WO2015107810A1 - ノイズフィルタ - Google Patents
ノイズフィルタ Download PDFInfo
- Publication number
- WO2015107810A1 WO2015107810A1 PCT/JP2014/082819 JP2014082819W WO2015107810A1 WO 2015107810 A1 WO2015107810 A1 WO 2015107810A1 JP 2014082819 W JP2014082819 W JP 2014082819W WO 2015107810 A1 WO2015107810 A1 WO 2015107810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- circuit board
- external terminal
- terminal capacitor
- capacitor
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 184
- 239000004020 conductor Substances 0.000 claims abstract description 64
- 230000000694 effects Effects 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 229910000679 solder Inorganic materials 0.000 description 4
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H1/0007—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network of radio frequency interference filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/02—Mountings
- H01G2/06—Mountings specially adapted for mounting on a printed-circuit support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/228—Terminals
- H01G4/232—Terminals electrically connecting two or more layers of a stacked or rolled capacitor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/30—Stacked capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/35—Feed-through capacitors or anti-noise capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/38—Multiple capacitors, i.e. structural combinations of fixed capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/40—Structural combinations of fixed capacitors with other electric elements, the structure mainly consisting of a capacitor, e.g. RC combinations
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0296—Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/115—Via connections; Lands around holes or via connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/18—Printed circuits structurally associated with non-printed electric components
- H05K1/181—Printed circuits structurally associated with non-printed electric components associated with surface mounted components
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H2001/0014—Capacitor filters, i.e. capacitors whose parasitic inductance is of relevance to consider it as filter
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H1/00—Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
- H03H2001/0021—Constructional details
- H03H2001/0085—Multilayer, e.g. LTCC, HTCC, green sheets
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10015—Non-printed capacitor
Definitions
- the present invention relates to a noise filter suitable for use in power supply noise countermeasures.
- a noise filter for power supply in which a two-terminal capacitor or a three-terminal capacitor is connected between a hot line and a ground line (see, for example, Patent Document 1).
- the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a noise filter that has a fail-safe function and can obtain a noise reduction effect even in a high frequency band.
- the present invention provides a chip element body, a through electrode provided in the chip element body, and an interior provided in the chip element body so as to face the through electrode.
- An electrode, a first external terminal and a second external terminal provided on both end faces of the chip element body and electrically connected to the through electrode, and provided on a side surface of the chip element body and electrically connected to the internal electrode
- a noise filter formed by mounting a three-terminal capacitor having a third external terminal connected to a circuit board having a hot-side conductor pattern and a ground-side conductor pattern on the front and back surfaces of the circuit board Are provided with the three-terminal capacitors at positions facing each other, and the first external terminal and the second external terminal of the three-terminal capacitor provided on the surface of the circuit board are connected to the hot-side conductor capacitors.
- One of the first and second ground-side conductor patterns is electrically connected, and the third external terminal of the three-terminal capacitor provided on the back surface of the circuit board includes the hot-side conductor pattern and the ground-side conductor pattern.
- a third external terminal of the three-terminal capacitor provided on the surface of the circuit board a first external terminal of the three-terminal capacitor provided on the back surface of the circuit board, and
- the second external terminal is electrically connected using a via provided in the circuit board, and the three-terminal capacitor provided on the surface of the circuit board and the three-terminal capacitor provided on the back surface of the circuit board.
- the hot-side conductor pattern and the ground-side conductor pattern are electrically connected in series.
- a three-terminal capacitor provided on the surface of the circuit board and a three-terminal capacitor provided on the back surface of the circuit board are electrically connected in series.
- the three-terminal capacitors are provided on the front and back surfaces of the circuit board at positions facing each other, and the three-terminal capacitors provided on the front surface of the circuit board and the back surface of the circuit board.
- a three-terminal capacitor is electrically connected using a via provided on the circuit board.
- two 3-terminal capacitors provided on both sides of the circuit board can be connected by vias serving as connection lines.
- the connection line between the two three-terminal capacitors can be shortened, and the inductance of the connection line can be reduced.
- the noise filter according to the present invention uses a three-terminal capacitor, the inductance inside the capacitor can be reduced as compared with the case where a two-terminal capacitor is used. As a result, the equivalent series inductance can be reduced, and a noise reduction effect can be obtained over a high frequency.
- a plurality of the vias are provided on the circuit board, and a third external terminal of the 3-terminal capacitor provided on the front surface of the circuit board and a first of the 3-terminal capacitor provided on the back surface of the circuit board.
- the third external terminal of the three-terminal capacitor provided on the surface of the circuit board and the second external terminal of the three-terminal capacitor provided on the back surface of the circuit board are different from each other.
- the via is used for electrical connection.
- a plurality of vias are provided on the circuit board, and the three-terminal capacitor provided on the front surface of the circuit board and the three-terminal capacitor provided on the back surface of the circuit board are electrically connected.
- the third external terminal of the front-side three-terminal capacitor and the first external terminal and the second external terminal of the back-side three-terminal capacitor Can be placed close to each other.
- the third external terminal of the 3-terminal capacitor on the front surface side and the 3 on the back surface side are provided.
- FIG. 3 is a schematic cross-sectional view of the noise filter as viewed from the direction of arrows III-III in FIG. 2.
- FIG. 4 is a schematic cross-sectional view of the noise filter as seen from the direction of arrows IV-IV in FIG. 2.
- It is a disassembled perspective view which shows a 3 terminal capacitor
- It is an equivalent circuit diagram which shows a noise filter.
- the 1st Embodiment of this invention and a comparative example it is a characteristic diagram which shows the frequency characteristic of S21. It is a perspective view of the position similar to FIG.
- FIG. 1 which shows the noise filter by the 2nd Embodiment of this invention. It is a schematic cross section of the position similar to FIG. 3 which shows the noise filter by the 2nd Embodiment of this invention. It is a schematic cross section of the position similar to FIG. 3 which shows the noise filter by the modification of this invention. It is a schematic cross section of the position similar to FIG. 3 which shows the noise filter by the other modification of this invention.
- the noise filter 1 includes a circuit board 2, hot-side conductor patterns 3A and 3B, ground-side conductor patterns 5A and 5B, connection electrodes 4A, 4B, 6A and 6B, vias 7A and 7B, three-terminal capacitors 11, 21 and the like. ing.
- the thickness direction of the circuit board 2 is defined as the Z direction
- the horizontal direction and the vertical direction along the surface 2A of the circuit board 2 are defined as the X direction and the Y direction.
- the circuit board 2 is formed in a flat plate shape using an insulating material such as an epoxy resin.
- Two hot-side conductor patterns 3A and 3B and two connection electrodes 4A and 4B are provided on the surface 2A of the circuit board 2.
- the hot-side conductor patterns 3 ⁇ / b> A and 3 ⁇ / b> B extend in the Y direction and are separated from each other in the vicinity of the center portion of the circuit board 2.
- a power supply voltage is supplied to these hot-side conductor patterns 3A and 3B.
- connection electrodes 4A and 4B are located around a portion of the circuit board 2 where the hot side conductor patterns 3A and 3B are separated, and sandwich the hot side conductor patterns 3A and 3B in the X direction. They are arranged on one side and the other side (left side and right side in FIG. 2), respectively.
- the back surface 2B of the circuit board 2 is provided with two ground-side conductor patterns 5A and 5B and two connection electrodes 6A and 6B.
- the ground-side conductor patterns 5A and 5B extend in the Y direction and are separated from each other in the vicinity of the center portion of the circuit board 2.
- the ground side conductor patterns 5A and 5B are located on the circuit board 2 at positions facing the hot side conductor patterns 3A and 3B, and are formed substantially parallel to the hot side conductor patterns 3A and 3B.
- a ground is connected to the ground-side conductor patterns 5A and 5B.
- connection electrodes 6A and 6B are located around the portion of the circuit board 2 where the ground-side conductor patterns 5A and 5B are separated from each other on one side and the other side in the X direction with the ground-side conductor patterns 5A and 5B interposed therebetween. Has been placed. These connection electrodes 6A and 6B are arranged on the circuit board 2 at positions facing the connection electrodes 4A and 4B.
- the circuit board 2 is provided with vias 7A and 7B penetrating in the thickness direction (Z direction) of the circuit board 2.
- the vias 7 ⁇ / b> A and 7 ⁇ / b> B are through vias in which a conductor is formed by plating inside a through hole penetrating the circuit board 2, and have conductivity.
- These vias 7A and 7B include two connection electrodes 4A and 4B provided on the front surface 2A of the circuit board 2 and two connection electrodes 6A and 6B provided on the back surface 2B of the circuit board 2. Connect each one electrically.
- the front surface 2A and the back surface 2B of the circuit board 2 face each other and are substantially orthogonal to each other, and are constituted by three-terminal capacitors 11, 21 (hereinafter referred to as a front-side three-terminal capacitor 11 and a back-side three-terminal capacitor 21) ) Has been implemented.
- the front surface side three-terminal capacitor 11 includes a chip body 12, a through electrode 13, an internal electrode 14, a first external terminal 15, a second external terminal 16, third external terminals 17 and 18, and the like.
- the chip body 12 is configured by stacking, pressing, and firing ceramic green sheets to be dielectric layers 12A to 12F in the thickness direction.
- the dielectric layers 12A to 12F are formed in a substantially rectangular parallelepiped shape using a dielectric material such as barium titanate (BaTiO 3 ) ceramic.
- the through electrodes 13 penetrating the inside of the chip body 12 in the length direction (long side direction) are respectively provided.
- the through electrode 13 has a substantially flat plate shape and extends along the long side of the chip body 12. One end in the length direction of the through electrode 13 is electrically connected to the first external terminal 15, and the other end in the length direction of the through electrode 13 is electrically connected to the second external terminal 16.
- internal electrodes 14 each having a substantially flat plate shape are provided so as to face the through electrodes 13 respectively.
- the internal electrode 14 penetrates the inside of the chip body 12 in the width direction (short side direction) at the center in the length direction, and extends along the length direction of the chip body 12 so as to face the through electrode 13.
- the internal electrode 14 is formed in a substantially cross shape.
- both ends of the internal electrode 14 in the width direction are electrically connected to the third external terminals 17 and 18.
- the through electrode 13 and the internal electrode 14 are formed of, for example, a conductive metal thin film.
- the first external terminal 15 is provided on one end face in the length direction of the chip body 12 and is electrically connected to the through electrode 13.
- the second external terminal 16 is provided on the other end surface in the length direction of the chip body 12 and is electrically connected to the through electrode 13.
- the third external terminals 17 and 18 are provided on side surfaces orthogonal to both end surfaces of the chip body 12 on which the first external terminal 15 and the second external terminal 16 are provided, and are electrically connected to the internal electrode 14. Yes.
- each of the external terminals 15 to 18 is formed by forming a Ni plating layer or the like on a sintered electrode layer made of, for example, a conductive metal.
- a back side 3 terminal capacitor 21 is provided on the back side 2B of the circuit board 2.
- the back side three-terminal capacitor 21 includes a chip body 22 composed of dielectric layers 22A to 22F, a through electrode 23, an internal electrode 24, a first external terminal 25, a second external terminal 26, third external terminals 27 and 28, and the like. It is configured to include.
- the back surface side 3 terminal capacitor 21 is configured in substantially the same manner as the front surface side 3 terminal capacitor 11. Therefore, the chip body 22, the through electrode 23, the internal electrode 24, the first external terminal 25, the second external terminal 26, and the third external terminals 27, 28 of the back side 3 terminal capacitor 21 are connected to the front side 3 terminal capacitor 11.
- the chip body 12, the through electrode 13, the internal electrode 14, the first external terminal 15, the second external terminal 16, and the third external terminals 17 and 18 correspond to the chip body 12, the through electrode 13, the internal electrode 14, respectively. Therefore, detailed description thereof is omitted.
- the number of dielectric layers 12A to 12F, 22A to 22F, the number of through electrodes 13 and 23, and the number of internal electrodes 14 and 24 are not limited to those shown in FIGS. It is set appropriately according to. Further, the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal capacitor 21 do not necessarily have to be the same. For example, when the number of through electrodes 13 and 23 and the number of internal electrodes 14 and 24 are different, electrostatic capacitances different from each other. It may have a capacity.
- the surface side three-terminal capacitor 11 is surface-mounted on the surface 2A of the circuit board 2.
- the first external terminal 15 and the second external terminal 16 are joined to the hot-side conductor patterns 3A and 3B by, for example, solder 8, and the third external terminals 17 and 18 are joined to the connection electrode 4A by, for example, solder 8. , 4B.
- the first external terminal 15 is electrically connected to one hot side conductor pattern 3A
- the second external terminal 16 is electrically connected to the other hot side conductor pattern 3B.
- the two third external terminals 17 and 18 are electrically connected to the connection electrodes 4A and 4B, respectively.
- the back side three-terminal capacitor 21 is surface-mounted on the back side 2B of the circuit board 2.
- the first external terminal 25 and the second external terminal 26 are joined to the connection electrodes 6A and 6B by, for example, the solder 8, and the third external terminals 27 and 28 are grounded by, for example, the solder 8 with the ground-side conductor pattern 5A. , 5B.
- the first external terminal 25 is electrically connected to one connection electrode 6A
- the second external terminal 26 is electrically connected to the other connection electrode 6B.
- the two third external terminals 27 and 28 are electrically connected to the ground side conductor patterns 5A and 5B, respectively. Therefore, the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal capacitor 21 are electrically connected in series between the hot side conductor patterns 3A and 3B and the ground side conductor patterns 5A and 5B.
- the third external terminal 18 of the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal is electrically connected to the second external terminal 26 using different vias 7A and 7B.
- one third external terminal 17 of the front surface side three-terminal capacitor 11 is electrically connected to the upper end of the via 7A via the connection electrode 4A.
- the lower end of the via 7A is electrically connected to the first external terminal 25 of the back side three-terminal capacitor 21 through the connection electrode 6A.
- the other third external terminal 18 of the front surface side three-terminal capacitor 11 is electrically connected to the upper end of the via 7B through the connection electrode 4B.
- the lower end of the via 7B is electrically connected to the second external terminal 26 of the back side three-terminal capacitor 21 through the connection electrode 6B.
- the back surface side 3 terminal capacitor 21 can be arranged on the vertical line of the front surface side 3 terminal capacitor 11, and two 3 terminal capacitors are used by using short vias 7 A and 7 B having a thickness dimension of the circuit board 2. 11 and 21 can be connected in series.
- the noise filter 1 according to the present embodiment is configured as described above, and the operation thereof will be described next.
- the hot line on the power source side is connected to one hot side conductor pattern 3A
- the hot line on the device (not shown) side is connected to the other hot side conductor pattern 3B.
- a ground line is connected to the ground side conductor patterns 5A and 5B.
- the direct current is supplied to one hot side conductor pattern 3A, the first external terminal 15, the through electrode 13, and the second external terminal 16 of the surface side three terminal capacitor 11.
- the other hot side conductor pattern 3B is supplied to each device.
- the hot-side conductor patterns 3A and 3B and the ground-side conductor patterns 5A and 5B are insulated by the three-terminal capacitors 11 and 21, no direct current flows to the ground-side conductor patterns 5A and 5B. Absent.
- the noise currents i ha and i hb are It penetrates into the internal electrode 14 from the through electrode 13 of the surface side three-terminal capacitor 11, branches into two, and flows from the third external terminals 17 and 18 toward the connection electrodes 4A and 4B.
- the noise current i va flowing out from the third external terminal 17 flows as one current path toward the first external terminal 25 of the back side three-terminal capacitor 21 through the connection electrode 4A, the via 7A, and the connection electrode 6A.
- the noise current i vb flowing out from the third external terminal 18 is supplied to the second external terminal 26 of the back side three-terminal capacitor 21 through the connection electrode 4B, the via 7B, and the connection electrode 6B as the other current path. It flows toward.
- the noise currents i va and ivb supplied to the back surface side three-terminal capacitor 21 through the two current paths enter the internal electrode 24 from the through electrode 23 of the back surface side 3 terminal capacitor 21, and again 2 It branches into two and becomes noise currents i ga and i gb and flows out from the third external terminals 27 and 28.
- These two noise currents i ga and i gb flow from the third external terminals 27 and 28 toward the ground-side conductor patterns 5A and 5B.
- FIG. 6 an equivalent circuit of the noise filter 1 is as shown in FIG.
- the hot line (HOT) is connected by the through electrode 13 of the front surface side three-terminal capacitor 11
- the direct current passes through the front surface side three terminal capacitor 11 as it is.
- the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal capacitor 21 are connected in series between the hot line (HOT) and the ground line (GND).
- the noise current is supplied to the back side three-terminal capacitor 21 via the vias 7A and 7B and flows toward the ground line.
- the noise filter 1 can remove the noise current flowing through the hot line.
- the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal capacitor 21 are arranged on both surfaces of the circuit board 2, so that compared with the case where two 3 terminal capacitors are provided only on the surface of the circuit board, The inductance of the line can be reduced.
- the front-side three-terminal capacitor 11 and the rear-side three-terminal capacitor 21 can be connected via the vias 7A and 7B at a short distance of about the thickness dimension of the circuit board 2 without routing the line on the circuit board 2. Because.
- the noise filter 1 uses the three-terminal capacitors 11 and 21, the inductance inside the capacitor can be reduced and the equivalent series inductance can be reduced as compared with the case where the two-terminal capacitors are used.
- the inductance of the through electrodes 13 and 23 works like an inductor of a T-type filter, and the third external terminals 17, 18, 27 and 28 are connected in parallel to both side surfaces of the three-terminal capacitors 11 and 21. As a result, the inductance can be reduced.
- FIG. 7 also shows the frequency characteristics when an existing two-terminal capacitor is connected in series between the hot line and the ground line as a comparative example for comparison with the result of the noise filter 1 according to the embodiment.
- the capacitance of the two-terminal capacitor according to the comparative example and the capacitance of the three-terminal capacitors 11 and 21 according to the embodiment are set to the same value.
- the insertion loss increases, that is, the noise attenuation increases as the frequency increases up to around 10 MHz.
- the insertion loss is reduced, that is, the noise attenuation amount is reduced at around 10 MHz. This is presumably because the equivalent series inductance is affected by the residual inductance inside the capacitor.
- the insertion loss is reduced around 10 MHz, but the insertion loss is generally larger than that of the comparative example.
- the noise reduction effect is improved by about 10 dB compared to the comparative example in a high frequency band of 100 MHz or higher.
- the insertion loss in the high frequency band can be increased compared with the comparative example by shortening the connection line and using the three-terminal capacitors 11 and 21, and the noise is increased over the high frequency. A reduction effect can be obtained.
- the noise filter 1 has the front surface side three-terminal capacitor 11 and the rear surface side three terminal capacitor 21 electrically connected in series.
- the back surface side 3 terminal capacitor 21 causes the hot side conductor patterns 3A and 3B and the ground side conductor patterns 5A and 5B to It is possible to insulate the gap and realize a fail-safe function.
- the front side 3 terminal capacitor 11 can realize the fail-safe function.
- three-terminal capacitors 11 and 21 are provided on the front surface 2 ⁇ / b> A and the back surface 2 ⁇ / b> B of the circuit board 2 at positions facing each other. Are electrically connected using vias 7A and 7B provided on the circuit board 2.
- the two three-terminal capacitors 11 and 21 provided on both surfaces of the circuit board 2 can be connected by the vias 7A and 7B serving as connection lines.
- the connection line between the two three-terminal capacitors 11, 21 can be shortened, and the inductance of the connection line can be reduced. can do.
- the noise filter 1 uses the three-terminal capacitors 11 and 21, the inductance inside the capacitor can be reduced compared to the case where the two-terminal capacitors are used. That is, the three-terminal capacitors 11 and 21 have a larger insertion loss and a greater noise reduction effect than the two-terminal capacitors. As a result, the equivalent series inductance of the noise filter 1 can be reduced, and a noise reduction effect can be obtained over a high frequency.
- the vias 7A and 7B are provided in the circuit board 2 and electrically connect the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal capacitor 21.
- the third external terminal 17 of the front surface side three terminal capacitor 11 and the first external terminal 25 of the rear surface side three terminal capacitor 21 The third external terminal 18 of the front surface side three-terminal capacitor 11 and the second external terminal 26 of the rear surface side three terminal capacitor 21 can be disposed close to each other.
- the vias 7A and 7B at positions corresponding to the first external terminal 25 and the second external terminal 26 of the back surface side 3 terminal capacitor 21, the third external terminal 17 and the back surface of the front surface side 3 terminal capacitor 11 are provided.
- the first external terminal 25 of the side three-terminal capacitor 21 and the third external terminal 18 of the front surface side three terminal capacitor 11 and the second external terminal 26 of the rear surface side three terminal capacitor 21 are easily connected. be able to.
- the two three-terminal capacitors 11 and 21 can be connected in series using the vias 7A and 7B that are as short as the thickness of the circuit board 2, the equivalent series inductance can be reduced.
- the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal capacitor 21 are connected in series using the two vias 7A, 7B, a plurality of current paths can be formed between the 3 terminal capacitors 11, 21. . For this reason, compared with the case where the three-terminal capacitors 11 and 21 are connected in series using a single via, the combined inductance of the two vias 7A and 7B can be reduced. As a result, it is possible to reduce the equivalent series inductance and obtain a noise reduction effect over a high frequency.
- the noise filter 1 an increase in the number of vias 7A and 7B, an insertion of a plane (electrode layer) connected in parallel with the through electrodes 13 and 23 in the inner layer of the circuit board 2, a reduction in the thickness dimension of the circuit board 2, etc.
- the equivalent series inductance between the front surface side 3 terminal capacitor 11 and the back surface side 3 terminal capacitor 21 can be further reduced.
- FIG. 8 and FIG. 9 show a noise filter according to a second embodiment of the present invention.
- a feature of the second embodiment is that a plane electrode is provided in the circuit board. Note that in the second embodiment, the same components as those in the first embodiment described above are denoted by the same reference numerals, and description thereof is omitted.
- the noise filter 31 includes a circuit board 32, hot-side conductor patterns 3A and 3B, ground-side conductor patterns 5A and 5B, connection electrodes 4A, 4B, 6A and 6B, vias 7A and 7B, and three terminals. Capacitors 11 and 21 are provided.
- the circuit board 32 is composed of a multilayer board in which a plane electrode 32C is provided between insulating layers 32A and 32B using an insulating material such as an epoxy resin.
- the plane electrode 32 ⁇ / b> C is formed in a flat plate shape by, for example, a conductive thin film, has an outer dimension covering each of the three-terminal capacitors 11, 21, and is disposed between the three-terminal capacitors 11, 21.
- the plane electrode 32C is connected to a midway position in the thickness direction of the vias 7A and 7B extending through the circuit board 32. Thereby, the vias 7A and 7B are electrically connected by the plane electrode 32C.
- the internal electrodes 14 and 24 are formed in a single flat plate shape.
- the present invention is not limited to this, and may be configured as a noise filter 41 according to the first modification shown in FIG. That is, in the front surface side three-terminal capacitor 42, for example, two internal electrodes 43 are disposed on both ends in the width direction in the same layer, and the two internal electrodes 43 are provided so as not to contact each other. ing.
- one internal electrode 43 is electrically connected to the third external terminal 17, and the other internal electrode 43 is electrically connected to the third external terminal 18.
- the back side three-terminal capacitor 44 includes an internal electrode 45 that is substantially the same as the internal electrode 43. In this case, one internal electrode 45 is electrically connected to the third external terminal 27, and the other internal electrode 45 is electrically connected to the third external terminal 28.
- the internal electrodes 14 and 24 are connected to the two third external terminals 17, 18, 27 and 28 at both ends.
- the present invention is not limited to this, and may be configured as a noise filter 51 according to the second modification shown in FIG. 11, for example. That is, the surface side three-terminal capacitor 52 includes an internal electrode 53 electrically connected to the third external terminal 17 and an internal electrode 54 electrically connected to the third external terminal 18. At this time, the internal electrode 53 is spaced apart from the third external terminal 18 so as not to contact the third external terminal 18. Similarly, the internal electrode 54 is disposed away from the third external terminal 17.
- the internal electrodes 53 and 54 are arranged at different positions in the thickness direction and are alternately provided in the thickness direction.
- the back-side three-terminal capacitor 55 also includes internal electrodes 56 and 57 that are substantially similar to the internal electrodes 53 and 54.
- the internal electrode 56 is electrically connected to the third external terminal 27, and the internal electrode 57 is electrically connected to the third external terminal 28.
- the hot-side conductor patterns 3A and 3B which are hot lines, are electrically connected to the first external terminal 15 and the second external terminal 16 of the surface-side three-terminal capacitor 11.
- the ground-side conductor patterns 5A and 5B which are ground lines, are electrically connected to the third external terminals 27 and 28 of the back-side three-terminal capacitor 21.
- the present invention is not limited to this.
- a ground line is electrically connected to the first external terminal and the second external terminal of the front surface side three-terminal capacitor, and a hot line is connected to the third external terminal of the rear surface side three terminal capacitor. May be configured to be electrically connected.
- the front surface side three-terminal capacitor 11 and the rear surface side three terminal capacitor 21 are arranged on the front surface 2A and the rear surface 2B of the circuit board 2 in a substantially orthogonal state.
- the present invention is not limited to this.
- the front surface side three-terminal capacitor and the rear surface side three terminal capacitor may be arranged on the front surface and the back surface of the circuit board in a substantially parallel state. The same applies to the second embodiment.
- the circuit board 2 is provided with two vias 7A and 7B.
- the present invention is not limited to this.
- the circuit board may have only one via, or three or more vias may be provided to electrically connect the front surface side 3 terminal capacitor and the back surface side 3 terminal capacitor. It is good also as a structure connected to.
- each conductor pattern provided on the circuit board may be arranged so that the front surface side 3 terminal capacitor and the back surface side 3 terminal capacitor are electrically connected in series. The same applies to the second embodiment.
- the third external terminals 17, 18, 27, and 28 of the three-terminal capacitors 11 and 21 are separately provided on the two side surfaces of the chip bodies 12 and 22, respectively. It was. However, the present invention is not limited to this.
- the third external terminals provided on the two side surfaces of the chip body of the three-terminal capacitor are connected to each other to provide one third external terminal that is shared as a whole. May be.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Filters And Equalizers (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
表面側3端子コンデンサ(11)と裏面側3端子コンデンサ(21)とは、互いに対向した位置で、回路基板(2)の表面(2A)と裏面(2B)とに、それぞれ設けられる。表面側3端子コンデンサ(11)の第1外部端子(15)および第2外部端子(16)は、ホット側導体パターン(3A),(3B)に電気的に接続される。裏面側3端子コンデンサ(21)の第3外部端子(27),(28)は、グランド側導体パターン(5A),(5B)に電気的に接続される。表面側3端子コンデンサ(11)の第3外部端子(17),(18)と、裏面側3端子コンデンサ(21)の第1外部端子(25)および第2外部端子(26)とは、ビア(7A),(7B)を用いて電気的に接続される。これにより、表面側3端子コンデンサ(11)と裏面側3端子コンデンサ(21)とは、電気的に直列接続される。
Description
本発明は、電源のノイズ対策に用いて好適なノイズフィルタに関するものである。
一般に、電源用のノイズフィルタとして、ホットラインとグランドラインとの間に2端子コンデンサや3端子コンデンサを接続したものが知られている(例えば、特許文献1参照)。
ところで、特許文献1に記載されたノイズフィルタでは、ホットラインとグランドラインとの間にコンデンサを1個だけ接続しているため、フェールセーフ機能を備えておらず、例えばコンデンサにクラックが入るとホットとグランドとの間が短絡する虞がある。これに対し、ホットラインとグランドラインとの間に複数個のコンデンサを直列接続することによって、フェールセーフ機能を実現することができる。しかしながら、コンデンサの内部にはインダクタンスが生じるのに加え、複数個のコンデンサを接続する接続線路にもインダクタンスが生じる。このため、複数個のコンデンサを直列接続した構成では、これらを十分に考慮しないと、等価直列インダクタンス(ESL)が増加し、高周波帯域でのノイズ低減の性能が低下するという問題がある。
本発明は前述の問題に鑑みなされたものであり、本発明の目的は、フェールセーフ機能を備えると共に、高周波帯域でもノイズ低減効果が得られるノイズフィルタを提供することにある。
(1).上記課題を解決するために、本発明は、チップ素体と、前記チップ素体の内部に設けられた貫通電極と、前記貫通電極に対向するように前記チップ素体の内部に設けられた内部電極と、前記チップ素体の両端面にそれぞれ設けられ前記貫通電極に電気的に接続された第1外部端子および第2外部端子と、前記チップ素体の側面に設けられ前記内部電極に電気的に接続された第3外部端子とを有する3端子コンデンサを、ホット側導体パターンとグランド側導体パターンとを有する回路基板に実装してなるノイズフィルタであって、前記回路基板の表面と裏面とには、互いに対向した位置で前記3端子コンデンサをそれぞれ設け、前記回路基板の表面に設けた前記3端子コンデンサの第1外部端子および第2外部端子には、前記ホット側導体パターンとグランド側導体パターンとのうちいずれか一方を電気的に接続し、前記回路基板の裏面に設けた前記3端子コンデンサの第3外部端子には、前記ホット側導体パターンとグランド側導体パターンとのうちいずれか他方を電気的に接続し、前記回路基板の表面に設けた前記3端子コンデンサの第3外部端子と、前記回路基板の裏面に設けた前記3端子コンデンサの第1外部端子および第2外部端子とは、前記回路基板に設けたビアを用いて電気的に接続し、前記回路基板の表面に設けた前記3端子コンデンサと前記回路基板の裏面に設けた前記3端子コンデンサとを、前記ホット側導体パターンと前記グランド側導体パターンとの間に電気的に直列接続したことを特徴としている。
本発明によれば、ノイズフィルタは、回路基板の表面に設けた3端子コンデンサと回路基板の裏面に設けた3端子コンデンサとを電気的に直列接続している。これにより、例えば、一方の3端子コンデンサが振動等によりクラックを生じて短絡を起こす場合でも、他方の3端子コンデンサによって、ホット側導体パターンとグランド側導体パターンとの間を絶縁することができ、フェールセーフ機能を実現することができる。
また、本発明によるノイズフィルタは、回路基板の表面と裏面とには、互いに対向した位置で各3端子コンデンサをそれぞれ設け、回路基板の表面に設けた3端子コンデンサと回路基板の裏面に設けた3端子コンデンサとを回路基板に設けたビアを用いて電気的に接続している。これにより、回路基板の両面に設けた2個の3端子コンデンサを接続線路となるビアによって接続することができ、例えば2個の3端子コンデンサを回路基板の表面のみに設けた場合に比べて、2個の3端子コンデンサ間の接続線路を短くすることができ、接続線路のインダクタンスを小さくすることができる。これに加えて、本発明によるノイズフィルタは3端子コンデンサを用いるから、2端子コンデンサを用いた場合に比べて、コンデンサ内部でのインダクタンスを低下させることができる。この結果、等価直列インダクタンスを小さくすることができ、高周波に亘ってノイズ低減効果を得ることができる。
(2).本発明では、前記ビアは、前記回路基板に複数個設けられ、前記回路基板の表面に設けた前記3端子コンデンサの第3外部端子と前記回路基板の裏面に設けた前記3端子コンデンサの第1外部端子との間、および、前記回路基板の表面に設けた前記3端子コンデンサの第3外部端子と前記回路基板の裏面に設けた前記3端子コンデンサの第2外部端子との間は、互いに異なる前記ビアを用いて電気的に接続している。
本発明によれば、ビアは回路基板に複数個設けられ、回路基板の表面に設けられた3端子コンデンサと回路基板の裏面に設けられた3端子コンデンサとを電気的に接続している。ここで、例えば2個の3端子コンデンサを互いに略直交した状態で配置することによって、表面側の3端子コンデンサの第3外部端子と裏面側の3端子コンデンサの第1外部端子および第2外部端子とを、互いに近付けて配置することができる。このため、裏面側の3端子コンデンサの第1外部端子および第2外部端子に応じた位置に、複数個のビアを設けることによって、表面側の3端子コンデンサの第3外部端子と裏面側の3端子コンデンサの第1外部端子との間、および、表面側の3端子コンデンサの第3外部端子と裏面側の3端子コンデンサの第2外部端子との間を容易に接続することができる。この結果、回路基板の厚さ寸法程度の短いビアを用いて2個の3端子コンデンサを直列接続することができるから、等価直列インダクタンスを小さくすることができる。
また、複数個のビアを用いて2個の3端子コンデンサを直列接続するから、2個の3端子コンデンサ間に複数の電流経路を形成することができる。このため、単一のビアを用いて2個の3端子コンデンサを直列接続した場合に比べて、複数個のビアによる合成インダクタンスを小さくすることができる。この結果、等価直列インダクタンスを小さくして、高周波に亘ってノイズ低減効果を得ることができる。
以下、本発明の第1の実施の形態によるノイズフィルタについて、図面を参照しつつ詳細に説明する。
まず、図1ないし図7を用いて本発明の第1の実施の形態によるノイズフィルタ1について説明する。図1ないし図4に、本発明の第1の実施の形態によるノイズフィルタ1を示す。ノイズフィルタ1は、回路基板2、ホット側導体パターン3A,3B、グランド側導体パターン5A,5B、接続用電極4A,4B,6A,6B、ビア7A,7B、3端子コンデンサ11,21等を備えている。なお、以下では、回路基板2の厚さ方向をZ方向とし、回路基板2の表面2Aに沿った横方向および縦方向をX方向およびY方向とする。
回路基板2は、例えばエポキシ樹脂等の絶縁性材料を用いて平板状に形成されている。この回路基板2の表面2Aには、2個のホット側導体パターン3A,3Bと、2個の接続用電極4A,4Bとが設けられている。図1および図2に示すように、ホット側導体パターン3A,3Bは、Y方向に向けて延びると共に、回路基板2の中央部付近で互いに離間している。これらのホット側導体パターン3A,3Bには、電源電圧が供給される。
図2に示すように、接続用電極4A,4Bは、回路基板2でホット側導体パターン3A,3Bが離間した部位の周囲に位置して、ホット側導体パターン3A,3Bを挟んでX方向の一側と他側(図2中の左側と右側)にそれぞれ配置されている。
回路基板2の裏面2Bには、2個のグランド側導体パターン5A,5Bと、2個の接続用電極6A,6Bとが設けられている。グランド側導体パターン5A,5Bは、Y方向に向けて延びると共に、回路基板2の中央部付近で互いに離間している。グランド側導体パターン5A,5Bは、回路基板2でホット側導体パターン3A,3Bと対向した部位に位置して、ホット側導体パターン3A,3Bと略平行に形成されている。これらのグランド側導体パターン5A,5Bには、グランドが接続される。
接続用電極6A,6Bは、回路基板2でグランド側導体パターン5A,5Bが離間した部位の周囲に位置して、グランド側導体パターン5A,5Bを挟んでX方向の一側と他側にそれぞれ配置されている。これらの接続用電極6A,6Bは、回路基板2で接続用電極4A,4Bと対向した部位に配置されている。
回路基板2には、回路基板2の厚さ方向(Z方向)に貫通するビア7A,7Bが設けられている。図1に示すように、ビア7A,7Bは、例えば回路基板2を貫通する貫通孔の内側にめっきによって導体を形成した貫通ビアであり、導電性を有する。これらのビア7A,7Bは、回路基板2の表面2Aに設けられた2個の接続用電極4A,4Bと、回路基板2の裏面2Bに設けられた2個の接続用電極6A,6Bとをそれぞれ電気的に接続する。
回路基板2の表面2Aと裏面2Bとには、互いに対向し、略直交した状態で積層セラミックコンデンサからなる3端子コンデンサ11,21(以下、表面側3端子コンデンサ11、裏面側3端子コンデンサ21という)が実装されている。表面側3端子コンデンサ11は、チップ素体12、貫通電極13、内部電極14、第1外部端子15、第2外部端子16、第3外部端子17,18等を含んで構成されている。
チップ素体12は、誘電体層12A~12Fとなるセラミックグリーンシートを厚さ方向に積み重ねてプレスし、焼成することによって構成されている。誘電体層12A~12Fは、例えばチタン酸バリウム(BaTiO3)系セラミック等の誘電体材料を用いて略直方体状に形成されている。
図5に示すように、誘電体層12A,12B間および誘電体層12C,12D間には、チップ素体12の内部を長さ方向(長辺方向)に貫通した貫通電極13がそれぞれ設けられている。この貫通電極13は、略平板状をなしてチップ素体12の長辺に沿って延びている。貫通電極13の長さ方向の一端は、第1外部端子15に電気的に接続され、貫通電極13の長さ方向の他端は、第2外部端子16に電気的に接続されている。
また、誘電体層12B,12C間および誘電体層12D,12E間には、各貫通電極13に対向するように略平板状をなす内部電極14がそれぞれ設けられている。この内部電極14は、長さ方向の中央部でチップ素体12の内部を幅方向(短辺方向)に貫通すると共に、貫通電極13に対向するようにチップ素体12の長さ方向に沿って広がっている。これにより、内部電極14は、略十字状に形成されている。図3に示すように、内部電極14は、幅方向の両端が第3外部端子17,18に電気的に接続されている。ここで、貫通電極13および内部電極14は、例えば導電性金属薄膜によって形成されている。
第1外部端子15は、チップ素体12の長さ方向の一端面に設けられ、貫通電極13と電気的に接続されている。また、第2外部端子16は、チップ素体12の長さ方向の他端面に設けられ、貫通電極13と電気的に接続されている。
第3外部端子17,18は、第1外部端子15および第2外部端子16が設けられたチップ素体12の両端面と直交する側面にそれぞれ設けられ、内部電極14と電気的に接続されている。ここで、各外部端子15~18は、例えば導電性金属からなる焼結電極層上にNiめっき層等を形成されてなるものである。
一方、回路基板2の裏面2Bには裏面側3端子コンデンサ21が設けられている。裏面側3端子コンデンサ21は、誘電体層22A~22Fからなるチップ素体22、貫通電極23、内部電極24、第1外部端子25、第2外部端子26、第3外部端子27,28等を含んで構成されている。
ここで、裏面側3端子コンデンサ21は、表面側3端子コンデンサ11とほぼ同様に構成されている。従って、裏面側3端子コンデンサ21のチップ素体22、貫通電極23、内部電極24、第1外部端子25、第2外部端子26、第3外部端子27,28は、表面側3端子コンデンサ11のチップ素体12、貫通電極13、内部電極14、第1外部端子15、第2外部端子16、第3外部端子17,18にそれぞれ対応する。このため、これらの詳細な説明は省略する。
なお、誘電体層12A~12F,22A~22Fの層数、貫通電極13,23の個数、および、内部電極14,24の個数は、図1ないし図5に示したものに限らず、仕様等に応じて適宜設定されるものである。また、表面側3端子コンデンサ11と裏面側3端子コンデンサ21は、必ずしも同一である必要なく、例えば貫通電極13,23の個数や内部電極14,24の個数が相違することによって、互いに異なる静電容量を有するものでもよい。
次に、回路基板2に対する表面側3端子コンデンサ11と裏面側3端子コンデンサ21との実装状態について説明する。
表面側3端子コンデンサ11は、回路基板2の表面2Aに表面実装される。このとき、第1外部端子15、第2外部端子16は、例えば、はんだ8によってホット側導体パターン3A,3Bに接合され、第3外部端子17,18は、例えば、はんだ8によって接続用電極4A,4Bに接合される。これにより、第1外部端子15は一方のホット側導体パターン3Aに電気的に接続され、第2外部端子16は他方のホット側導体パターン3Bに電気的に接続される。また、2個の第3外部端子17,18は接続用電極4A,4Bにそれぞれ電気的に接続される。
一方、裏面側3端子コンデンサ21は、回路基板2の裏面2Bに表面実装される。このとき、第1外部端子25、第2外部端子26は、例えば、はんだ8によって接続用電極6A,6Bに接合され、第3外部端子27,28は、例えば、はんだ8によってグランド側導体パターン5A,5Bに接合される。これにより、第1外部端子25は一方の接続用電極6Aに電気的に接続され、第2外部端子26は他方の接続用電極6Bに電気的に接続される。また、2個の第3外部端子27,28はグランド側導体パターン5A,5Bにそれぞれ電気的に接続される。従って、表面側3端子コンデンサ11と裏面側3端子コンデンサ21とは、ホット側導体パターン3A,3Bとグランド側導体パターン5A,5Bとの間に電気的に直列接続される。
このとき、表面側3端子コンデンサ11の第3外部端子17と裏面側3端子コンデンサ21の第1外部端子25との間と、表面側3端子コンデンサ11の第3外部端子18と裏面側3端子コンデンサ21の第2外部端子26との間とは、互いに異なるビア7A,7Bを用いて電気的に接続される。具体的には、表面側3端子コンデンサ11の一方の第3外部端子17は、接続用電極4Aを介してビア7Aの上端に電気的に接続される。また、ビア7Aの下端は、接続用電極6Aを介して裏面側3端子コンデンサ21の第1外部端子25に電気的に接続される。
これに対し、表面側3端子コンデンサ11の他方の第3外部端子18は、接続用電極4Bを介してビア7Bの上端に電気的に接続される。また、ビア7Bの下端は、接続用電極6Bを介して裏面側3端子コンデンサ21の第2外部端子26に電気的に接続される。この構成により、裏面側3端子コンデンサ21を表面側3端子コンデンサ11の鉛直線上に配置することができ、回路基板2の厚さ寸法程度の短いビア7A,7Bを用いて2個の3端子コンデンサ11,21を直列接続することができる。
本実施の形態によるノイズフィルタ1は上述のように構成されるものであり、次にその作動について説明する。
例えば、一方のホット側導体パターン3Aに電源側のホットラインを接続し、他方のホット側導体パターン3Bにデバイス(図示せず)側のホットラインを接続する。また、グランド側導体パターン5A,5Bにグランドラインを接続する。これにより、ホット側導体パターン3A,3Bには電源電圧が供給され、グランド側導体パターン5A,5Bはグランド電位に保持される。
そして、ホットラインに電源用の直流電流が供給されると、直流電流は、表面側3端子コンデンサ11の一方のホット側導体パターン3A、第1外部端子15、貫通電極13、第2外部端子16、他方のホット側導体パターン3Bを介して各デバイスに供給される。このとき、ホット側導体パターン3A,3Bとグランド側導体パターン5A,5Bとの間は、3端子コンデンサ11,21によって絶縁されているため、直流電流がグランド側導体パターン5A,5Bに流れることはない。
一方、図1ないし図4に示すように、ホット側導体パターン3A,3Bに高周波のノイズ電流iha,ihb(高周波電流)が供給されると、これらのノイズ電流iha,ihbは、表面側3端子コンデンサ11の貫通電極13から内部電極14に侵入し、2つに分岐して第3外部端子17,18から接続用電極4A,4Bに向けて流れる。第3外部端子17から流出したノイズ電流ivaは、一方の電流経路として、接続用電極4A、ビア7A、接続用電極6Aを通じて裏面側3端子コンデンサ21の第1外部端子25に向けて流れる。これに対し、第3外部端子18から流出したノイズ電流ivbは、他方の電流経路として、接続用電極4B、ビア7B、接続用電極6Bを通じて裏面側3端子コンデンサ21の第2外部端子26に向けて流れる。このように、2つの電流経路を介して裏面側3端子コンデンサ21に供給されたノイズ電流iva,ivbは、裏面側3端子コンデンサ21の貫通電極23から内部電極24に侵入し、再び2つに分岐してノイズ電流iga,igbとなって第3外部端子27,28から流出する。これら2つのノイズ電流iga,igbは、第3外部端子27,28からグランド側導体パターン5A,5Bに向けて流れる。
このとき、ノイズフィルタ1の等価回路は図6に示す通りとなる。図6において、ホットライン(HOT)は、表面側3端子コンデンサ11の貫通電極13によって接続されているから、直流電流は、表面側3端子コンデンサ11の内部をそのまま通過する。これに対し、表面側3端子コンデンサ11および裏面側3端子コンデンサ21は、ホットライン(HOT)とグランドライン(GND)との間に直列接続されている。このため、ノイズ電流は、ビア7A,7Bを介して、裏面側3端子コンデンサ21に供給され、グランドラインに向けて流れていく。これにより、ノイズフィルタ1は、ホットラインを流れるノイズ電流を除去することができる。
以上の構成により、表面側3端子コンデンサ11と裏面側3端子コンデンサ21を回路基板2の両面に配置するので、2個の3端子コンデンサを回路基板の表面のみに設けた場合に比べて、接続線路のインダクタンスを小さくすることができる。これは、回路基板2上で線路を引き回さず、ビア7A,7Bを介して回路基板2の厚さ寸法程度の短い距離で表面側3端子コンデンサ11と裏面側3端子コンデンサ21を接続できるからである。
また、ノイズフィルタ1は3端子コンデンサ11,21を用いているので、2端子コンデンサを用いる場合と比べて、コンデンサ内部でのインダクタンスを低下させ、等価直列インダクタンスを小さくすることができる。これは、貫通電極13,23のインダクタンスはT型フィルタのインダクタのように働き、かつ、第3外部端子17,18,27,28は3端子コンデンサ11,21の側面両端に並列的に接続されるので、その結果インダクタンスを小さくできるからである。
以上の効果を確認するために、実施の形態によるノイズフィルタ1について、挿入損失を表すSパラメータのS21の周波数特性をシミュレーションによって求めた。その結果を図7に示す。図7には、実施の形態によるノイズフィルタ1の結果と対比するために、比較例としてホットラインとグランドラインとの間に既存の2端子コンデンサを直列接続した場合の周波数特性も併せて記載した。なお、比較例による2端子コンデンサの静電容量と、実施の形態による3端子コンデンサ11,21の静電容量とは、同じ値とした。
図7に示すように、比較例の2端子コンデンサでは、10MHz付近までは周波数が高くなるに従って挿入損失が増加、即ちノイズの減衰量が増加している。しかしながら、比較例では、10MHz付近を境に、挿入損失が減少、即ちノイズの減衰量が減少する。これは、コンデンサ内部の残留インダクタンスにより等価直列インダクタンスが影響しているためであると考えられる。
これに対し、本実施の形態によるノイズフィルタ1でも、10MHz付近を境に、挿入損失が減少しているが、比較例に比べて、挿入損失が全体的に大きくなっている。特に、100MHz以上の高周波帯域においてノイズ低減効果は、比較例に比べて10dB程度改善されることが分かる。このように、ノイズフィルタ1では、接続線路の短縮化および3端子コンデンサ11,21を用いることにより、比較例に比べて、高周波帯域での挿入損失を増加させることができ、高周波に亘ってノイズ低減効果を得ることができる。
かくして、第1の実施の形態によれば、ノイズフィルタ1は、表面側3端子コンデンサ11と裏面側3端子コンデンサ21とを電気的に直列接続している。これにより、例えば、表面側3端子コンデンサ11が振動等によりクラックを生じて短絡を起こす場合でも、裏面側3端子コンデンサ21によって、ホット側導体パターン3A,3Bとグランド側導体パターン5A,5Bとの間を絶縁することができ、フェールセーフ機能を実現することができる。同様に、裏面側3端子コンデンサ21が短絡を起こす場合でも、表面側3端子コンデンサ11によってフェールセーフ機能を実現することができる。
また、ノイズフィルタ1は、回路基板2の表面2Aと裏面2Bとには、互いに対向した位置で各3端子コンデンサ11,21をそれぞれ設け、表面側3端子コンデンサ11と裏面側3端子コンデンサ21とを回路基板2に設けたビア7A,7Bを用いて電気的に接続している。これにより、回路基板2の両面に設けた2個の3端子コンデンサ11,21を接続線路となるビア7A,7Bによって接続することができる。このため、例えば2個の3端子コンデンサを回路基板の表面のみに設けた場合に比べて、2個の3端子コンデンサ11,21間の接続線路を短くすることができ、接続線路のインダクタンスを小さくすることができる。これに加えて、ノイズフィルタ1は3端子コンデンサ11,21を用いるから、2端子コンデンサを用いた場合に比べて、コンデンサ内部でのインダクタンスを低下させることができる。即ち、3端子コンデンサ11,21は、2端子コンデンサに比べて挿入損失が大きく、ノイズ低減効果が大きい。この結果、ノイズフィルタ1の等価直列インダクタンスを小さくすることができ、高周波に亘ってノイズ低減効果を得ることができる。
また、第1の実施の形態によれば、ビア7A,7Bは回路基板2に設けられ、表面側3端子コンデンサ11と裏面側3端子コンデンサ21とを電気的に接続している。この場合、2個の3端子コンデンサ11,21を互いに略直交した状態で配置することによって、表面側3端子コンデンサ11の第3外部端子17と裏面側3端子コンデンサ21の第1外部端子25とを近付けて配置することができると共に、表面側3端子コンデンサ11の第3外部端子18と裏面側3端子コンデンサ21の第2外部端子26とを近付けて配置することができる。このため、裏面側3端子コンデンサ21の第1外部端子25および第2外部端子26に応じた位置に、ビア7A,7Bを設けることによって、表面側3端子コンデンサ11の第3外部端子17と裏面側3端子コンデンサ21の第1外部端子25との間、および、表面側3端子コンデンサ11の第3外部端子18と裏面側3端子コンデンサ21の第2外部端子26との間を容易に接続することができる。この結果、回路基板2の厚さ寸法程度の短いビア7A,7Bを用いて2個の3端子コンデンサ11,21を直列接続することができるから、等価直列インダクタンスを小さくすることができる。
また、2個のビア7A,7Bを用いて表面側3端子コンデンサ11と裏面側3端子コンデンサ21とを直列接続するから、3端子コンデンサ11,21間に複数の電流経路を形成することができる。このため、単一のビアを用いて3端子コンデンサ11,21を直列接続した場合に比べて、2個のビア7A,7Bによる合成インダクタンスを小さくすることができる。この結果、等価直列インダクタンスを小さくして、高周波に亘ってノイズ低減効果を得ることができる。
さらに、ノイズフィルタ1では、ビア7A,7Bの個数の増加、回路基板2の内層に貫通電極13,23と並列接続されたプレーン(電極層)の挿入、回路基板2の厚さ寸法の低下等のレイアウトの最適化により、表面側3端子コンデンサ11と裏面側3端子コンデンサ21間の等価直列インダクタンスを、さらに低下させることができる。
次に、図8および図9に、本発明の第2の実施の形態によるノイズフィルタを示す。第2の実施の形態の特徴は、回路基板中にプレーン電極を備えることにある。なお、第2の実施の形態では、前述した第1の実施の形態と同一の構成については同一の符号を付し、その説明は省略する。
第2の実施の形態によるノイズフィルタ31は、回路基板32、ホット側導体パターン3A,3B、グランド側導体パターン5A,5B、接続用電極4A,4B,6A,6B、ビア7A,7B、3端子コンデンサ11,21等を備えている。
回路基板32は、例えばエポキシ樹脂等の絶縁性材料を用いた絶縁層32A,32Bの間に、プレーン電極32Cが設けられた多層基板で構成されている。また、プレーン電極32Cは、例えば導電性薄膜によって平板状に形成され、各3端子コンデンサ11,21を覆う外形寸法を有し、3端子コンデンサ11,21間に配置されている。さらに、プレーン電極32Cは、回路基板32を貫通して延びるビア7A,7Bの厚さ方向の途中位置に接続されている。これにより、ビア7A,7Bはプレーン電極32Cによって電気的に接続されている。
かくして、第2の実施の形態でも、第1の実施の形態とほぼ同様の作用効果を得ることができる。
なお、前記第1,第2の実施の形態では、内部電極14,24は単一の平板状に形成するものとした。しかし、本発明はこれに限らず、例えば図10に示す第1の変形例によるノイズフィルタ41のような構成としてもよい。即ち、表面側3端子コンデンサ42では、例えば2個の内部電極43を同一層で幅方向の両端側にそれぞれ配置すると共に、これら2個の内部電極43は互いに接触しないように離間して設けられている。この場合、一方の内部電極43は第3外部端子17に電気的に接続され、他方の内部電極43は第3外部端子18に電気的に接続されている。さらに、裏面側3端子コンデンサ44も内部電極43とほぼ同様な内部電極45を備えている。この場合、一方の内部電極45は第3外部端子27に電気的に接続され、他方の内部電極45は第3外部端子28に電気的に接続されている。
また、前記第1,第2の実施の形態では、内部電極14,24は、その両端部を2個の第3外部端子17,18,27,28に接続するものとした。しかし、本発明はこれに限らず、例えば図11に示す第2の変形例によるノイズフィルタ51のような構成としてもよい。即ち、表面側3端子コンデンサ52では、第3外部端子17に電気的に接続された内部電極53と、第3外部端子18に電気的に接続された内部電極54とを備える。このとき、内部電極53は、第3外部端子18と接触しないように、第3外部端子18と離間して配置される。同様に、内部電極54は、第3外部端子17から離間して配置される。そして、内部電極53,54は、厚さ方向で異なる位置に配置されると共に、厚さ方向に対して交互に設けられる。さらに、裏面側3端子コンデンサ55も、内部電極53,54とほぼ同様な内部電極56,57を備えている。この場合、内部電極53と同様に、内部電極56は第3外部端子27に電気的に接続され、内部電極57は第3外部端子28に電気的に接続される。
なお、前記第1,第2の実施の形態では、表面側3端子コンデンサ11の第1外部端子15および第2外部端子16にホットラインであるホット側導体パターン3A,3Bを電気的に接続し、裏面側3端子コンデンサ21の第3外部端子27,28にグランドラインであるグランド側導体パターン5A,5Bを電気的に接続する構成とした。しかし、本発明はこれに限らず、例えば、表面側3端子コンデンサの第1外部端子および第2外部端子にグランドラインを電気的に接続し、裏面側3端子コンデンサの第3外部端子にホットラインを電気的に接続する構成としてもよい。
また、前記第1の実施の形態では、表面側3端子コンデンサ11と裏面側3端子コンデンサ21とを略直交した状態で回路基板2の表面2Aと裏面2Bとにそれぞれ配置する構成とした。しかし、本発明はこれに限らず、例えば、表面側3端子コンデンサと裏面側3端子コンデンサとを略平行な状態で、回路基板の表面と裏面とにそれぞれ配置する構成としてもよい。このことは、第2の実施の形態においても同様である。
また、前記第1の実施の形態では、回路基板2にビア7A,7Bを2個設ける構成とした。しかし、本発明はこれに限らず、例えば、回路基板にビアを1個のみ設ける構成としてもよいし、ビアを3個以上設けて、表面側3端子コンデンサと裏面側3端子コンデンサとを電気的に接続する構成としてもよい。その場合、回路基板上に設けた各導体パターンは、表面側3端子コンデンサと裏面側3端子コンデンサが電気的に直列接続するように配置すればよい。このことは、第2の実施の形態においても同様である。
また、前記第1,第2の実施の形態では、3端子コンデンサ11,21の第3外部端子17,18,27,28は、チップ素体12,22の2つの側面にそれぞれ別個に設ける構成とした。しかし、本発明はこれに限らず、例えば、3端子コンデンサのチップ素体の2つの側面に設けた第3外部端子を互いに接続して、全体として共通化した1個の第3外部端子を設けてもよい。
1,31,41,51 ノイズフィルタ
2,32 回路基板
2A 表面
2B 裏面
3A,3B ホット側導体パターン
4A,4B,6A,6B 接続用電極
5A,5B グランド側導体パターン
7A,7B ビア
11,42,52 表面側3端子コンデンサ
12,22 チップ素体
13,23 貫通電極
14,24,43,45,53,54,56,57 内部電極
15,25 第1外部端子
16,26 第2外部端子
17,18,27,28 第3外部端子
21,44,55 裏面側3端子コンデンサ
2,32 回路基板
2A 表面
2B 裏面
3A,3B ホット側導体パターン
4A,4B,6A,6B 接続用電極
5A,5B グランド側導体パターン
7A,7B ビア
11,42,52 表面側3端子コンデンサ
12,22 チップ素体
13,23 貫通電極
14,24,43,45,53,54,56,57 内部電極
15,25 第1外部端子
16,26 第2外部端子
17,18,27,28 第3外部端子
21,44,55 裏面側3端子コンデンサ
Claims (2)
- チップ素体と、前記チップ素体の内部に設けられた貫通電極と、前記貫通電極に対向するように前記チップ素体の内部に設けられた内部電極と、前記チップ素体の両端面にそれぞれ設けられ前記貫通電極に電気的に接続された第1外部端子および第2外部端子と、前記チップ素体の側面に設けられ前記内部電極に電気的に接続された第3外部端子とを有する3端子コンデンサを、ホット側導体パターンとグランド側導体パターンとを有する回路基板に実装してなるノイズフィルタであって、
前記回路基板の表面と裏面とには、互いに対向した位置で前記3端子コンデンサをそれぞれ設け、
前記回路基板の表面に設けた前記3端子コンデンサの第1外部端子および第2外部端子には、前記ホット側導体パターンとグランド側導体パターンとのうちいずれか一方を電気的に接続し、
前記回路基板の裏面に設けた前記3端子コンデンサの第3外部端子には、前記ホット側導体パターンとグランド側導体パターンとのうちいずれか他方を電気的に接続し、
前記回路基板の表面に設けた前記3端子コンデンサの第3外部端子と、前記回路基板の裏面に設けた前記3端子コンデンサの第1外部端子および第2外部端子とは、前記回路基板に設けたビアを用いて電気的に接続し、
前記回路基板の表面に設けた前記3端子コンデンサと前記回路基板の裏面に設けた前記3端子コンデンサとを、前記ホット側導体パターンと前記グランド側導体パターンとの間に電気的に直列接続したことを特徴とするノイズフィルタ。 - 前記ビアは、前記回路基板に複数個設けられ、
前記回路基板の表面に設けた前記3端子コンデンサの第3外部端子と前記回路基板の裏面に設けた前記3端子コンデンサの第1外部端子との間、および、前記回路基板の表面に設けた前記3端子コンデンサの第3外部端子と前記回路基板の裏面に設けた前記3端子コンデンサの第2外部端子との間は、互いに異なる前記ビアを用いて電気的に接続してなる請求項1に記載のノイズフィルタ。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015557736A JP6197882B2 (ja) | 2014-01-17 | 2014-12-11 | ノイズフィルタ |
US15/205,350 US9998084B2 (en) | 2014-01-17 | 2016-07-08 | Noise filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014006690 | 2014-01-17 | ||
JP2014-006690 | 2014-01-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/205,350 Continuation US9998084B2 (en) | 2014-01-17 | 2016-07-08 | Noise filter |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015107810A1 true WO2015107810A1 (ja) | 2015-07-23 |
Family
ID=53542713
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/082819 WO2015107810A1 (ja) | 2014-01-17 | 2014-12-11 | ノイズフィルタ |
Country Status (3)
Country | Link |
---|---|
US (1) | US9998084B2 (ja) |
JP (1) | JP6197882B2 (ja) |
WO (1) | WO2015107810A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109565266A (zh) * | 2016-08-03 | 2019-04-02 | 三菱电机株式会社 | 噪声滤波电路 |
WO2023127380A1 (ja) * | 2021-12-27 | 2023-07-06 | 日立Astemo株式会社 | 電子制御装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6784505B2 (ja) * | 2016-04-14 | 2020-11-11 | 太陽誘電株式会社 | コンデンサ実装構造 |
DE102020104571A1 (de) * | 2020-02-21 | 2021-08-26 | Schaeffler Technologies AG & Co. KG | Leistungsumrichtersystem |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007305642A (ja) * | 2006-05-09 | 2007-11-22 | Murata Mfg Co Ltd | 多層回路基板及び電子装置 |
JP2009032821A (ja) * | 2007-07-25 | 2009-02-12 | Denso Corp | 二端子素子の実装構造 |
JP2011249412A (ja) * | 2010-05-24 | 2011-12-08 | Murata Mfg Co Ltd | 多層配線基板 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10256697A (ja) * | 1997-03-14 | 1998-09-25 | Fujitsu Ltd | チップ型部品の実装構造 |
JP3948321B2 (ja) | 2002-03-26 | 2007-07-25 | 株式会社村田製作所 | 3端子コンデンサの実装構造 |
JP2006319004A (ja) * | 2005-05-10 | 2006-11-24 | Murata Mfg Co Ltd | コンデンサ実装構造及び多層回路基板 |
US20120256704A1 (en) * | 2011-03-01 | 2012-10-11 | Greatbatch Ltd. | Rf filter for an active medical device (amd) for handling high rf power induced in an associated implanted lead from an external rf field |
JP2011146454A (ja) * | 2010-01-13 | 2011-07-28 | Murata Mfg Co Ltd | ノイズ対策構造 |
-
2014
- 2014-12-11 JP JP2015557736A patent/JP6197882B2/ja active Active
- 2014-12-11 WO PCT/JP2014/082819 patent/WO2015107810A1/ja active Application Filing
-
2016
- 2016-07-08 US US15/205,350 patent/US9998084B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007305642A (ja) * | 2006-05-09 | 2007-11-22 | Murata Mfg Co Ltd | 多層回路基板及び電子装置 |
JP2009032821A (ja) * | 2007-07-25 | 2009-02-12 | Denso Corp | 二端子素子の実装構造 |
JP2011249412A (ja) * | 2010-05-24 | 2011-12-08 | Murata Mfg Co Ltd | 多層配線基板 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109565266A (zh) * | 2016-08-03 | 2019-04-02 | 三菱电机株式会社 | 噪声滤波电路 |
CN109565266B (zh) * | 2016-08-03 | 2022-07-08 | 三菱电机株式会社 | 噪声滤波电路 |
WO2023127380A1 (ja) * | 2021-12-27 | 2023-07-06 | 日立Astemo株式会社 | 電子制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015107810A1 (ja) | 2017-03-23 |
US20160322951A1 (en) | 2016-11-03 |
US9998084B2 (en) | 2018-06-12 |
JP6197882B2 (ja) | 2017-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10176927B2 (en) | Composite electronic component | |
US7310217B2 (en) | Monolithic capacitor and mounting structure thereof | |
US8526162B2 (en) | Feedthrough multilayer capacitor | |
KR20080022505A (ko) | 적층 콘덴서 | |
US10707021B2 (en) | Multilayer ceramic electronic component and board having the same | |
KR100936902B1 (ko) | 적층형 관통 콘덴서 어레이 | |
JP4911036B2 (ja) | 積層コンデンサおよびその実装構造 | |
US10930435B2 (en) | Multilayer element and LC filter | |
JP6197882B2 (ja) | ノイズフィルタ | |
US20180226191A1 (en) | Multilayer capacitor and electronic component device | |
JP2008085054A (ja) | 積層コンデンサ | |
KR101051620B1 (ko) | 적층 콘덴서 | |
JP5708245B2 (ja) | 貫通型積層コンデンサ | |
JP6500989B2 (ja) | 回路基板、これを用いたフィルタ回路およびキャパシタンス素子 | |
KR102609148B1 (ko) | 전자 부품 및 그 실장 기판 | |
CN101533713B (zh) | 贯通电容器以及贯通电容器的安装构造体 | |
JP6363444B2 (ja) | 積層型コンデンサ | |
JP6232836B2 (ja) | コンデンサ素子 | |
JP2007005694A (ja) | 積層コンデンサ | |
US10297391B2 (en) | Composite electronic component | |
JP2009038333A (ja) | 貫通型積層コンデンサ | |
KR20180063781A (ko) | 적층 세라믹 전자부품 및 그 실장 기판 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14878755 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015557736 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14878755 Country of ref document: EP Kind code of ref document: A1 |