WO2015104868A1 - 温度センサ - Google Patents

温度センサ Download PDF

Info

Publication number
WO2015104868A1
WO2015104868A1 PCT/JP2014/073930 JP2014073930W WO2015104868A1 WO 2015104868 A1 WO2015104868 A1 WO 2015104868A1 JP 2014073930 W JP2014073930 W JP 2014073930W WO 2015104868 A1 WO2015104868 A1 WO 2015104868A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
thermistor
temperature sensor
circuit board
base
Prior art date
Application number
PCT/JP2014/073930
Other languages
English (en)
French (fr)
Inventor
三浦 忠将
耕市 山田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201490001307.7U priority Critical patent/CN206179618U/zh
Publication of WO2015104868A1 publication Critical patent/WO2015104868A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/01Mounting; Supporting
    • H01C1/012Mounting; Supporting the base extending along and imparting rigidity or reinforcement to the resistive element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/008Thermistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/02Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having positive temperature coefficient
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient

Definitions

  • the present invention relates to a temperature sensor that includes a thermistor element and can be mounted on a circuit board.
  • This temperature sensor includes a flexible tape. On the surface of the flexible tape, two lead wires made of metal foil are extended side by side in parallel. A thermistor element is provided at one end of both lead wires. In addition, a resin coating is applied so as to cover most of both lead wires and the thermistor element. Further, the other ends of both the lead wires are exposed without being coated with a resin so that the temperature sensor can be mounted on the circuit board.
  • the temperature sensor is mounted on a circuit board together with various electronic circuits. Specifically, the other ends of both lead wires are joined to a land electrode formed on the circuit board.
  • the thermistor element is arranged so as to be in direct contact with an object to be temperature-detected. In addition, the thermistor element may be disposed so as to be close to an object or space that is a temperature detection target. When the temperature of the detection target changes, the resistance value of the thermistor element changes. At this time, if power is supplied to the thermistor element, a voltage having a value correlated with the temperature of the detection target appears between the other ends of both lead wires.
  • the temperature sensor is mounted on the circuit board and detects the temperature of the target around it when it is actually used.
  • the temperature sensor may not be easily mounted on the circuit board during manufacture due to the influence of the long flexible tape.
  • an object of the present invention is to provide a temperature sensor that can be easily mounted on a circuit board.
  • one aspect of the present invention is a temperature sensor capable of detecting a temperature at a position away from the surface of a circuit board, and having a first main surface and a second main surface facing each other.
  • a plurality of wiring conductors extending between the first main surface and the second main surface, wherein a plurality of land electrodes formed on the surface, and at least an end portion on the first main surface side
  • a thermistor having a plurality of electrically connectable wiring conductors and a third main surface and a fourth main surface facing each other, wherein the third main surface substantially faces the second main surface.
  • the temperature sensor can be easily mounted on the circuit board.
  • FIG. 4 is a second schematic diagram illustrating a manufacturing process of the temperature sensor of FIG. 1.
  • FIG. 6 is a third schematic diagram illustrating a manufacturing process of the temperature sensor of FIG. 1.
  • FIG. 6 is a fourth schematic diagram showing the manufacturing process of the temperature sensor of FIG. 1. It is a schematic diagram which shows the application example etc. of the temperature sensor of FIG. It is a schematic diagram which shows the problem of the conventional thermistor sensor in detail. It is a perspective view of the finished product of the temperature sensor which concerns on a modification.
  • FIG. 7 is a third schematic diagram illustrating a manufacturing process of the thermistor element in FIG. 6.
  • FIG. 7 is a fourth schematic diagram showing a manufacturing process of the thermistor element in FIG. 6.
  • a temperature sensor 1 according to an embodiment of the present invention will be described with reference to the drawings.
  • an L axis, a W axis, and a T axis shown in some drawings are defined.
  • the L axis, the W axis, and the T axis are orthogonal to each other, and indicate the left-right direction (length direction), the front-rear direction (width direction), and the up-down direction (height direction) of the base 2 and the thermistor element 4.
  • the temperature sensor 1 generally includes a base 2, a first wiring conductor 31, a second wiring conductor 32, and a thermistor element 4.
  • the base 2 is made of an insulating material having relatively high rigidity. Examples of this type of material include materials similar to so-called rigid printed boards (for example, glass epoxy or alumina).
  • a resin material such as PET (polyethylene terephthalate) can be used as the material of the base 2.
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • the base 2 generally has a shape in which two semi-cylindrical grooves are formed in a rectangular parallelepiped block made of the above material.
  • the two semi-cylindrical grooves are formed on two surfaces facing each other in the rectangular parallelepiped block.
  • one semi-cylindrical groove is formed on each of the left side surface and the right side surface facing the L-axis direction.
  • the base 2 has a first main surface M1, a second main surface M2, a first side surface S1, a second side surface S2, a third side surface S3, and a fourth side surface S4.
  • the main surfaces M1 and M2 are the bottom surface and the top surface of the base 2.
  • the main surfaces M1 and M2 are substantially parallel to the LW plane and have substantially the same shape.
  • the main surface M2 substantially overlaps with the main surface M1 in a plan view from the T-axis direction, and is provided away from the main surface M1 in the T-axis positive direction.
  • an alternate long and short dash line A-A ′ connecting the centers of the principal surfaces M1 and M2 is defined as an axis A-A ′.
  • the center of main surface M1, M2 is an intersection of the two diagonal lines which each of main surface M1, M2 has.
  • a plane passing through the axis A-A ′ and substantially parallel to the WT plane is referred to as a longitudinal center plane.
  • a plane passing through the axis A-A ′ and substantially perpendicular to the vertical center plane is referred to as a horizontal center plane.
  • the main surface M1 has two sides opposite to each other in the L-axis direction (that is, the left side and the right side).
  • the left side and the right side have substantially symmetrical shapes with respect to the longitudinal center plane.
  • the center part of the left side and the right side corresponds to the lower ends of the left and right semi-cylindrical grooves and has an arc shape.
  • main surface M2 has the same shape as the main surface M1, a detailed description thereof is refrained.
  • the side surface S1 is the left side surface of the base 2 and shares the side (that is, the left side) on the L axis negative direction side of the main surfaces M1 and M2.
  • the side surface S1 substantially overlaps the left side of the main surfaces M1 and M2 in a plan view (hereinafter referred to as a top view) from the T-axis direction. Therefore, the side surface S1 is a combination of a semi-cylindrical surface that defines the shape of the groove and a rectangular surface that is connected to the front and rear of the semi-cylindrical surface.
  • the side surface S2 is the right side surface of the base 2.
  • the side surface S2 has a shape that is substantially symmetrical to the side surface S1 with respect to the longitudinal center plane. Therefore, the detailed explanation of the side surface S2 is refrained.
  • Side S3 is the front surface of the base 2.
  • the side surface S3 is a substantially rectangular surface parallel to the TL plane, shares the side on the negative side of the W axis (that is, the side on the near side) of the main surfaces M1 and M2, and is on the front side of the side surfaces S1 and S2. Share side edges.
  • Side S4 is the back of the base 2.
  • the side surface S4 has a shape substantially symmetric to the side surface S3 with respect to the lateral center plane. Therefore, the detailed explanation of the side surface S4 is refrained.
  • the wiring conductors 31 and 32 are both made of a conductive material.
  • a typical example of the conductive material is copper.
  • a metal having a low thermal conductivity for example, an alloy of copper and nickel
  • the wiring conductor 31 is formed so as to reach at least the main surface M2 via the side surface S1 from the main surface M1.
  • the wiring conductor 31 illustratively includes a plating portion and a conductor pattern portion.
  • the plating portion is formed on at least the semicylindrical surface of the side surface S1 so as to connect the left sides of the main surfaces M1 and M2.
  • the conductor pattern portion is a land electrode used for mounting the thermistor element 4 described later, and is formed on the main surface M2.
  • the wiring conductor 32 has a substantially symmetric shape with respect to the wiring conductor 31 with respect to the longitudinal center plane. Therefore, a detailed description of the wiring conductor 32 is refrained.
  • the thermistor element 4 is, for example, a multilayer chip thermistor, and includes a thermistor body 41, a first external electrode 42, and a second external electrode 43.
  • the thermistor body 41 includes a plurality of ceramic layers.
  • the plurality of ceramic layers are laminated in the T-axis direction.
  • One internal electrode is provided between the ceramic layers adjacent to each other in the T-axis direction in the plurality of ceramic layers.
  • the thermistor body 41 has a temperature characteristic in which the resistance value greatly changes with changes in ambient temperature.
  • the thermistor body 41 is an NTC thermistor whose resistance value decreases with increasing temperature.
  • NTC thermistors include, for example, two to five oxides selected from the group of transition elements such as manganese (Mn), nickel (Ni), iron (Fe), cobalt (Co) and copper (Cu). It can be produced from an oxide sintered body (ceramic sintered body) mixed and sintered.
  • the thermistor body 41 has a size standardized by, for example, JIS (Japanese Industrial Standard). Further, the thermistor body 41 has a third main surface M3, a fourth main surface M4, a fifth side surface S5, a sixth side surface S6, a seventh side surface S7, and an eighth side surface S8, as shown in the dotted circle in FIG. It has a substantially rectangular parallelepiped shape.
  • the main surfaces M3 and M4 are the bottom surface and the top surface of the thermistor body 41.
  • the side surfaces S5 and S6 are the left side surface and the right side surface of the thermistor body 41.
  • the side surfaces S7 and S8 are the front surface and the back surface of the thermistor body 41.
  • the external electrodes 42 and 43 are, for example, an underlayer mainly composed of silver (Ag), a nickel (Ni) plating layer formed on the underlayer, and a tin (Sn) plating formed on the Ni plating layer. Consists of layers.
  • the external electrode 42 covers, for example, the left end portion of the thermistor body 41. Specifically, in this embodiment, the external electrode 42 covers the left end portions of the main surfaces M3 and M4 and the side surfaces S7 and S8 in addition to the entire side surface S5 of the thermistor body 41.
  • the external electrode 43 covers the right end portion of the thermistor body 41, for example. Specifically, in this embodiment, the external electrode 43 covers the right end portions of the main surfaces M3 and M4 and the side surfaces S7 and S8 in addition to the entire side surface S6 of the thermistor body 41.
  • the external electrode 43 is provided with a predetermined distance in the L-axis direction with respect to the external electrode 42.
  • the thermistor element 4 is fixed to the upper surface of the base 2. Specifically, the bottom surface of the external electrode 42 is joined to the top surface of the land electrode of the wiring conductor 31 and the bottom surface of the external electrode 43 is joined to the top surface of the land electrode of the wiring conductor 32 by solder or the like. As a result, the thermistor body 41 is stacked on the upper surface of the base 2 so that the main surface M3 of the thermistor body 41 substantially faces the main surface M2 of the base 2.
  • the size of the thermistor body 41 is not particularly limited, but in the present embodiment, the thermistor body 41 has a size standardized by JIS. For example, if the size of the thermistor body 41 is 0603, the dimension in the L-axis direction (that is, L dimension) is 0.6 mm, and the dimension in the W-axis direction (that is, W dimension) is 0.3 mm. Further, the dimension in the T-axis direction (that is, the T dimension) is not defined by the JIS standard, but is, for example, 0.15 mm.
  • the L dimension, the W dimension, and the T dimension are all design target values, and are not necessarily 0.6 mm, 0.3 mm, and 0.15 mm. That is, the L dimension, the W dimension, and the T dimension all have tolerances.
  • the size of the base 2 is not particularly limited, but is appropriately determined from the following viewpoints.
  • the L dimension and the W dimension of the base 2 are appropriately determined in consideration of restrictions on the manufacturing method in addition to the L dimension and the W dimension of the thermistor body 41.
  • a mounter or the like disposes a number of thermistor elements 4 in a matrix on the mother substrate 21, and then a dicer or the like cuts the mother substrate 21 to complete each temperature sensor 1 (FIG. 3A to FIG. 3). (See FIG. 3D).
  • the L dimension and W dimension of the base 2 are larger than the L dimension and W dimension of the thermistor body 41.
  • the T dimension of the base 2 is appropriately determined from the following viewpoints.
  • the temperature sensor 1 is mounted on the main surface of the circuit board 54 of the electronic device 5 (for example, a smartphone or a tablet terminal) during actual use (see FIG. 4). Then, for example, the temperature sensor 1 detects the spatial temperature at a position separated by a distance d in the normal direction (that is, the T-axis direction) with respect to the main surface of the circuit board 54.
  • the spatial position to be detected by the temperature sensor 1 is predetermined as a specification by the designer of the electronic device 1.
  • the T dimension of the base 2 is determined so that the distance D from the main surface M1 to the main surface M4 is substantially equal to the distance d.
  • the manufacturing process of the temperature sensor 1 generally includes a manufacturing process of the thermistor element 4 and a mounting process of the thermistor element 4 on the base 2. Hereinafter, each process is demonstrated in order.
  • the manufacturing process of the thermistor element 4 includes the following steps (A-1) to (A-3).
  • This ceramic raw material is put into a ball mill containing a grinding medium such as zirconia and sufficiently wet-ground.
  • the ground ceramic raw material is calcined at a temperature of about 760 ° C. for about 2 hours, thereby obtaining a ceramic powder.
  • this ceramic powder is wet mixed with a predetermined amount of an organic binder, thereby obtaining a slurry. This slurry is formed by a doctor blade method or the like, thereby obtaining a ceramic green sheet.
  • the ceramic green sheet obtained in the step (A-1) is an internal electrode paste mainly composed of an alloy of silver (Ag) and palladium (Pd), and the pattern of the internal electrode is a screen.
  • Printed Next, after a plurality of pattern-printed ceramic green sheets are laminated, a ceramic green sheet without a pattern is pressure-bonded to the upper and lower surfaces. Thereby, an unbaked laminated body is obtained.
  • the unfired laminate is cut into a predetermined size and then accommodated in a zirconia cage. Then, the binder removal process is performed on the laminated body in the basket at a temperature of about 350 ° C. for about 2 hours.
  • the laminated body that has been subjected to the binder removal treatment is subjected to a firing treatment at a predetermined temperature (for example, 1100 ° C. to 1175 ° C.). Thereby, the thermistor body 41 is obtained.
  • A-3 An external electrode paste mainly composed of Ag is applied and baked on both the left and right end surfaces of the thermistor body 41 obtained in the above step (A-2). A base electrode is formed. Thereafter, an Ni plating layer is formed on each base electrode by electrolytic plating, and an Sn plating layer is formed on each Ni plating layer.
  • the process of mounting the thermistor element 4 on the base 2 includes processes (B-1) to (B-3).
  • a large mother board 21 to be the base 2 is prepared. Since the thickness of the mother substrate 21 is the T dimension of the base 2, the thickness of the mother substrate 21 is appropriately determined based on the above viewpoint, and is, for example, any one of 180 ⁇ m, 680 ⁇ m, 1180 ⁇ m, 1680 ⁇ m, and 2180 ⁇ m.
  • the mother board 21 is assumed to be a double-sided copper-clad laminate, for example.
  • a large number of wiring patterns 33 to be the wiring conductors 31 and 32 are formed on the mother substrate 21. Specifically, a large number of land electrode conductor patterns are formed, for example, by etching.
  • This conductor pattern is formed in a matrix in both the L-axis and W-axis directions. Thereafter, a through-hole conductor is formed between the two conductor patterns adjacent in the L-axis direction by, for example, copper plating. As a result, a large number of wiring patterns 33 are formed.
  • the mother substrate 21 is cut by a dicer or the like. More specifically, the mother substrate 21 passes through the center of each through hole and is cut on each surface substantially parallel to the WT plane, and further passes through the centers of two wiring patterns 33 adjacent in the W-axis direction. And it is cut at each surface substantially parallel to the TL plane. Each cut surface is indicated by a broken line in FIG. 3D.
  • thermosensor 1 As shown in FIG. 4, the temperature sensor 1 as described above is mounted on the main surface of the circuit board 54 provided in the electronic device 5, and is located at a position away from the main surface by a distance d in the T-axis direction. Detect space temperature.
  • the process of mounting the temperature sensor 1 on the electronic device 5 will be described with reference to FIG.
  • the electronic device 5 includes a housing (in other words, an exterior body) 51.
  • the housing 51 includes an exterior case 52 that is on the back side when the user is used, and an exterior cover 53 that is the front side when the user is used.
  • a circuit board 54 on which various electronic circuits are mounted is accommodated in the exterior case 52.
  • the main surface of the circuit board 54 faces the inner surface of the outer case 52 via a gap (that is, an air layer).
  • a liquid crystal display is attached to the exterior cover 53.
  • the temperature sensor 1 is mounted on the circuit board 54 by the same method as in the step (B-2).
  • the circuit board 54 is accommodated and fixed inside the outer case 52 so that the main surface of the circuit board 54 and the inner surface of the outer case 52 face each other.
  • the exterior cover 53 is attached so as to close the internal space of the exterior case 52, and the electronic device 5 is completed as shown in the bottom row in FIG.
  • the temperature sensor 1 detects the space temperature between the circuit board 54 and the outer case 52 during the operation of the electronic device 5.
  • FIG. 5 is a schematic diagram showing a process for attaching a conventional temperature sensor to an electronic device.
  • components corresponding to the devices and configurations shown in FIG. 4 are given the same reference numerals, and descriptions thereof are omitted.
  • the conventional temperature sensor 101 includes the flexible tape 102 as described in the section “Prior art”. On the surface of the flexible tape 102, two lead wires are extended. A thermistor element 103 is provided at one end of both lead wires. Further, the other end 104 of both lead wires is exposed so as to be electrically connected to the circuit board 54 without being coated with resin.
  • the temperature sensor 101 is mounted in the electronic device 5 as follows. As shown in the uppermost stage of FIG. 5, the temperature sensor 101 is mounted on the outer case 52 and the circuit board 54 manually. Specifically, the thermistor element 103 is arranged in the vicinity of the detection target. Further, the other end 104 of both the lead wires is joined to a land electrode on the main surface of the circuit board 54 with solder or the like.
  • the circuit board 54 is accommodated and fixed inside the outer case 52 so that the main surface of the circuit board 54 and the inner surface of the outer case 52 face each other.
  • the exterior cover 53 is attached so as to close the internal space of the exterior case 52, and the electronic device 5 is completed as shown in the bottom row in FIG. In this state, the thermistor element 103 detects the housing temperature during the operation of the electronic device 5.
  • the thermistor element 103 and the other end 104 of both lead wires are close to each other, but the circuit board 54 is manually housed inside the outer case 52.
  • the flexible tape 102 needs to be long enough. As a result, an extra portion is generated in the flexible tape 102, and this portion may have to be pushed into a narrow space.
  • the present temperature sensor 1 it is possible to easily mount it on the circuit board 54 at the time of manufacturing the electronic device 5 or the like by the action of the characteristic base 2.
  • the base 2 has high rigidity unlike the flexible tape 102 and the height in the T-axis direction is adjusted in advance based on the specifications of the electronic device 5.
  • the wiring conductors 31 and 32 are formed on the side surfaces S3 and S4 of the highly rigid base 2 so as to linearly connect the thermistor element 4 and the circuit board 54. Therefore, since the wiring conductors 31 and 32 are neither long nor bent, the temperature sensor 1 can be easily mounted on the circuit board 54 when the electronic device 5 or the like is manufactured.
  • the thermistor element 4 is mounted on the base 2. Therefore, even when the temperature sensor 1 detects the temperature at a position away from the surface of the circuit board 54, the volume of the thermistor element 4 can be reduced by adjusting the height of the base 2. Become. Thereby, since the heat capacity of the thermistor element 4 becomes small, the thermistor element 4 can react quickly to changes in the ambient temperature.
  • a heat generating component such as a CPU and a power amplifier
  • the thermistor element 4 can be thermally isolated from these heat generating components by interposing the base 2. In this way, the thermistor element 4 can detect the target temperature more accurately.
  • the thermistor body 41 is an NTC thermistor.
  • the present invention is not limited to this, and the thermistor body 41 may be a PTC thermistor.
  • the thermistor body 41 is typically made of a ceramic sintered body in which a predetermined amount of rare earth is mixed with barium titanate (BaTiO 3 ) and sintered.
  • the thermistor element 4 is described as a multilayer chip thermistor. However, the present invention is not limited to this, and the thermistor element 4 may be a single plate type chip thermistor.
  • the thermistor body 41 is not limited to the 0603 size, and may be a 3225 size, a 3216 size, a 2012 size, a 1608 size, a 1005 size, or a 0402 size. Regarding these sizes, L dimension and the like are as described in Table 1 below.
  • step (A-3) the external electrodes 42 and 43 were formed by Ag baking and electrolytic plating.
  • the present invention is not limited to this, and it may be formed by sputtering or vacuum deposition.
  • a temperature sensor 1a according to a modification of the above embodiment will be described with reference to FIGS. 6 and 7, the temperature sensor 1a is different from the temperature sensor 1 shown in FIG. 1 and the like in that the thermistor element 4 is replaced with the thermistor element 4a. Other than that, there is no difference between the two temperature sensors 1, 1a. Therefore, in FIG. 6 and FIG. 7, the same reference numerals are assigned to the components corresponding to those shown in FIG. Hereinafter, a configuration example of the thermistor element 4a will be described in detail.
  • the thermistor element 4a includes a chip thermistor 44a, a protective member 45a, a first electrode 46a, and a second electrode 47a.
  • a protective member 45a is shown in FIG. 6 for the thermistor element 4a, and the chip thermistor 44a and the electrodes 46a and 47a are shown only in FIG.
  • the chip thermistor 44a has the same configuration as the thermistor element 4 of the above embodiment. Therefore, a detailed description of the chip thermistor 44a is refrained.
  • the protective member 45a is made of a resin material having electrical insulation properties, such as an epoxy resin.
  • a resin material having electrical insulation properties such as an epoxy resin.
  • a phenol resin, a polyimide resin, or the like can be used as the resin material.
  • the protective member 45a covers at least the entire region on the main surface M4 side of the chip thermistor 44a. It should be noted that the protective member 45a covers not only the main surface M4 side of the thermistor body included in the chip thermistor 44a but also the main surface M4 side of both external electrodes. More preferably, the protection member 45a covers the entire area excluding the main surface M3 on the peripheral surface of the chip thermistor 44a. By providing such a protection member 45a, the thermistor element 4a can be brought into direct contact with a conductive detection target (for example, a metal casing included in the electronic device).
  • a conductive detection target for example, a metal casing included in the electronic device.
  • the electrodes 46a and 47a are formed on the bottom surface of one external electrode and the other external electrode of the chip thermistor 44a, and are used for mounting on the surface of the circuit board.
  • the electrodes 46a and 47a include a Sn plating layer, a Ni plating layer, a Cu plating layer, and a copper foil.
  • the Sn plating layer is on the bottom surface of each external electrode
  • each Ni plating layer is on the bottom surface of the corresponding Sn plating layer
  • each Cu plating layer is on the bottom surface of the corresponding Ni plating layer
  • each copper foil is the corresponding Cu plating. Formed on the bottom of the layer in direct contact.
  • a mother copper foil 48 is prepared.
  • the thickness that is, T dimension
  • the L dimension and the W dimension are as large as possible in order to produce a large amount of thermistor elements 4a collectively.
  • a dry film resist (not shown) is stuck on the main surface of the prepared mother copper foil 48 by a laminator. Thereafter, openings are formed in the dry film resist at positions corresponding to the electrodes 46a and 47a of the plurality of thermistor elements 4a by exposure and development.
  • Cu, Sn, and Ni are sequentially plated in this order by electrolytic plating. Thereby, the part which should become electrode 46a, 47a is formed.
  • each external electrode of the chip thermistor 44a is placed in contact with the corresponding portion using a mounter or the like.
  • the chip thermistors 44a are arranged so as to be aligned at equal intervals in the L-axis direction and the W-axis direction, respectively.
  • a reflow process is performed on the mother copper foil 48 on which the chip thermistor 44a is placed. As a result, electrodes 46a and 47a are formed at both end portions on the main surface M3 side of the chip thermistor 44a.
  • an uncured resin sheet 49 made of, for example, a thermosetting epoxy resin is provided on each chip thermistor 44a. A predetermined number of sheets are stacked so as to cover.
  • the uncured resin sheet 49 has a thickness (that is, a T dimension) of, for example, 100 ⁇ m.
  • the L dimension and the W dimension are substantially the same as each of the mother copper foils 48.
  • These uncured resin sheets 49 are pressurized and heat-treated by a vacuum thermal press. Specifically, after evacuation is performed at a temperature of about 130 ° C. for about 2 minutes, a pressure of about 5 MP is applied to the uncured resin sheet 49 by a flat press die.
  • the copper constituting the lowermost layer of the electrodes 46a and 47a is formed on each external electrode of the chip thermistor 44a by a method such as etching on the mother copper foil 48. A foil layer is formed.
  • the resin sheet 49 is cut by a dicer or the like. More specifically, the resin sheet 49 passes through the centers of two chip thermistors 44a adjacent to each other in the L-axis direction and is cut on each surface substantially parallel to the WT plane, and is further adjacent to the two in the W-axis direction. Each chip thermistor 44a is cut at each surface passing through the center of the thermistor 44a and substantially parallel to the TL plane. In addition, each cut surface is shown with the dashed-dotted line in FIG. 8D. Further, from the viewpoint of clarifying the cut surface, the illustration of most of the chip thermistors 44a is omitted.
  • the temperature sensor according to the present invention can be easily mounted on a circuit board and is suitable for electronic devices and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Thermistors And Varistors (AREA)

Abstract

 温度センサ(1)は、回路基板の表面から離れた位置の温度を検出するために、互いに対向する第一主面(M1)および第二主面(M2)を有する基台(2)と、両主面(M1,M2)の間に形成された複数の配線導体であって、表面に形成された複数のランド電極と主面(M1)側の端部が電気的に接続可能な複数の配線導体(31,32)と、互いに対向する第三主面(M3)および第四主面(M4)を有しており、主面(M3)が主面(M2)に実質的に面するように基台(2)に固定されるサーミスタ(4)と、サーミスタ(4)に形成された複数の電極(42,43)であって、複数の配線導体(31,32)における主面(M2)側の端部と電気的に接続可能な複数の電極(42,43)と、を備える。

Description

温度センサ
 本発明は、サーミスタ素子を備えており、回路基板上に実装可能な温度センサに関する。
 従来、この種の温度センサとしては、例えば、下記の特許文献1に記載されたサーミスタセンサがある。この温度センサは可撓性テープを備えている。可撓性テープの表面には、金属箔よりなる二条のリード線が平行に横並びで延設されている。両リード線の一端にはサーミスタ素子が設けられている。また、両リード線の大部分と、サーミスタ素子とを覆うように樹脂コーティングが施されている。また、両リード線の他端は、温度センサを回路基板上に実装可能にすべく、樹脂コーティングが施されることなく露出している。
 温度センサは、種々の電子回路と共に回路基板上に実装される。具体的には、両リード線の他端は、回路基板上に形成されたランド電極に接合される。そして、サーミスタ素子は、温度検知の対象となる物に直接接するように配置される。他にも、このサーミスタ素子は、温度検知の対象となる物や空間に近接するように配置される場合もある。かかる検知対象の温度が変化すると、サーミスタ素子の抵抗値が変化する。この時、サーミスタ素子に電力供給が行われていると、両リード線の他端間には、検知対象の温度に相関する値の電圧が現れる。
特開平08-068699号公報
 温度センサは、回路基板上に実装され、実使用時には、自身の周囲に存在する対象の温度を検知する。しかし、回路基板の周囲に十分な空間が存在しない場合がある。この状況下においては、長尺の可撓性テープの影響で、製造時に温度センサを回路基板に容易に実装できないことがある、という問題点があった。
 それゆえに、本発明の目的は、回路基板上に容易に実装可能な温度センサを提供することである。
 上記目的を達成するために、本発明一局面は、回路基板の表面から離れた位置の温度を検出可能な温度センサであって、互いに対向する第一主面および第二主面を有する基台と、前記第一主面および前記第二主面の間に延在する複数の配線導体であって、前記表面に形成された複数のランド電極と、少なくとも前記第一主面側の端部が電気的に接続可能な複数の配線導体と、互いに対向する第三主面および第四主面を有するサーミスタであって、前記第三主面が前記第二主面に実質的に面するように前記基台に固定されるサーミスタと、前記サーミスタに形成された複数の電極であって、前記複数の配線導体における前記第二主面側の端部と電気的に接続可能な複数の電極と、を備える。
 上記局面によれば、温度センサを回路基板上に容易に実装可能となる。
本発明の一実施形態に係る温度センサの完成品の斜視図である。 図1の温度センサの分解斜視図である。 図1の温度センサの製造工程を示す第一の模式図である。 図1の温度センサの製造工程を示す第二の模式図である。 図1の温度センサの製造工程を示す第三の模式図である。 図1の温度センサの製造工程を示す第四の模式図である。 図1の温度センサの応用例等を示す模式図である。 従来のサーミスタセンサの問題点を詳細に示す模式図である。 変形例に係る温度センサの完成品の斜視図である。 図6の温度センサの分解斜視図である。 図6のサーミスタ素子の製造工程を示す第一の模式図である。 図6のサーミスタ素子の製造工程を示す第二の模式図である。 図6のサーミスタ素子の製造工程を示す第三の模式図である。 図6のサーミスタ素子の製造工程を示す第四の模式図である。
《実施形態》
 以下、図面を参照して、本発明の一実施形態に係る温度センサ1を説明する。その説明に先立ち、いくつかの図面に示すL軸、W軸、T軸を定義する。L軸、W軸およびT軸は、互いに直交しており、基台2およびサーミスタ素子4の左右方向(長さ方向)、前後方向(幅方向)および上下方向(高さ方向)を示す。
《温度センサ1の基本構成》
 図1,図2に示すように、温度センサ1は、大略的には、基台2と、第一配線導体31と、第二配線導体32と、サーミスタ素子4と、を備える。
 基台2は、相対的に高い剛性を有する絶縁性材料で作製される。この種の材料としては、いわゆるリジッドなプリント基板と同様の材料(例えば、ガラスエポキシまたはアルミナ等)が例示される。他にも、基台2の材料としては、PET(ポリエチレンテレフタレート)等の樹脂材料を用いることも可能である。ここで、サーミスタ素子4による温度検知の対象以外の熱(例えば、回路基板54(図4を参照)からの熱)をサーミスタ素子4に伝えないようするため、基台2の材料としては、相対的に低い熱伝導率を有するPET等を使用することが、より好ましい。
 また、基台2は、大略的には、上記材料で製作された直方体ブロックに二つの半円筒溝を形成したような形状を有する。ここで、二つの半円筒溝は、直方体ブロックにおいて互いに相対向する二つの面に形成される。本実施形態では、例示的に、L軸方向に相対する左側面および右側面に一つずつ半円筒面溝が形成される。以下、基台2の一構成例について詳説する。
 本実施形態では、基台2は、第一主面M1、第二主面M2、第一側面S1、第二側面S2、第三側面S3および第四側面S4を有する。
 主面M1,M2は、基台2の底面および上面である。この主面M1,M2はそれぞれLW平面に略平行であり、互いに略同一形状を有する。また、主面M2は、T軸方向からの平面視で主面M1と実質的に重なり合っており、主面M1に対してT軸正方向に離れて設けられている。ここで、主面M1,M2それぞれの中心同士を結ぶ一点鎖線A-A’を軸A-A’と定義する。なお、主面M1,M2の中心とは、主面M1,M2のそれぞれが有する二つの対角線の交点である。また、軸A-A’を通過しかつWT平面と略平行な面を縦中心面という。また、軸A-A’を通過しかつ縦中心面と略直交する面を横中心面という。
 主面M1はL軸方向に相対向する二辺(つまり、左辺と右辺)を有する。左辺および右辺は、縦中心面を基準として互いに略対称な形状を有する。また、左辺および右辺の中央部分は、左側および右側の半円筒溝の下端に相当し、円弧形状を有する。
 主面M2は主面M1と同様の形状を有するため、その詳説を控える。
 側面S1は、基台2の左側面であって、主面M1,M2が有するL軸負方向側の辺(つまり左辺)を共有する。側面S1は、T軸方向からの平面視(以下、上面視という)で、主面M1,M2の左辺と実質的に重なり合っている。したがって、側面S1は、溝の形状を規定する半円筒面と、半円筒面の前後に一つずつ接続された長方形状の面との組み合わせとなる。
 側面S2は、基台2の右側面である。この側面S2は、縦中心面を基準として側面S1と略対称な形状を有する。それゆえ、側面S2の詳説を控える。
 側面S3は基台2の前面である。この側面S3は、TL平面に平行な略長方形状の面であり、主面M1,M2が有するW軸負方向側の辺(つまり手前側の辺)を共有すると共に、側面S1,S2における手前側の辺を共有する。
 側面S4は基台2の背面である。側面S4は、横中心面を基準として側面S3と略対称な形状を有する。それゆえ、側面S4の詳説を控える。
 配線導体31,32はいずれも導電性材料で形成される。導電性材料としては銅等が典型的である。しかし、サーミスタ素子4への不所望な熱伝導を抑えるために、低熱伝導率の金属(例えば、銅とニッケルとの合金)を第一配線導体31に使用することが好ましい。
 配線導体31は、少なくとも、主面M1上から側面S1を経由して主面M2上に至るように形成される。本実施形態では、例示的に、配線導体31は、めっき部と、導体パターン部と、を含んでいる。めっき部は、少なくとも側面S1の半円筒面上に、主面M1,M2の左辺同士を繋ぐように形成される。また、導体パターン部は、後述のサーミスタ素子4の実装に使用されるランド電極であって、主面M2上に形成される。
 配線導体32は、縦中心面を基準として配線導体31と略対称な形状を有する。それゆえ、配線導体32の詳説を控える。
 サーミスタ素子4は、例えば積層型のチップサーミスタであって、サーミスタ本体41と、第一外部電極42と、第二外部電極43と、を含んでいる。
 サーミスタ本体41は複数のセラミック層を含む。ここで、複数のセラミック層はT軸方向に積層される。また、複数のセラミック層においてT軸方向に隣り合うセラミック層の間には、内部電極が一つずつ設けられている。
 また、サーミスタ本体41は、周囲温度の変化に対して抵抗値が大きく変化する温度特性を有する。本実施形態では、サーミスタ本体41は、温度上昇と共に抵抗値が小さくなるNTCサーミスタであるとする。かかるNTCサーミスタは、例えば、マンガン(Mn)、ニッケル(Ni)、鉄(Fe)、コバルト(Co)および銅(Cu)等の遷移元素のグループから選ばれた二種から五種の酸化物を混合し焼結した酸化物焼結体(セラミック焼結体)から作製可能である。
 また、サーミスタ本体41は、例えばJIS(日本工業規格)にて規格化されたサイズを有する。また、サーミスタ本体41は、図2中の点線円内に示すように、第三主面M3、第四主面M4、第五側面S5、第六側面S6、第七側面S7および第八側面S8からなる略直方体形状を有する。主面M3,M4はサーミスタ本体41の底面および上面である。また、側面S5,S6はサーミスタ本体41の左側面および右側面である。側面S7,S8はサーミスタ本体41の前面および背面である。
 外部電極42,43は、例えば銀(Ag)を主成分とする下地層と、下地層上に形成されたニッケル(Ni)のめっき層と、Niめっき層上に形成されたスズ(Sn)めっき層とからなる。
 外部電極42は、例えばサーミスタ本体41の左端部を覆っている。具体的には、外部電極42は、本実施形態では、サーミスタ本体41の側面S5全域に加え、主面M3,M4および側面S7,S8それぞれの左端部分を覆うものとする。
 外部電極43は、例えばサーミスタ本体41の右端部を覆っている。具体的には、外部電極43は、本実施形態では、サーミスタ本体41の側面S6全域に加え、主面M3,M4および側面S7,S8それぞれの右端部分を覆う。この外部電極43は、外部電極42を基準としてL軸方向に所定距離だけ離して設けられている。
 サーミスタ素子4は基台2の上面に固定される。具体的には、外部電極42の底面が配線導体31のランド電極の上面に、また、外部電極43の底面が配線導体32のランド電極の上面に、はんだ等により接合される。その結果、サーミスタ本体41の主面M3が基台2の主面M2に実質的に面するように、サーミスタ本体41は基台2の上面に積み重ねられる。
《サーミスタ素子4,基台2のサイズ》
 サーミスタ素子4においてサーミスタ本体41のサイズは特に限定されるものではないが、本実施形態では、サーミスタ本体41はJISにより規格化されたサイズを有する。例えば、サーミスタ本体41のサイズが0603サイズであれば、L軸方向の寸法(つまり、L寸)は0.6mmであり、W軸方向の寸法(つまり、W寸)は0.3mmである。また、T軸方向の寸法(つまり、T寸)はJIS規格にて定められている訳では無いが、例えば0.15mmである。ここで、L寸、W寸およびT寸はいずれも設計目標値であって、必ずしも正確に0.6mm、0.3mmおよび0.15mmとなるわけではない。つまり、L寸、W寸およびT寸はいずれも公差を持っている。
 基台2のサイズは特に限定されるものではないが、下記の観点で適切に定められる。まず、基台2のL寸およびW寸は、サーミスタ本体41のL寸およびW寸に加え、製法上の制限を考慮して適宜適切に定められる。例えば、製造工程において、マウンタ等がマザー基板21上に多くのサーミスタ素子4を行列状に配置し、その後、ダイサー等がマザー基板21をカットして個々の温度センサ1を完成させる(図3A~図3Dを参照)。この場合には、基台2のL寸およびW寸は、サーミスタ本体41のL寸およびW寸よりも大きくなる。
 また、基台2のT寸に関しては下記の観点で適切に定められる。温度センサ1は、実使用時には、電子機器5(例えばスマートフォンやタブレット端末)の回路基板54の主面上に実装される(図4を参照)。そして、温度センサ1は、例えば、回路基板54の主面を基準として、その法線方向(つまりT軸方向)に距離dだけ離れた位置の空間温度を検知する。ここで、温度センサ1が検出すべき空間位置は、電子機器1の設計者により仕様として予め定められる。このような場合、基台2のT寸は、主面M1から主面M4までの距離Dが距離dと実質的に等しくなるように定められる。
《温度センサ1の製法》
 次に、温度センサ1の製造工程について説明する。温度センサ1の製造工程は、大略的には、サーミスタ素子4の製造工程と、サーミスタ素子4の基台2への実装工程と、を含む。以下、各工程を順番に説明する。
 サーミスタ素子4の製造工程は、下記の(A-1)~(A-3)の工程を含んでいる。
 (A-1) セラミック素原料であるMn34、Fe23、Co34、NiO、CuOが所定量秤量され、これにより、セラミック素原料を得る。このセラミック素原料は、ジルコニア等の粉砕媒体が内有されたボールミルに投入され、十分に湿式粉砕される。粉砕されたセラミック素原料は、約760℃の温度で約2時間の間、仮焼処理され、これによって、セラミック粉末を得る。次に、このセラミック粉末は、所定量の有機バインダを共に、湿式で混合処理され、これによって、スラリーを得る。このスラリーはドクターブレード法等により成形加工され、これによって、セラミックグリーンシートを得る。
 (A-2) 上記工程(A-1)で得られたセラミックグリーンシートには、銀(Ag)およびパラジウム(Pd)の合金を主成分とした内部電極用ペーストで、内部電極のパターンがスクリーン印刷される。次に、パターン印刷済みのセラミックグリーンシートが複数枚積層された後、その上下両面には、パターン無しのセラミックグリーンシートが圧着される。これにより、未焼成の積層体が得られる。次に、未焼成の積層体は、所定寸法に切断された後、ジルコニア製の匣に収容される。その後、匣内の積層体に対し約350℃の温度で約2時間の条件で脱バインダ処理が行われる。脱バインダ処理済の積層体に対し、所定温度(例えば1100℃~1175℃)で焼成処理が行われる。これによって、サーミスタ本体41が得られる。
 (A-3) 上記工程(A-2)で得られたサーミスタ本体41の左右両端面に、Agを主成分とする外部電極用ペーストが塗布され焼き付けられて、外部電極42,43の基礎となる下地電極が形成される。その後、電解めっきにより、各下地電極上にNiめっき層が形成され、各Niめっき層上にSnめっき層が形成される。
 上記工程(A-1)~(A-3)により、大量のサーミスタ素子4が一括的に生産される。
 サーミスタ素子4の基台2への実装工程は、工程(B-1)~(B-3)を含んでいる。
 (B-1) 次に、図3Aに示すように、基台2となるべき大判のマザー基板21が準備される。マザー基板21の厚さは基台2のT寸となるため、マザー基板21の厚さは、上記観点により適宜決定され、例えば、180μm、680μm、1180μm、1680μmおよび2180μmのいずれかである。また、マザー基板21は、例えば両面銅張積層板であるとする。このマザー基板21上には、配線導体31,32となるべき配線パターン33が大量に形成される。具体的には、例えばエッチングにより、ランド電極用の導体パターンが大量に形成される。この導体パターンは、L軸およびW軸の両方向に行列状に形成される。その後、L軸方向に隣り合う二つの導体パターンそれぞれの間に、例えば銅めっきによりスルーホール導体が形成される。これにより、大量の配線パターン33が形成される。
 (B-2) 次に、各配線パターン33のランド電極部分には、Sn-Ag-Cu系のはんだペーストが厚さ60μmで印刷される。その後、図3Bに示すように、マウンタ等によって、サーミスタ素子4が配線パターン33のランド電極部分に載置される。次に、サーミスタ素子4が載置されたマザー基板21に対し、約260℃の温度でリフロー処理がなされ、これによって、図3Cに示すように、サーミスタ素子4が配線パターン33上に実装されたマザー基板21が得られる。
 (B-3) 次に、ダイサー等によってマザー基板21はカットされる。より具体的には、マザー基板21は、各スルーホールの中心を通過しかつWT平面に略平行な各面にてカットされ、さらに、W軸方向に隣り合う二つの配線パターン33の中心を通過しかつTL平面に略平行な各面にてカットされる。なお、各カット面は、図3D中、破線で示されている。
 以上の工程(A-1)~(B-3)により、大量の温度センサ1が一括的に製作される。
《温度センサ1の応用例》
 上記のような温度センサ1は、図4に示すように、電子機器5の内部に備わる回路基板54の主面上に実装されて、この主面からT軸方向に距離dだけ離れた位置の空間温度を検知する。以下、温度センサ1の電子機器5への実装工程について、図4を参照して説明する。
 まず、図4の最下段を参照する。電子機器5は、筐体(換言すると、外装体)51を備える。筐体51は、ユーザ使用時に背面側となる外装ケース52と、ユーザ使用時に前面側となる外装カバー53と、を備える。外装ケース52の内部には、種々の電子回路が実装された回路基板54が収容される。ここで、回路基板54の主面は、外装ケース52の内側表面と隙間(つまり、空気層)を介して正対する。なお、図示は省略しているが、外装カバー53には、例えば液晶ディスプレイが取り付けられている。
 次に、図4の最上段を参照する。温度センサ1は、上記工程(B-2)と同様の手法で、回路基板54上に実装される。
 次に、図4の上から二段目に示すように、回路基板54の主面と外装ケース52の内側表面とが正対するように、回路基板54が外装ケース52の内部に収容され固定される。
 次に、図4の上から三段目に示すように、外装カバー53が外装ケース52の内部空間を閉止するように取り付けられ、図4の最下段に示すように電子機器5が完成する。この状態で、温度センサ1は、電子機器5の動作中、回路基板54と外装ケース52の間の空間温度を検出する。
《温度センサ1の作用・効果》
 ところで、「発明が解決しようとする課題」の欄でも説明した通り、従来の温度センサには、長尺の可撓性テープの影響で、製造時に回路基板に容易に実装できないことがある。以下、この問題点について、図5を参照して詳説する。
 図5は、従来の温度センサを電子機器に取り付けるための工程を示す模式図である。なお、図5中、図4に示す機器・構成に相当するものには同一参照符号を付け、それぞれの説明を省略する。
 従来の温度センサ101は、「従来の技術」の欄でも説明した通り、可撓性テープ102を備える。この可撓性テープ102の表面には、二条のリード線が延設される。両リード線の一端にサーミスタ素子103が設けられる。また、両リード線の他端104は、樹脂コーティングが施されることなく、回路基板54と電気的に接続可能に露出する。
 上記電子機器5の内部に、温度センサ101は、下記のようにして実装される。図5の最上段に示すように、温度センサ101が手作業で外装ケース52および回路基板54に実装される。具体的には、サーミスタ素子103を検知対象の近傍に配置する。また、両リード線の他端104を、回路基板54の主面上のランド電極にはんだ等で接合させる。
 次に、図5の上から二段目に示すように、回路基板54の主面と外装ケース52の内側表面とが正対するように、回路基板54が外装ケース52の内部に収容され固定される。
 次に、図5の上から三段目に示すように、外装カバー53が外装ケース52の内部空間を閉止するように取り付けられ、図5の最下段に示すように電子機器5が完成する。この状態で、サーミスタ素子103は、電子機器5の動作中、筐体温度を検知する。
 従来の温度センサ101を用いた電子機器5ではサーミスタ素子103と両リード線の他端104とは互いに近接するにも関わらず、手作業で回路基板54を外装ケース52内部に収容する関係で、可撓性テープ102を十分な長さにする必要がある。その結果、可撓性テープ102に余計な部分が発生し、この部分を狭空間に押し込めなければならない場合が発生する。
 それに対し、本温度センサ1の場合には、特徴的な基台2の作用により、電子機器5等の製造時に回路基板54に容易に実装することが可能となる。具体的には、基台2は、可撓性テープ102と異なり高い剛性を有すると共に、電子機器5の仕様に基づき、T軸方向の高さが予め調整されている。また、配線導体31,32は、高剛性の基台2の側面S3,S4上に、サーミスタ素子4と回路基板54とを直線的に結ぶように形成されている。したがって、配線導体31,32は長尺でもなく撓むことも無いため、本温度センサ1によれば、電子機器5等の製造時に回路基板54に容易に実装することが可能となる。
 また、本温度センサ1によれば、サーミスタ素子4が基台2上に搭載されている。したがって、温度センサ1が回路基板54の表面から離れた位置の温度を検知する場合であっても、基台2の高さを調整することで、サーミスタ素子4の体積を小さくすることが可能となる。これにより、サーミスタ素子4の熱容量が小さくなるため、サーミスタ素子4は、周囲温度の変化に対し素早く反応することが可能となる。
 また、回路基板54には、CPUおよびパワーアンプ等のような発熱量の多い電子部品(以下、発熱部品という)が実装される。しかし、本温度センサ1によれば、基台2を介在させることにより、これら発熱部品からサーミスタ素子4を熱的に隔離することができる。このように、サーミスタ素子4は、対象の温度をより正確に検出することが可能となる。
《付記1》
 上記実施形態では、サーミスタ本体41はNTCサーミスタであった。しかし、これに限らず、サーミスタ本体41はPTCサーミスタでも構わない。この場合、サーミスタ本体41は、典型的には、チタン酸バリウム(BaTiO3)に所定量の希土類を混合し焼結したセラミック焼結体からなっている。
《付記2》

 上記実施形態では、サーミスタ素子4は積層型チップサーミスタとして説明する。しかし、これに限らず、サーミスタ素子4は、単板型のチップサーミスタであっても構わない。
《付記3》
 また、サーミスタ本体41は、0603サイズに限らず、3225サイズ、3216サイズ、2012サイズ、1608サイズ、1005サイズ、0402サイズでも構わない。これらサイズに関し、L寸等は下記の表1に記載の通りである。
Figure JPOXMLDOC01-appb-T000001
《付記4》
 上記工程(A-1)では、セラミック素原料として、Mn34等の酸化物を用いた。しかし、これに限らず、Mnの炭酸塩または水酸化物等を用いることも可能である。
《付記5》
 工程(A-3)では、外部電極42,43は、Agの焼き付けおよび電解めっきにより形成された。しかし、これに限らず、スパッタリングまたは真空蒸着法等により形成されても構わない。
《変形例》
 次に、図6,図7を参照して、上記実施形態の変形例に係る温度センサ1aを説明する。図6,図7において、温度センサ1aは、図1等に示す温度センサ1と比較すると、サーミスタ素子4がサーミスタ素子4aに代わる点で相違する。それ以外に両温度センサ1,1aの間に相違点は無い。それゆえ、図6,図7において、図1等に示す構成に相当するものには同一の参照符号を付け、それぞれの説明を省略する。以下、サーミスタ素子4aの一構成例について詳説する。
 サーミスタ素子4aは、チップサーミスタ44aと、保護部材45aと、第一電極46aと、第二電極47aと、を含んでいる。なお、図示の都合上、サーミスタ素子4aに関しては図6には保護部材45aのみを示し、チップサーミスタ44aおよび電極46a,47aは図7のみに示される。
 チップサーミスタ44aは、上記実施形態のサーミスタ素子4と同様の構成を有する。それゆえ、チップサーミスタ44aの詳説を控える。
 保護部材45aは、例えばエポキシ樹脂のように、電気絶縁性を有する樹脂材料から作製される。樹脂材料としては、他にも、フェノール樹脂、ポリイミド樹脂等を用いることも可能である。
 この保護部材45aは、チップサーミスタ44aの主面M4側の全域を少なくとも覆っている。ここで注意を要するのは、保護部材45aは、チップサーミスタ44aが有するサーミスタ本体の主面M4側のみならず、両外部電極の主面M4側をも覆う点である。また、より好ましくは、保護部材45aは、チップサーミスタ44aの周面において主面M3を除く全域を覆う。このような保護部材45aを設けることで、導電性の検知対象(例えば、電子機器が有する金属製の筐体)にサーミスタ素子4aを直接接触させることが可能となる。
 電極46a,47aは、チップサーミスタ44aが有する一方の外部電極および他方の外部電極の底面上に形成されており、回路基板の表面への実装に用いられる。
 この電極46a,47aは、Snめっき層と、Niめっき層と、Cuめっき層と、銅箔とを含んでいる。Snめっき層は各外部電極の底面上に、各Niめっき層は対応するSnめっき層の底面上に、各Cuめっき層は対応するNiめっき層の底面上に、各銅箔は対応するCuめっき層の底面上に、直接接触するよう形成される。
《サーミスタ素子4aの製法》
 次に、図8A~図8Dを参照して、上記サーミスタ素子4aの製造方法の一例について説明する。この製造方法は、下記の(C-1)~(C-5)の工程を含んでいる。
 (C-1) 最初に、図8Aに示すように、マザー銅箔48が準備される。このマザー銅箔48において、厚さ(つまりT寸)は例えば18μmである。また、L寸、W寸に関しては、大量のサーミスタ素子4aを一括的に生産するには極力大きいことが望ましい。準備されたマザー銅箔48の主面上にはドライフィルムレジスト(図示せず)がラミネータにより貼付される。その後、露光・現像により、このドライフィルムレジストには、複数のサーミスタ素子4aの電極46a,47aに対応する位置に開口が形成される。各開口から露出するマザー銅箔48上には、電解めっきにより、Cu、SnおよびNiがこの順番で順次めっきされる。これにより、電極46a,47aのなるべき部分が形成される。
 (C-2) 上記工程(C-1)で得られた電極46a,47aとなる部分にはフラックスが塗布される。その後、図8Bに示すように、マウンタ等を用いて、チップサーミスタ44aの各外部電極が対応する部分に当接するよう載置される。ここで、チップサーミスタ44aは、L軸方向およびW軸方向のそれぞれに等間隔で整列するよう配置される。チップサーミスタ44aが載置されたマザー銅箔48に対しリフロー処理がなされ、その結果、チップサーミスタ44aの主面M3側の両端部分に電極46a,47aが形成される。
 (C-3) 上記工程(C-2)で得られたマザー銅箔48上には、図8Cに示すように、例えば熱硬化性エポキシ樹脂からなる未硬化樹脂シート49が、各チップサーミスタ44aを覆うように所定枚数積み重ねられる。この未硬化樹脂シート49において、厚さ(つまり、T寸)は、例えば100μmである。L寸およびW寸は、マザー銅箔48のそれぞれと実質同じである。これら未硬化樹脂シート49は、真空熱加圧装置によって、加圧・熱処理される。具体的には、約130℃の温度にて真空引きを約二分間実施した後、約5MPの圧力が平坦なプレス金型により未硬化樹脂シート49に加えられる。
 (C-4) かかる加圧・熱処理の後、樹脂シート49はさらに、オーブンにて、約180℃の温度にて約60分間の間加熱される。これにより、樹脂シート49は硬化し一体化する。そして、各チップサーミスタ44aは、主面M3側を除き、硬化した樹脂シート49の積層体49’の内部に封止される。
 (C-5) 上記工程(C-4)の次に、マザー銅箔48に対しエッチング等の手法にて、チップサーミスタ44aの各外部電極上に、電極46a,47aの最下層を構成する銅箔層が形成される。その後、図8Dに示すように、ダイサー等によって樹脂シート49がカットされる。より具体的には、樹脂シート49は、L軸方向に隣り合う二つのチップサーミスタ44aの中心を通過しかつWT平面に略平行な各面にてカットされ、さらに、W軸方向に隣り合う二つのチップサーミスタ44aの中心を通過しかつTL平面に略平行な各面にてカットされる。なお、各カット面は、図8D中、一点鎖線で示されている。また、カット面を明確にする観点から、大部分のチップサーミスタ44aの図示は省略されている。
 以上の工程(C-1)~(C-5)により、大量のサーミスタ素子4aが一括的に製作される。
 本発明に係る温度センサは、回路基板上に容易に実装可能であり、電子機器向け等に好適である。
 1,1a 温度センサ
 2 基台
 M1,M2 第一主面,第二主面
 S1,S2,S3,S4 第一側面,第二側面,第三側面,第四側面
 31,32 第一配線導体,第二配線導体
 4,4a サーミスタ素子
 41 サーミスタ本体
 44a チップサーミスタ
 M3,M4 第三主面,第四主面
 S5,S6,S7,S8 第五側面,第六側面,第七側面,第八側面
 42,43 第一外部電極 第二外部電極
 45a 保護部材
 46a,47a 第一電極,第二電極

Claims (6)

  1.  回路基板の表面から離れた位置の温度を検出可能な温度センサであって、
     互いに対向する第一主面および第二主面を有する基台と、
     前記第一主面および前記第二主面の間に延在する複数の配線導体であって、前記表面に形成された複数のランド電極と、少なくとも前記第一主面側の端部が電気的に接続可能な複数の配線導体と、
     互いに対向する第三主面および第四主面を有するサーミスタであって、前記第三主面が前記第二主面に実質的に面するように前記基台に固定されるサーミスタと、
     前記サーミスタに形成された複数の電極であって、前記複数の配線導体における前記第二主面側の端部と電気的に接続可能な複数の電極と、を備える温度センサ。
  2.  前記表面に対し所定距離離れた位置の温度を検出する場合、前記第一主面および前記第四主面の間の距離は前記所定距離に基づき定められる、請求項1に記載の温度センサ。
  3.  前記基台の熱伝導率は、前記回路基板の熱伝導率よりも低い、請求項1または2に記載の温度センサ。
  4.  前記複数の配線導体は、低熱伝導率の金属材料で作製されている、請求項1~3のいずれかに記載の温度センサ。
  5.  前記第四主面を少なくとも覆っており、樹脂材料から作製される保護部材を、さらに備える請求項1~4のいずれかに記載の温度センサ。
  6.  前記樹脂材料は電気絶縁性を有する、請求項5に記載の温度センサ。
PCT/JP2014/073930 2014-01-07 2014-09-10 温度センサ WO2015104868A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201490001307.7U CN206179618U (zh) 2014-01-07 2014-09-10 温度传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-001089 2014-01-07
JP2014001089 2014-01-07

Publications (1)

Publication Number Publication Date
WO2015104868A1 true WO2015104868A1 (ja) 2015-07-16

Family

ID=53523710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/073930 WO2015104868A1 (ja) 2014-01-07 2014-09-10 温度センサ

Country Status (2)

Country Link
CN (1) CN206179618U (ja)
WO (1) WO2015104868A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022128468A1 (en) * 2020-12-17 2022-06-23 Tdk Electronics Ag Sensor arrangement and method for producing a sensor arrangement
JP7340130B1 (ja) 2022-04-25 2023-09-07 直文 蕨 非接触型温度センサ

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109166679B (zh) * 2018-09-03 2021-03-23 深圳市特普生科技有限公司 一种ntc热敏电阻加工方法
US11682313B2 (en) * 2021-03-17 2023-06-20 Gregory M. Griffith Sensor assembly for use in association with aircraft collision avoidance system and method of using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288803A (ja) * 1998-04-01 1999-10-19 Murata Mfg Co Ltd 表面実装サーミスタ部品
JP2004253727A (ja) * 2003-02-21 2004-09-09 Oizumi Seisakusho:Kk 温度センサの熱応答性改善方法および温度センサ
JP2004335793A (ja) * 2003-05-08 2004-11-25 Mitsubishi Materials Corp 温度計

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288803A (ja) * 1998-04-01 1999-10-19 Murata Mfg Co Ltd 表面実装サーミスタ部品
JP2004253727A (ja) * 2003-02-21 2004-09-09 Oizumi Seisakusho:Kk 温度センサの熱応答性改善方法および温度センサ
JP2004335793A (ja) * 2003-05-08 2004-11-25 Mitsubishi Materials Corp 温度計

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022128468A1 (en) * 2020-12-17 2022-06-23 Tdk Electronics Ag Sensor arrangement and method for producing a sensor arrangement
JP7340130B1 (ja) 2022-04-25 2023-09-07 直文 蕨 非接触型温度センサ
JP2023161389A (ja) * 2022-04-25 2023-11-07 直文 蕨 非接触型温度センサ

Also Published As

Publication number Publication date
CN206179618U (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
JP5404312B2 (ja) 電子装置
KR102004787B1 (ko) 적층형 전자부품 및 그 제조방법
JP6677228B2 (ja) コイル部品
JP2009054973A (ja) 積層コンデンサおよびコンデンサ実装基板
KR101499715B1 (ko) 기판 내장용 적층 세라믹 전자부품 및 적층 세라믹 전자부품 내장형 인쇄회로기판
US20160042858A1 (en) Chip-type coil component and manufacturing method thereof
KR20160000612A (ko) 칩형 코일 부품 및 그 제조방법
WO2015104868A1 (ja) 温度センサ
JP2013070108A (ja) チップ抵抗器
JP2011165752A (ja) チップ抵抗器
JP2016139742A (ja) コイル部品
JP2015129731A (ja) 温度センサ
JP2011135036A (ja) 積層セラミックキャパシタ及びその製造方法
KR20150089279A (ko) 칩형 코일 부품
JP5707710B2 (ja) 積層型チップ部品
KR20160004602A (ko) 적층 인덕터, 적층 인덕터의 제조방법 및 적층 인덕터의 실장 기판
KR20150105691A (ko) 칩형 코일 부품 및 그 실장 기판
JP2006060147A (ja) セラミック電子部品及びコンデンサ
KR20160000329A (ko) 적층 인덕터, 적층 인덕터의 제조방법 및 적층 인덕터의 실장 기판
JP5694459B2 (ja) 積層セラミック電子部品及びその実装基板
JP6121860B2 (ja) 配線基板および電子装置
WO2015019643A1 (ja) サーミスタ素子
WO2015019644A1 (ja) 電子部品およびその製造方法
JP5838978B2 (ja) セラミック積層部品
JP6164228B2 (ja) モジュールおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14877629

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14877629

Country of ref document: EP

Kind code of ref document: A1