WO2015108043A1 - 樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置 - Google Patents

樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置 Download PDF

Info

Publication number
WO2015108043A1
WO2015108043A1 PCT/JP2015/050700 JP2015050700W WO2015108043A1 WO 2015108043 A1 WO2015108043 A1 WO 2015108043A1 JP 2015050700 W JP2015050700 W JP 2015050700W WO 2015108043 A1 WO2015108043 A1 WO 2015108043A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
reflector
resin
composition according
lead frame
Prior art date
Application number
PCT/JP2015/050700
Other languages
English (en)
French (fr)
Inventor
俊之 坂井
恵維 天下井
了 管家
安希 木村
俊正 財部
勝哉 坂寄
智紀 佐相
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201580004539.7A priority Critical patent/CN105916931B/zh
Priority to US15/111,081 priority patent/US10454008B2/en
Priority to KR1020167021149A priority patent/KR20160108403A/ko
Publication of WO2015108043A1 publication Critical patent/WO2015108043A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a resin composition, a reflector, a lead frame with a reflector, and a semiconductor light emitting device.
  • an LED element which is one of semiconductor light emitting devices, is widely used as a light source such as an indicator lamp because of its small size, long life, and excellent power saving.
  • LED elements with higher brightness have been manufactured at a relatively low cost, and therefore, use as a light source to replace fluorescent lamps and incandescent bulbs has been studied.
  • LED elements are arranged on a surface mount type LED package, that is, a metal substrate (lead frame) such as aluminum or copper, and around each LED element.
  • a reflector that reflects light in a predetermined direction is often used.
  • the reflector deteriorates due to the temperature rise at the time of light emission of the LED element, and the reflectance thereof decreases. As a result, the luminance is lowered, and the life of the LED element is shortened. Therefore, heat resistance is required for the reflector.
  • Patent Document 1 proposes a resin composition comprising a fluororesin (A) having a carbon-hydrogen bond and titanium oxide (B). Moreover, in patent document 2, the resin composition for reflectors containing a polymethyl pentene, a white pigment, spherical fused silica particle, and / or a modified cross-section glass fiber is proposed.
  • the resin compositions described in Patent Document 1 and Patent Document 2 have not been examined for heat distortion resistance. Further, a resin composition containing fluorine as in Patent Document 1 generates a toxic gas such as hydrogen fluoride in the curing process by heat or radiation, and cannot be practically used from the viewpoint of environmental pollution.
  • the present invention provides a resin composition that can exhibit excellent heat resistance (particularly, heat distortion resistance) even when formed into a molded body, a reflector using the resin composition, a lead frame with a reflector, and a semiconductor light emitting device. The purpose is to provide.
  • the present invention is as follows.
  • Olefin resin alkoxysilane compound having alkenyl group, titanium oxide, alumina, talc, clay, aluminum, aluminum hydroxide, mica, iron oxide, graphite, carbon black, calcium carbonate, zinc sulfide, zinc oxide,
  • a resin composition comprising: at least one inorganic filler selected from the group consisting of barium sulfate and potassium titanate.
  • a reflector comprising a cured product of the resin composition according to any one of [1] to [5].
  • a lead frame with a reflector comprising a cured product of the resin composition according to any one of [1] to [5].
  • An optical semiconductor element and a reflector that is provided around the optical semiconductor element and reflects light from the optical semiconductor element in a predetermined direction are provided on the substrate.
  • a semiconductor light-emitting device comprising a cured product of the resin composition according to any one of [1] to [5], wherein a light reflecting surface of the reflector.
  • a resin composition that can exhibit excellent heat resistance (particularly heat distortion resistance) even when formed into a molded body, a reflector using the resin composition, a lead frame with a reflector, and a semiconductor light emitting device are provided. Can be provided.
  • the resin composition of the present invention includes an olefin resin, an alkoxysilane compound having an alkenyl group, titanium oxide, alumina, talc, clay, aluminum, aluminum hydroxide, mica, iron oxide, graphite, carbon black, calcium carbonate, sulfide. And at least one inorganic filler selected from the group consisting of zinc, zinc oxide, barium sulfate, and potassium titanate. According to the resin composition of the present invention, the dispersibility of the inorganic filler in the olefin resin is improved by the silane compound, and the light resistance is also excellent.
  • the resin composition of this invention is an electron beam curable resin composition hardened
  • the resin composition of the present invention will be described.
  • the olefin resin is a polymer of a structural unit whose main chain is composed of a carbon-carbon bond, and the carbon bond may include a cyclic structure.
  • a homopolymer may be sufficient and the copolymer formed by copolymerizing with another monomer may be sufficient. Since the carbon-carbon bond does not cause a hydrolysis reaction, it has excellent water resistance.
  • the olefin resin examples include resins obtained by ring-opening metathesis polymerization of norbornene derivatives or hydrogenated products thereof, homopolymers of olefins such as ethylene and propylene, block copolymers of ethylene-propylene, random copolymers, Or a copolymer of ethylene and / or propylene and other olefins such as butene, pentene, hexene, and a copolymer of ethylene and / or propylene and other monomers such as vinyl acetate.
  • polyethylene, polypropylene, and polymethylpentene are preferable, and polymethylpentene is more preferable.
  • the polyethylene may be a homopolymer of ethylene, or ethylene and another comonomer copolymerizable with ethylene (for example, ⁇ -olefin such as propylene, 1-butene, 1-hexene, 1-octene, Copolymers with vinyl acetate, vinyl alcohol, etc.) may also be used.
  • ⁇ -olefin such as propylene, 1-butene, 1-hexene, 1-octene, Copolymers with vinyl acetate, vinyl alcohol, etc.
  • the polyethylene resin include high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), very low density polyethylene (VLDPE), and ultra high molecular weight polyethylene ( UHMWPE), cross-linked polyethylene (PEX) and the like. These polyethylenes may be used alone or in combination of two or more.
  • Polypropylene may be a homopolymer of propylene, or other comonomer copolymerizable with propylene (for example, ⁇ -olefin such as ethylene, 1-butene, 1-hexene, 1-octene, Copolymers with vinyl acetate, vinyl alcohol, etc.) may also be used. These polypropylenes may be used alone or in combination of two or more.
  • ⁇ -olefin such as ethylene, 1-butene, 1-hexene, 1-octene, Copolymers with vinyl acetate, vinyl alcohol, etc.
  • the polymethylpentene is preferably a homopolymer of 4-methylpentene-1, but 4-methylpentene-1 and other ⁇ -olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1
  • An ⁇ -olefin having 2 to 20 carbon atoms such as octene, 1-decene, 1-dodecene, 1-tetradecene, 1-octadecene, 1-eicocene, 3-methyl-1-butene, 3-methyl-1-pentene, etc.
  • a copolymer mainly composed of 4-methylpentene-1 containing 90 mol% or more of 4-methyl-1-pentene may be used.
  • the molecular weight of the homopolymer of 4-methylpentene-1 is preferably not less than 1,000, particularly preferably not less than 5,000, in terms of polystyrene as measured by gel permeation chromatography.
  • the refractive index of an olefin resin is lower than that of a general resin, the difference in refractive index can be increased when combined with a high refractive index material such as titanium oxide particles, effectively improving the reflectance. It is possible.
  • the refractive index is about 1.53 for polyethylene, about 1.48 for polypropylene, and about 1.46 for polymethylpentene, with polymethylpentene being more preferred.
  • the presence of an aromatic ring in the resin structure makes it easier for colored components to occur due to absorption of ultraviolet light. Since generation of a colored component causes a decrease in light reflectance, it is preferable that the number of aromatic rings in the resin structure is small, and it is more preferable that aromatic rings are not substantially contained. Considering this point, for example, it is suitable for use as a reflector of a semiconductor light emitting device.
  • the resin composition of the present invention contains an alkoxysilane compound having an alkenyl group.
  • the number of carbon atoms in the organic chain is preferably 1 to 20, but is more preferably 1 to 10 because the hardness and density are lowered as the carbon number increases.
  • the alkoxysilane compound having an alkenyl group is preferably a trialkoxysilane having an alkenyl group having 1 to 20 carbon atoms, more preferably a trialkoxysilane having an alkenyl group having 1 to 10 carbon atoms. .
  • alkoxysilane compound examples include vinyltrimethoxysilane, vinyltriethoxysilane, propenyltrimethoxysilane, propenyltriethoxysilane, butenyltrimethoxysilane, butenyltriethoxysilane, pentenyltrimethoxysilane, pentenyltriethoxysilane, hexenyl.
  • Trimethoxysilane hexenyltriethoxysilane, heptenyltrimethoxysilane, heptenyltriethoxysilane, octenyltrimethoxysilane, octenyltriethoxysilane, nonenyltrimethoxysilane, nonenyltriethoxysilane, decenyltrimethoxysilane , Decenyltriethoxysilane, undecenyltrimethoxysilane, undecenyltriethoxysilane, dodecenyltrimethoxysilane, dodecenyltrie Kishishiran, and the like. Of these, vinyltrimethoxysilane and octenyltrimethoxysilane are preferable.
  • the content of the alkoxysilane compound having an alkenyl group is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the olefin resin. More preferably, it is part by mass.
  • the filler can be dispersed in the resin. That is, the dispersibility of the inorganic filler in the olefin resin is improved by the silane compound, and excellent reflectance and light resistance can be exhibited.
  • the number of aromatic rings is small, and it is more preferable that there are no aromatic rings.
  • titanium oxide, alumina, talc, clay, aluminum, aluminum hydroxide, mica, iron oxide, graphite, carbon black, calcium carbonate, zinc sulfide, zinc oxide, barium sulfate, potassium titanate At least one inorganic filler selected from the group consisting of: Especially, it is preferable that a white pigment is included. By including a white pigment, it can be used for applications such as a reflector. As the white pigment, titanium oxide, zinc sulfide, zinc oxide, barium sulfate, potassium titanate and the like can be used alone or in combination, and titanium oxide is particularly preferable. Further, the shape of the inorganic filler is not particularly limited. For example, particles and fibers, irregular cross-section fibers, shapes with a large unevenness, and thin flakes can be used.
  • the content of the inorganic filler is preferably 10 to 600 parts by mass, more preferably 30 to 500 parts by mass, and still more preferably 50 to 450 parts by mass with respect to 100 parts by mass of the olefin resin.
  • the product performance for example, the light reflectivity, strength, and warping of the reflector
  • it can prevent that a molded state is bad and product performance (for example, the light reflectivity of a reflector) falls.
  • the average particle size of the inorganic filler is preferably 0.01 to 100 ⁇ m, more preferably 0.05 to 10 ⁇ m, and further preferably 0.10 to 1 ⁇ m in the primary particle size distribution in consideration of moldability. preferable.
  • An average particle diameter can be calculated
  • inorganic fillers other than the inorganic filler according to the present invention may be included.
  • inorganic fillers those that are usually blended in a thermoplastic resin composition and a thermosetting resin composition such as an epoxy resin, an acrylic resin, or a silicone resin can be used alone or in combination.
  • the shape and particle size of other inorganic fillers are not particularly limited. For example, particles and fibers, irregular cross-section fibers, shapes with a large unevenness, and thin flakes can be used.
  • silica is used, and silica is preferably silica particles, glass fibers, and the like, and more preferably contains glass fibers.
  • the average particle diameter of the silica particles is preferably 0.01 to 1000 ⁇ m, more preferably 0.1 to 200 ⁇ m, and further preferably 1 to 100 ⁇ m.
  • the glass fiber has an average length (fiber length) of preferably 5 to 3000 ⁇ m, more preferably 20 to 200 ⁇ m, and even more preferably 40 to 100 ⁇ m. By setting the average particle diameter or fiber length within this range, the fibrous material is filled in a large amount, and the strength of the molded product can be increased.
  • the mixture is incinerated in an electric furnace at a temperature of 600 ° C. for 2 hours, dispersed in the solution, the dispersed solution is dried on a slide glass, photographed with a microscope, and processed with image analysis software. Can be obtained.
  • the content of the other inorganic filler is preferably 10 to 300 parts by mass, more preferably 30 to 200 parts by mass, and further preferably 50 to 120 parts by mass with respect to 100 parts by mass of the olefin resin. preferable.
  • the resin composition of the present invention preferably contains a fluidity improver.
  • a fluidity improver include triallyl isocyanurate, monoglycidyl diallyl isocyanurate, diglycidyl monoallyl isocyanurate, trimethallyl isocyanurate, monoglycidyl dimethallyl isocyanurate, diglycidyl monomethallyl isocyanurate, triary.
  • liquidity of a resin composition can be evaluated by a melt volume rate (MVR).
  • MVR is measured by a method based on the method described in JIS K 7210: 1999 MVR of thermoplastics. Specifically, the test is performed at a test temperature of 240 ° C. and a test load of 2.16 kg for 60 seconds.
  • a soot melt flow tester manufactured by Thiast Co. can be used.
  • additives can be added as long as the effects of the present invention are not impaired.
  • various kinds of whisker, silicone powder, thermoplastic elastomer, organic synthetic rubber, fatty acid ester, glycerate ester, zinc stearate, calcium stearate, etc. internal release agents; benzophenone series , Salicylic acid-based, cyanoacrylate-based, isocyanurate-based, oxalic acid anilide-based, benzoate-based, hindered amine-based, benzotriazole-based, phenol-based antioxidants; hindered amine-based, benzoate-based light stabilizers, etc.
  • an additive such as a crosslinking agent can be blended.
  • the resin composition of the present invention has an inorganic filler, an alkoxy group that exhibits dehydration condensation reaction with the inorganic filler after hydrolysis, and a double bond having reactivity with the resin, it does not contain a crosslinking agent. However, it can exhibit excellent heat resistance.
  • the resin composition of the present invention can be prepared by mixing the olefin resin described above, an alkoxysilane compound having an alkenyl group, an inorganic filler, and other inorganic fillers, if necessary, at a predetermined ratio.
  • known means such as a two-roll or three-roll, a stirrer such as a homogenizer or a planetary mixer, or a melt kneader such as a polylab system or a lab plast mill can be applied. These may be performed at normal temperature, cooling state, heating state, normal pressure, reduced pressure state, or pressurized state.
  • the resin composition of the present invention By using the resin composition of the present invention, various molded products can be molded, and a molded product (for example, a reflector) having a thinner thickness can be produced.
  • the resin composition of this invention is preferably produced by an injection molding process in which injection molding is performed at a cylinder temperature of 200 to 400 ° C. and a mold temperature of 20 to 150 ° C. Further, any method may be used, but it is preferable to carry out the curing step after the injection molding step. For example, the electron beam irradiation process etc. which perform an electron beam irradiation process are mentioned.
  • the acceleration voltage of an electron beam it can select suitably according to the resin to be used and the thickness of a layer.
  • the resin to be used it is usually preferable to cure the uncured resin layer at an acceleration voltage of about 250 to 3000 kV.
  • the transmission capability increases as the acceleration voltage increases. Therefore, when using a base material that deteriorates due to the electron beam as the base material, the transmission depth of the electron beam and the thickness of the resin layer are substantially equal.
  • the accelerating voltage so as to be equal to each other, it is possible to suppress the irradiation of the electron beam to the base material, and to minimize the deterioration of the base material due to the excessive electron beam.
  • the absorbed dose when irradiating with an electron beam is appropriately set depending on the composition of the resin composition, but is preferably an amount at which the crosslinking density of the resin layer is saturated, and the irradiated dose is preferably 50 to 600 kGy.
  • the electron beam source is not particularly limited.
  • various electron beam accelerators such as a cockroft Walton type, a bandegraft type, a resonant transformer type, an insulated core transformer type, a linear type, a dynamitron type, and a high frequency type. Can be used.
  • the resin composition of the present invention as described above can be applied to various uses as a composite material applied on a substrate and cured, or a cured product of the resin composition.
  • it can be applied as a heat-resistant insulating film, a heat-resistant release sheet, a heat-resistant transparent substrate, a light-reflecting sheet for solar cells, or a reflector for a light source for televisions, such as LEDs.
  • the reflector of the present invention comprises a cured product obtained by curing the above-described resin composition of the present invention.
  • the reflector may be used in combination with a semiconductor light emitting device described later, or may be used in combination with a semiconductor light emitting device made of another material.
  • the reflector of the present invention mainly has an action of reflecting light from the LED element of the semiconductor light emitting device toward the lens (light emitting portion).
  • the details of the reflector are the same as those of the reflector (reflector 12 described later) applied to the semiconductor light emitting device of the present invention, and are omitted here.
  • the lead frame in the present invention indicates a substrate on which a reflector is placed. Any lead frame can be used as long as it is used in the field of semiconductor light emitting devices. Examples of the material of the lead frame include ceramics made of a sintered body such as alumina, aluminum nitride, mullite, and glass. In addition, a resin material having flexibility such as polyimide resin can be used. In particular, as the lead frame made of metal, aluminum, copper, and an alloy of copper are often used, and in order to improve the reflectance, the lead frame is often plated with a noble metal having a high reflectance such as silver. In particular, a reflector substrate made of metal is often called a lead frame.
  • the lead frame with a reflector of the present invention comprises a cured product obtained by molding the above-described resin composition of the present invention. Specifically, the lead frame with a reflector of the present invention is manufactured by molding the resin composition of the present invention into a desired reflector shape by injection molding on the lead frame.
  • the thickness of the lead frame with a reflector is preferably 0.1 to 3.0 mm, more preferably 0.1 to 1.0 mm, and further preferably 0.1 to 0.8 mm.
  • a resin frame having a smaller thickness can be produced as compared with a resin frame produced using glass fibers.
  • a resin frame having a thickness of 0.1 to 3.0 mm can be produced.
  • the lead frame with a reflector according to the present invention formed in this way has no warp caused by containing a filler such as glass fiber even when the thickness is reduced, so that the form stability and handleability are improved. Also excellent.
  • the lead frame with a reflector of the present invention can be made into a semiconductor light emitting device by mounting an LED chip on the reflector, further sealing with a known sealing agent, and die bonding to obtain a desired shape.
  • the lead frame with a reflector of this invention acts as a reflector, it is functioning also as a frame which supports a semiconductor light-emitting device.
  • the semiconductor light emitting device of the present invention is provided around an optical semiconductor element (for example, an LED element) 10 and the optical semiconductor element 10, and reflects light from the optical semiconductor element 10 in a predetermined direction.
  • a reflector 12 is provided on the substrate 14. And at least one part (all in the case of FIG. 1) of the light reflection surface of the reflector 12 is comprised with the hardened
  • the optical semiconductor element 10 emits radiated light (generally UV or blue light in a white light LED), for example, an active layer made of AlGaAs, AlGaInP, GaP or GaN sandwiched between n-type and p-type cladding layers. It is a semiconductor chip (light emitter) having a double heterostructure, and has a hexahedral shape with a side length of about 0.5 mm, for example. In the case of wire bonding mounting, it is connected to an electrode (connection terminal) (not shown) via a lead wire 16. Note that electrical insulation is maintained between the optical semiconductor element 10 and the electrode to which the lead wire 16 is connected by an insulating portion 15 formed of resin or the like.
  • the shape of the reflector 12 conforms to the shape of the end portion (joint portion) of the lens 18 and is usually a cylindrical shape such as a square shape, a circular shape, or an oval shape, or an annular shape.
  • the reflector 12 is a cylindrical body (annular body), and all the end faces of the reflector 12 are in contact with and fixed to the surface of the substrate 14.
  • the inner surface of the reflector 12 may be expanded upward in a tapered shape (see FIG. 1).
  • the reflector 12 can also function as a lens holder when the end portion on the lens 18 side is processed into a shape corresponding to the shape of the lens 18.
  • the reflector 12 may have only the light reflecting surface side as a light reflecting layer 12a made of the resin composition of the present invention.
  • the thickness of the light reflection layer 12a is preferably 500 ⁇ m or less, and more preferably 300 ⁇ m or less, from the viewpoint of reducing the thermal resistance.
  • the member 12b on which the light reflecting layer 12a is formed can be made of a known heat resistant resin.
  • the lens 18 is provided on the reflector 12, but this is usually made of resin, and various structures may be adopted and colored depending on the purpose and application.
  • the space formed by the substrate 14, the reflector 12, and the lens 18 may be a transparent sealing portion, or may be a gap if necessary.
  • This space portion is usually a transparent sealing portion filled with a light-transmitting and insulating material, and the force applied by directly contacting the lead wire 16 in wire bonding mounting and indirectly. Prevents electrical defects caused by the lead wire 16 being disconnected, cut, or short-circuited from the connection portion with the optical semiconductor element 10 and / or the connection portion with the electrode due to applied vibration, impact, etc. can do.
  • the optical semiconductor element 10 can be protected from moisture, dust, etc., and the reliability can be maintained over a long period of time.
  • Examples of the material (transparent sealant composition) that imparts translucency and insulation usually include silicone resins, epoxy silicone resins, epoxy resins, acrylic resins, polyimide resins, polycarbonate resins, and the like. Of these, silicone resins are preferred from the viewpoints of heat resistance, weather resistance, low shrinkage, and discoloration resistance.
  • the reflector 12 having a predetermined shape is molded from the resin composition of the present invention by transfer molding, compression molding, injection molding or the like using a mold having a cavity space having a predetermined shape.
  • the separately prepared optical semiconductor element 10, electrodes, and lead wires 16 are fixed to the substrate 14 with an adhesive or a bonding member.
  • a transparent sealant composition containing a silicone resin or the like is poured into the recess formed by the substrate 14 and the reflector 12, and cured by heating, drying, or the like to obtain a transparent sealing portion.
  • the lens 18 is disposed on the transparent sealing portion to obtain the semiconductor light emitting device shown in FIG.
  • the composition may be cured.
  • Titanium oxide PF-691 (Ishihara Sangyo Co., Ltd. Rutile structure average particle size 0.21 ⁇ m)
  • additives are as follows. ⁇ TAIC (triallyl isocyanurate) Nippon Kasei Co., Ltd. ⁇ IRGANOX 1010 (BASF ⁇ Japan Co., Ltd.) ⁇ PEP 36 (manufactured by ADEKA Corporation) ⁇ SZ-2000 (manufactured by Sakai Chemical Industry Co., Ltd.)
  • Examples 1 to 8, 10 to 15, Comparative Examples 1 to 6 Various materials were blended and kneaded as shown in Tables 1 to 3 below to obtain resin compositions.
  • the resin composition for evaluation 2 and evaluation 3 mix
  • These resin compositions were press-molded into a size of 750 mm ⁇ 750 mm ⁇ thickness 0.5 mm under the conditions of 250 ° C., 30 seconds, and 20 MPa to produce a molded body (1).
  • the compact (1) was irradiated with an electron beam at an acceleration voltage of 800 kV and an absorbed dose of 400 kGy. The following characteristics (evaluations 2 and 3) were evaluated. The results are shown in Tables 1 to 3 below.
  • the resin composition according to the present invention was able to exhibit excellent heat deformation even when formed into a molded body. From the above, it can be said that the resin composition of the present invention is useful for reflectors and reflectors for semiconductor light emitting devices.

Abstract

 オレフィン樹脂と、アルケニル基を有するアルコキシシラン化合物と、酸化チタン、アルミナ、タルク、クレー、アルミニウム、水酸化アルミニウム、マイカ、酸化鉄、グラファイト、カーボンブラック、炭酸カルシウム、硫化亜鉛、酸化亜鉛、硫酸バリウム、チタン酸カリウムからなる群から選択される少なくとも1つの無機フィラーと、を含む樹脂組成物、及び当該樹脂組成物を用いたリフレクター、リフレクター付きリードフレーム、及び半導体発光装置である。 成形体とした場合においても優れた耐熱性(特に耐熱変形性)を発揮し得る樹脂組成物、当該樹脂組成物を用いたリフレクター、リフレクター付きリードフレーム、及び半導体発光装置を提供することができる。

Description

樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置
 本発明は、樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置に関する。
 従来、電子部品を基板等に実装させる方法として、所定の場所に予め半田が点着された基板上に電子部品を仮固定した後、この基板を赤外線、熱風等の手段により加熱して半田を溶融させて電子部品を固定する方法(リフロー法)が採用されている。この方法により基板表面における電子部品の実装密度を向上させることができる。
 しかしながら、従来使用されてきた電子部品は耐熱性が十分とは言えず、特に赤外線加熱によるリフロー工程においては、部品表面の温度が局部的に高くなり変形が生じる等の問題があり、より耐熱性(特に、耐熱変形性)に優れた樹脂組成物及び電子部品が望まれていた。
 また、半導体発光装置の一つであるLED素子は、小型で長寿命であり、省電力性に優れることから、表示灯等の光源として広く利用されている。そして近年では、より輝度の高いLED素子が比較的安価に製造されるようになったことから、蛍光ランプ及び白熱電球に替わる光源としての利用が検討されている。このような光源に適用する場合、大きな照度を得るために、表面実装型LEDパッケージ、即ち、アルミニウムや銅等の金属製の基板(リードフレーム)上にLED素子を配置し、各LED素子の周りに光を所定方向に反射させるリフレクター(反射体)を配設する方式が多用されている。
 しかし、LED素子は発光時に発熱を伴うため、このような方式のLED照明装置では、LED素子の発光時の温度上昇によりリフレクターが劣化してその反射率が低下してしまう。その結果、輝度が低下し、LED素子の短寿命化等を招くこととなる。従って、リフレクターには耐熱性が要求されることとなる。
 上記耐熱性の要求に応えるべく、特許文献1では、炭素-水素結合を有するフッ素樹脂(A)及び酸化チタン(B)からなる樹脂組成物が提案されている。また、特許文献2では、ポリメチルペンテンと白色顔料と球状溶融シリカ粒子及び/又は異形断面ガラス繊維とを含むリフレクター用樹脂組成物が提案されている。
特開2011-195709号公報 特開2012-180432号公報
 しかし、特許文献1および特許文献2に記載の樹脂組成物については、耐熱変形性についての検討がなされていない。また、特許文献1のようなフッ素を含有する樹脂組成物は熱や放射線による硬化過程にて、フッ化水素などの有毒ガスが発生し、環境汚染といった面から、実用的に用いることはできない。
 以上から、本発明は、成形体とした場合においても優れた耐熱性(特に耐熱変形性)を発揮し得る樹脂組成物、当該樹脂組成物を用いたリフレクター、リフレクター付きリードフレーム、及び半導体発光装置を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、下記の発明により当該目的を達成できることを見出した。すなわち、本発明は下記の通りである。
[1] オレフィン樹脂と、アルケニル基を有するアルコキシシラン化合物と、酸化チタン、アルミナ、タルク、クレー、アルミニウム、水酸化アルミニウム、マイカ、酸化鉄、グラファイト、カーボンブラック、炭酸カルシウム、硫化亜鉛、酸化亜鉛、硫酸バリウム、チタン酸カリウムからなる群から選択される少なくとも1つの無機フィラーと、を含む樹脂組成物。
[2] 前記オレフィン樹脂が、ポリエチレン、ポリプロピレン及びポリメチルペンテンの少なくともいずれかである[1]に記載の樹脂組成物。
[3] 前記アルケニル基を有するアルコキシシラン化合物が、炭素数が1~20のアルケニル基を有するトリアルコキシシランである[1]又は[2]に記載の樹脂組成物。
[4] さらにシリカを含む[1]~[3]のいずれかに記載の樹脂組成物。
[5] さらに流動性向上剤を含む[1]~[4]のいずれかに記載の樹脂組成物。
[6] [1]~[5]のいずれかに記載の樹脂組成物の硬化物からなるリフレクター。
[7] [1]~[5]のいずれかに記載の樹脂組成物の硬化物からなるリフレクター付きリードフレーム。
[8] 光半導体素子と、前記光半導体素子の周りに設けられ、該光半導体素子からの光を所定方向に反射させるリフレクターとを基板上に有し、
 前記リフレクターの光反射面が[1]~[5]のいずれかに記載の樹脂組成物の硬化物からなる半導体発光装置。
 本発明によれば、成形体とした場合においても優れた耐熱性(特に耐熱変形性)を発揮し得る樹脂組成物、当該樹脂組成物を用いたリフレクター、リフレクター付きリードフレーム、及び半導体発光装置を提供することができる。
本発明の半導体発光装置の一例を示す概略断面図である。 本発明の半導体発光装置の一例を示す概略断面図である。
[1.樹脂組成物]
 本発明の樹脂組成物は、オレフィン樹脂と、アルケニル基を有するアルコキシシラン化合物と、酸化チタン、アルミナ、タルク、クレー、アルミニウム、水酸化アルミニウム、マイカ、酸化鉄、グラファイト、カーボンブラック、炭酸カルシウム、硫化亜鉛、酸化亜鉛、硫酸バリウム、チタン酸カリウムからなる群から選択される少なくとも1つの無機フィラーと、を含む。本発明の樹脂組成物によれば、上記シラン化合物によりオレフィン樹脂中への無機フィラーの分散性が向上し、また耐光性にも優れる。
 なお、本発明の樹脂組成物は電子線により硬化する電子線硬化性樹脂組成物として使用することが好ましい。本発明の樹脂組成物は加水分解後に無機フィラーと脱水縮合反応を示すアルコキシ基と樹脂と反応性を有する二重結合を有するため、電子線硬化性樹脂組成物とした場合にその照射線量を小さくすることができる。その結果、樹脂へのダメージを低減し、照射時間の短縮化を図ることができる。
 以下、本発明の樹脂組成物について説明する。
(オレフィン樹脂)
 オレフィン樹脂とは、主鎖が炭素-炭素結合からなる構成単位の重合体であり、炭素結合には環状の構造を含む場合もある。単独重合体でもよく、他のモノマーと共重合してなる共重合体でもよい。炭素-炭素結合は加水分解反応を起こさないので、耐水性に優れる。オレフィン樹脂としては、例えば、ノルボルネン誘導体を開環メタセシス重合させた樹脂あるいはその水素添加物、エチレン、プロピレン等のオレフィンのそれぞれ単独重合体、あるいはエチレン-プロピレンのブロック共重合体、ランダム共重合体、あるいはエチレン及び/又はプロピレンと、ブテン、ペンテン、ヘキセン等の他のオレフィンとの共重合体、更には、エチレン及び/又はプロピレンと、酢酸ビニル等の他の単量体との共重合体等が挙げられる。なかでも、ポリエチレン、ポリプロピレン、ポリメチルペンテンが好ましく、ポリメチルペンテンがより好ましい。
 ポリエチレンとは、エチレンの単独重合体であってもよいし、エチレンと、エチレンと共重合可能な他のコモノマー(例えば、プロピレン、1-ブテン、1-ヘキセン、1-オクテン等のα-オレフィン、酢酸ビニル、ビニルアルコール等)との共重合体であってもよい。ポリエチレン樹脂としては、例えば、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE)、直鎖低密度ポリエチレン(LLDPE)、超低密度ポリエチレン(VLDPE)、超高分子量ポリエチレン(UHMWPE)、架橋ポリエチレン(PEX)等が挙げられる。これらのポリエチレンは1種単独で使用してもよいし、2種以上を併用してもよい。
 ポリプロピレンとは、プロピレンの単独重合体であってもよいし、プロピレンと、プロピレンと共重合可能な他のコモノマー(例えば、エチレン、1-ブテン、1-ヘキセン、1-オクテン等のα-オレフィン、酢酸ビニル、ビニルアルコール等)との共重合体であってもよい。これらのポリプロピレンは1種単独で使用してもよいし、2種以上を併用してもよい。
 ポリメチルペンテンとしては4-メチルペンテン-1の単独重合体が好ましいが、4-メチルペンテン-1と他のα-オレフィン、例えばエチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセン、1-ドデセン、1-テトラデセン、1-オクタデセン、1-エイコセン、3-メチル-1-ブテン、3-メチル-1-ペンテン等の炭素数2ないし20のα-オレフィンとの共重合体で、4-メチル-1-ペンテンを90モル%以上含む4-メチルペンテン-1を主体とした共重合体でもよい。
 4-メチルペンテン-1の単独重合体の分子量はゲルパーミッションクロマトグラフィーで測定したポリスチレン換算の重量平均分子量Mwが1,000以上、特に5,000以上が好ましい。
 オレフィン樹脂の屈折率は一般的な樹脂と比べ低いため、酸化チタン粒子のような高屈折率材料と組み合わせた際には屈折率の差を大きくすることができ、効果的に反射率を向上させることが可能である。屈折率はポリエチレンが約1.53、ポリプロピレンが約1.48、ポリメチルペンテンが約1.46であり、ポリメチルペンテンがより好ましい。
 また、樹脂構造に芳香環が存在することで、紫外光の吸収による着色成分の生成が起こりやすくなる。着色成分が生成すると光の反射率の低下を引き起こすため、樹脂構造中の芳香環の数は少ない方が好ましく、芳香環は実質的に含まないことがより好ましい。かかる点を考慮すると、例えば、半導体発光装置のリフレクターとして使用するには好適である。
(アルケニル基を有するアルコキシシラン化合物)
 本発明の樹脂組成物においては、アルケニル基を有するアルコキシシラン化合物が含有されてなる。有機鎖の炭素数は1~20とすることが好ましいが、炭素数の増加により硬さや密度が低下するため、1~10であることがより好ましい。
 アルケニル基を有するアルコキシシラン化合物としては、炭素数が1~20のアルケニル基を有するトリアルコキシシランであることが好ましく、炭素数が1~10のアルケニル基を有するトリアルコキシシランであることがさらに好ましい。当該アルコキシシラン化合物としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、プロペニルトリメトキシシラン、プロペニルトリエトキシシラン、ブテニルトリメトキシシラン、ブテニルトリエトキシシラン、ペンテニルトリメトキシシラン、ペンテニルトリエトキシシラン、ヘキセニルトリメトキシシラン、ヘキセニルトリエトキシシラン、ヘプテニルトリメトキシシラン、ヘプテニルトリエトキシシラン、オクテニルトリメトキシシラン、オクテニルトリエトキシシラン、ノネニルトリメトキシシラン、ノネニルトリエトキシシラン、デケニルトリメトキシシラン、デケニルトリエトキシシラン、ウンデケニルトリメトキシシラン、ウンデケニルトリエトキシシラン、ドデケニルトリメトキシシラン、ドデケニルトリエトキシシラン、等が挙げられる。なかでも、ビニルトリメトキシシラン、オクテニルトリメトキシシランが好ましい。
 アルケニル基を有するアルコキシシラン化合物の含有量は、オレフィン樹脂100質量部に対し、0.1~20質量部とすることが好ましく、0.5~10質量部であることがより好ましく、1~7質量部であることがさらに好ましい。1~7質量部とすることで、フィラーを樹脂中に分散させることができる。すなわち、上記シラン化合物によりオレフィン樹脂中への無機フィラーの分散性が向上し、優れた反射率、耐光性を発現させることができる。アルコキシシラン化合物においても芳香環の数は少ない方が好ましく、芳香環はないことがより好ましい。
(無機フィラー)
 また本発明の樹脂組成物においては、酸化チタン、アルミナ、タルク、クレー、アルミニウム、水酸化アルミニウム、マイカ、酸化鉄、グラファイト、カーボンブラック、炭酸カルシウム、硫化亜鉛、酸化亜鉛、硫酸バリウム、チタン酸カリウムからなる群から選択される少なくとも1つの無機フィラーを含む。なかでも、白色顔料を含むことが好ましい。白色顔料を含むことで、リフレクター等の用途に供することができる。白色顔料としては、酸化チタン、硫化亜鉛、酸化亜鉛、硫酸バリウム、チタン酸カリウム等を単独もしくは混合して使用することが可能で、なかでも酸化チタンが好ましい。
 また、無機フィラーの形状は特に限定されるものではない。例えば、粒子状及び繊維状、異形断面繊維状、凹凸差の大きな形状、厚みの薄い薄片状といった形状のものが使用できる。
 無機フィラーの含有量は、オレフィン樹脂100質量部に対し、10~600質量部とすることが好ましく、30~500質量部であることがより好ましく、50~450質量部であることがさらに好ましい。30~500質量部とすることで、製品性能(例えば、リフレクターの光反射率、強度、成形反り)を良好に維持することができる。また、無機成分が多く加工ができない、または加工できても成形状態が悪く製品性能(例、リフレクターの光反射率)が低下することを防ぐことができる。
 無機フィラーの平均粒径は成形性を考慮し、一次粒度分布において0.01~100μmであることが好ましく、0.05~10μmであることがより好ましく、0.10~1μmであることがさらに好ましい。平均粒径は、レーザー光回折法による粒度分布測定における質量平均値D50として求めることができる。
(その他の成分)
 性能を損なわない限りは、本発明に係る無機フィラー以外のその他の無機フィラーが含まれていても良い。その他の無機フィラーとしては、通常、熱可塑樹脂組成物及びエポキシ樹脂、アクリル樹脂、シリコーン樹脂のような熱硬化樹脂組成物に配合されるものを単独もしくは混合して、使用することができる。その他の無機フィラーの形状及び粒径は特に限定されるものではない。例えば、粒子状及び繊維状、異形断面繊維状、凹凸差の大きな形状、厚みの薄い薄片状といった形状のものが使用できる。具体的には、シリカが用いられ、シリカとしてはシリカ粒子、ガラス繊維等が好ましく、ガラス繊維を含むことがより好ましい。当該シリカ粒子の平均粒径は0.01~1000μmであることが好ましく、0.1~200μmであることがより好ましく、1~100μmであることがさらに好ましい。またガラス繊維は平均長さ(繊維長)が5~3000μmであることが好ましく、20~200μmであることがより好ましく、40~100μmであることがさらに好ましい。この範囲内の平均粒径または繊維長さにすることにより、繊維状材料が成形物中に多く充填され、成形物の強度を高めることができる。
 なお、繊維長は、混合物を温度600℃の電気炉で2時間灰化し、溶液中に分散させ、その分散溶液をスライドグラス上で乾燥させ、顕微鏡で写真撮影を行い、画像解析ソフトで処理することで求めることができる。
 その他の無機フィラーの含有量は、オレフィン樹脂100質量部に対し、10~300質量部であることが好ましく、30~200質量部であることがより好ましく、50~120質量部であることがさらに好ましい。
 また、本発明の樹脂組成物は流動性向上剤を含むことが好ましい。これを含むことで樹脂の成形性を高めることができる。当該流動性向上剤としては、トリアリルイソシアヌレート、モノグリシジルジアリルイソシアヌレート、ジグリシジルモノアリルイソシアヌレート、トリメタアリルイソシアヌレート、モノグリシジルジメタアリルイソシアヌレート、ジグリシジルモノメタアリルイソシアヌレート、トリアリルシアヌレート、モノグリシジルジアリルシアヌレート、ジグリシジルモノアリルシアヌレート、トリメタアリルシアヌレート、モノグリシジルジメタアリルシアヌレート、ジグリシジルモノメタアリルシアヌレート、アリルグリシジルアミン、ジアリルモノグリシジルアミン、モノアリルジグリシジルアミン、モノグリシジルジメタアリルアミン、ジグリシジルモノメタアリルアミン、グリシジルアリルクロレンデート、アリルグリシジルアジペート、アリルグリシジルカーボネート、アリルグリシジルジメチルアンモニウムクロリド、アリルグリシジルフマレート、アリルグリシジルイソフタレート、アリルグリシジルマロネート、アリルグリシジルオキサレート、アリルグリシジルフタレート、アリルグリシジルプロピルイソシアヌレート、アリルグリシジルセバケート、アリルグリシジルサクシネート、アリルグリシジルテレフタレート、グリシジルメチルアリルフタレート等が挙げられる。流動性向上剤は、オレフィン樹脂100質量部に対し、0.1~30質量部とすることが好ましく、1~20質量部であることがより好ましい。
 なお、樹脂組成物の流動性は、メルトボリュームレート(MVR)により評価することができる。MVRはJIS K 7210:1999 熱可塑性プラスチックのMVRに記載の方法に準拠した方法により測定する。具体的には、試験温度240℃、試験荷重2.16kg、60秒で行う。測定装置としては、チアスト社製 メルトフローテスターを用いることができる。
 なお、本発明の効果を損なわない限り、種々の添加剤を含有させることができる。例えば、樹脂組成物の性質を改善する目的で、種々のウィスカー、シリコーンパウダー、熱可塑性エラストマー、有機合成ゴム、脂肪酸エステル、グリセリン酸エステル、ステアリン酸亜鉛、ステアリン酸カルシウム等の内部離型剤;ベンゾフェノン系、サリチル酸系、シアノアクリレート系、イソシアヌレート系、シュウ酸アニリド系、ベンゾエート系、ヒンダートアミン系、ベンゾトリアゾール系、フェノール系等の酸化防止剤;ヒンダードアミン系、ベンゾエート系等の光安定剤;公知の架橋処理剤;といった添加剤を配合することができる。
 ここで、本発明の樹脂組成物は、無機フィラーと、加水分解後に無機フィラーと脱水縮合反応を示すアルコキシ基と、樹脂と反応性を有する二重結合を有するため、架橋処理剤を含有しなくても優れた耐熱性を発揮できる。
 本発明の樹脂組成物は、既述のオレフィン樹脂、アルケニル基を有するアルコキシシラン化合物、及び無機フィラーと、必要に応じてその他の無機フィラー等とを所定比で混合して作製することができる。
 混合方法としては、2本ロールあるいは3本ロール、ホモジナイザー、プラネタリーミキサー等の撹拌機、ポリラボシステムやラボプラストミル等の溶融混練機等の公知の手段を適用することができる。これらは常温、冷却状態、加熱状態、常圧、減圧状態、加圧状態のいずれで行ってもよい。
 本発明の樹脂組成物を用いることで、種々の成形体を成形することができ、より厚みの薄い成形体(例えば、リフレクター)を作製することもできる。本発明の樹脂組成物を電子線硬化性樹脂組成物とする場合、本発明に係る成形体は例えば下記のような方法により製造することが好ましい。
 すなわち、本発明の樹脂組成物に対し、シリンダー温度200~400℃、金型温度20~150℃で射出成形する射出成形工程より作製することが好ましい。さらにどのような方法でも構わないが、硬化工程を射出成形工程の後に実施することが好ましい。例えば、電子線照射処理を施す電子線照射工程などが挙げられる。
 電子線の加速電圧については、用いる樹脂や層の厚みに応じて適宜選定し得る。例えば、厚みが1mm程度の成形体の場合は通常加速電圧250~3000kV程度で未硬化樹脂層を硬化させることが好ましい。なお、電子線の照射においては、加速電圧が高いほど透過能力が増加するため、基材として電子線により劣化する基材を使用する場合には、電子線の透過深さと樹脂層の厚みが実質的に等しくなるように、加速電圧を選定することにより、基材への余分の電子線の照射を抑制することができ、過剰電子線による基材の劣化を最小限にとどめることができる。また、電子線を照射する際の吸収線量は樹脂組成物の組成により適宜設定されるが、樹脂層の架橋密度が飽和する量が好ましく、照射線量は50~600kGyであることが好ましい。
 さらに、電子線源としては、特に制限はなく、例えばコックロフトワルトン型、バンデグラフト型、共振変圧器型、絶縁コア変圧器型、あるいは直線型、ダイナミトロン型、高周波型などの各種電子線加速器を用いることができる。
 以上のような本発明の樹脂組成物は、基材上に塗布し硬化させた複合材料や当該樹脂組成物の硬化物として種々の用途に適用することができる。例えば、耐熱性絶縁膜、耐熱性離型シート、耐熱性透明基材、太陽電池の光反射シートやLEDを始めとした照明やテレビ用の光源のリフレクターとして適用することができる。
[2.リフレクター]
 本発明のリフレクターは、既述の本発明の樹脂組成物を硬化した硬化物からなる。
 当該リフレクターは、後述する半導体発光装置と組み合わせて用いてよいし、他の材料からなる半導体発光装置と組み合わせて用いてもよい。
 本発明のリフレクターは、主として、半導体発光装置のLED素子からの光をレンズ(出光部)の方へ反射させる作用を有する。リフレクターの詳細については、本発明の半導体発光装置に適用されるリフレクター(後述するリフレクター12)と同じであるためここでは省略する。
[3.リードフレーム]
 本発明におけるリードフレームは、リフレクターを載置するための基板を示す。リードフレームは、半導体発光装置の分野で用いられるものあればいかなるものであっても使用可能である。リードフレームの材料としては、たとえば、アルミナや、窒化アルミニウム、ムライト、ガラスなどの焼結体から構成されるセラミック等を挙げることができる。これ以外にも、ポリイミド樹脂等のフレキシブル性を有する樹脂材料等を挙げることができる。特に金属よりなるリードフレームとしては、アルミニウム、銅及び銅の合金が用いられることが多く、反射率の向上のため銀などの反射率が高い貴金属によりめっきされることも多い。特に金属で形成されたリフレクター用基板は、リードフレームと呼称されることも多い。
[4.リフレクター付きリードフレーム]
 本発明のリフレクター付きリードフレームは既述の本発明の樹脂組成物を成形した硬化物からなる。具体的には、リードフレームに、本発明の樹脂組成物を射出成形により所望のリフレクター形状に成形することで、本発明のリフレクター付きリードフレームが製造される。
 リフレクター付きリードフレームの厚さは0.1~3.0mmであることが好ましく、0.1~1.0mmであることがより好ましく、0.1~0.8mmであることがさらに好ましい。
 本発明の樹脂組成物においては、例えばガラス繊維を用いて作製した樹脂フレームに比べてより厚みの小さい樹脂フレームを作製することができる。具体的には0.1~3.0mmの厚みの樹脂フレームを作製することができる。また、このようにして成形してなる本発明のリフレクター付きリードフレームは、厚みを小さくしても、ガラス繊維等のフィラーを含むことに起因する反りの発生がないため、形態安定性や取り扱い性にも優れる。
 本発明のリフレクター付きリードフレームは、これにLEDチップを載せてさらに公知の封止剤により封止を行い、ダイボンディングを行なって所望の形状にすることで、半導体発光装置とすることができる。なお、本発明のリフレクター付きリードフレームは、リフレクターとして作用するが、半導体発光装置を支える枠としても機能している。
[5.半導体発光装置]
 本発明の半導体発光装置は、図1に例示するように、光半導体素子(例えばLED素子)10と、この光半導体素子10の周りに設けられ、光半導体素子10からの光を所定方向に反射させるリフレクター12とを基板14上に有してなる。そして、リフレクター12の光反射面の少なくとも一部(図1の場合は全部)が既述の本発明のリフレクター組成物の硬化物で構成されてなる。
 光半導体素子10は、放射光(一般に、白色光LEDにおいてはUV又は青色光)を放出する、例えば、AlGaAs、AlGaInP、GaP又はGaNからなる活性層を、n型及びp型のクラッド層により挟んだダブルヘテロ構造を有する半導体チップ(発光体)であり、例えば、一辺の長さが0.5mm程度の六面体の形状をしている。そして、ワイヤーボンディング実装の形態の場合には、リード線16を介して不図示の電極(接続端子)に接続されている。
 なお、光半導体素子10とリード線16が接続された上記電極とは、樹脂等で形成された絶縁部15により電気的絶縁が保たれている。
 リフレクター12の形状は、レンズ18の端部(接合部)の形状に準じており、通常、角形、円形、楕円形等の筒状又は輪状である。図1の概略断面図においては、リフレクター12は、筒状体(輪状体)であり、リフレクター12のすべての端面が基板14の表面に接触、固定されている。
 なお、リフレクター12の内面は、光半導体素子10からの光の指向性を高めるために、テーパー状に上方に広げられていてもよい(図1参照)。
 また、リフレクター12は、レンズ18側の端部を、当該レンズ18の形状に応じた形に加工された場合には、レンズホルダーとしても機能させることができる。
 リフレクター12は、図2に示すように、光反射面側だけを本発明の樹脂組成物からなる光反射層12aとしてもよい。この場合、光反射層12aの厚さは、熱抵抗を低くする等の観点から、500μm以下とすることが好ましく、300μm以下とすることがより好ましい。光反射層12aが形成される部材12bは、公知の耐熱性樹脂で構成することができる。
 既述のようにリフレクター12上にはレンズ18が設けられているが、これは通常樹脂製であり、目的、用途等により様々な構造が採用され、着色されることもある。
 基板14とリフレクター12とレンズ18とで形成される空間部は、透明封止部であってよいし、必要により空隙部であってもよい。この空間部は、通常、透光性及び絶縁性を与える材料等が充填された透明封止部であり、ワイヤーボンディング実装において、リード線16に直接接触することにより加わる力、及び、間接的に加わる振動、衝撃等により、光半導体素子10との接続部、及び/又は、電極との接続部からリード線16が外れたり、切断したり、短絡したりすることによって生じる電気的な不具合を防止することができる。また、同時に、湿気、塵埃等から光半導体素子10を保護し、長期間に渡って信頼性を維持することができる。
 この透光性及び絶縁性を与える材料(透明封止剤組成物)としては、通常、シリコーン樹脂、エポキシシリコーン樹脂、エポキシ系樹脂、アクリル系樹脂、ポリイミド系樹脂、ポリカーボネート樹脂等が挙げられる。これらのうち、耐熱性、耐候性、低収縮性及び耐変色性の観点から、シリコーン樹脂が好ましい。
 以下に、図1に示す半導体発光装置の製造方法の一例について説明する。
 まず、上記本発明の樹脂組成物を、所定形状のキャビティ空間を備える金型を用いたトランスファー成形、圧縮成形、射出成形等により、所定形状のリフレクター12を成形する。その後、別途、準備した光半導体素子10、電極及びリード線16を、接着剤又は接合部材により基板14に固定する。次いで、基板14及びリフレクター12により形成された凹部に、シリコーン樹脂等を含む透明封止剤組成物を注入し、加熱、乾燥等により硬化させて透明封止部とする。その後、透明封止部上にレンズ18を配設して、図1に示す半導体発光装置が得られる。
 なお、透明封止剤組成物が未硬化の状態でレンズ18を載置してから、組成物を硬化させてもよい。
 次に、本発明を実施例によりさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
 なお、本実施例1~8、10~15及び比較例1~6において使用した材料は下記の通りである。
(樹脂)
・ポリメチルペンテン :TPX RT18(三井化学(株)製)
・ポリエチレン:ハイゼックス1300((株)プライムポリマー製)
・ポリプロピレン:プライムポリプロ137G((株)プライムポリマー製)
(シラン化合物)
・7-オクテニルトリメトキシシラン
・ビニルトリメトキシシラン
・3-メタクリロキシプロピルトリメトキシシラン
・3-アクリロキシプロピルトリメトキシシラン
・ヘキシルトリメトキシシラン
(無機フィラー)
・酸化チタン PF-691(石原産業(株)製 ルチル型構造 平均粒径0.21μm)
(その他の無機フィラー)
・ガラス繊維 PF70E-001(日東紡(株)製、繊維長70μm)
(添加剤)
 添加剤については下記の通りである。
・TAIC(トリアリルイソシアヌレート) 日本化成(株)製
・IRGANOX 1010 (BASF・ジャパン(株)製)
・PEP 36 ((株)ADEKA製)
・SZ-2000 (堺化学工業(株)製)
[実施例1~8、10~15、比較例1~6]
 下記表1~表3に示すように各種材料を配合、混練し、樹脂組成物を得た。
 なお、評価2及び評価3用の樹脂組成物は、各種材料を配合し、押出機(日本プラコン(株) MAX30:ダイス径3.0mm)とペレタイザー((株)東洋精機製作所 MPETC1)を用いて行い作製した。
 これらの樹脂組成物につき、250℃、30秒、20MPaの条件で、750mm×750mm×厚さ0.5mmにプレス成形し、成形体(1)を作製した。
 成形体(1)に、加速電圧を800kVで400kGyの吸収線量にて電子線を照射した。これらの下記諸特性(評価2,3)を評価した。結果を下記表1~表3に示す。
(評価1)
・ペレット化
 評価1用に下記のようにして樹脂組成物のペレット化を行った。まず、各種材料を計量し、ポリラボシステム(バッチ式2軸)により混練し、樹脂組成物を得た。その後、切断することでペレットを作製した。ペレット化の可否の結果を下記表1~表3に示す。
 なお、表中のAはペレット化が可能であること、Bはペレットとならないことを示す。
(評価2)
・耐熱性
 成形体(1)の各試料の貯蔵弾性率を、RSAG2(TA INSTRUMENTS製)により、測定温度25~400℃、昇温速度5℃/min、Strain 0.1%の条件にて測定した。270℃での貯蔵弾性率を下記表1~表3に示す。
(評価3)
・耐熱性
 成形体(1)の各試料を、150℃で24時間の処理後での外観変化(変色性)を目視で確認した。結果を下記表1~表3に示す。
 なお、表中のAは上記処理前後で外観変化、すなわち変色がないこと、Bはわずかに変色が見られたこと、Cは処理後に外観変化(変色)が見られたことを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 上記実施例の結果から明らかなとおり、本発明に係る樹脂組成物は、成形体とした場合においても優れた耐熱変形性を発揮することができた。以上から、本発明の樹脂組成物はリフレクターや半導体発光装置用の反射材に有用であるといえる。
10・・・光半導体素子
12・・・リフレクター
14・・・基板
15・・・絶縁部
16・・・リード線
18・・・レンズ

Claims (8)

  1.  オレフィン樹脂と、アルケニル基を有するアルコキシシラン化合物と、酸化チタン、アルミナ、タルク、クレー、アルミニウム、水酸化アルミニウム、マイカ、酸化鉄、グラファイト、カーボンブラック、炭酸カルシウム、硫化亜鉛、酸化亜鉛、硫酸バリウム、チタン酸カリウムからなる群から選択される少なくとも1つの無機フィラーと、を含む樹脂組成物。
  2.  前記オレフィン樹脂が、ポリエチレン、ポリプロピレン及びポリメチルペンテンの少なくともいずれかである請求項1に記載の樹脂組成物。
  3.  前記アルケニル基を有するアルコキシシラン化合物が、炭素数が1~20のアルケニル基を有するトリアルコキシシランである請求項1又は2に記載の樹脂組成物。
  4.  さらにシリカを含む請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  さらに流動性向上剤を含む請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  請求項1~5のいずれか1項に記載の樹脂組成物の硬化物からなるリフレクター。
  7.  請求項1~5のいずれか1項に記載の樹脂組成物の硬化物からなるリフレクター付きリードフレーム。
  8.  光半導体素子と、前記光半導体素子の周りに設けられ、該光半導体素子からの光を所定方向に反射させるリフレクターとを基板上に有し、
     前記リフレクターの光反射面が請求項1~5のいずれか1項に記載の樹脂組成物の硬化物からなる半導体発光装置。
     
PCT/JP2015/050700 2014-01-14 2015-01-13 樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置 WO2015108043A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580004539.7A CN105916931B (zh) 2014-01-14 2015-01-13 树脂组合物、反射器、带反射器的引线框、及半导体发光装置
US15/111,081 US10454008B2 (en) 2014-01-14 2015-01-13 Resin composition, reflector, lead frame with reflector, and semiconductor light-emitting device
KR1020167021149A KR20160108403A (ko) 2014-01-14 2015-01-13 수지 조성물, 리플렉터, 리플렉터를 갖는 리드 프레임 및 반도체 발광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014004313A JP6311319B2 (ja) 2014-01-14 2014-01-14 樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置
JP2014-004313 2014-01-14

Publications (1)

Publication Number Publication Date
WO2015108043A1 true WO2015108043A1 (ja) 2015-07-23

Family

ID=53542932

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050700 WO2015108043A1 (ja) 2014-01-14 2015-01-13 樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置

Country Status (6)

Country Link
US (1) US10454008B2 (ja)
JP (1) JP6311319B2 (ja)
KR (1) KR20160108403A (ja)
CN (1) CN105916931B (ja)
TW (1) TWI644957B (ja)
WO (1) WO2015108043A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102221601B1 (ko) * 2014-10-17 2021-03-02 엘지이노텍 주식회사 발광 소자 패키지 및 이를 포함하는 발광 모듈
US10763404B2 (en) 2015-10-05 2020-09-01 Maven Optronics Co., Ltd. Light emitting device with beveled reflector and manufacturing method of the same
TWI677114B (zh) * 2015-10-05 2019-11-11 行家光電股份有限公司 具導角反射結構的發光裝置
JP6443429B2 (ja) * 2016-11-30 2018-12-26 日亜化学工業株式会社 パッケージ及びパッケージの製造方法、発光装置及び発光装置の製造方法
JP2020055910A (ja) * 2018-09-28 2020-04-09 日亜化学工業株式会社 樹脂組成物、及び発光装置
TWI692816B (zh) * 2019-05-22 2020-05-01 友達光電股份有限公司 顯示裝置及其製作方法
CN115716959B (zh) * 2022-11-23 2024-03-29 金旸(厦门)新材料科技有限公司 一种低气味聚丙烯-聚酰胺合金材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167635A (ja) * 1999-09-30 2001-06-22 Nippon Unicar Co Ltd 化学架橋ポリエチレン絶縁電力ケーブルの外部半導電層用剥離性半導電性水架橋性樹脂組成物
JP2004010864A (ja) * 2002-06-11 2004-01-15 Nippon Unicar Co Ltd 耐トラッキング性水架橋性樹脂組成物、及びそれからなる絶縁被覆層を持つ電力ケーブル
JP2012094845A (ja) * 2010-09-30 2012-05-17 Dainippon Printing Co Ltd 太陽電池モジュール用封止材及びそれを用いた太陽電池モジュールの製造方法
JP2013532206A (ja) * 2010-06-08 2013-08-15 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー シラングラフト化プロセスの進行中に使用するためのハロゲン化難燃剤系
JP2013166926A (ja) * 2012-01-17 2013-08-29 Dainippon Printing Co Ltd 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
JP2013181123A (ja) * 2012-03-02 2013-09-12 Dainippon Printing Co Ltd リフレクター用樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6017353B2 (ja) * 1978-03-03 1985-05-02 古河電気工業株式会社 ポリオレフイン系樹脂の架橋方法
JP3413626B2 (ja) * 1994-07-22 2003-06-03 日本カーバイド工業株式会社 再帰反射シートの製造方法
EP1227127B1 (en) 1999-07-30 2005-07-06 NOK Corporation Molding material for carbon dioxide
EP1304354B1 (en) * 2000-07-25 2007-01-24 Mitsui Chemicals, Inc. Curable composition and uses thereof
US7452587B2 (en) 2004-08-11 2008-11-18 Toray Industries, Inc. Polyester resin composition for light-reflecting article
JP5176321B2 (ja) * 2004-12-07 2013-04-03 東レ株式会社 膜電極複合体およびその製造方法、ならびに燃料電池
CN1769341A (zh) * 2005-10-18 2006-05-10 贵州省材料技术创新基地 纳米抗老化阻燃聚丙烯树脂组合物
CN101143945A (zh) * 2007-09-04 2008-03-19 上海新上化高分子材料有限公司 彩色耐候性能的硅烷交联聚乙烯塑料及其应用
JP2009292864A (ja) 2008-06-02 2009-12-17 Taihei Kagaku Seihin Kk 照明器具反射体用樹脂組成物、シート状照明器具反射体の製造方法、シート状照明器具反射体、賦形照明器具反射体の製造方法、および賦形照明器具反射体
WO2010037071A1 (en) * 2008-09-29 2010-04-01 E. I. Du Pont De Nemours And Company Polymer-based products having improved solar reflectivity and uv protection
JP5108825B2 (ja) * 2009-04-24 2012-12-26 信越化学工業株式会社 光半導体装置用シリコーン樹脂組成物及び光半導体装置
JP5416629B2 (ja) 2010-03-19 2014-02-12 住友電気工業株式会社 白色樹脂成形体及びled用リフレクタ
CN102176360B (zh) * 2011-02-22 2012-10-10 深圳市长园维安电子有限公司 Ptc热敏电阻及其应用的基材及其制造方法
JP5699329B2 (ja) 2011-02-28 2015-04-08 大日本印刷株式会社 リフレクター用樹脂組成物、リフレクター用樹脂フレーム、リフレクター、及び半導体発光装置
JP5785658B2 (ja) * 2011-04-29 2015-09-30 ヘンケル アイピー アンド ホールディング ゲゼルシャフト ミット ベシュレンクテル ハフツング 接着用途における使用に適した接着剤
US9195971B2 (en) * 2011-07-12 2015-11-24 Salesforce.Com, Inc. Method and system for planning a meeting in a cloud computing environment
WO2013018360A1 (ja) 2011-08-01 2013-02-07 三井化学株式会社 反射材用熱可塑性樹脂組成物、反射板および発光ダイオード素子
JP5919071B2 (ja) 2012-04-06 2016-05-18 三井化学株式会社 反射材用熱可塑性樹脂および反射板
CN103435897A (zh) * 2013-09-16 2013-12-11 黑龙江省润特科技有限公司 微波诱导膨胀阻燃硅烷交联电缆用聚烯烃护套材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001167635A (ja) * 1999-09-30 2001-06-22 Nippon Unicar Co Ltd 化学架橋ポリエチレン絶縁電力ケーブルの外部半導電層用剥離性半導電性水架橋性樹脂組成物
JP2004010864A (ja) * 2002-06-11 2004-01-15 Nippon Unicar Co Ltd 耐トラッキング性水架橋性樹脂組成物、及びそれからなる絶縁被覆層を持つ電力ケーブル
JP2013532206A (ja) * 2010-06-08 2013-08-15 ユニオン カーバイド ケミカルズ アンド プラスティックス テクノロジー エルエルシー シラングラフト化プロセスの進行中に使用するためのハロゲン化難燃剤系
JP2012094845A (ja) * 2010-09-30 2012-05-17 Dainippon Printing Co Ltd 太陽電池モジュール用封止材及びそれを用いた太陽電池モジュールの製造方法
JP2013166926A (ja) * 2012-01-17 2013-08-29 Dainippon Printing Co Ltd 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
JP2013181123A (ja) * 2012-03-02 2013-09-12 Dainippon Printing Co Ltd リフレクター用樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形方法

Also Published As

Publication number Publication date
JP6311319B2 (ja) 2018-04-18
KR20160108403A (ko) 2016-09-19
TWI644957B (zh) 2018-12-21
US20160372645A1 (en) 2016-12-22
CN105916931A (zh) 2016-08-31
JP2015131910A (ja) 2015-07-23
US10454008B2 (en) 2019-10-22
CN105916931B (zh) 2019-07-12
TW201533120A (zh) 2015-09-01

Similar Documents

Publication Publication Date Title
JP6277963B2 (ja) 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
JP6197933B2 (ja) 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
JP6311319B2 (ja) 樹脂組成物、リフレクター、リフレクター付きリードフレーム、及び半導体発光装置
JP2016222761A (ja) 樹脂組成物、リフレクター、リフレクター付きリードフレーム、半導体発光装置、架橋剤用イソシアヌレート化合物、及び架橋剤用グリコールウリル化合物
JP2016166285A (ja) インサート成形用樹脂組成物、成形体、リフレクター、リフレクター付き光半導体素子実装用基板、及び半導体発光装置
JP6277592B2 (ja) リフレクター用電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、成形体の製造方法、及び半導体発光装置の製造方法
WO2016117471A1 (ja) 樹脂組成物、リフレクター、リフレクター付きリードフレーム及び半導体発光装置
JP6102413B2 (ja) 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
WO2016117624A1 (ja) 半導体発光装置、反射体形成用樹脂組成物及びリフレクター付きリードフレーム
JP6292130B2 (ja) 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
JP6155929B2 (ja) 半導体発光装置、半導体発光装置用部品及びそれらの製造方法、並びに反射体及びその製造方法
WO2016017818A1 (ja) リフレクター及び樹脂組成物
JP2017079293A (ja) リフレクター付き光半導体素子実装用基板、半導体発光装置、リフレクター及びリフレクター形成用樹脂組成物
JP6167603B2 (ja) 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、成形体の製造方法、及び半導体発光装置の製造方法
JP2015023099A (ja) 半導体発光装置の製造方法、成形体の製造方法、電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、およびリフレクター
JP6094412B2 (ja) 半導体発光装置の製造方法、成形体の製造方法、電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、およびリフレクター
JP6149457B2 (ja) 光半導体実装用基板、半導体発光装置、及び光半導体実装用基板の製造方法
JP2016035010A (ja) 樹脂組成物、リフレクター、リフレクター付きリードフレーム及び半導体発光装置
JP2016036028A (ja) リフレクター、リフレクター付きリードフレーム、半導体発光装置、及び樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15737478

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20167021149

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15111081

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15737478

Country of ref document: EP

Kind code of ref document: A1