WO2015111216A1 - 積層型ヘッダー、熱交換器、及び、空気調和装置 - Google Patents

積層型ヘッダー、熱交換器、及び、空気調和装置 Download PDF

Info

Publication number
WO2015111216A1
WO2015111216A1 PCT/JP2014/051665 JP2014051665W WO2015111216A1 WO 2015111216 A1 WO2015111216 A1 WO 2015111216A1 JP 2014051665 W JP2014051665 W JP 2014051665W WO 2015111216 A1 WO2015111216 A1 WO 2015111216A1
Authority
WO
WIPO (PCT)
Prior art keywords
row
channel
passage
plate
inlet
Prior art date
Application number
PCT/JP2014/051665
Other languages
English (en)
French (fr)
Inventor
裕樹 宇賀神
岡崎 多佳志
石橋 晃
真哉 東井上
厚志 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2014/051665 priority Critical patent/WO2015111216A1/ja
Priority to EP14879458.9A priority patent/EP3112791B1/en
Priority to JP2015558708A priority patent/JP6120998B2/ja
Publication of WO2015111216A1 publication Critical patent/WO2015111216A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0471Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Definitions

  • the present invention relates to a laminated header, a heat exchanger, and an air conditioner.
  • a first plate-like body in which a plurality of outlet channels are formed, and a distribution channel that is stacked on the first plate-like body and distributes the refrigerant to the plurality of outlet channels are formed.
  • the outlet channel is one row, for example, when used as a header of a device such as a heat exchanger in which a plurality of rows of heat exchanging portions are arranged in the air passage direction, There is a problem that the refrigerant flowing out of the flow path needs to be arranged in a plurality of rows using a pipe or the like on the device side, and the structure of the device to which the laminated header is applied is complicated.
  • the present invention has been made against the background of the above-described problems, and an object of the present invention is to obtain a stacked header in which the structure of an applied device is suppressed from being complicated. Moreover, an object of this invention is to obtain the heat exchanger provided with such a laminated header. Moreover, an object of this invention is to obtain the air conditioning apparatus provided with such a heat exchanger.
  • the laminated header according to the present invention includes a first plate-like body in which a first inlet channel and a first outlet channel are formed, and is attached to the first plate-like body.
  • a second plate-like body formed with at least a part of a first passage channel through which the refrigerant flowing in from the passage passes and at least a part of a second passage channel through which the refrigerant passes through the first outlet channel; And an end portion of the first passage channel that is not communicated with the first inlet channel, and an end portion of the second passage channel that is not communicated with the first outlet channel. However, they are communicated via the first pipe to form the first return channel.
  • a second plate-like body formed with at least a part of a first passage channel for allowing the refrigerant to pass therethrough and at least a part of a second passage channel for allowing the refrigerant to pass through the first outlet channel.
  • the gap between the end portion of the first passage passage on the side not communicating with the first inlet passage and the end portion of the second passage passage on the side not communicated with the first outlet passage is via the first pipe.
  • FIG. 1 is a perspective view of a heat exchanger according to Embodiment 1.
  • FIG. It is a perspective view in the state which decomposed
  • FIG. It is a perspective view in the state which decomposed
  • FIG. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied.
  • FIG. It is a schematic sectional drawing for demonstrating the detail of the 1st passage flow path and the 2nd passage flow path of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure which shows the relationship between the flow path length L2 and the uniformity of a refrigerant
  • FIG. It is a figure which shows the relationship between the flow path length L1 and the uniformity of a refrigerant
  • FIG. It is a perspective view of the heat exchanger which concerns on Embodiment 2.
  • FIG. 6 is a perspective view of a heat exchanger according to Embodiment 3.
  • FIG. It is a perspective view in the state which decomposed
  • FIG. 6 is a perspective view in the state which decomposed
  • the laminated header according to the present invention will be described with reference to the drawings.
  • the configuration described below is merely an example, and the stacked header according to the present invention is not limited to such a configuration.
  • symbol is attached
  • symbol is abbreviate
  • the illustration of the fine structure is simplified or omitted as appropriate.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • the laminated header according to the present invention distributes the refrigerant flowing into the heat exchanger
  • the laminated header according to the present invention flows into other devices.
  • a refrigerant may be distributed.
  • the case where the heat exchanger provided with the laminated header according to the present invention is applied to an air conditioner is described.
  • the present invention is not limited to such a case. You may apply to the other refrigerating-cycle apparatus which has.
  • the case where the heat exchanger provided with the laminated header according to the present invention is an outdoor heat exchanger of an air conditioner is described, it is not limited to such a case, and the indoor heat of the air conditioner It may be an exchanger.
  • the case where an air conditioning apparatus switches between heating operation and cooling operation is demonstrated, it is not limited to such a case, You may perform only heating operation or cooling operation.
  • Embodiment 1 FIG. The heat exchanger according to Embodiment 1 will be described. ⁇ Configuration of heat exchanger> Below, the structure of the heat exchanger which concerns on Embodiment 1 is demonstrated. (Schematic configuration of heat exchanger) Below, schematic structure of the heat exchanger which concerns on Embodiment 1 is demonstrated. 1 is a perspective view of a heat exchanger according to Embodiment 1. FIG. As shown in FIG. 1, the heat exchanger 1 includes a heat exchange unit 2 and a stacked header 3.
  • the heat exchanging unit 2 includes a first row heat exchanging unit 21 disposed on the leeward side of the passage direction of air passing through the heat exchanging unit 2 (a white arrow in the drawing), and 2 disposed on the leeward side. And a row heat exchange section 31.
  • the first row heat exchange unit 21 includes a plurality of first row heat transfer tubes 22 and a plurality of first row fins 23 joined to the plurality of first row heat transfer tubes 22 by brazing or the like, for example.
  • the second-row heat exchange unit 31 includes a plurality of second-row heat transfer tubes 32 and a plurality of second-row fins 33 joined to the plurality of second-row heat transfer tubes 32 by, for example, brazing. . 1 and FIG.
  • first row heat transfer tubes 22 and the second row heat transfer tubes 32 are eight, but the present invention is not limited to such a case, and one of them is Other numbers may be included.
  • the first row heat transfer tubes 22 correspond to the “first heat transfer tubes” in the present invention.
  • the second row heat transfer tubes 32 correspond to the “second heat transfer tubes” in the present invention.
  • the first row heat transfer tube 22 and the second row heat transfer tube 32 are flat tubes, and a plurality of flow paths are formed in the major axis direction. Each of the plurality of first-row heat transfer tubes 22 and the plurality of second-row heat transfer tubes 32 is bent into a hairpin shape between one end and the other end to form folded portions 22a and 32a. .
  • the first row heat transfer tubes 22 and the second row heat transfer tubes 32 are arranged in a plurality of stages in a direction intersecting with the passage direction of air passing through the heat exchanging section 2 (the white arrow in the figure). When the heat exchanging unit 2 is viewed from the passing direction, the height direction positions of the plurality of first row heat transfer tubes 22 and the plurality of second row heat transfer tubes 32 may be shifted. With such a configuration, the heat exchange efficiency is improved.
  • One end and the other end of each of the plurality of first-row heat transfer tubes 22 and the plurality of second-row heat transfer tubes 32 are juxtaposed so as to face the stacked header 3.
  • the stacked header 3 includes a first row division unit 51 and a second row division unit 61 that are divided in the step direction of the heat exchange unit 2.
  • a pipe (not shown) is connected to the first row division unit 51 via a connection pipe 52.
  • a plurality of pipes (not shown) are connected to the second row division section 61 via a plurality of connection pipes 62.
  • the connection pipe 52 and the connection pipe 62 are, for example, circular pipes. Note that the first-row dividing unit 51 and the second-row dividing unit 61 may be integrated.
  • the first row division unit 51 corresponds to the “first division unit” in the present invention
  • the second column division unit 61 corresponds to the “second division unit” in the present invention.
  • a plurality of first row outlet channels 51a, a distribution channel 51b, a plurality of first row inlet channels 51c, and a plurality of first row passage channels 51d are formed in the first row dividing section 51. Is done.
  • the first row outlet channel 51a corresponds to the “second outlet channel” in the present invention.
  • the first-line inlet channel 51c corresponds to the “first inlet channel” in the present invention.
  • the first row passage channel 51d corresponds to the “first passage channel” in the present invention.
  • One end of the first row heat transfer tube 22 is connected to the first row outlet channel 51a, and the other end of the first row heat transfer tube 22 is connected to the first row inlet channel 51c.
  • One end of the distribution channel 51b is connected to the connecting pipe 52, and the other end of the distribution channel 51b is connected to the plurality of first-row outlet channels 51a.
  • One end of the first-row passage channel 51d is connected to the first-row inlet channel 51c, and the other end of the first-row passage channel 51d is connected to the U-shaped tube 81.
  • the second-row dividing section 61 includes a plurality of second-row outlet channels 61a, a plurality of second-row passage channels 61b, a plurality of second-row inlet channels 61c, and a plurality of merging channels 61d, Is formed.
  • the second row outlet channel 61a corresponds to the “first outlet channel” in the present invention.
  • the second row passage channel 61b corresponds to the “second passage channel” in the present invention.
  • the second-row inlet channel 61c corresponds to the “second inlet channel” in the present invention.
  • the merge channel 61d corresponds to the “first merge channel” in the present invention.
  • One end of the second row heat transfer tube 32 is connected to the second row outlet channel 61a, and the other end of the second row heat transfer tube 32 is connected to the second row inlet channel 61c.
  • One end of the second row passage channel 61b is connected to the U-shaped tube 81, and the other end of the second row passage channel 61b is connected to the second row outlet channel 61a.
  • One end of the merging channel 61d is connected to the plurality of second-row inlet channels 61c, and the other end of the merging channel 61d is connected to the connecting pipe 62.
  • the U-shaped tube 81 may be another tube that is not U-shaped.
  • the U-shaped tube 81 may be directly connected to the first row passage channel 51d and the second row passage channel 61b, or may be connected via a relay member.
  • the U-shaped tube 81 is made of metal, for example.
  • the U-shaped tube 81 corresponds to the “first tube” in the present invention.
  • the first row inlet flow passage 51c, the first row passage flow passage 51d, the U-shaped tube 81, the second row passage flow passage 61b, and the second row outlet flow passage 61a are each a “first return flow” in the present invention. Corresponds to part of the road.
  • the refrigerant flows into the distribution flow path 51b via the connection pipe 52 and is distributed to the plurality of first-row outlet flow paths 51a. It passes through the heat transfer tubes 22 and flows into the plurality of first row inlet channels 51c.
  • the refrigerant that has flowed into the plurality of first-row inlet passages 51c passes through the plurality of first-row passage passages 51d, the plurality of U-shaped tubes 81, and the plurality of second-row passage passages 61b in that order. And flows into the plurality of second-row outlet channels 61a.
  • the refrigerant that has flowed into the plurality of second-row outlet flow paths 61a passes through the plurality of second-row heat transfer tubes 32, flows into the plurality of second-row inlet flow paths 61c, and merges at the merge flow path 61d to be connected. It flows out from the pipe 62.
  • the refrigerant flows into the merged flow path 61d via the connection pipe 62 and is distributed to the plurality of second-row inlet flow paths 61c. It passes through the heat transfer tubes 32 and flows into the plurality of second-row outlet channels 61a.
  • the refrigerant that has flowed into the plurality of second-row outlet channels 61a passes through the plurality of second-row passage channels 61b, the plurality of U-shaped tubes 81, and the plurality of first-row passage channels 51d in that order. And flows into the plurality of first-row inlet channels 51c.
  • the refrigerant that has flowed into the plurality of first-row inlet flow paths 51c flows through the plurality of first-row heat transfer tubes 22, flows into the plurality of first-row outlet flow paths 51a, and is merged by the distribution flow paths 51b to be connected. It flows out from the pipe 52.
  • FIG. 1 and FIG. 1 and subsequent drawings show a case where there is one connecting pipe 52, that is, a case where there is one distribution channel 51b, but the present invention is not limited to such a case, and the connection There may be a plurality of sets of the pipe 52 and the distribution channel 51b.
  • 1 and FIG. 1 and subsequent drawings show a case where there are four connection pipes 62, that is, a case where there are four confluence channels 61d. However, the present invention is not limited to such a case.
  • the connecting pipe 52, the connecting pipe 62, and the U-shaped pipe 81 are connected to the surface on the opposite side of the surface facing the heat exchanging portion 2 of the laminated header 3.
  • the case is shown, it is not limited to such a case, and may be connected to the other surface of the laminated header 3.
  • FIG. 2 is a perspective view of the heat exchanger according to Embodiment 1 in a state in which the first row division portion and its peripheral members are disassembled.
  • FIG. 3 is a perspective view of the heat exchanger according to Embodiment 1 in a state where the second row division portion and its peripheral members are disassembled. 2 and 3, the flow of the refrigerant when the heat exchanger 1 acts as an evaporator is indicated by arrows.
  • the first-row dividing unit 51 includes a first-row first plate-like body 53 and a first-row second plate-like body 54 stacked on the first-row first plate-like body 53.
  • the first plate-like first row 53 corresponds to a part of the “first plate-like” in the present invention.
  • the second plate-like body 54 in the first row corresponds to a part of the “second plate-like body” in the present invention.
  • the first row first plate 53 has one plate member 53_1, and the first row second plate 54 has a plurality of plate members 54_1 to 54_7. Both ends of the first row heat transfer tube 22 are held by the first row holding member 24, and one plate member 53_1 and a plurality of plate members 54_1 to 54_7 are connected to the first row holding member 24.
  • the plate-like clad materials 55_1 to 55_8 are joined by brazing. A brazing material is applied to both surfaces or one surface of the cladding materials 55_1 to 55_8.
  • the clad materials 55_1 to 55_8 function as a bonding layer between the first row holding member 24 and the plate-like members 53_1 and 54_1 to 54_7.
  • the respective flow paths formed in the cladding materials 55_1 to 55_8 ensure the separation of the refrigerant between the adjacent flow paths formed in the plate-like members 53_1 and 54_1 to 54_7.
  • the first row holding member 24, the plate-like members 53_1, 54_1 to 54_7, and the clad materials 55_1 to 55_8 are made of, for example, aluminum. Note that the first row holding member 24 and the plate-like members 53_1, 54_1 to 54_7 may be directly joined without the plurality of clad members 55_1 to 55_8.
  • first row first plate-like body 53 a plurality of first row outlet channels 51a and a plurality of first row inlet channels 51c are formed in a row.
  • the plurality of first row outlet channels 51 a and the plurality of first row inlet channels 51 c are shaped along the outer peripheral surface of the first row heat transfer tube 22. Both ends of the first row heat transfer tube 22 protrude from the first row holding member 24, and the first row first plate-like body 53 includes a plurality of first row outlet channels 51 a and a plurality of first row inlet flows.
  • the first row heat transfer tube 22 is joined to the first row holding member 24 with the end portion of the first row heat transfer tube 22 protruding inside the passage 51c.
  • the plurality of first row outlet channels 51a, the plurality of first row inlet channels 51c, and the first row heat transfer tubes 22 are provided.
  • the end of each may be directly joined.
  • the end surface of the first-row heat transfer tube 22 may protrude from the first-row first plate-like body 53, and the plurality of first-row outlet channels 51a, the plurality of first-row inlet channels 51c,
  • the row heat transfer tube 22 may be connected via a relay member, and the end surface of the first row heat transfer tube 22 may be located inside a flow path formed in the relay member.
  • a distribution channel 51b and a plurality of first row passage channels 51d are formed in the first row second plate-like body 54.
  • Each of the distribution flow path 51b and the plurality of first row passage flow paths 51d is an assembly of the partial flow paths formed in the plate-like members 54_1 to 54_7 and the partial flow paths formed in the clad members 55_2 to 55_8. is there.
  • One end of the distribution channel 51b is connected to the connecting pipe 52, and the other end of the distribution channel 51b is connected to the plurality of first-row outlet channels 51a.
  • the distribution channel 51b repeats two branches in a region far from the heat exchange unit 2. Such a configuration improves the uniformity of refrigerant distribution when the heat exchanger 1 acts as an evaporator.
  • the distribution channel 51b is linear in the region near the heat exchange unit 2.
  • One end of the first-row passage channel 51d is connected to the first-row inlet channel 51c, and the other end of the first-row passage channel 51d is connected to the U-shaped tube 81.
  • the first row passage channel 51d is linear in the region near the heat exchange unit 2. Details of the first row passage channel 51d will be described later.
  • the connecting pipe 52 and the U-shaped pipe 81 may be provided on the first plate 53 in the first row. That is, a part of the distribution flow path 51b and a part of the first-row passage flow path 51d may pass through the first-row first plate-like body 53.
  • the second-row dividing unit 61 includes a second-row first plate 63 and a second-row second plate 64 stacked on the second-row first plate 63.
  • the second plate first plate 63 corresponds to a part of the “first plate” in the present invention.
  • the second plate second plate 64 in the second row corresponds to a part of the “second plate” in the present invention.
  • the second row first plate 63 has one plate member 63_1, and the second row second plate 64 has a plurality of plate members 64_1 to 64_7. Both ends of the second row heat transfer tube 32 are held by the second row holding member 34, and one plate member 63_1 and a plurality of plate members 64_1 to 64_7 are connected to the second row holding member 34.
  • the plate-like clad members 65_1 to 65_8 are joined by brazing.
  • a brazing material is applied to both surfaces or one surface of the cladding materials 65_1 to 65_8.
  • the clad members 65_1 to 65_8 function as a bonding layer between the second row holding member 34 and the plate-like members 63_1 and 64_1 to 64_7.
  • the respective flow paths formed in the cladding materials 65_1 to 65_8 ensure the separation of the refrigerant between the adjacent flow paths formed in the plate-like members 63_1 and 64_1 to 64_7.
  • the second row holding member 34, the plate-like members 63_1, 64_1 to 64_7, and the clad members 65_1 to 65_8 are made of, for example, aluminum. Note that the second row holding member 34 and the plate-like members 63_1, 64_1 to 64_7 may be directly joined without the plurality of clad members 65_1 to 65_8.
  • a plurality of second row outlet channels 61a and a plurality of second row inlet channels 61c are formed in a row.
  • the plurality of second-row outlet channels 61 a and the plurality of second-row inlet channels 61 c are shaped along the outer peripheral surface of the second-row heat transfer tube 32.
  • Both end portions of the second row heat transfer tubes 32 protrude from the second row holding member 34, and the second row first plate 63 has a plurality of second row outlet channels 61 a and a plurality of second row inlet flows.
  • the second row heat transfer tube 32 is joined to the second row holding member 34 with the end portion of the second row heat transfer tube 32 protruding inside the passage 61c.
  • the plurality of second-row outlet channels 61a, the plurality of second-row inlet channels 61c, and the second-row heat transfer tubes 32 The end of each may be directly joined.
  • the end surface of the second row heat transfer tube 32 may protrude from the second row first plate 63, and a plurality of second row outlet channels 61a and a plurality of second row inlet channels 61c,
  • the row heat transfer tube 32 may be connected via a relay member, and the end surface of the second row heat transfer tube 32 may be located inside the flow path formed in the relay member.
  • a plurality of second-row passage channels 61b and a plurality of merging channels 61d are formed in the second-row second plate-like body 64.
  • Each of the plurality of second-row passage channels 61b and each of the plurality of merged channels 61d includes the respective partial channels formed in the plate-like members 64_1 to 64_7 and the partial channels formed in the cladding members 65_2 to 65_8.
  • Is a collection of One end of the second row passage channel 61b is connected to the U-shaped tube 81, and the other end of the second row passage channel 61b is connected to the second row outlet channel 61a.
  • the second row passage channel 61b is linear in a region near the heat exchange unit 2. Details of the second-row passage channel 61b will be described later.
  • One end of the merging channel 61d is connected to the plurality of second-row inlet channels 61c, and the other end of the merging channel 61d is connected to the connecting pipe 62.
  • the merge channel 61d merges the two channels into one channel. With such a configuration, the uniformity of refrigerant distribution when the heat exchanger 1 acts as a condenser is improved.
  • the merging channel 61d is linear in a region near the heat exchanging unit 2.
  • the U-shaped tube 81 and the connecting tube 62 may be provided in the second plate first plate 63. That is, a part of the second row passage channel 61 b and a part of the merge channel 61 d may pass through the second plate first plate 63.
  • FIG. 4 shows a case where the air conditioner 91 performs a heating operation.
  • FIG. 5 shows a case where the air conditioner 91 performs a cooling operation.
  • the air conditioner 91 includes a compressor 92, a four-way valve 93, an outdoor heat exchanger (heat source side heat exchanger) 94, a throttle device 95, and an indoor heat exchanger. (Load side heat exchanger) 96, outdoor fan (heat source side fan) 97, indoor fan (load side fan) 98, and control device 99.
  • the compressor 92, the four-way valve 93, the outdoor heat exchanger 94, the expansion device 95, and the indoor heat exchanger 96 are connected by piping to form a refrigerant circulation circuit.
  • the four-way valve 93 may be another flow path switching device.
  • the outdoor heat exchanger 94 is the heat exchanger 1.
  • the outdoor heat exchanger 94 is provided such that the first row division unit 51 is arranged on the windward side of the air flow generated by driving the outdoor fan 97 and the second row division unit 61 is arranged on the leeward side.
  • the outdoor fan 97 may be provided on the leeward side of the heat exchanger 1 or may be provided on the leeward side of the heat exchanger 1.
  • a compressor 92, a four-way valve 93, a throttle device 95, an outdoor fan 97, an indoor fan 98, various sensors, and the like are connected to the control device 99.
  • the control device 99 By switching the flow path of the four-way valve 93 by the control device 99, the heating operation and the cooling operation are switched.
  • the high-pressure and high-temperature gaseous refrigerant discharged from the compressor 92 flows into the indoor heat exchanger 96 through the four-way valve 93 and is condensed by heat exchange with the air supplied by the indoor fan 98. Heat up.
  • the condensed refrigerant enters a high-pressure supercooled liquid state, flows out of the indoor heat exchanger 96, and becomes a low-pressure gas-liquid two-phase refrigerant by the expansion device 95.
  • the low-pressure gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 94, exchanges heat with the air supplied by the outdoor fan 97, and evaporates.
  • the evaporated refrigerant enters a low-pressure superheated gas state, flows out of the outdoor heat exchanger 94, and is sucked into the compressor 92 through the four-way valve 93. That is, during the heating operation, the outdoor heat exchanger 94 acts as an evaporator.
  • the refrigerant flows into the distribution flow path 51 b of the first row division unit 51 and is distributed, and flows into the first row heat transfer tube 22 of the first row heat exchange unit 21.
  • the refrigerant that has flowed into the first row heat transfer tube 22 sequentially passes through the first row passage channel 51d, the U-shaped tube 81, and the second row passage channel 61b. It flows into the eye heat transfer tube 32.
  • the refrigerant that has flowed into the second row heat transfer tubes 32 flows into the merged flow path 61d of the second row divided portion 61 and is merged.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 92 flows into the outdoor heat exchanger 94 through the four-way valve 93, exchanges heat with the air supplied by the outdoor fan 97, and condenses.
  • the condensed refrigerant enters a high-pressure supercooled liquid state, flows out of the outdoor heat exchanger 94, and enters a low-pressure gas-liquid two-phase state by the expansion device 95.
  • the low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 96 and evaporates by heat exchange with the air supplied by the indoor fan 98, thereby cooling the room.
  • the evaporated refrigerant becomes a low-pressure superheated gas state, flows out of the indoor heat exchanger 96, and is sucked into the compressor 92 through the four-way valve 93. That is, during the cooling operation, the outdoor heat exchanger 94 functions as a condenser.
  • the refrigerant flows into the merging flow path 61 d of the second row splitting portion 61 and is distributed, and flows into the second row heat transfer tube 32 of the second row heat exchanging portion 31.
  • the refrigerant that has flowed into the second row heat transfer tube 32 sequentially passes through the second row passage passage 61b, the U-shaped tube 81, and the first row passage passage 51d. It flows into the eye heat transfer tube 22.
  • the refrigerant that has flowed into the first row heat transfer tube 22 flows into the distribution flow path 51b of the first row division section 51 and is merged.
  • the first row heat exchanging section 21 and the second row heat exchanging section 31 are arranged side by side in the direction of passage of air passing through the heat exchanging section 2 (the white arrow in the figure).
  • the amount of heat exchange by increasing the area of the outdoor heat exchanger 94 when viewed from the front, but in that case, the casing incorporating the outdoor heat exchanger 94 is enlarged. Will be.
  • the number of fins to increase the amount of heat exchange, but in that case, the distance between the fins should be less than about 1 mm from the viewpoint of drainage, frosting performance, and dust resistance. May be difficult, and the increase in the amount of heat exchange may be insufficient.
  • the amount of heat exchange can be reduced without changing the area of the outdoor heat exchanger 94 as viewed from the front, the spacing between the fins, and the like. It is possible to increase. When the number of columns becomes two, the heat exchange amount increases by about 1.5 times or more. Furthermore, the area of the outdoor heat exchanger 94 as viewed from the front, the interval between the fins, and the like may be changed.
  • a header (laminated header 3) is provided only on one side of the outdoor heat exchanger 94.
  • the header (stacked header 3) is provided only on one side of the outdoor heat exchanger 94, such as the outdoor heat exchanger 94, even if the end is shifted for each row, only the end on one side is aligned.
  • the degree of freedom in design, production efficiency, etc. can be improved. In particular, after joining the members of the outdoor heat exchanger 94, it is possible to bend the heat exchanging section 2, which further improves production efficiency.
  • the first row heat transfer tube 22 is located on the windward side as compared to the second row heat transfer tube 32.
  • headers are provided on both sides of the outdoor heat exchanger 94, it is difficult to improve the condenser performance by giving a refrigerant temperature difference for each row.
  • the first row heat transfer tube 22 and the second row heat transfer tube 32 are flat tubes, unlike a circular tube, since the degree of freedom of bending is low, giving a temperature difference of the refrigerant for each row, It is difficult to realize by deforming the flow path of the refrigerant.
  • FIG. 6 is a schematic cross-sectional view for explaining details of the first passage channel and the second passage channel of the heat exchanger according to the first embodiment.
  • the range from the end surface of the first row heat transfer tube 22 to the channel length L1 is linear.
  • the range of the flow path length L2 from the end face of the second row heat transfer tube 32 is linear.
  • the range of the flow path length L1 acts as a run-up section until the refrigerant that has passed through the U-shaped tube 81 flows into the first row heat transfer tube 22.
  • the range of the flow path length L2 acts as a running section until the refrigerant that has passed through the U-shaped tube 81 flows into the second row heat transfer tube 32.
  • FIG. 7 is a diagram showing the relationship between the flow path length L2 and the uniformity of the refrigerant when the heat exchanger according to Embodiment 1 acts as an evaporator.
  • the inlet number and the distribution ratio that is, each inlet The relationship with the ratio with respect to the sum total of the refrigerant
  • the heat exchanger 1 acts as an evaporator, that is, the refrigerant that has passed through the U-shaped tube 81 passes through the second-row passage passage 61b and the second-row heat transfer tube 32.
  • the distribution ratio tends to be higher as the inlet is farther from the first row heat transfer tube 22.
  • the number of inflow ports is 10
  • the heat exchange performance of the heat exchanging unit 2 is ensured because the distribution ratio of each inflow port is within the range of 0.10 ⁇ 0.03. Therefore, when the hydraulic equivalent diameter of the flow path in the range of the flow path length L2 is De, if the flow path length L2 ⁇ 4De, the heat exchange performance of the heat exchange unit 2 is ensured.
  • FIG. 8 is a diagram showing the relationship between the flow path length L1 and the uniformity of the refrigerant when the heat exchanger according to Embodiment 1 acts as a condenser.
  • the inlet number and the distribution ratio that is, each inflow port, when the number of the inflow ports farthest from the second row heat transfer tubes 32 is assigned to each of the inlet ports.
  • coolant amount which flows in is shown for every flow path length L1.
  • the heat exchanger 1 acts as a condenser, that is, the refrigerant that has passed through the U-shaped tube 81 passes through the first-row passage channel 51d and passes through the first-row heat transfer tube 22.
  • the distribution ratio tends to be higher as the inlet is farther from the second row heat transfer tube 32.
  • the heat exchange performance of the heat exchanging unit 2 is ensured because the distribution ratio of each inflow port is within the range of 0.10 ⁇ 0.03. Therefore, when the hydraulic equivalent diameter of the flow path in the range of the flow path length L1 is De, if the flow path length L1 ⁇ 2De, the heat exchange performance of the heat exchange unit 2 is ensured.
  • the U-shaped tube 81 is supplied with a gas-liquid two-phase refrigerant that is relatively difficult to uniformly distribute, that is, a refrigerant in a mixed phase of a liquid phase and a gas phase. In order to pass, it is necessary to enlarge the flow path length L2 which acts as a run-up section.
  • a gas state refrigerant that is relatively easy to distribute uniformly passes through the U-shaped tube 81, so that the flow path length L 1 that acts as a run-up section is It can be made smaller than the road length L2.
  • the heat exchanger 1 acts as an evaporator and the heat exchanger 1 acts as a condenser by increasing or decreasing the number or thickness of the plate-like members 54_1 to 54_7 and 64_1 to 64_7 forming the range of L2. In both cases, the heat exchange performance of the heat exchange unit 2 can be ensured.
  • the folded flow path is formed by the first-row inlet flow path 51c, the first-row passage flow path 51d, the U-shaped tube 81, the second-row passage flow path 61b, and the second-row outlet flow path 61a. Since it is formed, for example, it is used as a header of a device such as the heat exchanger 1 provided with a plurality of rows of heat exchange units (first row heat exchange unit 21, second row heat exchange unit 31) in the air passage direction.
  • the refrigerant flowing out from the outlet channel does not have to be arranged in a plurality of rows using a pipe or the like on the device side, and the structure of the device to which the multilayer header 3 is applied is suppressed from being complicated.
  • the return flow path is a collection of the partial flow paths formed in the plate-like members 54_1 to 54_7 and 64_1 to 64_7, and the partial flow paths formed in the plate-like clad materials 55_2 to 55_8 and 65_2 to 65_8.
  • the first-row passage channel 51d and the second-row passage channel 61b, which are the body, and the U-shaped tube 81 are formed.
  • the first-row passage flow passage 51d and the second-row passage flow Increasing the distance between the connection portion between the path 61b and the U-shaped tube 81 and the folded portion can be achieved without increasing the number of stacked headers 3 or the thickness of the plate-like member, that is, U This can be realized by increasing the length of the end portion of the tube 81, etc., and it is possible to achieve both uniform distribution of refrigerant, reduction in cost and weight.
  • the folded portion of the folded flow path is the U-shaped pipe 81, that is, a tube, the design flexibility of the folded portion is improved, and the multi-layer header 3 is made multifunctional.
  • FIG. Therefore, heat exchange between the refrigerant before flowing into the heat exchange unit 2 and the refrigerant after passing through the heat exchange unit 2 is suppressed, and the heat exchange efficiency of the heat exchanger 1 is improved.
  • the dividing surfaces of the first-row dividing unit 51 and the second-row dividing unit 61 may be linear or curved.
  • a heat insulating material may be filled between the first row division unit 51 and the second row division unit 61.
  • the division may be performed by press working or the like. In such a case, processing can be performed together with the flow paths of the plate-like members 53_1, 54_1 to 54_7, 63_1, 64_1 to 64_7 and the clad materials 55_1 to 55_8, 65_1 to 65_8, and the manufacturing cost is reduced. Moreover, the division is ensured, and the reliability of suppression of heat exchange between the refrigerant before flowing into the heat exchange unit 2 and the refrigerant after passing through the heat exchange unit 2 is improved.
  • the refrigerant in the gas state flows into the second row inlet passage 61c, and in order to reduce the pressure loss generated in the gas refrigerant, the merging passage It is necessary to increase the channel cross-sectional area of 61d as much as possible.
  • the refrigerant is divided into the first row division unit 51 and the second row division unit 61 and flows into the heat exchange unit 2, the refrigerant after passing through the heat exchange unit 2, Since the heat exchange is suppressed, the merging channel 61d can be expanded to the vicinity of the first-row divided portion 51, and the pressure loss generated in the gas refrigerant can be greatly reduced.
  • the performance of the header 3 is improved, and the operating efficiency of the air conditioner 91 is improved.
  • FIG. A heat exchanger according to Embodiment 2 will be described. Note that description overlapping or similar to that in Embodiment 1 is appropriately simplified or omitted.
  • ⁇ Configuration of heat exchanger> Below, the structure of the heat exchanger which concerns on Embodiment 2 is demonstrated. (Schematic configuration of heat exchanger) Below, schematic structure of the heat exchanger which concerns on Embodiment 2 is demonstrated.
  • FIG. 9 is a perspective view of the heat exchanger according to the second embodiment.
  • the heat exchanging unit 2 includes a first row heat exchanging unit 21 disposed on the windward side in the direction of passage of air passing through the heat exchanging unit 2 (indicated by the white arrow in the figure), It has the 2nd row heat exchange part 31 arrange
  • the third row heat exchanging section 41 includes a plurality of third row heat transfer tubes 42 and a plurality of third row fins 43 joined to the plurality of third row heat transfer tubes 42 by brazing or the like, for example. .
  • the third row heat transfer tube 42 is a flat tube, and a plurality of flow paths are formed in the major axis direction.
  • Each of the plurality of third-row heat transfer tubes 42 is bent into a hairpin shape between one end and the other end to form a folded portion 42a.
  • the third row heat transfer tubes 42 are arranged in a plurality of stages in a direction intersecting with the passage direction of air passing through the heat exchanging unit 2 (the white arrow in the figure). One end and the other end of each of the plurality of third-row heat transfer tubes 42 are juxtaposed so as to face the stacked header 3.
  • the stacked header 3 includes a first-row dividing unit 51, a second-row dividing unit 61, and a third-row dividing unit 71 that are divided in the step direction of the heat exchange unit 2.
  • a plurality of pipes (not shown) are connected to the third row division section 71 via a plurality of connection pipes 72.
  • Two or more of the first-row dividing unit 51, the second-row dividing unit 61, and the third-row dividing unit 71 may be integrated.
  • the first column division unit 51 corresponds to the “first division unit” in the present invention
  • each of the second column division unit 61 and the third column division unit 71 corresponds to the “second division unit” in the present invention. .
  • the third row dividing section 71 includes a plurality of third row outlet channels 71a, a plurality of third row passage channels 71b, a plurality of third row inlet channels 71c, a plurality of merged channels 71d, Is formed.
  • the third row outlet channel 71a corresponds to the “third outlet channel” in the present invention.
  • the third row passage channel 71b corresponds to the “third passage channel” in the present invention.
  • the third row inlet channel 71c corresponds to the “third inlet channel” in the present invention.
  • the merge channel 71d corresponds to the “second merge channel” in the present invention.
  • One end of the third row heat transfer tube 42 is connected to the third row outlet channel 71a, and the other end of the third row heat transfer tube 42 is connected to the third row inlet channel 71c.
  • One end of the third-row passage channel 71b is connected to the branch pipe 82, and the other end of the third-row passage channel 71b is connected to the third-row outlet channel 71a.
  • One end of the merging channel 71d is connected to the plurality of third row inlet channels 71c, and the other end of the merging channel 71d is connected to the connecting pipe 72.
  • a branch pipe 82 is connected instead of the U-shaped pipe 81 to the end of the merged flow path 61d of the second-row divided section 61 on the side not communicating with the second-row inlet flow path 61c. That is, the branch pipe 82 has a branch part, and communicates the merging flow path 61d of the second-row divided section 61 and the two third-row passage flow paths 71b of the third-row divided section 71.
  • the branch pipe 82 may be formed by bulge molding.
  • the branch pipe 82 may be directly connected to the merging channel 61d and the third row passage channel 71b, or may be connected via a relay member.
  • the branch pipe 82 is made of metal, for example.
  • the plurality of second row inlet channels 61c, the merged channel 61d, the branch pipe 82, the plurality of third row passage channels 71b, and the plurality of third row outlet channels 71a are respectively “second” in the present invention. It corresponds to a part of the “turnback channel”.
  • the refrigerant When the heat exchanger 1 acts as an evaporator, the refrigerant is merged in the merged flow path 61d and passes through the plurality of branch pipes 82 and the plurality of third-row passage flow paths 71b in that order. Then, it flows into the plurality of third row outlet channels 71a.
  • the refrigerant that has flowed into the plurality of third-row outlet channels 71a passes through the plurality of third-row heat transfer tubes 42, flows into the plurality of third-row inlet channels 71c, and merges at the merged channel 71d to be connected. It flows out from the pipe 72.
  • the refrigerant flows into the merging flow path 71d via the connection pipe 72 and is distributed to the plurality of third-row inlet flow paths 71c, so that the plurality of three-row It passes through the heat transfer tubes 42 and flows into the plurality of third row outlet channels 71a.
  • the refrigerant that has flowed into the plurality of third-row outlet channels 71a passes through the plurality of third-row passage channels 71b and the plurality of branch pipes 82 in that order, and flows into the merged channel 61d.
  • 9 and 10 show the case where there are four branch pipes 82, that is, the case where the merging channel 61d joins two channels into one channel.
  • the number of branch pipes 82 may be other than four, and the number of branches may be any number corresponding to the number of channels to which the merge channel 61d merges.
  • 9 and 10 show the case where the branch pipe 82 is connected to the surface on the opposite side of the surface facing the heat exchanging portion 2 of the laminated header 3, the present invention is limited to such a case. Instead, it may be connected to the other surface of the laminated header 3.
  • FIG. 10 is a perspective view of the heat exchanger according to Embodiment 2 in a state where the third row division portion and its peripheral members are disassembled.
  • coolant in case the heat exchanger 1 acts as an evaporator is shown by the arrow.
  • the third-row dividing unit 71 includes a third-row first plate 73 and a third-row second plate 74 stacked on the third-row first plate 73.
  • the configurations of the third row first plate 73 and the third row second plate 74 are the same as the configurations of the second row first plate 63 and the second row second plate 64.
  • the third plate first plate 73 corresponds to a part of the “first plate” in the present invention.
  • the third plate-like second body 74 in the third row corresponds to a part of the “second plate-like body” in the present invention.
  • branch pipe 82 may be provided in the third row first plate 73. That is, a part of the third row passage channel 71 b and a part of the merge channel 71 d may pass through the third plate first plate 73.
  • a return flow is generated by a plurality of second row inlet channels 61 c, a merged channel 61 d, a branch pipe 82, a plurality of third row passage channels 71 b, and a plurality of third row outlet channels 71 a. Since the path is formed, for example, heat exchange provided with three rows of heat exchange units (first row heat exchange unit 21, first row heat exchange unit 31, third row heat exchange unit 41) in the air passage direction.
  • the refrigerant flowing out from the outlet channel does not have to be arranged in three rows using a tube or the like on the device side. Complicating the structure is suppressed.
  • the laminated header 3 is not limited to the case where there are three rows, and may be four rows or more.
  • the configuration of the third row division unit 71 is the same as the configuration of the second row division unit 61. Therefore, when the third row dividing unit 71 and the second row dividing unit 61 are divided, it is possible to cope with an increase in the number of rows of the heat exchanging unit 2 by using common parts, and to be integrated. If this is the case, it is possible to cope with an increase in the number of rows of the heat exchanging units 2 by using a common processing step and jig (press die or the like), and the heat exchanger 1 can be reduced in cost.
  • FIG. 11 is a perspective view of the heat exchanger according to the third embodiment.
  • the stacked header 3 is divided in the step direction of the heat exchanging unit 2, the first row division unit 51, the second row division unit 61 ⁇ / b> A, the third row division unit 71, Have Second-row division unit 61A has a different configuration from second-row division unit 61 in the second embodiment.
  • the first column division unit 51 corresponds to the “first division unit” in the present invention
  • the aggregate of the second column division unit 61A and the third column division unit 71 corresponds to the “second division unit” in the present invention. To do.
  • the second row dividing section 61A includes a plurality of second row outlet passages 61Aa, a plurality of second row first passage passages 61Ab, a plurality of second row inlet passages 61Ac, and a plurality of second row first passage passages 61Ac.
  • 2-passage channel 61Ad is formed.
  • the second-row outlet channel 61Aa corresponds to the “first outlet channel” in the present invention.
  • the second row first passage channel 61Ab corresponds to the “second passage channel” in the present invention.
  • the second row inlet channel 61Ac corresponds to the “fourth inlet channel” in the present invention.
  • the second row second passage 61 Ad corresponds to the “fourth passage” in the present invention.
  • the third row outlet channel 71a corresponds to the “fourth outlet channel” in the present invention.
  • the third row passage channel 71b corresponds to the “fifth passage channel” in the present invention.
  • the third row inlet channel 71c corresponds to the “second inlet channel” in the present invention.
  • the merge channel 71d corresponds to the “first merge channel” in the present invention.
  • a U-shaped tube 81 is connected to the end of the second-row second passage channel 61Ad of the second-row dividing section 61A on the side not communicating with the second-row inlet channel 61Ac, not the branch tube 82.
  • the U-shaped tube 81 corresponds to the “second tube” in the present invention.
  • the second-row inlet channel 61Ac, the second-row second passage channel 61Ad, the U-shaped tube 81, the third-row passage channel 71b, and the third-row outlet channel 71a are respectively “third” in the present invention. It corresponds to a part of the “turnback channel”.
  • FIG. 12 is a perspective view of the heat exchanger according to Embodiment 3 in a state where the second row division portion and its peripheral members are disassembled.
  • coolant in case the heat exchanger 1 acts as an evaporator is shown by the arrow.
  • the second-row division unit 61A includes a second-row first plate-like body 63A and a second-row second plate-like body 64A stacked on the second-row first plate-like body 63A.
  • the second plate first plate 63A corresponds to a part of the “first plate” in the present invention.
  • the second plate second plate 64A in the second row corresponds to a part of the “second plate” in the present invention.
  • a plurality of second row outlet channels 61Aa and a plurality of second row inlet channels 61Ac are formed in a row.
  • a plurality of second-row first passage channels 61Ab and a plurality of second-row second passage channels 61Ad are formed in the second-row second plate-like body 64A.
  • One end of the second row first passage channel 61Ab is connected to the U-shaped tube 81, and the other end of the second row first passage channel 61Ab is connected to the second row outlet channel 61Aa.
  • the second row first passage channel 61Ab is linear in the region near the heat exchange unit 2.
  • the second-row second passage channel 61Ad is linear in the region close to the heat exchange unit 2.
  • the U-shaped tube 81 may be provided in the second plate first plate 63A. That is, a part of the second row first passage channel 61Ab and a part of the second row second passage channel 61Ad may pass through the second row first plate 63A.
  • the second-row inlet flow path 61Ac, the second-row second passage flow path 61Ad, the U-shaped tube 81, the third-row passage flow path 71b, and the third-row outlet flow path 71a Since the path is formed, for example, heat exchange provided with three rows of heat exchange units (first row heat exchange unit 21, first row heat exchange unit 31, third row heat exchange unit 41) in the air passage direction.
  • the refrigerant flowing out from the outlet channel does not have to be arranged in three rows using a tube or the like on the device side. Complicating the structure is suppressed.
  • the laminated header 3 is not limited to the case where there are three rows, and may be four rows or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 積層型ヘッダー3は、第1入口流路と、第1出口流路と、が形成された第1板状体と、第1板状体に取り付けられ、第1入口流路から流入する冷媒を通過させる第1通過流路の少なくとも一部と、第1出口流路に冷媒を通過させる第2通過流路の少なくとも一部と、が形成された第2板状体と、を備え、第1通過流路の第1入口流路に連通されない側の端部と、第2通過流路の第1出口流路に連通されない側の端部と、の間が、第1管を介して連通されて、第1折返流路が形成されたものである。

Description

積層型ヘッダー、熱交換器、及び、空気調和装置
 本発明は、積層型ヘッダーと、熱交換器と、空気調和装置と、に関するものである。
 従来の積層型ヘッダーとして、複数の出口流路が形成された第1板状体と、第1板状体に積層され、複数の出口流路に冷媒を分配する分配流路が形成された第2板状体と、を備えるものがある(例えば、特許文献1参照)。
特開平6-11291号公報(段落[0012]~[0028]、図1~図9)
 従来の積層型ヘッダーでは、出口流路が1列であるため、例えば、空気の通過方向に複数列の熱交換部が配設された熱交換器等の機器のヘッダーとして使用する場合において、出口流路から流出する冷媒を、機器側で管等を用いて複数列にする必要があり、積層型ヘッダーが適用される機器の構造が複雑化されてしまうという問題点があった。
 本発明は、上記のような課題を背景としてなされたものであり、適用される機器の構造が複雑化されてしまうことが抑制された積層型ヘッダーを得ることを目的とする。また、本発明は、そのような積層型ヘッダーを備えた熱交換器を得ることを目的とする。また、本発明は、そのような熱交換器を備えた空気調和装置を得ることを目的とする。
 本発明に係る積層型ヘッダーは、第1入口流路と、第1出口流路と、が形成された第1板状体と、前記第1板状体に取り付けられ、前記第1入口流路から流入する冷媒を通過させる第1通過流路の少なくとも一部と、前記第1出口流路に冷媒を通過させる第2通過流路の少なくとも一部と、が形成された第2板状体と、を備え、前記第1通過流路の前記第1入口流路に連通されない側の端部と、前記第2通過流路の前記第1出口流路に連通されない側の端部と、の間が、第1管を介して連通されて、第1折返流路が形成されたものである。
 本発明に係る積層型ヘッダーでは、第1入口流路と、第1出口流路と、が形成された第1板状体と、第1板状体に取り付けられ、第1入口流路から流入する冷媒を通過させる第1通過流路の少なくとも一部と、第1出口流路に冷媒を通過させる第2通過流路の少なくとも一部と、が形成された第2板状体と、を備え、第1通過流路の第1入口流路に連通されない側の端部と、第2通過流路の第1出口流路に連通されない側の端部と、の間が、第1管を介して連通されて、第1折返流路が形成されたものであるため、機器側で管等を用いて複数列にしなくてもよくなって、積層型ヘッダーが適用される機器の構造が複雑化されることが抑制される。
実施の形態1に係る熱交換器の、斜視図である。 実施の形態1に係る熱交換器の、1列目分割部とその周辺部材とを分解した状態での斜視図である。 実施の形態1に係る熱交換器の、2列目分割部とその周辺部材とを分解した状態での斜視図である。 実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。 実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。 実施の形態1に係る熱交換器の、第1通過流路及び第2通過流路の詳細を説明するための略断面図である。 実施の形態1に係る熱交換器の、蒸発器として作用する場合の、流路長L2と冷媒の均一性との関係を示す図である。 実施の形態1に係る熱交換器の、凝縮器として作用する場合の、流路長L1と冷媒の均一性との関係を示す図である。 実施の形態2に係る熱交換器の、斜視図である。 実施の形態2に係る熱交換器の、3列目分割部とその周辺部材とを分解した状態での斜視図である。 実施の形態3に係る熱交換器の、斜視図である。 実施の形態3に係る熱交換器の、2列目分割部とその周辺部材とを分解した状態での斜視図である。
 以下、本発明に係る積層型ヘッダーについて、図面を用いて説明する。
 なお、以下で説明する構成等は、一例にすぎず、本発明に係る積層型ヘッダーは、そのような構成等である場合に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
 また、以下では、本発明に係る積層型ヘッダーが、熱交換器に流入する冷媒を分配するものである場合を説明しているが、本発明に係る積層型ヘッダーが、他の機器に流入する冷媒を分配するものであってもよい。また、以下では、本発明に係る積層型ヘッダーを備えた熱交換器が、空気調和装置に適用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に適用されてもよい。また、本発明に係る積層型ヘッダーを備えた熱交換器が、空気調和装置の室外熱交換器である場合を説明しているが、そのような場合に限定されず、空気調和装置の室内熱交換器であってもよい。また、空気調和装置が、暖房運転と冷房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、暖房運転又は冷房運転のみを行うものであってもよい。
実施の形態1.
 実施の形態1に係る熱交換器について説明する。
<熱交換器の構成>
 以下に、実施の形態1に係る熱交換器の構成について説明する。
(熱交換器の概略構成)
 以下に、実施の形態1に係る熱交換器の概略構成について説明する。
 図1は、実施の形態1に係る熱交換器の、斜視図である。
 図1に示されるように、熱交換器1は、熱交換部2と、積層型ヘッダー3と、を有する。
 熱交換部2は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)の、風上側に配設された1列目熱交換部21と、風下側に配設された2列目熱交換部31と、を有する。1列目熱交換部21は、複数の1列目伝熱管22と、その複数の1列目伝熱管22に、例えば、ロウ付け等で接合される複数の1列目フィン23と、を有する。2列目熱交換部31は、複数の2列目伝熱管32と、その複数の2列目伝熱管32に、例えば、ロウ付け等で接合される複数の2列目フィン33と、を有する。なお、図1及び図1以下の図では、1列目伝熱管22及び2列目伝熱管32が、8本である場合を示しているが、そのような場合に限定されず、1本を含む他の本数であってもよい。1列目伝熱管22は、本発明における「第1伝熱管」に相当する。2列目伝熱管32は、本発明における「第2伝熱管」に相当する。
 1列目伝熱管22及び2列目伝熱管32は、扁平管であり、長軸方向に複数の流路が形成される。複数の1列目伝熱管22及び複数の2列目伝熱管32のそれぞれは、一方の端部と他方の端部との間がヘアピン状に折り曲げられて、折返し部22a、32aが形成される。1列目伝熱管22及び2列目伝熱管32は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)と交差する方向に、複数段配設される。熱交換部2を、その通過方向から見た場合に、複数の1列目伝熱管22と複数の2列目伝熱管32との高さ方向の位置が、ずれているとよい。そのように構成されることで、熱交換効率が向上される。複数の1列目伝熱管22及び複数の2列目伝熱管32のそれぞれの一方の端部と他方の端部とは、積層型ヘッダー3と対向するように並設される。
 積層型ヘッダー3は、熱交換部2の段方向に分割された、1列目分割部51と、2列目分割部61と、を有する。1列目分割部51には、接続管52を介して、配管(図示せず)が接続される。2列目分割部61には、複数の接続管62を介して、複数の配管(図示せず)が接続される。接続管52及び接続管62は、例えば、円管である。なお、1列目分割部51と、2列目分割部61と、が一体化されていてもよい。1列目分割部51は、本発明における「第1分割部」に相当し、2列目分割部61は、本発明における「第2分割部」に相当する。
 1列目分割部51には、複数の1列目出口流路51aと、分配流路51bと、複数の1列目入口流路51cと、複数の1列目通過流路51dと、が形成される。1列目出口流路51aは、本発明における「第2出口流路」に相当する。1列目入口流路51cは、本発明における「第1入口流路」に相当する。1列目通過流路51dは、本発明における「第1通過流路」に相当する。
 1列目伝熱管22の一方の端部が、1列目出口流路51aに接続され、1列目伝熱管22の他方の端部が、1列目入口流路51cに接続される。分配流路51bの一方の端部は、接続管52に接続され、分配流路51bの他方の端部は、複数の1列目出口流路51aに接続される。1列目通過流路51dの一方の端部は、1列目入口流路51cに接続され、1列目通過流路51dの他方の端部は、U字管81に接続される。
 2列目分割部61には、複数の2列目出口流路61aと、複数の2列目通過流路61bと、複数の2列目入口流路61cと、複数の合流流路61dと、が形成される。2列目出口流路61aは、本発明における「第1出口流路」に相当する。2列目通過流路61bは、本発明における「第2通過流路」に相当する。2列目入口流路61cは、本発明における「第2入口流路」に相当する。合流流路61dは、本発明における「第1合流流路」に相当する。
 2列目伝熱管32の一方の端部が、2列目出口流路61aに接続され、2列目伝熱管32の他方の端部が、2列目入口流路61cに接続される。2列目通過流路61bの一方の端部は、U字管81に接続され、2列目通過流路61bの他方の端部は、2列目出口流路61aに接続される。合流流路61dの一方の端部は、複数の2列目入口流路61cに接続され、合流流路61dの他方の端部は、接続管62に接続される。
 U字管81は、U字状ではない他の管であってもよい。U字管81は、1列目通過流路51d及び2列目通過流路61bに、直接接続されてもよく、また、中継部材を介して接続されてもよい。U字管81は、例えば、金属製である。U字管81は、本発明における「第1管」に相当する。1列目入口流路51c、1列目通過流路51d、U字管81、2列目通過流路61b、及び、2列目出口流路61aは、それぞれ、本発明における「第1折返流路」の一部に相当する。
 熱交換器1が蒸発器として作用する場合には、冷媒は、接続管52を介して、分配流路51bに流入して、複数の1列目出口流路51aに分配され、複数の1列目伝熱管22を通って、複数の1列目入口流路51cに流入する。複数の1列目入口流路51cに流入した冷媒は、複数の1列目通過流路51d、複数のU字管81、及び、複数の2列目通過流路61bを、その順で通過して、複数の2列目出口流路61aに流入する。複数の2列目出口流路61aに流入した冷媒は、複数の2列目伝熱管32を通って、複数の2列目入口流路61cに流入し、合流流路61dで合流されて、接続管62から流出する。
 熱交換器1が凝縮器として作用する場合には、冷媒は、接続管62を介して、合流流路61dに流入して、複数の2列目入口流路61cに分配され、複数の2列目伝熱管32を通って、複数の2列目出口流路61aに流入する。複数の2列目出口流路61aに流入した冷媒は、複数の2列目通過流路61b、複数のU字管81、及び、複数の1列目通過流路51dを、その順で通過して、複数の1列目入口流路51cに流入する。複数の1列目入口流路51cに流入した冷媒は、複数の1列目伝熱管22を通って、複数の1列目出口流路51aに流入し、分配流路51bで合流されて、接続管52から流出する。
 なお、図1及び図1以下の図では、接続管52が1つである場合、つまり、分配流路51bが1つである場合を示しているが、そのような場合に限定されず、接続管52と分配流路51bとの組が、複数であってもよい。また、図1及び図1以下の図では、接続管62が4つである場合、つまり、合流流路61dが4つである場合を示しているが、そのような場合に限定されず、接続管62と合流流路61dとの組が、4つ以外であってもよい。接続管62と合流流路61dとの組が、4つである場合には、2列目分割部61の、熱交換部2の列方向の幅を小さくすることができる。また、図1及び図1以下の図では、接続管52、接続管62、及び、U字管81が、積層型ヘッダー3の熱交換部2と対向する面の反対側の面に接続される場合を示しているが、そのような場合に限定されず、積層型ヘッダー3の他の面に接続されてもよい。
(積層型ヘッダーの構成)
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーの構成について説明する。
 図2は、実施の形態1に係る熱交換器の、1列目分割部とその周辺部材とを分解した状態での斜視図である。図3は、実施の形態1に係る熱交換器の、2列目分割部とその周辺部材とを分解した状態での斜視図である。なお、図2及び図3では、熱交換器1が蒸発器として作用する場合の冷媒の流れを、矢印で示している。
 図2に示されるように、1列目分割部51は、1列目第1板状体53と、1列目第1板状体53に積層された1列目第2板状体54と、を有する。1列目第1板状体53は、本発明における「第1板状体」の一部に相当する。1列目第2板状体54は、本発明における「第2板状体」の一部に相当する。
 1列目第1板状体53は、1つの板状部材53_1を有し、1列目第2板状体54は、複数の板状部材54_1~54_7を有する。1列目伝熱管22の両端部は、1列目保持部材24によって保持されており、1つの板状部材53_1と複数の板状部材54_1~54_7とは、1列目保持部材24に、複数の板状のクラッド材55_1~55_8によって、例えば、ロウ付け接合される。クラッド材55_1~55_8の両面又は片面には、ロウ材が塗布されている。クラッド材55_1~55_8は、1列目保持部材24と板状部材53_1、54_1~54_7との接合層として機能する。また、クラッド材55_1~55_8に形成された各流路によって、板状部材53_1、54_1~54_7に形成された隣り合う流路間の、冷媒の隔離が確実化される。1列目保持部材24、板状部材53_1、54_1~54_7、及び、クラッド材55_1~55_8は、例えば、アルミ製である。なお、1列目保持部材24と板状部材53_1、54_1~54_7とが、複数のクラッド材55_1~55_8を介さずに直接接合されてもよい。
 1列目第1板状体53には、複数の1列目出口流路51aと、複数の1列目入口流路51cと、が列状に形成される。複数の1列目出口流路51a及び複数の1列目入口流路51cは、1列目伝熱管22の外周面に沿う形状である。1列目伝熱管22の両端部は、1列目保持部材24から突出しており、1列目第1板状体53は、複数の1列目出口流路51a及び複数の1列目入口流路51cの内側に1列目伝熱管22の端部が突出する状態で、1列目保持部材24に接合される。1列目伝熱管22の両端部が、1列目保持部材24によって保持されない状態で、複数の1列目出口流路51a及び複数の1列目入口流路51cと、1列目伝熱管22の端部と、が直接接合されてもよい。1列目伝熱管22の端面が、1列目第1板状体53から突出していてもよく、また、複数の1列目出口流路51a及び複数の1列目入口流路51cと、1列目伝熱管22と、が、中継部材を介して接続され、1列目伝熱管22の端面が、その中継部材に形成された流路の内側に位置していてもよい。
 1列目第2板状体54には、分配流路51bと、複数の1列目通過流路51dと、が形成される。分配流路51b及び複数の1列目通過流路51dのそれぞれは、板状部材54_1~54_7に形成された各部分流路及びクラッド材55_2~55_8に形成された各部分流路の集合体である。分配流路51bの一方の端部は、接続管52に接続され、分配流路51bの他方の端部は、複数の1列目出口流路51aに接続される。分配流路51bは、熱交換部2から遠い側の領域において、2分岐を繰り返す。そのように構成されることで、熱交換器1が蒸発器として作用する場合における、冷媒の分配の均一性が向上される。また、分配流路51bは、熱交換部2に近い側の領域において、直線状である。1列目通過流路51dの一方の端部は、1列目入口流路51cに接続され、1列目通過流路51dの他方の端部は、U字管81に接続される。1列目通過流路51dは、熱交換部2に近い側の領域において、直線状である。1列目通過流路51dの詳細については、後に説明する。
 なお、接続管52及びU字管81が、1列目第1板状体53に設けられていてもよい。つまり、分配流路51bの一部及び1列目通過流路51dの一部が、1列目第1板状体53を経由していてもよい。
 図3に示されるように、2列目分割部61は、2列目第1板状体63と、2列目第1板状体63に積層された2列目第2板状体64と、を有する。2列目第1板状体63は、本発明における「第1板状体」の一部に相当する。2列目第2板状体64は、本発明における「第2板状体」の一部に相当する。
 2列目第1板状体63は、1つの板状部材63_1を有し、2列目第2板状体64は、複数の板状部材64_1~64_7を有する。2列目伝熱管32の両端部は、2列目保持部材34によって保持されており、1つの板状部材63_1と複数の板状部材64_1~64_7とは、2列目保持部材34に、複数の板状のクラッド材65_1~65_8によって、例えば、ロウ付け接合される。クラッド材65_1~65_8の両面又は片面には、ロウ材が塗布されている。クラッド材65_1~65_8は、2列目保持部材34と板状部材63_1、64_1~64_7との接合層として機能する。また、クラッド材65_1~65_8に形成された各流路によって、板状部材63_1、64_1~64_7に形成された隣り合う流路間の、冷媒の隔離が確実化される。2列目保持部材34、板状部材63_1、64_1~64_7、及び、クラッド材65_1~65_8は、例えば、アルミ製である。なお、2列目保持部材34と板状部材63_1、64_1~64_7とが、複数のクラッド材65_1~65_8を介さずに直接接合されてもよい。
 2列目第1板状体63には、複数の2列目出口流路61aと、複数の2列目入口流路61cと、が列状に形成される。複数の2列目出口流路61a及び複数の2列目入口流路61cは、2列目伝熱管32の外周面に沿う形状である。2列目伝熱管32の両端部は、2列目保持部材34から突出しており、2列目第1板状体63は、複数の2列目出口流路61a及び複数の2列目入口流路61cの内側に2列目伝熱管32の端部が突出する状態で、2列目保持部材34に接合される。2列目伝熱管32の両端部が、2列目保持部材34によって保持されない状態で、複数の2列目出口流路61a及び複数の2列目入口流路61cと、2列目伝熱管32の端部と、が直接接合されてもよい。2列目伝熱管32の端面が、2列目第1板状体63から突出していてもよく、また、複数の2列目出口流路61a及び複数の2列目入口流路61cと、2列目伝熱管32と、が、中継部材を介して接続され、2列目伝熱管32の端面が、その中継部材に形成された流路の内側に位置していてもよい。
 2列目第2板状体64には、複数の2列目通過流路61bと、複数の合流流路61dと、が形成される。複数の2列目通過流路61bのそれぞれ及び複数の合流流路61dのそれぞれは、板状部材64_1~64_7に形成された各部分流路及びクラッド材65_2~65_8に形成された各部分流路の集合体である。2列目通過流路61bの一方の端部は、U字管81に接続され、2列目通過流路61bの他方の端部は、2列目出口流路61aに接続される。2列目通過流路61bは、熱交換部2に近い側の領域において、直線状である。2列目通過流路61bの詳細については、後に説明する。合流流路61dの一方の端部は、複数の2列目入口流路61cに接続され、合流流路61dの他方の端部は、接続管62に接続される。合流流路61dは、2つの流路を1つの流路に合流させる。そのように構成されることで、熱交換器1が凝縮器として作用する場合における、冷媒の分配の均一性が向上される。また、合流流路61dは、熱交換部2に近い側の領域において、直線状である。
 なお、U字管81及び接続管62が、2列目第1板状体63に設けられていてもよい。つまり、2列目通過流路61bの一部及び合流流路61dの一部が、2列目第1板状体63を経由していてもよい。
<熱交換器が適用される空気調和装置の構成>
 以下に、実施の形態1に係る熱交換器が適用される空気調和装置の構成について説明する。
 図4及び図5は、実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。なお、図4は、空気調和装置91が暖房運転する場合を示している。また、図5は、空気調和装置91が冷房運転する場合を示している。
 図4及び図5に示されるように、空気調和装置91は、圧縮機92と、四方弁93と、室外熱交換器(熱源側熱交換器)94と、絞り装置95と、室内熱交換器(負荷側熱交換器)96と、室外ファン(熱源側ファン)97と、室内ファン(負荷側ファン)98と、制御装置99と、を有する。圧縮機92と四方弁93と室外熱交換器94と絞り装置95と室内熱交換器96とが配管で接続されて、冷媒循環回路が形成される。四方弁93は、他の流路切替装置であってもよい。
 室外熱交換器94は、熱交換器1である。室外熱交換器94は、室外ファン97の駆動によって生じる空気流れの風上側に1列目分割部51が配設され、風下側に2列目分割部61が配設されるように、設けられる。室外ファン97は、熱交換器1の風上側に設けられてもよく、また、熱交換器1の風下側に設けられてもよい。
 制御装置99には、例えば、圧縮機92、四方弁93、絞り装置95、室外ファン97、室内ファン98、各種センサ等が接続される。制御装置99によって、四方弁93の流路が切り替えられることで、暖房運転と冷房運転とが切り替えられる。
 以下に、図4を用いて、暖房運転時の冷媒の流れについて説明する。
 圧縮機92から吐出される高圧高温のガス状態の冷媒は、四方弁93を介して室内熱交換器96に流入し、室内ファン98によって供給される空気との熱交換によって凝縮することで、室内を暖房する。凝縮した冷媒は、高圧の過冷却液状態となり、室内熱交換器96から流出し、絞り装置95によって、低圧の気液二相状態の冷媒となる。低圧の気液二相状態の冷媒は、室外熱交換器94に流入し、室外ファン97によって供給される空気と熱交換を行い、蒸発する。蒸発した冷媒は、低圧の過熱ガス状態となり、室外熱交換器94から流出し、四方弁93を介して圧縮機92に吸入される。つまり、暖房運転時には、室外熱交換器94は、蒸発器として作用する。
 室外熱交換器94において、冷媒は、1列目分割部51の分配流路51bに流入して分配され、1列目熱交換部21の1列目伝熱管22に流入する。1列目伝熱管22に流入した冷媒は、1列目通過流路51d、U字管81、及び、2列目通過流路61bを順に通過して、2列目熱交換部31の2列目伝熱管32に流入する。2列目伝熱管32に流入した冷媒は、2列目分割部61の合流流路61dに流入して合流される。
 以下に、図5を用いて、冷房運転時の冷媒の流れについて説明する。
 圧縮機92から吐出される高圧高温のガス状態の冷媒は、四方弁93を介して室外熱交換器94に流入し、室外ファン97によって供給される空気と熱交換を行い、凝縮する。凝縮した冷媒は、高圧の過冷却液状態となり、室外熱交換器94から流出し、絞り装置95によって、低圧の気液二相状態となる。低圧の気液二相状態の冷媒は、室内熱交換器96に流入し、室内ファン98によって供給される空気との熱交換によって蒸発することで、室内を冷却する。蒸発した冷媒は、低圧の過熱ガス状態となり、室内熱交換器96から流出し、四方弁93を介して圧縮機92に吸入される。つまり、冷房運転時には、室外熱交換器94は、凝縮器として作用する。
 室外熱交換器94において、冷媒は、2列目分割部61の合流流路61dに流入して分配され、2列目熱交換部31の2列目伝熱管32に流入する。2列目伝熱管32に流入した冷媒は、2列目通過流路61b、U字管81、及び、1列目通過流路51dを順に通過して、1列目熱交換部21の1列目伝熱管22に流入する。1列目伝熱管22に流入した冷媒は、1列目分割部51の分配流路51bに流入して合流される。
 室外熱交換器94では、1列目熱交換部21と2列目熱交換部31とが、熱交換部2を通過する空気の通過方向(図中白抜き矢印)に、並設される。例えば、室外熱交換器94の正面視した状態での面積を増加させて、熱交換量を増やすことも可能であるが、その場合には、室外熱交換器94を内蔵する筐体が大型化されてしまう。また、フィンの枚数を増加させて、熱交換量を増やすことも可能であるが、その場合には、排水性、着霜性能、埃耐力の観点から、フィンの間隔を約1mm未満にすることが困難であり、熱交換量の増加が不充分となってしまう場合がある。一方、室外熱交換器94のように、伝熱管の列数を増加させる場合には、室外熱交換器94の正面視した状態での面積、フィンの間隔等を変えることなく、熱交換量を増加させることが可能である。列数が2列になると、熱交換量は約1.5倍以上に増加する。なお、更に、室外熱交換器94の正面視した状態での面積、フィンの間隔等が変えられてもよい。
 また、室外熱交換器94の片側のみにヘッダー(積層型ヘッダー3)が設けられる。室外熱交換器94が、熱交換部2の実装体積を増加するために、例えば、室外熱交換器94を内蔵する筐体の複数の側面に沿うように、折り曲げられて配設される場合には、伝熱管の列毎にその折り曲げ部の曲率半径が異なることに起因して、列毎に端部がずれてしまう。室外熱交換器94のように、室外熱交換器94の片側のみにヘッダー(積層型ヘッダー3)が設けられる場合には、列毎に端部がずれてしまっても、片側の端部のみ揃えばよく、設計自由度、生産効率等が向上される。特に、室外熱交換器94の各部材を接合した後に、熱交換部2を折り曲げることも可能となり、生産効率が更に向上される。
 また、室外熱交換器94が凝縮器として作用する際に、1列目伝熱管22が、2列目伝熱管32と比較して、風上側に位置する。室外熱交換器94の両側にヘッダーが設けられる場合では、列毎に冷媒の温度差を与えて凝縮器性能を向上することが困難であった。特に、1列目伝熱管22及び2列目伝熱管32が扁平管である場合には、円管と異なり、曲げ加工の自由度が低いため、列毎に冷媒の温度差を与えることを、冷媒の流路を変形させて実現することが難しい。一方、室外熱交換器94のように、1列目伝熱管22と2列目伝熱管32とが積層型ヘッダー3に接続される場合には、列毎に冷媒の温度差が必然的に生じることとなり、冷媒の流れの向きと、熱交換部2を通過する空気の通過方向と、を対向する関係にすることを、冷媒の流路を変形させることなく簡易に実現することができる。
<第1通過流路及び第2通過流路の詳細>
 以下に、実施の形態1に係る熱交換器の第1通過流路及び第2通過流路の詳細について説明する。
 図6は、実施の形態1に係る熱交換器の、第1通過流路及び第2通過流路の詳細を説明するための略断面図である。
 図6に示されるように、1列目通過流路51dは、1列目伝熱管22の端面から流路長L1の範囲が、直線状である。2列目通過流路61bは、2列目伝熱管32の端面から流路長L2の範囲が、直線状である。流路長L1の範囲は、U字管81を通過した冷媒が、1列目伝熱管22に流入するまでの助走区間として作用する。流路長L2の範囲は、U字管81を通過した冷媒が、2列目伝熱管32に流入するまでの助走区間として作用する。助走区間が設けられることで、1列目伝熱管22及び2列目伝熱管32のそれぞれに形成された複数の流路の、各流入口に流入する冷媒量を均一化することができる。
 図7は、実施の形態1に係る熱交換器の、蒸発器として作用する場合の、流路長L2と冷媒の均一性との関係を示す図である。なお、図7では、2列目伝熱管32の端面における、1列目伝熱管22に最も遠い側の流入口を番号1とする場合の、流入口番号と、分配比、つまり各流入口に流入する冷媒量の合計に対する比率と、の関係を、流路長L2毎に示したものである。
 図7に示されるように、熱交換器1が蒸発器として作用する場合、つまり、U字管81を通過した冷媒が、2列目通過流路61bを通過して、2列目伝熱管32に流入する場合には、1列目伝熱管22から遠い流入口ほど、分配比が高くなる傾向にある。流入口数が10である場合には、各流入口の分配比が、0.10±0.03の範囲内であることで、熱交換部2の熱交換性能が確保される。そのため、流路長L2の範囲における、流路の水力相当直径をDeとしたとき、流路長L2≧4Deであれば、熱交換部2の熱交換性能が確保される。
 図8は、実施の形態1に係る熱交換器の、凝縮器として作用する場合の、流路長L1と冷媒の均一性との関係を示す図である。なお、図8では、1列目伝熱管22の端面における、2列目伝熱管32に最も遠い側の流入口を番号1とする場合の、流入口番号と、分配比、つまり各流入口に流入する冷媒量の合計に対する比率と、の関係を、流路長L1毎に示したものである。
 図8に示されるように、熱交換器1が凝縮器として作用する場合、つまり、U字管81を通過した冷媒が、1列目通過流路51dを通過して、1列目伝熱管22に流入する場合には、2列目伝熱管32から遠い流入口ほど、分配比が高くなる傾向にある。流入口数が10である場合には、各流入口の分配比が、0.10±0.03の範囲内であることで、熱交換部2の熱交換性能が確保される。そのため、流路長L1の範囲における、流路の水力相当直径をDeとしたとき、流路長L1≧2Deであれば、熱交換部2の熱交換性能が確保される。
 すなわち、熱交換器1が蒸発器として作用する場合には、U字管81を、均一分配が比較的困難な気液二相状態の冷媒、つまり液相とガス相との混相状態の冷媒が通過するため、助走区間として作用する流路長L2を大きくする必要がある。一方、熱交換器1が凝縮器として作用する場合には、U字管81を、均一分配が比較的容易なガス状態の冷媒が通過するため、助走区間として作用する流路長L1を、流路長L2と比較して小さくすることができる。そのため、流路長L1及び流路長L2が4De以上になるように、1列目第2板状体54及び2列目第2板状体64の、流路長L1の範囲及び流路長L2の範囲を形成する板状部材54_1~54_7、64_1~64_7の枚数又は厚さを増減することで、熱交換器1が蒸発器として作用する場合と熱交換器1が凝縮器として作用する場合との両方において、熱交換部2の熱交換性能を確保することができる。
 また、流路長L1が、2De以上で、且つ、流路長L2と比較して短くなるように、1列目第2板状体54の、流路長L1の範囲を形成する板状部材54_1~54_7の枚数又は厚さを増減しても、熱交換器1が蒸発器として作用する場合と熱交換器1が凝縮器として作用する場合との両方において、熱交換部2の熱交換性能を確保することができる。そのような場合には、熱交換器1が軽量化され、また、低コスト化される。
<熱交換器の作用>
 以下に、実施の形態1に係る熱交換器の作用について説明する。
 積層型ヘッダー3では、1列目入口流路51c、1列目通過流路51d、U字管81、2列目通過流路61b、及び、2列目出口流路61aによって、折返流路が形成されるため、例えば、空気の通過方向に複数列の熱交換部(1列目熱交換部21、2列目熱交換部31)を備えた熱交換器1等の機器のヘッダーとして使用する場合において、出口流路から流出する冷媒を、機器側で管等を用いて複数列にしなくてもよくなって、積層型ヘッダー3が適用される機器の構造が複雑化されることが抑制される。
 また、折返流路が、板状部材54_1~54_7、64_1~64_7に形成された各部分流路、及び、板状のクラッド材55_2~55_8、65_2~65_8に形成された各部分流路の集合体である、1列目通過流路51d及び2列目通過流路61bと、U字管81と、で形成される。そのため、折返流路の折返部(U字管81のU字部)で生じる、流路内での冷媒量の偏りを均一化するために、1列目通過流路51d及び2列目通過流路61bとU字管81との接続部と、折返部と、の間の距離を長くすることを、積層型ヘッダー3の積層枚数又は板状部材の厚さを増加させずに、つまり、U字管81の端部長さ等を長くすることによって実現することができ、冷媒の分配の均一化と、低コスト化及び軽量化と、が両立される。また、折返流路の折返部がU字管81、つまり管であるため、折返部の設計自由度が向上され、積層型ヘッダー3が多機能化される。
 また、積層型ヘッダー3では、第1板状体及び第2板状体の、1列目出口流路51a、分配流路51b、1列目入口流路51c、及び、1列目通過流路51dと、2列目出口流路61a、2列目通過流路61b、2列目入口流路61c、及び、合流流路61dと、の間で、1列目分割部51と、2列目分割部61と、に分割される。そのため、熱交換部2に流入する前の冷媒と、熱交換部2を通過した後の冷媒と、が熱交換することが抑制され、熱交換器1の熱交換効率が向上される。なお、1列目分割部51と、2列目分割部61と、の分割面は、直線状であってもよく、また、曲線状であってもよい。また、1列目分割部51と、2列目分割部61と、の間に、断熱材が充填されてもよい。また、その分割が、プレス加工等によって行われるとよい。そのような場合には、板状部材53_1、54_1~54_7、63_1、64_1~64_7及びクラッド材55_1~55_8、65_1~65_8の各流路と共に加工を行うことができ、製造コストが低減される。また、分割が確実化されて、熱交換部2に流入する前の冷媒と、熱交換部2を通過した後の冷媒と、の熱交換の抑制の確実性が向上される。
 また、熱交換器1が蒸発器として作用する場合には、2列目入口流路61cにガス状態の冷媒が流入することとなり、そのガス冷媒に生じる圧力損失を低減するために、合流流路61dの流路断面積をなるべく大きくする必要がある。積層型ヘッダー3では、1列目分割部51と、2列目分割部61と、に分割され、熱交換部2に流入する前の冷媒と、熱交換部2を通過した後の冷媒と、が熱交換することが抑制されていることから、合流流路61dを、1列目分割部51の近くまで拡げることができ、ガス冷媒に生じる圧力損失を格段低減することができるため、積層型ヘッダー3が高性能化され、また、空気調和装置91の運転効率が向上される。
実施の形態2.
 実施の形態2に係る熱交換器について説明する。
 なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態2に係る熱交換器の構成について説明する。
(熱交換器の概略構成)
 以下に、実施の形態2に係る熱交換器の概略構成について説明する。
 図9は、実施の形態2に係る熱交換器の、斜視図である。
 図9に示されるように、熱交換部2は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)の、風上側に配設された1列目熱交換部21と、その風下側に配設された2列目熱交換部31と、その風下側に配設された3列目熱交換部41と、を有する。3列目熱交換部41は、複数の3列目伝熱管42と、その複数の3列目伝熱管42に、例えば、ロウ付け等で接合される複数の3列目フィン43と、を有する。
 3列目伝熱管42は、扁平管であり、長軸方向に複数の流路が形成される。複数の3列目伝熱管42のそれぞれは、一方の端部と他方の端部との間がヘアピン状に折り曲げられて、折返し部42aが形成される。3列目伝熱管42は、熱交換部2を通過する空気の通過方向(図中白抜き矢印)と交差する方向に、複数段配設される。複数の3列目伝熱管42のそれぞれの一方の端部と他方の端部とは、積層型ヘッダー3と対向するように並設される。
 積層型ヘッダー3は、熱交換部2の段方向に分割された、1列目分割部51と、2列目分割部61と、3列目分割部71と、を有する。3列目分割部71には、複数の接続管72を介して、複数の配管(図示せず)が接続される。なお、1列目分割部51と、2列目分割部61と、3列目分割部71と、のうちの2つ以上が一体化されていてもよい。1列目分割部51は、本発明における「第1分割部」に相当し、2列目分割部61及び3列目分割部71のそれぞれは、本発明における「第2分割部」に相当する。
 3列目分割部71には、複数の3列目出口流路71aと、複数の3列目通過流路71bと、複数の3列目入口流路71cと、複数の合流流路71dと、が形成される。3列目出口流路71aは、本発明における「第3出口流路」に相当する。3列目通過流路71bは、本発明における「第3通過流路」に相当する。3列目入口流路71cは、本発明における「第3入口流路」に相当する。合流流路71dは、本発明における「第2合流流路」に相当する。
 3列目伝熱管42の一方の端部が、3列目出口流路71aに接続され、3列目伝熱管42の他方の端部が、3列目入口流路71cに接続される。3列目通過流路71bの一方の端部は、分岐管82に接続され、3列目通過流路71bの他方の端部は、3列目出口流路71aに接続される。合流流路71dの一方の端部は、複数の3列目入口流路71cに接続され、合流流路71dの他方の端部は、接続管72に接続される。
 2列目分割部61の合流流路61dの、2列目入口流路61cに連通されない側の端部には、U字管81ではなく、分岐管82が接続される。つまり、分岐管82は、分岐部を有し、2列目分割部61の合流流路61dと、3列目分割部71の2つの3列目通過流路71bと、を連通させる。分岐管82が、バルジ成形によって形成されるとよい。分岐管82は、合流流路61d及び3列目通過流路71bに、直接接続されてもよく、また、中継部材を介して接続されてもよい。分岐管82は、例えば、金属製である。複数の2列目入口流路61c、合流流路61d、分岐管82、複数の3列目通過流路71b、及び、複数の3列目出口流路71aは、それぞれ、本発明における「第2折返流路」の一部に相当する。
 熱交換器1が蒸発器として作用する場合には、冷媒は、合流流路61dで合流されて、複数の分岐管82、及び、複数の3列目通過流路71bを、その順で通過して、複数の3列目出口流路71aに流入する。複数の3列目出口流路71aに流入した冷媒は、複数の3列目伝熱管42を通って、複数の3列目入口流路71cに流入し、合流流路71dで合流されて、接続管72から流出する。
 熱交換器1が凝縮器として作用する場合には、冷媒は、接続管72を介して、合流流路71dに流入して、複数の3列目入口流路71cに分配され、複数の3列目伝熱管42を通って、複数の3列目出口流路71aに流入する。複数の3列目出口流路71aに流入した冷媒は、複数の3列目通過流路71b、及び、複数の分岐管82を、その順で通過して、合流流路61dに流入する。
 なお、図9及び図10では、分岐管82が4つである場合、つまり、合流流路61dが、2つの流路を1つの流路に合流させるものである場合を示しているが、そのような場合に限定されず、分岐管82が4つ以外であってもよく、合流流路61dが合流する流路の数に対応した分岐数であればよい。また、図9及び図10では、分岐管82が、積層型ヘッダー3の熱交換部2と対向する面の反対側の面に接続される場合を示しているが、そのような場合に限定されず、積層型ヘッダー3の他の面に接続されてもよい。
(積層型ヘッダーの構成)
 以下に、実施の形態2に係る熱交換器の積層型ヘッダーの構成について説明する。
 図10は、実施の形態2に係る熱交換器の、3列目分割部とその周辺部材とを分解した状態での斜視図である。なお、図10では、熱交換器1が蒸発器として作用する場合の冷媒の流れを、矢印で示している。
 図10に示されるように、3列目分割部71は、3列目第1板状体73と、3列目第1板状体73に積層された3列目第2板状体74と、を有する。3列目第1板状体73及び3列目第2板状体74の構成は、2列目第1板状体63及び2列目第2板状体64の構成と同一である。3列目第1板状体73は、本発明における「第1板状体」の一部に相当する。3列目第2板状体74は、本発明における「第2板状体」の一部に相当する。
 なお、分岐管82が、3列目第1板状体73に設けられていてもよい。つまり、3列目通過流路71bの一部及び合流流路71dの一部が、3列目第1板状体73を経由していてもよい。
<熱交換器の作用>
 以下に、実施の形態2に係る熱交換器の作用について説明する。
 積層型ヘッダー3では、複数の2列目入口流路61c、合流流路61d、分岐管82、複数の3列目通過流路71b、及び、複数の3列目出口流路71aによって、折返流路が形成されるため、例えば、空気の通過方向に3列の熱交換部(1列目熱交換部21、2列目熱交換部31、3列目熱交換部41)を備えた熱交換器1等の機器のヘッダーとして使用する場合において、出口流路から流出する冷媒を、機器側で管等を用いて3列にしなくてもよくなって、積層型ヘッダー3が適用される機器の構造が複雑化されることが抑制される。なお、積層型ヘッダー3は、3列である場合に限定されず、4列以上であってもよい。
 また、積層型ヘッダー3では、3列目分割部71の構成が、2列目分割部61の構成と同一である。そのため、3列目分割部71と2列目分割部61とが、分割されている場合には、熱交換部2の列数の増加に共通の部品を用いて対応することができ、一体化されている場合には、熱交換部2の列数の増加に共通の加工工程、治具(プレス型等)を用いて対応することができ、熱交換器1が低コスト化される。
実施の形態3.
 実施の形態3に係る熱交換器について説明する。
 なお、実施の形態1及び実施の形態2と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態3に係る熱交換器の構成について説明する。
(熱交換器の概略構成)
 以下に、実施の形態3に係る熱交換器の概略構成について説明する。
 図11は、実施の形態3に係る熱交換器の、斜視図である。
 図11に示されるように、積層型ヘッダー3は、熱交換部2の段方向に分割された、1列目分割部51と、2列目分割部61Aと、3列目分割部71と、を有する。2列目分割部61Aは、実施の形態2における2列目分割部61と、異なる構成である。1列目分割部51は、本発明における「第1分割部」に相当し、2列目分割部61A及び3列目分割部71の集合体は、本発明における「第2分割部」に相当する。
 2列目分割部61Aには、複数の2列目出口流路61Aaと、複数の2列目第1通過流路61Abと、複数の2列目入口流路61Acと、複数の2列目第2通過流路61Adと、が形成される。2列目出口流路61Aaは、本発明における「第1出口流路」に相当する。2列目第1通過流路61Abは、本発明における「第2通過流路」に相当する。2列目入口流路61Acは、本発明における「第4入口流路」に相当する。2列目第2通過流路61Adは、本発明における「第4通過流路」に相当する。3列目出口流路71aは、本発明における「第4出口流路」に相当する。3列目通過流路71bは、本発明における「第5通過流路」に相当する。3列目入口流路71cは、本発明における「第2入口流路」に相当する。合流流路71dは、本発明における「第1合流流路」に相当する。
 2列目分割部61Aの2列目第2通過流路61Adの、2列目入口流路61Acに連通されない側の端部には、分岐管82ではなく、U字管81が接続される。そのU字管81は、本発明における「第2管」に相当する。2列目入口流路61Ac、2列目第2通過流路61Ad、U字管81、3列目通過流路71b、及び、3列目出口流路71aは、それぞれ、本発明における「第3折返流路」の一部に相当する。
(積層型ヘッダーの構成)
 以下に、実施の形態3に係る熱交換器の積層型ヘッダーの構成について説明する。
 図12は、実施の形態3に係る熱交換器の、2列目分割部とその周辺部材とを分解した状態での斜視図である。なお、図12では、熱交換器1が蒸発器として作用する場合の冷媒の流れを、矢印で示している。
 図12に示されるように、2列目分割部61Aは、2列目第1板状体63Aと、2列目第1板状体63Aに積層された2列目第2板状体64Aと、を有する。2列目第1板状体63Aは、本発明における「第1板状体」の一部に相当する。2列目第2板状体64Aは、本発明における「第2板状体」の一部に相当する。
 2列目第1板状体63Aには、複数の2列目出口流路61Aaと、複数の2列目入口流路61Acと、が列状に形成される。2列目第2板状体64Aには、複数の2列目第1通過流路61Abと、複数の2列目第2通過流路61Adと、が形成される。2列目第1通過流路61Abの一方の端部は、U字管81に接続され、2列目第1通過流路61Abの他方の端部は、2列目出口流路61Aaに接続される。2列目第1通過流路61Abは、熱交換部2に近い側の領域において、直線状である。2列目第2通過流路61Adの一方の端部は、2列目入口流路61Acに接続され、2列目第2通過流路61Adの他方の端部は、U字管81に接続される。2列目第2通過流路61Adは、熱交換部2に近い側の領域において、直線状である。
 なお、U字管81が、2列目第1板状体63Aに設けられていてもよい。つまり、2列目第1通過流路61Abの一部及び2列目第2通過流路61Adの一部が、2列目第1板状体63Aを経由していてもよい。
<熱交換器の作用>
 以下に、実施の形態3に係る熱交換器の作用について説明する。
 積層型ヘッダー3では、2列目入口流路61Ac、2列目第2通過流路61Ad、U字管81、3列目通過流路71b、及び、3列目出口流路71aによって、折返流路が形成されるため、例えば、空気の通過方向に3列の熱交換部(1列目熱交換部21、2列目熱交換部31、3列目熱交換部41)を備えた熱交換器1等の機器のヘッダーとして使用する場合において、出口流路から流出する冷媒を、機器側で管等を用いて3列にしなくてもよくなって、積層型ヘッダー3が適用される機器の構造が複雑化されることが抑制される。なお、積層型ヘッダー3は、3列である場合に限定されず、4列以上であってもよい。
 以上、実施の形態1~実施の形態3について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全部又は一部を組み合わせることも可能である。
 1 熱交換器、2 熱交換部、3 積層型ヘッダー、21 1列目熱交換部、22 1列目伝熱管、22a 折返し部、23 1列目フィン、24 1列目保持部材、31 2列目熱交換部、32 2列目伝熱管、32a 折返し部、33 2列目フィン、34 2列目保持部材、41 3列目熱交換部、42 3列目伝熱管、42a 折返し部、43 3列目フィン、44 3列目保持部材、51 1列目分割部、51a 1列目出口流路、51b 分配流路、51c 1列目入口流路、51d 1列目通過流路、52 接続管、53 1列目第1板状体、53_1 板状部材、54 1列目第2板状体、54_1~54_7 板状部材、55_1~55_8 クラッド材、61、61A 2列目分割部、61a、61Aa 2列目出口流路、61b 2列目通過流路、61Ab 2列目第1通過流路、61c、61Ac 2列目入口流路、61d 合流流路、61Ad 2列目第2通過流路、62 接続管、63、63A 2列目第1板状体、63_1 板状部材、64、64A 2列目第2板状体、64_1~64_7 板状部材、65_1~65_8 クラッド材、71 3列目分割部、71a 3列目出口流路、71b 3列目通過流路、71c 3列目入口流路、71d 合流流路、72 接続管、73 3列目第1板状体、73_1 板状部材、74 3列目第2板状体、74_1~74_7 板状部材、75_1~75_8 クラッド材、81 U字管、82 分岐管、91 空気調和装置、92 圧縮機、93 四方弁、94 室外熱交換器、95 絞り装置、96 室内熱交換器、97 室外ファン、98 室内ファン、99 制御装置。

Claims (11)

  1.  第1入口流路と、第1出口流路と、が形成された第1板状体と、
     前記第1板状体に取り付けられ、
     前記第1入口流路から流入する冷媒を通過させる第1通過流路の少なくとも一部と、
     前記第1出口流路に冷媒を通過させる第2通過流路の少なくとも一部と、が形成された第2板状体と、を備え、
     前記第1通過流路の前記第1入口流路に連通されない側の端部と、前記第2通過流路の前記第1出口流路に連通されない側の端部と、の間が、第1管を介して連通されて、第1折返流路が形成された、積層型ヘッダー。
  2.  前記第1管を通過した冷媒が通過する流路のうちの、前記第1入口流路及び前記第1出口流路のうちの下流側の流路に接続される伝熱管の端面から、上流側に流路長Lの領域は、直線状であり、
     前記流路長Lは、前記領域の水力相当直径Deと比較して、4倍以上である、請求項1に記載の積層型ヘッダー。
  3.  前記第1板状体に、
     複数の第2出口流路と、複数の第2入口流路と、が形成され、
     前記第2板状体に、
     前記複数の第2出口流路に冷媒を分配する分配流路の少なくとも一部と、
     前記複数の第2入口流路から流入する冷媒を合流する第1合流流路の少なくとも一部と、が形成された、請求項1又は2に記載の積層型ヘッダー。
  4.  前記第1板状体及び前記第2板状体は、
     前記分配流路、前記複数の第2出口流路、前記第1入口流路、及び、前記第1通過流路を有する第1分割部と、
     前記第2通過流路、前記第1出口流路、前記複数の第2入口流路、及び、前記第1合流流路を有する第2分割部と、に分割された、請求項3に記載の積層型ヘッダー。
  5.  前記第1通過流路の前記第1入口流路に連通される側の端部、及び、前記第2通過流路の前記第1出口流路に連通される側の端部に、直線状の領域が形成され、
     前記第1通過流路の前記直線状の領域は、前記第2通過流路の前記直線状の領域と比較して、短い、請求項4に記載の積層型ヘッダー。
  6.  前記第1板状体に、
     複数の第3出口流路と、複数の第3入口流路と、が形成され
     前記第2板状体に、
     前記複数の第3出口流路のそれぞれに冷媒を通過させる複数の第3通過流路のそれぞれの少なくとも一部と、
     前記複数の第3入口流路から流入する冷媒を合流する第2合流流路の少なくとも一部と、が形成され、
     前記第1合流流路の前記複数の第2入口流路に連通されない側の端部と、前記複数の第3通過流路のそれぞれの前記第3出口流路に連通されない側の端部と、の間が、分岐管を介して連通されて、第2折返流路が形成された、請求項3~5のいずれか一項に記載の積層型ヘッダー。
  7.  前記第1板状体に、
     第4入口流路と第4出口流路と、が形成され
     前記第2板状体に、
     前記第4入口流路から流入する冷媒を通過させる第4通過流路の少なくとも一部と、
     前記第4出口流路に冷媒を通過させる第5通過流路の少なくとも一部と、が形成され、
     前記第4通過流路の前記第4入口流路に連通されない側の端部と、前記第5通過流路の前記第4出口流路に連通されない側の端部と、の間が、第2管を介して連通されて、第3折返流路が形成された、請求項3~5のいずれか一項に記載の積層型ヘッダー。
  8.  請求項3~7のいずれか一項に記載の積層型ヘッダーと、
     前記第2出口流路と前記第1入口流路との間を連通させる第1伝熱管と、
     前記第1出口流路と前記第2入口流路との間を連通させる第2伝熱管と、を備えた熱交換器。
  9.  前記伝熱管は、扁平管である、請求項8に記載の熱交換器。
  10.  請求項8又は9に記載の熱交換器を備え、
     前記分配流路は、前記熱交換器が蒸発器として作用する際に、前記第2出口流路に冷媒を流出する、空気調和装置。
  11.  前記第1伝熱管は、前記熱交換器が凝縮器として作用する際に、前記第2伝熱管と比較して、風上側に位置する、請求項10に記載の空気調和装置。
PCT/JP2014/051665 2014-01-27 2014-01-27 積層型ヘッダー、熱交換器、及び、空気調和装置 WO2015111216A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/051665 WO2015111216A1 (ja) 2014-01-27 2014-01-27 積層型ヘッダー、熱交換器、及び、空気調和装置
EP14879458.9A EP3112791B1 (en) 2014-01-27 2014-01-27 Laminated header, heat exchanger, and air conditioning device
JP2015558708A JP6120998B2 (ja) 2014-01-27 2014-01-27 積層型ヘッダー、熱交換器、及び、空気調和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/051665 WO2015111216A1 (ja) 2014-01-27 2014-01-27 積層型ヘッダー、熱交換器、及び、空気調和装置

Publications (1)

Publication Number Publication Date
WO2015111216A1 true WO2015111216A1 (ja) 2015-07-30

Family

ID=53681044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/051665 WO2015111216A1 (ja) 2014-01-27 2014-01-27 積層型ヘッダー、熱交換器、及び、空気調和装置

Country Status (3)

Country Link
EP (1) EP3112791B1 (ja)
JP (1) JP6120998B2 (ja)
WO (1) WO2015111216A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144049A (zh) * 2017-06-30 2017-09-08 广东美芝制冷设备有限公司 换热器
CN110476036A (zh) * 2017-03-31 2019-11-19 三菱电机株式会社 热交换器及具备该热交换器的制冷循环装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2001336896A (ja) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd 熱交換器および冷凍サイクル装置
JP2002372383A (ja) * 2001-06-18 2002-12-26 Calsonic Kansei Corp 炭酸ガス用放熱器
JP2004144395A (ja) * 2002-10-24 2004-05-20 Denso Corp 冷媒蒸発器
JP2005513403A (ja) * 2001-12-21 2005-05-12 ベール ゲーエムベーハー ウント コー カーゲー 特に自動車用の熱交換器
JP2006010262A (ja) * 2004-06-28 2006-01-12 Denso Corp 冷媒蒸発器
JP2010175241A (ja) * 2009-01-27 2010-08-12 Valeo Systemes Thermiques 2種類の流体のための熱交換器、特に空調装置のための蓄積蒸発器
JP2012254725A (ja) * 2011-06-09 2012-12-27 Panasonic Corp 車両用空調装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189498A (ja) * 1996-01-09 1997-07-22 Nippon Light Metal Co Ltd 熱媒体分流促進機構付ヘッダ及びその成形方法
KR100913141B1 (ko) * 2004-09-15 2009-08-19 삼성전자주식회사 마이크로채널튜브를 이용한 증발기
JP4852304B2 (ja) * 2005-12-14 2012-01-11 昭和電工株式会社 熱交換器
JP2010127510A (ja) * 2008-11-26 2010-06-10 Sharp Corp 熱交換器
WO2013160954A1 (ja) * 2012-04-26 2013-10-31 三菱電機株式会社 熱交換器及びこの熱交換器を備えた冷凍サイクル装置
JP6116702B2 (ja) * 2013-10-30 2017-04-19 三菱電機株式会社 積層型ヘッダー、熱交換器、熱交換器の製造方法、及び、空気調和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2001336896A (ja) * 2000-05-30 2001-12-07 Matsushita Electric Ind Co Ltd 熱交換器および冷凍サイクル装置
JP2002372383A (ja) * 2001-06-18 2002-12-26 Calsonic Kansei Corp 炭酸ガス用放熱器
JP2005513403A (ja) * 2001-12-21 2005-05-12 ベール ゲーエムベーハー ウント コー カーゲー 特に自動車用の熱交換器
JP2004144395A (ja) * 2002-10-24 2004-05-20 Denso Corp 冷媒蒸発器
JP2006010262A (ja) * 2004-06-28 2006-01-12 Denso Corp 冷媒蒸発器
JP2010175241A (ja) * 2009-01-27 2010-08-12 Valeo Systemes Thermiques 2種類の流体のための熱交換器、特に空調装置のための蓄積蒸発器
JP2012254725A (ja) * 2011-06-09 2012-12-27 Panasonic Corp 車両用空調装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476036A (zh) * 2017-03-31 2019-11-19 三菱电机株式会社 热交换器及具备该热交换器的制冷循环装置
CN110476036B (zh) * 2017-03-31 2021-05-18 三菱电机株式会社 热交换器及具备该热交换器的制冷循环装置
CN107144049A (zh) * 2017-06-30 2017-09-08 广东美芝制冷设备有限公司 换热器

Also Published As

Publication number Publication date
JPWO2015111216A1 (ja) 2017-03-23
EP3112791A4 (en) 2018-04-04
EP3112791B1 (en) 2018-12-19
JP6120998B2 (ja) 2017-04-26
EP3112791A1 (en) 2017-01-04

Similar Documents

Publication Publication Date Title
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005267B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6116683B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6336100B2 (ja) 熱交換器、及び、空気調和装置
EP3290851B1 (en) Layered header, heat exchanger, and air conditioner
WO2014184912A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
CN101443621A (zh) 具有皱缩通道进口的并流式热交换器
JP6005268B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6080982B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2015045073A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2014184913A1 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
US6814135B2 (en) Stacked-type evaporator
JP6188926B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
US6742577B2 (en) Laminate type evaporator
JP6120998B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JPWO2020090015A1 (ja) 冷媒分配器、熱交換器および空気調和装置
JP2019045063A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015558708

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014879458

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014879458

Country of ref document: EP