WO2014184912A1 - 積層型ヘッダー、熱交換器、及び、空気調和装置 - Google Patents

積層型ヘッダー、熱交換器、及び、空気調和装置 Download PDF

Info

Publication number
WO2014184912A1
WO2014184912A1 PCT/JP2013/063601 JP2013063601W WO2014184912A1 WO 2014184912 A1 WO2014184912 A1 WO 2014184912A1 JP 2013063601 W JP2013063601 W JP 2013063601W WO 2014184912 A1 WO2014184912 A1 WO 2014184912A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
plate
heat exchanger
branch
flow path
Prior art date
Application number
PCT/JP2013/063601
Other languages
English (en)
French (fr)
Inventor
拓也 松田
石橋 晃
岡崎 多佳志
繁佳 松井
真哉 東井上
伊東 大輔
厚志 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015516824A priority Critical patent/JP6038302B2/ja
Priority to CN201380076579.3A priority patent/CN105209845B/zh
Priority to PCT/JP2013/063601 priority patent/WO2014184912A1/ja
Priority to EP13884669.6A priority patent/EP2998679B1/en
Priority to US14/785,705 priority patent/US10107570B2/en
Priority to CN201420112960.2U priority patent/CN203785332U/zh
Publication of WO2014184912A1 publication Critical patent/WO2014184912A1/ja
Priority to HK16102245.1A priority patent/HK1214342A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L41/00Branching pipes; Joining pipes to walls
    • F16L41/02Branch units, e.g. made in one piece, welded, riveted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels

Definitions

  • the present invention relates to a laminated header, a heat exchanger, and an air conditioner.
  • a first plate-like body in which a plurality of outlet channels are formed, and a refrigerant that is stacked on the first plate-like body and flows in from the inlet channel is formed in the first plate-like body.
  • a second plate-like body in which a distribution channel that distributes and flows out to a plurality of outlet channels is formed.
  • the distribution flow path includes a branch flow path having a plurality of grooves extending in a direction perpendicular to the inflow direction of the refrigerant from the position where the refrigerant flows in over the entire circumferential direction.
  • the refrigerant flowing into the branch channel from the inlet channel is branched into a plurality by passing through the plurality of grooves, and flows out through the plurality of outlet channels formed in the first plate-like body (for example, patents). Reference 1).
  • JP 2000-161818 paragraph [0012] to paragraph [0020], FIG. 1 and FIG. 2
  • the angular spacing of the plurality of grooves is made finer to cope with an increase in the number of passes (that is, the number of heat transfer tubes), and the thickness of the isolation wall between the grooves is
  • the present invention has been made against the background of the above problems, and an object of the present invention is to obtain a multilayer header that is prevented from being enlarged in the entire circumferential direction perpendicular to the refrigerant inflow direction. Moreover, an object of this invention is to obtain the heat exchanger provided with such a laminated header. Moreover, an object of this invention is to obtain the air conditioning apparatus provided with such a heat exchanger.
  • the laminated header according to the present invention includes a first plate body in which a plurality of first outlet channels are formed, and a refrigerant that is stacked on the first plate body and flows in from the first inlet channel.
  • the distribution flow path includes at least one branch flow path
  • the second plate-like body has a groove having at least one branch part that branches one branch part into a plurality of branch parts.
  • the number of branches at the position where the refrigerant flows in can be reduced, and the stacked header is in the direction of the refrigerant flow It is suppressed that the size is increased in the entire circumferential direction.
  • FIG. 3 is a development view of a stacked header of the heat exchanger according to the first embodiment.
  • FIG. 3 is a development view of a stacked header of the heat exchanger according to the first embodiment. It is a figure which shows the modification of the flow path formed in the 3rd plate-shaped member of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a perspective view in the state which decomposed
  • FIG. 3 is a development view of a stacked header of the heat exchanger according to the first embodiment. It is a figure which shows the branch part of the flow path formed in the 3rd plate-shaped member of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure which shows the relationship between the linear ratio and distribution ratio of the branch part of the flow path formed in the 3rd plate-shaped member of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a figure which shows the relationship between the linear ratio and the AK value of a heat exchanger of the branch part of the flow path formed in the 3rd plate-shaped member of the heat exchanger which concerns on Embodiment 1.
  • FIG. 6 is a perspective view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where a stacked header is disassembled.
  • FIG. 6 is a perspective view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where a stacked header is disassembled.
  • FIG. 6 is a perspective view of a main part and a cross-sectional view of the main part in a state in which the stacked header is disassembled in Modification-2 of the heat exchanger according to the first embodiment.
  • FIG. 10 is a perspective view of a modified example-3 of the heat exchanger according to the first embodiment in a state in which the stacked header is disassembled. It is a figure which shows the structure of the heat exchanger which concerns on Embodiment 2.
  • FIG. is a perspective view in the state which decomposed
  • FIG. It is an expanded view of the laminated header of the heat exchanger which concerns on Embodiment 2.
  • FIG. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 2 is applied. It is a figure which shows the structure of the heat exchanger which concerns on Embodiment 3.
  • FIG. It is a perspective view in the state which decomposed
  • FIG. 6 is a development view of a stacked header of a heat exchanger according to Embodiment 3.
  • FIG. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 3 is applied.
  • the laminated header according to the present invention will be described with reference to the drawings.
  • the laminated header according to the present invention distributes the refrigerant flowing into the heat exchanger
  • a refrigerant may be distributed.
  • the configuration, operation, and the like described below are merely examples, and are not limited to such configuration, operation, and the like.
  • symbol is attached
  • symbol is abbreviate
  • the illustration of the fine structure is simplified or omitted as appropriate.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger according to the first embodiment.
  • the heat exchanger 1 includes a stacked header 2, a header 3, a plurality of first heat transfer tubes 4, a holding member 5, and a plurality of fins 6.
  • the laminated header 2 has a refrigerant inflow portion 2A and a plurality of refrigerant outflow portions 2B.
  • the header 3 has a plurality of refrigerant inflow portions 3A and a refrigerant outflow portion 3B.
  • Refrigerant piping is connected to the refrigerant inflow portion 2A of the stacked header 2 and the refrigerant outflow portion 3B of the header 3.
  • a plurality of first heat transfer tubes 4 are connected between the plurality of refrigerant outflow portions 2B of the stacked header 2 and the plurality of refrigerant inflow portions 3A of the header 3.
  • the first heat transfer tube 4 is a flat tube in which a plurality of flow paths are formed.
  • the first heat transfer tube 4 is made of, for example, aluminum.
  • the ends of the plurality of first heat transfer tubes 4 on the stacked header 2 side are connected to the plurality of refrigerant outflow portions 2B of the stacked header 2 while being held by the plate-like holding member 5.
  • the holding member 5 is made of aluminum, for example.
  • a plurality of fins 6 are joined to the first heat transfer tube 4.
  • the fin 6 is made of aluminum, for example.
  • the first heat transfer tube 4 and the fin 6 may be joined by brazing.
  • the case where the 1st heat exchanger tube 4 is eight is shown in FIG. 1, it is not limited to such a case.
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 4 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 4.
  • the refrigerant flowing through the plurality of first heat transfer tubes 4 flows into and merges with the header 3 through the plurality of refrigerant inflow portions 3A, and flows out into the refrigerant pipe through the refrigerant outflow portion 3B.
  • the refrigerant can flow backward.
  • FIG. 2 is a perspective view of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • the first plate 11 is stacked on the refrigerant outflow side.
  • the first plate-like body 11 has a first plate-like member 21.
  • a plurality of first outlet channels 11A are formed in the first plate-like body 11.
  • the plurality of first outlet channels 11A correspond to the plurality of refrigerant outflow portions 2B in FIG.
  • a plurality of flow paths 21A are formed in the first plate-like member 21.
  • the plurality of flow paths 21 ⁇ / b> A are through-holes having an inner peripheral surface along the outer peripheral surface of the first heat transfer tube 4.
  • several flow path 21A functions as several 1st exit flow path 11A.
  • the first plate-like member 21 is, for example, about 1 to 10 mm in thickness and made of aluminum.
  • the end of the first heat transfer tube 4 protrudes from the surface of the holding member 5, the first plate 11 is laminated on the holding member 5, and the inner periphery of the first outlet channel 11 ⁇ / b> A is formed on the outer peripheral surface of the end.
  • the first heat transfer tube 4 is connected to the first outlet channel 11A.
  • the first outlet channel 11A and the first heat transfer tube 4 may be positioned by, for example, fitting between a convex portion formed in the holding member 5 and a concave portion formed in the first plate body 11, In such a case, the end of the first heat transfer tube 4 may not protrude from the surface of the holding member 5.
  • the holding member 5 may not be provided, and the first heat transfer tube 4 may be directly connected to the first outlet channel 11A. In such a case, parts costs and the like are reduced.
  • the second plate-like body 12 is laminated on the refrigerant inflow side.
  • the second plate-like body 12 includes a second plate-like member 22 and a plurality of third plate-like members 23_1 and 23_2.
  • a distribution channel 12A is formed in the second plate-like body 12.
  • the distribution flow path 12A includes a first inlet flow path 12a and a plurality of branch flow paths 12b.
  • the first inlet channel 12a corresponds to the refrigerant inflow portion 2A in FIG.
  • a flow path 22A is formed in the second plate-like member 22.
  • the flow path 22A is a circular through hole.
  • the flow path 22A functions as the first inlet flow path 12a.
  • the second plate-like member 22 has a thickness of about 1 to 10 mm and is made of aluminum.
  • a base or the like is provided on the surface of the second plate-like member 22 on the refrigerant inflow side, and the refrigerant pipe is connected to the first inlet channel 12a via the base or the like.
  • the inner peripheral surface of the first inlet channel 12a has a shape that fits with the outer peripheral surface of the refrigerant pipe, and the refrigerant pipe may be directly connected to the first inlet channel 12a without using a base or the like. In such a case, parts costs and the like are reduced.
  • a flow path 23A is formed in the third plate-like member 23_1.
  • a plurality of flow paths 23B are formed in the third plate-like member 23_2.
  • the flow paths 23A and 23B are through grooves. The shape of the through groove will be described in detail later.
  • each of the flow paths 23A and 23B functions as the branch flow path 12b.
  • the plurality of third plate-like members 23_1 and 23_2 are, for example, about 1 to 10 mm in thickness and made of aluminum.
  • the plurality of third plate-like members 23_1 and 23_2 may be collectively referred to as the third plate-like member 23 in some cases.
  • the holding member 5, the first plate member 21, the second plate member 22, and the third plate member 23 may be collectively referred to as a plate member.
  • the branch flow path 12b formed by the flow path 23A branches the inflowing refrigerant into four and flows out from the end of the groove.
  • the branch flow path 12b formed by the flow path 23B branches the inflowing refrigerant into two and flows out from the end of the groove. Therefore, when there are eight first heat transfer tubes 4 to be connected, two third plate-like members 23 are required. When the number of the first heat transfer tubes 4 to be connected is 16, two third plate-like members 23 in which the flow paths 23A are formed are required. There may be one third plate-like member 23 in which the flow path 23A is formed and two third plate-like members 23 in which the flow path 23B is formed.
  • the number of connected first heat transfer tubes 4 is not limited to a power of 2.
  • the branched flow path 12b and the non-branched flow path may be combined.
  • the number of the 1st heat exchanger tubes 4 connected may be four, and the 3rd plate-shaped member 23 in which the flow path 23A was formed may be one sheet.
  • the stacking order of the third plate member 23_1 and the third plate member 23_2 may be reversed. In such a case, for example, one channel 23B may be formed in the third plate member 23_2, and two channels 23A may be formed in the third plate member 23_1.
  • FIG. 3 is a development view of the stacked header of the heat exchanger according to the first embodiment.
  • FIG. 3B shows details of the branching unit 23f.
  • the flow path 23A formed in the third plate-like member 23 has a straight portion 23e between the end 23a, the end 23b, the end 23c, and the end 23d.
  • the shape is connected through two branch portions 23f.
  • the straight line portion 23e is perpendicular to the direction of gravity.
  • a region other than a part of the region 23i (hereinafter referred to as the opening 23i) between the end 23g and the end 23h of the linear portion 23e by a member in which the flow path 23A is stacked adjacent to the refrigerant inflow side.
  • the region other than the end portions 23a to 23d is blocked by a member stacked adjacent to the refrigerant outflow side, thereby forming the branch flow path 12b.
  • the end portions 23a to 23d are positioned at different heights so that the refrigerant branched into the opening 23i and further branched out at the branching portion 23f flows out from different heights.
  • the branch portions 23f when one of the branch portions 23f is on the upper side compared to the straight line portion 23e and the other is on the lower side compared to the straight line portion 23e, the end portion along the flow path 23A from the opening 23i.
  • the deviation of the distances reaching each of 23a to 23d can be reduced without complicating the shape.
  • the opening 23i It is possible to reduce the deviation of the distances reaching the end portions 23a to 23d along the flow path 23A without complicating the shape. Since the arrangement direction of the end portions 23a to 23d is parallel to the longitudinal direction of the third plate-like member 23, it is possible to reduce the dimension in the short direction of the third plate-like member 23, and the parts cost and weight are reduced. Etc. are reduced. Furthermore, the arrangement direction of the end portions 23a to 23d is parallel to the arrangement direction of the first heat transfer tubes 4, so that the heat exchanger 1 is saved in space.
  • the channel 23B formed in the third plate-like member 23 has two end portions 23a and 23b and does not have the branching portion 23f, compared to the channel 23A formed in the third plate-like member 23. Other than that, the same applies. That is, the flow path 23B is closed by the member stacked adjacent to the refrigerant inflow side, and the end portions 23a and 23b are closed by the members stacked adjacent to the refrigerant outflow side.
  • the branch flow path 12b is formed by closing the other area.
  • the branch channel 12b may be formed by the channel 23B having another shape.
  • the branching portion 23f branches the branch portion 23j into branch portions 23k and 23l.
  • the branch part 23j communicates with the opening part 23i.
  • the branch portions 23k and 23l communicate with any one of the end portions 23a to 23d.
  • the branch part 23j extends linearly from a direction parallel to the gravity direction toward the center 23m of the branch part.
  • a portion from the center 23m of the branching portion to the end portion of the linear portion is defined as a straight portion 23n.
  • the branch portions 23k and 23l extend linearly from the center 23m of the branch portion toward opposite directions perpendicular to the direction of gravity. From the center 23m of the branching portion to the end of the linear portion is defined as straight portions 23o and 23p.
  • FIG. 4 is a development view of the stacked header of the heat exchanger according to the first embodiment.
  • the longitudinal direction of the third plate member 23 and the straight portion 23e are It will not be vertical.
  • the stacked header 2 is not limited to one in which the plurality of first outlet channels 11A are arranged along the direction of gravity.
  • a wall-mounted room air conditioner indoor unit, an air conditioner outdoor unit, a chiller outdoor unit It may be used when the heat exchanger 1 is disposed at an inclination like a heat exchanger such as a machine.
  • FIG. 4 is a development view of the stacked header of the heat exchanger according to the first embodiment.
  • the longitudinal direction of the cross section of the channel 21 ⁇ / b> A formed in the first plate member 21, that is, the longitudinal direction of the cross section of the first outlet channel 11 ⁇ / b> A is the longitudinal direction of the first plate member 21.
  • the longitudinal direction of the cross section of 11 A of 1st exit flow paths may be perpendicular
  • the flow path 23A may not have the straight portion 23e.
  • the horizontal portion perpendicular to the direction of gravity between the lower end of the upper branch portion 23f and the upper end of the lower branch portion 23f of the flow path 23A is the opening portion 23i.
  • FIG. 5 is a view showing a modification of the flow path formed in the third plate-like member of the heat exchanger according to the first embodiment.
  • the flow path 23A may have eight end portions and six branch portions 23f.
  • the inflowing refrigerant can be branched into eight by one branch channel 12b, and the number of the third plate-like members 23 can be reduced.
  • the frequency of occurrence of brazing defects can be reduced. That is, in the flow path 23A, the number of branching portions 23f does not have to be two, and the number of branches of the refrigerant flowing in can be freely changed by changing the number of branching portions 23f.
  • the flow path 23A may have three ends and one branch 23f. For example, this is effective when the number of connected first heat transfer tubes 4 is not a power of two.
  • the flow path resistance is increased in the region where the refrigerant flowing out from the end of the flow path 23A without passing through the branching portion 23f of the flow path 23A increases, and flows out from the three ends. It is preferable to make the flow rate of the refrigerant to be uniform. By optimizing the shape of the flow path (flow path width, flow path length, flow path bending, flow path surface roughness, etc.), the flow path resistance can be increased.
  • the branched refrigerant sequentially passes through the branch part 23j and the branch parts 23k and 23l of the branch part 23f, reaches the end parts 23a to 23d of the flow path 23A, and is formed in the flow path formed in the third plate member 23_2. It flows into the opening 23i of 23B.
  • the refrigerant that has flowed into the opening 23i of the flow path 23B formed in the third plate-like member 23_2 hits the surface of the adjacent laminated member, and faces the end 23g and the end 23h of the straight portion 23e. Branch into two.
  • the branched refrigerant reaches the end portions 23a and 23b of the flow path 23B, passes through the flow path 21A of the first plate member 21, and flows into the first heat transfer tube 4.
  • Each plate-like member is preferably laminated by brazing joint.
  • a brazing material for joining may be supplied by using a double-sided clad material obtained by rolling a brazing material on both sides for all plate-like members or every other plate-like member.
  • a brazing material for joining may be supplied to all the plate-like members by using a one-side clad material in which the brazing material is rolled on one side.
  • the brazing material sheet may be supplied by laminating brazing material sheets between the plate-like members.
  • the brazing material may be supplied by applying a pasty brazing material between the plate members.
  • the brazing material may be supplied by laminating clad materials obtained by rolling the brazing material on both sides between the plate-like members.
  • the plate-like members are laminated without gaps, leakage of the refrigerant is suppressed, and pressure resistance is ensured.
  • the occurrence of brazing defects is further suppressed.
  • processing that promotes the formation of fillets, such as formation of ribs is performed at locations where refrigerant leakage is likely to occur, the occurrence of brazing defects is further suppressed.
  • the first heat transfer tubes 4 and the fins 6 are made of the same material (for example, made of aluminum), it is possible to braze and join together. , Productivity is improved.
  • the first heat transfer tubes 4 and the fins 6 may be brazed.
  • only the first plate 11 may be brazed to the holding member 5 first, and the second plate 12 may be brazed afterwards.
  • FIG. 6 is a perspective view of the heat exchanger according to Embodiment 1 in a state in which the stacked header is disassembled.
  • FIG. 7 is a development view of the stacked header of the heat exchanger according to the first embodiment.
  • a brazing material is preferably supplied by laminating a platy member obtained by rolling a brazing material on both sides, that is, clad materials on both sides, between the respective platy members.
  • a plurality of clad members 24_1 to 24_4 are laminated between the plate-like members.
  • the plurality of both-side clad materials 24_1 to 24_4 may be collectively referred to as the both-side clad material 24.
  • the clad material 24 may be laminated between some plate-like members, and the brazing material may be supplied between other plate-like members by other methods.
  • the both-side clad material 24 has a channel 24A that penetrates the both-side clad material 24 in a region facing a region where the refrigerant flows out of a channel formed in a plate-like member laminated adjacent to the side into which the refrigerant flows. Is formed.
  • the flow path 24A formed in the both-side clad material 24 laminated on the second plate member 22 and the third plate member 23 is a circular through hole.
  • the flow path 24 ⁇ / b> A formed in the both-side clad material 24 ⁇ / b> _ ⁇ b> 4 laminated between the first plate-like member 21 and the holding member 5 is a through hole having an inner peripheral surface along the outer peripheral surface of the first heat transfer tube 4. .
  • the flow path 24A functions as a refrigerant isolation flow path for the first outlet flow path 11A and the distribution flow path 12A.
  • the end portions of the first heat transfer tubes 4 may or may not project from the surface of the clad members 24_4.
  • the flow path 24A is formed by pressing or the like, the processing is simplified and the manufacturing cost and the like are reduced.
  • all the members to be brazed including the clad members 24 are made of the same material (for example, made of aluminum), it is possible to collectively braze and improve productivity.
  • the refrigerant isolation flow path By forming the refrigerant isolation flow path by the both-side clad material 24, in particular, it is possible to ensure the isolation of the refrigerant that branches off from the branch flow path 12b and flows out. Moreover, the run-up distance until it flows into the branch flow path 12b and the first outlet flow path 11A can be ensured by the thickness of each clad member 24, and the uniformity of refrigerant distribution is improved. Moreover, the design freedom of the branch flow path 12b is improved by ensuring the isolation between the refrigerants.
  • the branch portion 23j extends from below toward the center 23m of the branch portion
  • the branch portion 23k extends upward from the center 23m of the branch portion
  • the branch portion 23l extends downward from the center 23m of the branch portion.
  • FIG. 8 is a diagram illustrating a branch portion of the flow path formed in the third plate-like member of the heat exchanger according to the first embodiment.
  • the distance between the straight part 23n and the branch part 23j is defined as a straight line distance L1.
  • the hydraulic equivalent diameter of the straight portion 23n is defined as hydraulic equivalent diameter De1
  • the ratio of the linear distance L1 to the hydraulic equivalent diameter De1 is defined as a linear ratio L1 / De1.
  • the ratio of the flow rate of the refrigerant flowing out from the branch portion 23k to the sum of the flow rate of the refrigerant flowing out from the branch portion 23k and the flow rate of the refrigerant flowing out from the branch portion 23l is defined as a distribution ratio R.
  • FIG. 9 is a diagram illustrating the relationship between the linear ratio and the distribution ratio of the branching portion of the flow path formed in the third plate-like member of the heat exchanger according to the first embodiment.
  • FIG. 9 shows the change in the distribution ratio R when the linear ratio L1 / De1 is changed. As shown in FIG. 9, the distribution ratio R increases until the linear ratio L1 / De1 becomes 10.0, and changes so as to be 0.5 when it is 10.0 or more.
  • FIG. 10 is a diagram showing the relationship between the linear ratio and the AK value of the heat exchanger at the branching portion of the flow path formed in the third plate-like member of the heat exchanger according to the first embodiment.
  • Fig.10 (a) has shown the change of AK value of the heat exchanger 1 when changing linear ratio L1 / De1.
  • FIG. 10B shows a change in the effective AK value of the heat exchanger 1 when the linear ratio L1 / De1 is changed.
  • the AK value is a product of the heat transfer area A [m 2 ] of the heat exchanger 1 and the heat passage rate K [J / (S ⁇ m 2 ⁇ K)] of the heat exchanger 1, and the effective AK.
  • the value is a value defined by a product of the AK value and the distribution ratio R described above. The higher the effective AK value, the higher the performance of the heat exchanger 1.
  • the effective AK value increases until the linear ratio L1 / De1 becomes 3.0, and changes so as to decrease while decreasing the decrease amount when 3.0 or more. . That is, the effective AK value, that is, the performance of the heat exchanger 1 can be maintained by setting the linear ratio L1 / De1 to 3.0 or more.
  • the distance of the straight part 23o of the branch part 23k is defined as a straight line distance L2.
  • the distance of the straight part 23p of the branch part 23l is defined as a straight line distance L3.
  • the hydraulic equivalent diameter of the branch portion 23k is defined as hydraulic equivalent diameter De2, and the ratio of the linear distance L2 to the hydraulic equivalent diameter De2 is defined as a linear ratio L2 / De2.
  • the hydraulic equivalent diameter of the branch portion 23l is defined as a hydraulic equivalent diameter De3 and the ratio of the linear distance L3 to the hydraulic equivalent diameter De3 is defined as a linear ratio L3 / De3.
  • FIG. 11 is a diagram showing the relationship between the linear ratio and the distribution ratio of the branching portion of the flow path formed in the third plate-like member of the heat exchanger according to the first embodiment.
  • the distribution ratio R increases until the linear ratio L2 / De2 and the linear ratio L3 / De3 increase to 1.0, and changes to 0.5 when 1.0 or more. .
  • the branch portion 23k and the branch portion 23l are influenced by being bent so that the directions with respect to the direction of gravity are different, and the distribution ratio R Does not reach 0.5. That is, the uniformity of the refrigerant distribution can be further improved by setting the linear ratio L2 / De2 and the linear ratio L3 / De3 to 1.0 or more.
  • the bending angle of the branch portion 23k is defined as an angle ⁇ 1
  • the bending angle of the branch portion 23l is defined as an angle ⁇ 2.
  • FIG. 12 is a diagram illustrating a relationship between a bend angle and a distribution ratio of a branch portion of a flow path formed in the third plate-like member of the heat exchanger according to the first embodiment.
  • the distribution ratio R approaches 0.5 as the angle ⁇ 1 and the angle ⁇ 2 approach 90 °. That is, the uniformity of refrigerant distribution can be further improved by increasing the angles ⁇ 1 and ⁇ 2.
  • FIG. 13 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 1 is applied.
  • the air conditioner 51 includes a compressor 52, a four-way valve 53, a heat source side heat exchanger 54, a throttle device 55, a load side heat exchanger 56, a heat source side fan 57, A load-side fan 58 and a control device 59.
  • the compressor 52, the four-way valve 53, the heat source side heat exchanger 54, the expansion device 55, and the load side heat exchanger 56 are connected by refrigerant piping to form a refrigerant circulation circuit.
  • a compressor 52, a four-way valve 53, a throttle device 55, a heat source side fan 57, a load side fan 58, various sensors, and the like are connected to the control device 59.
  • the heat source side heat exchanger 54 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • the load side heat exchanger 56 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
  • the flow of the refrigerant during the cooling operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the heat source side heat exchanger 54 via the four-way valve 53 and condenses by heat exchange with the outside air supplied by the heat source side fan 57. It becomes a high-pressure liquid refrigerant and flows out of the heat source side heat exchanger 54.
  • the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 54 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flowing out of the expansion device 55 flows into the load-side heat exchanger 56 and evaporates by heat exchange with the indoor air supplied by the load-side fan 58, thereby causing a low-pressure gas state. And flows out of the load-side heat exchanger 56.
  • the low-pressure gaseous refrigerant flowing out from the load-side heat exchanger 56 is sucked into the compressor 52 through the four-way valve 53.
  • the flow of the refrigerant during the heating operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the load-side heat exchanger 56 through the four-way valve 53 and condenses by heat exchange with the indoor air supplied by the load-side fan 58. And becomes a high-pressure liquid refrigerant and flows out of the load-side heat exchanger 56.
  • the high-pressure liquid refrigerant flowing out of the load-side heat exchanger 56 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant that flows out of the expansion device 55 flows into the heat source side heat exchanger 54 and evaporates by heat exchange with the outside air supplied by the heat source side fan 57, so that the low-pressure gas state It becomes a refrigerant and flows out of the heat source side heat exchanger 54.
  • the low-pressure gaseous refrigerant flowing out from the heat source side heat exchanger 54 is sucked into the compressor 52 through the four-way valve 53.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the heat exchanger 1 is connected so that the refrigerant flows in from the stacked header 2 and the refrigerant flows out of the header 3 when the heat exchanger 1 acts as an evaporator. That is, when the heat exchanger 1 acts as an evaporator, the gas-liquid two-phase refrigerant flows from the refrigerant pipe to the stacked header 2, and the gas refrigerant flows from the first heat transfer pipe 4 to the header 3. .
  • the heat exchanger 1 acts as a condenser, a gaseous refrigerant flows from the refrigerant pipe to the header 3, and a liquid refrigerant flows from the first heat transfer tube 4 to the stacked header 2.
  • a distribution channel 12A including a branch channel 12b is formed in the second plate-like body 12 of the laminated header 2, and at least a part of the refrigerant branched by flowing into the branch channel 12b is separated from the branch part 23j.
  • the gas flows out from the branch flow path 12b in a state where the branch portions 23k and 23l are sequentially passed and further branched.
  • the refrigerant branched at the opening 23i is further branched at the branching part 23f, the number of branches at the opening 23i can be reduced, and the multilayer header 2 is arranged around the entire circumference perpendicular to the refrigerant inflow direction. An increase in size in the direction is suppressed.
  • the refrigerant is branched from the branch portion 23j into the two branch portions 23k and 23l in the branch portion 23f. Therefore, it is ensured that the refrigerant is uniformly distributed. In particular, when all of the opening 23i and the branching portion 23f branch the refrigerant into two, it is further ensured that the refrigerant is evenly distributed.
  • the straight portion 23 o of the branch portion 23 k and the straight portion 23 p of the branch portion 23 l are on a straight line, and the straight portion 23 n of the branch portion 23 j and the branch portions 23 k and 23 l
  • the straight portions 23o and 23p intersect perpendicularly. Therefore, the refrigerant flowing in from the branch portion 23j flows into the branch portions 23k and 23l without biasing the angle of changing the direction, and the uniformity of refrigerant distribution is further improved.
  • the straight portion 23n of the branch portion 23j extends in parallel with the gravity direction, and the straight portions 23o and 23p of the branch portions 23k and 23l extend in a direction perpendicular to the gravity direction. For this reason, when the refrigerant branches at the center 23m of the branching portion, it is possible to suppress the action of gravity and to further improve the uniformity of refrigerant distribution.
  • the flow path 23A formed in the third plate member 23 is a through groove, and the third flow path 12b is formed by stacking the third plate members 23. Therefore, processing and assembly are simplified, and production efficiency and manufacturing cost are reduced.
  • the circumferential direction is perpendicular to the refrigerant inflow direction.
  • the stacked header 2 does not have to be enlarged in the entire circumferential direction perpendicular to the refrigerant inflow direction, and the heat exchanger 1 is saved in space.
  • the heat transfer tube when the heat transfer tube is changed from a circular tube to a flat tube, the flow passage cross-sectional area in the heat transfer tube is reduced, and the pressure loss generated in the heat transfer tube increases.
  • the laminated header 2 is not limited to the case where the first heat transfer tube 4 is a flat tube.
  • FIG. 14 is a perspective view of the modified example-1 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • 14 and the subsequent drawings show a state in which the clad members 24 are laminated (states in FIGS. 6 and 7), but a state in which the clad members 24 are not laminated (states in FIGS. 2 and 3). Needless to say, it may be.
  • a plurality of flow paths 22 ⁇ / b> A are formed in the second plate-shaped member 22, that is, a plurality of flow paths 23 ⁇ / b> A are formed in the third plate-shaped member 23. May be reduced. By being configured in this way, parts cost, weight, etc. are reduced.
  • FIG. 15 is a perspective view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the plurality of flow paths 22 ⁇ / b> A may not be provided in the area facing the area where the refrigerant flows in the flow path 23 ⁇ / b> A formed in the third plate-like member 23.
  • a plurality of flow paths 22A are collectively formed at one place, and the other plate-like member 25 is laminated between the second plate-like member 22 and the third plate-like member 23_1.
  • Each of the refrigerants that have passed through the plurality of flow paths 22A may be guided to a region facing the region where the refrigerant flows in the flow channel 23A formed in the third plate member 23 by the flow channel 25A.
  • FIG. 16 is a perspective view of a main part and a cross-sectional view of the main part in a state in which the laminated header is disassembled in Modification-2 of the heat exchanger according to the first embodiment.
  • 16 (a) is a perspective view of the main part in a state where the stacked header is disassembled
  • FIG. 16 (b) is a third plate-like member taken along line AA of FIG. 16 (a).
  • the channel 23A formed in the third plate-like member 23 may be a bottomed groove. In such a case, a circular through hole 23r is formed at the end 23q of the bottom surface of the groove of the flow path 23A.
  • FIG. 16 shows the case where the refrigerant outflow side of the flow path 23A is the bottom surface, but the refrigerant inflow side of the flow path 23A may be the bottom surface. In such a case, a through hole may be formed in a region corresponding to the opening 23i.
  • FIG. 17 is a perspective view of Modified Example-3 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the flow path 22A functioning as the first inlet flow path 12a is formed in a laminated member other than the second plate-shaped member 22, that is, other plate-shaped members, both-side clad members 24, and the like. May be.
  • the flow path 22A may be, for example, a through hole that penetrates from the side surface of another plate-like member to the surface on the side where the second plate-like member 22 is present.
  • the present invention includes those in which the first inlet channel 12 a is formed in the first plate-like body 11, and the “distribution channel” of the present invention has the first inlet channel 12 a as the second plate-like body 12. Other than the distribution flow path 12A formed in the above.
  • FIG. 18 is a diagram illustrating a configuration of the heat exchanger according to the second embodiment. As shown in FIG. 18, the heat exchanger 1 includes a stacked header 2, a plurality of first heat transfer tubes 4, a holding member 5, and a plurality of fins 6.
  • the stacked header 2 has a refrigerant inflow portion 2A, a plurality of refrigerant outflow portions 2B, a plurality of refrigerant inflow portions 2C, and a refrigerant outflow portion 2D.
  • a refrigerant pipe is connected to the refrigerant inflow portion 2A of the multilayer header 2 and the refrigerant outflow portion 2D of the multilayer header 2.
  • the first heat transfer tube 4 is a flat tube that has been subjected to hairpin bending.
  • a plurality of first heat transfer tubes 4 are connected between the plurality of refrigerant outflow portions 2B of the multilayer header 2 and the plurality of refrigerant inflow portions 2C of the multilayer header 2.
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 4 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 4.
  • the refrigerant that has passed through the plurality of first heat transfer tubes 4 flows into and merges with the stacked header 2 through the plurality of refrigerant inflow portions 2C, and flows out to the refrigerant piping through the refrigerant outflow portion 2D.
  • the refrigerant can flow backward.
  • FIG. 19 is a perspective view of the heat exchanger according to Embodiment 2 in a state where the stacked header is disassembled.
  • FIG. 20 is a development view of the stacked header of the heat exchanger according to the second embodiment. In FIG. 20, the illustration of the clad members 24 on both sides is omitted.
  • the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • the first plate 11 is formed with a plurality of first outlet channels 11A and a plurality of second inlet channels 11B.
  • the plurality of second inlet channels 11B correspond to the plurality of refrigerant inflow portions 2C in FIG.
  • a plurality of flow paths 21B are formed in the first plate-like member 21.
  • the plurality of flow paths 21 ⁇ / b> B are through-holes having an inner peripheral surface along the outer peripheral surface of the first heat transfer tube 4.
  • several flow path 21B functions as several 2nd inlet flow path 11B.
  • a distribution channel 12A and a merging channel 12B are formed in the second plate-like body 12.
  • the merging channel 12B includes a mixing channel 12c and a second outlet channel 12d.
  • the second outlet channel 12d corresponds to the refrigerant outflow portion 2D in FIG.
  • a flow path 22B is formed in the second plate-like member 22 in the second plate-like member 22 .
  • the flow path 22B is a circular through hole.
  • the flow path 22B functions as the second outlet flow path 12d.
  • a plurality of the flow paths 22B, that is, the second outlet flow paths 12d may be formed.
  • the flow paths 23C_1 and 23C_2 are formed in the third plate-like members 23_1 and 23_2.
  • the flow paths 23 ⁇ / b> C_ ⁇ b> 1 and 23 ⁇ / b> C_ ⁇ b> 2 are rectangular through holes that penetrate almost the entire region of the third plate-like member 23 in the height direction.
  • each of the flow paths 23C_1 and 23C_2 functions as the mixing flow path 12c.
  • the flow paths 23C_1 and 23C_2 do not have to be rectangular.
  • the plurality of flow paths 23C_1 and 23C_2 may be collectively referred to as a flow path 23C.
  • the brazing material is supplied by laminating the clad material 24 on both sides of which the brazing material is rolled on both sides between the plate-like members.
  • the flow path 24 ⁇ / b> B formed in the both-side clad material 24 ⁇ / b> _ ⁇ b> 4 laminated between the holding member 5 and the first plate-like member 21 is a through hole having an inner peripheral surface along the outer peripheral surface of the first heat transfer tube 4. .
  • the flow path 24B formed in the both-side clad material 24_3 laminated between the first plate member 21 and the third plate member 23_2 is a circular through hole.
  • the flow path 24B formed in the both-side clad material 24 laminated on the third plate-like member 23_1 and the second plate-like member 22 is a rectangular through-hole penetrating almost the entire area of the both-side clad material 24 in the height direction. is there.
  • the flow path 24B functions as a refrigerant isolation flow path for the second inlet flow path 11B and the merge flow path 12B.
  • the flow path 22B functioning as the second outlet flow path 12d may be formed in other plate-like members other than the second plate-like member 22 of the second plate-like body 12, both-side clad material 24, and the like. In such a case, a cutout that communicates a part of the flow path 23C or the flow path 24B with, for example, the side surface of the other plate-like member or both-side clad material 24 may be formed.
  • the flow path 22B which functions as the 2nd exit flow path 12d may be formed in the 1st plate-shaped member 21 by folding the mixing flow path 12c.
  • the present invention includes the one in which the second outlet channel 12d is formed in the first plate-like body 11, and the “merging channel” of the present invention has the second outlet channel 12d in the second plate-like body 12. Other than the merging channel 12B formed in the above.
  • FIG. 21 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 2 is applied.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the heat exchanger 1 when the heat exchanger 1 acts as an evaporator, the refrigerant flows into the first heat transfer tube 4 from the distribution flow path 12 ⁇ / b> A of the stacked header 2, and the stacked header 2 is transferred from the first heat transfer tube 4.
  • the refrigerant flows into the merging flow path 12B.
  • a gas-liquid two-phase refrigerant flows from the refrigerant pipe into the distribution flow path 12A of the laminated header 2 and flows from the first heat transfer tube 4 to the laminated header 2.
  • the refrigerant in the gas state flows into the merge channel 12B.
  • a gaseous refrigerant flows from the refrigerant pipe into the merged flow path 12B of the laminated header 2 and the distribution flow path of the laminated header 2 from the first heat transfer pipe 4. Liquid refrigerant flows into 12A.
  • FIG. 22 is a diagram illustrating a configuration of the heat exchanger according to the third embodiment.
  • the heat exchanger 1 includes a stacked header 2, a plurality of first heat transfer tubes 4, a plurality of second heat transfer tubes 7, a holding member 5, and a plurality of fins 6. Have.
  • the laminated header 2 has a plurality of refrigerant folding portions 2E. Similar to the first heat transfer tube 4, the second heat transfer tube 7 is a flat tube that has been subjected to hairpin bending. A plurality of first heat transfer tubes 4 are connected between the plurality of refrigerant outflow portions 2B and the plurality of refrigerant folding portions 2E of the multilayer header 2, and the plurality of refrigerant folding portions 2E and the plurality of refrigerant inflows of the multilayer header 2 are connected. A plurality of second heat transfer tubes 7 are connected between the portion 2C.
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 4 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 4.
  • the refrigerant that has passed through the plurality of first heat transfer tubes 4 flows into the plurality of refrigerant folding portions 2 ⁇ / b> E of the stacked header 2, is turned back, and flows out to the plurality of second heat transfer tubes 7.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of second heat transfer tubes 7.
  • the refrigerant that has passed through the plurality of second heat transfer tubes 7 flows into and merges with the stacked header 2 via the plurality of refrigerant inflow portions 2C, and flows out to the refrigerant piping via the refrigerant outflow portion 2D.
  • the refrigerant can flow backward.
  • FIG. 23 is a perspective view of the heat exchanger according to Embodiment 3 in a state where the stacked header is disassembled.
  • FIG. 24 is a development view of the stacked header of the heat exchanger according to the third embodiment. In FIG. 24, the illustration of the clad material 24 on both sides is omitted.
  • the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • first plate-like body 11 a plurality of first outlet channels 11A, a plurality of second inlet channels 11B, and a plurality of folded channels 11C are formed.
  • the plurality of return flow paths 11C correspond to the plurality of refrigerant return portions 2E in FIG.
  • a plurality of flow paths 21 ⁇ / b> C are formed in the first plate-like member 21.
  • the plurality of flow paths 21 ⁇ / b> C have through-holes whose inner peripheral surfaces surround the outer peripheral surface of the refrigerant outflow side end of the first heat transfer tube 4 and the outer peripheral surface of the second heat transfer tube 7 on the refrigerant inflow side. It is.
  • the plurality of channels 21C function as the plurality of folded channels 11C.
  • the brazing material is supplied by laminating the clad material 24 on both sides of which the brazing material is rolled on both sides between the plate-like members.
  • the flow path 24C formed in the both-side clad material 24_4 laminated between the holding member 5 and the first plate-like member 21 has an inner peripheral surface that is the outer peripheral surface of the end of the first heat transfer tube 4 on the refrigerant outflow side. And a through hole having a shape surrounding the outer peripheral surface of the end of the second heat transfer tube 7 on the refrigerant inflow side.
  • the refrigerant that has flowed into the flow path 21 ⁇ / b> B of the first plate member 21 flows into the flow path 23 ⁇ / b> C formed in the third plate member 23 and is mixed therewith.
  • the mixed refrigerant passes through the flow path 22B of the second plate-like member 22 and flows out to the refrigerant pipe.
  • FIG. 25 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 3 is applied.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the refrigerant flows into the first heat transfer tube 4 from the distribution flow path 12 ⁇ / b> A of the stacked header 2 and from the second heat transfer tube 7 to the stacked header 2.
  • the refrigerant flows into the merging flow path 12B.
  • a gas-liquid two-phase refrigerant flows from the refrigerant pipe into the distribution flow path 12A of the laminated header 2 and flows from the second heat transfer tube 7 to the laminated header 2.
  • the refrigerant in the gas state flows into the merge channel 12B.
  • a gaseous refrigerant flows from the refrigerant pipe into the merged flow path 12B of the laminated header 2 and the distribution flow path of the laminated header 2 from the first heat transfer pipe 4. Liquid refrigerant flows into 12A.
  • the heat exchanger 1 acts as a condenser
  • the first heat transfer tube 4 is compared with the second heat transfer tube 7 on the upstream side (windward side) of the airflow generated by the heat source side fan 57 or the load side fan 58. )
  • the heat exchanger 1 is disposed. That is, the refrigerant flow from the second heat transfer tube 7 to the first heat transfer tube 4 and the airflow face each other.
  • the refrigerant of the first heat transfer tube 4 has a lower temperature than the refrigerant of the second heat transfer tube 7.
  • the airflow generated by the heat source side fan 57 or the load side fan 58 has a lower temperature on the upstream side of the heat exchanger 1 than on the downstream side of the heat exchanger 1.
  • the refrigerant can be supercooled (so-called SC) with a low-temperature airflow flowing upstream of the heat exchanger 1, and the condenser performance is improved.
  • SC supercooled
  • the heat source side fan 57 and the load side fan 58 may be provided on the leeward side or may be provided on the leeward side.
  • the number of rows of heat transfer tubes is increased as in the heat exchanger 1, the heat exchange amount is increased without changing the area of the heat exchanger 1 as viewed from the front, the interval between the fins 6 and the like. It is possible to make it.
  • the number of rows of heat transfer tubes becomes two, the amount of heat exchange increases by about 1.5 times or more. Note that the number of rows of heat transfer tubes may be three or more. Furthermore, the area of the heat exchanger 1 as viewed from the front, the interval between the fins 6 and the like may be changed.
  • a header (laminated header 2) is provided only on one side of the heat exchanger 1.
  • laminated header 2 is provided only on one side of the heat exchanger 1.
  • header stacked header 2
  • the degree of freedom in design, production efficiency, etc. Is improved.
  • the first heat transfer tube 4 is located on the windward side as compared to the second heat transfer tube 7.
  • headers laminated header 2 and header 3
  • condensation is performed by giving a temperature difference of the refrigerant for each row of heat transfer tubes. It was difficult to improve the vessel performance.
  • the first heat transfer tube 4 and the second heat transfer tube 7 are flat tubes, unlike a circular tube, the degree of freedom of bending is low, so that a temperature difference of the refrigerant is given to each row of heat transfer tubes. It is difficult to realize by deforming the refrigerant flow path.

Abstract

 本発明に係る積層型ヘッダー2は、複数の第1出口流路11Aが形成された第1板状体11と、第1板状体11に積層され、第1入口流路12aから流入する冷媒を複数の第1出口流路11Aに分配して流出する分配流路12Aが形成された第2板状体12と、を備え、分配流路12Aは、少なくとも1つの分岐流路12bを含み、第2板状体12は、1つの枝部を複数の枝部に枝分かれさせる少なくとも1つの枝分かれ部を有する溝が流路として形成された、少なくとも1つの板状部材23_1を有し、分岐流路12bは、溝が、冷媒が流入する領域及び冷媒が流出する領域以外の領域を、閉塞されたものであり、分岐流路12bに流入することで分岐された冷媒の少なくとも一部は、1つの枝部と複数の枝部とを順に通過して、溝の端部から流出するものである。

Description

積層型ヘッダー、熱交換器、及び、空気調和装置
 本発明は、積層型ヘッダーと熱交換器と空気調和装置とに関するものである。
 従来の積層型ヘッダーとして、複数の出口流路が形成された第1板状体と、第1板状体に積層され、入口流路から流入する冷媒を、第1板状体に形成された複数の出口流路に分配して流出する分配流路が形成された第2板状体と、を備えるものがある。分配流路は、冷媒が流入する位置から冷媒の流入方向と垂直な方向に延びる複数の溝を全周方向に亘って有する分岐流路を含む。入口流路から分岐流路に流入する冷媒は、その複数の溝を通過することで複数に分岐し、第1板状体に形成された複数の出口流路を通って流出する(例えば、特許文献1参照)。
特開2000-161818号公報(段落[0012]~段落[0020]、図1、図2)
 このような積層型ヘッダーでは、複数の溝の角度間隔を細かくすることで、パス数(つまり伝熱管の本数)の増加に対応しており、溝と溝との間の隔離壁の厚さが薄くなりすぎることを抑制するために、入口流路の径を大きくして、溝を入口流路の中心から遠くに配置する必要がある。つまり、積層型ヘッダーが冷媒の流入方向と垂直な全周方向に大型化されてしまうという問題点があった。
 本発明は、上記のような課題を背景としてなされたものであり、冷媒の流入方向と垂直な全周方向に大型化されることが抑制された積層型ヘッダーを得ることを目的とする。また、本発明は、そのような積層型ヘッダーを備えた熱交換器を得ることを目的とする。また、本発明は、そのような熱交換器を備えた空気調和装置を得ることを目的とする。
 本発明に係る積層型ヘッダーは、複数の第1出口流路が形成された第1板状体と、前記第1板状体に積層され、第1入口流路から流入する冷媒を前記複数の第1出口流路に分配して流出する分配流路が形成された第2板状体と、を備え、前記分配流路は、少なくとも1つの分岐流路を含み、前記第2板状体は、1つの枝部を複数の枝部に枝分かれさせる少なくとも1つの枝分かれ部を有する溝が流路として形成された、少なくとも1つの板状部材を有し、前記分岐流路は、前記溝が、前記冷媒が流入する領域及び前記冷媒が流出する領域以外の領域を、閉塞されたものであり、前記分岐流路に流入することで分岐された前記冷媒の少なくとも一部は、前記1つの枝部と前記複数の枝部とを順に通過して、前記溝の端部から流出するものである。
 本発明に係る積層型ヘッダーでは、分配流路は、少なくとも1つの分岐流路を含み、第2板状体は、1つの枝部を複数の枝部に枝分かれさせる少なくとも1つの枝分かれ部を有する溝が流路として形成された、少なくとも1つの板状部材を有し、分岐流路は、溝が、冷媒が流入する領域及び冷媒が流出する領域以外の領域を、閉塞されたものであり、分岐流路に流入することで分岐された冷媒の少なくとも一部は、1つの枝部と複数の枝部とを順に通過して、溝の端部から流出する。分岐流路において、冷媒が流入する位置で分岐された冷媒が枝分かれ部で更に分岐されるため、冷媒が流入する位置での分岐の数を削減することができ、積層型ヘッダーが冷媒の流入方向と垂直な全周方向に大型化されることが抑制される。
実施の形態1に係る熱交換器の、構成を示す図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態1に係る熱交換器の、第3板状部材に形成される流路の変形例を示す図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部を示す図である。 実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、直線比と分配比との関係を示す図である。 実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、直線比と熱交換器のAK値との関係を示す図である。 実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、直線比と分配比との関係を示す図である。 実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、曲がり角度と分配比との関係を示す図である。 実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。 実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-2の、積層型ヘッダーを分解した状態での要部の斜視図と要部の断面図である。 実施の形態1に係る熱交換器の変形例-3の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態2に係る熱交換器の、構成を示す図である。 実施の形態2に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態2に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。 実施の形態3に係る熱交換器の、構成を示す図である。 実施の形態3に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態3に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態3に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 以下、本発明に係る積層型ヘッダーについて、図面を用いて説明する。
 なお、以下では、本発明に係る積層型ヘッダーが、熱交換器に流入する冷媒を分配するものである場合を説明しているが、本発明に係る積層型ヘッダーが、他の機器に流入する冷媒を分配するものであってもよい。また、以下で説明する構成、動作等は、一例にすぎず、そのような構成、動作等に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
実施の形態1.
 実施の形態1に係る熱交換器について説明する。
<熱交換器の構成>
 以下に、実施の形態1に係る熱交換器の構成について説明する。
 図1は、実施の形態1に係る熱交換器の、構成を示す図である。
 図1に示されるように、熱交換器1は、積層型ヘッダー2と、ヘッダー3と、複数の第1伝熱管4と、保持部材5と、複数のフィン6と、を有する。
 積層型ヘッダー2は、冷媒流入部2Aと、複数の冷媒流出部2Bと、を有する。ヘッダー3は、複数の冷媒流入部3Aと、冷媒流出部3Bと、を有する。積層型ヘッダー2の冷媒流入部2A及びヘッダー3の冷媒流出部3Bには、冷媒配管が接続される。積層型ヘッダー2の複数の冷媒流出部2Bとヘッダー3の複数の冷媒流入部3Aとの間には、複数の第1伝熱管4が接続される。
 第1伝熱管4は、複数の流路が形成された扁平管である。第1伝熱管4は、例えば、アルミニウム製である。複数の第1伝熱管4の積層型ヘッダー2側の端部は、板状の保持部材5によって保持された状態で、積層型ヘッダー2の複数の冷媒流出部2Bに接続される。保持部材5は、例えば、アルミニウム製である。第1伝熱管4には、複数のフィン6が接合される。フィン6は、例えば、アルミニウム製である。第1伝熱管4とフィン6との接合は、ロウ付け接合であるとよい。なお、図1では、第1伝熱管4が8本である場合を示しているが、そのような場合に限定されない。
<熱交換器における冷媒の流れ>
 以下に、実施の形態1に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管4に流出する。冷媒は、複数の第1伝熱管4において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管4を流れる冷媒は、複数の冷媒流入部3Aを介してヘッダー3に流入して合流し、冷媒流出部3Bを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーの構成について説明する。
 図2は、実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。
 図2に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11は、冷媒の流出側に積層される。第1板状体11は、第1板状部材21を有する。第1板状体11には、複数の第1出口流路11Aが形成される。複数の第1出口流路11Aは、図1における複数の冷媒流出部2Bに相当する。
 第1板状部材21には、複数の流路21Aが形成される。複数の流路21Aは、内周面が第1伝熱管4の外周面に沿う形状の貫通穴である。第1板状部材21が積層されると、複数の流路21Aは、複数の第1出口流路11Aとして機能する。第1板状部材21は、例えば、厚さ1~10mm程度であり、アルミニウム製である。複数の流路21Aが、プレス加工等で形成される場合には、加工が簡略化され、製造コストが削減される。
 保持部材5の表面から第1伝熱管4の端部が突出しており、第1板状体11が保持部材5に積層されて、その端部の外周面に第1出口流路11Aの内周面が嵌合することで、第1出口流路11Aに第1伝熱管4が接続される。第1出口流路11Aと第1伝熱管4とが、例えば、保持部材5に形成された凸部と第1板状体11に形成された凹部との嵌合等によって位置決めされてもよく、そのような場合には、第1伝熱管4の端部は、保持部材5の表面から突出しなくてもよい。保持部材5が設けられず、第1出口流路11Aに第1伝熱管4が直接接続されてもよい。そのような場合には、部品費等が削減される。
 第2板状体12は、冷媒の流入側に積層される。第2板状体12は、第2板状部材22と、複数の第3板状部材23_1、23_2と、を有する。第2板状体12には、分配流路12Aが形成される。分配流路12Aは、第1入口流路12aと、複数の分岐流路12bと、を有する。第1入口流路12aは、図1における冷媒流入部2Aに相当する。
 第2板状部材22には、流路22Aが形成される。流路22Aは、円形状の貫通穴である。第2板状部材22が積層されると、流路22Aは、第1入口流路12aとして機能する。第2板状部材22は、例えば、厚さ1~10mm程度であり、アルミニウム製である。流路22Aが、プレス加工等で形成される場合には、加工が簡略化され、製造コスト等が削減される。
 例えば、第2板状部材22の冷媒の流入側の表面に口金等が設けられ、その口金等を介して第1入口流路12aに冷媒配管が接続される。第1入口流路12aの内周面が、冷媒配管の外周面と嵌合する形状であり、口金等を用いずに、第1入口流路12aに冷媒配管が直接接続されてもよい。そのような場合には、部品費等が削減される。
 第3板状部材23_1には、流路23Aが形成される。第3板状部材23_2には、複数の流路23Bが形成される。流路23A、23Bは、貫通溝である。貫通溝の形状は、後に詳述する。複数の第3板状部材23_1、23_2が積層されると、流路23A、23Bのそれぞれは、分岐流路12bとして機能する。複数の第3板状部材23_1、23_2は、例えば、厚さ1~10mm程度であり、アルミニウム製である。流路23A、23Bが、プレス加工等で形成される場合には、加工が簡略化され、製造コスト等が削減される。
 以下では、複数の第3板状部材23_1、23_2を総称して、第3板状部材23と記載する場合がある。以下では、保持部材5と第1板状部材21と第2板状部材22と第3板状部材23とを総称して、板状部材と記載する場合がある。
 流路23Aによって形成される分岐流路12bは、流入する冷媒を4つに分岐して、溝の端部から流出する。流路23Bによって形成される分岐流路12bは、流入する冷媒を2つに分岐して、溝の端部から流出する。そのため、接続される第1伝熱管4が8本である場合には、第3板状部材23は、2枚必要となる。接続される第1伝熱管4が16本である場合には、流路23Aが形成された第3板状部材23が2枚必要となる。流路23Aが形成された第3板状部材23が1枚と、流路23Bが形成された第3板状部材23が2枚と、であってもよい。接続される第1伝熱管4の本数は、2の累乗に限定されない。そのような場合には、分岐流路12bと分岐しない流路とが組み合わされればよい。なお、接続される第1伝熱管4が4本で、流路23Aが形成された第3板状部材23が1枚であってもよい。また、第3板状部材23_1と第3板状部材23_2との積層順序が逆であってもよい。そのような場合には、例えば、第3板状部材23_2に流路23Bが1個形成され、第3板状部材23_1に流路23Aが2個形成されればよい。
 図3は、実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。なお、図3(b)は、枝分かれ部23fの詳細を示す図である。
 図3(a)に示されるように、第3板状部材23に形成された流路23Aは、端部23aと端部23bと端部23cと端部23dとの間を、直線部23eと2つの枝分かれ部23fとを介して結ぶ形状である。直線部23eは、重力方向と垂直である。流路23Aが、冷媒の流入側に隣接して積層される部材によって、直線部23eの端部23gと端部23hとの間の一部の領域23i(以降、開口部23iという)以外の領域を閉塞され、冷媒の流出側に隣接して積層される部材によって、端部23a~23d以外の領域を閉塞されることで、分岐流路12bが形成される。
 開口部23iに流入して分岐され、更に枝分かれ部23fで枝分かれされた冷媒を、異なる高さから流出するために、端部23a~23dは、互いに異なる高さに位置する。特に、枝分かれ部23fの一方が、直線部23eと比較して上側にあり、他方が、直線部23eと比較して下側にある場合には、開口部23iから流路23Aに沿って端部23a~23dのそれぞれに至る各距離の偏りを、形状を複雑化することなく小さくすることができる。また、端部23a及び端部23cが、枝分かれ部23fと比較して上側にあり、端部23b及び端部23dが、枝分かれ部23fと比較して下側にある場合には、開口部23iから流路23Aに沿って端部23a~23dのそれぞれに至る各距離の偏りを、形状を複雑化することなく小さくすることができる。端部23a~23dの配列方向が、第3板状部材23の長手方向と平行になることで、第3板状部材23の短手方向の寸法を小さくすることが可能となり、部品費、重量等が削減される。更に、端部23a~23dの配列方向が、第1伝熱管4の配列方向と平行になることで、熱交換器1が省スペース化される。
 第3板状部材23に形成された流路23Bは、第3板状部材23に形成された流路23Aと比較して、2つの端部23a、23bを有し、枝分かれ部23fを有しないこと以外は、同様である。つまり、流路23Bが、冷媒の流入側に隣接して積層される部材によって、開口部23i以外の領域を閉塞され、冷媒の流出側に隣接して積層される部材によって、端部23a、23b以外の領域を閉塞されることで、分岐流路12bが形成される。他の形状の流路23Bによって、分岐流路12bが形成されてもよい。
 図3(b)に示されるように、枝分かれ部23fは、枝部23jを、枝部23k、23lに枝分かれさせる。枝部23jは、開口部23iに連通する。枝部23k、23lは、端部23a~23dのいずれかに連通する。枝部23jは、枝分かれ部の中心23mに向かって、重力方向と平行な方向から直線状に延びる。枝分かれ部の中心23mから直線状の部分の端部までが、直線部23nと定義される。枝部23k、23lは、枝分かれ部の中心23mから、重力方向と垂直な互いに反対の方向に向かって直線状に延びる。枝分かれ部の中心23mから直線状の部分の端部までが、直線部23o、23pと定義される。
 図4は、実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。
 図4に示されるように、第1伝熱管4の配列方向が、重力方向と平行ではない、つまり重力方向と交差する場合には、第3板状部材23の長手方向と直線部23eとが垂直にならない。つまり、積層型ヘッダー2は、複数の第1出口流路11Aが、重力方向に沿って配列されるものに限定されず、例えば、壁掛けタイプのルームエアコン室内機、空調機用室外機、チラー室外機等の熱交換器のように、熱交換器1が傾斜して配設される場合に用いられてもよい。なお、図4では、第1板状部材21に形成された流路21Aの断面の長手方向、つまり、第1出口流路11Aの断面の長手方向が、第1板状部材21の長手方向と垂直である場合を示しているが、第1出口流路11Aの断面の長手方向が、重力方向と垂直であってもよい。
 流路23Aは、直線部23eを有しなくてもよい。そのような場合には、流路23Aの、上側の枝分かれ部23fの下端と下側の枝分かれ部23fの上端との間の、重力方向と垂直な水平部が、開口部23iとなる。直線部23eを有する場合には、冷媒が開口部23iで分岐する際に、各分岐方向の重力方向に対する角度が均一になって、重力の影響を受け難くなる。
 図5は、実施の形態1に係る熱交換器の、第3板状部材に形成される流路の変形例を示す図である。
 図5(a)に示されるように、流路23Aは、8つの端部を有し、枝分かれ部23fを6つ有してもよい。そのような場合には、1つの分岐流路12bで、流入する冷媒を8つに分岐することができ、第3板状部材23の枚数を削減することができる。また、ロウ付け不良の発生の頻度を低減することができる。つまり、流路23Aは、枝分かれ部23fの数が2つである必要はなく、枝分かれ部23fの個数を変化させることで、流入する冷媒の分岐の個数を自由に変化させることができる。
 図5(b)に示されるように、流路23Aは、3つの端部を有し、枝分かれ部23fを1つ有してもよい。例えば、接続される第1伝熱管4の本数が2の累乗ではない場合に、有効である。そのような場合には、流路23Aの、枝分かれ部23fを通過せずに流路23Aの端部から流出する冷媒が通過する領域の、流路抵抗を大きくして、3つの端部から流出する冷媒の流量を均一化するとよい。流路の形状(流路の幅、流路の長さ、流路の曲がり、流路の表面粗さ等)を最適化することで、流路抵抗を大きくすることができる。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図3及び図4に示されるように、第2板状部材22の流路22Aを通過した冷媒は、第3板状部材23_1に形成された流路23Aの開口部23iに流入する。開口部23iに流入した冷媒は、隣接して積層される部材の表面に当たり、直線部23eの端部23gと端部23hとのそれぞれに向かって2つに分岐する。分岐された冷媒は、枝分かれ部23fの枝部23jと枝部23k、23lとを順に通過して、流路23Aの端部23a~23dに至り、第3板状部材23_2に形成された流路23Bの開口部23iに流入する。
 第3板状部材23_2に形成された流路23Bの開口部23iに流入した冷媒は、隣接して積層される部材の表面に当たり、直線部23eの端部23gと端部23hとのそれぞれに向かって2つに分岐する。分岐された冷媒は、流路23Bの端部23a、23bに至り、第1板状部材21の流路21Aを通過して、第1伝熱管4に流入する。
<板状部材の積層方法>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーの各板状部材の積層方法について説明する。
 各板状部材は、ロウ付け接合によって積層されるとよい。全ての板状部材又は1つおきの板状部材に、ロウ材が両面に圧延加工された両側クラッド材が用いられることで、接合のためのロウ材が供給されてもよい。全ての板状部材に、ロウ材が片面に圧延加工された片側クラッド材が用いられることで、接合のためのロウ材が供給されてもよい。各板状部材の間に、ロウ材シートが積層されることで、ロウ材が供給されてもよい。各板状部材の間に、ペースト状のロウ材が塗布されることで、ロウ材が供給されてもよい。各板状部材の間に、ロウ材が両面に圧延加工された両側クラッド材が積層されることで、ロウ材が供給されてもよい。
 ロウ付け接合によって積層されることで、各板状部材間が隙間なく積層されることとなり、冷媒の漏れが抑制され、また、耐圧性が確保される。板状部材を加圧しつつロウ付け接合する場合には、ロウ付け不良の発生が更に抑制される。冷媒の漏れが生じやすい箇所に、リブが形成される等、フィレットの形成が促進されるような処理が施された場合には、ロウ付け不良の発生が更に抑制される。
 更に、第1伝熱管4、フィン6等を含む全てのロウ付け接合される部材が、同一の材質(例えば、アルミニウム製)であるような場合には、纏めてロウ付け接合することが可能となり、生産性が向上される。積層型ヘッダー2のロウ付け接合を行った後に、第1伝熱管4及びフィン6のロウ付けを行ってもよい。また、第1板状体11のみを先に保持部材5にロウ付け接合し、第2板状体12を後からロウ付け接合してもよい。
 図6は、実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。図7は、実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。
 特に、各板状部材の間に、ロウ材が両面に圧延加工された板状部材、つまり両側クラッド材が積層されることで、ロウ材が供給されるとよい。図6及び図7に示されるように、複数の両側クラッド材24_1~24_4が、各板状部材間に積層される。以下では、複数の両側クラッド材24_1~24_4を総称して、両側クラッド材24と記載する場合がある。なお、一部の板状部材の間に、両側クラッド材24が積層され、他の板状部材の間に、他の方法によってロウ材が供給されてもよい。
 両側クラッド材24には、冷媒が流入する側に隣接して積層される板状部材に形成される流路の冷媒が流出する領域と対向する領域に、両側クラッド材24を貫通する流路24Aが形成される。第2板状部材22及び第3板状部材23に積層される両側クラッド材24に形成される流路24Aは、円形状の貫通穴である。第1板状部材21と保持部材5との間に積層される両側クラッド材24_4に形成される流路24Aは、内周面が第1伝熱管4の外周面に沿う形状の貫通穴である。
 両側クラッド材24が積層されると、流路24Aは、第1出口流路11A及び分配流路12Aの冷媒隔離流路として機能する。保持部材5に両側クラッド材24_4が積層された状態で、両側クラッド材24_4の表面から第1伝熱管4の端部が突出してもよく、また、突出しなくてもよい。流路24Aが、プレス加工等で形成される場合には、加工が簡略化され、製造コスト等が削減される。両側クラッド材24を含む全てのロウ付け接合される部材が、同一の材質(例えば、アルミニウム製)である場合には、纏めてロウ付け接合することが可能となり、生産性が向上される。
 両側クラッド材24によって冷媒隔離流路が形成されることで、特に、分岐流路12bから分岐して流出する冷媒同士の隔離が確実化される。また、各両側クラッド材24の厚み分だけ、分岐流路12b及び第1出口流路11Aに流入するまでの助走距離を確保することができ、冷媒の分配の均一性が向上される。また、冷媒同士の隔離が確実化されることによって、分岐流路12bの設計自由度が向上される。
<第3板状部材の流路の形状>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーの第3板状部材に形成される流路の詳細について説明する。
 なお、以下では、枝部23jが枝分かれ部の中心23mに向かって下方から延び、枝部23kが枝分かれ部の中心23mから上方に延び、枝部23lが枝分かれ部の中心23mから下方に延びる場合について説明している。他の場合についても同様である。
 図8は、実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部を示す図である。
 図8に示されるように、枝部23jの、直線部23nの距離を直線距離L1と定義する。また、直線部23nの水力相当直径を、水力相当直径De1とし、直線距離L1の水力相当直径De1に対する比率を、直線比L1/De1と定義する。枝部23kから流出する冷媒の流量の、枝部23kから流出する冷媒の流量と枝部23lから流出する冷媒の流量との和に対する比率を、分配比Rと定義する。
 図9は、実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、直線比と分配比との関係を示す図である。なお、図9は、直線比L1/De1を変化させた際の、分配比Rの変化を示している。
 図9に示されるように、分配比Rは、直線比L1/De1が、10.0になるまで増加し、10.0以上で0.5になるように変化する。直線比L1/De1が10.0未満であると、流路23Aの、直線部23eと直線部23nとの間の領域が、重力方向と平行ではないことに起因して、冷媒が枝分かれ部の中心23mに偏流を生じた状態で流入することになり、分配比Rが0.5にならない。
 図10は、実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、直線比と熱交換器のAK値との関係を示す図である。なお、図10(a)は、直線比L1/De1を変化させた際の熱交換器1のAK値の変化を示している。図10(b)は、直線比L1/De1を変化させた際の熱交換器1の実効AK値の変化を示している。AK値は、熱交換器1の伝熱面積A[m]と、熱交換器1の熱通過率K[J/(S・m・K)]と、の乗算値であり、実効AK値は、AK値と、上述の分配比Rと、の乗算値で定義される値である。実効AK値が高い程、熱交換器1の性能が高くなる。
 一方、図10(a)に示されるように、直線比L1/De1が大きくなる程、第1伝熱管4の配列間隔が広くなる、つまり、第1伝熱管4の本数が減ることとなり、熱交換器1のAK値は減少する。そのため、図10(b)に示されるように、実効AK値は、直線比L1/De1が、3.0になるまで増加し、3.0以上で減少量を減らしつつ減少するように変化する。すなわち、直線比L1/De1を、3.0以上にすることで、実効AK値、つまり熱交換器1の性能を維持することができる。
 図8に示されるように、枝部23kの、直線部23oの距離を直線距離L2と定義する。枝部23lの、直線部23pの距離を直線距離L3と定義する。枝部23kの水力相当直径を、水力相当直径De2とし、直線距離L2の水力相当直径De2に対する比率を、直線比L2/De2と定義する。枝部23lの水力相当直径を、水力相当直径De3とし、直線距離L3の水力相当直径De3に対する比率を、直線比L3/De3と定義する。
 図11は、実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、直線比と分配比との関係を示す図である。なお、図11は、直線比L2/De2=直線比L3/De3とした状態で、直線比L2/De2(=L3/De3)を変化させた際の、分配比Rの変化を示している。
 図11に示されるように、分配比Rは、直線比L2/De2と直線比L3/De3とが、1.0になるまで増加し、1.0以上で0.5になるように変化する。直線比L2/De2と直線比L3/De3とが1.0未満であると、枝部23kと枝部23lとが、重力方向に対する方向が異なるように折り曲げられることの影響を受け、分配比Rが0.5にならない。すなわち、直線比L2/De2と直線比L3/De3とを、1.0以上にすることで、冷媒の分配の均一性を更に向上することができる。
 図8に示されるように、枝部23kの曲がり角度を角度θ1、枝部23lの曲がり角度を角度θ2、と定義する。
 図12は、実施の形態1に係る熱交換器の、第3板状部材に形成される流路の枝分かれ部の、曲がり角度と分配比との関係を示す図である。なお、図12は、角度θ1=角度θ2とした状態で、角度θ1(=角度θ2)を変化させた際の、分配比Rの変化を示している。
 図12に示されるように、角度θ1と角度θ2とが90°に近づく程、分配比Rは0.5に近づく。すなわち、角度θ1と角度θ2とを、大きくすることで、冷媒の分配の均一性を更に向上することができる。
<熱交換器の使用態様>
 以下に、実施の形態1に係る熱交換器の使用態様の一例について説明する。
 なお、以下では、実施の形態1に係る熱交換器が空気調和装置に使用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に使用されてもよい。また、空気調和装置が、冷房運転と暖房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、冷房運転又は暖房運転のみを行うものであってもよい。
 図13は、実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。なお、図13では、冷房運転時の冷媒の流れが実線の矢印で示され、暖房運転時の冷媒の流れが点線の矢印で示される。
 図13に示されるように、空気調和装置51は、圧縮機52と、四方弁53と、熱源側熱交換器54と、絞り装置55と、負荷側熱交換器56と、熱源側ファン57、負荷側ファン58、制御装置59と、を有する。圧縮機52と四方弁53と熱源側熱交換器54と絞り装置55と負荷側熱交換器56とが冷媒配管で接続されて、冷媒循環回路が形成される。
 制御装置59には、例えば、圧縮機52、四方弁53、絞り装置55、熱源側ファン57、負荷側ファン58、各種センサ等が接続される。制御装置59によって、四方弁53の流路が切り替えられることで、冷房運転と暖房運転とが切り替えられる。熱源側熱交換器54は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。負荷側熱交換器56は、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。
 冷房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって凝縮することで高圧の液状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 暖房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって凝縮することで高圧の液状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2から冷媒が流入し、ヘッダー3から冷媒が流出するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2に気液二相状態の冷媒が流入し、第1伝熱管4からヘッダー3にガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管からヘッダー3にガス状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2に液状態の冷媒が流入する。
<熱交換器の作用>
 以下に、実施の形態1に係る熱交換器の作用について説明する。
 積層型ヘッダー2の第2板状体12に、分岐流路12bを含む分配流路12Aが形成され、分岐流路12bに流入することで分岐された冷媒の少なくとも一部は、枝部23jと枝部23k、23lとを順に通過して更に分岐された状態で、分岐流路12bから流出する。つまり、開口部23iで分岐された冷媒が枝分かれ部23fで更に分岐されるため、開口部23iでの分岐の数を削減することができ、積層型ヘッダー2が冷媒の流入方向と垂直な全周方向に大型化されることが抑制される。
 また、積層型ヘッダー2では、枝分かれ部23fにおいて、冷媒が、枝部23jから2つの枝部23k、23lに分岐される。そのため、冷媒の分配を均一化することが、確実化される。特に、開口部23iと枝分かれ部23fとの全てが、冷媒を2つに分岐させる場合には、冷媒の分配を均一化することが、更に確実化される。
 また、積層型ヘッダー2では、枝分かれ部23fにおいて、枝部23kの直線部23oと枝部23lの直線部23pとが、一直線上にあり、枝部23jの直線部23nと枝部23k、23lの直線部23o、23pとが垂直に交わる。そのため、枝部23jから流入する冷媒が、方向を変える角度が偏ることなく、枝部23k、23lに流入することとなり、冷媒の分配の均一性が更に向上される。
 また、積層型ヘッダー2では、枝部23jの直線部23nが、重力方向と平行に延び、枝部23k、23lの直線部23o、23pが、重力方向と垂直な方向に延びる。そのため、冷媒が枝分かれ部の中心23mで分岐する際に、重力が偏って作用することが抑制され、冷媒の分配の均一性が更に向上される。
 また、第3板状部材23に形成された流路23Aが貫通溝であり、第3板状部材23を積層することで分岐流路12bが形成される。そのため、加工及び組立が簡略化され、生産効率及び製造コスト等が削減される。
 特に、従来の積層型ヘッダーでは、流入する冷媒が気液二相状態である場合に、重力の影響を受け易く、各伝熱管に流入する冷媒の流量及び乾き度を均一にすることが困難であったが、積層型ヘッダー2では、流入する気液二相状態の冷媒の流量及び乾き度に拘わらず、重力の影響を受け難く、各第1伝熱管4に流入する冷媒の流量及び乾き度を均一にすることが可能である。
 特に、従来の積層型ヘッダーでは、冷媒量の削減、熱交換器の省スペース化等を目的として、伝熱管が円管から扁平管に変更されると、冷媒の流入方向と垂直な全周方向に大型化されなければならないが、積層型ヘッダー2では、冷媒の流入方向と垂直な全周方向に大型化されなくてもよく、熱交換器1が省スペース化される。つまり、従来の積層型ヘッダーでは、伝熱管が円管から扁平管に変更されると、伝熱管内の流路断面積が小さくなって、伝熱管内で生じる圧力損失が増大してしまうため、分岐流路を形成する複数の溝の角度間隔を更に細かくして、パス数(つまり伝熱管の本数)を増加させる必要が生じ、積層型ヘッダーが冷媒の流入方向と垂直な全周方向に大型化される。一方、積層型ヘッダー2では、パス数を増加させる必要が生じても、枝分かれ部23fの個数又は第3板状部材23の枚数を増加すればよいため、積層型ヘッダー2が冷媒の流入方向と垂直な全周方向に大型化されることが抑制される。なお、積層型ヘッダー2は、第1伝熱管4が扁平管である場合に限定されない。
<変形例-1>
 図14は、実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。なお、図14以下の図面では、両側クラッド材24が積層される状態(図6及び図7の状態)を示しているが、両側クラッド材24が積層されない状態(図2及び図3の状態)であってもよいことは、言うまでもない。
 図14に示されるように、第2板状部材22に流路22Aが複数形成されて、つまり、第3板状部材23に流路23Aが複数形成されて、第3板状部材23の枚数が削減されてもよい。このように構成されることで、部品費、重量等が削減される。
 図15は、実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。
 複数の流路22Aが、第3板状部材23に形成される流路23Aの冷媒が流入する領域と対向する領域に設けられなくてもよい。図15に示されるように、例えば、複数の流路22Aが一箇所に纏めて形成され、第2板状部材22と第3板状部材23_1との間に積層される他の板状部材25の流路25Aによって、複数の流路22Aを通過した冷媒のそれぞれが、第3板状部材23に形成される流路23Aの冷媒が流入する領域と対向する領域に導かれてもよい。
<変形例-2>
 図16は、実施の形態1に係る熱交換器の変形例-2の、積層型ヘッダーを分解した状態での要部の斜視図と要部の断面図である。なお、図16(a)は、積層型ヘッダーを分解した状態での要部の斜視図であり、図16(b)は、図16(a)のA-A線での第3板状部材23の断面図である。
 図16に示されるように、第3板状部材23に形成された流路23Aが、有底の溝であってもよい。そのような場合には、流路23Aの溝の底面の端部23qに円形状の貫通穴23rが形成される。このように構成されることで、分岐流路12b間に冷媒隔離流路として機能する流路24Aを介在させるために、板状部材間に両側クラッド材24が積層されなくてもよくなり、生産効率が向上される。なお、図16では、流路23Aの冷媒の流出側が底面である場合を示しているが、流路23Aの冷媒の流入側が底面であってもよい。そのような場合には、開口部23iに相当する領域に貫通穴が形成されればよい。
<変形例-3>
 図17は、実施の形態1に係る熱交換器の変形例-3の、積層型ヘッダーを分解した状態での斜視図である。
 図17に示されるように、第1入口流路12aとして機能する流路22Aは、第2板状部材22以外の積層される部材、つまり、他の板状部材、両側クラッド材24等に形成されてもよい。そのような場合には、流路22Aを、例えば、他の板状部材の側面から第2板状部材22の有る側の表面までを貫通する貫通穴とすればよい。つまり、本発明は、第1入口流路12aが第1板状体11に形成されるものを含み、本発明の「分配流路」は、第1入口流路12aが第2板状体12に形成される分配流路12A以外を含む。
実施の形態2.
 実施の形態2に係る熱交換器について説明する。
 なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態2に係る熱交換器の構成について説明する。
 図18は、実施の形態2に係る熱交換器の、構成を示す図である。
 図18に示されるように、熱交換器1は、積層型ヘッダー2と、複数の第1伝熱管4と、保持部材5と、複数のフィン6と、を有する。
 積層型ヘッダー2は、冷媒流入部2Aと、複数の冷媒流出部2Bと、複数の冷媒流入部2Cと、冷媒流出部2Dと、を有する。積層型ヘッダー2の冷媒流入部2A及び積層型ヘッダー2の冷媒流出部2Dには、冷媒配管が接続される。第1伝熱管4は、ヘアピン曲げ加工が施された扁平管である。積層型ヘッダー2の複数の冷媒流出部2Bと積層型ヘッダー2の複数の冷媒流入部2Cとの間に、複数の第1伝熱管4が接続される。
<熱交換器における冷媒の流れ>
 以下に、実施の形態2に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管4に流出する。冷媒は、複数の第1伝熱管4において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管4を通過した冷媒は、複数の冷媒流入部2Cを介して積層型ヘッダー2に流入して合流し、冷媒流出部2Dを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態2に係る熱交換器の積層型ヘッダーの構成について説明する。
 図19は、実施の形態2に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。図20は、実施の形態2に係る熱交換器の、積層型ヘッダーの展開図である。なお、図20では、両側クラッド材24の図示が省略されている。
 図19及び図20に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11には、複数の第1出口流路11Aと、複数の第2入口流路11Bと、が形成される。複数の第2入口流路11Bは、図18における複数の冷媒流入部2Cに相当する。
 第1板状部材21には、複数の流路21Bが形成される。複数の流路21Bは、内周面が第1伝熱管4の外周面に沿う形状の貫通穴である。第1板状部材21が積層されると、複数の流路21Bは、複数の第2入口流路11Bとして機能する。
 第2板状体12には、分配流路12Aと、合流流路12Bと、が形成される。合流流路12Bは、混合流路12cと、第2出口流路12dと、を有する。第2出口流路12dは、図18における冷媒流出部2Dに相当する。
 第2板状部材22には、流路22Bが形成される。流路22Bは、円形状の貫通穴である。第2板状部材22が積層されると、流路22Bは、第2出口流路12dとして機能する。なお、流路22B、つまり第2出口流路12dが、複数形成されてよい。
 第3板状部材23_1、23_2には、流路23C_1、23C_2が形成される。流路23C_1、23C_2は、第3板状部材23の高さ方向のほぼ全域を貫通する矩形状の貫通穴である。第3板状部材23_1、23_2が積層されると、流路23C_1、23C_2のそれぞれは、混合流路12cとして機能する。流路23C_1、23C_2は、矩形状でなくてもよい。以下では、複数の流路23C_1、23C_2を総称して、流路23Cと記載する場合がある。
 特に、各板状部材の間に、ロウ材が両面に圧延加工された両側クラッド材24が積層されることで、ロウ材が供給されるとよい。保持部材5と第1板状部材21との間に積層される両側クラッド材24_4に形成される流路24Bは、内周面が第1伝熱管4の外周面に沿う形状の貫通穴である。第1板状部材21と第3板状部材23_2の間に積層される両側クラッド材24_3に形成される流路24Bは、円形状の貫通穴である。第3板状部材23_1及び第2板状部材22に積層される両側クラッド材24に形成される流路24Bは、両側クラッド材24の高さ方向のほぼ全域を貫通する矩形状の貫通穴である。両側クラッド材24が積層されると、流路24Bは、第2入口流路11B及び合流流路12Bの冷媒隔離流路として機能する。
 なお、第2出口流路12dとして機能する流路22Bが、第2板状体12の第2板状部材22以外の他の板状部材、両側クラッド材24等に形成されてもよい。そのような場合には、流路23C又は流路24Bの一部と、例えば、他の板状部材又は両側クラッド材24の側面と、を連通する切り欠きが形成されればよい。混合流路12cが折り返されて、第1板状部材21に第2出口流路12dとして機能する流路22Bが形成されてもよい。つまり、本発明は、第2出口流路12dが第1板状体11に形成されるものを含み、本発明の「合流流路」は、第2出口流路12dが第2板状体12に形成される合流流路12B以外を含む。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態2に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図19及び図20に示されるように、第1板状部材21の流路21Aから流出して第1伝熱管4を通過した冷媒は、第1板状部材21の流路21Bに流入する。第1板状部材21の流路21Bに流入した冷媒は、第3板状部材23に形成された流路23Cに流入して混合される。混合された冷媒は、第2板状部材22の流路22Bを通過して、冷媒配管に流出する。
<熱交換器の使用態様>
 以下に、実施の形態2に係る熱交換器の使用態様の一例について説明する。
 図21は、実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 図21に示されるように、熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2の分配流路12Aから第1伝熱管4に冷媒が流入し、第1伝熱管4から積層型ヘッダー2の合流流路12Bに冷媒が流入するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2の分配流路12Aに気液二相状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2の分配流路12Aに液状態の冷媒が流入する。
<熱交換器の作用>
 以下に、実施の形態2に係る熱交換器の作用について説明する。
 積層型ヘッダー2では、第1板状体11に複数の第2入口流路11Bが形成され、第2板状体12に合流流路12Bが形成される。そのため、ヘッダー3が不要となって、熱交換器1の部品費等が削減される。また、ヘッダー3が不要となる分、第1伝熱管4を延長してフィン6の枚数等を増加する、つまり熱交換器1の熱交換部の実装体積を増加することが可能となる。
実施の形態3.
 実施の形態3に係る熱交換器について説明する。
 なお、実施の形態1及び実施の形態2と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態3に係る熱交換器の構成について説明する。
 図22は、実施の形態3に係る熱交換器の、構成を示す図である。
 図22に示されるように、熱交換器1は、積層型ヘッダー2と、複数の第1伝熱管4と、複数の第2伝熱管7と、保持部材5と、複数のフィン6と、を有する。
 積層型ヘッダー2は、複数の冷媒折返部2Eを有する。第2伝熱管7は、第1伝熱管4と同様に、ヘアピン曲げ加工が施された扁平管である。積層型ヘッダー2の複数の冷媒流出部2Bと複数の冷媒折返部2Eとの間に、複数の第1伝熱管4が接続され、積層型ヘッダー2の複数の冷媒折返部2Eと複数の冷媒流入部2Cとの間に、複数の第2伝熱管7が接続される。
<熱交換器における冷媒の流れ>
 以下に、実施の形態3に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管4に流出する。冷媒は、複数の第1伝熱管4において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管4を通過した冷媒は、積層型ヘッダー2の複数の冷媒折返部2Eに流入して折り返され、複数の第2伝熱管7に流出する。冷媒は、複数の第2伝熱管7において、例えば、ファンによって供給される空気等と熱交換する。複数の第2伝熱管7を通過した冷媒は、複数の冷媒流入部2Cを介して積層型ヘッダー2に流入して合流し、冷媒流出部2Dを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態3に係る熱交換器の積層型ヘッダーの構成について説明する。
 図23は、実施の形態3に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。図24は、実施の形態3に係る熱交換器の、積層型ヘッダーの展開図である。なお、図24では、両側クラッド材24の図示が省略されている。
 図23及び図24に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11には、複数の第1出口流路11Aと、複数の第2入口流路11Bと、複数の折返流路11Cと、が形成される。複数の折返流路11Cは、図22における複数の冷媒折返部2Eに相当する。
 第1板状部材21には、複数の流路21Cが形成される。複数の流路21Cは、内周面が第1伝熱管4の冷媒の流出側の端部の外周面と第2伝熱管7の冷媒流入側の端部の外周面とを囲む形状の貫通穴である。第1板状部材21が積層されると、複数の流路21Cは、複数の折返流路11Cとして機能する。
 特に、各板状部材の間に、ロウ材が両面に圧延加工された両側クラッド材24が積層されることで、ロウ材が供給されるとよい。保持部材5と第1板状部材21との間に積層される両側クラッド材24_4に形成される流路24Cは、内周面が第1伝熱管4の冷媒の流出側の端部の外周面と第2伝熱管7の冷媒流入側の端部の外周面とを囲む形状の貫通穴である。両側クラッド材24が積層されると、流路24Cは、折返流路11Cの冷媒隔離流路として機能する。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態3に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図23及び図24に示されるように、第1板状部材21の流路21Aから流出して第1伝熱管4を通過した冷媒は、第1板状部材21の流路21Cに流入し、折り返されて、第2伝熱管7に流入する。第2伝熱管7を通過した冷媒は、第1板状部材21の流路21Bに流入する。第1板状部材21の流路21Bに流入した冷媒は、第3板状部材23に形成された流路23Cに流入して混合される。混合された冷媒は、第2板状部材22の流路22Bを通過して、冷媒配管に流出する。
<熱交換器の使用態様>
 以下に、実施の形態3に係る熱交換器の使用態様の一例について説明する。
 図25は、実施の形態3に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 図25に示されるように、熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2の分配流路12Aから第1伝熱管4に冷媒が流入し、第2伝熱管7から積層型ヘッダー2の合流流路12Bに冷媒が流入するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2の分配流路12Aに気液二相状態の冷媒が流入し、第2伝熱管7から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2の分配流路12Aに液状態の冷媒が流入する。
 更に、熱交換器1が凝縮器として作用する際に、第1伝熱管4が、第2伝熱管7と比較して、熱源側ファン57又は負荷側ファン58によって生じる気流の上流側(風上側)になるように、熱交換器1は配設される。つまり、第2伝熱管7から第1伝熱管4への冷媒の流れと気流とが対向する関係になる。第1伝熱管4の冷媒は、第2伝熱管7の冷媒と比較して、低温となる。熱源側ファン57又は負荷側ファン58によって生じる気流は、熱交換器1の上流側の方が、熱交換器1の下流側と比較して、低温となる。その結果、特に、熱交換器1の上流側を流れる低温の気流で、冷媒を過冷却(いわゆるSC化)することができ、凝縮器性能が向上される。なお、熱源側ファン57及び負荷側ファン58は、風上側に設けられてもよく、風下側に設けられてもよい。
<熱交換器の作用>
 以下に、実施の形態3に係る熱交換器の作用について説明する。
 熱交換器1では、第1板状体11に複数の折返流路11Cが形成され、複数の第1伝熱管4に加えて、複数の第2伝熱管7が接続される。例えば、熱交換器1の正面視した状態での面積を増加させて、熱交換量を増やすことも可能であるが、その場合には、熱交換器1を内蔵する筐体が大型化されてしまう。また、フィン6の間隔を小さくして、フィン6の枚数を増加させて、熱交換量を増やすことも可能であるが、その場合には、排水性、着霜性能、埃耐力の観点から、フィン6の間隔を約1mm未満にすることが困難であり、熱交換量の増加が不充分となってしまう場合がある。一方、熱交換器1のように、伝熱管の列数を増加させる場合には、熱交換器1の正面視した状態での面積、フィン6の間隔等を変えることなく、熱交換量を増加させることが可能である。伝熱管の列数が2列になると、熱交換量は約1.5倍以上に増加する。なお、伝熱管の列数が3列以上にされてもよい。また、更に、熱交換器1の正面視した状態での面積、フィン6の間隔等が変えられてもよい。
 また、熱交換器1の片側のみにヘッダー(積層型ヘッダー2)が設けられる。熱交換器1が、熱交換部の実装体積を増加するために、例えば、熱交換器1を内蔵する筐体の複数の側面に沿うように、折り曲げられて配設される場合には、伝熱管の列毎にその折り曲げ部の曲率半径が異なることに起因して、伝熱管の列毎に端部がずれてしまう。積層型ヘッダー2のように、熱交換器1の片側のみにヘッダー(積層型ヘッダー2)が設けられる場合には、伝熱管の列毎に端部がずれてしまっても、片側の端部のみ揃えばよく、実施の形態1に係る熱交換器のように、熱交換器1の両側にヘッダー(積層型ヘッダー2、ヘッダー3)が設けられる場合と比較して、設計自由度、生産効率等が向上される。特に、熱交換器1の各部材を接合した後に、熱交換器1を折り曲げることも可能となり、生産効率が更に向上される。
 また、熱交換器1が凝縮器として作用する際に、第1伝熱管4が、第2伝熱管7と比較して、風上側に位置する。実施の形態1に係る熱交換器のように、熱交換器1の両側にヘッダー(積層型ヘッダー2、ヘッダー3)が設けられる場合では、伝熱管の列毎に冷媒の温度差を与えて凝縮器性能を向上することが困難であった。特に、第1伝熱管4及び第2伝熱管7が扁平管である場合には、円管と異なり、曲げ加工の自由度が低いため、伝熱管の列毎に冷媒の温度差を与えることを、冷媒の流路を変形させて実現することが難しい。一方、熱交換器1のように、第1伝熱管4と第2伝熱管7とが積層型ヘッダー2に接続される場合には、伝熱管の列毎に冷媒の温度差が必然的に生じることとなり、冷媒の流れと気流とを対向する関係にすることを、冷媒の流路を変形させることなく簡易に実現することができる。
 以上、実施の形態1~実施の形態3について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全部又は一部、各変形例等を組み合わせることも可能である。
 1 熱交換器、2 積層型ヘッダー、2A 冷媒流入部、2B 冷媒流出部、2C 冷媒流入部、2D 冷媒流出部、2E 冷媒折返部、3 ヘッダー、3A 冷媒流入部、3B 冷媒流出部、4 第1伝熱管、5 保持部材、6 フィン、7 第2伝熱管、11 第1板状体、11A 第1出口流路、11B 第2入口流路、11C 折返流路、12 第2板状体、12A 分配流路、12B 合流流路、12a 第1入口流路、12b 分岐流路、12c 混合流路、12d 第2出口流路、21 第1板状部材、21A~21C 流路、22 第2板状部材、22A、22B 流路、23、23_1、23_2 第3板状部材、23A~23C、23C_1、23C_2 流路、23a~23d 貫通溝の端部、23e 直線部、23f 枝分かれ部、23g、23h 直線部の端部、23i 開口部、23j~23l 枝部、23m 枝分かれ部の中心、23n~23p 直線部、23q 有底溝の端部、23r 貫通穴、24、24_1~24_4 両側クラッド材、24A~24C 流路、25 板状部材、25A 流路、51 空気調和装置、52 圧縮機、53 四方弁、54 熱源側熱交換器、55 絞り装置、56 負荷側熱交換器、57 熱源側ファン、58 負荷側ファン、59 制御装置。

Claims (17)

  1.  複数の第1出口流路が形成された第1板状体と、
     前記第1板状体に積層され、第1入口流路から流入する冷媒を前記複数の第1出口流路に分配して流出する分配流路が形成された第2板状体と、
    を備え、
     前記分配流路は、少なくとも1つの分岐流路を含み、
     前記第2板状体は、1つの枝部を複数の枝部に枝分かれさせる少なくとも1つの枝分かれ部を有する溝が流路として形成された、少なくとも1つの板状部材を有し、
     前記分岐流路は、前記溝が、前記冷媒が流入する領域及び前記冷媒が流出する領域以外の領域を、閉塞されたものであり、
     前記分岐流路に流入することで分岐された前記冷媒の少なくとも一部は、前記1つの枝部と前記複数の枝部とを順に通過して、前記溝の端部から流出する、
    ことを特徴とする積層型ヘッダー。
  2.  前記複数の枝部は、2つである、
    ことを特徴とする請求項1に記載の積層型ヘッダー。
  3.  前記1つの枝部は、前記枝分かれ部の中心まで直線状に延び、
     前記複数の枝部は、前記枝分かれ部の中心から前記1つの枝部の直線状の部分と垂直な互いに反対の方向に直線状に延びる、
    ことを特徴とする請求項2に記載の積層型ヘッダー。
  4.  前記1つの枝部の直線状の部分は、重力方向と平行である、
    ことを特徴とする請求項3に記載の積層型ヘッダー。
  5.  前記1つの枝部は、前記枝分かれ部の中心まで直線状に延びる距離が、該枝部の水力相当直径と比較して3倍以上である、
    ことを特徴とする請求項4に記載の積層型ヘッダー。
  6.  前記複数の枝部のそれぞれは、前記枝分かれ部の中心から直線状に延びる距離が、該枝部の水力相当直径と比較して1倍以上である、
    ことを特徴とする請求項4又は5に記載の積層型ヘッダー。
  7.  前記溝の端部の配列方向は、前記複数の第1出口流路の配列方向に沿う、
    ことを特徴とする請求項1~6のいずれか一項に記載の積層型ヘッダー。
  8.  前記複数の第1出口流路の配列方向は、重力方向と交差する、
    ことを特徴とする請求項7に記載の積層型ヘッダー。
  9.  前記溝は、複数である、
    ことを特徴とする請求項1~8のいずれか一項に記載の積層型ヘッダー。
  10.  前記第1板状体に、複数の第2入口流路が形成され、
     前記第2板状体に、前記複数の第2入口流路から流入する冷媒を合流して第2出口流路に流入させる合流流路が形成された、
    ことを特徴とする請求項1~9のいずれか一項に記載の積層型ヘッダー。
  11.  前記第1板状体に、流入する冷媒を折り返して流出する複数の折返流路が形成された、
    ことを特徴とする請求項1~10のいずれか一項に記載の積層型ヘッダー。
  12.  請求項1~9のいずれか一項に記載の積層型ヘッダーと、
     前記複数の第1出口流路のそれぞれに接続された複数の第1伝熱管と、
    を備えたことを特徴とする熱交換器。
  13.  前記第1板状体に、前記複数の第1伝熱管を通過した前記冷媒が流入する複数の第2入口流路が形成され、
     前記第2板状体に、前記複数の第2入口流路から流入する前記冷媒を合流して第2出口流路に流入させる合流流路が形成された、
    ことを特徴とする請求項12に記載の熱交換器。
  14.  前記第1板状体に、入口側に前記複数の第1伝熱管のそれぞれが接続され、該複数の第1伝熱管から流入する前記冷媒を折り返して流出する複数の折返流路が形成され、
     前記複数の折返流路のそれぞれの出口側と前記複数の第2入口流路のそれぞれとに接続された複数の第2伝熱管を備えた、
    ことを特徴とする請求項13に記載の熱交換器。
  15.  前記伝熱管は、扁平管である、
    ことを特徴とする請求項12~14のいずれか一項に記載の熱交換器。
  16.  請求項12~15のいずれか一項に記載の熱交換器を備え、
     前記分配流路は、前記熱交換器が蒸発器として作用する際に、前記複数の第1出口流路に前記冷媒を流出する、
    ことを特徴とする空気調和装置。
  17.  請求項14に記載の熱交換器を備え、
     前記分配流路は、前記熱交換器が蒸発器として作用する際に、前記複数の第1出口流路に前記冷媒を流出し、
     前記第1伝熱管は、前記熱交換器が凝縮器として作用する際に、前記第2伝熱管と比較して、風上側に位置する、
    ことを特徴とする空気調和装置。
PCT/JP2013/063601 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置 WO2014184912A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2015516824A JP6038302B2 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置
CN201380076579.3A CN105209845B (zh) 2013-05-15 2013-05-15 层叠型联管箱、热交换器和空气调节装置
PCT/JP2013/063601 WO2014184912A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置
EP13884669.6A EP2998679B1 (en) 2013-05-15 2013-05-15 Laminated header, heat exchanger, and air conditioner
US14/785,705 US10107570B2 (en) 2013-05-15 2013-05-15 Stacking-type header, heat exchanger, and air-conditioning apparatus
CN201420112960.2U CN203785332U (zh) 2013-05-15 2014-03-13 层叠式集管、换热器及空气调节装置
HK16102245.1A HK1214342A1 (zh) 2013-05-15 2016-02-26 層疊型聯管箱、熱交換器和空氣調節裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063601 WO2014184912A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置

Publications (1)

Publication Number Publication Date
WO2014184912A1 true WO2014184912A1 (ja) 2014-11-20

Family

ID=51321510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063601 WO2014184912A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置

Country Status (6)

Country Link
US (1) US10107570B2 (ja)
EP (1) EP2998679B1 (ja)
JP (1) JP6038302B2 (ja)
CN (2) CN105209845B (ja)
HK (1) HK1214342A1 (ja)
WO (1) WO2014184912A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348945A4 (en) * 2015-09-07 2018-09-26 Mitsubishi Electric Corporation Distributor, laminated header, heat exchanger, and air conditioner
WO2020090015A1 (ja) * 2018-10-30 2020-05-07 三菱電機株式会社 冷媒分配器、熱交換器および空気調和装置
WO2020170348A1 (ja) * 2019-02-20 2020-08-27 三菱電機株式会社 熱交換器及び冷凍サイクル装置
JP2021523054A (ja) * 2018-05-10 2021-09-02 レイセオン カンパニー 多軸ジンバルのポインティング又はターゲティング・システムのための熱交換器
WO2022264348A1 (ja) * 2021-06-17 2022-12-22 三菱電機株式会社 熱交換器および冷凍サイクル装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105683701A (zh) * 2013-10-29 2016-06-15 三菱电机株式会社 换热器和空调装置
CN107003085B (zh) * 2014-11-04 2019-01-04 三菱电机株式会社 层叠型集管、热交换器以及空调装置
WO2016178278A1 (ja) * 2015-05-01 2016-11-10 三菱電機株式会社 積層型ヘッダ、熱交換器、及び、空気調和装置
CN104848516A (zh) * 2015-06-15 2015-08-19 广州佳立空调技术有限公司 一种空调用层叠式管片及换热器
US10921069B2 (en) * 2016-08-08 2021-02-16 Mitsubishi Electric Corporation Stacking-type header and method of manufacturing stacking-type header
JP6716016B2 (ja) * 2017-03-31 2020-07-01 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
EP3678174B1 (en) * 2017-08-29 2022-11-16 Welcon Inc. Heat sink
JP6840262B2 (ja) * 2017-10-13 2021-03-10 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、冷凍サイクル装置
CN111936815B (zh) * 2018-04-05 2022-02-11 三菱电机株式会社 分配器以及热交换器
US11536496B2 (en) * 2018-10-29 2022-12-27 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
JP7016836B2 (ja) * 2019-06-10 2022-02-07 矢崎総業株式会社 導電システム
JP6930557B2 (ja) * 2019-06-28 2021-09-01 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
CN114222484B (zh) * 2021-12-20 2022-10-14 珠海格力电器股份有限公司 一种空调
CN115031556A (zh) * 2022-08-11 2022-09-09 杭州沈氏节能科技股份有限公司 微通道换热器及微通道换热器的加工方法
CN115717842B (zh) * 2023-01-10 2023-04-11 中国核动力研究设计院 一种多功能轴向连接微通道换热器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2000161818A (ja) 1998-11-25 2000-06-16 Hitachi Ltd プレート型冷媒分流器およびそれを用いた冷凍サイクル
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2537276A (en) * 1947-12-22 1951-01-09 Little Inc A Heat exchanger
US3221982A (en) * 1964-08-10 1965-12-07 Jack S Yampolsky Turbocirculator
US4730668A (en) * 1987-02-13 1988-03-15 Lemaster William Radiator adaptor and assembly
US5514248A (en) * 1990-08-20 1996-05-07 Showa Aluminum Corporation Stack type evaporator
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JP4122578B2 (ja) * 1997-07-17 2008-07-23 株式会社デンソー 熱交換器
FR2793016B1 (fr) * 1999-04-30 2001-09-07 Valeo Climatisation Boite collectrice allongee pour echangeur de chaleur resistant aux fortes pressions internes
ATE461407T1 (de) * 2001-12-21 2010-04-15 Behr Gmbh & Co Kg Vorrichtung zum austausch von wärme
US6892805B1 (en) * 2004-04-05 2005-05-17 Modine Manufacturing Company Fluid flow distribution device
ES2335029T3 (es) * 2004-11-30 2010-03-18 Valeo Systemes Thermiques Sas Intercambiador de calor con acumulador termico.
JP5655676B2 (ja) * 2010-08-03 2015-01-21 株式会社デンソー 凝縮器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2000161818A (ja) 1998-11-25 2000-06-16 Hitachi Ltd プレート型冷媒分流器およびそれを用いた冷凍サイクル
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348945A4 (en) * 2015-09-07 2018-09-26 Mitsubishi Electric Corporation Distributor, laminated header, heat exchanger, and air conditioner
JP2021523054A (ja) * 2018-05-10 2021-09-02 レイセオン カンパニー 多軸ジンバルのポインティング又はターゲティング・システムのための熱交換器
JP7050182B2 (ja) 2018-05-10 2022-04-07 レイセオン カンパニー 多軸ジンバルのポインティング又はターゲティング・システムのための熱交換器
WO2020090015A1 (ja) * 2018-10-30 2020-05-07 三菱電機株式会社 冷媒分配器、熱交換器および空気調和装置
JPWO2020090015A1 (ja) * 2018-10-30 2021-06-03 三菱電機株式会社 冷媒分配器、熱交換器および空気調和装置
JP7112164B2 (ja) 2018-10-30 2022-08-03 三菱電機株式会社 冷媒分配器、熱交換器および空気調和装置
WO2020170348A1 (ja) * 2019-02-20 2020-08-27 三菱電機株式会社 熱交換器及び冷凍サイクル装置
WO2022264348A1 (ja) * 2021-06-17 2022-12-22 三菱電機株式会社 熱交換器および冷凍サイクル装置

Also Published As

Publication number Publication date
CN203785332U (zh) 2014-08-20
CN105209845A (zh) 2015-12-30
US10107570B2 (en) 2018-10-23
EP2998679B1 (en) 2020-08-05
CN105209845B (zh) 2017-05-03
EP2998679A1 (en) 2016-03-23
JPWO2014184912A1 (ja) 2017-02-23
JP6038302B2 (ja) 2016-12-07
EP2998679A4 (en) 2017-01-04
US20160076825A1 (en) 2016-03-17
HK1214342A1 (zh) 2016-07-22

Similar Documents

Publication Publication Date Title
JP6038302B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6177319B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6116683B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005267B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005268B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005266B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884669

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516824

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14785705

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013884669

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE