WO2014184913A1 - 積層型ヘッダー、熱交換器、及び、空気調和装置 - Google Patents

積層型ヘッダー、熱交換器、及び、空気調和装置 Download PDF

Info

Publication number
WO2014184913A1
WO2014184913A1 PCT/JP2013/063602 JP2013063602W WO2014184913A1 WO 2014184913 A1 WO2014184913 A1 WO 2014184913A1 JP 2013063602 W JP2013063602 W JP 2013063602W WO 2014184913 A1 WO2014184913 A1 WO 2014184913A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
refrigerant
heat exchanger
protrusion
heat transfer
Prior art date
Application number
PCT/JP2013/063602
Other languages
English (en)
French (fr)
Inventor
伊東 大輔
石橋 晃
岡崎 多佳志
繁佳 松井
真哉 東井上
拓也 松田
厚志 望月
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2015516825A priority Critical patent/JP6005266B2/ja
Priority to EP13884840.3A priority patent/EP2998681B1/en
Priority to PCT/JP2013/063602 priority patent/WO2014184913A1/ja
Priority to CN201420244830.4U priority patent/CN203964700U/zh
Publication of WO2014184913A1 publication Critical patent/WO2014184913A1/ja
Priority to HK16104754.0A priority patent/HK1217116A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05333Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Definitions

  • the present invention relates to a laminated header, a heat exchanger, and an air conditioner.
  • a first plate-like body in which a plurality of outlet channels are formed, and a refrigerant that is stacked on the first plate-like body and flows in from the inlet channel is formed in the first plate-like body.
  • a second plate-like body in which a distribution channel that distributes and flows out to a plurality of outlet channels is formed.
  • the distribution flow path includes a branch flow path having a plurality of grooves perpendicular to the refrigerant inflow direction.
  • the refrigerant flowing into the branch channel from the inlet channel is branched into a plurality by passing through the plurality of grooves, and flows out through the plurality of outlet channels formed in the first plate-like body (for example, patents). Reference 1).
  • JP 2000-161818 paragraph [0012] to paragraph [0020], FIG. 1 and FIG. 2
  • the conventional laminated header has a problem that it is difficult to realize reduction in parts cost, weight reduction, and the like while suppressing an increase in pressure loss of the refrigerant.
  • the present invention has been made against the background of the above problems, and is to obtain a multilayer header capable of realizing reduction in parts cost, weight reduction, etc. while suppressing an increase in refrigerant pressure loss. Objective. Moreover, an object of this invention is to obtain the heat exchanger provided with such a laminated header. Moreover, an object of this invention is to obtain the air conditioning apparatus provided with such a heat exchanger.
  • the laminated header according to the present invention includes a first plate body in which a plurality of first outlet channels are formed, and a refrigerant that is stacked on the first plate body and flows in from the first inlet channel.
  • the at least one first protrusion has at least one first plate-like member formed by press working, and the branch channel has a region where the refrigerant flows in and the inside of the first protrusion. It is formed by closing the region other than the region where the refrigerant flows out.
  • the distribution flow path includes at least one branch flow path, the second plate-shaped body, at least one first protrusion is formed by pressing.
  • a branch channel is formed by closing a region other than the region where the refrigerant flows in and the region where the refrigerant flows out inside the first protrusion. Therefore, even if the first plate-like member is thinned, the cross-sectional area of the branch flow path can be secured, and it is possible to realize a reduction in parts cost, weight reduction, etc. while suppressing an increase in refrigerant pressure loss. It is.
  • FIG. It is a figure which shows the structure of the heat exchanger which concerns on Embodiment 1.
  • FIG. It is a perspective view in the state which decomposed
  • FIG. It is sectional drawing in the state which laminated
  • FIG. It is sectional drawing in the state which laminated
  • FIG. It is the perspective view and sectional drawing of the principal part in the state which decomposed
  • FIG. 3 is a development view of a stacked header of the heat exchanger according to the first embodiment. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 1 is applied.
  • FIG. 6 is a perspective view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where a stacked header is disassembled.
  • FIG. 6 is a cross-sectional view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where stacked headers are stacked.
  • FIG. 6 is a development view of a stacked header of Modification Example 1 of the heat exchanger according to Embodiment 1.
  • FIG. 6 is a perspective view of a main part and a cross-sectional view of the main part in a state in which the stacked header is disassembled in Modification-2 of the heat exchanger according to the first embodiment.
  • FIG. 10 is a perspective view of a modified example-3 of the heat exchanger according to the first embodiment in a state in which the stacked header is disassembled.
  • FIG. 12 is a perspective view of a modified example-4 of the heat exchanger according to Embodiment 1 in a state where a stacked header is disassembled. It is a figure which shows the structure of the heat exchanger which concerns on Embodiment 2.
  • FIG. 6 is a development view of a stacked header of Modification Example 1 of the heat exchanger according to Embodiment 1.
  • FIG. 6 is a perspective view of a main part and a cross-sectional view of the main part in
  • FIG. 6 is a development view of a stacked header of a heat exchanger according to Embodiment 3.
  • FIG. It is a figure which shows the structure of the air conditioning apparatus to which the heat exchanger which concerns on Embodiment 3 is applied.
  • the laminated header according to the present invention will be described with reference to the drawings.
  • the laminated header according to the present invention distributes the refrigerant flowing into the heat exchanger
  • a refrigerant may be distributed.
  • the configuration, operation, and the like described below are merely examples, and are not limited to such configuration, operation, and the like.
  • symbol is attached
  • symbol is abbreviate
  • the illustration of the fine structure is simplified or omitted as appropriate.
  • overlapping or similar descriptions are appropriately simplified or omitted.
  • FIG. 1 is a diagram illustrating a configuration of a heat exchanger according to the first embodiment.
  • the heat exchanger 1 includes a stacked header 2, a header 3, a plurality of first heat transfer tubes 4, and a plurality of fins 5.
  • the laminated header 2 has a refrigerant inflow portion 2A and a plurality of refrigerant outflow portions 2B.
  • the header 3 has a plurality of refrigerant inflow portions 3A and a refrigerant outflow portion 3B.
  • Refrigerant piping is connected to the refrigerant inflow portion 2A of the stacked header 2 and the refrigerant outflow portion 3B of the header 3.
  • a plurality of first heat transfer tubes 4 are connected between the plurality of refrigerant outflow portions 2B of the stacked header 2 and the plurality of refrigerant inflow portions 3A of the header 3.
  • the first heat transfer tube 4 is a flat tube in which a plurality of flow paths are formed.
  • the first heat transfer tube 4 is made of, for example, aluminum.
  • the ends of the plurality of first heat transfer tubes 4 on the stacked header 2 side are connected to the plurality of refrigerant outflow portions 2 ⁇ / b> B of the stacked header 2.
  • the plurality of refrigerant outflow portions 2B of the multilayer header 2 may be connected in a state where the end portions of the plurality of first heat transfer tubes 4 on the multilayer header 2 side are held by a plate-like holding member.
  • a plurality of fins 5 are joined to the first heat transfer tube 4.
  • the fin 5 is made of, for example, aluminum.
  • the first heat transfer tube 4 and the fin 5 may be joined by brazing.
  • the case where the 1st heat exchanger tube 4 is eight is shown in FIG. 1, it is not limited to such a case. Moreover, it is not limited to when the 1st heat exchanger tube 4 is a flat
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 4 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 4.
  • the refrigerant flowing through the plurality of first heat transfer tubes 4 flows into and merges with the header 3 through the plurality of refrigerant inflow portions 3A, and flows out into the refrigerant pipe through the refrigerant outflow portion 3B.
  • the refrigerant can flow backward.
  • FIG. 2 is a perspective view of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • the first plate 11 is stacked on the refrigerant outflow side.
  • the first plate-like body 11 includes a first plate-like member 21 and a second plate-like member 22.
  • a plurality of first outlet channels 11A are formed in the first plate-like body 11.
  • the plurality of first outlet channels 11A correspond to the plurality of refrigerant outflow portions 2B in FIG.
  • the second plate-like body 12 is laminated on the refrigerant inflow side.
  • the second plate-like body 12 includes a third plate-like member 23 and a plurality of fourth plate-like members 24_1 to 24_3.
  • a distribution channel 12A is formed in the second plate-like body 12.
  • the distribution flow path 12A includes a first inlet flow path 12a and a plurality of branch flow paths 12b.
  • the first inlet channel 12a corresponds to the refrigerant inflow portion 2A in FIG.
  • the first plate-like member 21 has a first protrusion 21A and a second protrusion 21B that are formed by pressing such as drawing and bending, and protrude toward the refrigerant inflow side. .
  • the first protruding portion 21A has a bottom, and in a state where the first plate-like member 21 is laminated, a part of the inner surface 21a functions as a part of the first outlet channel 11A, and a part of the outer surface 21b It functions as a part of the branch flow path 12b.
  • the 2nd protrusion part 21B has a bottom, and functions as a junction reinforcement part in the state in which the 1st plate-shaped member 21 was laminated
  • the first plate member 21 is made of, for example, aluminum.
  • the second plate-like member 22 includes a first protrusion 22A and a second protrusion 22B that are formed by pressing such as drawing and bending, and protrude toward the refrigerant inflow side. .
  • 22 A of 1st protrusion parts do not have a bottom, and the inner surface 22a functions as a junction part with the 1st heat exchanger tube 4 in the state in which the 2nd plate-shaped member 22 was laminated
  • the 2nd protrusion part 22B has a bottom, and functions as a junction reinforcement part in the state in which the 2nd plate-shaped member 22 was laminated
  • the second plate member 22 is made of, for example, aluminum.
  • the inner surface 21a of the first protrusion 21A of the first plate member 21 and the inner surface 22a of the first protrusion 22A of the second plate member 22 are shaped along the outer peripheral surface of the first heat transfer tube 4.
  • the outer peripheral surface of the first heat transfer tube 4 is joined to the inner surface 22a of the first protrusion 22A of the second plate-like member 22 by, for example, brazing or bonding.
  • the bottom of the first projecting portion 21A of the first plate member 21 and the end surface of the first heat transfer tube 4 have a gap in the joined state.
  • the third plate-like member 23 has a first protruding portion 23A that is formed by pressing such as drawing or bending and protrudes toward the side where the refrigerant flows.
  • 23 A of 1st protrusion parts do not have a bottom, and the inner surface 23a functions as the 1st inlet flow path 12a in the state in which the 3rd plate-shaped member 23 was laminated
  • the third plate member 23 is made of, for example, aluminum.
  • the inner surface 23a of the first protrusion 23A of the third plate-like member 23 has a shape along the outer peripheral surface of the refrigerant pipe.
  • the outer peripheral surface of the refrigerant pipe is joined to the inner surface 23a of the first protrusion 23A of the third plate-like member 23 by, for example, brazing or bonding.
  • a base or the like may be attached to the outer surface of the first projecting portion 23A of the third plate-like member 23, and the refrigerant pipe may be connected through the base or the like.
  • the fourth plate-like members 24_1 to 24_3 are formed by pressing such as drawing and bending, and protrude toward the refrigerant inflow side, and the first protrusions 24A_1 to 24A_3 and the second protrusion 24B_1. To 24B_3.
  • the first protrusion 24A_1 of the fourth plate member 24_1 has a bottom, and the inner surface 24a_1 functions as a part of the branch flow path 12b in a state where the fourth plate member 24_1 is stacked.
  • the first protrusions 24A_2 and 24A_3 of the fourth plate members 24_2 and 24_3 have a bottom, and the inner surfaces 24a_2 and 24a_3 and the outer surfaces 24b_2 and 24b_3 branch in a state where the fourth plate members 24_2 and 24_3 are stacked. It functions as a part of the path 12b.
  • the second protrusions 24B_1 to 24B_3 have a bottom and function as a joint reinforcement in a state where the fourth plate-like members 24_1 to 24_3 are stacked.
  • the fourth plate members 24_1 to 24_3 are made of, for example, aluminum.
  • the fourth plate-like members 24_1 to 24_3 may be collectively referred to as the fourth plate-like member 24.
  • the first protrusions 24A_1 to 24A_3 of the fourth plate-like member 24 may be collectively referred to as the first protrusion 24A.
  • the inner surfaces 24a_1 to 24a_3 of the first protrusion 24A of the fourth plate member 24 may be collectively referred to as an inner surface 24a.
  • the outer surfaces 24b_1 to 24b_3 of the first protrusion 24A of the fourth plate member 24 may be collectively referred to as the outer surface 24b.
  • the second protrusions 24B_1 to 24B_3 of the fourth plate member 24 may be collectively referred to as the second protrusion 24B.
  • the 1st plate-shaped member 21, the 2nd plate-shaped member 22, the 3rd plate-shaped member 23, and the 4th plate-shaped member 24 may be named generically, and may be described as a plate-shaped member.
  • the fourth plate member 24 corresponds to the “first plate member” of the present invention.
  • FIGS. 3 and 4 are cross-sectional views of the heat exchanger according to Embodiment 1 in a state in which stacked headers are stacked.
  • 3 shows a cross-sectional view taken along the line AA in FIG. 2
  • FIG. 4 shows a cross-sectional view taken along the line BB in FIG.
  • coolant flows is shown with the oblique line.
  • the periphery of the plate-like member is bent in the stacking direction, and the tip of the periphery is joined to the side surface of the plate-like member that is stacked adjacent to the side into which the refrigerant flows. Is done.
  • each branch flow path 12b is formed by joining the outer surfaces 24b and 21b of the first projecting portions 24A and 21A in a fitted state.
  • the second The reinforcing portion is formed by joining the outer surfaces of the first plate member 21 or the second projecting portions 22B, 21B, and 24B of the fourth plate member 24 in a fitted state.
  • the outer surface of the second protrusion 24B_1 of the fourth plate member 24_1 is joined to the surface of the third plate member 23.
  • 5 and 6 are a perspective view and a cross-sectional view of the main part of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • 5 and 6 are a perspective view and a cross-sectional view of the portion X in FIG.
  • FIG. 5B shows a cross-sectional view taken along the line CC in FIG. 5A
  • FIG. 6B shows a cross-sectional view taken along the line DD in FIG. 6A.
  • the portion into which the refrigerant flows is indicated by hatching.
  • branch flow path 12b formed by the inner surface 24a_3 of the first protrusion 24A_3 of the fourth plate member 24_3 and the outer surface 21b of the first protrusion 21A of the first plate member 21 will be described. However, the same applies to the other branch flow paths 12b.
  • the Z-shaped region of the first protrusion 24A_3 of the fourth plate member 24_3 (hereinafter, the Z-shaped region of the plate-like member on the side into which the refrigerant flows is generically named,
  • the inner surface of the inflow side Z-shaped region 12b_1a (hereinafter, the inner surface of the inflow side Z-shaped region 12b_1a is collectively referred to as the inner surface 12b_1b), and the first protrusion 21A of the first plate member 21.
  • the outer surface (hereinafter referred to as the outflow side Z-shaped region) of the Z-shaped region (hereinafter, the Z-shaped region of the plate-like member on the refrigerant outflow side is collectively referred to as the outflow side Z-shaped region 12b_2a).
  • the outer surface of 12b_2a is collectively referred to as the outer surface 12b_2b) and joined in a fitted state to form the branch flow path 12b.
  • the inflow side Z-shaped region 12b_1a has a shape connecting the two end portions 12b_1c and 12b_1d via a straight line portion 12b_1e perpendicular to the direction of gravity.
  • a through hole 12b_1f is formed at the center of the inflow side Z-shaped region 12b_1a.
  • the peripheral portions 12b_1h and 12b_1i of the two end portions 12b_1c and 12b_1d of the inflow side Z-shaped region 12b_1a on the surface of the fourth plate-like member 24_3 protrude to the side where the refrigerant flows out.
  • the outflow side Z-shaped region 12b_2a has a shape connecting the two end portions 12b_2c and 12b_2d via a straight line portion 12b_2e perpendicular to the direction of gravity.
  • Through holes 12b_2f and 12b_2g are formed in the two end portions 12b_2c and 12b_2d of the outflow side Z-shaped region 12b_2a, respectively.
  • the peripheral portions 12b_2h and 12b_2i of the two end portions 12b_2c and 12b_2d of the outflow side Z-shaped region 12b_2a of the first projecting portion 21A of the first plate-like member 21 are recessed toward the refrigerant outflow side.
  • peripheral portions 12b_1h and 12b_1i that protrude toward the refrigerant outflow side and the peripheral portions 12b_2h and 12b_2i that are recessed toward the refrigerant outflow side are joined in a fitted state so that they flow into the through hole 12b_1f.
  • the refrigerant branched into two passes through between the inner surface 12b_1b of the inflow side Z-shaped region 12b_1a and the outer surface 12b_2b of the outflow side Z-shaped region 12b_2a and flows out of the through holes 12b_2f and 12b_2g without leaking.
  • a protrusion 12b_2j is formed below the center of the outflow side Z-shaped region 12b_2a in the drawing.
  • the protrusion 12b_2j is connected to the inner surface of the outflow side Z-shaped region 12b_2a of the other branch passage 12b that communicates with the lower side of the center of the inflow side Z-shaped region 12b_1a and is adjacent to the refrigerant outflow side.
  • the refrigerant that is joined and flows in from the through hole 12b_1f is prevented from leaking from the branch flow path 12b through the inner surface of the outflow side Z-shaped region 12b_2a of the other branch flow path 12b adjacent to the refrigerant flow-out side.
  • the inner surface of the outflow side Z-shaped region 12b_2a of another branch flow path 12b adjacent to the refrigerant outflow side may be blocked by another method.
  • peripheral portions 12b_1h and 12b_1i protruding to the refrigerant outflow side are recessed to the refrigerant inflow side, and peripheral portions 12b_2h and 12b_2i recessed to the refrigerant outflow side are inflow of the refrigerant. You may project to the side. Even in such a case, the peripheral portions 12b_1h and 12b_1i that are recessed toward the refrigerant inflow side and the peripheral portions 12b_2h and 12b_2i that protrude toward the refrigerant inflow side are joined in a fitted state, so that a through hole is obtained.
  • the refrigerant that has flowed in from 12b_1f and branched into two passes between the inner surface 12b_1b of the inflow side Z-shaped region 12b_1a and the outer surface 12b_2b of the outflow side Z-shaped region 12b_2a without leaking, and passes through the through holes 12b_2f, It flows out of 12b_2g.
  • the branch flow path 12b branches the flowing refrigerant into two and flows out. Therefore, when there are eight first heat transfer tubes 4 connected, at least three fourth plate-like members 24 are required. When 16 first heat transfer tubes 4 are connected, at least four fourth plate members 24 are required.
  • the number of connected first heat transfer tubes 4 is not limited to a power of 2. In such a case, the branched flow path 12b and the non-branched flow path may be combined. Two first heat transfer tubes 4 may be connected.
  • the end portion 12b_1c of the inflow side Z-shaped region 12b_1a, the end portion 12b_2c of the outflow side Z-shaped region 12b_2a, and the end portion of the inflow side Z-shaped region 12b_1a 12b_1d and the end 12b_2d of the outflow side Z-shaped region 12b_2a are located at different heights.
  • one is on the upper side compared to the straight line portion 12b_1e of the inflow side Z-shaped region 12b_1a and the straight line portion 12b_2e of the outflow side Z-shaped region 12b_2a, and the other is the straight line portion 12b_1e and the outflow side of the inflow side Z-shaped region 12b_1a.
  • the shape of the deviation of each distance from the through hole 12b_1f to the through hole 12b_2f and the through hole 12b_2g along the branch flow path 12b is formed. The size can be reduced without complication.
  • the straight line connecting the through hole 12b_2f and the through hole 12b_2g is parallel to the longitudinal direction of the plate-like member, it is possible to reduce the dimension in the short direction of the plate-like member, thereby reducing component costs, weight, etc. Is done. Furthermore, since the straight line connecting the through hole 12b_2f and the through hole 12b_2g is parallel to the arrangement direction of the first heat transfer tubes 4, the heat exchanger 1 is saved in space.
  • the stacked header 2 is not limited to one in which the plurality of first outlet channels 11A are arranged along the direction of gravity.
  • a wall-mounted room air conditioner indoor unit, an air conditioner outdoor unit, a chiller outdoor unit It may be used when the heat exchanger 1 is disposed at an inclination like a heat exchanger such as a machine.
  • the straight portion 12b_1e and the straight portion 12b_2e may be the inflow side Z-shaped region 12b_1a and the outflow side Z-shaped region 12b_2a that are not perpendicular to the longitudinal direction of the plate-like member.
  • the branch channel 12b may have other shapes. That is, it does not have to be Z-shaped.
  • the inflow side Z-shaped region 12b_1a and the outflow side Z-shaped region 12b_2a do not have to include the straight portion 12b_1e and the straight portion 12b_2e.
  • the straight portion 12b_1e and the straight portion 12b_2e are provided, when the refrigerant flows from the through hole 12b_1f and branches into two, it is difficult to be affected by gravity.
  • the inflow side Z-shaped region 12b_1a and the outflow side Z-shaped region 12b_2a may have a branched shape.
  • the uniformity of refrigerant distribution can be improved.
  • Each plate-like member is preferably laminated by brazing.
  • the plate-like members are laminated without gaps, leakage of the refrigerant is suppressed, and pressure resistance is ensured.
  • the occurrence of brazing defects is further suppressed.
  • processing that promotes the formation of fillets, such as formation of ribs is performed at locations where refrigerant leakage is likely to occur, the occurrence of brazing defects is further suppressed.
  • first heat transfer tube 4 and the fins 5 are made of the same material (for example, made of aluminum), it is possible to braze and join together. , Productivity is improved.
  • the brazing of the first header tube 4 and the fins 5 may be performed after the laminated header 2 is brazed. Alternatively, only the first plate 11 may be brazed to the first heat transfer tube 4 first, and the second plate 12 may be brazed afterwards.
  • FIG. 7 is a development view of the stacked header of the heat exchanger according to the first embodiment.
  • the refrigerant that has passed through the first protrusion 23A of the third plate member 23 is a through hole formed in the first protrusion 24A_1 of the fourth plate member 24_1. That is, it flows into the inside of the first protrusion 24A_1 of the fourth plate-like member 24_1 through the through hole 12b_1f of the inflow side Z-shaped region 12b_1a.
  • the refrigerant hits the protruding portion of the adjacent stacked members and branches into two.
  • the branched refrigerant passes between the inner surface 12b_1b of the inflow side Z region 12b_1a and the outer surface 12b_2b of the outflow side Z region 12b_2a, and is a through hole formed in the first protrusion 24A_2 of the fourth plate member 24_2. That is, it passes through the through holes 12b_2f and 12b_2b of the outflow side Z-shaped region 12b_2a.
  • the refrigerant hits the protruding portion of the adjacent stacked members and branches into two.
  • the branched refrigerant passes between the inner surface 12b_1b of the inflow side Z region 12b_1a and the outer surface 12b_2b of the outflow side Z region 12b_2a, and is a through hole formed in the first protrusion 24A_3 of the fourth plate member 24_3. That is, it passes through the through holes 12b_2f and 12b_2b of the outflow side Z-shaped region 12b_2a.
  • the refrigerant hits the protruding portion of the adjacent stacked members and branches into two.
  • the branched refrigerant passes between the inner surface 12b_1b of the inflow side Z-shaped region 12b_1a and the outer surface 12b_2b of the outflow side Z-shaped region 12b_2a, and is a through hole formed in the first protruding portion 21A of the first plate member 21. That is, it passes through the through holes 12b_2f and 12b_2b of the outflow side Z-shaped region 12b_2a.
  • the refrigerant that has passed through the through hole formed in the first protrusion 21A of the first plate member 21 passes through the first protrusion 22A of the second plate member 22 and flows into the first heat transfer tube 4.
  • FIG. 8 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 1 is applied.
  • the air conditioner 51 includes a compressor 52, a four-way valve 53, a heat source side heat exchanger 54, a throttle device 55, a load side heat exchanger 56, a heat source side fan 57, A load-side fan 58 and a control device 59.
  • the compressor 52, the four-way valve 53, the heat source side heat exchanger 54, the expansion device 55, and the load side heat exchanger 56 are connected by refrigerant piping to form a refrigerant circulation circuit.
  • a compressor 52, a four-way valve 53, a throttle device 55, a heat source side fan 57, a load side fan 58, various sensors, and the like are connected to the control device 59.
  • the heat source side heat exchanger 54 acts as a condenser during the cooling operation, and acts as an evaporator during the heating operation.
  • the load side heat exchanger 56 acts as an evaporator during the cooling operation, and acts as a condenser during the heating operation.
  • the flow of the refrigerant during the cooling operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the heat source side heat exchanger 54 via the four-way valve 53 and condenses by heat exchange with the outside air supplied by the heat source side fan 57. It becomes a high-pressure liquid refrigerant and flows out of the heat source side heat exchanger 54.
  • the high-pressure liquid refrigerant flowing out of the heat source side heat exchanger 54 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant flowing out of the expansion device 55 flows into the load-side heat exchanger 56 and evaporates by heat exchange with the indoor air supplied by the load-side fan 58, thereby causing a low-pressure gas state. And flows out of the load-side heat exchanger 56.
  • the low-pressure gaseous refrigerant flowing out from the load-side heat exchanger 56 is sucked into the compressor 52 through the four-way valve 53.
  • the flow of the refrigerant during the heating operation will be described.
  • the high-pressure and high-temperature gas refrigerant discharged from the compressor 52 flows into the load-side heat exchanger 56 through the four-way valve 53 and condenses by heat exchange with the indoor air supplied by the load-side fan 58. And becomes a high-pressure liquid refrigerant and flows out of the load-side heat exchanger 56.
  • the high-pressure liquid refrigerant flowing out of the load-side heat exchanger 56 flows into the expansion device 55 and becomes a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant that flows out of the expansion device 55 flows into the heat source side heat exchanger 54 and evaporates by heat exchange with the outside air supplied by the heat source side fan 57, so that the low-pressure gas state It becomes a refrigerant and flows out of the heat source side heat exchanger 54.
  • the low-pressure gaseous refrigerant flowing out from the heat source side heat exchanger 54 is sucked into the compressor 52 through the four-way valve 53.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the heat exchanger 1 is connected so that the refrigerant flows in from the stacked header 2 and the refrigerant flows out of the header 3 when the heat exchanger 1 acts as an evaporator. That is, when the heat exchanger 1 acts as an evaporator, the gas-liquid two-phase refrigerant flows from the refrigerant pipe to the stacked header 2, and the gas refrigerant flows from the first heat transfer pipe 4 to the header 3. .
  • the heat exchanger 1 acts as a condenser, a gaseous refrigerant flows from the refrigerant pipe to the header 3, and a liquid refrigerant flows from the first heat transfer tube 4 to the stacked header 2.
  • the branch flow path 12b of the stacked header 2 includes the inner surface 12b_1b of the inflow side Z-shaped region 12b_1a, that is, the inner surface of the first protruding portion of the plate member, and the outer surface 12b_2b of the outflow side Z region 12b_2a, that is, another plate-shaped member. And the outer surface of the first protrusion. Therefore, even if the plate-like member is thinned, the cross-sectional area of the branch flow path 12b can be secured, and it is possible to realize reduction in parts cost, weight reduction, etc. while suppressing an increase in pressure loss of the refrigerant. is there.
  • the plate-like member can be made thin, the heat capacity can be reduced, the time required for heating and cooling in joining such as brazing is shortened, and the production efficiency is improved.
  • the protruding part of the plate-like member can be formed by pressing such as drawing and bending, the processing cost is reduced.
  • the plate-like members since a space is formed between the plate-like members, heat insulation can be improved compared to the case where a thick plate-like member is cut to form a flow path, and the laminated header It is suppressed that the refrigerant which passes 2 is heated and cooled.
  • the space between the plate-like members may be filled with a heat insulating material.
  • the peripheral edge of the plate member is bent in the stacking direction, and the tip of the peripheral edge is joined to the side surface of the adjacent plate member stacked. Therefore, compared to the case where unfolded plate-like members are stacked and bonded over a wide area, the brazing material is more easily concentrated by the surface tension at the tip of the periphery, and the brazing material becomes non-uniform and joined. The frequency of defects and the amount of brazing material used are reduced. Furthermore, a process for finishing the flatness of the joint surface, a jig for evenly pressurizing a large area at the time of brazing, and the like are unnecessary, and the manufacturing cost is reduced.
  • the second protrusion is formed on the plate-like member, and the inner surface of the second protrusion is joined to the outer surface of the second protrusion formed on the adjacent plate-like member.
  • the protrusions are joined in a state close to line contact, so that the brazing material is easily aggregated due to surface tension, and the frequency at which the brazing material becomes non-uniform and defective joining is reduced. Certainty is improved. Furthermore, the amount of brazing material used is reduced. Furthermore, a process for finishing the flatness of the joint surface, a jig for evenly pressurizing a large area at the time of brazing, and the like are unnecessary, and the manufacturing cost is reduced.
  • the inner surface 12b_1b of the inflow side Z-shaped region 12b_1a that is, the inner surface of the first protruding portion of the plate-shaped member
  • the outer surface 12b_2b of the outflow-side Z-shaped region 12b_2a that is, the outer surface of the first protruding portion of the other plate-shaped member
  • FIG. 9 is a perspective view of a modified example-1 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • FIG. 10 is a cross-sectional view of Modified Example 1 of the heat exchanger according to Embodiment 1 in a state where stacked headers are stacked.
  • FIG. 11 is a development view of the multilayer header of Modification Example 1 of the heat exchanger according to the first embodiment.
  • FIG. 10 is a cross-sectional view taken along line EE in FIG. In FIG. 10, the portion into which the refrigerant flows is indicated by hatching.
  • the first plate member 21, the second plate member 22, the third plate member 23, the fourth plate member 24, and the fifth plate members 25_1 to 25_5 are joined. Show.
  • fifth plate members 25_1 to 25_5 are provided on the first plate member 21, the second plate member 22, the third plate member 23, and the fourth plate member 24, respectively. It may be joined.
  • the plate-like member has first projecting portions 21A, 22A, 23A, and 24A that are formed by pressing such as drawing and bending, and project toward the side where the refrigerant flows.
  • the first protrusions 21A, 22A, 23A, 24A do not have a bottom, and the inner surfaces 21a, 22a, 23a, 24a function as a part of the branch flow path 12b in a state where the plate-like members are stacked.
  • the fifth plate-like members 25_1 to 25_5 may be collectively referred to as the fifth plate-like member 25 in some cases.
  • the fifth plate-like member 25 corresponds to the “second plate-like member” of the present invention.
  • Through holes 25A_1 to 25A_5 are formed in the fifth plate-like members 25_1 to 25_5, and the outer circumferences of the tips of the first projecting portions 21A, 22A, 23A, and 24A are joined to the through holes 25A_1 to 25A_5 in a fitted state. Is done.
  • the plate-like members are laminated, and the insides of the first projecting portions 21A, 22A, 23A, and 24A are laminated on the surface of the fifth plate-like member 25 laminated on the refrigerant outflow side and the refrigerant inflow side.
  • the other flow path 12b is formed by closing the area other than the area where the refrigerant flows in and the area where the refrigerant flows out by the surface of the other plate-like member.
  • FIG. 12 is a perspective view and a cross-sectional view of the main part in a state in which the stacked header is disassembled in Modification-2 of the heat exchanger according to the first embodiment.
  • 12A is a perspective view of the main part in a state where the laminated header is disassembled
  • FIG. 12B is a first plate-like member taken along line FF in FIG. 12A.
  • FIG. 12 (b) the part into which a refrigerant
  • the inner surface 21a of the first protrusion 21A of the first plate-like member 21 other than the outflow side Z-shaped region 12b_2a has a shape that gradually expands toward the refrigerant outflow side. May be.
  • FIG. 13 is a perspective view of Modified Example-3 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled. As shown in FIG. 13, a plurality of first inlet channels 12 a may be formed in the third plate member 23, and the number of fourth plate members 24 may be reduced. By being configured in this way, parts cost, weight, etc. are reduced.
  • FIG. 14 is a perspective view of Modification 4 of the heat exchanger according to Embodiment 1 in a state where the stacked header is disassembled.
  • the first inlet channel 12 a may be formed on a plate-like member other than the third plate-like member 23.
  • through holes are formed in the other plate-shaped members, and the inner surfaces of the first protrusions 24A_1 of the fourth plate-shaped member 24_1 are formed in the other plate-shaped members and the peripheral plate-shaped members from the through holes. What is necessary is just to form the protrusion part for guide
  • the present invention includes those in which the first inlet channel 12 a is formed in the first plate-like body 11, and the “distribution channel” of the present invention has the first inlet channel 12 a as the second plate-like body 12. Other than the distribution flow path 12A formed in the above.
  • FIG. 15 is a diagram illustrating a configuration of the heat exchanger according to the second embodiment.
  • the heat exchanger 1 includes a stacked header 2, a plurality of first heat transfer tubes 4, and a plurality of fins 5.
  • the stacked header 2 has a refrigerant inflow portion 2A, a plurality of refrigerant outflow portions 2B, a plurality of refrigerant inflow portions 2C, and a refrigerant outflow portion 2D.
  • a refrigerant pipe is connected to the refrigerant inflow portion 2A of the multilayer header 2 and the refrigerant outflow portion 2D of the multilayer header 2.
  • the first heat transfer tube 4 is a flat tube that has been subjected to hairpin bending.
  • a plurality of first heat transfer tubes 4 are connected between the plurality of refrigerant outflow portions 2B of the multilayer header 2 and the plurality of refrigerant inflow portions 2C of the multilayer header 2.
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 4 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 4.
  • the refrigerant that has passed through the plurality of first heat transfer tubes 4 flows into and merges with the stacked header 2 through the plurality of refrigerant inflow portions 2C, and flows out to the refrigerant piping through the refrigerant outflow portion 2D.
  • the refrigerant can flow backward.
  • FIG. 16 is a perspective view of the heat exchanger according to Embodiment 2 in a state where the stacked header is disassembled.
  • FIG. 17 is a development view of the stacked header of the heat exchanger according to the second embodiment. As shown in FIGS. 16 and 17, the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • the first plate 11 is formed with a plurality of first outlet channels 11A and a plurality of second inlet channels 11B.
  • the first plate-like body 11 includes a first plate-like member 21, a sixth plate-like member 26, and a second plate-like member 22.
  • the plurality of second inlet channels 11B correspond to the plurality of refrigerant inflow portions 2C in FIG.
  • the first plate member 21, the second plate member 22, the third plate member 23, the fourth plate member 24, and the sixth plate member 26 are collectively referred to as a plate member. There is.
  • a distribution channel 12A and a merging channel 12B are formed in the second plate-like body 12.
  • the merging channel 12B includes a mixing channel 12c and a second outlet channel 12d.
  • the second outlet channel 12d corresponds to the refrigerant outflow portion 2D in FIG.
  • the second plate-like member 22 has, for example, a third protrusion 22C that is formed by pressing such as drawing or bending and protrudes toward the side from which the refrigerant flows out.
  • the third protrusion 22C does not have a bottom only in the region connected to the end of the first heat transfer tube 4 on the side from which the refrigerant flows out, and the outer surface 22d is the second plate-like member 22 in a stacked state. It functions as a part of the 2-inlet channel 11B.
  • the sixth plate-like member 26 is formed by, for example, press working such as drawing or bending, and protrudes toward the refrigerant outflow side, the first protrusion 26A, the second protrusion 26B, It has the 3rd protrusion part 26C.
  • the region of the first heat transfer tube 4 that does not face the end of the refrigerant flowing out does not have a bottom, and the inner surface 26c is the second in a state where the sixth plate member 26 is laminated. It functions as a part of the inlet channel 11B.
  • the first plate-like member 21 has, for example, a through-hole 21C that is formed by pressing and does not protrude toward the refrigerant outflow side and the refrigerant inflow side.
  • the through portion 21C functions as a part of the second inlet channel 11B in a state where the first plate-like member 21 is stacked.
  • the fourth plate-like member 24 is formed, for example, by press working such as drawing or bending, and has third projecting portions 24C_1 to 24C_3 projecting toward the refrigerant inflow side.
  • the third protrusions 24C_1 to 24C_3 of the fourth plate-like member 24 may be collectively referred to as a third protrusion 24C.
  • the third protrusion 24C does not have a bottom, and the inner surfaces 24c_1 to 24c_3 function as a part of the mixing channel 12c in a state where the fourth plate-like member 24 is stacked.
  • the inner surfaces 24c_1 to 24c_3 of the third protrusion 24C of the fourth plate-like member 24 may be collectively referred to as an inner surface 24c.
  • the third plate-like member 23 is formed in, for example, a third projecting portion 23C and a third projecting portion 23C that are formed by press working such as drawing and bending, and project toward the refrigerant inflow side. And a fourth projecting portion 23D projecting toward the refrigerant outflow side.
  • the third protrusion 23C has a bottom, and the outer surface 23d functions as a part of the mixing channel 12c in a state where the third plate member 23 is laminated.
  • the fourth protrusion 23D does not have a bottom, and the inner surface 23e functions as the second outlet channel 12d in a state where the third plate member 23 is stacked.
  • the second outlet channel 12 d may be formed on a plate-like member other than the third plate-like member 23.
  • a through hole is formed in the other plate-shaped member, and a protrusion for guiding the refrigerant to the through hole may be formed in the other plate-shaped member and the peripheral plate-shaped member.
  • the present invention includes the one in which the second outlet channel 12d is formed in the first plate-like body 11, and the “merging channel” of the present invention has the second outlet channel 12d in the second plate-like body 12.
  • the merging channel 12B formed in the above.
  • the refrigerant that has flowed into the inside of the third protrusion 26 ⁇ / b> C of the sixth plate member 26 passes through the through portion 21 ⁇ / b> C of the first plate member 21 and enters the inside of the third protrusion 24 ⁇ / b> C of the fourth plate member 24. Inflow and mix.
  • the mixed refrigerant passes through the fourth protrusion 23D of the third plate member 23 and flows out to the refrigerant pipe.
  • FIG. 18 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 2 is applied.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the heat exchanger 1 when the heat exchanger 1 acts as an evaporator, the refrigerant flows into the first heat transfer tube 4 from the distribution flow path 12 ⁇ / b> A of the stacked header 2, and the stacked header 2 is transferred from the first heat transfer tube 4.
  • the refrigerant flows into the merging flow path 12B.
  • a gas-liquid two-phase refrigerant flows from the refrigerant pipe into the distribution flow path 12A of the laminated header 2 and flows from the first heat transfer tube 4 to the laminated header 2.
  • the refrigerant in the gas state flows into the merge channel 12B.
  • a gaseous refrigerant flows from the refrigerant pipe into the merged flow path 12B of the laminated header 2 and the distribution flow path of the laminated header 2 from the first heat transfer pipe 4. Liquid refrigerant flows into 12A.
  • FIG. 19 is a diagram illustrating a configuration of a heat exchanger according to the third embodiment.
  • the heat exchanger 1 includes a stacked header 2, a plurality of first heat transfer tubes 4, a plurality of second heat transfer tubes 6, and a plurality of fins 5.
  • the laminated header 2 has a plurality of refrigerant folding portions 2E. Similar to the first heat transfer tube 4, the second heat transfer tube 6 is a flat tube that has been subjected to hairpin bending. A plurality of first heat transfer tubes 4 are connected between the plurality of refrigerant outflow portions 2B and the plurality of refrigerant folding portions 2E of the multilayer header 2, and the plurality of refrigerant folding portions 2E and the plurality of refrigerant inflows of the multilayer header 2 are connected. A plurality of second heat transfer tubes 6 are connected between the portion 2C.
  • the refrigerant flowing through the refrigerant pipe flows into the stacked header 2 through the refrigerant inflow portion 2A and is distributed, and flows out to the plurality of first heat transfer tubes 4 through the plurality of refrigerant outflow portions 2B.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of first heat transfer tubes 4.
  • the refrigerant that has passed through the plurality of first heat transfer tubes 4 flows into the plurality of refrigerant folding portions 2 ⁇ / b> E of the stacked header 2, is turned back, and flows out to the plurality of second heat transfer tubes 6.
  • the refrigerant exchanges heat with, for example, air supplied by a fan in the plurality of second heat transfer tubes 6.
  • the refrigerant that has passed through the plurality of second heat transfer tubes 6 flows into and joins the stacked header 2 through the plurality of refrigerant inflow portions 2C, and flows out to the refrigerant pipe through the refrigerant outflow portion 2D.
  • the refrigerant can flow backward.
  • FIG. 20 is a perspective view of the heat exchanger according to Embodiment 3 in a state where the stacked header is disassembled.
  • FIG. 21 is a development view of the stacked header of the heat exchanger according to the third embodiment.
  • the stacked header 2 includes a first plate-like body 11 and a second plate-like body 12. The first plate-like body 11 and the second plate-like body 12 are stacked.
  • first plate-like body 11 a plurality of first outlet channels 11A, a plurality of second inlet channels 11B, and a plurality of folded channels 11C are formed.
  • the plurality of folding channels 11C correspond to the plurality of refrigerant folding sections 2E in FIG.
  • the second plate-like member 22 is formed by, for example, pressing such as drawing or bending, and protrudes toward the side opposite to the side into which the refrigerant from the first heat transfer tube 4 flows. 22C and, for example, a fourth projecting portion 22D that is formed by press working such as drawing or bending, and projects toward the side from which the refrigerant from the second heat transfer tube 6 flows out.
  • the fourth protrusion 22D does not have a bottom only in the region connected to the end of the first heat transfer tube 4 on the side where the refrigerant flows out and the end of the second heat transfer tube 6 on the side where the refrigerant flows in.
  • the outer surface 22f functions as a part of the return channel 11C.
  • the sixth plate-like member 26 is formed by, for example, pressing such as drawing or bending, and protrudes toward the side opposite to the side into which the refrigerant from the first heat transfer tube 4 flows. 26C and, for example, a fourth projecting portion 26D that is formed by pressing such as drawing or bending and projects toward the side from which the refrigerant from the second heat transfer tube 6 flows out.
  • the fourth protrusion 26D has a bottom, and the inner surface 26e functions as a part of the folded flow path 11C in a state where the sixth plate member 26 is laminated.
  • the refrigerant that has passed through the second heat transfer tube 6 passes through the third protrusion 22C of the second plate member 22 and the third protrusion 26C of the sixth plate member 26, so It flows into the inside of the protrusion 24C and is mixed.
  • the mixed refrigerant passes through the fourth protrusion 23D of the third plate member 23 and flows out to the refrigerant pipe.
  • FIG. 22 is a diagram illustrating a configuration of an air-conditioning apparatus to which the heat exchanger according to Embodiment 3 is applied.
  • the heat exchanger 1 is used for at least one of the heat source side heat exchanger 54 and the load side heat exchanger 56.
  • the refrigerant flows into the first heat transfer tube 4 from the distribution flow path 12 ⁇ / b> A of the stacked header 2 and from the second heat transfer tube 6 to the stacked header 2.
  • the refrigerant flows into the merging flow path 12B.
  • a gas-liquid two-phase refrigerant flows from the refrigerant pipe into the distribution flow path 12A of the laminated header 2 and flows from the second heat transfer pipe 6 to the laminated header 2.
  • the refrigerant in the gas state flows into the merge channel 12B.
  • a gaseous refrigerant flows from the refrigerant pipe into the merged flow path 12B of the laminated header 2 and the distribution flow path of the laminated header 2 from the first heat transfer pipe 4. Liquid refrigerant flows into 12A.
  • the heat exchanger 1 acts as a condenser
  • the first heat transfer tube 4 is compared with the second heat transfer tube 6 on the upstream side (windward side) of the airflow generated by the heat source side fan 57 or the load side fan 58. )
  • the heat exchanger 1 is disposed. That is, the refrigerant flow from the second heat transfer tube 6 to the first heat transfer tube 4 and the airflow face each other.
  • the refrigerant of the first heat transfer tube 4 has a lower temperature than the refrigerant of the second heat transfer tube 6.
  • the airflow generated by the heat source side fan 57 or the load side fan 58 has a lower temperature on the upstream side of the heat exchanger 1 than on the downstream side of the heat exchanger 1.
  • the refrigerant can be supercooled (so-called SC) with a low-temperature airflow flowing upstream of the heat exchanger 1, and the condenser performance is improved.
  • SC supercooled
  • the heat source side fan 57 and the load side fan 58 may be provided on the leeward side or may be provided on the leeward side.
  • the heat exchange amount is increased without changing the area of the heat exchanger 1 as viewed from the front, the spacing between the fins 5, and the like. It is possible to make it.
  • the number of rows of heat transfer tubes becomes two, the amount of heat exchange increases by about 1.5 times or more. Note that the number of rows of heat transfer tubes may be three or more.
  • the area of the heat exchanger 1 as viewed from the front, the interval between the fins 5 and the like may be changed.
  • a header (laminated header 2) is provided only on one side of the heat exchanger 1.
  • laminated header 2 is provided only on one side of the heat exchanger 1.
  • header stacked header 2
  • the degree of freedom in design, production efficiency, etc. Is improved.
  • the first heat transfer tube 4 is located on the windward side compared to the second heat transfer tube 6.
  • headers laminated header 2 and header 3
  • condensation is performed by giving a temperature difference of the refrigerant for each row of heat transfer tubes. It was difficult to improve the vessel performance.
  • the first heat transfer tube 4 and the second heat transfer tube 6 are flat tubes, unlike a circular tube, the degree of freedom of bending is low, so that a temperature difference of the refrigerant is given to each row of heat transfer tubes. It is difficult to realize by deforming the refrigerant flow path.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

 本発明に係る積層型ヘッダー2は、複数の第1出口流路11Aが形成された第1板状体11と、第1板状体11に積層され、第1入口流路12aから流入する冷媒を複数の第1出口流路11Aに分配して流出する分配流路12Aが形成された第2板状体12と、を備え、分配流路12Aは、少なくとも1つの分岐流路12bを含み、第2板状体12は、少なくとも1つの第1突出部がプレス加工で形成された少なくとも1つの第1板状部材を有し、分岐流路12bは、第1突出部の内側が、冷媒が流入する領域及び冷媒が流出する領域以外の領域を閉塞されることで、形成されたものである。

Description

積層型ヘッダー、熱交換器、及び、空気調和装置
 本発明は、積層型ヘッダーと熱交換器と空気調和装置とに関するものである。
 従来の積層型ヘッダーとして、複数の出口流路が形成された第1板状体と、第1板状体に積層され、入口流路から流入する冷媒を、第1板状体に形成された複数の出口流路に分配して流出する分配流路が形成された第2板状体と、を備えるものがある。分配流路は、冷媒の流入方向と垂直な複数の溝を有する分岐流路を含む。入口流路から分岐流路に流入する冷媒は、その複数の溝を通過することで複数に分岐し、第1板状体に形成された複数の出口流路を通って流出する(例えば、特許文献1参照)。
特開2000-161818号公報(段落[0012]~段落[0020]、図1、図2)
 このような積層型ヘッダーでは、第2板状体を構成する板状部材を薄くして、部品費の削減、軽量化等を図るためには、複数の溝の断面積を小さくする必要があり、そのような場合には、複数の溝を通過する冷媒の圧力損失が増大してしまう。つまり、従来の積層型ヘッダーでは、冷媒の圧力損失の増大を抑制しつつ部品費の削減、軽量化等を実現することが困難であるという問題点があった。
 本発明は、上記のような課題を背景としてなされたものであり、冷媒の圧力損失の増大を抑制しつつ部品費の削減、軽量化等を実現することが可能な積層型ヘッダーを得ることを目的とする。また、本発明は、そのような積層型ヘッダーを備えた熱交換器を得ることを目的とする。また、本発明は、そのような熱交換器を備えた空気調和装置を得ることを目的とする。
 本発明に係る積層型ヘッダーは、複数の第1出口流路が形成された第1板状体と、前記第1板状体に積層され、第1入口流路から流入する冷媒を前記複数の第1出口流路に分配して流出する分配流路が形成された第2板状体と、を備え、前記分配流路は、少なくとも1つの分岐流路を含み、前記第2板状体は、少なくとも1つの第1突出部がプレス加工で形成された少なくとも1つの第1板状部材を有し、前記分岐流路は、前記第1突出部の内側が、前記冷媒が流入する領域及び前記冷媒が流出する領域以外の領域を閉塞されることで、形成されたものである。
 本発明に係る積層型ヘッダーでは、分配流路が、少なくとも1つの分岐流路を含み、第2板状体が、少なくとも1つの第1突出部がプレス加工で形成された少なくとも1つの第1板状部材を有し、第1突出部の内側が、冷媒が流入する領域及び冷媒が流出する領域以外の領域を、閉塞されることで、分岐流路が形成されたものである。そのため、第1板状部材を薄くしても、分岐流路の断面積を確保することができ、冷媒の圧力損失の増大を抑制しつつ部品費の削減、軽量化等を実現することが可能である。
実施の形態1に係る熱交換器の、構成を示す図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを積層した状態での断面図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを積層した状態での断面図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での要部の斜視図及び断面図である。 実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での要部の斜視図及び断面図である。 実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。 実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを積層した状態での断面図である。 実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーの展開図である。 実施の形態1に係る熱交換器の変形例-2の、積層型ヘッダーを分解した状態での要部の斜視図と要部の断面図である。 実施の形態1に係る熱交換器の変形例-3の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態1に係る熱交換器の変形例-4の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態2に係る熱交換器の、構成を示す図である。 実施の形態2に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態2に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。 実施の形態3に係る熱交換器の、構成を示す図である。 実施の形態3に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。 実施の形態3に係る熱交換器の、積層型ヘッダーの展開図である。 実施の形態3に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 以下、本発明に係る積層型ヘッダーについて、図面を用いて説明する。
 なお、以下では、本発明に係る積層型ヘッダーが、熱交換器に流入する冷媒を分配するものである場合を説明しているが、本発明に係る積層型ヘッダーが、他の機器に流入する冷媒を分配するものであってもよい。また、以下で説明する構成、動作等は、一例にすぎず、そのような構成、動作等に限定されない。また、各図において、同一又は類似するものには、同一の符号を付すか、又は、符号を付すことを省略している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
実施の形態1.
 実施の形態1に係る熱交換器について説明する。
<熱交換器の構成>
 以下に、実施の形態1に係る熱交換器の構成について説明する。
 図1は、実施の形態1に係る熱交換器の、構成を示す図である。
 図1に示されるように、熱交換器1は、積層型ヘッダー2と、ヘッダー3と、複数の第1伝熱管4と、複数のフィン5と、を有する。
 積層型ヘッダー2は、冷媒流入部2Aと、複数の冷媒流出部2Bと、を有する。ヘッダー3は、複数の冷媒流入部3Aと、冷媒流出部3Bと、を有する。積層型ヘッダー2の冷媒流入部2A及びヘッダー3の冷媒流出部3Bには、冷媒配管が接続される。積層型ヘッダー2の複数の冷媒流出部2Bとヘッダー3の複数の冷媒流入部3Aとの間には、複数の第1伝熱管4が接続される。
 第1伝熱管4は、複数の流路が形成された扁平管である。第1伝熱管4は、例えば、アルミニウム製である。複数の第1伝熱管4の積層型ヘッダー2側の端部は、積層型ヘッダー2の複数の冷媒流出部2Bに接続される。複数の第1伝熱管4の積層型ヘッダー2側の端部が、板状の保持部材によって保持された状態で、積層型ヘッダー2の複数の冷媒流出部2Bが接続されてもよい。第1伝熱管4には、複数のフィン5が接合される。フィン5は、例えば、アルミニウム製である。第1伝熱管4とフィン5との接合は、ロウ付け接合であるとよい。なお、図1では、第1伝熱管4が8本である場合を示しているが、そのような場合に限定されない。また、第1伝熱管4が扁平管である場合に限定されない。
<熱交換器における冷媒の流れ>
 以下に、実施の形態1に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管4に流出する。冷媒は、複数の第1伝熱管4において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管4を流れる冷媒は、複数の冷媒流入部3Aを介してヘッダー3に流入して合流し、冷媒流出部3Bを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーの構成について説明する。
 図2は、実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。
 図2に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11は、冷媒の流出側に積層される。第1板状体11は、第1板状部材21と、第2板状部材22と、を有する。第1板状体11には、複数の第1出口流路11Aが形成される。複数の第1出口流路11Aは、図1における複数の冷媒流出部2Bに相当する。
 第2板状体12は、冷媒の流入側に積層される。第2板状体12は、第3板状部材23と、複数の第4板状部材24_1~24_3と、を有する。第2板状体12には、分配流路12Aが形成される。分配流路12Aは、第1入口流路12aと、複数の分岐流路12bと、を有する。第1入口流路12aは、図1における冷媒流入部2Aに相当する。
 第1板状部材21は、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流入する側に向かって突出する、第1突出部21Aと、第2突出部21Bと、を有する。第1突出部21Aは、底を有し、第1板状部材21が積層された状態で、内面21aの一部が第1出口流路11Aの一部として機能し、外面21bの一部が分岐流路12bの一部として機能する。第2突出部21Bは、底を有し、第1板状部材21が積層された状態で、接合の補強部として機能する。第1板状部材21は、例えば、アルミニウム製である。
 第2板状部材22は、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流入する側に向かって突出する、第1突出部22Aと、第2突出部22Bと、を有する。第1突出部22Aは、底を有さず、第2板状部材22が積層された状態で、内面22aが第1伝熱管4との接合部として機能する。第2突出部22Bは、底を有し、第2板状部材22が積層された状態で、接合の補強部として機能する。第2板状部材22は、例えば、アルミニウム製である。
 第1板状部材21の第1突出部21Aの内面21a及び第2板状部材22の第1突出部22Aの内面22aは、第1伝熱管4の外周面に沿う形状である。第1伝熱管4の外周面が、第2板状部材22の第1突出部22Aの内面22aに、例えば、ロウ付け、接着等で接合される。第1板状部材21の第1突出部21Aの底部と第1伝熱管4の端面とは、接合された状態で間隔を有する。
 第3板状部材23は、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流入する側に向かって突出する、第1突出部23Aを有する。第1突出部23Aは、底を有さず、第3板状部材23が積層された状態で、内面23aが第1入口流路12aとして機能する。第3板状部材23は、例えば、アルミニウム製である。
 第3板状部材23の第1突出部23Aの内面23aは、冷媒配管の外周面に沿う形状である。冷媒配管の外周面が、第3板状部材23の第1突出部23Aの内面23aに、例えば、ロウ付け、接着等で接合される。第3板状部材23の第1突出部23Aの外面に口金等が取り付けられ、その口金等を介して冷媒配管が接続されてもよい。
 第4板状部材24_1~24_3は、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流入する側に向かって突出する、第1突出部24A_1~24A_3と、第2突出部24B_1~24B_3と、を有する。第4板状部材24_1の第1突出部24A_1は、底を有し、第4板状部材24_1が積層された状態で、内面24a_1が分岐流路12bの一部として機能する。第4板状部材24_2、24_3の第1突出部24A_2、24A_3は、底を有し、第4板状部材24_2、24_3が積層された状態で、内面24a_2、24a_3及び外面24b_2、24b_3が分岐流路12bの一部として機能する。第2突出部24B_1~24B_3は、底を有し、第4板状部材24_1~24_3が積層された状態で、接合の補強部として機能する。第4板状部材24_1~24_3は、例えば、アルミニウム製である。
 以下では、第4板状部材24_1~24_3を総称して、第4板状部材24と記載する場合がある。以下では、第4板状部材24の第1突出部24A_1~24A_3を総称して、第1突出部24Aと記載する場合がある。第4板状部材24の第1突出部24Aの内面24a_1~24a_3を総称して、内面24aと記載する場合がある。第4板状部材24の第1突出部24Aの外面24b_1~24b_3を総称して、外面24bと記載する場合がある。第4板状部材24の第2突出部24B_1~24B_3を総称して、第2突出部24Bと記載する場合がある。以下では、第1板状部材21と第2板状部材22と第3板状部材23と第4板状部材24とを総称して、板状部材と記載する場合がある。第4板状部材24は、本発明の「第1板状部材」に相当する。
 図3及び図4は、実施の形態1に係る熱交換器の、積層型ヘッダーを積層した状態での断面図である。なお、図3は、図2におけるA-A線での断面図を示し、図4は、図2におけるB-B線での断面図を示している。図3及び図4では、冷媒が流入する部分を、斜線で示している。
 図3及び図4に示されるように、板状部材の周縁は、積層方向に折れ曲がっており、その周縁の先端が、冷媒が流入する側に隣接して積層される板状部材の側面に接合される。
 また、第4板状部材24に形成された第1突出部24Aの内面24aと、冷媒が流出する側に隣接して積層される第4板状部材24又は第1板状部材21に形成された第1突出部24A、21Aの外面24b、21bと、が、嵌合した状態で接合されることで、各分岐流路12bが形成される。
 また、第1板状部材21又は第4板状部材24に形成された第2突出部21B、24Bの内面と、冷媒が流出する側に隣接して積層される第2板状部材22、第1板状部材21、又は第4板状部材24の第2突出部22B、21B、24Bの外面と、が、嵌合した状態で接合されることで、補強部が形成される。なお、第4板状部材24_1の第2突出部24B_1の外面は、第3板状部材23の表面と接合される。
 図5及び図6は、実施の形態1に係る熱交換器の、積層型ヘッダーを分解した状態での要部の斜視図及び断面図である。なお、図5及び図6は、図2のX部の斜視図及び断面図である。図5(b)は、図5(a)におけるC-C線での断面図を示し、図6(b)は、図6(a)におけるD-D線での断面図を示している。図5(b)及び図6(b)では、冷媒が流入する部分を、斜線で示している。また、以下では、第4板状部材24_3の第1突出部24A_3の内面24a_3と、第1板状部材21の第1突出部21Aの外面21bと、で形成される分岐流路12bについて説明しているが、他の分岐流路12bについても同様である。
 図5に示されるように、第4板状部材24_3の第1突出部24A_3のZ字状の領域(以下では、冷媒が流入する側の板状部材のZ字状の領域を総称して、流入側Z字領域12b_1aと記載する)の内面(以下では、流入側Z字領域12b_1aの内面を総称して、内面12b_1bと記載する)と、第1板状部材21の第1突出部21AのZ字状の領域(以下では、冷媒が流出する側の板状部材のZ字状の領域を総称して、流出側Z字領域12b_2aと記載する)の外面(以下では、流出側Z字領域12b_2aの外面を総称して、外面12b_2bと記載する)と、が、嵌合した状態で接合されて、分岐流路12bが形成される。
 流入側Z字領域12b_1aは、2つの端部12b_1c、12b_1dの間を、重力方向と垂直な直線部12b_1eを介して結ぶ形状である。流入側Z字領域12b_1aの中心には、貫通穴12b_1fが形成される。第4板状部材24_3の表面の、流入側Z字領域12b_1aの2つの端部12b_1c、12b_1dの周辺部12b_1h、12b_1iは、冷媒が流出する側に突出する。
 流出側Z字領域12b_2aは、2つの端部12b_2c、12b_2dの間を、重力方向と垂直な直線部12b_2eを介して結ぶ形状である。流出側Z字領域12b_2aの2つの端部12b_2c、12b_2dのそれぞれには、貫通穴12b_2f、12b_2gが形成される。第1板状部材21の第1突出部21Aの、流出側Z字領域12b_2aの2つの端部12b_2c、12b_2dの周辺部12b_2h、12b_2iは、冷媒が流出する側に窪む。
 冷媒が流出する側に突出する周辺部12b_1h、12b_1iと、冷媒が流出する側に窪む周辺部12b_2h、12b_2iとが、嵌合した状態で接合されることで、貫通穴12b_1fから流入して2つに分岐した冷媒が、漏れることなく、流入側Z字領域12b_1aの内面12b_1bと、流出側Z字領域12b_2aの外面12b_2bと、の間を通過して、貫通穴12b_2f、12b_2gから流出する。
 流出側Z字領域12b_2aの中心の図中下方には、突起12b_2jが形成される。突起12b_2jは、流入側Z字領域12b_1aの中心の図中下方に連通する、冷媒が流出する側に隣接する他の分岐流路12bの流出側Z字領域12b_2aの内面に、嵌合した状態で接合され、貫通穴12b_1fから流入した冷媒が、冷媒が流出する側に隣接する他の分岐流路12bの流出側Z字領域12b_2aの内面を通って、分岐流路12bから漏れることを防止する。なお、冷媒が流出する側に隣接する他の分岐流路12bの流出側Z字領域12b_2aの内面が、他の方法によって塞がれてもよい。
 図6に示されるように、冷媒が流出する側に突出する周辺部12b_1h、12b_1iが、冷媒が流入する側に窪み、冷媒が流出する側に窪む周辺部12b_2h、12b_2iが、冷媒が流入する側に突出してもよい。そのような場合でも、冷媒が流入する側に窪む周辺部12b_1h、12b_1iと、冷媒が流入する側に突出する周辺部12b_2h、12b_2iとが、嵌合した状態で接合されることで、貫通穴12b_1fから流入して2つに分岐した冷媒が、漏れることなく、流入側Z字領域12b_1aの内面12b_1bと、流出側Z字領域12b_2aの外面12b_2bと、の間を通過して、貫通穴12b_2f、12b_2gから流出する。
 つまり、分岐流路12bは、流入する冷媒を2つに分岐して流出する。そのため、接続される第1伝熱管4が8本である場合には、第4板状部材24は、最低でも3枚必要となる。接続される第1伝熱管4が16本である場合には、第4板状部材24は、最低でも4枚必要となる。接続される第1伝熱管4の本数は、2の累乗に限定されない。そのような場合には、分岐流路12bと分岐しない流路とが組み合わされればよい。なお、接続される第1伝熱管4は、2本であってもよい。
 また、流入する冷媒を異なる高さに分岐して流出するために、流入側Z字領域12b_1aの端部12b_1c及び流出側Z字領域12b_2aの端部12b_2cと、流入側Z字領域12b_1aの端部12b_1d及び流出側Z字領域12b_2aの端部12b_2dと、は、互いに異なる高さに位置する。特に、一方が、流入側Z字領域12b_1aの直線部12b_1e及び流出側Z字領域12b_2aの直線部12b_2eと比較して上側にあり、他方が、流入側Z字領域12b_1aの直線部12b_1e及び流出側Z字領域12b_2aの直線部12b_2eと比較して下側にある場合には、貫通穴12b_1fから分岐流路12bに沿って貫通穴12b_2f及び貫通穴12b_2gのそれぞれに至る各距離の偏りを、形状を複雑化することなく小さくすることができる。貫通穴12b_2fと貫通穴12b_2gとを結ぶ直線が、板状部材の長手方向と平行になることで、板状部材の短手方向の寸法を小さくすることが可能となり、部品費、重量等が削減される。更に、貫通穴12b_2fと貫通穴12b_2gとを結ぶ直線が、第1伝熱管4の配列方向と平行になることで、熱交換器1が省スペース化される。
 なお、積層型ヘッダー2は、複数の第1出口流路11Aが、重力方向に沿って配列されるものに限定されず、例えば、壁掛けタイプのルームエアコン室内機、空調機用室外機、チラー室外機等の熱交換器のように、熱交換器1が傾斜して配設される場合に用いられてもよい。そのような場合には、直線部12b_1e及び直線部12b_2eが、板状部材の長手方向と垂直にならないような形状の流入側Z字領域12b_1a及び流出側Z字領域12b_2aとすればよい。
 また、分岐流路12bは他の形状であってもよい。つまり、Z字状でなくてもよい。例えば、流入側Z字領域12b_1a及び流出側Z字領域12b_2aが、直線部12b_1e及び直線部12b_2eを有しなくてもよい。直線部12b_1e及び直線部12b_2eを有する場合には、冷媒が貫通穴12b_1fから流入して2つに分岐する際に、重力の影響を受け難くなる。つまり、流入する気液二相状態の冷媒の流量及び乾き度に拘わらず、重力の影響を受け難くなり、第1伝熱管4のそれぞれに流入する冷媒の流量及び乾き度を均一にすることが可能となる。また、例えば、流入側Z字領域12b_1a及び流出側Z字領域12b_2aが、枝分かれした形状であってもよい。流入側Z字領域12b_1a及び流出側Z字領域12b_2aが枝分かれしない場合には、冷媒の分配の均一性を向上することができる。
 各板状部材は、ロウ付け接合によって積層されるとよい。ロウ付け接合によって積層されることで、各板状部材間が隙間なく積層されることとなり、冷媒の漏れが抑制され、また、耐圧性が確保される。板状部材を加圧しつつロウ付け接合する場合には、ロウ付け不良の発生が更に抑制される。冷媒の漏れが生じやすい箇所に、リブが形成される等、フィレットの形成が促進されるような処理が施された場合には、ロウ付け不良の発生が更に抑制される。
 更に、第1伝熱管4、フィン5等を含む全てのロウ付け接合される部材が、同一の材質(例えば、アルミニウム製)であるような場合には、纏めてロウ付け接合することが可能となり、生産性が向上される。積層型ヘッダー2のロウ付け接合を行った後に、第1伝熱管4及びフィン5のロウ付けを行ってもよい。また、第1板状体11のみを先に第1伝熱管4にロウ付け接合し、第2板状体12を後からロウ付け接合してもよい。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態1に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図7は、実施の形態1に係る熱交換器の、積層型ヘッダーの展開図である。
 図2及び図7に矢印で示されるように、第3板状部材23の第1突出部23Aを通過した冷媒は、第4板状部材24_1の第1突出部24A_1に形成された貫通穴、つまり流入側Z字領域12b_1aの貫通穴12b_1fを通って、第4板状部材24_1の第1突出部24A_1の内側に流入する。その冷媒は、隣接して積層される部材の突出部に当たって2つに分岐する。分岐した冷媒は、流入側Z字領域12b_1aの内面12b_1bと流出側Z字領域12b_2aの外面12b_2bとの間を通過して、第4板状部材24_2の第1突出部24A_2に形成された貫通穴、つまり流出側Z字領域12b_2aの貫通穴12b_2f、12b_2bを通過する。
 第4板状部材24_2の第1突出部24A_2に形成された貫通穴、つまり隣接する分岐流路12bの流入側Z字領域12b_1aの貫通穴12b_1fを通過した冷媒は、第4板状部材24_2に形成された第1突出部24A_2の内側に流入する。その冷媒は、隣接して積層される部材の突出部に当たって2つに分岐する。分岐した冷媒は、流入側Z字領域12b_1aの内面12b_1bと流出側Z字領域12b_2aの外面12b_2bとの間を通過して、第4板状部材24_3の第1突出部24A_3に形成された貫通穴、つまり流出側Z字領域12b_2aの貫通穴12b_2f、12b_2bを通過する。
 第4板状部材24_3の第1突出部24A_3に形成された貫通穴、つまり隣接する分岐流路12bの流入側Z字領域12b_1aの貫通穴12b_1fを通過した冷媒は、第4板状部材24_3に形成された第1突出部24A_3の内側に流入する。その冷媒は、隣接して積層される部材の突出部に当たって2つに分岐する。分岐した冷媒は、流入側Z字領域12b_1aの内面12b_1bと流出側Z字領域12b_2aの外面12b_2bとの間を通過して、第1板状部材21の第1突出部21Aに形成された貫通穴、つまり流出側Z字領域12b_2aの貫通穴12b_2f、12b_2bを通過する。
 第1板状部材21の第1突出部21Aに形成された貫通穴を通過した冷媒は、第2板状部材22の第1突出部22Aを通過して、第1伝熱管4に流入する。
<熱交換器の使用態様>
 以下に、実施の形態1に係る熱交換器の使用態様の一例について説明する。
 なお、以下では、実施の形態1に係る熱交換器が空気調和装置に使用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に使用されてもよい。また、空気調和装置が、冷房運転と暖房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、冷房運転又は暖房運転のみを行うものであってもよい。
 図8は、実施の形態1に係る熱交換器が適用される空気調和装置の、構成を示す図である。なお、図8では、冷房運転時の冷媒の流れが実線の矢印で示され、暖房運転時の冷媒の流れが点線の矢印で示される。
 図8に示されるように、空気調和装置51は、圧縮機52と、四方弁53と、熱源側熱交換器54と、絞り装置55と、負荷側熱交換器56と、熱源側ファン57、負荷側ファン58、制御装置59と、を有する。圧縮機52と四方弁53と熱源側熱交換器54と絞り装置55と負荷側熱交換器56とが冷媒配管で接続されて、冷媒循環回路が形成される。
 制御装置59には、例えば、圧縮機52、四方弁53、絞り装置55、熱源側ファン57、負荷側ファン58、各種センサ等が接続される。制御装置59によって、四方弁53の流路が切り替えられることで、冷房運転と暖房運転とが切り替えられる。熱源側熱交換器54は、冷房運転時に凝縮器として作用し、暖房運転時に蒸発器として作用する。負荷側熱交換器56は、冷房運転時に蒸発器として作用し、暖房運転時に凝縮器として作用する。
 冷房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって凝縮することで高圧の液状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 暖房運転時の冷媒の流れについて説明する。
 圧縮機52から吐出される高圧高温のガス状態の冷媒は、四方弁53を介して負荷側熱交換器56に流入し、負荷側ファン58によって供給される室内空気との熱交換によって凝縮することで高圧の液状態の冷媒となり、負荷側熱交換器56から流出する。負荷側熱交換器56から流出した高圧の液状態の冷媒は、絞り装置55に流入し、低圧の気液二相状態の冷媒となる。絞り装置55から流出する低圧の気液二相状態の冷媒は、熱源側熱交換器54に流入し、熱源側ファン57によって供給される外気との熱交換によって蒸発することで低圧のガス状態の冷媒となり、熱源側熱交換器54から流出する。熱源側熱交換器54から流出する低圧のガス状態の冷媒は、四方弁53を介して圧縮機52に吸入される。
 熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2から冷媒が流入し、ヘッダー3から冷媒が流出するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2に気液二相状態の冷媒が流入し、第1伝熱管4からヘッダー3にガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管からヘッダー3にガス状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2に液状態の冷媒が流入する。
<熱交換器の作用>
 以下に、実施の形態1に係る熱交換器の作用について説明する。
 積層型ヘッダー2の分岐流路12bが、流入側Z字領域12b_1aの内面12b_1b、つまり板状部材の第1突出部の内面と、流出側Z字領域12b_2aの外面12b_2b、つまり他の板状部材の第1突出部の外面と、で形成される。そのため、板状部材を薄くしても、分岐流路12bの断面積を確保することができ、冷媒の圧力損失の増大を抑制しつつ部品費の削減、軽量化等を実現することが可能である。
 また、板状部材を薄くできるため、熱容量を低下させることが可能となり、ロウ付け等の接合における加熱及び冷却に要する時間が短縮されて、生産効率が向上される。
 また、板状部材の突出部を、絞り加工、曲げ加工等のプレス加工によって形成できるため、加工費が削減される。
 また、板状部材同士の間に空間が形成されるため、厚肉の板状部材に削り加工を施して流路を形成する場合と比較して、断熱性を高めることができ、積層型ヘッダー2を通過する冷媒が加熱及び冷却されることが抑制される。なお、板状部材同士の間の空間に、断熱材が充填されてもよい。
 また、板状部材の周縁が、積層方向に折り曲げられ、その周縁の先端が、隣接して積層される板状部材の側面に接合される。そのため、折り曲げられていない板状部材が平積みされて広い面積が接合される場合と比較して、周縁の先端に表面張力でロウ材が集約し易くなり、ロウ材が不均一となって接合不良となる頻度及びロウ材の使用量が低減される。更に、接合面の平面度を仕上げる工程、ロウ付け時の広い面積に対する均等な加圧のための治具等が不要となり、製造コストが削減される。つまり、接合される部材同士の間隔が均等でない状態でロウ付けされると、ロウ材が間隔の狭い箇所に集約して、偏った接合、引け巣等が生じる。積層型ヘッダー2では、接合される部材同士の間隔及び接合面を小さくして、ロウ材を集約させて接合しているため、偏った接合、引け巣等が生じることが抑制される。特に、図3及び図4に示されるように、板状部材の周縁が積層方向に斜めに折り曲げられている場合には、接合面積が広がって接合強度が向上される。
 また、板状部材に第2突出部が形成され、第2突出部の内面は、隣接して積層される板状部材に形成された第2突出部の外面に接合される。そのため、突出部同士が、線接触に近い状態で接合されることで、表面張力でロウ材が集約し易くなり、ロウ材が不均一となって接合不良となる頻度が低減されて、補強の確実性が向上される。更に、ロウ材の使用量が低減される。更に、接合面の平面度を仕上げる工程、ロウ付け時の広い面積に対する均等な加圧のための治具等が不要となり、製造コストが削減される。
 また、流入側Z字領域12b_1aの内面12b_1b、つまり板状部材の第1突出部の内面と、流出側Z字領域12b_2aの外面12b_2b、つまり他の板状部材の第1突出部の外面と、が嵌合した状態で接合される。そのため、突出部同士が、線接触に近い状態で接合されることとなり、表面張力でロウ材が集約し易くなり、ロウ材が不均一となって接合不良となる頻度及びロウ材の使用量が低減される。更に、接合面の平面度を仕上げる工程、ロウ付け時の広い面積に対する均等な加圧のための治具等が不要となり、製造コストが削減される。更に、積層順序を変えて接合することができないため、製造する際に積層順序を間違えることが抑制される。
<変形例-1>
 図9は、実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを分解した状態での斜視図である。図10は、実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーを積層した状態での断面図である。図11は、実施の形態1に係る熱交換器の変形例-1の、積層型ヘッダーの展開図である。なお、図10は、図9におけるE-E線での断面図を示している。図10では、冷媒が流入する部分を、斜線で示している。図11では、第1板状部材21、第2板状部材22、第3板状部材23、及び第4板状部材24と、第5板状部材25_1~25_5と、が接合された状態を示している。
 図9~図11に示されるように、第1板状部材21、第2板状部材22、第3板状部材23、及び第4板状部材24に、第5板状部材25_1~25_5が接合されてもよい。板状部材は、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流入する側に向かって突出する、第1突出部21A、22A、23A、24Aを有する。第1突出部21A、22A、23A、24Aは、底を有さず、板状部材が積層された状態で、内面21a、22a、23a、24aが分岐流路12bの一部として機能する。以下では、第5板状部材25_1~25_5を総称して、第5板状部材25と記載する場合がある。第5板状部材25は、本発明の「第2板状部材」に相当する。
 第5板状部材25_1~25_5には、貫通穴25A_1~25A_5が形成され、第1突出部21A、22A、23A、24Aの先端の外周が、貫通穴25A_1~25A_5に、嵌合した状態で接合される。板状部材が積層されて、第1突出部21A、22A、23A、24Aの内側が、冷媒が流出する側に積層される第5板状部材25の表面と、冷媒が流入する側に積層される他の板状部材の表面によって、冷媒が流入する領域と冷媒が流出する領域以外の領域を閉塞されることで、分岐流路12bが形成される。
<変形例-2>
 図12は、実施の形態1に係る熱交換器の変形例-2の、積層型ヘッダーを分解した状態での要部の斜視図と要部の断面図である。なお、図12(a)は、積層型ヘッダーを分解した状態での要部の斜視図であり、図12(b)は、図12(a)のF-F線での第1板状部材21の断面図である。図12(b)では、冷媒が流入する部分を、斜線で示している。
 図12に示されるように、第1板状部材21の第1突出部21Aの流出側Z字領域12b_2a以外の領域の内面21aが、冷媒が流出する側に向かって、徐々に広がる形状であってもよい。このように構成されることで、第1伝熱管4が扁平管である場合において、第1出口流路11Aを通過する際の冷媒の圧力損失が低減される。
<変形例-3>
 図13は、実施の形態1に係る熱交換器の変形例-3の、積層型ヘッダーを分解した状態での斜視図である。
 図13に示されるように、第3板状部材23に第1入口流路12aが複数形成されて、第4板状部材24の枚数が削減されてもよい。このように構成されることで、部品費、重量等が削減される。
<変形例-4>
 図14は、実施の形態1に係る熱交換器の変形例-4の、積層型ヘッダーを分解した状態での斜視図である。
 図14に示されるように、第1入口流路12aは、第3板状部材23以外の板状部材に形成されてもよい。そのような場合には、他の板状部材に貫通穴を形成し、他の板状部材及び周辺の板状部材に、その貫通穴から第4板状部材24_1の第1突出部24A_1の内面24a_1に冷媒を導くための突出部が形成されればよい。つまり、本発明は、第1入口流路12aが第1板状体11に形成されるものを含み、本発明の「分配流路」は、第1入口流路12aが第2板状体12に形成される分配流路12A以外を含む。
実施の形態2.
 実施の形態2に係る熱交換器について説明する。
 なお、実施の形態1と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態2に係る熱交換器の構成について説明する。
 図15は、実施の形態2に係る熱交換器の、構成を示す図である。
 図15に示されるように、熱交換器1は、積層型ヘッダー2と、複数の第1伝熱管4と、複数のフィン5と、を有する。
 積層型ヘッダー2は、冷媒流入部2Aと、複数の冷媒流出部2Bと、複数の冷媒流入部2Cと、冷媒流出部2Dと、を有する。積層型ヘッダー2の冷媒流入部2A及び積層型ヘッダー2の冷媒流出部2Dには、冷媒配管が接続される。第1伝熱管4は、ヘアピン曲げ加工が施された扁平管である。積層型ヘッダー2の複数の冷媒流出部2Bと積層型ヘッダー2の複数の冷媒流入部2Cとの間に、複数の第1伝熱管4が接続される。
<熱交換器における冷媒の流れ>
 以下に、実施の形態2に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管4に流出する。冷媒は、複数の第1伝熱管4において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管4を通過した冷媒は、複数の冷媒流入部2Cを介して積層型ヘッダー2に流入して合流し、冷媒流出部2Dを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態2に係る熱交換器の積層型ヘッダーの構成について説明する。
 図16は、実施の形態2に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。図17は、実施の形態2に係る熱交換器の、積層型ヘッダーの展開図である。
 図16及び図17に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11には、複数の第1出口流路11Aと、複数の第2入口流路11Bと、が形成される。第1板状体11は、第1板状部材21と、第6板状部材26と、第2板状部材22と、を有する。複数の第2入口流路11Bは、図15における複数の冷媒流入部2Cに相当する。以下では、第1板状部材21と第2板状部材22と第3板状部材23と第4板状部材24と第6板状部材26とを総称して、板状部材と記載する場合がある。
 第2板状体12には、分配流路12Aと、合流流路12Bと、が形成される。合流流路12Bは、混合流路12cと、第2出口流路12dと、を有する。第2出口流路12dは、図15における冷媒流出部2Dに相当する。
 第2板状部材22は、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流出する側に向かって突出する、第3突出部22Cを有する。第3突出部22Cは、第1伝熱管4の冷媒が流出する側の端部と接続される領域のみ底を有さず、第2板状部材22が積層された状態で、外面22dが第2入口流路11Bの一部として機能する。
 第6板状部材26は、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流出する側に向かって突出する、第1突出部26Aと、第2突出部26Bと、第3突出部26Cを有する。第3突出部26Cは、第1伝熱管4の冷媒が流出する側の端部と対向しない領域が底を有さず、第6板状部材26が積層された状態で、内面26cが第2入口流路11Bの一部として機能する。
 第1板状部材21は、例えば、プレス加工で形成され、且つ、冷媒が流出する側及び冷媒が流入する側に向かって突出しない、貫通部21Cを有する。貫通部21Cは、第1板状部材21が積層された状態で、第2入口流路11Bの一部として機能する。
 第4板状部材24は、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流入する側に向かって突出する、第3突出部24C_1~24C_3を有する。以下では、第4板状部材24の第3突出部24C_1~24C_3を総称して、第3突出部24Cと記載する場合がある。第3突出部24Cは、底を有さず、第4板状部材24が積層された状態で、内面24c_1~24c_3が混合流路12cの一部として機能する。以下では、第4板状部材24の第3突出部24Cの内面24c_1~24c_3を総称して、内面24cと記載する場合がある。
 第3板状部材23は、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、冷媒が流入する側に向かって突出する、第3突出部23Cと、第3突出部23Cに形成され、冷媒が流出する側に向かって突出する、第4突出部23Dと、を有する。第3突出部23Cは、底を有し、第3板状部材23が積層された状態で、外面23dが混合流路12cの一部として機能する。第4突出部23Dは、底を有さず、第3板状部材23が積層された状態で、内面23eが第2出口流路12dとして機能する。
 なお、第2出口流路12dが、第3板状部材23以外の他の板状部材に形成されてもよい。そのような場合には、他の板状部材に貫通穴を形成し、他の板状部材及び周辺の板状部材に、その貫通穴に冷媒を導くための突出部が形成されればよい。つまり、本発明は、第2出口流路12dが第1板状体11に形成されるものを含み、本発明の「合流流路」は、第2出口流路12dが第2板状体12に形成される合流流路12B以外を含む。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態2に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図16及び図17に矢印で示されるように、第1伝熱管4を通過した冷媒は、第2板状部材22の第3突出部22Cを通過して、第6板状部材26の第3突出部26Cの内側に流入する。第6板状部材26の第3突出部26Cの内側に流入した冷媒は、第1板状部材21の貫通部21Cを通過して、第4板状部材24の第3突出部24Cの内側に流入して混合される。混合された冷媒は、第3板状部材23の第4突出部23Dを通過して、冷媒配管に流出する。
<熱交換器の使用態様>
 以下に、実施の形態2に係る熱交換器の使用態様の一例について説明する。
 図18は、実施の形態2に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 図18に示されるように、熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2の分配流路12Aから第1伝熱管4に冷媒が流入し、第1伝熱管4から積層型ヘッダー2の合流流路12Bに冷媒が流入するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2の分配流路12Aに気液二相状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2の分配流路12Aに液状態の冷媒が流入する。
<熱交換器の作用>
 以下に、実施の形態2に係る熱交換器の作用について説明する。
 積層型ヘッダー2では、第1板状体11に複数の第2入口流路11Bが形成され、第2板状体12に合流流路12Bが形成される。そのため、ヘッダー3が不要となって、熱交換器1の部品費等が削減される。また、ヘッダー3が不要となる分、第1伝熱管4を延長してフィン5の枚数等を増加する、つまり熱交換器1の熱交換部の実装体積を増加することが可能となる。
実施の形態3.
 実施の形態3に係る熱交換器について説明する。
 なお、実施の形態1及び実施の形態2と重複又は類似する説明は、適宜簡略化又は省略している。
<熱交換器の構成>
 以下に、実施の形態3に係る熱交換器の構成について説明する。
 図19は、実施の形態3に係る熱交換器の、構成を示す図である。
 図19に示されるように、熱交換器1は、積層型ヘッダー2と、複数の第1伝熱管4と、複数の第2伝熱管6と、複数のフィン5と、を有する。
 積層型ヘッダー2は、複数の冷媒折返部2Eを有する。第2伝熱管6は、第1伝熱管4と同様に、ヘアピン曲げ加工が施された扁平管である。積層型ヘッダー2の複数の冷媒流出部2Bと複数の冷媒折返部2Eとの間に、複数の第1伝熱管4が接続され、積層型ヘッダー2の複数の冷媒折返部2Eと複数の冷媒流入部2Cとの間に、複数の第2伝熱管6が接続される。
<熱交換器における冷媒の流れ>
 以下に、実施の形態3に係る熱交換器における冷媒の流れについて説明する。
 冷媒配管を流れる冷媒は、冷媒流入部2Aを介して積層型ヘッダー2に流入して分配され、複数の冷媒流出部2Bを介して複数の第1伝熱管4に流出する。冷媒は、複数の第1伝熱管4において、例えば、ファンによって供給される空気等と熱交換する。複数の第1伝熱管4を通過した冷媒は、積層型ヘッダー2の複数の冷媒折返部2Eに流入して折り返され、複数の第2伝熱管6に流出する。冷媒は、複数の第2伝熱管6において、例えば、ファンによって供給される空気等と熱交換する。複数の第2伝熱管6を通過した冷媒は、複数の冷媒流入部2Cを介して積層型ヘッダー2に流入して合流し、冷媒流出部2Dを介して冷媒配管に流出する。冷媒は、逆流することができる。
<積層型ヘッダーの構成>
 以下に、実施の形態3に係る熱交換器の積層型ヘッダーの構成について説明する。
 図20は、実施の形態3に係る熱交換器の、積層型ヘッダーを分解した状態での斜視図である。図21は、実施の形態3に係る熱交換器の、積層型ヘッダーの展開図である。
 図20及び図21に示されるように、積層型ヘッダー2は、第1板状体11と、第2板状体12と、を有する。第1板状体11と第2板状体12とは、積層される。
 第1板状体11には、複数の第1出口流路11Aと、複数の第2入口流路11Bと、複数の折返流路11Cと、が形成される。複数の折返流路11Cは、図19における複数の冷媒折返部2Eに相当する。
 第2板状部材22は、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、第1伝熱管4からの冷媒が流入する側と反対側に向かって突出する、第3突出部22Cと、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、第2伝熱管6からの冷媒が流出する側に向かって突出する、第4突出部22Dと、を有する。第4突出部22Dは、第1伝熱管4の冷媒が流出する側の端部及び第2伝熱管6の冷媒が流入する側の端部と接続される領域のみ底を有さず、第2板状部材22が積層された状態で、外面22fが折返流路11Cの一部として機能する。
 第6板状部材26は、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、第1伝熱管4からの冷媒が流入する側と反対側に向かって突出する、第3突出部26Cと、例えば、絞り加工、曲げ加工等のプレス加工で形成され、且つ、第2伝熱管6からの冷媒が流出する側に向かって突出する、第4突出部26Dと、を有する。第4突出部26Dは、底を有し、第6板状部材26が積層された状態で、内面26eが折返流路11Cの一部として機能する。
<積層型ヘッダーにおける冷媒の流れ>
 以下に、実施の形態3に係る熱交換器の積層型ヘッダーにおける冷媒の流れについて説明する。
 図20及び図21に矢印で示されるように、第1伝熱管4を通過した冷媒は、第2板状部材22の第4突出部22Dを通過して、第6板状部材26の第4突出部26Dの内側に流入する。第6板状部材26の第4突出部26Dの内側に流入した冷媒は、再び第2板状部材22の第4突出部22Dを通過して、第2伝熱管6に流入する。第2伝熱管6を通過した冷媒は、第2板状部材22の第3突出部22C及び第6板状部材26の第3突出部26Cを通過して、第4板状部材24の第3突出部24Cの内側に流入して混合される。混合された冷媒は、第3板状部材23の第4突出部23Dを通過して、冷媒配管に流出する。
<熱交換器の使用態様>
 以下に、実施の形態3に係る熱交換器の使用態様の一例について説明する。
 図22は、実施の形態3に係る熱交換器が適用される空気調和装置の、構成を示す図である。
 図22に示されるように、熱源側熱交換器54及び負荷側熱交換器56の少なくともいずれか一方に、熱交換器1が用いられる。熱交換器1は、熱交換器1が蒸発器として作用する際に、積層型ヘッダー2の分配流路12Aから第1伝熱管4に冷媒が流入し、第2伝熱管6から積層型ヘッダー2の合流流路12Bに冷媒が流入するように接続される。つまり、熱交換器1が蒸発器として作用する際は、冷媒配管から積層型ヘッダー2の分配流路12Aに気液二相状態の冷媒が流入し、第2伝熱管6から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入する。また、熱交換器1が凝縮器として作用する際は、冷媒配管から積層型ヘッダー2の合流流路12Bにガス状態の冷媒が流入し、第1伝熱管4から積層型ヘッダー2の分配流路12Aに液状態の冷媒が流入する。
 更に、熱交換器1が凝縮器として作用する際に、第1伝熱管4が、第2伝熱管6と比較して、熱源側ファン57又は負荷側ファン58によって生じる気流の上流側(風上側)になるように、熱交換器1は配設される。つまり、第2伝熱管6から第1伝熱管4への冷媒の流れと気流とが対向する関係になる。第1伝熱管4の冷媒は、第2伝熱管6の冷媒と比較して、低温となる。熱源側ファン57又は負荷側ファン58によって生じる気流は、熱交換器1の上流側の方が、熱交換器1の下流側と比較して、低温となる。その結果、特に、熱交換器1の上流側を流れる低温の気流で、冷媒を過冷却(いわゆるSC化)することができ、凝縮器性能が向上される。なお、熱源側ファン57及び負荷側ファン58は、風上側に設けられてもよく、風下側に設けられてもよい。
<熱交換器の作用>
 以下に、実施の形態3に係る熱交換器の作用について説明する。
 熱交換器1では、第1板状体11に複数の折返流路11Cが形成され、複数の第1伝熱管4に加えて、複数の第2伝熱管6が接続される。例えば、熱交換器1の正面視した状態での面積を増加させて、熱交換量を増やすことも可能であるが、その場合には、熱交換器1を内蔵する筐体が大型化されてしまう。また、フィン5の間隔を小さくして、フィン5の枚数を増加させて、熱交換量を増やすことも可能であるが、その場合には、排水性、着霜性能、埃耐力の観点から、フィン5の間隔を約1mm未満にすることが困難であり、熱交換量の増加が不充分となってしまう場合がある。一方、熱交換器1のように、伝熱管の列数を増加させる場合には、熱交換器1の正面視した状態での面積、フィン5の間隔等を変えることなく、熱交換量を増加させることが可能である。伝熱管の列数が2列になると、熱交換量は約1.5倍以上に増加する。なお、伝熱管の列数が3列以上にされてもよい。また、更に、熱交換器1の正面視した状態での面積、フィン5の間隔等が変えられてもよい。
 また、熱交換器1の片側のみにヘッダー(積層型ヘッダー2)が設けられる。熱交換器1が、熱交換部の実装体積を増加するために、例えば、熱交換器1を内蔵する筐体の複数の側面に沿うように、折り曲げられて配設される場合には、伝熱管の列毎にその折り曲げ部の曲率半径が異なることに起因して、伝熱管の列毎に端部がずれてしまう。積層型ヘッダー2のように、熱交換器1の片側のみにヘッダー(積層型ヘッダー2)が設けられる場合には、伝熱管の列毎に端部がずれてしまっても、片側の端部のみ揃えばよく、実施の形態1に係る熱交換器のように、熱交換器1の両側にヘッダー(積層型ヘッダー2、ヘッダー3)が設けられる場合と比較して、設計自由度、生産効率等が向上される。特に、熱交換器1の各部材を接合した後に、熱交換器1を折り曲げることも可能となり、生産効率が更に向上される。
 また、熱交換器1が凝縮器として作用する際に、第1伝熱管4が、第2伝熱管6と比較して、風上側に位置する。実施の形態1に係る熱交換器のように、熱交換器1の両側にヘッダー(積層型ヘッダー2、ヘッダー3)が設けられる場合では、伝熱管の列毎に冷媒の温度差を与えて凝縮器性能を向上することが困難であった。特に、第1伝熱管4及び第2伝熱管6が扁平管である場合には、円管と異なり、曲げ加工の自由度が低いため、伝熱管の列毎に冷媒の温度差を与えることを、冷媒の流路を変形させて実現することが難しい。一方、熱交換器1のように、第1伝熱管4と第2伝熱管6とが積層型ヘッダー2に接続される場合には、伝熱管の列毎に冷媒の温度差が必然的に生じることとなり、冷媒の流れと気流とを対向する関係にすることを、冷媒の流路を変形させることなく簡易に実現することができる。
 以上、実施の形態1~実施の形態3について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全部又は一部、各変形例等を組み合わせることも可能である。
 1 熱交換器、2 積層型ヘッダー、2A 冷媒流入部、2B 冷媒流出部、2C 冷媒流入部、2D 冷媒流出部、2E 冷媒折返部、3 ヘッダー、3A 冷媒流入部、3B 冷媒流出部、4 第1伝熱管、5 フィン、6 第2伝熱管、11 第1板状体、11A 第1出口流路、11B 第2入口流路、11C 折返流路、12 第2板状体、12A 分配流路、12B 合流流路、12a 第1入口流路、12b 分岐流路、12b_1a 流入側Z字領域、12b_2a 流出側Z字領域、12b_1b 流入側Z字領域の内面、12b_2b 流出側Z字領域の外面、12b_1c、12b_2c、12b_1d、12b_2d Z字領域の端部、12b_1e、12b_2e Z字領域の直線部、12b_1f、12b_2f、12b_2g 貫通穴、12b_1h、12b_2h、12b_1i、12b_2i 周辺部、12b_2j 突起、12c 混合流路、12d 第2出口流路、21 第1板状部材、21A 第1突出部、21B 第2突出部、21C 貫通部、21a 第1突出部の内面、21b 第1突出部の外面、22 第2板状部材、22A 第1突出部、22B 第2突出部、22C 第3突出部、22D 第4突出部、22a 第1突出部の内面、22c 第3突出部の内面、22d 第3突出部の外面、22f 第4突出部の外面、23 第3板状部材、23A 第1突出部、23C 第3突出部、23D 第4突出部、23a 第1突出部の内面、23d 第3突出部の外面、23e 第4突出部の内面、24、24_1~24_3 第4板状部材、24A、24A_1~24A_3 第1突出部、24B、24B_1~24B_3 第2突出部、24C、24C_1~24C_3 第3突出部、24a、24a_1~24a_3 第1突出部の内面、24b、24b_1~24b_3 第1突出部の外面、24c、24c_1~24c_3 第3突出部の内面、25、25_1~25_5 第5板状部材、25A_1~25A_5 貫通穴、26 第6板状部材、26A 第1突出部、26B 第2突出部、26C 第3突出部、26D 第4突出部、26c 第3突出部の内面、26e 第4突出部の内面、51 空気調和装置、52 圧縮機、53 四方弁、54 熱源側熱交換器、55 絞り装置、56 負荷側熱交換器、57 熱源側ファン、58 負荷側ファン、59 制御装置。

Claims (14)

  1.  複数の第1出口流路が形成された第1板状体と、
     前記第1板状体に積層され、第1入口流路から流入する冷媒を前記複数の第1出口流路に分配して流出する分配流路が形成された第2板状体と、
    を備え、
     前記分配流路は、少なくとも1つの分岐流路を含み、
     前記第2板状体は、少なくとも1つの第1突出部がプレス加工で形成された少なくとも1つの第1板状部材を有し、
     前記分岐流路は、前記第1突出部の内側が、前記冷媒が流入する領域及び前記冷媒が流出する領域以外の領域を閉塞されることで、形成されたものである、
    ことを特徴とする積層型ヘッダー。
  2.  前記第1板状部材の周縁は、積層方向に折れ曲がり、
     前記周縁の先端は、隣接して積層された部材の側面に接合された、
    ことを特徴とする請求項1に記載の積層型ヘッダー。
  3.  前記第1板状部材の、前記第1突出部が形成された領域と異なる領域に、少なくとも1つの第2突出部が形成され、
     前記第2突出部の内面は、隣接して積層された部材に形成された突出部の外面に接合された、
    ことを特徴とする請求項1または2に記載の積層型ヘッダー。
  4.  前記第1突出部は、底を有し、
     前記第1突出部の内側は、前記第1突出部の内面が、隣接して積層された部材に形成された突出部の外面と嵌合することで閉塞された、
    ことを特徴とする請求項1~3のいずれか一項に記載の積層型ヘッダー。
  5.  前記第2板状体は、少なくとも1つの貫通部が形成された少なくとも1つの第2板状部材を有し、
     前記第1突出部は、底を有さず、
     第2板状部材は、前記第1突出部の先端の外面に前記貫通部が嵌合するように、前記第1板状部材に接合され、
     前記第1突出部の内側は、前記第1板状部材の前記第1突出部が突出しない側に積層された部材の表面と、前記第2板状部材の前記第1板状部材が有る側と反対側に積層された部材の表面と、で閉塞された、
    ことを特徴とする請求項1~3のいずれか一項に記載の積層型ヘッダー。
  6.  前記第1板状体に、複数の第2入口流路が形成され、
     前記第2板状体に、前記複数の第2入口流路から流入する冷媒を合流して第2出口流路に流入させる合流流路が形成された、
    ことを特徴とする請求項1~5のいずれか一項に記載の積層型ヘッダー。
  7.  前記第1板状体に、流入する冷媒を折り返して流出する複数の折返流路が形成された、
    ことを特徴とする請求項1~6のいずれか一項に記載の積層型ヘッダー。
  8.  請求項1~5のいずれか一項に記載の積層型ヘッダーと、
     前記複数の第1出口流路のそれぞれに接続された複数の第1伝熱管と、
    を備えたことを特徴とする熱交換器。
  9.  前記第1板状体に、前記複数の第1伝熱管を通過した前記冷媒が流入する複数の第2入口流路が形成され、
     前記第2板状体に、前記複数の第2入口流路から流入する前記冷媒を合流して第2出口流路に流入させる合流流路が形成された、
    ことを特徴とする請求項8に記載の熱交換器。
  10.  前記第1板状体に、入口側に前記複数の第1伝熱管のそれぞれが接続され、該複数の第1伝熱管から流入する前記冷媒を折り返して流出する複数の折返流路が形成され、
     前記複数の折返流路のそれぞれの出口側と前記複数の第2入口流路のそれぞれとに接続された複数の第2伝熱管を備えた、
    ことを特徴とする請求項9に記載の熱交換器。
  11.  前記伝熱管は、扁平管である、
    ことを特徴とする請求項8~10のいずれか一項に記載の熱交換器。
  12.  前記第1出口流路の内周面は、前記第1伝熱管の外周面に向かって徐々に広がる、
    ことを特徴とする請求項11に記載の熱交換器。
  13.  請求項8~12のいずれか一項に記載の熱交換器を備え、
     前記分配流路は、前記熱交換器が蒸発器として作用する際に、前記複数の第1出口流路に前記冷媒を流出する、
    ことを特徴とする空気調和装置。
  14.  請求項10に記載の熱交換器を備え、
     前記分配流路は、前記熱交換器が蒸発器として作用する際に、前記複数の第1出口流路に前記冷媒を流出し、
     前記第1伝熱管は、前記熱交換器が凝縮器として作用する際に、前記第2伝熱管と比較して、風上側に位置する、
    ことを特徴とする空気調和装置。
PCT/JP2013/063602 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置 WO2014184913A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015516825A JP6005266B2 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置
EP13884840.3A EP2998681B1 (en) 2013-05-15 2013-05-15 Stacked header, heat exchanger, and air conditioning device
PCT/JP2013/063602 WO2014184913A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置
CN201420244830.4U CN203964700U (zh) 2013-05-15 2014-05-14 层叠型集管、热交换器以及空调装置
HK16104754.0A HK1217116A1 (zh) 2013-05-15 2016-04-26 層疊型集管、熱交換器以及空調裝置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/063602 WO2014184913A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置

Publications (1)

Publication Number Publication Date
WO2014184913A1 true WO2014184913A1 (ja) 2014-11-20

Family

ID=51897924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/063602 WO2014184913A1 (ja) 2013-05-15 2013-05-15 積層型ヘッダー、熱交換器、及び、空気調和装置

Country Status (5)

Country Link
EP (1) EP2998681B1 (ja)
JP (1) JP6005266B2 (ja)
CN (1) CN203964700U (ja)
HK (1) HK1217116A1 (ja)
WO (1) WO2014184913A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018189892A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
JP2020051632A (ja) * 2018-09-21 2020-04-02 日立ジョンソンコントロールズ空調株式会社 熱交換器、及び、これを備える空気調和機
US11098927B2 (en) 2016-12-21 2021-08-24 Mitsubishi Electric Corporation Distributor, heat exchanger and refrigeration cycle apparatus
WO2023275936A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
WO2024134798A1 (ja) * 2022-12-21 2024-06-27 三菱電機株式会社 冷媒分配器および熱交換器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3348945B1 (en) * 2015-09-07 2021-03-17 Mitsubishi Electric Corporation Distributor, laminated header, heat exchanger, and air conditioner
US10921069B2 (en) * 2016-08-08 2021-02-16 Mitsubishi Electric Corporation Stacking-type header and method of manufacturing stacking-type header
JP6840262B2 (ja) * 2017-10-13 2021-03-10 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、冷凍サイクル装置
CN111936815B (zh) 2018-04-05 2022-02-11 三菱电机株式会社 分配器以及热交换器
WO2022064554A1 (ja) * 2020-09-23 2022-03-31 三菱電機株式会社 熱交換器、及び熱交換器を備えた空気調和装置
US20230358451A1 (en) * 2020-10-21 2023-11-09 Mitsubishi Electric Corporation Distributor, heat exchanger and air conditioner
US11454451B2 (en) 2020-10-23 2022-09-27 Raytheon Technologies Corporation Tube bank heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2000161818A (ja) 1998-11-25 2000-06-16 Hitachi Ltd プレート型冷媒分流器およびそれを用いた冷凍サイクル
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
US5205347A (en) * 1992-03-31 1993-04-27 Modine Manufacturing Co. High efficiency evaporator
JP3958400B2 (ja) * 1997-03-25 2007-08-15 三菱電機株式会社 分配ヘッダー
US6892805B1 (en) * 2004-04-05 2005-05-17 Modine Manufacturing Company Fluid flow distribution device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611291A (ja) * 1992-04-02 1994-01-21 Nartron Corp 冷却システム用の積層プレートヘッダー及びその製造方法
JP2000161818A (ja) 1998-11-25 2000-06-16 Hitachi Ltd プレート型冷媒分流器およびそれを用いた冷凍サイクル
JP2007298197A (ja) * 2006-04-28 2007-11-15 Showa Denko Kk 熱交換器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098927B2 (en) 2016-12-21 2021-08-24 Mitsubishi Electric Corporation Distributor, heat exchanger and refrigeration cycle apparatus
WO2018189892A1 (ja) * 2017-04-14 2018-10-18 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
CN110476027A (zh) * 2017-04-14 2019-11-19 三菱电机株式会社 分配器、热交换器及制冷循环装置
JPWO2018189892A1 (ja) * 2017-04-14 2019-12-19 三菱電機株式会社 分配器、熱交換器、及び、冷凍サイクル装置
CN110476027B (zh) * 2017-04-14 2021-12-14 三菱电机株式会社 分配器、热交换器及制冷循环装置
US11629897B2 (en) 2017-04-14 2023-04-18 Mitsubishi Electric Corporation Distributor, heat exchanger, and refrigeration cycle apparatus
JP2020051632A (ja) * 2018-09-21 2020-04-02 日立ジョンソンコントロールズ空調株式会社 熱交換器、及び、これを備える空気調和機
JP7228356B2 (ja) 2018-09-21 2023-02-24 日立ジョンソンコントロールズ空調株式会社 熱交換器、及び、これを備える空気調和機
WO2023275936A1 (ja) * 2021-06-28 2023-01-05 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
JP7486671B2 (ja) 2021-06-28 2024-05-17 三菱電機株式会社 冷媒分配器、熱交換器及び冷凍サイクル装置
WO2024134798A1 (ja) * 2022-12-21 2024-06-27 三菱電機株式会社 冷媒分配器および熱交換器

Also Published As

Publication number Publication date
EP2998681A4 (en) 2017-07-26
EP2998681A1 (en) 2016-03-23
JP6005266B2 (ja) 2016-10-12
JPWO2014184913A1 (ja) 2017-02-23
HK1217116A1 (zh) 2016-12-23
CN203964700U (zh) 2014-11-26
EP2998681B1 (en) 2018-06-20

Similar Documents

Publication Publication Date Title
JP6005266B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6116683B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6038302B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005267B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6012857B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6177319B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP6005268B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
WO2015004719A1 (ja) 積層型ヘッダー、熱交換器、空気調和装置、及び、積層型ヘッダーの板状体と管とを接合する方法
JP6388716B2 (ja) 積層型ヘッダ、熱交換器、及び、空気調和装置
JP6138264B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
EP3088831B1 (en) Heat exchanger and air conditioning apparatus
KR20170042733A (ko) 열교환기 및 공기 조화 장치
JPWO2020090015A1 (ja) 冷媒分配器、熱交換器および空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015516825

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013884840

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE