surfaces of the members to be bonded 31 and 32.
  • the heating stage 30 mounts the members to be bonded 31, 32 sandwiching the solder 35 thereon, and heats the member to be bonded to a temperature not lower than the carboxylic acid reduction temperature and at which the solder does not melt to remove the oxide film.
  • the device can be heated to a temperature at which the solder melts after the removal of the oxide film is completed.
  • the soldering apparatus shown in FIG. 1 is a heating stage on which a gas introducing means 25 for introducing a mixed gas of an inert gas and a carboxylic acid gas, and members to be joined 31, 32 holding a solder 35 are placed and heated to a predetermined temperature.
  • 30 is a configuration example including the chamber 10 including the gas discharge means 26, the first thermometer 37 and the transmission window 37w, the radiation thermometer 38 which is the second thermometer, and the transmission window 38w.
  • a means for introducing a mixed gas of an inert gas and a carboxylic acid gas mixed in advance into the chamber 10 through a single line may be adopted.
  • a means for introducing the carboxylic acid gas into the chamber 10 through a separate line or a means for spraying the carboxylic acid into the inert gas may be employed.
  • the adjustment method of the mixed gas of an inert gas and carboxylic acid gas is not specifically limited, For example, a predetermined amount of carboxylic acid is evaporated in an inert gas in another container connected with the gas introduction means 25, etc. Can be adjusted.
  • the concentration of the carboxylic acid gas in the mixed gas may be obtained from the ratio of the amount of introduced gas, or may be obtained by measuring with a gas chromatograph, FTIR, or the like.
  • the concentration of the carboxylic acid gas in the mixed gas introduced into the chamber 10 is not particularly limited, but is preferably 1.5 vol% or more from the viewpoint of reactivity. Thereby, the removal of the oxide film on the surface of the solder and the member to be joined is easily performed, the wettability of the solder becomes good, and the generation of voids in the soldered portion can be reduced.
  • the carboxylic acid gas concentration is more preferably 1.5 vol% or more and 3 vol% or less. The reason why it is 1.5 vol% or more is that there is no hindrance to the acid treatment with carboxylic acid, and the reason why it is 3 vol% or less is that the risk of corrosion of the chamber material by carboxylic acid is reduced.
  • the gas discharge means 26 is connected to a vacuum pump (not shown), and is used for forcibly evacuating the chamber 10 and bringing it into a vacuum state before introducing an inert gas and a carboxylic acid gas to start acid treatment. .
  • a vacuum pump not shown
  • the gas discharge means 26 is used for discharging the gas remaining in the chamber 10 after the end of the acid treatment.
  • thermometer that can measure the temperature without being affected by infrared absorption by the carboxylic acid
  • second thermometer that measures the temperature with infrared rays in the wavelength range that the carboxylic acid absorbs.
  • the surface temperature of the same object in the chamber is measured at the same time.
  • ⁇ Tx a temperature difference between the first thermometer and the second thermometer. From this degree of temperature difference ( ⁇ Tx), Estimate the carboxylic acid gas concentration in the chamber.
  • both the first thermometer and the radiation thermometer as the second thermometer measure the surface temperature of the same object placed in the chamber.
  • Measure the surface temperature of the same object means that the temperature of an object having the same surface temperature is measured simultaneously by two thermometers.
  • the “object disposed in the chamber” means an object disposed in a chamber (chamber) where carboxylic acid treatment is performed. Therefore, the object disposed in the chamber is not limited to the heating plate such as the heating stage 30 but may be a bonded object, or an arbitrary object disposed in the chamber or disposed for temperature measurement. It may be an object.
  • thermometer 37 it is necessary to use a thermometer that is not affected by the carboxylic acid gas absorbing infrared rays.
  • thermometers include non-contact thermometers such as mercury thermometers, resistance thermometers, thermocouple thermometers, and radiation thermometers that measure temperature with infrared rays in a wavelength region that is not absorbed by the carboxylic acid gas.
  • a contact-type thermometer is mentioned.
  • the first thermometer also has a role of controlling the temperature of the heating stage 30 to a predetermined temperature.
  • thermometer When a radiation thermometer is used as the first thermometer, there is no particular limitation as long as it is a radiation thermometer that can measure temperature without being affected by carboxylic acid, and radiation generally used in soldering devices.
  • a thermometer can be used.
  • the infrared wavelength absorbed by formic acid is in the range of 2.5 to 4.0 ⁇ m, 5.5 to 6.0 ⁇ m, and 7.0 to 14.0 ⁇ m. . Therefore, for example, a radiation thermometer that uses InSb as a detection element, further has a band-pass filter, and measures temperature with infrared rays having a wavelength range of 4.5 to 5 ⁇ m that is not absorbed by formic acid can be used.
  • thermometer 38 As a radiation thermometer (hereinafter referred to as “second radiation thermometer”) 38 as a second thermometer, radiation capable of measuring temperature with infrared rays in a wavelength region absorbed by the carboxylic acid gas. Use a thermometer. Therefore, the temperature of the heating stage 30 measured by the second radiation thermometer 38 is affected by the carboxylic acid gas concentration in the chamber 10.
  • a radiation thermometer equipped with a detection element for detecting infrared rays in the above-mentioned region absorbed by carboxylic acid is used.
  • a thermopile capable of measuring temperature with infrared rays having a wavelength of 8 to 13 ⁇ m is detected.
  • a radiation thermometer as an element can be used.
  • thermometer When a radiation thermometer is used as the first thermometer 37 and when the second radiation thermometer 38 is used, the temperature of the heating stage 30 is measured in the absence of carboxylic acid gas, and a thermocouple is measured. It is desirable to correct beforehand so that it may correspond with the temperature measured with the contact-type thermometer.
  • the installation positions of the first thermometer 37 and the second radiation thermometer 38 are not particularly limited, but in general, the contact thermometer is often installed in the chamber 10.
  • these two radiation thermometers can be installed in the chamber 10.
  • the radiation thermometer is installed in the chamber 10
  • the heat radiated from the radiation thermometer itself or the heat radiated from the floor or wall of the chamber is sensed, and there is a possibility that the temperature measurement error may increase.
  • two radiation thermometers are preferably installed outside the chamber 10.
  • FIG. 1 shows an example in which the transmission window 37 w corresponds to the first thermometer 37 and the transmission window 38 w corresponds to the second radiation thermometer 38.
  • the transmissive window needs to be formed of a material that does not absorb infrared rays.
  • a material that does not absorb infrared rays. Examples of such a material include BaF 2 , CaF 2 , and ZnSe.
  • the acid treatment and joining method performed using the soldering apparatus of the present invention are not particularly limited, and may be a known method or the like, for example, in the following steps.
  • a gas such as air existing in the chamber 10 is forcibly exhausted by a vacuum pump through the gas discharge means 26.
  • the heating stage 30 is heated.
  • the valve 21 is closed and the connection between the gas discharge means 26 and the chamber 10 is closed.
  • a gas such as air existing in the chamber 10 is forcibly evacuated by a vacuum pump, the pressure in the chamber is reduced, and then the valve 21 is closed to close the connection between the gas discharge means 26 and the chamber 10, and then the heating stage 30. Heating may be started. By this. Compared to the case where heating is performed simultaneously with forced exhaust, heating can be performed to a predetermined temperature in a short time.
  • the valve 20 is opened, and the mixed gas of the inert gas and the carboxylic acid gas is introduced from the gas introducing means 25 of the mixed gas of the inert gas and the carboxylic acid gas. Fill with mixed gas and perform acid treatment.
  • the surface of the heating stage 30 using two thermometers that is, a thermometer that is not affected by the carboxylic acid and an affected thermometer during the acid treatment.
  • the first thermometer 37 is a contact-type thermometer such as a mercury thermometer, a resistance thermometer, or a thermocouple thermometer, or a radiation thermometer that measures the temperature with infrared rays in a wavelength region that is not absorbed by the carboxylic acid gas as described above.
  • the measured temperature is not affected by the carboxylic acid gas, and is the actual temperature of the heating stage 30.
  • the surface temperature of the heating stage 30 is controlled, and the acid treatment temperature is maintained within a predetermined temperature range.
  • the first thermometer 37 can be used to measure and maintain the surface temperature when heating to the melting temperature of the solder after the acid treatment is completed.
  • the second radiation thermometer 38 is a radiation thermometer that measures the temperature with infrared rays in the region where the carboxylic acid gas absorbs, and the surface temperature of the heating stage 30 measured by this second radiation thermometer is The actual temperature of the heating stage 30 is not shown due to the influence of the carboxylic acid gas. That is, the second radiation thermometer 38 displays a temperature lower than the actual temperature according to the amount of infrared rays absorbed by the carboxylic acid gas. The amount of infrared rays absorbed by the carboxylic acid gas is proportional to the concentration of the carboxylic acid gas.
  • the carboxylic acid gas concentration is zero.
  • the magnitude of the carboxylic acid gas concentration can be estimated from the temperature difference between the first thermometer and the second radiation thermometer.
  • the carboxylic acid gas concentration in the chamber 10 decreases, and after the acid treatment is completed, the carboxylic acid gas concentration becomes substantially constant. Therefore, the temperature indicated by the second radiation thermometer 38 is It is low at the start of the treatment, rises gradually with the progress of the acid treatment, and becomes almost constant after the acid treatment is finished. In this way, it is possible to grasp the progress of the acid treatment from the temperature indicated by the second radiation thermometer 38 in real time.
  • the intensity of infrared rays radiated from an object is affected by the temperature of the object and increases as the temperature increases. Therefore, when measuring the carboxylic acid gas concentration during the acid treatment using the second radiation thermometer 38, it is an important requirement that the temperature in the chamber 10 is constant. However, in the present invention, since the first thermometer 37 is used to measure the temperature of the heating stage 30 in real time and control is performed so as to maintain the predetermined temperature, there is no problem in this respect.
  • the concentration of the carboxylic acid gas in the mixed gas of the inert gas and the carboxylic acid gas is changed, and the first thermometer 37 is used for heating.
  • the surface temperature of the stage 30 is measured, and the surface temperature of the heating stage 30 is measured using the second radiation thermometer 38 while controlling the temperature of the heating stage 30 to a predetermined temperature based on the measured temperature.
  • a calibration curve indicating the relationship between the concentration of the carboxylic acid gas and the temperature difference ( ⁇ T) is prepared in advance.
  • the concentration of carboxylic acid gas in the chamber 10 is determined from the temperature difference ( ⁇ Tx) between the first thermometer and the second radiation thermometer with respect to the surface temperature of the heating stage 30. Can be sought.
  • the carboxylic acid gas concentration can be obtained simply by obtaining the temperature difference ⁇ Tx in the chamber 10 where the carboxylic acid gas concentration is unknown. Can be obtained quantitatively.
  • a calibration curve for formic acid can be prepared, for example, as follows. After evacuating the chamber 10, the heating stage 30 disposed in the chamber is heated to a predetermined temperature, and after the temperature is stabilized, a mixed gas of formic acid gas and inert gas having a known formic acid concentration is supplied. The temperature (T 1 ) indicated by the first thermometer 37 and the temperature (T 2 ) indicated by the second radiation thermometer 38 are measured simultaneously, and the temperature difference between T 1 and T 2 ( ⁇ T) is obtained. Repeat the same procedure with different formic acid concentrations. Further, the same operation is repeated by changing the temperature of the heating stage 30. Finally, a calibration curve is created by plotting the relationship between the formic acid gas concentration (%) and the temperature difference ( ⁇ T) for each temperature of the heating stage 30 and approximating it with a linear regression line.
  • the carboxylic acid gas concentration used for preparing the calibration curve can be arbitrarily set.
  • the preferred range of the formic acid gas concentration used is 1.5 to 3 vol%.
  • a calibration curve having a concentration up to about 3 vol% may be prepared.
  • the intensity of the emitted infrared rays varies depending on the temperature of the object, the intensity of the emitted infrared rays changes depending on the temperature of the heating stage 30. Therefore, even if the amount of infrared rays absorbed by the carboxylic acid gas is the same, if the acid treatment temperature is different, the temperature indicated by the second radiation thermometer 38 is different. Therefore, since the relationship between the carboxylic acid gas concentration and the temperature difference ( ⁇ T) varies depending on the temperature, it is necessary to create a calibration curve for each acid treatment temperature.
  • the temperature range for preparing the calibration curve is not particularly limited, but may be appropriately selected in the range of 25 to 50 ° C. according to the measurement accuracy of the carboxylic acid concentration.
  • the acid treatment temperature is set to 150 ° C, it is possible to estimate the formic acid concentration with high accuracy in the range from 100 to 300 ° C by creating a calibration curve at intervals of 50 ° C from 100 ° C to 300 ° C. It becomes.
  • the amount of carboxylic acid in the chamber is estimated by using the carboxylic acid gas concentration estimated by the carboxylic acid gas concentration estimating method according to the present invention.
  • the amount of carboxylic acid gas in the chamber is obtained by multiplying the chamber volume by the carboxylic acid gas concentration to obtain the amount of carboxylic acid gas in the chamber, and then converting the pressure in the chamber to normal pressure. Can do.
  • the chamber pressure is the pressure in the chamber at the time of measuring the temperature difference ( ⁇ Tx) between the first thermometer and the second thermometer.
  • Example 1 The test was conducted using a soldering apparatus having a chamber capacity of 20 L with the configuration shown in FIG. After evacuating the chamber 10, the heating plate 30 installed in the chamber is heated to 150 ° C., and after the temperature is stabilized, a mixed gas of formic acid gas having a formic acid gas concentration of 2.4% and an inert gas. Is introduced into the chamber, and the temperature (T 1 ) indicated by the first thermometer 37 and the temperature (T 2 ) indicated by the second radiation thermometer 38 are simultaneously measured, so that T 1 and T 2 The temperature difference ( ⁇ T) was determined. The same operation was repeated with the formic acid gas concentration changed to 1.2% and 0.6%. See FIG. The same operation was repeated by changing the temperature of the heating plate to 250 ° C.
  • the temperature difference ( ⁇ T) increases as the formic acid gas concentration increases. If the formic acid gas concentration is the same, the temperature difference ( ⁇ T) increases as the heating plate temperature increases. By measuring the difference ( ⁇ T), the formic acid gas concentration in the chamber can be estimated. Further, the formic acid gas concentration can be quantitatively obtained by using the calibration curve of FIG.
  • Example 2 The slope of the calibration curve at an acid treatment temperature of 200 ° C. can be determined as 0.037 (% / ⁇ T) by using the linear regression line created in Example 1 (FIG. 6).
  • concentration of carboxylic acid gas in the chamber can be calculated from the slope of the calibration curve and the measured temperature difference ( ⁇ T) between the two thermometers at an acid treatment temperature of 200 ° C.
  • Example 3 The amount of carboxylic acid at an acid treatment temperature of 200 ° C. is calculated by multiplying the carboxylic acid gas concentration calculated in Example 2 by the chamber volume (20 L) to calculate the amount of carboxylic acid gas in the chamber, and then the chamber at the time of temperature measurement. By converting the internal pressure to normal pressure, the amount of carboxylic acid gas in the chamber can be calculated.
  • the estimation method of the carboxylic acid gas concentration of the present invention includes: a) grasping the carboxylic acid gas concentration in the chamber after completion of the acid treatment step, and b) the carboxyl in the case of changing the temperature during the acid treatment step. It is useful for grasping the change of the acid gas concentration, and c) tracking the change of the carboxylic acid gas concentration in the soldering apparatus. Moreover, the soldering apparatus that can estimate the carboxylic acid gas concentration in the chamber is also useful for improving productivity by shortening the soldering process.
  • valve 21 valve 21 valve 25 gas introduction means 26 gas discharge means 30 heating stage 31 member to be joined 32 member to be joined 35 solder 37 first thermometer 37w transmission window 38 second radiation thermometer 38w transmission window

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

半田付け装置のチャンバー(10)内のギ酸ガス等のカルボン酸ガス濃度を、リアルタイムで安全に測定することができるカルボン酸ガス濃度の推定方法、及びチャンバー内のカルボン酸ガス濃度を推定可能な半田付け装置を提供する。カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)(37)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)(38)を用いて、前記チャンバー内に配置された同一物体の表面温度を同一時点で測定し、第一の温度計と第二の温度計の温度差(ΔTx)から、チャンバー内のカルボン酸ガス濃度を推定する。半田付け装置は、加熱ステージ(30)、不活性ガスとカルボン酸ガスとの混合ガス導入手段(25)、ガス排出手段(26)、第一の温度計(37)、第二の温度計(38)とを備えたものである。

Description

カルボン酸ガス濃度の推定方法及び半田付け装置
 本発明は、半導体の半田付け工程等で好適に用いることができる、チャンバー内のカルボン酸ガス濃度の推定方法、及びチャンバー内のカルボン酸ガス濃度を推定可能な半田付け装置に関する。より詳細には、カルボン酸が特定波長の赤外線を吸収することを利用したカルボン酸ガス濃度の推定方法、及びそれに適合する半田付け装置に関する。
 半導体チップ上に半田バンプを形成する際には、パッド上に半田を付着させ、次いで、マッシュルーム形状から半球体形状へ半田バンプの形状を変化させ、次いで、リフローさせて半田接合する。従来の半田付け方法では、均一な半田バンプを形成するために、フラックスを用いて半田の表面酸化膜を除去し、半田バンプ表面を清浄化していた。
 しかしながら、フラックスを用いた半田付けでは、フラックスの分解によって、小さな空隙(ボイド)が半田バンプ中に形成されることがある。これらの空隙は、形成された半田接合の電気的及び機械的性質を低下させるだけでなく、半田バンプ付き半導体の平坦性を破壊し、かつ以降の半導体接合工程に影響を及ぼすこともある。分解したフラックスの揮発性物質がリフロー処理装置内を汚染する場合もあり、それによってメンテナンスコストが増大することもある。加えて、フラックス残留物がしばしば半導体基板上に残り、金属の腐食を引き起こし、アセンブリの性能を低下させることがある。さらに、リフロー後にフラックス残留物を洗浄除去する方法では、後洗浄という新たな処理工程が加わることで、半田付けに要する時間が増加する。
 このため、フラックスを用いない半田付け方法として、半田及び被接合部材である基板や電極等を、ギ酸を用いて還元する方法が知られている(特許文献1~2等参照)。かかる還元方法では、半田が搭載された被接合部材が所定温度に達したとき、半田を、ギ酸を含む還元性ガスに晒して表面の酸化膜を除去する酸処理を行い、その後溶融処理する。
 ギ酸の還元開始温度は約150℃であり、ギ酸の沸点は約100℃であることから、ギ酸による酸処理は、通常、蒸発したガス状のギ酸を用いて行われる。その際、チャンバー内のギ酸ガスの濃度を把握する方法として、チャンバー内のガスを捕集してガスクロマトグラフやフーリエ変換赤外分光計(Fourier Transform Infrared Spectrometer,FTIR)などにより分析する方法が挙げられる。しかし、これらの場合には、ガスクロマトグラフやFTIR等の分析装置の別途付設や、刺激性の強いギ酸が高温のガス状になっている状態で捕集するための安全対策が必要になるといった課題がある。また、分析に時間を要するため、リアルタイムでギ酸濃度を測定できないという課題もある。
 さらに、酸処理が終了した後のギ酸ガスは、強制排気によりチャンバー内から取り除かれるが、その際、チャンバー内のギ酸ガスが十分排出されたか否か確認する場合にも、チャンバー内のガスを捕集してガスクロマトグラフやFTIR等により分析する方法では、同様の課題がある。
 そのため、ギ酸等のカルボン酸ガスを用いる酸処理では、チャンバー内のカルボン酸ガス濃度を簡便で安全に、かつリアルタイムで測定できる方法が望まれている。
特開2001-244618号公報 特開2007-125578号公報
 本発明は、前記の課題に鑑みてなされたものであり、半田付け装置のチャンバー内のギ酸ガス等のカルボン酸ガス濃度を、リアルタイムで安全に測定できるカルボン酸ガス濃度の推定方法、及びチャンバー内のカルボン酸ガス濃度を推定可能な半田付け装置を提供することを課題とする。
 本発明は上記課題を解決するため、次の方法と装置を提供するものである。
(1)反応用のカルボン酸ガスを導入したチャンバー内におけるカルボン酸ガス濃度を推定する方法であって、
 カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)を用いて、前記チャンバー内に配置された同一物体の表面温度を同一時点で測定し、前記第一の温度計と前記第二の温度計の温度差(ΔTx)から、チャンバー内のカルボン酸ガス濃度を推定することを特徴とする、カルボン酸ガス濃度の推定方法。
(2)反応用のカルボン酸ガスを導入したチャンバー内におけるカルボン酸ガス濃度を推定する方法であって、
 反応用のカルボン酸ガス濃度を変えて、カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)を用いて、前記チャンバー内に配置された同一物体の表面温度を同一時点で測定し、前記第一の温度計と前記第二の温度計の温度差(ΔT)を求めることで、カルボン酸ガス濃度と温度差(ΔT)との関係を示す検量線を予め作成しておき、作成した検量線と、前記チャンバー内に配置された同一物体の表面温度についての前記第一の温度計と前記第二の温度計の温度差(ΔTx)から、チャンバー内のカルボン酸ガス濃度を推定することを特徴とする、カルボン酸ガス濃度の推定方法。
(3)カルボン酸ガス濃度と温度差(ΔT)との関係を示す検量線を、酸処理温度が異なる複数の条件下で作成し、前記検量線の傾きと酸処理温度との関係を示す関係式を求め、前記関係式から所定の酸処理温度における検量線の傾きを求め、前記検量線の傾きと前記温度差(ΔTx)とから、チャンバー内のカルボン酸ガス濃度を推定する、前記(2)記載のカルボン酸ガス濃度の推定方法。
(4)第一の温度計が、カルボン酸が吸収しない波長域の赤外線で温度を測定する放射温度計である、前記(1)~(3)いずれか記載のカルボン酸ガス濃度の推定方法。
(5)表面温度が常温~350℃の物体に適用される、前記(1)~(3)いずれか記載のカルボン酸ガス濃度の推定方法。
(6)表面温度が常温~350℃の物体に適用される、前記(4)記載のカルボン酸ガス濃度の推定方法。
(7)前記(1)~(6)いずれか記載のカルボン酸ガス濃度の推定方法を用いて、チャンバー内のカルボン酸ガス濃度を推定し、カルボン酸ガス濃度の推定値、チャンバー容積及びチャンバー内圧力から、チャンバー内のカルボン酸量を算出することを特徴とする、カルボン酸量の推定方法。
(8)加熱ステージ、不活性ガスとカルボン酸ガスとの混合ガス導入手段、及びガス排出手段を有するチャンバーを含む半田付け装置であって、
 前記チャンバーが、カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)と、を備えていることを特徴とするチャンバー内のカルボン酸ガス濃度を推定可能な半田付け装置。
(9)第一の温度計が、カルボン酸が吸収しない波長域の赤外線で温度を測定する放射温度計であり、前記チャンバーが、第一の温度計及び第二の温度計に対応する2つの透過窓を備えている、前記(8)記載の半田付け装置。
 本発明によれば、チャンバー内のカルボン酸ガス濃度を、非接触で、かつリアルタイムに推定することが可能になる。また、カルボン酸ガスを捕集する必要がないので、特に刺激性の強いギ酸ガスとの接触や吸入の危険を避けることができ、極めて安全にカルボン酸ガス濃度を推定できる。さらに、カルボン酸ガス濃度からチャンバー内のカルボン酸量を求めることが可能になる。
 それらにより、カルボン酸ガスによる酸処理において、チャンバー内のカルボン酸ガス濃度を還元反応を進行させる最低限の濃度で管理できる;チャンバー内への過剰のカルボン酸ガスの導入を抑制できコストを削減できる;チャンバー内のカルボン酸ガス濃度の変化を把握することで酸処理の終了判定ができる;等の利点を有する。
 また、酸処理後は、チャンバー内のカルボン酸ガスを排出する際に、排出が完了したことを判定することができ、カルボン酸ガスと長時間接触することによるチャンバー材の腐蝕を防止することができる。
本発明の半田付け装置の実施形態を示す概略図である。 ギ酸の赤外線吸収スペクトルを示す図である。 第一の温度計及び第二の温度計による測定温度をギ酸濃度別に示した図である。 第一の温度計及び第二の温度計による測定温度を測定温度別に示した図である。 カルボン酸ガス濃度(%)と温度差(ΔT)との関係を示す検量線である。 酸処理温度と検量線の傾きとの関係を示した図である。
 以下、本発明について、図面を参照しながら詳細に説明する。図1は、本発明に係るカルボン酸ガス濃度の推定方法が好ましく適用される半田付け装置について、好ましい一実施形態を示す構成図である。本発明におけるカルボン酸としては、ギ酸、酢酸、アクリル酸、プロピオン酸、カプロン酸、シュウ酸、コハク酸、マロン酸、カプリル酸、カプロン酸等が挙げられる。
 本発明に係るカルボン酸ガス濃度の推定方法は、反応用のカルボン酸ガスを導入したチャンバー内におけるカルボン酸ガス濃度を推定する方法である。具体的には、チャンバー10内の加熱ステージ30の上に載置されることで所定温度に加熱される、基板、半導体チップ、電極等の被接合部材の表面の酸化物を、不活性ガスとカルボン酸ガスとの混合ガスにより除去する方法において、チャンバー10内の反応用のカルボン酸ガス濃度を推定する方法である。不活性ガスとしては、窒素やヘリウム、アルゴンなどが用いられるが、入手容易な窒素が好ましく用いられる。
 チャンバー10は、被接合部材31,32の表面の酸化膜の除去、及び接合を行うための真空チャンバーである。加熱ステージ30は、その上に半田35を挟持した被接合部材31,32を載置し、カルボン酸の還元温度以上かつ半田が融点しない温度に前記被接合部材を加熱して酸化膜を除去し、酸化膜の除去が終了した後に、半田が溶融する温度まで加熱できる装置である。
 図1に示す半田付け装置は、不活性ガスとカルボン酸ガスの混合ガスを導入するガス導入手段25、半田35を挟持した被接合部材31,32を載置し所定の温度に加熱する加熱ステージ30、ガス排出手段26、第一の温度計37及び透過窓37w、第二の温度計である放射温度計38及び透過窓38wを備えるチャンバー10を含む構成例である。
 ガス導入手段25としては、図1に示すように、予め混合した不活性ガスとカルボン酸ガスの混合ガスを1本のラインでチャンバー10に導入する手段を採用しても良く、不活性ガスとカルボン酸ガスをそれぞれ別ラインでチャンバー10に導入する手段、あるいはカルボン酸を不活性ガス中に噴霧する手段等を採用しても良い。また、不活性ガスとカルボン酸ガスの混合ガスの調整方法は特に限定されず、例えば、ガス導入手段25と接続した別の容器中で所定量のカルボン酸を不活性ガス中で蒸発させること等により調整できる。混合ガス中のカルボン酸ガス濃度は、導入ガス量の比率から求めても良いし、ガスクロマトグラフやFTIRなどで測定して求めても良い。
 チャンバー10内に導入する混合ガス中のカルボン酸ガスの濃度は、特に限定されないが、反応性の点より、1.5vol%以上とするのが好ましい。これにより、半田や被接合部材の表面の酸化膜の除去が容易に行われ、半田の濡れ広がり性が良好となり、半田付け部分のボイドの発生を低減することができる。カルボン酸ガス濃度は、1.5vol%以上、3vol%以下とするのがより好ましい。1.5vol%以上とするのは、カルボン酸による酸処理に支障をきたすことがないからであり、3vol%以下とするのは、カルボン酸によるチャンバー材の腐蝕の虞が減少するからである。
 ガス排出手段26は、図示しない真空ポンプに接続されており、不活性ガスとカルボン酸ガスを導入して酸処理を開始する前に、チャンバー10内を強制排気し真空状態にするために用いられる。チャンバー10内を強制排気することで、酸処理を妨げる酸素ガス等を取り除き、また真空状態にすることで、該チャンバー10内に導入されたカルボン酸ガスが気化・分散され易くなる。ガス排出手段26は、酸処理終了後にチャンバー10内に残留するガスを排出するために用いられる。
 本発明では、カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)を用い、チャンバー内の同一物体の表面温度を同一時点で測定する。そして、同一時点で所定の同一物体について測定した際に、前記第一の温度計と前記第二の温度計の間に温度差(ΔTx)が生じるので、この温度差(ΔTx)の程度から、チャンバー内のカルボン酸ガス濃度を推定する。
 即ち、第一の温度計及び第二の温度計である放射温度計、これら2つの温度計は、ともにチャンバー内に配置された同一物体の表面温度を測定する。「同一物体の表面温度」を「同一時点で測定する」とは、表面温度が等しい物体の温度を、2つの温度計で同時に測定することを意味する。また、「チャンバー内に配置された物体」とは、カルボン酸処理を行う室(チャンバー)に配置された物体を意味する。したがって、チャンバー内に配置された物体は、加熱ステージ30等の加熱プレートに限られず、被接合体であってもよく、あるいは、チャンバー内に配置された任意の物体や、温度測定用として配置した物体でもよい。
 上記の第一の温度計37としては、カルボン酸ガスが赤外線を吸収することによる影響を受けない温度計を用いる必要がある。このような温度計としては、水銀温度計や抵抗温度計、熱電対温度計等の接触型温度計、あるいは、カルボン酸ガスが吸収しない波長域の赤外線で温度を測定する放射温度計等の非接触型温度計が挙げられる。第一の温度計は、加熱ステージ30の温度を所定温度に制御する役割も有している。
 第一の温度計として放射温度計を用いる場合は、カルボン酸による影響を受けずに温度を測定できる放射温度計であれば、特に限定されず、一般的に半田付け装置で用いられている放射温度計を用いることができる。ギ酸の場合、図2に赤外線スペクトルを示すように、ギ酸が吸収する赤外線の波長は、2.5~4.0μm、5.5~6.0μm及び7.0~14.0μmの領域にある。したがって、例えば、InSbを検出素子とし、さらにバンドパスフィルターを取り付け、ギ酸による吸収がない4.5~5μmの波長域の赤外線で温度を測定する放射温度計を用いることができる。
 一方、第二の温度計である放射温度計(以下、「第二の放射温度計」と言う。)38としては、カルボン酸ガスが吸収する波長領域の赤外線で温度を測定することができる放射温度計を用いる。したがって、第二の放射温度計38で測定する加熱ステージ30の温度は、チャンバー10内のカルボン酸ガス濃度の影響を受ける。第二の放射温度計としては、カルボン酸が吸収する前記の領域の赤外線を検出する検出素子を備えた放射温度計を用いるので、例えば、波長8~13μmの赤外線で温度を測定できるサーモパイルを検出素子とする放射温度計を用いることができる。
 なお、第一の温度計37として放射温度計を使用する際及び第二の放射温度計38を使用する際には、カルボン酸ガスが存在しない状態で加熱ステージ30の温度を測定し、熱電対などの接触型温度計で測定した温度と一致するように予め補正しておくことが望ましい。
 第一の温度計37及び第二の放射温度計38の設置位置は、特に限定されるものではないが、一般的に接触型温度計はチャンバー10内に設置することが多い。一方、第一の温度計として放射温度計を用いた場合、チャンバー10内に、これら2つの放射温度計を設置することもできる。放射温度計をチャンバー10内に設置した場合には、放射温度計自身が放射する熱やチャンバーの床や壁から放射する熱も感知し、温度の測定誤差が大きくなる虞があるので、図1に示すように、チャンバー10の外部に2つの放射温度計を設置するのが好ましい。
 チャンバー10の外部に放射温度計を設置する場合には、放射熱(赤外線)がチャンバー10の外に透過できるように、透過窓を設ける。放射温度計にチャンバー10の床や壁等の加熱ステージ30以外からの赤外線が入射するのを避けるために、透過窓はできるだけ狭面積とし、それぞれの放射温度計に対応する透過窓を設けるのが良い。図1では、透過窓37wが第一の温度計37に対応し、透過窓38wが第二の放射温度計38に対応する例を示している。
 透過窓は、赤外線を吸収しない素材で形成する必要があり、こうした素材としては、BaF、CaF、ZnSeが挙げられる。
 本発明の半田付け装置を用いて行われる酸処理ならびに接合方法は、特に限定されるものではなく公知の方法等であって良く、例えば、以下の工程で行われる。先ず、チャンバー10内の加熱ステージ30の上に、半田35を挟持した被接合部材31,32を載置する。ガス排出手段26を介して真空ポンプによりチャンバー10内に存在する空気などのガスを強制排気する。同時に加熱ステージ30を加熱する。加熱ステージ30の温度をリアルタイムで測定し、被接合部材31,32が所定の温度に達したことを確認した後、バルブ21を閉めガス排出手段26とチャンバー10との接続を閉じる。あるいは、真空ポンプによりチャンバー10内に存在する空気などのガスを強制排気し、チャンバー内を減圧にした後、バルブ21を閉めガス排出手段26とチャンバー10との接続を閉じ、その後に加熱ステージ30の加熱を開始してもよい。これにより。強制排気と同時に加熱する場合に比べて、短時間で所定の温度に加熱することができる。次いで、バルブ20を開け、不活性ガスとカルボン酸ガスの混合ガスのガス導入手段25より、不活性ガスとカルボン酸ガスの混合ガスを導入し、チャンバー10内を不活性ガスとカルボン酸ガスの混合ガスで満たし、酸処理を行う。
 つまり、本願請求項1に係るカルボン酸ガス濃度の推定方法では、酸処理時に、カルボン酸による影響を受けない温度計と影響を受ける温度計の、2つの温度計を用いて加熱ステージ30の表面温度を測定することで、チャンバー10内のカルボン酸ガス濃度を推定することができる。第一の温度計37は、水銀温度計、抵抗温度計あるいは熱電対温度計などの接触型温度計や、前記の通り、カルボン酸ガスが吸収しない波長域の赤外線で温度を測定する放射温度計であり、その測定温度は、カルボン酸ガスの影響を受けないので加熱ステージ30の実際の温度である。第一の温度計37の測定温度に基づいて、加熱ステージ30の表面温度が制御され、酸処理温度は所定の温度範囲に維持される。第一の温度計37は、酸処理が終了した後は、半田の溶融温度まで加熱する際の表面温度の測定及び維持に用いることができる。
 第二の放射温度計38は、前記の通り、カルボン酸ガスが吸収する領域の赤外線で温度を測定する放射温度計であり、この第二の放射温度計で測定した加熱ステージ30の表面温度は、カルボン酸ガスの影響を受けるため実際の加熱ステージ30の温度を示さなくなる。つまり、第二の放射温度計38は、カルボン酸ガスが吸収した赤外線の量に応じて、実際の温度よりも低い温度を表示する。また、カルボン酸ガスが吸収する赤外線の量は、カルボン酸ガスの濃度に比例する。例えば、温度が一定の場合、第二の放射温度計38が示す温度は、低いほどカルボン酸ガスの濃度が高く、高いほどカルボン酸ガス濃度が低くなり、また第一の温度計37と同じ温度を示す場合にはカルボン酸ガス濃度は0ということになる。こうして、第一の温度計と第二の放射温度計の温度差から、カルボン酸ガス濃度の大小を推定することができる。
 酸処理の進行にともない、チャンバー10内のカルボン酸ガス濃度は低下し、酸処理が終了した後はカルボン酸ガス濃度がほぼ一定になるので、第二の放射温度計38が示す温度は、酸処理の開始時は低く、酸処理の進行とともに徐々に上昇し、酸処理が終了した後は、ほぼ一定となる。こうして、第二の放射温度計38がリアルタイムで示す温度から、酸処理の進行状況を把握することができる。
 ところで、物体から放射される赤外線の強度は、物体の温度に影響され、温度が高いほど増加することが知られている。したがって、第二の放射温度計38を用いて酸処理時のカルボン酸ガス濃度を測定する場合、チャンバー10内の温度が一定であることが重要な要件となる。しかしながら、本発明では、第一の温度計37を用いて、加熱ステージ30の温度をリアルタイムで測定し、所定温度を維持できるよう制御するので、この点での問題はない。
 さらに、本願請求項2に係るカルボン酸ガス濃度の推定方法では、不活性ガスとカルボン酸ガスとの混合ガス中のカルボン酸ガスの濃度を変えて、第一の温度計37を用いて、加熱ステージ30の表面温度を測定し、該測定温度に基づいて加熱ステージ30の温度を所定温度に制御しつつ、第二の放射温度計38を用いて、加熱ステージ30の表面温度を測定する。そして、第一の温度計37と第二の放射温度計38の温度差(ΔT)を求めることにより、予めカルボン酸ガスの濃度と温度差(ΔT)との関係を示す検量線を作成しておき、前記検量線を用いて、加熱ステージ30の表面温度についての、前記第一の温度計と前記第二の放射温度計による温度差(ΔTx)から、チャンバー10内のカルボン酸ガスの濃度を求めることができる。
 すなわち、カルボン酸ガス濃度と温度差(ΔT)との関係を示す検量線を予め作成しておくことにより、カルボン酸ガス濃度未知のチャンバー10内の温度差ΔTxを求めるだけで、カルボン酸ガス濃度を定量的に求めることができる。
 ギ酸の検量線は、例えば、次のようにして作成することができる。チャンバー10内を真空引きした後、該チャンバー内に配置された加熱ステージ30を、所定の温度に加熱し、温度が安定した後、ギ酸ガス濃度既知のギ酸ガスと不活性ガスとの混合ガスを、チャンバー10内に導入し、第一の温度計37が示す温度(T)と第二の放射温度計38が示す温度(T)を同時に測定し、TとTの温度差(ΔT)を求める。ギ酸ガス濃度を変えて、同様の操作を繰り返す。さらに、加熱ステージ30の温度を変更して同様の操作を繰り返す。最後に、加熱ステージ30の温度毎に、ギ酸ガス濃度(%)と温度差(ΔT)の関係をプロットし、一次回帰直線で近似することにより、検量線を作成する。
 検量線の作成に用いるカルボン酸ガス濃度は任意に設定することができる。例えば、ギ酸による酸化膜の除去の場合には、用いるギ酸ガス濃度の好ましい範囲が1.5~3vol%である。酸処理によってギ酸ガス濃度が減少することを考慮すると、約3vol%程度までの濃度の検量線を作成しておけばよい。
 上述した通り、物体の温度により、放射される赤外線の強度は異なるので、加熱ステージ30の温度により放射される赤外線の強度は変化する。そのため、カルボン酸ガスが吸収する赤外線の量が同じでも、酸処理温度が異なれば、第二の放射温度計38が示す温度は異なる。よって、カルボン酸ガス濃度と温度差(ΔT)の関係は、温度によって変化するので、酸処理温度毎に検量線を作成する必要がある。
 検量線を作成する際は、温度範囲を任意に設定し、各酸処理温度に対応する複数の検量線を予め作成しておくことで、広範囲の温度に対してカルボン酸ガス濃度を求めることが可能となる。このようなカルボン酸ガス濃度と温度差(ΔT)との関係を示す検量線を、酸処理温度が異なる複数の条件下で作成し、前記検量線の傾きと酸処理温度との関係を示す関係式を求め、前記関係式から所定の酸処理温度における検量線の傾きを求めることができる。そして、前記検量線の傾きと前記温度差(ΔTx)とから、チャンバー内のカルボン酸ガス濃度を求めることで、カルボン酸ガス濃度を推定することができる。真空引き下常温のチャンバー内に、予め不活性ガスとカルボン酸ガスとの混合ガスを導入する場合があることや、350℃ではほぼ全ての半田が溶融していること等の観点より、常温~350℃の範囲で検量線を作成しておくことで、半田付け処理ならびに半田付け装置におけるカルボン酸ガス濃度の推定が可能になる。
 また、検量線を作成する温度の幅は、特に限定はないが、25~50℃の範囲で、カルボン酸濃度の測定精度に応じて適宜選択すればよい。例えば、酸処理温度を150℃に設定した場合、100℃から300℃まで50℃間隔で検量線を作成することで、100~300℃までの範囲でギ酸濃度を高い精度で推定することが可能となる。
 本発明に係るカルボン酸ガス濃度の推定方法により推定したカルボン酸ガス濃度を用いることで、チャンバー内のカルボン酸量を推定することも可能である。具体的には、チャンバー容積にカルボン酸ガス濃度を乗じて、チャンバー内のカルボン酸ガス量を求めた後、チャンバー内圧力を常圧に換算することで、チャンバー内のカルボン酸ガス量を求めることができる。なお、チャンバー内圧力は、第一の温度計と第二の温度計による温度差(ΔTx)測定時点におけるチャンバー内圧力である。
 以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。
(実施例1)
 図1に示す構成で、チャンバー容量が20Lの半田付け装置を用いて試験を行った。チャンバー10内を真空引きした後、該チャンバー内に設置した加熱プレート30を、150℃に加熱し、温度が安定した後、ギ酸ガス濃度2.4%のギ酸ガスと不活性ガスとの混合ガスを、チャンバー内に導入し、第一の温度計37が示す温度(T)と第二の放射温度計38が示す温度(T)を、同時に測定することで、TとTの温度差(ΔT)を求めた。ギ酸ガス濃度を1.2%、0.6%に変更して、同様の操作を繰り返した。図3参照。
 加熱プレートの温度を250℃、350℃に変更して、同様の操作を繰り返した。図4参照。
 前記の加熱プレートの温度毎に、ギ酸ガス濃度(%)と温度差(ΔT)の関係をプロットし、一次回帰直線で近似して検量線を作成した。図5参照。
 また、図5に示した3本の検量線について、横軸に酸処理温度(プレート設定温度)、縦軸に検量線の傾き(%/ΔT)をプロットし、前記検量線の傾きと酸処理温度との関係を示す関係式(一次回帰直線)を作成した。図6参照。
 図3及び図4の結果より、ギ酸ガス濃度が高いほど温度差(ΔT)が大きくなり、ギ酸ガス濃度が同じ場合は、加熱プレートの温度が高いほど温度差(ΔT)が大きくなるので、温度差(ΔT)を測定することで、チャンバー内のギ酸ガス濃度を推定することが可能となる。また、図5の検量線を用いることで、ギ酸ガス濃度を定量的に求めることが可能となる。
(実施例2)
 酸処理温度200℃における検量線の傾きは、実施例1にて作成した一次回帰直線(図6)を用いることで、0.037(%/ΔT)として求めることができる。また、前記検量線の傾きと、酸処理温度200℃における2つの温度計の測定温度差(ΔT)とから、チャンバー内のカルボン酸ガス濃度を算出することが可能となる。
(実施例3)
 酸処理温度200℃におけるカルボン酸量は、実施例2にて算出したカルボン酸ガス濃度にチャンバー容量(20L)を乗じて、該チャンバー内におけるカルボン酸ガス量を算出した後、温度測定時点におけるチャンバー内圧力を常圧に換算することで、チャンバー内のカルボン酸ガス量を算出することが可能となる。
 以上説明したように、本発明のカルボン酸ガス濃度の推定方法は、a)酸処理工程終了後のチャンバー内のカルボン酸ガス濃度の把握、b)酸処理工程の途中で温度を変える場合のカルボン酸ガス濃度の変化の把握、c)半田付け装置内におけるカルボン酸ガス濃度の変化の追跡等に有用である。また、チャンバー内のカルボン酸ガス濃度を推定可能な半田付け装置は、半田付け工程の短縮による生産性の向上のためにも有用である。
10  チャンバー
20  バルブ
21  バルブ
25  ガス導入手段
26  ガス排出手段
30  加熱ステージ
31  被接合部材
32  被接合部材
35  半田
37  第一の温度計
37w 透過窓
38  第二の放射温度計
38w 透過窓

Claims (9)

  1.  反応用のカルボン酸ガスを導入したチャンバー内におけるカルボン酸ガス濃度を推定する方法であって、
     カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)を用いて、前記チャンバー内に配置された同一物体の表面温度を同一時点で測定し、前記第一の温度計と前記第二の温度計の温度差(ΔTx)から、チャンバー内のカルボン酸ガス濃度を推定することを特徴とする、カルボン酸ガス濃度の推定方法。
  2.  反応用のカルボン酸ガスを導入したチャンバー内におけるカルボン酸ガス濃度を推定する方法であって、
     反応用のカルボン酸ガス濃度を変えて、カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)を用いて、前記チャンバー内に配置された同一物体の表面温度を同一時点で測定し、前記第一の温度計と前記第二の温度計の温度差(ΔT)を求めることで、カルボン酸ガス濃度と温度差(ΔT)との関係を示す検量線を予め作成しておき、作成した検量線と、前記チャンバー内に配置された同一物体の表面温度についての前記第一の温度計と前記第二の温度計の温度差(ΔTx)から、チャンバー内のカルボン酸ガス濃度を推定することを特徴とする、カルボン酸ガス濃度の推定方法。
  3.  カルボン酸ガス濃度と温度差(ΔT)との関係を示す検量線を、酸処理温度が異なる複数の条件下で作成し、前記検量線の傾きと酸処理温度との関係を示す関係式を求め、前記関係式から所定の酸処理温度における検量線の傾きを求め、前記検量線の傾きと前記温度差(ΔTx)とから、チャンバー内のカルボン酸ガス濃度を推定する、請求項2記載のカルボン酸ガス濃度の推定方法。
  4.  第一の温度計が、カルボン酸が吸収しない波長域の赤外線で温度を測定する放射温度計である、請求項1~3いずれか記載のカルボン酸ガス濃度の推定方法。
  5.  表面温度が常温~350℃の物体に適用される、請求項1~3いずれか記載のカルボン酸ガス濃度の推定方法。
  6.  表面温度が常温~350℃の物体に適用される、請求項4記載のカルボン酸ガス濃度の推定方法。
  7.  請求項1~6いずれか記載のカルボン酸ガス濃度の推定方法を用いて、チャンバー内のカルボン酸ガス濃度を推定し、カルボン酸ガス濃度の推定値、チャンバー容積及びチャンバー内圧力から、チャンバー内のカルボン酸量を算出することを特徴とする、カルボン酸量の推定方法。
  8.  加熱ステージ、不活性ガスとカルボン酸ガスとの混合ガス導入手段、及びガス排出手段を有するチャンバーを含む半田付け装置であって、
     前記チャンバーが、カルボン酸による赤外線吸収の影響を受けることなく温度を測定できる温度計(第一の温度計)と、カルボン酸が吸収する波長域の赤外線で温度を測定する放射温度計(第二の温度計)と、を備えていることを特徴とするチャンバー内のカルボン酸ガス濃度を推定可能な半田付け装置。
  9.  第一の温度計が、カルボン酸が吸収しない波長域の赤外線で温度を測定する放射温度計であり、前記チャンバーが、第一の温度計及び第二の温度計に対応する2つの透過窓を備えている、請求項8記載の半田付け装置。
PCT/JP2015/050100 2014-01-22 2015-01-06 カルボン酸ガス濃度の推定方法及び半田付け装置 WO2015111424A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580003345.5A CN106029277B (zh) 2014-01-22 2015-01-06 羧酸气体浓度的估算方法及焊接装置
US15/112,400 US9513211B1 (en) 2014-01-22 2015-01-06 Method for estimating carboxylic acid gas concentration and soldering apparatus
EP15740740.4A EP3098012B1 (en) 2014-01-22 2015-01-06 Method for estimating carboxylic acid gas concentration, and soldering device
US15/358,653 US9956635B2 (en) 2014-01-22 2016-11-22 Method for estimating carboxylic acid gas concentration and soldering apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014009261A JP5661957B1 (ja) 2014-01-22 2014-01-22 カルボン酸ガス濃度の推定方法及び半田付け装置
JP2014-009261 2014-01-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/112,400 A-371-Of-International US9513211B1 (en) 2014-01-22 2015-01-06 Method for estimating carboxylic acid gas concentration and soldering apparatus
US15/358,653 Continuation US9956635B2 (en) 2014-01-22 2016-11-22 Method for estimating carboxylic acid gas concentration and soldering apparatus

Publications (1)

Publication Number Publication Date
WO2015111424A1 true WO2015111424A1 (ja) 2015-07-30

Family

ID=52437559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050100 WO2015111424A1 (ja) 2014-01-22 2015-01-06 カルボン酸ガス濃度の推定方法及び半田付け装置

Country Status (6)

Country Link
US (2) US9513211B1 (ja)
EP (1) EP3098012B1 (ja)
JP (1) JP5661957B1 (ja)
CN (1) CN106029277B (ja)
TW (1) TWI529382B (ja)
WO (1) WO2015111424A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116236B1 (ja) * 2021-09-30 2022-08-09 株式会社オリジン 半田付け装置及び半田付け製品の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6322746B1 (ja) * 2017-03-30 2018-05-09 オリジン電気株式会社 ワーク処理装置及び処理済ワークの製造方法
US10883947B2 (en) * 2017-11-01 2021-01-05 Palo Alto Research Center Incorporated Sorbent based gas concentration monitor
CN108344764A (zh) * 2018-03-13 2018-07-31 华侨大学 低温高真空复合加热台
JP6476342B1 (ja) * 2018-10-15 2019-02-27 オリジン電気株式会社 還元ガス供給装置及び処理済対象物の製造方法
JP2020150202A (ja) * 2019-03-15 2020-09-17 キオクシア株式会社 半導体装置の製造方法
JP6879482B1 (ja) * 2020-01-09 2021-06-02 株式会社オリジン 酸化物除去済部材の製造方法及び酸化物除去装置
TWI810058B (zh) * 2022-09-06 2023-07-21 廣化科技股份有限公司 混合液體純度的測量方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03186722A (ja) * 1989-12-18 1991-08-14 Sanyo Electric Co Ltd 赤外線検出装置
JPH05500112A (ja) * 1989-09-01 1993-01-14 クリティコン,インコーポレーテッド シャッタレス式光学的安定化カプノグラフ
JPH0560685A (ja) * 1991-09-03 1993-03-12 Iseki & Co Ltd 近赤外分光分析による温度推定法および蛋白質含有量推定法
JP2001244618A (ja) 1999-12-20 2001-09-07 Fujitsu Ltd 加熱溶融処理装置
JP2007125578A (ja) 2005-11-02 2007-05-24 Fujitsu Ltd リフロー装置、リフロー方法、および半導体装置の製造方法
JP2008045985A (ja) * 2006-08-15 2008-02-28 Omron Corp 半田材検査方法および半田材検査装置、制御プログラム、コンピュータ読み取り可能な記録媒体
JP2009174990A (ja) * 2008-01-24 2009-08-06 Nec Corp ガス測定装置およびガス測定方法
JP2011121102A (ja) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp はんだ接合装置
US20120261458A1 (en) * 2011-04-18 2012-10-18 International Business Machines Corporation Process for mapping formic acid distribution
US20130017681A1 (en) * 2011-07-12 2013-01-17 Globalfoundries Inc. Solder Bump Cleaning Before Reflow

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6067840A (en) * 1997-08-04 2000-05-30 Texas Instruments Incorporated Method and apparatus for infrared sensing of gas
JP2005345146A (ja) * 2004-05-31 2005-12-15 Tdk Corp 炭酸ガス濃度測定装置、炭酸ガス濃度測定方法、ならびに燃焼機器
JP4317089B2 (ja) * 2004-07-16 2009-08-19 大塚電子株式会社 ガス中の不純物を定量する装置
JP5308022B2 (ja) * 2007-12-28 2013-10-09 三菱重工業株式会社 脱水装置及び方法
JP2010109303A (ja) * 2008-10-31 2010-05-13 Horiba Ltd 材料ガス濃度制御装置
JP5378078B2 (ja) * 2009-06-19 2013-12-25 株式会社東芝 半導体装置の製造方法
JP2011022039A (ja) * 2009-07-16 2011-02-03 Olympus Corp 温度測定装置および温度測定方法
JP5807221B2 (ja) * 2010-06-28 2015-11-10 アユミ工業株式会社 接合構造体製造方法および加熱溶融処理方法ならびにこれらのシステム
JP5884448B2 (ja) * 2011-12-01 2016-03-15 富士電機株式会社 はんだ接合装置およびはんだ接合方法
KR101660622B1 (ko) * 2012-04-25 2016-09-27 오리진 일렉트릭 캄파니 리미티드 납땜 장치 및 납땜 제품의 제조방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05500112A (ja) * 1989-09-01 1993-01-14 クリティコン,インコーポレーテッド シャッタレス式光学的安定化カプノグラフ
JPH03186722A (ja) * 1989-12-18 1991-08-14 Sanyo Electric Co Ltd 赤外線検出装置
JPH0560685A (ja) * 1991-09-03 1993-03-12 Iseki & Co Ltd 近赤外分光分析による温度推定法および蛋白質含有量推定法
JP2001244618A (ja) 1999-12-20 2001-09-07 Fujitsu Ltd 加熱溶融処理装置
JP2007125578A (ja) 2005-11-02 2007-05-24 Fujitsu Ltd リフロー装置、リフロー方法、および半導体装置の製造方法
JP2008045985A (ja) * 2006-08-15 2008-02-28 Omron Corp 半田材検査方法および半田材検査装置、制御プログラム、コンピュータ読み取り可能な記録媒体
JP2009174990A (ja) * 2008-01-24 2009-08-06 Nec Corp ガス測定装置およびガス測定方法
JP2011121102A (ja) * 2009-12-14 2011-06-23 Mitsubishi Electric Corp はんだ接合装置
US20120261458A1 (en) * 2011-04-18 2012-10-18 International Business Machines Corporation Process for mapping formic acid distribution
US20130017681A1 (en) * 2011-07-12 2013-01-17 Globalfoundries Inc. Solder Bump Cleaning Before Reflow

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3098012A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7116236B1 (ja) * 2021-09-30 2022-08-09 株式会社オリジン 半田付け装置及び半田付け製品の製造方法

Also Published As

Publication number Publication date
CN106029277A (zh) 2016-10-12
EP3098012B1 (en) 2018-12-19
EP3098012A1 (en) 2016-11-30
US9513211B1 (en) 2016-12-06
JP2015136711A (ja) 2015-07-30
TW201534889A (zh) 2015-09-16
JP5661957B1 (ja) 2015-01-28
US9956635B2 (en) 2018-05-01
CN106029277B (zh) 2017-11-21
US20170072493A1 (en) 2017-03-16
EP3098012A4 (en) 2017-08-23
TWI529382B (zh) 2016-04-11
US20160334330A1 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
JP5661957B1 (ja) カルボン酸ガス濃度の推定方法及び半田付け装置
US7946759B2 (en) Substrate temperature measurement by infrared transmission
TWI744382B (zh) 用以偵測清洗製程之腔室清洗終點之方法與裝置及其對應系統
JP6184713B2 (ja) パーティクル測定方法および熱処理装置
JP2009510269A (ja) チャンバのクリーニングプロセスのエンドポイントを決定するためのシステム及び方法
TWI650552B (zh) 用於x射線螢光分析之方法及設備
JP4919860B2 (ja) ガス分析装置及び基板処理装置
JP2017516979A5 (ja) 処理システム、ワークピースプロセスを較正する方法、ワークピース製造プロセスを確認する方法およびワークピースを昇温状態で処理する方法
TW201543533A (zh) 處理系統及校準工件製程、驗證工件製造製程及在高溫處理工件的方法
CN110657892B (zh) 钛合金电弧焊熔池表面温度场测量装置和方法
TW200521416A (en) Methods and apparatus for in situ substrate temperature monitoring
JPH03216526A (ja) 光の透過率による半導体物質の温度の測定法
US11119384B2 (en) Hermetic sealing of a nonlinear crystal for use in a laser system
TWI320199B (ja)
JP6058523B2 (ja) 半田付け方法及び半田付け装置
JP2011121102A (ja) はんだ接合装置
DE102006017655B4 (de) Verfahren zur berührungslosen Temperaturmessung
WO2020012730A1 (ja) X線分析システム、x線分析装置及び気相分解装置
Peebles et al. Dynamic measurements of the spreading of liquid metals in controlled atmospheres with in situ surface preparation and analysis
JPS6358913B2 (ja)
KR100271762B1 (ko) 반도체 제조설비 시료 용융용 케미컬 및 이를 이용한 불순물 분석방법
JP2004109024A (ja) 鋼材表面の測温方法及び測温装置
Niemczyk et al. Quantitative determination of borophosphosilicate glass thin-film properties using infrared emission spectroscopy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740740

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015740740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015740740

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15112400

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE